WO2014208229A1 - Light emission device - Google Patents

Light emission device Download PDF

Info

Publication number
WO2014208229A1
WO2014208229A1 PCT/JP2014/063650 JP2014063650W WO2014208229A1 WO 2014208229 A1 WO2014208229 A1 WO 2014208229A1 JP 2014063650 W JP2014063650 W JP 2014063650W WO 2014208229 A1 WO2014208229 A1 WO 2014208229A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
electrode
power feeding
transparent
Prior art date
Application number
PCT/JP2014/063650
Other languages
French (fr)
Japanese (ja)
Inventor
木村 直樹
伸哉 三木
充良 内藤
淳弥 若原
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014559000A priority Critical patent/JP5704290B1/en
Publication of WO2014208229A1 publication Critical patent/WO2014208229A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates

Definitions

  • the present invention relates to a light emitting device whose end face emits light.
  • Patent Document 1 a light emitting device that emits light at an end surface is known.
  • the light emitting device disclosed in this publication has a pair of electrodes on a transparent substrate, and a light emitting layer is provided between the pair of electrodes. A region on the substrate where no electrode is provided is covered with a reflective layer. A part of the end face of the substrate is exposed as a light emitting part. The light generated in the light emitting layer is extracted from the end face (light emitting portion) of the substrate by the reflection of the reflection layer. According to such a light emitting device, for example, linear thin light emission can be realized.
  • An object of the present invention is to provide a light emitting device capable of suppressing the occurrence of uneven brightness in light extracted from an end face.
  • a light-emitting device includes a transparent substrate having a light emitting portion on an end surface, a first transparent electrode, a first reflective electrode, and a first light-emitting layer provided therebetween, and the first transparent
  • a first light-emitting body provided on the transparent substrate such that the electrode is positioned on the transparent substrate side; and a side of the transparent substrate opposite to the side on which the first light-emitting body is provided.
  • a first power feeding portion extending along a direction substantially parallel to the extending direction, wherein power feeding to the first transparent electrode is electrically connected to the first power feeding portion and is higher in conductivity than the first transparent electrode. From the power supply member having the property through the first power supply unit. .
  • FIG. 3 is a plan view showing the light emitting device in Embodiment 1.
  • FIG. FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 3 is a plan view showing a power feeding unit (first power feeding unit) and a peripheral structure of the light emitting device in Embodiment 1.
  • FIG. It is a top view which shows the light-emitting device in a comparative example.
  • 6 is a plan view showing a light-emitting device in Embodiment 2.
  • FIG. FIG. 6 is a cross-sectional view taken along the line VI-VI in FIG. 5.
  • 6 is a cross-sectional view illustrating a light-emitting device in Embodiment 3.
  • FIG. 10 is a plan view showing a light-emitting device in Embodiment 4.
  • FIG. 9 is a cross-sectional view taken along line IX-IX in FIG.
  • FIG. 9 is a plan view showing a light emitting device in a fifth embodiment.
  • FIG. 11 is a cross-sectional view taken along line XI-XI in FIG. 10.
  • FIG. 10 is a plan view illustrating a light-emitting device in Embodiment 6.
  • FIG. 15 is a cross-sectional view taken along line XV-XV in FIG. 14.
  • FIG. 10 is a cross-sectional view illustrating a light emitting device in an eighth embodiment.
  • FIG. 1 is a plan view showing a light emitting device 100 according to the present embodiment.
  • FIG. 1 shows a state where the light emitting device 100 is viewed from the back side (the sealing member 24 side) of the light emitting device 100.
  • 2 is a cross-sectional view taken along the line II-II in FIG.
  • the light-emitting device 100 includes an organic EL (Organic Electroluminescence) element as a light-emitting light source, and has a flat plate shape extending along the surface direction.
  • the light emitting device 100 includes a transparent substrate 11, a light emitter 20 (FIG. 2), a sealing member 24, a reflecting member 30, and external wiring members 51 and 52 (FIG. 1).
  • the transparent substrate 11 includes a front surface 12 (FIG. 2), a back surface 13, and four end surfaces 14 to 17 (FIG. 1).
  • the transparent substrate 11 is composed of various glass substrates, for example.
  • the outer edge (four end surfaces) of the transparent substrate 11 has a rectangular shape as a whole.
  • the front surface 12 and the back surface 13 have a positional relationship facing each other, and the end surfaces 14 to 17 are formed perpendicular to them.
  • the light emitting portion 18 is formed in the end face 14 among the four end faces (details will be described later).
  • the transparent substrate 11 may be a resin member or a member that can be flexibly bent.
  • the reflection member 30 is provided on the surface 12 side of the transparent substrate 11 and covers the surface 12 and the end surfaces 15 to 17.
  • the reflecting member 30 is made of, for example, aluminum, silver, gold, chromium, or an alloy thereof, and is formed so as to cover the surface 12 and the end faces 15 to 17 by vapor deposition or the like.
  • a mask having a predetermined shape (a shape corresponding to the light emitting portion 18) may be used so that the light emitting portion 18 in the end face 14 is exposed.
  • the reflecting member 30 is not limited to vapor deposition, and may be configured by attaching a plastic sheet member containing a fine light reflecting material such as titanium oxide or zinc oxide to the transparent substrate 11.
  • the reflecting member 30 may not be bonded to the transparent substrate 11.
  • the function as the reflecting member 30 can also be realized by another member (structural member or the like) having reflectivity disposed around the transparent substrate 11.
  • the light emitter 20 (first light emitter) is provided on the back surface 13 side of the transparent substrate 11.
  • the light emitter 20 is located on the opposite side of the transparent substrate 11 from the side where the reflecting member 30 is provided.
  • the light emitter 20 includes a transparent electrode 21 (first transparent electrode), a light emitting layer 22 (first light emitting layer), and a reflective electrode 23 (first reflective electrode).
  • the transparent electrode 21, the light emitting layer 22, and the reflective electrode 23 are sequentially stacked on the back surface 13 of the transparent substrate 11.
  • the transparent electrode 21 is located on the transparent substrate 11 side when viewed from the light emitting layer 22.
  • the light emitter 20 and the reflective member 30 are provided on the transparent substrate 11, the light emitter 20 may be first, or the reflective member 30 may be first.
  • the transparent electrode 21 has a shape spreading in a plane and is formed of a conductive film having transparency.
  • ITO Indium Tin Oxide
  • the transparent electrode 21 is formed by patterning the ITO film into a predetermined shape by photolithography or the like.
  • the transparent electrode 21 is divided into two regions by patterning in order to form a cathode electrode extraction portion 26 and an anode electrode extraction portion 27.
  • the light emitting layer 22 is provided between the transparent electrode 21 and the reflective electrode 23.
