WO2014208371A1 - Aspherical lens, method for manufacturing lens unit provided with aspherical lens, lens unit manufactured by said method for manufacturing, and lens molding mold - Google Patents

Aspherical lens, method for manufacturing lens unit provided with aspherical lens, lens unit manufactured by said method for manufacturing, and lens molding mold Download PDF

Info

Publication number
WO2014208371A1
WO2014208371A1 PCT/JP2014/065800 JP2014065800W WO2014208371A1 WO 2014208371 A1 WO2014208371 A1 WO 2014208371A1 JP 2014065800 W JP2014065800 W JP 2014065800W WO 2014208371 A1 WO2014208371 A1 WO 2014208371A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
shape
aspherical
optical axis
aspheric
Prior art date
Application number
PCT/JP2014/065800
Other languages
French (fr)
Japanese (ja)
Inventor
俊哉 瀧谷
昭俊 野▲崎▼
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2014208371A1 publication Critical patent/WO2014208371A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00019Production of simple or compound lenses with non-spherical faces, e.g. toric faces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/263Moulds with mould wall parts provided with fine grooves or impressions, e.g. for record discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/37Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings
    • B29C45/372Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings provided with means for marking or patterning, e.g. numbering articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses

Definitions

  • the present invention relates to an aspheric lens, a method of manufacturing a lens unit including the aspheric lens, a lens unit manufactured by the manufacturing method, and a lens molding die.
  • Patent Document 1 a lens in which a marking is provided in an effective area of an optical element such as a lens to facilitate center detection
  • FIG. 9 is an enlarged cross-sectional view of a lens on which a conventional marking is formed.
  • the marking M is formed so as to have a sharp shape change with respect to the surface R of the lens L having an aspherical shape so that the marking M can be satisfactorily detected.
  • a marking may affect the optical performance of the lens depending on the size.
  • such a marking may be detected as a scratch, dust, measurement noise, or the like under the condition of a light source with a strong light amount, even if the size does not affect the optical performance of the lens.
  • detection of such a marking requires a shape measurement technique with excellent resolution in a direction perpendicular to the lens optical axis.
  • the present invention is an invention made in view of the above circumstances, and its purpose is not easily recognized as a scratch or the like by visual observation or normal observation with a microscope, etc., without reducing the imaging performance of the lens, and Provided are an aspheric lens having a shape that can be detected with high accuracy when observing by a specific method, a method of manufacturing a lens unit including the aspheric lens, a lens unit manufactured by the manufacturing method, and a lens molding die It is to be.
  • An aspherical lens according to the present invention includes a lens effective region having a central region and a peripheral region surrounding the central region, and the central region has a wavy shape having a predetermined height with the optical axis as a symmetry axis, The peripheral area is smoothly connected to the wavy end.
  • the lens unit according to the present invention includes the aspheric lens.
  • the manufacturing method of the lens unit concerning this invention is a manufacturing method of the lens unit containing the said aspherical lens.
  • the lens molding die according to the present invention has an inverted shape of the aspheric lens.
  • FIG. 1 is an enlarged cross-sectional view of an aspheric lens 10 of the present embodiment.
  • the aspherical lens 10 has a central region R1 in which a wavy shape 20 having an optical axis LA as an axis of symmetry is formed, and a peripheral region R2 that is smoothly connected to the end 20a of the wavy shape 20 and surrounds the central region R1.
  • An effective area Ra is provided.
  • the aspherical lens 10 of the present embodiment has a general aspherical shape in the peripheral region R2 and a general aspherical shape in the central region R1, as shown in the following formula (A).
  • a cross-sectional shape including the optical axis LA has a swell shape 20 in which the function W (H) represented by the formula (A) is superimposed.
  • W (H) represented by the formula (A) is superimposed.
  • the vertex of the surface is the origin
  • the direction of the optical axis LA is the Z axis
  • the actual distance from the optical axis LA is H
  • twice the width of D is the wavy width.
  • h H / a
  • a a normalization coefficient that satisfies (
  • a i is an i-th order aspheric coefficient
  • R is a reference radius of curvature
  • a cone coefficient.
  • W (H) is a function having ⁇ (H / D) only in the central region R1, and zero in the other peripheral regions R2.
  • the function ⁇ (H) is differentiable and is an arbitrary function whose value and derivative value are zero at the boundary between the central region R1 and the peripheral region R2 (ie,
  • D).
  • W ′ (H) and ⁇ ′ (H) are differential expressions of W (H) and ⁇ (H), respectively.
  • W (H) is differentiable in each of the central region R1 and the peripheral region R2, and at the connection portion (ie,
  • D) between the central region R1 and the peripheral region R2. Connected smoothly.
  • FIG. 2 is a schematic diagram showing a central region of the aspherical lens 11 in which the swell shape 21 of the function represented by the equation (1) is formed.
  • ⁇ (h) is a trigonometric function representing the undulation shape formed in the central region.
  • 1), and the peripheral region A smoother connection with R2.
  • the undulation shape is designed to have a height of 50 nm or less.
  • This 50 nm or less corresponds to 1/10 or less of the lower limit in the green wavelength range.
  • the wavelength range of green is generally 500 nm to 570 nm, and green is the color most sensitive to human visual sensitivity.
  • ⁇ / 10 is widely used as an aberration standard that does not affect the imaging performance of the lens.
  • ⁇ / 10 or less human Is recognized as an image having no aberration.
  • the undulation shape is designed as described above.
  • the wavy shape is a shape having the optical axis as a symmetry axis as described above, and has a portion (plane) inclined in an oblique direction at any position other than the end connected to the peripheral region. Therefore, by using an interferometer having a measurement accuracy in the height direction of about 1/10 with respect to the above height, the direction perpendicular to the lens optical axis can be determined from the measured displacement in the height direction. The amount of displacement to can be calculated. That is, such an interferometer is used as a high-precision eccentricity measuring device for detecting the center of an aspheric lens in the present embodiment.
  • FIG. 3 is a schematic diagram for explaining the displacement of the wavy shape 21 when the aspherical lens 11 is moved in the X direction.
  • FIG. 3 shows a case where the point P1 on the undulation shape 21 is displaced to the point P2 by the movement of the aspheric lens 11 in the X direction.
  • the function representing the waviness shape 21 is known as shown in the equation (1), the displacement from the point P1 to the point P2 in the X direction (direction perpendicular to the lens optical axis).
  • the amount ⁇ X can be measured by calculating a displacement amount ⁇ Z in the Z direction (height direction).
  • the interferometer for measuring the displacement in the height direction is not particularly limited.
  • a white interferometer equipped with a light source that emits visible light (380 to 750 nm) has a measurement accuracy of 5 nm level and is preferably used. Is done. A specific configuration of such an interferometer will be described in detail in a lens unit manufacturing method described later.
  • Z (h) is a function representing the undulation shape formed in the central region, and is a function combining so-called Zernike's circular polynomials.
  • Zernike's circular polynomial is an equation representing the distribution of numerical values within a circular range, and is defined as the following equation (B).
  • the term shown in the formula (B) is a part of the Zernike annular polynomial.
  • H H / a
  • a a normalization coefficient that satisfies (
  • FIG. 4 is a plan view in the XY direction of a pattern formed in the Zernike ring polynomial
  • FIG. 4A is a plan view of a pattern P4 representing the fourth term of the Zernike ring polynomial
  • FIG. 4C is a plan view of a pattern P16 representing the sixteenth term.
  • the Zernike annular polynomial is annular in the XY direction.
  • the swell shape of the function combining the terms that form an annular shape in the XY directions is defined as shown in Equation (2).
  • FIG. 5 is a schematic diagram for explaining the ninth term (Z9 (h)) and the sixteenth term (Z16 (h)) of Zernike's annular polynomial and a function combining these.
  • a curve C1 indicates the ninth term of the Zernike annular polynomial
  • a curve C2 indicates the sixteenth term of the Zernike annular polynomial.
  • the curve C1 indicating the ninth term and the curve C2 indicating the sixteenth term of the Zernike annular polynomial have values of 1 at the ends. For this reason, the wavy end of the function represented by the Zernike annular polynomial is not smoothly connected to the peripheral region of the aspherical lens.
  • the end of the wavy shape is smoothly connected to the peripheral region (that is, the value is 0 at each end of the wavy shape).
  • the curve C3 is a curve represented by a function combining the ninth term (Z9 (h)) and the sixteenth term (Z16 (h)) of the Zernike annular polynomial as shown in the equation (2).
  • the waviness shape represented by the curve C3 (that is, the function shown in the equation (2)) has a value of 0 at the end (
  • 1), and is more smoothly connected to the peripheral region.
  • the swell shape of the function shown in the equation (1) is a shape (convex shape upward) that is higher than the lens surface of the aspheric lens around the optical axis (the swell shape 21 in FIG. 2). reference).
  • the swell shape of the function shown in Equation (2) is a shape that is raised above the lens surface of the aspherical lens (upwardly convex shape) around the optical axis, as shown by a curve C3 in FIG. In addition, it has a shape that is depressed from the lens surface of the aspherical lens from the optical axis to the wavy end (convex shape downward).
  • the undulation shape of the function shown in Expression (2) has a larger displacement amount in the height direction (Z direction) than the undulation shape of the function shown in Expression (1).
  • the accuracy measured by the shape measuring instrument is high, and the amount of displacement in the direction perpendicular to the lens optical axis can be measured more finely.
  • the aspherical lens 10 in the present embodiment includes the lens effective region Ra having the central region R1 and the peripheral region R2 surrounding the central region R1.
  • a waviness shape is formed in the central region R1. Since the wavy shape has the optical axis LA of the lens 10 as the axis of symmetry, the center of the lens 10 can be easily recognized by detecting the wavy shape. And the wave
  • the undulation shape has a height of 50 nm or less. Therefore, the waviness shape can be easily detected by using an interferometer with a measurement accuracy of 5 nm level, and the position in the direction perpendicular to the lens optical axis LA is also detected based on the measured height. can do.
  • the positions of the plurality of aspheric lenses 10 in the direction perpendicular to the optical axis LA can be easily determined based on the measurement results of the interferometer.
  • the function representing the waviness shape superimposed on the central region R1 is a function represented by the equations (1) and (2)
  • the end portion of the waviness shape and the peripheral region are more smoothly connected, and
  • the waviness shape has a height sufficiently detected by an interferometer having a measurement accuracy of 5 nm level.
  • the center position of the aspherical lens 10 is likely to be detected more accurately.
  • the material of the aspherical lens 10 of this embodiment is not specifically limited, For example, various glass materials and resin materials can be used. Among these, a resin material is preferable from the viewpoint of easy molding by injection molding or the like. Specific examples of the resin material include polycarbonate and cyclic olefin resin.
  • the dimensions of the aspherical lens are not particularly limited.
  • the effective lens area Ra has a width of 2 to 4 mm
  • the wavy shape (central area) has a width D (see FIG. 1) of about 50 to 100 ⁇ m. Can do.
  • the width of the waviness shape in such a range, it is possible to form a marking (waviness shape) having a large width and high accuracy as compared with a marking transferred with a conventional tool shape.
  • the main spindle of a lathe machine Less susceptible to blurring and tool shape errors.
  • the height dimension of the wavy shape is not particularly limited as long as it is 50 nm or less as described above, and it is preferably a size that is difficult to be recognized as a scratch or the like by visual observation or normal microscopic observation. For example, as shown in FIG.
  • the height dimension of such a swell shape includes an approximate spherical surface passing through the most convex portion (a portion through which the symmetry axis passes) of the swell shape, and a convex shape on the top.
  • the portion that has been depressed from the bottom to the bottom in the case of the swell shape of the function represented by the formula (1), it is a connecting portion with the peripheral region, and in the case of the swell shape of the function represented by the formula (2)
  • the distance T from the approximate spherical surface passing through the lowermost convex part can be about 20 to 50 nm.
  • the wavy shape having such dimensions is difficult to be recognized as a scratch or the like by visual observation or normal observation with a microscope or the like. Further, such a swell shape does not appear in an obtained image when an image is formed by attaching an aspheric lens to an imaging apparatus body such as a camera. Furthermore, such a wavy shape is excellent in processing reproducibility.
  • the aspherical lens of this embodiment can easily detect the center position based on the waviness shape, for example, it is possible to easily detect an eccentric error of the first group lens.
  • the aspherical lens is an eccentricity generated when a solid-state image sensor such as a CCD (charge-coupled device) type image sensor or a CMOS (complementary metal-oxide-semiconductor) type image sensor is combined to constitute an optical unit. An error can be easily detected.
  • the aspherical lens 10 can easily fit the center positions of the plurality of aspherical lenses within tolerance when manufacturing a lens unit in which a plurality of aspherical lenses are combined.
  • FIG. 6 is a flowchart for explaining a manufacturing method of the lens unit of the present embodiment.
  • the manufacturing method of the lens unit of the present embodiment includes a molding step S100 for molding the aspherical lens 10 and a combination step S200 for combining a plurality of aspherical lenses produced by the molding step S100.
  • a molding step S100 for molding the aspherical lens 10
  • a combination step S200 for combining a plurality of aspherical lenses produced by the molding step S100.
  • the molding step S100 is a step of molding the aspherical lens 10 using a lens molding die having an inverted shape of the aspherical lens 10.
  • the aspherical lens 10 includes a central region R1 having a wavy shape with the optical axis LA of the lens as an axis of symmetry, and a peripheral region R2 that is smoothly connected to the end of the wavy shape and surrounds the central region R1.
  • the waviness shape of the aspherical lens 10 has a height of 50 nm or less as described above.
  • FIG. 7 is a cross-sectional view of the lens molding die 30 used in this embodiment.
  • the lens molding die 30 includes an upper die 31 and a lower die 32.
  • the upper mold 31 and the lower mold 32 are a pair of upper and lower sides, and a space S having the same shape as the aspherical lens is formed inside by overlapping.
  • the space S includes a space S1 for forming the lens effective area Ra in the aspherical lens 10 and a space S2 for forming an area outside the lens effective area.
  • an inverted shape is formed in accordance with the shape of the aspheric lens surface to be produced.
  • the undulating inverted shape 31 b of the aspherical lens 10 is formed on the inner surface 31 a of the upper mold 31.
  • the material of the lens mold 30 is not particularly limited.
  • the lens molding die 30 having such an inner surface shape can be manufactured by using an aspherical processing machine having a processing resolution of 5 nm level.
  • an aspherical surface processing machine examples include an NC (Numerical Control) lathe.
  • the NC lathe is a device in which a numerical control (NC) device is attached to various lathes so that the moving distance and feed rate of the tool post can be indicated numerically.
  • Such a lens molding die 30 is suitable for manufacturing the aspherical lens 10 described above because an inversion shape for manufacturing the aspherical lens 10 is formed on the inner surface. Therefore, the aspherical lens 10 can be easily manufactured by using such a lens molding die 30 by, for example, injection molding a resin.
  • the combination step S200 is a step of combining a plurality of aspherical lenses 10 molded in the molding step S100.
  • the combination process includes a first detection process S210, a second detection process S220, and a position adjustment process S230.
  • the aspheric lens 10 molded in the molding step S100 may be formed with an antireflection coating, a protective film, or the like by vacuum deposition or the like before the combination step S200.
  • the combination step S200 can be executed by using a lens unit assembling apparatus.
  • FIG. 8 is a schematic diagram illustrating an example of the assembly device 40.
  • the assembly apparatus 40 includes a work table 42 having a horizontal mounting space, a lens holding jig 41 fixed to the mounting space of the work table 42, a lens holder 43 attached to the lens holding jig 41, and a lens holder.
  • the white interference measuring head 44 for observing the lenses (first aspherical lens 50 and second aspherical lens 60 described later) held by the lens 43 from above, and perpendicular to the optical axis of the lens held by the lens holder 43
  • an adjustment stage 45 that adjusts the position in various directions.
  • combination process S220 which assembles a lens unit using assembly device 40 provided with such composition is explained.
  • a lens unit including two aspheric lenses the first aspheric lens 50 and the second aspheric lens 60
  • the first detection step S210 is based on the wavy shape (first wavy shape 51) formed on the first aspherical lens (first aspherical lens 50) among the plurality of aspherical lenses. This is a step of detecting the position (first center 52).
  • the first aspheric lens 50 is held by the lens holder 43 (holding step S211). More specifically, in the first aspheric lens 50, the region Rb outside the lens effective region is held by the lens holder 43. The lens holder 43 is sucked and held by the lens holding jig 41.
  • the lens holder 43 is made of any material, and the lens holder 43 of the present embodiment is made of polycarbonate, cyclic olefin resin, or the like.
  • the lens holder 43 may include a filler (reinforcing fiber) or the like.
  • the lens holding jig 41 is made of an arbitrary material, and the lens holding jig 41 of the present embodiment is made of stainless steel (SUS).
  • the detection of the first center 52 is performed by the white interference measuring head 44 that observes the first aspherical lens 50 from above.
  • the white interference measuring head 44 is a device that measures white interference data in order to obtain the shape of the aspheric lens by white interference with respect to the aspheric lens (first aspheric lens 50) to be measured.
  • the white interference measuring head 44 has an objective lens 44a disposed on the optical axis of the aspheric lens so that the aspheric lens can be observed from above.
  • the white interference measurement head 44 is provided so as to be movable up and down in the vertical direction along a support member 46 erected vertically to the work space of the work table 42. The vertical movement of the white interference measuring head 44 is appropriately performed by a driving device (not shown).
  • the white interference measuring head 44 irradiates the aspherical lens from a white light source (not shown) that emits white light with less coherence, and reflects the white light WL reflected from the aspherical lens; Interfere with white light emitted from the white light source and reflected from the reference surface to obtain an interference image of the aspheric lens, and move the reference surface in the optical axis direction to obtain the reference surface having the highest interference light intensity. It is a device that detects the position.
  • the white interference measuring head 44 is, for example, a Mirau-type or Michelson-type equal optical path interferometer and an imaging unit (not shown) that captures an interference image of an aspheric lens in order to cause interference to obtain white interference data of the aspheric lens.
  • an imaging unit (not shown) that captures an interference image of an aspheric lens in order to cause interference to obtain white interference data of the aspheric lens.
  • the objective lens 44a moving in the optical axis direction, the mounting surface of the work table 42 on which the aspherical lens is mounted, and the objective lens 44a
  • a differential laser distance measuring unit (not shown) for detecting the distance.
  • the white interference measurement head 44 is connected to a control calculation unit (not shown), and controls and calculates interference image data captured by the imaging unit and distance data measured by the differential laser ranging unit as white interference data. Output to the section.
  • the control calculation unit obtains the shape of the aspheric lens based on the output (white interference data) of the white interference measuring head 44.
  • the control arithmetic unit is, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory) or an EEPROM (Electrically Only Programmable Read Only Memory) that stores various programs executed by the CPU and data necessary for the execution in advance. ) And the like, a volatile memory element such as a RAM (Random Access Memory) serving as a so-called working memory of the CPU, and a microcomputer including a peripheral circuit thereof.
  • a control calculating part calculates
  • the position of the center of the swell shape of the aspheric lens (first center 52) is detected.
  • the position of the first center 52 is calculated with high accuracy based on the displacement of the wavy shape formed in the central region of the first aspherical lens 50.
  • the position of the first center 52 detected by the control calculation unit is stored in the RAM.
  • the center position (second center 62) is determined based on the wavy shape (second wavy shape 61) formed in the second aspherical lens (second aspherical lens 60). This is a detecting step.
  • the second aspheric lens 60 is first mounted on the lens holder 43 so as to be superimposed on the first aspheric lens 50.
  • An eccentric adjustment claw 45 a attached to an adjustment stage 45 that adjusts the position in the direction perpendicular to the lens optical axis is applied to the second aspheric lens 60.
  • the eccentric adjustment claw 45a moves as the adjustment stage 45 moves in the direction perpendicular to the optical axis, and adjusts the position of the second aspheric lens 60 in the direction perpendicular to the optical axis.
  • the position of the second center 62 is detected with high accuracy by the white interference measurement head 44 and stored in the RAM, as described in the first detection step S210.
  • Position adjustment step S230 In the position adjustment step S230, at least one of the first aspherical lens 50 and the second aspherical lens 60 is moved in a direction perpendicular to the optical axis, and the position of the first center 52 and the second aspherical lens 50 are moved. This is a step of keeping the position of the center 62 within a tolerance. First, in the position adjustment step S230, the position in the direction perpendicular to the optical axis of the first center 52 detected in the first detection step S210 and the optical axis of the second center 62 detected in the second detection step S220 are perpendicular. The position in the correct direction is confirmed to be within tolerance.
  • the control calculation unit of the white interference measurement head 44 sets the optical axes of the first center 52 and the second center 62 to the optical axes.
  • the difference in position in the vertical direction is calculated.
  • Information on the calculated position difference is fed back to the adjustment stage 45.
  • the adjustment stage 45 moves in the direction perpendicular to the optical axis of the lens based on the fed back difference information, and moves the second aspherical lens 60 via the eccentric adjustment claw 45a.
  • the adjustment stage 45 moves the second aspherical lens 60 in a direction perpendicular to the optical axis in units of 1 to several ⁇ m, for example.
  • the adjustment stage 45 is appropriately moved by a driving device (not shown).
  • the position of the second center 62 is detected again by the white interference measuring head 44, and it is confirmed whether the position of the first center 52 and the position of the second center 62 are within tolerance. The same operation is repeated until it is within the tolerance.
  • the first aspherical lens 50 and the second aspherical lens 60 whose positions have been adjusted in the position adjusting step S230 retract the white interference measuring head 44 as necessary, and then apply an adhesive application device (not shown).
  • the lens unit is manufactured by bonding. Thereafter, the eccentric adjustment claw 45 a is retracted, and the lens unit is removed from the lens holder 43.
  • the first aspheric lens is held in the lens holder, the first center is detected, then the second center of the second aspheric lens is detected, and the second aspheric lens is irradiated with light.
  • the method for accommodating within the tolerance between the first center and the second center is not particularly limited. . That is, in this embodiment, instead of this, both the first aspherical lens and the second aspherical lens are moved in the direction perpendicular to the optical axis, and the first center and the second center are toleranced.
  • the first center and the second center may be within tolerance by moving only the second aspheric lens in the direction perpendicular to the optical axis.
  • the first aspherical lens is held in the holding step as in the present embodiment, the first aspherical lens is firmly held in an area outside the lens effective area, and the second aspherical lens is By moving in the direction perpendicular to the optical axis, the first center and the second center can be easily moved so as to be within the tolerance, and the lens unit can be manufactured more efficiently.
  • the case where the number of aspheric lenses constituting the lens unit is two is exemplified, but the number of aspheric lenses is not limited to two and may be three or more. At that time, the shape and the like of the lens holder are appropriately adjusted.
  • first aspherical lens and the second aspherical lens are directly fixed by an adhesive
  • first aspherical lens and the second aspherical lens are It may be bonded through a spacer as appropriate, or may be bonded separately to the lens barrel.
  • the first wavy shape and the second wavy shape are respectively formed on the first aspherical lens 50 and the second aspherical lens 60 obtained by the molding process.
  • the Since the first waviness shape and the second waviness shape can be measured with an interferometer (for example, a white interference measurement head) having a measurement accuracy in the height direction of 5 nm, the first center of the first waviness shape.
  • the second center of the second wavy shape is accurately detected by the interferometer in the combining step, and at least one of the first aspherical lens 50 and the second aspherical lens 60 is irradiated with light.
  • the obtained lens unit uses an aspheric lens having a central region in which the above-described wavy shape is formed.
  • the wavy shape is difficult to be recognized as a scratch or the like by visual observation or normal observation with a microscope or the like.
  • an image is formed by attaching an aspheric lens to the main body of an image pickup apparatus such as a camera, the image does not appear in the image. Therefore, such a lens unit has an excellent appearance and function.
  • An aspherical lens includes a central region in which a wavy shape having an optical axis of the lens as an axis of symmetry is formed, and a peripheral region that is smoothly connected to an end of the wavy shape and surrounds the central region.
  • An effective area is provided, and the waviness shape has a height of 50 nm or less.
  • Such an aspherical lens includes a lens effective region having a central region and a peripheral region surrounding the central region.
  • a wavy shape is formed in the central region. Since the wavy shape has the optical axis of the lens as the axis of symmetry, the center of the lens can be easily recognized by detecting the wavy shape.
  • the undulation shape is smoothly connected at its end to the peripheral region. For this reason, the connection portion between the end portion and the swell shape is hardly recognized as a scratch or the like by visual observation or normal observation with a microscope or the like.
  • Such a swell shape does not appear in an obtained image when an imaging optical system including an aspheric lens is attached to an imaging device body such as a camera, for example.
  • the undulation shape can be measured with an interferometer having a measurement accuracy of 5 nm level, the undulation shape can be easily detected by using such a specific interferometer, and the measured height Based on this, the position in the direction perpendicular to the optical axis can also be detected.
  • the “height” here is the amount of unevenness in the lens optical axis direction.
  • the swell shape of the function represented by the following formula (1) is superimposed on the aspheric shape of the lens.
  • a shape may be formed.
  • the wavy end and the peripheral region are connected more smoothly, and the wavy shape has a height of 50 nm or less.
  • the center position of the aspherical lens can be detected more accurately, and the waviness shape is less likely to be recognized as a scratch or the like.
  • the swell shape of the function expressed by the following formula (2) is superimposed on the aspheric shape of the lens.
  • a shape may be formed.
  • the end portion of the undulation shape and the peripheral region are more smoothly connected, and the undulation shape has a height of 50 nm or less.
  • the center position of the aspherical lens can be detected more accurately, and the waviness shape is less likely to be recognized as a scratch or the like.
  • a manufacturing method of a lens unit includes a molding step of molding the aspheric lens using a lens molding die having a reversal shape of the aspheric lens, and a plurality of the manufacturing steps produced by the molding step.
  • a method of manufacturing a lens unit including a combination step of combining the aspherical lenses, wherein the molding step includes a central region in which a wavy shape having an optical axis of the lens as a symmetry axis is formed, and an end portion of the wavy shape
  • a lens molding die having a lens effective region that is smoothly connected and has a peripheral region surrounding the central region, and wherein the undulation shape is a reversal shape of an aspherical lens having a height of 50 nm or less.
  • Forming a plurality of the aspheric lenses, and the combining step is formed on a first aspheric lens among the plurality of aspheric lenses.
  • a second detection step of detecting a second center of the second aspherical lens based on the waviness shape, and at least one of the first aspherical lens and the second aspherical lens A position adjusting step of moving the first center position and the second center position within a tolerance by moving in a direction perpendicular to the optical axis.
  • the first wavy shape and the second wavy shape are respectively formed on the first aspherical lens and the second aspherical lens obtained by the molding step. Since the first waviness shape and the second waviness shape can be measured by an interferometer having a measurement accuracy of 5 nm level in the combination process, the first center of the first waviness shape and the second waviness shape of the second waviness shape can be measured. The positions of the two centers are accurately detected by the interferometer. As a result, according to such a configuration, by moving at least one of the first aspherical lens and the second aspherical lens in a direction perpendicular to the optical axis, both aspherical lenses are obtained. Each position can be easily within tolerance.
  • the first detection step further includes a holding step of holding a region outside the lens effective region of the first aspheric lens
  • the position adjusting step is a step of moving the second aspheric lens in a direction perpendicular to the optical axis so that the position of the first center and the position of the second center are within tolerance. Also good.
  • the lens unit manufacturing method since the first aspheric lens is held outside the lens effective area in the holding step, the second aspheric lens is perpendicular to the optical axis. By moving in the direction, each position of the first center and the second center can be easily moved so as to be within the tolerance. As a result, according to such a configuration, the lens unit can be manufactured more efficiently.
  • the lens unit according to another aspect is a lens unit obtained by any one of the lens unit manufacturing methods described above.
  • an aspherical lens having a central region in which the above-described wavy shape is formed is used.
  • the wavy shape is difficult to be recognized as a scratch or the like by visual observation or normal observation with a microscope or the like.
  • an image is formed by attaching a lens unit to an imaging device body such as a camera, the image is not reflected. Therefore, such a lens unit has an excellent appearance and function.
  • a lens molding die is formed with a reversal shape of an aspherical lens, and the aspherical lens has a central region formed with a wavy shape with the optical axis of the lens as an axis of symmetry, and the wavy shape.
  • the lens has a lens effective region that is smoothly connected to the end portion and has a peripheral region surrounding the central region, and the wavy shape has a height of 50 nm or less.
  • Such a lens molding die is suitable for manufacturing the aspherical lens described above.
  • an aspheric lens it is possible to provide an aspheric lens, a method of manufacturing a lens unit including the aspheric lens, a lens unit manufactured by the manufacturing method, and a lens molding die.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

An aspherical lens according to the present invention is provided with an effective lens region having a center region and a surrounding region that surrounds the same. The center region has a wavy shape symmetrical about the optical axis and having a height of 50 nm or less. The surrounding region is smoothly connected to an end part of the wavy shape. A lens unit according to the present invention includes the aspherical lens. A method for manufacturing a lens unit according to the present invention is a method for manufacturing the lens unit that includes the aspherical lens. A lens molding mold according to the present invention has a shape that is the inverse of the aspherical lens.