  • the light emitting layer 22 generates light (visible light) by being supplied with electric power through the transparent electrode 21 and the reflective electrode 23.
  • the light emitting layer 22 may be constituted by a single light emitting layer, or may be constituted by sequentially laminating a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, and the like.
  • the reflective electrode 23 is made of, for example, aluminum (AL).
  • the reflective electrode 23 is formed so as to cover the light emitting layer 22 by a vacuum deposition method or the like.
  • An insulating layer 25 is provided between the reflective electrode 23 and the portion of the transparent electrode 21 located on the electrode extraction part 27 side so that the reflective electrode 23 and the transparent electrode 21 are not short-circuited.
  • the part of the reflective electrode 23 opposite to the side on which the insulating layer 25 is provided is connected to the transparent electrode 21 (ITO film) on the electrode extraction part 26 side.
  • the transparent electrode 21 (transparent electrode 21 ⁇ / b> A) on the electrode extraction part 26 side functions as a part of the reflective electrode 23.
  • the portion provided as the transparent electrode 21A is not necessarily formed of an ITO film or the like, and in the process of forming the reflective electrode 23, the same member as the member constituting the reflective electrode 23 as a part of the reflective electrode 23 May be formed.
  • the sealing member 24 is made of an insulating resin, a glass substrate, or the like.
  • the sealing member 24 is attached to the light emitter 20 and the transparent substrate 11 using an adhesive or the like.
  • the sealing member 24 seals substantially the entire transparent electrode 21, the light emitting layer 22, and the reflective electrode 23 on the transparent substrate 11, and protects them from moisture and the like.
  • a part of the transparent electrode 21 (ITO film) is exposed from the sealing member 24 for electrical connection.
  • the right part in FIGS. 1 and 2 exposed from the sealing member 24 of the transparent electrode 21 constitutes an electrode extraction part 26 for the cathode.
  • the left part of FIG. 1 and FIG. 2 exposed from the sealing member 24 of the transparent electrode 21 constitutes an electrode extraction part 27 for the anode.
  • the electrode extraction part 26 and the electrode extraction part 27 are located on opposite sides of the light emitting layer 22.
  • An external wiring member 51 is connected to the cathode electrode extraction portion 26 using a conductive paste 53.
  • an auxiliary electrode 41 (a power supply member) having a rod shape is provided on the electrode extraction part 27 for the anode.
  • An external wiring member 52 is connected to the auxiliary electrode 41 using a conductive paste 54.
  • the auxiliary electrode 41 is formed of a member having higher conductivity than the transparent electrode 21 and is electrically connected to a power feeding part S1 (details will be described later).
  • the auxiliary electrode 41 may be directly attached to the power feeding part S1 on the transparent electrode 21 on the electrode extraction part 27 side, and an anisotropic conductive film (ACF) is interposed on the power feeding part S1.
  • ACF anisotropic conductive film
  • the power supply unit S1 may be simply in contact with the power supply unit S1.
  • the auxiliary electrode 41 itself may be made of an anisotropic conductive film.
  • transparent electrode 21 in the present embodiment has power feeding portion S ⁇ b> 1 on the surface of electrode extraction portion 27.
  • the power feeding portion S1 is located on the side opposite to the side where the end face 14 is located.
  • the end surface 14 is a portion where the light emitting portion 18 (see FIGS. 1 and 2) is formed.
  • the light emitting layer 22 is viewed in plan as shown in FIG. 1, the light emitting layer 22 is located between the power feeding unit S ⁇ b> 1 and the light emitting unit 18.
  • FIG. 3 shows a state in which the auxiliary electrode 41 (FIGS. 1 and 2) provided on the power feeding unit S1 is removed from the power feeding unit S1.
  • the power supply unit S1 is a region of the surface of the electrode extraction unit 27 that is used for power supply when the electrode extraction unit 27 is supplied with power.
  • the shape of the power feeding unit S1 substantially matches the shape of the auxiliary electrode 41.
  • the power feeding unit S1 is linearly formed along a direction substantially parallel to the direction in which the light emitting unit 18 (FIG. 1) extends (the vertical direction in FIG. 1). It has an extending shape.
  • the power feeding part S1 is substantially parallel to the extending direction of the light emitting part 18, the power feeding part S1 is parallel to the extending direction of the light emitting part 18, and The case where the power feeding unit S1 is substantially parallel to the direction in which the light emitting unit 18 extends is included.
  • “Substantially parallel” includes a case where one side extends from a state parallel to the other side, for example, in a state of being deviated within a range of more than 0 ° and ⁇ 15 ° or less.
  • the power feeding unit S1 may extend so as to have an angle range of ⁇ 10 ° to 10 ° with respect to the direction in which the light emitting unit 18 extends. More preferably, the power feeding unit S1 may extend so as to have an angle range of ⁇ 5 ° to 5 ° with respect to the direction in which the light emitting unit 18 extends.
  • the power feeding part S1 may be parallel to the direction in which the light emitting part 18 extends.
  • both the light emitting portion 18 and the power feeding portion S1 have a shape extending linearly.
  • the present invention is not limited thereto, and even if one of these and / or the other extends in an arc shape so as to be slightly curved, this configuration is such that the power supply portion S1 extends from the light emitting portion 18. Included when extending along a direction substantially parallel to the direction. Even if one of these and / or the other has a configuration in which a portion that is not slightly straight is included in a part thereof, this configuration is substantially parallel to the direction in which the power supply portion S1 extends. Included when extending along direction.
  • the electrode extraction portion 27 (anode side) of the transparent electrode 21 through the external wiring member 52, the conductive paste 54, the auxiliary electrode 41, and the power supply portion S1.
  • Power supply to the electrode extraction part 26 (cathode side) is performed through the external wiring member 51 and the conductive paste 53.
  • the light emitting layer 22 is supplied with power through the transparent electrode 21 and the reflective electrode 23.
  • the light generated in the light emitting layer 22 passes through the transparent electrode 21 and enters the transparent substrate 11.
  • the light is reflected by the reflecting member 30 and is repeatedly reflected in the transparent substrate 11, and then extracted from the light emitting portion 18 in the end face 14 to the outside (see white arrows in FIGS. 1 and 2).
  • a member having both transparency and conductivity such as the transparent electrode 21 generally has a high electric resistance value.
  • a voltage drop occurs in the transparent electrode 21.
  • a potential distribution is formed in which the potential on the left side in FIGS. 1 and 2 of the voltage applied to the light emitting layer 22 is high and the potential decreases toward the right side.
  • the equipotential lines are formed side by side so as to be substantially parallel to the direction in which the power feeding portion S1 extends.
  • a luminance distribution is formed in which the luminance on the left side in FIGS. 1 and 2 is high and the luminance decreases toward the right side.
  • the isoluminance lines are drawn based on the luminance distribution, the isoluminance lines are also formed side by side so as to be substantially parallel to the direction in which the power feeding portion S1 extends.
  • the reflecting member 30 covers the surface 12 and the end faces 15 to 17 of the transparent substrate 11.
  • the light generated in the light emitting layer 22 is repeatedly reflected in the transparent substrate 11 and then emitted outward from the light emitting unit 18. Since the power feeding part S1 is substantially parallel to the extending direction (longitudinal direction) of the light emitting part 18, the occurrence of a potential difference in the extending direction of the light emitting part 18 is suppressed.
  • the light extracted from the light emitting unit 18 is extracted from the light emitting unit 18 to the outside in a state having a distribution substantially similar to the above luminance distribution. It is suppressed that the brightness
  • the power feeding unit S ⁇ b> 1 of the present embodiment corresponds to the light emitting unit 18 at one end side on the left side of the transparent electrode 21 in the drawing. Or it is formed to exist in the range.
  • the said structure is not essential, the position or range corresponding to the light emission part 18 among the transparent electrodes 21, ie, the range (length) in which the light emission part 18 exists, by adopting this structure. Accordingly, it is possible to perform substantially uniform power feeding, and as a result, even more uniform light can be extracted from the light emitting portion 18.
  • the power feeding portion S1 of the present embodiment has a length substantially equal to that of the light emitting portion 18 in the direction in which the light emitting portion 18 extends (the vertical direction in FIG. 1). is doing.
  • the substantially equal length here is not limited to the case where the power feeding unit S1 and the light emitting unit 18 have the same length.
  • the substantially equal length referred to here is a length relationship sufficient for the light emitting portion 18 to emit uniform light to such an extent that luminance unevenness is not substantially recognized when viewing the light extracted from the light emitting portion 18 to the outside. Is also included in the case where the power feeding unit S1 and the light emitting unit 18 have the above.
  • the power feeding unit S1 has the light emitting unit. It may have a length longer or shorter than 18. Further, even when the power feeding unit S1 and / or the light emitting unit 18 has a shape including a curved portion, the luminance unevenness is substantially reduced when the light extracted from the light emitting unit 18 is visually recognized. It is preferable that the feeding portion S1 and the light emitting portion 18 have such a length relationship that the light emitting portion 18 can emit light that is uniform enough to prevent the light from being recognized. Although these configurations are not essential, when the lengths of the power feeding unit S1 and the light emitting unit 18 satisfy the above relationship, more even light is extracted from the light emitting unit 18. It becomes possible.
  • auxiliary electrode 41 is disposed along the auxiliary electrode 41. Further, the auxiliary electrode 41 is connected over substantially the entire length of the power feeding part S1, and the auxiliary electrode 41 feeds power through the power feeding part S1.
  • auxiliary electrode 41 is connected over substantially the entire length of power supply portion S1” means that auxiliary electrode 41 is connected over the entire range from one end of power supply portion S1 to the other end of power supply portion S1. It is not limited to the case.
  • the auxiliary electrode 41 is connected over substantially the entire length of the power feeding portion S1” means that the luminance unevenness is not substantially recognized when the light extracted from the light emitting portion 18 is visually recognized. This includes the case where the auxiliary electrode 41 is connected to the power supply unit S1 over a range that allows the light emitting unit 18 to emit uniform light. In other words, if the light emitting unit 18 can emit light that is uniform enough that the luminance unevenness is not substantially recognized when viewing the light extracted from the light emitting unit 18 to the outside, the auxiliary electrode 41 is connected to the power supply unit S1. It may have a longer or shorter length.
  • the auxiliary electrode 41 is connected to the power feeding portion S1 over a range where the light emitting portion 18 can emit light that is uniform enough to prevent the light from being recognized.
  • the auxiliary electrode 41 and the power feeding unit S1 satisfy the above relationship, so that more uniform light can be extracted from the light emitting unit 18. Become. These can also be applied to other embodiments described later.
  • FIG. 4 is a plan view showing a light emitting device 100Z in a comparative example.
  • the reflecting member 30 of the light emitting device 100Z covers the surface of the transparent substrate 11 (the surface corresponding to the surface 12 of the light emitting device 100), the end surface 14, and the end surfaces 16 and 17.
  • the light emitting part 18 is formed in the end face 15.
  • the power feeding unit S1 of the light emitting device 100Z is provided in the same manner as the power feeding unit S1 (see FIG. 3) of the light emitting device 100.
  • the extending direction of the power feeding unit S1 and the extending direction of the light emitting unit 18 are in a relationship orthogonal to each other.
  • a luminance distribution is formed in which the luminance on the left side in FIG. 4 is high and the luminance decreases toward the right side in the same manner as in the first embodiment. Is done.
  • the isoluminance lines are formed side by side so as to be substantially parallel to the direction in which the power feeding portion S1 extends.
  • the light extracted from the light emitting part 18 has a distribution substantially similar to the above luminance distribution.
  • the light is emitted from the light emitting portion 18 toward the outside. That is, a luminance distribution is formed in which the luminance on the left side in FIG. 4 of the light emitting portion 18 is high and the luminance decreases toward the right side.
  • the light emitting device 100Z of the comparative example has a configuration in which it is difficult to suppress the occurrence of luminance unevenness in the light extracted from the light emitting unit 18 due to the potential difference in the extending direction of the light emitting unit 18. is doing.
  • the power feeding part S1 is substantially parallel to the extending direction (longitudinal direction) of the light emitting part 18, it is taken out from the light emitting part 18. It is possible to effectively suppress the occurrence of uneven brightness in the emitted light.
  • light emitting device 101 of the present embodiment further includes a control board 60 (PCB: Printed Circuit Board) in addition to the configuration of light emitting device 100 of the first embodiment.
  • the control board 60 includes a control circuit 61 (FIG. 6) and a wiring pattern 62 (electrode member).
  • the control circuit 61 controls light emission of the light emitting device 101 (light emitting layer 22).
  • the wiring pattern 62 is provided on the surface of the control board 60 and is electrically connected to the control circuit 61.
  • the control board 60 in FIGS. 5 and 6 is illustrated using a one-dot chain line except for the wiring pattern 62.
  • the wiring pattern 62 is used instead of the auxiliary electrode 41 (FIGS. 1 and 2) in the first embodiment described above.
  • the wiring pattern 62 has higher conductivity than the transparent electrode 21, and can function as a power supply member electrically connected to the power supply unit S1.
  • the wiring pattern 62 may be directly attached to the power supply unit S1 on the transparent electrode 21, or may be fixed on the power supply unit S1 with an anisotropic conductive film or the like interposed therebetween. The structure of contacting may be sufficient.