Description

非球面レンズ、該非球面レンズを備えたレンズユニットの製造方法および該製造方法により製造されるレンズユニットならびにレンズ成形金型Aspherical lens, method of manufacturing lens unit including the aspherical lens, lens unit manufactured by the manufacturing method, and lens molding die
 本発明は、非球面レンズ、該非球面レンズを備えたレンズユニットの製造方法および該製造方法により製造されるレンズユニットならびにレンズ成形金型に関する。 The present invention relates to an aspheric lens, a method of manufacturing a lens unit including the aspheric lens, a lens unit manufactured by the manufacturing method, and a lens molding die.
 従来、レンズ等の光学素子の有効領域にマーキングを設け、中心の検出を容易としたレンズが知られている(特許文献1)。このようなレンズは、例えば表面形状を測定する際に、マーキングを検出することにより容易に中心が認識される。 2. Description of the Related Art Conventionally, there has been known a lens in which a marking is provided in an effective area of an optical element such as a lens to facilitate center detection (Patent Document 1). For example, when measuring the surface shape of such a lens, the center is easily recognized by detecting the marking.
 特許文献1によれば、レンズは、マーキングの反転形状がバイトによって掘られた成形金型を用いて成形される。図9は、従来のマーキングが形成されたレンズの拡大された断面図である。図9に示されるように、マーキングMは、良好に検出されるよう、非球面形状であるレンズLの表面Rに対して急峻な形状変化を伴うように形成される。しかしながら、このようなマーキングは、大きさによってレンズの光学性能に影響を及ぼす虞がある。また、このようなマーキングは、レンズの光学性能に影響がない大きさであっても、光量の強い光源等の状況下では、傷、ゴミ、測定ノイズ等として検出されることがある。さらに、このようなマーキングの検出には、レンズ光軸に垂直な方向における分解能に優れた形状測定技術が必要とされる。 According to Patent Document 1, the lens is molded using a molding die in which the inverted shape of the marking is dug by a cutting tool. FIG. 9 is an enlarged cross-sectional view of a lens on which a conventional marking is formed. As shown in FIG. 9, the marking M is formed so as to have a sharp shape change with respect to the surface R of the lens L having an aspherical shape so that the marking M can be satisfactorily detected. However, such a marking may affect the optical performance of the lens depending on the size. Further, such a marking may be detected as a scratch, dust, measurement noise, or the like under the condition of a light source with a strong light amount, even if the size does not affect the optical performance of the lens. Furthermore, detection of such a marking requires a shape measurement technique with excellent resolution in a direction perpendicular to the lens optical axis.
特許第3226753号公報Japanese Patent No. 3226753
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、レンズの結像性能を低下させること無く、目視や顕微鏡等による通常の観察によって傷等として認識され難く、かつ、特定の方法により観察する場合において高精度に検出され得る形状を形成した非球面レンズ、該非球面レンズを備えたレンズユニットの製造方法および該製造方法により製造されるレンズユニットならびにレンズ成形金型を提供することである。 The present invention is an invention made in view of the above circumstances, and its purpose is not easily recognized as a scratch or the like by visual observation or normal observation with a microscope, etc., without reducing the imaging performance of the lens, and Provided are an aspheric lens having a shape that can be detected with high accuracy when observing by a specific method, a method of manufacturing a lens unit including the aspheric lens, a lens unit manufactured by the manufacturing method, and a lens molding die It is to be.
 本発明にかかる非球面レンズは、中央領域とこれを囲む周辺領域とを有するレンズ有効領域を備え、前記中央領域は、光軸を対称軸とし、所定の高さを有するうねり形状を備え、前記周辺領域は、前記うねり形状の端部と滑らかに接続される。本発明にかかるレンズユニットは、上記非球面レンズを含む。本発明にかかるレンズユニットの製造方法は、上記非球面レンズを含むレンズユニットの製造方法である。本発明にかかるレンズ成形金型は、上記非球面レンズの反転形状を持つ。 An aspherical lens according to the present invention includes a lens effective region having a central region and a peripheral region surrounding the central region, and the central region has a wavy shape having a predetermined height with the optical axis as a symmetry axis, The peripheral area is smoothly connected to the wavy end. The lens unit according to the present invention includes the aspheric lens. The manufacturing method of the lens unit concerning this invention is a manufacturing method of the lens unit containing the said aspherical lens. The lens molding die according to the present invention has an inverted shape of the aspheric lens.
 本発明によれば、レンズの結像性能を低下させること無く、目視や顕微鏡等による通常の観察によって傷等として認識され難く、かつ、特定の方法により観察する場合において高精度に検出され得る形状を形成した非球面レンズ、該非球面レンズを備えたレンズユニットの製造方法および該製造方法により製造されるレンズユニットならびにレンズ成形金型が提供できる。 According to the present invention, a shape that is not easily recognized as a scratch or the like by visual observation or normal observation with a microscope or the like without degrading the imaging performance of the lens and that can be detected with high accuracy when observing with a specific method. Can be provided, a manufacturing method of a lens unit including the aspheric lens, a lens unit manufactured by the manufacturing method, and a lens molding die.
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。 The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
本発明の一実施形態の非球面レンズの拡大された断面図である。It is an expanded sectional view of the aspherical lens of one embodiment of the present invention. 式(1)により表される関数のうねり形状が形成された非球面レンズの中央領域を示す模式図である。It is a schematic diagram which shows the center area | region of the aspherical lens in which the wave shape of the function represented by Formula (1) was formed. 非球面レンズをX方向に移動させた際のうねり形状の変位を説明する模式図である。It is a schematic diagram explaining the displacement of a wavy shape when an aspherical lens is moved in the X direction. ゼルニケの円環多項式において形成されるパターンのXY方向の平面図である。It is a top view of the XY direction of the pattern formed in Zernike's annular polynomial. ゼルニケの円環多項式の第9項(Z9(h))、第16項(Z16(h))およびこれらを組み合わせた関数を説明する模式図である。It is a schematic diagram explaining the 9th term (Z9 (h)) and 16th term (Z16 (h)) of Zernike's annular polynomial and a function combining these. 本発明の一実施形態のレンズユニットの製造方法を説明するフローチャートである。It is a flowchart explaining the manufacturing method of the lens unit of one Embodiment of this invention. 本発明の一実施形態のレンズ成形金型の断面図である。It is sectional drawing of the lens shaping die of one Embodiment of this invention. 本発明の一実施形態のレンズユニットを組み立てる組み立て装置の一例を示す模式図である。It is a schematic diagram which shows an example of the assembly apparatus which assembles the lens unit of one Embodiment of this invention. 従来のマーキングが形成されたレンズの拡大された断面図である。It is the expanded sectional view of the lens in which the conventional marking was formed.
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably. In this specification, when referring generically, it shows with the reference symbol which abbreviate | omitted the suffix, and when referring to an individual structure, it shows with the reference symbol which attached the suffix.
<非球面レンズ>
 図1は、本実施形態の非球面レンズ10の拡大された断面図である。非球面レンズ10は、光軸LAを対称軸とするうねり形状20を形成した中央領域R1と、うねり形状20の端部20aと滑らかに接続され、中央領域R1を取り囲む周辺領域R2とを有するレンズ有効領域Raを備える。
<Aspherical lens>
FIG. 1 is an enlarged cross-sectional view of an aspheric lens 10 of the present embodiment. The aspherical lens 10 has a central region R1 in which a wavy shape 20 having an optical axis LA as an axis of symmetry is formed, and a peripheral region R2 that is smoothly connected to the end 20a of the wavy shape 20 and surrounds the central region R1. An effective area Ra is provided.
 すなわち、本実施形態の非球面レンズ10は、以下の式(A)に示されるように、周辺領域R2では一般的な非球面形状を有し、中央領域R1では一般的な非球面形状に、光軸LAを含む断面形状において式(A)に示される関数W(H)が重畳されたうねり形状20を有する。式(A)において、面頂点が原点とされ、光軸LA方向がZ軸とされ、光軸LAからの実寸距離がHとされ、Dの2倍がうねり形状の幅とされる。光軸からの正規化された寸法hとの関係において、h=H/aであり、aは、(|H/a|≦1)となる正規化係数である。式中、aは、i次の非球面係数であり、Rは、基準曲率半径であり、κは、円錐係数である。W(H)は、中央領域R1内でのみχ(H/D)を持ち、それ以外の周辺領域R2ではゼロとなる関数である。関数χ(H)は、微分可能であり、中央領域R1および周辺領域R2との境界(すなわち|H|=D)において、その値および微分値がゼロとなる任意の関数である。W’(H)、χ’(H)は、それぞれW(H)、χ(H)の微分式である。 That is, the aspherical lens 10 of the present embodiment has a general aspherical shape in the peripheral region R2 and a general aspherical shape in the central region R1, as shown in the following formula (A). A cross-sectional shape including the optical axis LA has a swell shape 20 in which the function W (H) represented by the formula (A) is superimposed. In equation (A), the vertex of the surface is the origin, the direction of the optical axis LA is the Z axis, the actual distance from the optical axis LA is H, and twice the width of D is the wavy width. In the relationship with the normalized dimension h from the optical axis, h = H / a, and a is a normalization coefficient that satisfies (| H / a | ≦ 1). In the formula, a i is an i-th order aspheric coefficient, R is a reference radius of curvature, and κ is a cone coefficient. W (H) is a function having χ (H / D) only in the central region R1, and zero in the other peripheral regions R2. The function χ (H) is differentiable and is an arbitrary function whose value and derivative value are zero at the boundary between the central region R1 and the peripheral region R2 (ie, | H | = D). W ′ (H) and χ ′ (H) are differential expressions of W (H) and χ (H), respectively.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(A)に示されるように、W(H)は、中心領域R1および周辺領域R2のそれぞれにおいて微分可能であり、中央領域R1と周辺領域R2の接続部(すなわち|H|=D)において滑らかに接続される。 As shown in the equation (A), W (H) is differentiable in each of the central region R1 and the peripheral region R2, and at the connection portion (ie, | H | = D) between the central region R1 and the peripheral region R2. Connected smoothly.
 χ(h)のうち、本実施形態においてより好ましく、かつ、具体的なうねり形状を表す関数が式(1)に示されている。また、図2は、式(1)により表される関数のうねり形状21が形成された非球面レンズ11の中央領域を示す模式図である。 Of χ (h), a function that is more preferable in the present embodiment and that expresses a specific waviness shape is shown in Expression (1). FIG. 2 is a schematic diagram showing a central region of the aspherical lens 11 in which the swell shape 21 of the function represented by the equation (1) is formed.
Figure JPOXMLDOC01-appb-M000002
(式中、hは、光軸からの正規化された寸法であり、Hを光軸からの距離(実寸)とする場合、h=H/aであり、aは、(|H/a|≦1)となる正規化係数である)
Figure JPOXMLDOC01-appb-M000002
(In the formula, h is a normalized dimension from the optical axis, and when H is a distance (actual dimension) from the optical axis, h = H / a, and a is (| H / a | ≦ 1) is a normalization coefficient)
 式(1)に示されるように、χ(h)は、中央領域に形成されるうねり形状を表す三角関数である。図2に示されるように、式(1)に示される関数のうねり形状21は、端部21a(|h|=1)において、χ(1)=χ(-1)=0となり、周辺領域R2とより滑らかに接続される。 As shown in Equation (1), χ (h) is a trigonometric function representing the undulation shape formed in the central region. As shown in FIG. 2, the wave shape 21 of the function shown in the equation (1) is χ (1) = χ (−1) = 0 at the end 21a (| h | = 1), and the peripheral region A smoother connection with R2.
 ここで、本実施形態の非球面レンズにおいて、うねり形状は、50nm以下の高さを有するよう設計されている。この50nm以下は、緑色の波長範囲における下限の1/10以下に相当する。緑色の波長範囲は、一般に、500nm~570nmとされ、緑色は、人間の視感感度に最も敏感な色である。レンズの結像性能に影響しない収差基準として、通常、λ/10が広く使用されるが、最も識別され易い色(波長)において、前記基準以下(λ/10以下)の収差であれば、人間の目には、収差のない像と認識される。すなわち、レンズ形状の理想形状(設計形状)に対し、50nm以下の誤差が形状に含まれていても、結像収差には影響しない(誤差形状が無いものとみなされる)。したがって、うねり形状は、上記の通りに設計される。 Here, in the aspherical lens of this embodiment, the undulation shape is designed to have a height of 50 nm or less. This 50 nm or less corresponds to 1/10 or less of the lower limit in the green wavelength range. The wavelength range of green is generally 500 nm to 570 nm, and green is the color most sensitive to human visual sensitivity. Usually, λ / 10 is widely used as an aberration standard that does not affect the imaging performance of the lens. However, in the most easily discernable color (wavelength), if the aberration is below the standard (λ / 10 or less), human Is recognized as an image having no aberration. That is, even if an error of 50 nm or less is included in the shape with respect to the ideal shape (design shape) of the lens shape, it does not affect the imaging aberration (it is considered that there is no error shape). Therefore, the undulation shape is designed as described above.
 そして、うねり形状は、上記のとおり光軸を対称軸とする形状であり、周辺領域と接続される端部以外のいずれの位置においても斜め方向に傾斜した部位(面)を有する。そのため、上記のような高さに対して、1/10程度の高さ方向の測定精度を持つ干渉計を使用することによって、計測した高さ方向の変位量から、レンズ光軸に垂直な方向への変位量を算出することができる。すなわち、このような干渉計は、本実施形態において、非球面レンズの中心を検出するための高精度偏心測定機として利用される。図3は、非球面レンズ11をX方向に移動させた際のうねり形状21の変位を説明する模式図である。図3では、うねり形状21上の点P1が、非球面レンズ11のX方向への移動により点P2に変位する場合を示している。この際、本実施形態では、うねり形状21を表す関数は、式(1)に示されるとおり既知であるため、点P1から点P2へのX方向(レンズ光軸に垂直な方向)への変位量ΔXは、Z方向(高さ方向)への変位量ΔZを算出することによって計測することができる。 The wavy shape is a shape having the optical axis as a symmetry axis as described above, and has a portion (plane) inclined in an oblique direction at any position other than the end connected to the peripheral region. Therefore, by using an interferometer having a measurement accuracy in the height direction of about 1/10 with respect to the above height, the direction perpendicular to the lens optical axis can be determined from the measured displacement in the height direction. The amount of displacement to can be calculated. That is, such an interferometer is used as a high-precision eccentricity measuring device for detecting the center of an aspheric lens in the present embodiment. FIG. 3 is a schematic diagram for explaining the displacement of the wavy shape 21 when the aspherical lens 11 is moved in the X direction. FIG. 3 shows a case where the point P1 on the undulation shape 21 is displaced to the point P2 by the movement of the aspheric lens 11 in the X direction. At this time, in this embodiment, since the function representing the waviness shape 21 is known as shown in the equation (1), the displacement from the point P1 to the point P2 in the X direction (direction perpendicular to the lens optical axis). The amount ΔX can be measured by calculating a displacement amount ΔZ in the Z direction (height direction).
 このような高さ方向の変位を計測する干渉計は、特に限定されないが、例えば可視光(380~750nm)を照射する光源を備える白色干渉計であれば5nmレベルの測定精度があり、好ましく使用される。このような干渉計の具体的な構成は、後述するレンズユニットの製造方法において詳述される。 The interferometer for measuring the displacement in the height direction is not particularly limited. For example, a white interferometer equipped with a light source that emits visible light (380 to 750 nm) has a measurement accuracy of 5 nm level and is preferably used. Is done. A specific configuration of such an interferometer will be described in detail in a lens unit manufacturing method described later.
 次に、χ(h)のうち、本実施形態においてさらに好ましいうねり形状を表す関数を式(2)に示す。 Next, among χ (h), a function representing a more preferable waviness shape in the present embodiment is shown in Expression (2).
Figure JPOXMLDOC01-appb-M000003
(式中、Z9(h)=6h-6h+1であり、Z16(h)=20h-30h+12h-1であり、hは、光軸からの正規化された寸法であり、Hを光軸からの距離(実寸)とする場合、h=H/aであり、aは、(|H/a|≦1)となる正規化係数である)
Figure JPOXMLDOC01-appb-M000003
Where Z9 (h) = 6h 4 −6h 2 +1, Z16 (h) = 20h 6 −30h 4 + 12h 2 −1, and h is the normalized dimension from the optical axis, When H is a distance (actual size) from the optical axis, h = H / a, and a is a normalization coefficient that satisfies (| H / a | ≦ 1))
 式(2)に示されるように、Z(h)は、中央領域に形成されるうねり形状を表す関数であり、いわゆるゼルニケ(Zernike ツェルニケともいう)の円環多項式を組み合わせた関数である。ゼルニケの円環多項式は、円形の範囲内における数値の分布を表す式であり、以下の式(B)のように定義される。なお、式(B)に示される項は、ゼルニケの円環多項式の一部である。 As shown in Equation (2), Z (h) is a function representing the undulation shape formed in the central region, and is a function combining so-called Zernike's circular polynomials. Zernike's circular polynomial is an equation representing the distribution of numerical values within a circular range, and is defined as the following equation (B). The term shown in the formula (B) is a part of the Zernike annular polynomial.
Figure JPOXMLDOC01-appb-M000004
(式中、sは、回転角を示し、通常は-π≦s≦π範囲で使用される。hは、光軸からの正規化された寸法であり、Hを光軸からの距離(実寸)とする場合、h=H/aであり、aは、(|H/a|≦1)となる正規化係数である)
Figure JPOXMLDOC01-appb-M000004
(In the formula, s represents a rotation angle and is usually used in a range of −π ≦ s ≦ π. H is a normalized dimension from the optical axis, and H is a distance from the optical axis (actual dimension). ), H = H / a, and a is a normalization coefficient that satisfies (| H / a | ≦ 1))
 本実施形態では、式(B)により示されるゼルニケの円環多項式のうち、sに対して不変となる項であるZ4(h)、Z9(h)、Z16(h)、Z25(h)、Z36(h)が使用される。なお、これらの項ではsに対し不変であるため、sは、省略され、Zi(h)と記載される。 In this embodiment, among the Zernike annular polynomials represented by the formula (B), terms that are invariant to s are Z4 (h), Z9 (h), Z16 (h), Z25 (h), Z36 (h) is used. Since these terms are invariant to s, s is omitted and written as Zi (h).
 ゼルニケの円環多項式のそれぞれの項は、種々の面形状を表す。これらの項を組み合わせることにより、種々の面形状を表現することができる。図4は、ゼルニケの円環多項式において形成されるパターンのXY方向の平面図であり、図4Aは、ゼルニケの円環多項式のうち第4項を表すパターンP4の平面図であり、図4Bは、第9項を表すパターンP9の平面図であり、図4Cは、第16項を表すパターンP16の平面図である。図4A~図4Cに示されるように、これらの項では、ゼルニケの円環多項式は、XY方向において円環状である。本実施形態では、種々の形状を表すゼルニケの円環多項式のうち、これらXY方向において円環状となる項を組み合わせた関数のうねり形状を、式(2)の通り規定している。 Each term of Zernike's circular polynomial represents various surface shapes. By combining these terms, various surface shapes can be expressed. FIG. 4 is a plan view in the XY direction of a pattern formed in the Zernike ring polynomial, FIG. 4A is a plan view of a pattern P4 representing the fourth term of the Zernike ring polynomial, and FIG. FIG. 4C is a plan view of a pattern P16 representing the sixteenth term. As shown in FIGS. 4A to 4C, in these terms, the Zernike annular polynomial is annular in the XY direction. In the present embodiment, among the Zernike annular polynomials representing various shapes, the swell shape of the function combining the terms that form an annular shape in the XY directions is defined as shown in Equation (2).
 図5は、ゼルニケの円環多項式の第9項(Z9(h))、第16項(Z16(h))およびこれらを組み合わせた関数を説明する模式図である。図5において、曲線C1は、ゼルニケの円環多項式の第9項を示しており、曲線C2は、ゼルニケの円環多項式の第16項を示している。図5に示されるように、ゼルニケの円環多項式の第9項を示す曲線C1および第16項を示す曲線C2は、それぞれ端部において値が1となる。そのため、これらゼルニケの円環多項式で表される関数のうねり形状の端部は、非球面レンズの周辺領域と滑らかに接続されない。そこで、本実施形態では、上記式(2)に示されるように、うねり形状の端部が周辺領域と滑らかに接続されるように(すなわちうねり形状のそれぞれの端部において値が0となるように)、それぞれの項を組み合わせている。曲線C3は、式(2)に示されるようにゼルニケの円環多項式の第9項(Z9(h))と第16項(Z16(h))とを組み合わせた関数により表される曲線である。この曲線C3(すなわち式(2)に示される関数)により表されるうねり形状は、端部(|h|=1)において値が0となり、周辺領域とより滑らかに接続される。 FIG. 5 is a schematic diagram for explaining the ninth term (Z9 (h)) and the sixteenth term (Z16 (h)) of Zernike's annular polynomial and a function combining these. In FIG. 5, a curve C1 indicates the ninth term of the Zernike annular polynomial, and a curve C2 indicates the sixteenth term of the Zernike annular polynomial. As shown in FIG. 5, the curve C1 indicating the ninth term and the curve C2 indicating the sixteenth term of the Zernike annular polynomial have values of 1 at the ends. For this reason, the wavy end of the function represented by the Zernike annular polynomial is not smoothly connected to the peripheral region of the aspherical lens. Therefore, in the present embodiment, as shown in the above formula (2), the end of the wavy shape is smoothly connected to the peripheral region (that is, the value is 0 at each end of the wavy shape). To each other). The curve C3 is a curve represented by a function combining the ninth term (Z9 (h)) and the sixteenth term (Z16 (h)) of the Zernike annular polynomial as shown in the equation (2). . The waviness shape represented by the curve C3 (that is, the function shown in the equation (2)) has a value of 0 at the end (| h | = 1), and is more smoothly connected to the peripheral region.
 上記の通り、式(1)に示される関数のうねり形状は、光軸の周辺において非球面レンズのレンズ表面よりも盛り上がった形状(上に凸の形状)である(図2のうねり形状21を参照)。一方、式(2)に示される関数のうねり形状は、図5の曲線C3として示されるように、光軸の周辺において非球面レンズのレンズ表面よりも盛り上がった形状(上に凸の形状)と、光軸からうねり形状の端部にかけて非球面レンズのレンズ表面よりも落ち窪んだ形状(下に凸の形状)とを併せ持つ。そのため、式(2)に示される関数のうねり形状は、式(1)に示される関数のうねり形状と比較して、高さ方向(Z方向)における変位量が大きい。その結果、形状計測器により計測される精度が高く、より細かくレンズ光軸に垂直な方向への変位量を測定し得る。 As described above, the swell shape of the function shown in the equation (1) is a shape (convex shape upward) that is higher than the lens surface of the aspheric lens around the optical axis (the swell shape 21 in FIG. 2). reference). On the other hand, the swell shape of the function shown in Equation (2) is a shape that is raised above the lens surface of the aspherical lens (upwardly convex shape) around the optical axis, as shown by a curve C3 in FIG. In addition, it has a shape that is depressed from the lens surface of the aspherical lens from the optical axis to the wavy end (convex shape downward). Therefore, the undulation shape of the function shown in Expression (2) has a larger displacement amount in the height direction (Z direction) than the undulation shape of the function shown in Expression (1). As a result, the accuracy measured by the shape measuring instrument is high, and the amount of displacement in the direction perpendicular to the lens optical axis can be measured more finely.
 以上、本実施形態における非球面レンズ10は、中央領域R1と、該中央領域R1を取り囲む周辺領域R2とを有するレンズ有効領域Raを備える。中央領域R1には、うねり形状が形成されている。うねり形状は、レンズ10の光軸LAを対称軸とするため、該うねり形状を検出することにより、容易にレンズ10の中心を認識できる。そして、うねり形状は、端部が周辺領域と滑らかに接続されている。そのため、このような端部とうねり形状との接続箇所は、目視や顕微鏡等による通常の観察によって傷等として認識され難い。また、このようなうねり形状は、例えばカメラ等の撮像装置本体に非球面レンズ10を装着して画像を形成する場合に、得られる画像に写りこむことがない。さらに、うねり形状は、50nm以下の高さを有する。そのため、うねり形状は、5nmレベルの測定精度を持つ干渉計を用いることにより容易に高さを検出することができ、計測された高さに基づいてレンズ光軸LAに垂直な方向の位置も検出することができる。その結果、たとえば複数の非球面レンズ10を組み合わせたレンズユニットを製造する場合等において、干渉計の計測結果に基づいて、複数の非球面レンズ10の光軸LAに垂直な方向における位置を容易に調整して、これら複数の非球面レンズ10の中心を公差内に収め易い。特に、中央領域R1に重畳されたうねり形状を表す関数が、式(1)や式(2)に示される関数である場合、うねり形状の端部と周辺領域とがさらに滑らかに接続され、かつ、うねり形状は、5nmレベルの測定精度をもつ干渉計により充分に検出される高さを有する。その結果、非球面レンズ10は、より精確に中心位置が検出されやすい。 As described above, the aspherical lens 10 in the present embodiment includes the lens effective region Ra having the central region R1 and the peripheral region R2 surrounding the central region R1. A waviness shape is formed in the central region R1. Since the wavy shape has the optical axis LA of the lens 10 as the axis of symmetry, the center of the lens 10 can be easily recognized by detecting the wavy shape. And the wave | undulation shape has the edge part smoothly connected with the peripheral region. For this reason, the connection portion between the end portion and the swell shape is hardly recognized as a scratch or the like by visual observation or normal observation with a microscope or the like. Further, such a swell shape does not appear in an obtained image when an aspheric lens 10 is attached to an imaging apparatus body such as a camera to form an image. Furthermore, the undulation shape has a height of 50 nm or less. Therefore, the waviness shape can be easily detected by using an interferometer with a measurement accuracy of 5 nm level, and the position in the direction perpendicular to the lens optical axis LA is also detected based on the measured height. can do. As a result, for example, when manufacturing a lens unit in which a plurality of aspheric lenses 10 are combined, the positions of the plurality of aspheric lenses 10 in the direction perpendicular to the optical axis LA can be easily determined based on the measurement results of the interferometer. By adjusting, it is easy to fit the centers of the plurality of aspheric lenses 10 within the tolerance. In particular, when the function representing the waviness shape superimposed on the central region R1 is a function represented by the equations (1) and (2), the end portion of the waviness shape and the peripheral region are more smoothly connected, and The waviness shape has a height sufficiently detected by an interferometer having a measurement accuracy of 5 nm level. As a result, the center position of the aspherical lens 10 is likely to be detected more accurately.
 なお、本実施形態の非球面レンズ10の材料は、特に限定されず、例えば各種ガラス材料や樹脂材料を使用することができる。中でも射出成形等により成形が容易である観点から樹脂材料が好ましい。樹脂材料の具体例として、ポリカーボネートや環状オレフィン系樹脂等が挙げられる。 In addition, the material of the aspherical lens 10 of this embodiment is not specifically limited, For example, various glass materials and resin materials can be used. Among these, a resin material is preferable from the viewpoint of easy molding by injection molding or the like. Specific examples of the resin material include polycarbonate and cyclic olefin resin.
 また、非球面レンズの寸法は、特に限定されず、例えばレンズ有効領域Raの幅を直径2~4mmとし、うねり形状(中央領域)の幅D(図1参照)を50~100μm程度とすることができる。うねり形状の幅をこのような範囲とすることにより、従来の工具形状を転写したマーキングと比べて、幅が大きく高精度なマーキング(うねり形状)を形成することができる。その結果、うねり形状を形成する際(正確にはうねり形状を形成するために、後述するようなうねり形状の反転形状が形成されたレンズ成形金型を製造する際)に、旋盤加工機の主軸ぶれや工具形状の誤差の影響を受け難い。また、うねり形状の高さ方向の寸法は、上述のように50nm以下であれば、特に限定されず、目視や通常の顕微鏡観察等によって傷等として認識され難い大きさであることが好ましい。このようなうねり形状の高さ方向の寸法は、例えば、図1に示されるように、うねり形状の最も上に凸の部分(対称軸が通過する部分)を通る近似球面と、当該上に凸の部分から最も下に落ち窪んだ部分(式(1)で表される関数のうねり形状の場合は周辺領域との接続部分であり、式(2)で表される関数のうねり形状の場合は最も下に凸に落ち窪んだ部分である)を通る近似球面との距離Tを20~50nm程度とすることができる。このような寸法のうねり形状は、目視や顕微鏡等による通常の観察によって傷等として認識され難い。また、このようなうねり形状は、例えばカメラ等の撮像装置本体に非球面レンズを装着して画像を形成する場合に、得られる画像に写りこむことがない。さらに、このようなうねり形状は、加工再現性に優れる。 The dimensions of the aspherical lens are not particularly limited. For example, the effective lens area Ra has a width of 2 to 4 mm, and the wavy shape (central area) has a width D (see FIG. 1) of about 50 to 100 μm. Can do. By setting the width of the waviness shape in such a range, it is possible to form a marking (waviness shape) having a large width and high accuracy as compared with a marking transferred with a conventional tool shape. As a result, when forming a waviness shape (to produce a lens mold having a wavy shape reversal shape as will be described later in order to accurately form a waviness shape), the main spindle of a lathe machine Less susceptible to blurring and tool shape errors. In addition, the height dimension of the wavy shape is not particularly limited as long as it is 50 nm or less as described above, and it is preferably a size that is difficult to be recognized as a scratch or the like by visual observation or normal microscopic observation. For example, as shown in FIG. 1, the height dimension of such a swell shape includes an approximate spherical surface passing through the most convex portion (a portion through which the symmetry axis passes) of the swell shape, and a convex shape on the top. The portion that has been depressed from the bottom to the bottom (in the case of the swell shape of the function represented by the formula (1), it is a connecting portion with the peripheral region, and in the case of the swell shape of the function represented by the formula (2) The distance T from the approximate spherical surface passing through the lowermost convex part) can be about 20 to 50 nm. The wavy shape having such dimensions is difficult to be recognized as a scratch or the like by visual observation or normal observation with a microscope or the like. Further, such a swell shape does not appear in an obtained image when an image is formed by attaching an aspheric lens to an imaging apparatus body such as a camera. Furthermore, such a wavy shape is excellent in processing reproducibility.
 本実施形態の非球面レンズは、うねり形状に基づいて中心位置を検出することが容易であるため、例えば一群レンズの偏心誤差を容易に検出することができる。他にも、非球面レンズは、CCD(charge-coupled device)型撮像センサやCMOS(complementary metal-oxide-semiconductor)型撮像センサ等の固体撮像センサ等を組み合わせて光学ユニットを構成する際に生じる偏心誤差を容易に検出することができる。さらに、非球面レンズ10は、複数の非球面レンズを組み合わせたレンズユニットを製造する際に、該複数の非球面レンズの中心位置を容易に公差内に収め易い。以下、これら種々の利点(効果)のうち、レンズユニットの製造方法において奏される効果について詳述する。 Since the aspherical lens of this embodiment can easily detect the center position based on the waviness shape, for example, it is possible to easily detect an eccentric error of the first group lens. In addition, the aspherical lens is an eccentricity generated when a solid-state image sensor such as a CCD (charge-coupled device) type image sensor or a CMOS (complementary metal-oxide-semiconductor) type image sensor is combined to constitute an optical unit. An error can be easily detected. Furthermore, the aspherical lens 10 can easily fit the center positions of the plurality of aspherical lenses within tolerance when manufacturing a lens unit in which a plurality of aspherical lenses are combined. Hereinafter, among these various advantages (effects), effects exhibited in the lens unit manufacturing method will be described in detail.
<レンズユニットの製造方法>
 図6は、本実施形態のレンズユニットの製造方法を説明するフローチャートである。本実施形態のレンズユニットの製造方法は、非球面レンズ10を成形する成形工程S100と、成形工程S100により作製された複数の非球面レンズを組み合わせる組み合わせ工程S200とを含む。以下、それぞれの工程について説明する。
<Lens unit manufacturing method>
FIG. 6 is a flowchart for explaining a manufacturing method of the lens unit of the present embodiment. The manufacturing method of the lens unit of the present embodiment includes a molding step S100 for molding the aspherical lens 10 and a combination step S200 for combining a plurality of aspherical lenses produced by the molding step S100. Hereinafter, each process will be described.
(成形工程S100)
 成形工程S100は、非球面レンズ10の反転形状を有するレンズ成形金型を使用して、非球面レンズ10を成形する工程である。非球面レンズ10は、上記の通り、レンズの光軸LAを対称軸とするうねり形状を形成した中央領域R1と、うねり形状の端部と滑らかに接続され、中央領域R1を取り囲む周辺領域R2とを有するレンズ有効領域Raを備える。非球面レンズ10のうねり形状は、上記の通り50nm以下の高さを有する。
(Molding step S100)
The molding step S100 is a step of molding the aspherical lens 10 using a lens molding die having an inverted shape of the aspherical lens 10. As described above, the aspherical lens 10 includes a central region R1 having a wavy shape with the optical axis LA of the lens as an axis of symmetry, and a peripheral region R2 that is smoothly connected to the end of the wavy shape and surrounds the central region R1. A lens effective area Ra. The waviness shape of the aspherical lens 10 has a height of 50 nm or less as described above.
 このような非球面レンズ10は、非球面レンズ10の反転形状が表面に加工されたレンズ成形金型を用いることにより、射出成形等により容易に作製される。図7は、本実施形態において使用するレンズ成形金型30の断面図である。レンズ成形金型30は、上型31と下型32とから構成される。上型31と下型32とは、上下一対であり、重ね合わせることにより、内部に非球面レンズと同一形状の空間Sが形成される。空間Sは、非球面レンズ10のうちレンズ有効領域Raを形成するための空間S1と、レンズ有効領域外の領域を形成するための空間S2とからなる。レンズ成形金型30の内表面には、作製すべき非球面レンズ表面の形状に合わせた反転形状が形成されている。本実施形態では、上型31の内表面31aに、非球面レンズ10のうねり形状の反転形状31bが形成されている。レンズ成形金型30の材料は、特に限定されない。 Such an aspherical lens 10 is easily manufactured by injection molding or the like by using a lens molding die having a reverse surface of the aspherical lens 10 processed on the surface. FIG. 7 is a cross-sectional view of the lens molding die 30 used in this embodiment. The lens molding die 30 includes an upper die 31 and a lower die 32. The upper mold 31 and the lower mold 32 are a pair of upper and lower sides, and a space S having the same shape as the aspherical lens is formed inside by overlapping. The space S includes a space S1 for forming the lens effective area Ra in the aspherical lens 10 and a space S2 for forming an area outside the lens effective area. On the inner surface of the lens molding die 30, an inverted shape is formed in accordance with the shape of the aspheric lens surface to be produced. In the present embodiment, the undulating inverted shape 31 b of the aspherical lens 10 is formed on the inner surface 31 a of the upper mold 31. The material of the lens mold 30 is not particularly limited.