  • the wiring pattern 62 is provided on the control board 60, and the wiring pattern 62 is configured as a part of the control board 60. Even in the configuration of the light emitting device 101, a potential difference in the extending direction of the light emitting unit 18 occurs because the power feeding unit S ⁇ b> 1 is substantially parallel to the extending direction (longitudinal direction) of the light emitting unit 18. This can suppress the occurrence of uneven brightness in the light extracted from the light emitting portion 18.
  • an auxiliary electrode member having a bar shape similar to that of the auxiliary electrode 41 (FIGS. 1 and 2) in the first embodiment may be further used.
  • the auxiliary electrode member is provided between the power feeding unit S ⁇ b> 1 and the wiring pattern 62.
  • the auxiliary electrode member may be directly attached to the power feeding part S1 on the transparent electrode 21, or may be fixed on the power feeding part S1 with an anisotropic conductive film or the like interposed therebetween. The structure of contacting may be sufficient.
  • the auxiliary electrode member itself may be made of an anisotropic conductive film.
  • the auxiliary electrode member may be directly attached to the wiring pattern 62, may be fixed on the wiring pattern 62 with an anisotropic conductive film or the like interposed therebetween, and is simply in contact with the wiring pattern 62. It may be a configuration. Even in these configurations, since the power feeding portion S1 is substantially parallel to the extending direction (longitudinal direction) of the light emitting portion 18, the occurrence of a potential difference in the extending direction of the light emitting portion 18 is suppressed. It is possible to effectively suppress the occurrence of uneven brightness in the light extracted from the light emitting portion 18.
  • light emitting device 102 of the present embodiment further includes light guide member 70 in addition to the configuration of light emitting device 100 of the first embodiment.
  • the transparent substrate 11 has a two-layer structure.
  • the transparent substrate 11 includes a transparent substrate 11A and a light guide member 70 disposed so as to be in close contact therewith.
  • the transparent base material 11A has the same configuration as the transparent substrate (transparent substrate 11) in the first embodiment.
  • the light guide member 70 has a front surface 72, a back surface 73, and end surfaces 74 and 76.
  • the reflecting member 30 covers the outer surface of the transparent substrate 11 (the transparent base material 11 ⁇ / b> A and the light guide member 70) so that the end surface 74 of the light guide member 70 is exposed, and a light emitting portion 78 is formed on the end surface 74. ing.
  • the power feeding portion S1 has a shape extending linearly along a direction substantially parallel to the direction in which the light emitting portion 78 extends (direction perpendicular to the paper surface of FIG. 7). Yes.
  • the light generated in the light emitting layer 22 is repeatedly reflected in the transparent substrate 11 (the transparent base material 11A and the light guide member 70), and then emitted from the light emitting unit 78 to the outside. Since the power feeding part S1 is substantially parallel to the extending direction (longitudinal direction) of the light emitting part 78, the occurrence of a potential difference in the extending direction of the light emitting part 78 is suppressed.
  • the light emitting device 102 can also effectively suppress the occurrence of uneven brightness in the light extracted from the light emitting unit 78.
  • auxiliary electrode 42 (another power supply member) having a rod-like shape on cathode electrode extraction portion 26 (transparent electrode 21 ⁇ / b> A).
  • transparent electrode 21 ⁇ / b> A the transparent electrode 21 on the electrode extraction portion 26 side
  • An external wiring member 51 is connected to the auxiliary electrode 42 using a conductive paste 53.
  • the auxiliary electrode 42 is formed of a member having higher conductivity than the transparent electrode 21A, and is electrically connected to the power feeding unit S2 (details will be described below).
  • the auxiliary electrode 42 may be directly attached to the power feeding part S2 on the transparent electrode 21A, may be fixed on the power feeding part S2 with an anisotropic conductive film or the like interposed therebetween, and is simply attached to the power feeding part S2.
  • the structure of contacting may be sufficient.
  • the transparent electrode 21A has a power feeding part S2 (another power feeding part) on the surface of the electrode extraction part 26.
  • the power feeding unit S ⁇ b> 2 is a region of the surface of the electrode extraction unit 26 that is used for power supply when power is supplied to the electrode extraction unit 26.
  • the shape of the power feeding unit S2 substantially matches the shape of the auxiliary electrode 42.
  • the power feeding unit S2 has a shape extending linearly along a direction substantially parallel to the direction in which the light emitting unit 18 extends (the vertical direction in the plane of FIG. 8).
  • the luminance distribution of the light generated in the light emitting layer 22 has a high luminance on the left side in FIGS.
  • a luminance distribution is formed such that the luminance decreases toward the.
  • the power feeding unit S2 is substantially parallel to the extending direction (longitudinal direction) of the light emitting unit 18.
  • the light extracted from the light emitting unit 18 is extracted from the light emitting unit 18 toward the outside in a state having a distribution substantially similar to the above luminance distribution.
  • the potential difference in the extending direction of the light emitting portion 18 is not only due to the positional relationship of the power feeding portion S1 with respect to the light emitting portion 18 but also due to the positional relationship of the power feeding portion S2 with respect to the light emitting portion 18. Occurrence is suppressed. According to the light emitting device 103, it is possible to further suppress the occurrence of uneven luminance in the light extracted from the light emitting portion 18 of the end face 14.
  • reflection member 30 is not provided on end surface 14, and reflection is also performed on end surface 16 opposite to end surface 14.
  • the member 30 is not provided.
  • the reflecting member 30 covers the surface 12 and the end faces 15 and 17.
  • a light emitting portion 18 is formed in the end surface 14, and a light emitting portion 19 (another light emitting portion) is formed in the end surface 16 located on the opposite side of the end surface 14.
  • the light emitting part 18 and the light emitting part 19 are formed so as to be substantially parallel to each other.
  • the light generated in the light emitting layer 22 is repeatedly reflected in the transparent substrate 11 by the reflection of the reflecting member 30, and then emitted from the light emitting portions 18 and 19 to the outside. Since the power feeding part S1 is substantially parallel to the extending direction (longitudinal direction) of the light emitting parts 18 and 19, occurrence of a potential difference in the extending direction of the light emitting parts 18 and 19 is suppressed, and the light emitting part It is possible to effectively suppress the occurrence of luminance unevenness in the light extracted from 18 and 19.
  • the power feeding unit S2 is also substantially parallel to the extending direction (longitudinal direction) of the light emitting units 18 and 19. Occurrence of a potential difference in the extending direction of the light emitting portions 18 and 19 is further suppressed, and it is possible to further suppress the occurrence of uneven brightness in the light extracted from the light emitting portions 18 and 19.
  • the light-emitting device 105 in this Embodiment is demonstrated.