 このような内表面の形状を有するレンズ成形金型30は、5nmレベルの加工分解能を有する非球面加工機を使用することにより作製することができる。このような非球面加工機としては、たとえばNC(Numerical Control)旋盤等が挙げられる。NC旋盤は、各種の旋盤に数値制御(NC)装置を取り付け、刃物台の移動距離や送り速度を数値で指示できるようにした装置である。 The lens molding die 30 having such an inner surface shape can be manufactured by using an aspherical processing machine having a processing resolution of 5 nm level. Examples of such an aspherical surface processing machine include an NC (Numerical Control) lathe. The NC lathe is a device in which a numerical control (NC) device is attached to various lathes so that the moving distance and feed rate of the tool post can be indicated numerically.
 このようなレンズ成形金型30は、内表面に非球面レンズ10を製造するための反転形状が形成されているため、上記した非球面レンズ10の製造に適している。そのため、このようなレンズ成形金型30を用いて、例えば樹脂を射出成形することにより、容易に非球面レンズ10を製造することができる。 Such a lens molding die 30 is suitable for manufacturing the aspherical lens 10 described above because an inversion shape for manufacturing the aspherical lens 10 is formed on the inner surface. Therefore, the aspherical lens 10 can be easily manufactured by using such a lens molding die 30 by, for example, injection molding a resin.
(組み合わせ工程S200)
 組み合わせ工程S200は、成形工程S100により成形された複数の非球面レンズ10を組み合わせる工程である。図6に戻り、組み合わせ工程は、第1検出工程S210と、第2検出工程S220と、位置調整工程S230とを含む。なお、成形工程S100により成形された非球面レンズ10は、組み合わせ工程S200の前に真空蒸着等により反射防止コートや保護膜等が形成されてもよい。
(Combination process S200)
The combination step S200 is a step of combining a plurality of aspherical lenses 10 molded in the molding step S100. Returning to FIG. 6, the combination process includes a first detection process S210, a second detection process S220, and a position adjustment process S230. The aspheric lens 10 molded in the molding step S100 may be formed with an antireflection coating, a protective film, or the like by vacuum deposition or the like before the combination step S200.
 組み合わせ工程S200は、レンズユニットの組み立て装置を用いることにより実行することができる。図8は、組み立て装置40の一例を示す模式図である。組み立て装置40は、水平な載置スペースを有する作業台42と、該作業台42の載置スペースに固定されるレンズ保持冶具41と、レンズ保持冶具41に装着されるレンズホルダー43と、レンズホルダー43に保持されるレンズ(後述する第1の非球面レンズ50および第2の非球面レンズ60)を上方より観察する白色干渉測定ヘッド44と、レンズホルダー43に保持されるレンズの光軸に垂直な方向における位置を調整する調整ステージ45とを含む。以下、このような構成を備える組み立て装置40を用いレンズユニットを組み立てる組み合わせ工程S220について説明する。なお、以下の説明では、2枚の非球面レンズ(第1の非球面レンズ50および第2の非球面レンズ60)を備えるレンズユニットを組み立てる場合を説明する。 The combination step S200 can be executed by using a lens unit assembling apparatus. FIG. 8 is a schematic diagram illustrating an example of the assembly device 40. The assembly apparatus 40 includes a work table 42 having a horizontal mounting space, a lens holding jig 41 fixed to the mounting space of the work table 42, a lens holder 43 attached to the lens holding jig 41, and a lens holder. The white interference measuring head 44 for observing the lenses (first aspherical lens 50 and second aspherical lens 60 described later) held by the lens 43 from above, and perpendicular to the optical axis of the lens held by the lens holder 43 And an adjustment stage 45 that adjusts the position in various directions. Hereinafter, combination process S220 which assembles a lens unit using assembly device 40 provided with such composition is explained. In the following description, a case where a lens unit including two aspheric lenses (the first aspheric lens 50 and the second aspheric lens 60) is assembled will be described.
(第1検出工程S210)
 第1検出工程S210は、複数の非球面レンズのうち、1枚目の非球面レンズ(第1の非球面レンズ50)に形成されたうねり形状(第1のうねり形状51)に基づいて、中心位置(第1中心52)を検出する工程である。第1検出工程S210では、まず、第1の非球面レンズ50は、レンズホルダー43に保持される(保持工程S211)。より具体的には、第1の非球面レンズ50は、レンズ有効領域外の領域Rbが、レンズホルダー43に保持される。レンズホルダー43は、レンズ保持冶具41により吸着保持される。レンズホルダー43は、任意の材料からなり、本実施形態のレンズホルダー43は、ポリカーボネートや環状オレフィン系樹脂等からなる。レンズホルダー43には、フィラー(強化用繊維)等が含まれてもよい。また、レンズ保持冶具41は、任意の材料からなり、本実施形態のレンズ保持冶具41は、ステンレス鋼(SUS)からなる。
(First detection step S210)
The first detection step S210 is based on the wavy shape (first wavy shape 51) formed on the first aspherical lens (first aspherical lens 50) among the plurality of aspherical lenses. This is a step of detecting the position (first center 52). In the first detection step S210, first, the first aspheric lens 50 is held by the lens holder 43 (holding step S211). More specifically, in the first aspheric lens 50, the region Rb outside the lens effective region is held by the lens holder 43. The lens holder 43 is sucked and held by the lens holding jig 41. The lens holder 43 is made of any material, and the lens holder 43 of the present embodiment is made of polycarbonate, cyclic olefin resin, or the like. The lens holder 43 may include a filler (reinforcing fiber) or the like. The lens holding jig 41 is made of an arbitrary material, and the lens holding jig 41 of the present embodiment is made of stainless steel (SUS).
 第1中心52の検出は、第1の非球面レンズ50を上方から観察する白色干渉測定ヘッド44により行われる。白色干渉測定ヘッド44は、測定対象である非球面レンズ(第1の非球面レンズ50)に対する白色干渉によって非球面レンズの形状を求めるため、白色干渉データを測定する装置である。白色干渉測定ヘッド44は、非球面レンズを上方から観察できるよう、非球面レンズの光軸上に配置された対物レンズ44aを有する。白色干渉測定ヘッド44は、作業台42の作業スペースに対して垂直に立設された支持部材46に沿って、該垂直方向に上下動可能に設けられている。なお、白色干渉測定ヘッド44の上下動は、駆動装置(図示せず)により適切に行われる。 The detection of the first center 52 is performed by the white interference measuring head 44 that observes the first aspherical lens 50 from above. The white interference measuring head 44 is a device that measures white interference data in order to obtain the shape of the aspheric lens by white interference with respect to the aspheric lens (first aspheric lens 50) to be measured. The white interference measuring head 44 has an objective lens 44a disposed on the optical axis of the aspheric lens so that the aspheric lens can be observed from above. The white interference measurement head 44 is provided so as to be movable up and down in the vertical direction along a support member 46 erected vertically to the work space of the work table 42. The vertical movement of the white interference measuring head 44 is appropriately performed by a driving device (not shown).
 より具体的には、白色干渉測定ヘッド44は、可干渉性の少ない白色光を放射する白色光源(図示せず)から非球面レンズに照射され、非球面レンズから反射された白色光WLと、白色光源から参照面に照射され、参照面から反射された白色光とを干渉させて非球面レンズの干渉画像を得ると共に、参照面を光軸方向に移動させて最も干渉光強度の大きい参照面位置を検出する装置である。白色干渉測定ヘッド44は、干渉させて非球面レンズの白色干渉データを得るために、例えばミラウ型やマイケルソン型の等光路干渉計と、非球面レンズの干渉画像を撮像する撮像部(図示せず)と、等価的に参照面を光軸方向に移動させるために、光軸方向に移動する対物レンズ44aと、非球面レンズが載置される作業台42の載置面と対物レンズ44aとの距離を検出する差動型レーザ測距部(図示せず)とを備える。白色干渉測定ヘッド44は、制御演算部(図示せず)に接続され、撮像部で撮像した干渉画像のデータおよび差動型レーザ測距部で測距した距離のデータを白色干渉データとして制御演算部へ出力する。 More specifically, the white interference measuring head 44 irradiates the aspherical lens from a white light source (not shown) that emits white light with less coherence, and reflects the white light WL reflected from the aspherical lens; Interfere with white light emitted from the white light source and reflected from the reference surface to obtain an interference image of the aspheric lens, and move the reference surface in the optical axis direction to obtain the reference surface having the highest interference light intensity. It is a device that detects the position. The white interference measuring head 44 is, for example, a Mirau-type or Michelson-type equal optical path interferometer and an imaging unit (not shown) that captures an interference image of an aspheric lens in order to cause interference to obtain white interference data of the aspheric lens. In order to move the reference surface in the optical axis direction equivalently, the objective lens 44a moving in the optical axis direction, the mounting surface of the work table 42 on which the aspherical lens is mounted, and the objective lens 44a And a differential laser distance measuring unit (not shown) for detecting the distance. The white interference measurement head 44 is connected to a control calculation unit (not shown), and controls and calculates interference image data captured by the imaging unit and distance data measured by the differential laser ranging unit as white interference data. Output to the section.
 制御演算部は、白色干渉測定ヘッド44の出力(白色干渉データ)に基づいて非球面レンズの形状を求める。制御演算部は、例えば、CPU(Central Processing Unit)、このCPUによって実行される種々のプログラムやその実行に必要なデータ等を予め記憶するROM(Read Only Memory)やEEPROM(Electrically Erasable Programmable Read Only Memory)等の不揮発性記憶素子、このCPUのいわゆるワーキングメモリとなるRAM(Random Access Memory)等の揮発性記憶素子およびその周辺回路等を備えたマイクロコンピュータによって構成されている。そして、制御演算部は、複数の測定点それぞれで、白色干渉データに基づいて非球面レンズの形状を求める。求められた形状に基づいて、非球面レンズのうねり形状の中心(第1中心52)の位置が検出される。非球面レンズの説明において上記した通り、第1中心52の位置は、第1の非球面レンズ50の中央領域に形成されたうねり形状の高さの変位をもとに高精度に算出される。制御演算部により検出された第1中心52の位置は、RAMに記憶される。 The control calculation unit obtains the shape of the aspheric lens based on the output (white interference data) of the white interference measuring head 44. The control arithmetic unit is, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory) or an EEPROM (Electrically Only Programmable Read Only Memory) that stores various programs executed by the CPU and data necessary for the execution in advance. ) And the like, a volatile memory element such as a RAM (Random Access Memory) serving as a so-called working memory of the CPU, and a microcomputer including a peripheral circuit thereof. And a control calculating part calculates | requires the shape of an aspherical lens based on white interference data in each of several measurement points. Based on the obtained shape, the position of the center of the swell shape of the aspheric lens (first center 52) is detected. As described above in the description of the aspherical lens, the position of the first center 52 is calculated with high accuracy based on the displacement of the wavy shape formed in the central region of the first aspherical lens 50. The position of the first center 52 detected by the control calculation unit is stored in the RAM.
(第2検出工程S220)
 第2検出工程S220は、2枚目の非球面レンズ(第2の非球面レンズ60)に形成されたうねり形状(第2のうねり形状61)に基づいて、中心位置(第2中心62)を検出する工程である。なお、第2検出工程S220において第2の非球面レンズ60は、まず、第1の非球面レンズ50と重ね合わされるようにレンズホルダー43に装着される。第2の非球面レンズ60には、レンズ光軸に垂直な方向における位置を調整する調整ステージ45に付設された偏心調整ツメ45aが当てられる。偏心調整ツメ45aは、調整ステージ45の光軸に垂直な方向への移動に伴って移動し、第2の非球面レンズ60の光軸に垂直な方向の位置を調整する。第2検出工程S220では、第2中心62の位置は、第1の検出工程S210において説明したと同様に、白色干渉測定ヘッド44により高精度に検出され、RAMに記憶される。
(Second detection step S220)
In the second detection step S220, the center position (second center 62) is determined based on the wavy shape (second wavy shape 61) formed in the second aspherical lens (second aspherical lens 60). This is a detecting step. In the second detection step S220, the second aspheric lens 60 is first mounted on the lens holder 43 so as to be superimposed on the first aspheric lens 50. An eccentric adjustment claw 45 a attached to an adjustment stage 45 that adjusts the position in the direction perpendicular to the lens optical axis is applied to the second aspheric lens 60. The eccentric adjustment claw 45a moves as the adjustment stage 45 moves in the direction perpendicular to the optical axis, and adjusts the position of the second aspheric lens 60 in the direction perpendicular to the optical axis. In the second detection step S220, the position of the second center 62 is detected with high accuracy by the white interference measurement head 44 and stored in the RAM, as described in the first detection step S210.
(位置調整工程S230)
 位置調整工程S230は、第1の非球面レンズ50および第2の非球面レンズ60のうち少なくともいずれか一方を光軸に対して垂直な方向に移動させて、第1中心52の位置と第2中心62の位置とを公差内に収める工程である。まず、位置調整工程S230では、第1検出工程S210において検出された第1中心52の光軸に垂直な方向における位置と、第2検出工程S220において検出された第2中心62の光軸に垂直な方向における位置とが公差内に収まっているかが確認される。第1中心52の位置と第2中心62の位置とが公差内に収まっていない場合には、白色干渉測定ヘッド44の制御演算部により、第1中心52と第2中心62との光軸に垂直な方向における位置の差が算出される。算出された位置の差の情報は、調整ステージ45にフィードバックされる。調整ステージ45は、フィードバックされた差の情報に基づき、レンズの光軸に垂直な方向に移動し、偏心調整ツメ45aを介して第2の非球面レンズ60を移動させる。調整ステージ45は、例えば1~数μmの単位で第2の非球面レンズ60を光軸に垂直な方向に移動させる。調整ステージ45の移動は、駆動装置(図示せず)により適切に行われる。その後、第2中心62の位置が、白色干渉測定ヘッド44により再度検出され、第1中心52の位置と第2中心62の位置とが公差内に収まっているかが確認される。公差内に収まるまで、同様の操作が繰り返される。
(Position adjustment step S230)
In the position adjustment step S230, at least one of the first aspherical lens 50 and the second aspherical lens 60 is moved in a direction perpendicular to the optical axis, and the position of the first center 52 and the second aspherical lens 50 are moved. This is a step of keeping the position of the center 62 within a tolerance. First, in the position adjustment step S230, the position in the direction perpendicular to the optical axis of the first center 52 detected in the first detection step S210 and the optical axis of the second center 62 detected in the second detection step S220 are perpendicular. The position in the correct direction is confirmed to be within tolerance. If the position of the first center 52 and the position of the second center 62 are not within tolerance, the control calculation unit of the white interference measurement head 44 sets the optical axes of the first center 52 and the second center 62 to the optical axes. The difference in position in the vertical direction is calculated. Information on the calculated position difference is fed back to the adjustment stage 45. The adjustment stage 45 moves in the direction perpendicular to the optical axis of the lens based on the fed back difference information, and moves the second aspherical lens 60 via the eccentric adjustment claw 45a. The adjustment stage 45 moves the second aspherical lens 60 in a direction perpendicular to the optical axis in units of 1 to several μm, for example. The adjustment stage 45 is appropriately moved by a driving device (not shown). Thereafter, the position of the second center 62 is detected again by the white interference measuring head 44, and it is confirmed whether the position of the first center 52 and the position of the second center 62 are within tolerance. The same operation is repeated until it is within the tolerance.
 位置調整工程S230において位置が調整された第1の非球面レンズ50と第2の非球面レンズ60とは、必要に応じて白色干渉測定ヘッド44を退避させた後、接着剤塗布装置(図示せず)により接着されてレンズユニットが作製される。その後、偏心調整ツメ45aが退避され、レンズユニットがレンズホルダー43から取り出される。 The first aspherical lens 50 and the second aspherical lens 60 whose positions have been adjusted in the position adjusting step S230 retract the white interference measuring head 44 as necessary, and then apply an adhesive application device (not shown). The lens unit is manufactured by bonding. Thereafter, the eccentric adjustment claw 45 a is retracted, and the lens unit is removed from the lens holder 43.
 なお、本実施形態では、第1の非球面レンズをレンズホルダーに保持し、第1中心を検出した後に、第2の非球面レンズの第2中心を検出し、第2の非球面レンズを光軸に垂直な方向に移動させて、第1中心と第2中心とが公差内となるよう収める場合を例示したが、第1中心と第2中心との公差内に収める方法は、特に限定されない。すなわち、本実施形態では、これに代えて、第1の非球面レンズと第2の非球面レンズとをいずれも光軸に垂直な方向に移動させて、第1中心と第2中心とを公差内に収めてもよく、第2の非球面レンズのみを光軸に垂直な方向に移動させて、第1中心と第2中心とを公差内に収めてもよい。本実施形態のように、第1の非球面レンズを保持工程において保持する場合、第1の非球面レンズは、レンズ有効領域外の領域がしっかりと保持されており、第2の非球面レンズを光軸に対して垂直な方向に移動させることにより、第1中心と第2中心とが公差内に収まるように移動させやすく、より効率よくレンズユニットを製造することができる。 In the present embodiment, the first aspheric lens is held in the lens holder, the first center is detected, then the second center of the second aspheric lens is detected, and the second aspheric lens is irradiated with light. Although the case where the first center and the second center are accommodated within the tolerance by moving in the direction perpendicular to the axis is illustrated, the method for accommodating within the tolerance between the first center and the second center is not particularly limited. . That is, in this embodiment, instead of this, both the first aspherical lens and the second aspherical lens are moved in the direction perpendicular to the optical axis, and the first center and the second center are toleranced. The first center and the second center may be within tolerance by moving only the second aspheric lens in the direction perpendicular to the optical axis. When the first aspherical lens is held in the holding step as in the present embodiment, the first aspherical lens is firmly held in an area outside the lens effective area, and the second aspherical lens is By moving in the direction perpendicular to the optical axis, the first center and the second center can be easily moved so as to be within the tolerance, and the lens unit can be manufactured more efficiently.
 また、本実施形態では、レンズユニットを構成する非球面レンズの数が2枚の場合について例示したが、非球面レンズの数は、2枚に限定されず3枚以上であってもよい。その際、レンズホルダーの形状等は、適宜に調整される。 Further, in this embodiment, the case where the number of aspheric lenses constituting the lens unit is two is exemplified, but the number of aspheric lenses is not limited to two and may be three or more. At that time, the shape and the like of the lens holder are appropriately adjusted.
 さらに、本実施形態では、第1の非球面レンズと第2の非球面レンズとが接着剤により直接固定される場合について例示したが、第1の非球面レンズと第2の非球面レンズとは、適宜スペーサを介して接着されてもよく、レンズ鏡筒に別々に接着されてもよい。 Furthermore, in this embodiment, the case where the first aspherical lens and the second aspherical lens are directly fixed by an adhesive is illustrated, but the first aspherical lens and the second aspherical lens are It may be bonded through a spacer as appropriate, or may be bonded separately to the lens barrel.
 本実施形態のレンズユニットの製造方法によれば、成形工程により得られる第1の非球面レンズ50および第2の非球面レンズ60に、それぞれ第1のうねり形状および第2のうねり形状が形成される。これら第1のうねり形状および第2のうねり形状は、高さ方向の測定精度が5nmレベルの干渉計(たとえば白色干渉測定ヘッド)で測定することができるので、第1のうねり形状の第1中心および第2のうねり形状の第2中心は、組み合わせ工程において、前記干渉計により精確に位置が検出され、第1の非球面レンズ50および第2の非球面レンズ60のうち少なくともいずれか一方を光軸に対して垂直な方向に移動させることにより、両方の非球面レンズを容易に公差内に収めることができる。 According to the manufacturing method of the lens unit of the present embodiment, the first wavy shape and the second wavy shape are respectively formed on the first aspherical lens 50 and the second aspherical lens 60 obtained by the molding process. The Since the first waviness shape and the second waviness shape can be measured with an interferometer (for example, a white interference measurement head) having a measurement accuracy in the height direction of 5 nm, the first center of the first waviness shape. The second center of the second wavy shape is accurately detected by the interferometer in the combining step, and at least one of the first aspherical lens 50 and the second aspherical lens 60 is irradiated with light. By moving in a direction perpendicular to the axis, both aspheric lenses can easily be within tolerance.
 また、得られるレンズユニットには、上記したうねり形状が形成された中央領域を有する非球面レンズが使用されている。うねり形状は、目視や顕微鏡等による通常の観察によって傷等として認識され難い。また、例えばカメラ等の撮像装置本体に非球面レンズを装着して画像を形成する場合にも画像に写り込むことがない。そのため、このようなレンズユニットは、優れた外観および機能を有する。 In addition, the obtained lens unit uses an aspheric lens having a central region in which the above-described wavy shape is formed. The wavy shape is difficult to be recognized as a scratch or the like by visual observation or normal observation with a microscope or the like. Further, for example, when an image is formed by attaching an aspheric lens to the main body of an image pickup apparatus such as a camera, the image does not appear in the image. Therefore, such a lens unit has an excellent appearance and function.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 一態様にかかる非球面レンズは、レンズの光軸を対称軸とするうねり形状を形成した中央領域と、前記うねり形状の端部となめらかに接続され、前記中央領域を取り囲む周辺領域とを有するレンズ有効領域を備え、前記うねり形状は、50nm以下の高さを有する。 An aspherical lens according to one aspect includes a central region in which a wavy shape having an optical axis of the lens as an axis of symmetry is formed, and a peripheral region that is smoothly connected to an end of the wavy shape and surrounds the central region. An effective area is provided, and the waviness shape has a height of 50 nm or less.
 このような非球面レンズは、中央領域と、該中央領域を取り囲む周辺領域とを有するレンズ有効領域を備える。中央領域には、うねり形状が形成されている。うねり形状は、レンズの光軸を対称軸とするため、該うねり形状を検出することにより、容易にレンズの中心を認識できる。そして、うねり形状は、端部が周辺領域となめらかに接続されている。そのため、このような端部とうねり形状との接続箇所は、目視や顕微鏡等による通常の観察によって傷等として認識され難い。このようなうねり形状は、例えばカメラ等の撮像装置本体に、非球面レンズを含む撮像光学系を装着して画像を形成する場合に、得られる画像に写り込むことがない。うねり形状は、5nmレベルの測定精度を持つ干渉計であれば測定できるので、うねり形状は、このような特定の干渉計を用いることにより容易に高さを検出することができ、計測された高さに基づいて光軸に垂直な方向の位置も検出することができる。なお、ここでいう「高さ」は、レンズ光軸方向の凹凸量である。その結果、例えば複数の非球面レンズを組み合わせたレンズユニットを製造する場合等において、干渉計の計測結果に基づいて、複数の非球面レンズの光軸に垂直な方向における位置を容易に調整して、これら複数の非球面レンズの中心を公差内に収め易い。 Such an aspherical lens includes a lens effective region having a central region and a peripheral region surrounding the central region. A wavy shape is formed in the central region. Since the wavy shape has the optical axis of the lens as the axis of symmetry, the center of the lens can be easily recognized by detecting the wavy shape. The undulation shape is smoothly connected at its end to the peripheral region. For this reason, the connection portion between the end portion and the swell shape is hardly recognized as a scratch or the like by visual observation or normal observation with a microscope or the like. Such a swell shape does not appear in an obtained image when an imaging optical system including an aspheric lens is attached to an imaging device body such as a camera, for example. Since the undulation shape can be measured with an interferometer having a measurement accuracy of 5 nm level, the undulation shape can be easily detected by using such a specific interferometer, and the measured height Based on this, the position in the direction perpendicular to the optical axis can also be detected. The “height” here is the amount of unevenness in the lens optical axis direction. As a result, for example, when manufacturing a lens unit that combines a plurality of aspheric lenses, the position of the plurality of aspheric lenses in the direction perpendicular to the optical axis can be easily adjusted based on the measurement results of the interferometer. The centers of the plurality of aspheric lenses are easy to fit within the tolerance.
 他の一態様では、上述の非球面レンズにおいて、好ましくは、前記光軸を含む断面の形状において、前記レンズの非球面形状に、下記式(1)に示される関数の前記うねり形状を重畳した形状が形成されてもよい。 In another aspect, in the above-mentioned aspheric lens, preferably, in the shape of the cross section including the optical axis, the swell shape of the function represented by the following formula (1) is superimposed on the aspheric shape of the lens. A shape may be formed.
Figure JPOXMLDOC01-appb-M000005
(式中、hは、光軸からの正規化された寸法であり、Hを光軸からの距離(実寸)とする場合、h=H/aであり、aは、(|H/a|≦1)となる正規化係数である)
Figure JPOXMLDOC01-appb-M000005
(In the formula, h is a normalized dimension from the optical axis, and when H is a distance (actual dimension) from the optical axis, h = H / a, and a is (| H / a | ≦ 1) is a normalization coefficient)
 このような非球面レンズは、うねり形状の端部と周辺領域とがよりなめらかに接続されており、かつ、うねり形状は、50nm以下の高さを有する。その結果、非球面レンズは、より精確に中心位置が検出され易く、かつ、うねり形状は、より傷等として認識され難い。 In such an aspherical lens, the wavy end and the peripheral region are connected more smoothly, and the wavy shape has a height of 50 nm or less. As a result, the center position of the aspherical lens can be detected more accurately, and the waviness shape is less likely to be recognized as a scratch or the like.
 他の一態様では、上述の非球面レンズにおいて、好ましくは、前記光軸を含む断面の形状において、前記レンズの非球面形状に、下記式(2)に示される関数の前記うねり形状を重畳した形状が形成されてもよい。 In another aspect, in the above-described aspheric lens, preferably, in the shape of the cross section including the optical axis, the swell shape of the function expressed by the following formula (2) is superimposed on the aspheric shape of the lens. A shape may be formed.
Figure JPOXMLDOC01-appb-M000006
(式中、Z9(h)=6h-6h+1であり、Z16(h)=20h-30h+12h-1であり、hは、光軸からの正規化された寸法であり、Hを光軸からの距離(実寸)とする場合、h=H/aであり、aは、(|H/a|≦1)となる正規化係数である)
Figure JPOXMLDOC01-appb-M000006
Where Z9 (h) = 6h 4 −6h 2 +1, Z16 (h) = 20h 6 −30h 4 + 12h 2 −1, and h is the normalized dimension from the optical axis, When H is a distance (actual size) from the optical axis, h = H / a, and a is a normalization coefficient that satisfies (| H / a | ≦ 1))
 このような非球面レンズは、うねり形状の端部と周辺領域とがさらになめらかに接続されており、かつ、うねり形状は、50nm以下の高さを有する。その結果、非球面レンズは、より精確に中心位置が検出され易く、かつ、うねり形状は、より傷等として認識され難い。 In such an aspherical lens, the end portion of the undulation shape and the peripheral region are more smoothly connected, and the undulation shape has a height of 50 nm or less. As a result, the center position of the aspherical lens can be detected more accurately, and the waviness shape is less likely to be recognized as a scratch or the like.
 他の一態様にかかるレンズユニットの製造方法は、非球面レンズの反転形状を有するレンズ成形金型を使用して、前記非球面レンズを成形する成形工程と、該成形工程により作製された複数の前記非球面レンズを組み合わせる組み合わせ工程とを有するレンズユニットの製造方法であって、前記成形工程は、レンズの光軸を対称軸とするうねり形状を形成した中央領域と、前記うねり形状の端部となめらかに接続され、前記中央領域を取り囲む周辺領域とを有するレンズ有効領域を備え、前記うねり形状は、50nm以下の高さを有する非球面レンズの反転形状が形成されたレンズ成形金型を用いて、複数の前記非球面レンズを成形する工程であり、前記組み合わせ工程は、前記複数の非球面レンズのうち、第1の非球面レンズに形成された第1の前記うねり形状に基づいて前記第1の非球面レンズの第1中心を検出する第1検出工程と、前記複数の非球面レンズのうち、第2の非球面レンズに形成された第2の前記うねり形状に基づいて前記第2の非球面レンズの第2中心を検出する第2検出工程と、前記第1の非球面レンズおよび前記第2の非球面レンズのうち少なくともいずれか一方を前記光軸に対して垂直な方向に移動させて、前記第1中心の位置と前記第2中心の位置とを公差内に収める位置調整工程とを有する。 A manufacturing method of a lens unit according to another aspect includes a molding step of molding the aspheric lens using a lens molding die having a reversal shape of the aspheric lens, and a plurality of the manufacturing steps produced by the molding step. A method of manufacturing a lens unit including a combination step of combining the aspherical lenses, wherein the molding step includes a central region in which a wavy shape having an optical axis of the lens as a symmetry axis is formed, and an end portion of the wavy shape A lens molding die having a lens effective region that is smoothly connected and has a peripheral region surrounding the central region, and wherein the undulation shape is a reversal shape of an aspherical lens having a height of 50 nm or less. , Forming a plurality of the aspheric lenses, and the combining step is formed on a first aspheric lens among the plurality of aspheric lenses. A first detection step of detecting a first center of the first aspheric lens based on the first waviness shape; and a second formed on a second aspheric lens among the plurality of aspheric lenses. A second detection step of detecting a second center of the second aspherical lens based on the waviness shape, and at least one of the first aspherical lens and the second aspherical lens A position adjusting step of moving the first center position and the second center position within a tolerance by moving in a direction perpendicular to the optical axis.
 このようなレンズユニットの製造方法によれば、成形工程により得られる第1の非球面レンズおよび第2の非球面レンズに、それぞれ第1のうねり形状および第2のうねり形状が形成される。これら第1のうねり形状および第2のうねり形状は、組み合わせ工程において5nmレベルの測定精度を持つ干渉計であれば測定できるので、第1のうねり形状の第1中心および第2のうねり形状の第2中心は、干渉計により精確に位置が検出される。その結果、このような構成によれば、第1の非球面レンズおよび第2の非球面レンズのうち少なくともいずれか一方を光軸に対して垂直な方向に移動させることにより、両方の非球面レンズの各位置を容易に公差内に収めることができる。 According to such a lens unit manufacturing method, the first wavy shape and the second wavy shape are respectively formed on the first aspherical lens and the second aspherical lens obtained by the molding step. Since the first waviness shape and the second waviness shape can be measured by an interferometer having a measurement accuracy of 5 nm level in the combination process, the first center of the first waviness shape and the second waviness shape of the second waviness shape can be measured. The positions of the two centers are accurately detected by the interferometer. As a result, according to such a configuration, by moving at least one of the first aspherical lens and the second aspherical lens in a direction perpendicular to the optical axis, both aspherical lenses are obtained. Each position can be easily within tolerance.
 他の一態様では、上述のレンズユニットの製造方法において、好ましくは、前記第1検出工程は、前記第1の非球面レンズの前記レンズ有効領域外の領域を保持する保持工程をさらに含み、前記位置調整工程は、前記第2の非球面レンズを前記光軸に対して垂直な方向に移動させて、前記第1中心の位置と前記第2中心の位置とを公差内に収める工程であってもよい。 In another aspect, in the method for manufacturing a lens unit described above, preferably, the first detection step further includes a holding step of holding a region outside the lens effective region of the first aspheric lens, The position adjusting step is a step of moving the second aspheric lens in a direction perpendicular to the optical axis so that the position of the first center and the position of the second center are within tolerance. Also good.
 このようなレンズユニットの製造方法によれば、第1の非球面レンズは、保持工程においてレンズ有効領域外の領域が保持されているため、第2の非球面レンズを光軸に対して垂直な方向に移動させることにより、第1中心と第2中心との各位置が公差内に収まるように移動させ易い。その結果、このような構成によれば、より効率よくレンズユニットを製造することができる。 According to such a lens unit manufacturing method, since the first aspheric lens is held outside the lens effective area in the holding step, the second aspheric lens is perpendicular to the optical axis. By moving in the direction, each position of the first center and the second center can be easily moved so as to be within the tolerance. As a result, according to such a configuration, the lens unit can be manufactured more efficiently.
 他の一態様にかかるレンズユニットは、上記いずれかのレンズユニットの製造方法により得られるレンズユニットである。 The lens unit according to another aspect is a lens unit obtained by any one of the lens unit manufacturing methods described above.
 このようなレンズユニットには、上記したうねり形状が形成された中央領域を有する非球面レンズが使用されている。うねり形状は、目視や顕微鏡等による通常の観察によって傷等として認識され難い。例えばカメラ等の撮像装置本体にレンズユニットを装着して画像を形成する場合にも画像に写り込むことがない。そのため、このようなレンズユニットは、優れた外観および機能を有する。 In such a lens unit, an aspherical lens having a central region in which the above-described wavy shape is formed is used. The wavy shape is difficult to be recognized as a scratch or the like by visual observation or normal observation with a microscope or the like. For example, when an image is formed by attaching a lens unit to an imaging device body such as a camera, the image is not reflected. Therefore, such a lens unit has an excellent appearance and function.
 他の一態様にかかるレンズ成形金型は、非球面レンズの反転形状が形成され、前記非球面レンズは、レンズの光軸を対称軸とするうねり形状を形成した中央領域と、前記うねり形状の端部となめらかに接続され、前記中央領域を取り囲む周辺領域とを有するレンズ有効領域を備え、前記うねり形状は、50nm以下の高さを有する。 A lens molding die according to another aspect is formed with a reversal shape of an aspherical lens, and the aspherical lens has a central region formed with a wavy shape with the optical axis of the lens as an axis of symmetry, and the wavy shape. The lens has a lens effective region that is smoothly connected to the end portion and has a peripheral region surrounding the central region, and the wavy shape has a height of 50 nm or less.
 このようなレンズ成形金型によれば、上記した非球面レンズの製造に適している。 Such a lens molding die is suitable for manufacturing the aspherical lens described above.
 この出願は、2013年6月28日に出願された日本国特許出願特願2013-136302を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2013-136302 filed on Jun. 28, 2013, the contents of which are included in the present application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. To be construed as inclusive.
 本発明によれば、非球面レンズ、該非球面レンズを備えたレンズユニットの製造方法および該製造方法により製造されるレンズユニットならびにレンズ成形金型を提供できる。 According to the present invention, it is possible to provide an aspheric lens, a method of manufacturing a lens unit including the aspheric lens, a lens unit manufactured by the manufacturing method, and a lens molding die.