  • the light emitting layer 22 is located between the electrode extraction unit 27 (power supply unit S1) and the electrode extraction unit 26 (power supply unit S2) (see, for example, FIGS. 1 and 8).
  • Electrode extraction portions 26 and 27 are provided on both sides of the light emitting layer 22, respectively.
  • both the electrode extraction unit 27 (power supply unit S ⁇ b> 1) and the electrode extraction unit 26 (power supply unit S ⁇ b> 2) are located on the end face 16 side when viewed from the light emitting layer 22. Both electrode extraction portions 26 and 27 are provided on one side of the light emitting layer 22.
  • a conductive member 23A conducting to the reflective electrode 23 is provided on the insulating layer 25, and a cathode electrode extraction portion 26 is formed on the conductive member 23A.
  • the electrode extraction portions 26 and 27 may not be provided on both sides of the light emitting layer 22. Even when both electrode extraction portions 26 and 27 are provided on one side of the light emitting layer 22, the feeding portion S ⁇ b> 1 is substantially parallel to the extending direction (longitudinal direction) of the light emitting portion 18. It is possible to suppress the occurrence of a potential difference in the extending direction of the light emitting portion 18 and to effectively suppress the occurrence of uneven brightness in the light extracted from the light emitting portion 18.
  • the power feeding unit S ⁇ b> 2 is substantially parallel to the extending direction (longitudinal direction) of the light emitting unit 18, a potential difference in the extending direction of the light emitting unit 18 is further suppressed, and the power supply unit S ⁇ b> 2 is taken out from the light emitting unit 18. It is possible to further suppress the occurrence of uneven brightness in the emitted light.
  • the light emitting device 106 of the present embodiment has a configuration in which the power feeding portion S ⁇ b> 1 is sealed with the sealing member 24.
  • a conductive member 45 is joined to the outer edge portion of the transparent electrode 21 on the end face 16 side.
  • a portion of the conductive member 45 on the end face 16 side is exposed from the sealing member 24.
  • an electrode extraction portion 27 for the cathode is formed on the conductive member 45.
  • the power supply portion S1 of the present embodiment is a region (interface) formed between the conductive member 45 and the outer edge portion on the end face 16 side of the transparent electrode 21.
  • the power feeding unit S1 is substantially parallel to the extending direction (longitudinal direction) of the light emitting unit 18, the occurrence of a potential difference in the extending direction of the light emitting unit 18 is suppressed, and the light emission is performed. It is possible to effectively suppress the occurrence of luminance unevenness in the light extracted from the portion 18.
  • the light-emitting device 107 of this Embodiment includes a light emitter 120 and a sealing member 124 instead of the reflecting member 30 in the light emitting device 100 of the first embodiment.
  • the light emitter 120 (second light emitter) is provided on the surface 12 side of the transparent substrate 11 (the side opposite to the side on which the light emitter 20 is provided of the transparent substrate 11).
  • the light emitter 120 includes a transparent electrode 121 (second transparent electrode), a light emitting layer 122 (second light emitting layer), and a reflective electrode 123 (second reflective electrode).
  • the light emitting layer 122 is provided between the transparent electrode 121 and the reflective electrode 123, and the transparent electrode 121 is located on the transparent substrate 11 side when viewed from the light emitting layer 122.
  • the reflective electrode 123 functions as a reflective member.
  • An insulating layer 125 is provided between the reflective electrode 123 and the portion of the transparent electrode 121 located on the electrode extraction part 127 side so that the reflective electrode 123 and the transparent electrode 121 are not short-circuited.
  • the portion of the reflective electrode 123 opposite to the side where the insulating layer 125 is provided is connected to the transparent electrode 121 (transparent electrode 121A) on the electrode extraction portion 126 side.
  • the transparent electrode 121 (transparent electrode 121A) on the electrode extraction part 26 side functions as a part of the reflective electrode 123.
  • the portion provided as the transparent electrode 121A is not necessarily formed of an ITO film or the like, and in the process of forming the reflective electrode 123, the same member as the member constituting the reflective electrode 123 as a part of the reflective electrode 123 May be formed.
  • the sealing member 124 is made of an insulating resin, a glass substrate, or the like.
  • the sealing member 124 is attached to the light emitter 120 and the transparent substrate 11 using an adhesive or the like.
  • the sealing member 124 seals substantially the entire transparent electrode 121, the light emitting layer 122, and the reflective electrode 123 on the transparent substrate 11, and protects them from moisture and the like.
  • a part of the transparent electrode 121 (ITO film) is exposed from the sealing member 124 for electrical connection.
  • the portion on the right side in FIG. 16 exposed from the sealing member 124 of the transparent electrode 121 constitutes an electrode extraction portion 126 for the cathode.
  • the left part in FIG. 16 exposed from the sealing member 124 in the transparent electrode 121 constitutes an electrode extraction part 127 for the anode.
  • the electrode extraction part 126 and the electrode extraction part 127 are located on the opposite sides of the light emitting layer 122.
  • an auxiliary electrode 141 (further another power supply member) having a rod shape is provided on the electrode extraction part 127 for the anode.
  • An external wiring member (not shown) is connected to the auxiliary electrode 141 using a conductive paste or the like.
  • the auxiliary electrode 141 is formed of a member having higher conductivity than the transparent electrode 121, and is electrically connected to the power feeding unit S3 (second power feeding unit).
  • the power supply unit S3 is a part corresponding to the power supply unit S1, and is a region of the surface of the electrode extraction unit 127 that is used for power supply when power is supplied to the electrode extraction unit 127.
  • the power feeding unit S3 has a shape extending linearly along a direction substantially parallel to the direction in which the light emitting unit 18 extends (direction perpendicular to the paper surface of FIG. 16).
  • An auxiliary electrode 142 having a rod shape is provided on the electrode extraction portion 126 for the cathode.
  • An external wiring member (not shown) is connected to the auxiliary electrode 142 using a conductive paste or the like.
  • the auxiliary electrode 142 is formed of a member having higher conductivity than the transparent electrode 121A, and is electrically connected to the power feeding unit S4.
  • the power feeding unit S4 is a part corresponding to the power feeding unit S2, and is a region of the surface of the electrode extraction unit 126 that is used for power supply when power is supplied to the electrode extraction unit 126.
  • the power feeding unit S4 has a shape extending linearly along a direction substantially parallel to a direction in which the light emitting unit 18 extends (a direction perpendicular to the paper surface of FIG. 16).
  • the light generated in the light emitting layer 22 passes through the transparent electrode 21 and enters the transparent substrate 11, and the light generated in the light emitting layer 122 is transparent electrode.
  • the light passes through 121 and enters the transparent substrate 11.
  • the light is reflected by the reflective electrode 23 and the reflective electrode 123, and after being repeatedly reflected, is extracted from the light emitting part 18 in the end face 14 and the light emitting part 19 in the end face 16 to the outside (white arrow in FIG. 16). reference).
  • the power feeding portions S1, S2, S3, and S4 are substantially parallel to the extending direction (longitudinal direction) of the light emitting portions 18 and 19, the light emitting portions 18 and 19 are extended. Generation of a potential difference in the direction is suppressed.
  • the light emitting device 107 can also effectively suppress the occurrence of uneven brightness in the light extracted from the light emitting portions 18 and 19. According to the light emitting device 107, since light is generated in both the light emitting layer 22 and the light emitting layer 122, the amount of light emitted from the end face can be increased. By arranging the light emitting layers 22 and 122 that emit light in different colors on the front surface 12 and the back surface 13 side of the transparent substrate 11, it is possible to perform toning of the light emitted from the light emitting portions 18 and 19. is there.
  • the light-emitting device described above includes a transparent substrate having a light emitting portion on an end surface, a first transparent electrode, a first reflective electrode, and a first light-emitting layer provided therebetween, wherein the first transparent electrode is the above-mentioned
  • a first power supply portion extending along a direction substantially parallel to the direction, and the power supply to the first transparent electrode is electrically connected to the first power supply portion and has higher conductivity than the first transparent electrode. This is performed from the power supply member through the first power supply unit.
  • the first power feeding portion has a length substantially equal to the light emitting portion in a direction substantially parallel to a direction in which the light emitting portion extends.
  • the power supply member is connected to be able to supply power over substantially the entire length of the first power supply unit in a direction substantially parallel to the direction in which the light emitting unit extends.
  • the transparent substrate further includes another light emitting portion on an end surface opposite to the end surface on which the light emitting portion is formed, and the reflecting member extends from the first light emitter to the transparent substrate.
  • the light incident on the light the light is emitted from the light emitting part and the other light emitting part.
  • the transparent substrate further includes a second light emitter provided on a side opposite to the side on which the first light emitter is provided, and the second light emitter includes a second transparent electrode and a second reflective electrode. , And a second light emitting layer provided therebetween, wherein the second transparent electrode is provided so as to be located on the transparent substrate side, and the reflective member is the second light emitter. 2 reflective electrodes.
  • a control board is further provided, and the control board controls a light emission of the light emitting device, an electrode member provided on the surface of the control board and electrically connected to the control circuit,
  • the power supply member is the electrode member provided on the control board.
  • a control board is further provided, and the control board controls a light emission of the light emitting device, an electrode member provided on the surface of the control board and electrically connected to the control circuit,
  • the power supply member is an auxiliary electrode member provided between the first power supply unit and the electrode member.
  • the first power feeding portion when viewed with the first light emitting layer as a center, is located on the opposite side of the end face where the light emitting portion is formed.
  • the first reflective electrode includes another power feeding unit extending along a direction substantially parallel to a direction in which the light emitting unit extends, and power feeding to the first reflective electrode is performed by using the other power feeding unit.
  • the other power supply member that is electrically connected to the first transparent electrode and has higher conductivity than the first transparent electrode passes through the other power supply unit.
  • the second transparent electrode includes a second power feeding part extending along a direction substantially parallel to a direction in which the light emitting part extends, and power feeding to the second transparent electrode is performed by the second power feeding part. Is conducted through the second power feeding unit from still another power feeding member which is electrically connected to the second transparent electrode and has higher conductivity than the second transparent electrode.
  • the transparent substrate includes a transparent base material and a light guide member disposed so as to be in close contact with the transparent base material.

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Planar Illumination Modules (AREA)

Abstract

 A light emission device (100) provided with: a transparent substrate (11) having a light exit part (18) on an end surface (14); a light-emitting body provided on the transparent substrate (11); and a reflection member (30) for reflecting the light that enters the transparent substrate (11) from the light-emitting body and thereby causing the light to exit through the light exit part (18), the reflection member (30) being provided on the side of the transparent substrate (11) opposite that at which the light-emitting body is provided. The light-emitting body includes a transparent electrode, a reflection electrode, and a light-emitting layer provided therebetween. The transparent electrode has a power supply part (S1) extending in a direction substantially parallel to the direction in which the light exit part (18) is extended. Power is supplied to the transparent electrode through the power supply part (S1) from a power supply member (41) which is electrically connected to the power supply part (S1) and which has a higher electroconductivity than the transparent electrode. Unevenness in brightness is inhibited from occurring in the light extracted from the end surface.

Description

発光装置Light emitting device
 本発明は、端面が発光する発光装置に関する。 The present invention relates to a light emitting device whose end face emits light.
 特開2007-324062号公報(特許文献1)に開示されているように、端面が発光する発光装置が知られている。この公報に開示された発光装置は、透明基板上に一対の電極を有しており、一対の電極間には発光層が設けられている。基板上の電極が設けられていない領域は、反射層によって被覆されている。基板の端面の一部は、光出射部として露出している。発光層で生成された光は、反射層の反射によって、基板の端面(光出射部)から取り出される。このような発光装置によれば、たとえば線状の細い発光を実現できる。 As disclosed in Japanese Patent Application Laid-Open No. 2007-324062 (Patent Document 1), a light emitting device that emits light at an end surface is known. The light emitting device disclosed in this publication has a pair of electrodes on a transparent substrate, and a light emitting layer is provided between the pair of electrodes. A region on the substrate where no electrode is provided is covered with a reflective layer. A part of the end face of the substrate is exposed as a light emitting part. The light generated in the light emitting layer is extracted from the end face (light emitting portion) of the substrate by the reflection of the reflection layer. According to such a light emitting device, for example, linear thin light emission can be realized.
特開2007-324062号公報JP 2007-324062 A
 本発明は、端面から取り出された光に輝度むらが発生することを抑制可能な発光装置を提供することを目的とする。 An object of the present invention is to provide a light emitting device capable of suppressing the occurrence of uneven brightness in light extracted from an end face.
 本発明の一側面に従う発光装置は、端面に光出射部を有する透明基板と、第1透明電極、第1反射電極、およびこれらの間に設けられた第1発光層を含み、上記第1透明電極が上記透明基板の側に位置するように上記透明基板上に設けられた第1発光体と、上記透明基板の上記第1発光体が設けられている側とは反対側に設けられ、上記第1発光体から上記透明基板に入射した光を反射させることによりその光を上記透明基板の上記光出射部から出射させる反射部材と、を備え、上記第1透明電極は、上記光出射部が延びている方向と略平行な方向に沿って延びる第1給電部を含み、上記第1透明電極への給電は、上記第1給電部に電気的に接続され上記第1透明電極よりも高い導電性を有する給電部材から上記第1給電部を通して行われる。 A light-emitting device according to an aspect of the present invention includes a transparent substrate having a light emitting portion on an end surface, a first transparent electrode, a first reflective electrode, and a first light-emitting layer provided therebetween, and the first transparent A first light-emitting body provided on the transparent substrate such that the electrode is positioned on the transparent substrate side; and a side of the transparent substrate opposite to the side on which the first light-emitting body is provided. A reflecting member that reflects light incident on the transparent substrate from a first light emitter to emit the light from the light emitting portion of the transparent substrate, and the first transparent electrode includes the light emitting portion. A first power feeding portion extending along a direction substantially parallel to the extending direction, wherein power feeding to the first transparent electrode is electrically connected to the first power feeding portion and is higher in conductivity than the first transparent electrode. From the power supply member having the property through the first power supply unit. .
実施の形態1における発光装置を示す平面図である。3 is a plan view showing the light emitting device in Embodiment 1. FIG. 図1中のII-II線に沿った矢視断面図である。FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 実施の形態1における発光装置の給電部(第1給電部)およびその周辺構造を示す平面図である。3 is a plan view showing a power feeding unit (first power feeding unit) and a peripheral structure of the light emitting device in Embodiment 1. FIG. 比較例における発光装置を示す平面図である。It is a top view which shows the light-emitting device in a comparative example. 実施の形態2における発光装置を示す平面図である。6 is a plan view showing a light-emitting device in Embodiment 2. FIG. 図5中のVI-VI線に沿った矢視断面図である。FIG. 6 is a cross-sectional view taken along the line VI-VI in FIG. 5. 実施の形態3における発光装置を示す断面図である。6 is a cross-sectional view illustrating a light-emitting device in Embodiment 3. FIG. 実施の形態4における発光装置を示す平面図である。10 is a plan view showing a light-emitting device in Embodiment 4. FIG. 図8中のIX-IX線に沿った矢視断面図である。FIG. 9 is a cross-sectional view taken along line IX-IX in FIG. 実施の形態5における発光装置を示す平面図である。FIG. 9 is a plan view showing a light emitting device in a fifth embodiment. 図10中のXI-XI線に沿った矢視断面図である。FIG. 11 is a cross-sectional view taken along line XI-XI in FIG. 10. 実施の形態6における発光装置を示す平面図である。FIG. 10 is a plan view illustrating a light-emitting device in Embodiment 6. 図12中のXIII-XIII線に沿った矢視断面図である。FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG. 実施の形態7における発光装置を示す平面図である。10 is a plan view showing a light-emitting device in Embodiment 7. FIG. 図14中のXV-XV線に沿った矢視断面図である。FIG. 15 is a cross-sectional view taken along line XV-XV in FIG. 14. 実施の形態8における発光装置を示す断面図である。FIG. 10 is a cross-sectional view illustrating a light emitting device in an eighth embodiment.
 本発明に基づいた各実施の形態について、以下、図面を参照しながら説明する。各実施の形態の説明において、個数および量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数およびその量などに限定されない。各実施の形態の説明において、同一の部品および相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。 Embodiments according to the present invention will be described below with reference to the drawings. In the description of each embodiment, when referring to the number, amount, and the like, the scope of the present invention is not necessarily limited to the number, the amount, and the like unless otherwise specified. In the description of each embodiment, the same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated.
 [実施の形態1]
 図1は、本実施の形態における発光装置100を示す平面図である。図1は、発光装置100の裏面の側(封止部材24の側)から発光装置100を見たときの様子を示している。図2は、図1中のII-II線に沿った矢視断面図である。
[Embodiment 1]
FIG. 1 is a plan view showing a light emitting device 100 according to the present embodiment. FIG. 1 shows a state where the light emitting device 100 is viewed from the back side (the sealing member 24 side) of the light emitting device 100. 2 is a cross-sectional view taken along the line II-II in FIG.
 図1および図2を参照して、発光装置100は、有機EL(Organic Electroluminescence)素子を発光光源として備えており、面方向に沿って延在する平板状の形状を有している。具体的には、発光装置100は、透明基板11、発光体20(図2)、封止部材24、反射部材30、および外部配線部材51,52(図1)を備える。 1 and 2, the light-emitting device 100 includes an organic EL (Organic Electroluminescence) element as a light-emitting light source, and has a flat plate shape extending along the surface direction. Specifically, the light emitting device 100 includes a transparent substrate 11, a light emitter 20 (FIG. 2), a sealing member 24, a reflecting member 30, and external wiring members 51 and 52 (FIG. 1).
 透明基板11は、表面12(図2)、裏面13、および4つの端面14~17(図1)を含んでいる。透明基板11は、たとえば各種のガラス基板から構成される。透明基板11の外縁(4つの端面)は、全体として矩形状の形状を有している。表面12および裏面13は、互いに対向する位置関係を有しており、端面14~17はこれらに対して垂直に形成されている。発光装置100においては、4つの端面のうち、端面14内に光出射部18が形成される(詳細は後述する)。なお、透明基板11は、樹脂製の部材であってもよく、あるいはフレキシブルに湾曲できる部材であってもよい。 The transparent substrate 11 includes a front surface 12 (FIG. 2), a back surface 13, and four end surfaces 14 to 17 (FIG. 1). The transparent substrate 11 is composed of various glass substrates, for example. The outer edge (four end surfaces) of the transparent substrate 11 has a rectangular shape as a whole. The front surface 12 and the back surface 13 have a positional relationship facing each other, and the end surfaces 14 to 17 are formed perpendicular to them. In the light emitting device 100, the light emitting portion 18 is formed in the end face 14 among the four end faces (details will be described later). The transparent substrate 11 may be a resin member or a member that can be flexibly bent.
 反射部材30は、透明基板11の表面12側に設けられ、表面12および端面15~17を被覆している。反射部材30は、たとえばアルミニウム、銀、金、クロム、またはこれらの合金などから構成され、蒸着などによって表面12および端面15~17を被覆するように形成される。蒸着の際には、端面14内の光出射部18が露出するように、所定形状(光出射部18に対応する形状)を有するマスクが用いられるとよい。 The reflection member 30 is provided on the surface 12 side of the transparent substrate 11 and covers the surface 12 and the end surfaces 15 to 17. The reflecting member 30 is made of, for example, aluminum, silver, gold, chromium, or an alloy thereof, and is formed so as to cover the surface 12 and the end faces 15 to 17 by vapor deposition or the like. At the time of vapor deposition, a mask having a predetermined shape (a shape corresponding to the light emitting portion 18) may be used so that the light emitting portion 18 in the end face 14 is exposed.
 反射部材30は、蒸着に限られず、酸化チタンや酸化亜鉛などの微細な光反射材を含有するプラスチック製のシート部材を透明基板11に貼り付けることで構成されてもよい。反射部材30としては、透明基板11に接合されていなくてもよい。反射部材30としての機能は、透明基板11の周囲に配置された反射性を有する他の部材(構造部材など)によって実現することも可能である。 The reflecting member 30 is not limited to vapor deposition, and may be configured by attaching a plastic sheet member containing a fine light reflecting material such as titanium oxide or zinc oxide to the transparent substrate 11. The reflecting member 30 may not be bonded to the transparent substrate 11. The function as the reflecting member 30 can also be realized by another member (structural member or the like) having reflectivity disposed around the transparent substrate 11.
 発光体20(第1発光体)は、透明基板11の裏面13側に設けられる。発光体20は、透明基板11の反射部材30が設けられる側とは反対側に位置している。発光体20は、透明電極21(第1透明電極)、発光層22(第1発光層)、および反射電極23(第1反射電極)を含む。 The light emitter 20 (first light emitter) is provided on the back surface 13 side of the transparent substrate 11. The light emitter 20 is located on the opposite side of the transparent substrate 11 from the side where the reflecting member 30 is provided. The light emitter 20 includes a transparent electrode 21 (first transparent electrode), a light emitting layer 22 (first light emitting layer), and a reflective electrode 23 (first reflective electrode).
 透明電極21、発光層22、および反射電極23は、透明基板11の裏面13上に順次積層される。透明電極21は、発光層22から見て透明基板11の側に位置している。発光体20および反射部材30の透明基板11上に設ける順序としては、発光体20が先であってもよいし、反射部材30が先であってもよい。 The transparent electrode 21, the light emitting layer 22, and the reflective electrode 23 are sequentially stacked on the back surface 13 of the transparent substrate 11. The transparent electrode 21 is located on the transparent substrate 11 side when viewed from the light emitting layer 22. As a sequence in which the light emitter 20 and the reflective member 30 are provided on the transparent substrate 11, the light emitter 20 may be first, or the reflective member 30 may be first.
 透明電極21は、平面状に広がる形状を有し、透明性を有する導電膜にて形成される。透明電極21を形成するためには、たとえば、スパッタリング法等によって、ITO(Indium Tin Oxide:インジウム錫酸化物)等を透明基板11の裏面13上に成膜する。フォトリソグラフィ法等によりITO膜が所定の形状にパターニングされることによって、透明電極21が形成される。透明電極21は、陰極用の電極取出部26および陽極用の電極取出部27を形成するために、パターニングによって2つの領域に分割される。 The transparent electrode 21 has a shape spreading in a plane and is formed of a conductive film having transparency. In order to form the transparent electrode 21, for example, ITO (Indium Tin Oxide) is formed on the back surface 13 of the transparent substrate 11 by sputtering or the like. The transparent electrode 21 is formed by patterning the ITO film into a predetermined shape by photolithography or the like. The transparent electrode 21 is divided into two regions by patterning in order to form a cathode electrode extraction portion 26 and an anode electrode extraction portion 27.
 発光層22は、透明電極21および反射電極23の間に設けられる。発光層22は、透明電極21および反射電極23を通して電力を供給されることによって光(可視光)を生成する。発光層22は、単層の発光層から構成されていてもよく、正孔輸送層、発光層、正孔阻止層、および電子輸送層などが順次積層されることによって構成されていてもよい。 The light emitting layer 22 is provided between the transparent electrode 21 and the reflective electrode 23. The light emitting layer 22 generates light (visible light) by being supplied with electric power through the transparent electrode 21 and the reflective electrode 23. The light emitting layer 22 may be constituted by a single light emitting layer, or may be constituted by sequentially laminating a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, and the like.
 反射電極23は、たとえばアルミニウム(AL)にて形成される。反射電極23は、真空蒸着法等によって発光層22を覆うように形成される。反射電極23と透明電極21とが短絡しないように、反射電極23と透明電極21のうちの電極取出部27側に位置する部分との間には、絶縁層25が設けられる。 The reflective electrode 23 is made of, for example, aluminum (AL). The reflective electrode 23 is formed so as to cover the light emitting layer 22 by a vacuum deposition method or the like. An insulating layer 25 is provided between the reflective electrode 23 and the portion of the transparent electrode 21 located on the electrode extraction part 27 side so that the reflective electrode 23 and the transparent electrode 21 are not short-circuited.
 反射電極23のうちの絶縁層25が設けられる側とは反対側の部分は、電極取出部26側の透明電極21(ITO膜)に接続される。電極取出部26側の透明電極21(透明電極21A)は、反射電極23の一部として機能している。透明電極21Aとして設けられている部分は、必ずしもITO膜等で形成されている必要はなく、反射電極23を形成する工程において、反射電極23の一部として反射電極23を構成する部材と同じ部材により形成されていてもよい。 The part of the reflective electrode 23 opposite to the side on which the insulating layer 25 is provided is connected to the transparent electrode 21 (ITO film) on the electrode extraction part 26 side. The transparent electrode 21 (transparent electrode 21 </ b> A) on the electrode extraction part 26 side functions as a part of the reflective electrode 23. The portion provided as the transparent electrode 21A is not necessarily formed of an ITO film or the like, and in the process of forming the reflective electrode 23, the same member as the member constituting the reflective electrode 23 as a part of the reflective electrode 23 May be formed.
 封止部材24は、絶縁性を有する樹脂、またはガラス基板等から構成される。封止部材24は、接着剤等を用いて発光体20および透明基板11に取り付けられる。封止部材24は、透明電極21、発光層22、および反射電極23の略全体を透明基板11上に封止し、これらを水分等から保護する。透明電極21(ITO膜)の一部は、電気的な接続のために封止部材24から露出している。 The sealing member 24 is made of an insulating resin, a glass substrate, or the like. The sealing member 24 is attached to the light emitter 20 and the transparent substrate 11 using an adhesive or the like. The sealing member 24 seals substantially the entire transparent electrode 21, the light emitting layer 22, and the reflective electrode 23 on the transparent substrate 11, and protects them from moisture and the like. A part of the transparent electrode 21 (ITO film) is exposed from the sealing member 24 for electrical connection.
 透明電極21のうちの封止部材24から露出している図1,図2における右側の部分は、陰極用の電極取出部26を構成する。透明電極21のうちの封止部材24から露出している図1,図2における左側の部分は、陽極用の電極取出部27を構成する。電極取出部26および電極取出部27は、発光層22を挟んで相互に反対側に位置している。 The right part in FIGS. 1 and 2 exposed from the sealing member 24 of the transparent electrode 21 constitutes an electrode extraction part 26 for the cathode. The left part of FIG. 1 and FIG. 2 exposed from the sealing member 24 of the transparent electrode 21 constitutes an electrode extraction part 27 for the anode. The