Claims (7)

  1.  レンズの光軸を対称軸とするうねり形状を形成した中央領域と、
     前記うねり形状の端部となめらかに接続され、前記中央領域を取り囲む周辺領域とを有するレンズ有効領域を備え、
     前記うねり形状は、50nm以下の高さを有する、非球面レンズ。
    A central region having a wavy shape with the optical axis of the lens as the axis of symmetry;
    A lens effective area having a peripheral area surrounding the central area and smoothly connected to the undulated end;
    The waviness shape is an aspherical lens having a height of 50 nm or less.
  2.  前記光軸を含む断面の形状において、前記レンズの非球面形状に、下記式(1)に示される関数の前記うねり形状を重畳した形状を形成した、請求項1記載の非球面レンズ。
    χ(h)=(1+cos(πh))/2   ・・・(1)
    (式中、hは、光軸からの正規化された寸法であり、Hを光軸からの距離(実寸)とする場合、h=H/aであり、aは、(|H/a|≦1)となる正規化係数である)
    The aspherical lens according to claim 1, wherein in the shape of a cross section including the optical axis, a shape obtained by superimposing the swell shape of the function represented by the following formula (1) on the aspherical shape of the lens is formed.
    χ (h) = (1 + cos (πh)) / 2 (1)
    (In the formula, h is a normalized dimension from the optical axis, and when H is a distance (actual dimension) from the optical axis, h = H / a, and a is (| H / a | ≦ 1) is a normalization coefficient)
  3.  前記光軸を含む断面の形状において、前記レンズの非球面形状に、下記式(2)に示される関数の前記うねり形状を重畳した形状を形成した、請求項1記載の非球面レンズ。
    χ(h)=(2Z9(h)-Z16(h)-1)/2   ・・・(2)
    (式中、Z9(h)=6h-6h+1であり、Z16(h)=20h-30h+12h-1であり、hは、光軸からの正規化された寸法であり、Hを光軸からの距離(実寸)とする場合、h=H/aであり、aは、(|H/a|≦1)となる正規化係数である)
    2. The aspherical lens according to claim 1, wherein in the shape of a cross section including the optical axis, a shape obtained by superimposing the swell shape of the function represented by the following formula (2) on the aspherical shape of the lens is formed.
    χ (h) = (2Z9 (h) −Z16 (h) −1) / 2 (2)
    Where Z9 (h) = 6h 4 −6h 2 +1, Z16 (h) = 20h 6 −30h 4 + 12h 2 −1, and h is the normalized dimension from the optical axis, When H is a distance (actual size) from the optical axis, h = H / a, and a is a normalization coefficient that satisfies (| H / a | ≦ 1))
  4.  非球面レンズの反転形状を有するレンズ成形金型を使用して、前記非球面レンズを成形する成形工程と、該成形工程により作製された複数の前記非球面レンズを組み合わせる組み合わせ工程とを有するレンズユニットの製造方法であって、
     前記成形工程は、レンズの光軸を対称軸とするうねり形状を形成した中央領域と、前記うねり形状の端部となめらかに接続され、前記中央領域を取り囲む周辺領域とを有するレンズ有効領域を備え、前記うねり形状は、50nm以下の高さを有する非球面レンズの反転形状が形成されたレンズ成形金型を用いて、複数の前記非球面レンズを成形する工程であり、
     前記組み合わせ工程は、
      前記複数の非球面レンズのうち、第1の非球面レンズに形成された第1の前記うねり形状に基づいて前記第1の非球面レンズの第1中心を検出する第1検出工程と、
      前記複数の非球面レンズのうち、第2の非球面レンズに形成された第2の前記うねり形状に基づいて前記第2の非球面レンズの第2中心を検出する第2検出工程と、
      前記第1の非球面レンズおよび前記第2の非球面レンズのうち少なくともいずれか一方を前記光軸に対して垂直な方向に移動させて、前記第1中心の位置と前記第2中心の位置とを公差内に収める位置調整工程とを有する、レンズユニットの製造方法。
    A lens unit having a molding step of molding the aspheric lens using a lens molding die having an inverted shape of an aspheric lens, and a combination step of combining a plurality of the aspheric lenses produced by the molding step A manufacturing method of
    The molding step includes a lens effective region having a central region in which a wavy shape with the optical axis of the lens as an axis of symmetry is formed, and a peripheral region that is smoothly connected to an end of the wavy shape and surrounds the central region. The swell shape is a step of molding a plurality of the aspherical lenses using a lens molding die in which an inverted shape of an aspherical lens having a height of 50 nm or less is formed.
    The combination process includes
    A first detection step of detecting a first center of the first aspheric lens based on the first waviness shape formed on the first aspheric lens among the plurality of aspheric lenses;
    A second detection step of detecting a second center of the second aspherical lens based on the second waviness formed in the second aspherical lens among the plurality of aspherical lenses;
    By moving at least one of the first aspherical lens and the second aspherical lens in a direction perpendicular to the optical axis, the position of the first center and the position of the second center The lens unit manufacturing method comprising: a position adjusting step for keeping the position within tolerance.
  5.  前記第1検出工程は、前記第1の非球面レンズの前記レンズ有効領域外の領域を保持する保持工程をさらに含み、
     前記位置調整工程は、前記第2の非球面レンズを前記光軸に対して垂直な方向に移動させて、前記第1中心の位置と前記第2中心の位置とを公差内に収める工程である、請求項4記載のレンズユニットの製造方法。
    The first detection step further includes a holding step of holding a region outside the lens effective region of the first aspheric lens,
    The position adjusting step is a step of moving the second aspherical lens in a direction perpendicular to the optical axis so that the position of the first center and the position of the second center are within tolerance. The manufacturing method of the lens unit of Claim 4.
  6.  請求項4または請求項5に記載のレンズユニットの製造方法により製造されるレンズユニット。 A lens unit manufactured by the lens unit manufacturing method according to claim 4.
  7.  レンズの光軸を対称軸とするうねり形状を形成した中央領域と、前記うねり形状の端部となめらかに接続され、前記中央領域を取り囲む周辺領域とを有するレンズ有効領域を備え、前記うねり形状は、50nm以下の高さを有する非球面レンズの反転形状が形成されたレンズ成形金型。
     
    A center region having a wavy shape with the optical axis of the lens as an axis of symmetry, and a lens effective region having a peripheral region that is smoothly connected to an end of the waviness shape and surrounds the central region; A lens molding die in which an inverted shape of an aspherical lens having a height of 50 nm or less is formed.
PCT/JP2014/065800 2013-06-28 2014-06-13 Aspherical lens, method for manufacturing lens unit provided with aspherical lens, lens unit manufactured by said method for manufacturing, and lens molding mold WO2014208371A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-136302 2013-06-28
JP2013136302 2013-06-28

Publications (1)

Publication Number Publication Date
WO2014208371A1 true WO2014208371A1 (en) 2014-12-31

Family

ID=52141714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065800 WO2014208371A1 (en) 2013-06-28 2014-06-13 Aspherical lens, method for manufacturing lens unit provided with aspherical lens, lens unit manufactured by said method for manufacturing, and lens molding mold

Country Status (1)

Country Link
WO (1) WO2014208371A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019197768A (en) * 2018-05-08 2019-11-14 信越化学工業株式会社 Synthetic quartz glass substrate for imprint mold

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365548A (en) * 2001-06-06 2002-12-18 Olympus Optical Co Ltd Zoom lens
JP2005157253A (en) * 2003-10-30 2005-06-16 Hitachi Maxell Ltd Method for detecting optical axis of optical element, method for assembling optical unit, optical unit, device for detecting optical axis, and device for assembling optical unit
JP2006138924A (en) * 2004-11-10 2006-06-01 Canon Inc Composite type diffraction optical element by light energy setting type resin and its production method
WO2007069499A1 (en) * 2005-12-13 2007-06-21 Matsushita Electric Industrial Co., Ltd. Lens, lens unit, and imaging device using the same
JP2008176185A (en) * 2007-01-22 2008-07-31 Kyocera Corp Imaging lens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365548A (en) * 2001-06-06 2002-12-18 Olympus Optical Co Ltd Zoom lens
JP2005157253A (en) * 2003-10-30 2005-06-16 Hitachi Maxell Ltd Method for detecting optical axis of optical element, method for assembling optical unit, optical unit, device for detecting optical axis, and device for assembling optical unit
JP2006138924A (en) * 2004-11-10 2006-06-01 Canon Inc Composite type diffraction optical element by light energy setting type resin and its production method
WO2007069499A1 (en) * 2005-12-13 2007-06-21 Matsushita Electric Industrial Co., Ltd. Lens, lens unit, and imaging device using the same
JP2008176185A (en) * 2007-01-22 2008-07-31 Kyocera Corp Imaging lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019197768A (en) * 2018-05-08 2019-11-14 信越化学工業株式会社 Synthetic quartz glass substrate for imprint mold

Similar Documents

Publication Publication Date Title
JP5582188B2 (en) Eccentricity measurement method
US20120062708A1 (en) Imaging, Fabrication and Measurement Systems and Methods
WO2007018118A1 (en) Method for measuring decentralization of optical axis on the front and the rear surface of lens
CN102576140A (en) Lens assembling method, lens assembly, and image capturing device with the lens assembly
CN110632727B (en) Optical lens, camera module and assembling method thereof
TWI732484B (en) Camera module manufacturing device and camera module manufacturing method
CN110631477A (en) Optical imaging unit and system for measurement techniques
US10132925B2 (en) Imaging, fabrication and measurement systems and methods
CN102538707B (en) Three dimensional localization device and method for workpiece
TWI756058B (en) Camera module manufacturing device
JP2002250622A (en) Shape-measuring method and device for optical element, and its type
WO2014208371A1 (en) Aspherical lens, method for manufacturing lens unit provided with aspherical lens, lens unit manufactured by said method for manufacturing, and lens molding mold
JP2007085914A (en) Method, device, and program of measuring aspheric lens, method of manufacturing aspheric lens, and aspheric lens
CN206505198U (en) Lens
JP5358898B2 (en) Optical surface shape measuring method and apparatus, and recording medium
US9703017B2 (en) Optical lens, lens unit, imaging module, electronic device, optical lens production method, lens mold, and shape correction method for lens mold
JP2007127473A (en) Measuring method, device, and program of aspheric lens, manufacturing method of aspheric lens, and aspheric lens
JP2005090962A (en) Measuring method and measuring device of optical element
JP2006133059A (en) Device for measuring interference
CN110702036A (en) Complex beam angle sensor and small-sized aspheric surface morphology detection method
KR101692152B1 (en) Displacement Sensor Using Astigmatism and Sensing Method thereof
JP2006038589A (en) Optical element, its eccentricity amount measuring method and its manufacturing method
JP2007279255A (en) Optical element and measurement method of optical element
CN109839086B (en) Method and device for measuring rigid displacement error of deformable mirror
CN112880585A (en) Non-contact shape measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14818236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP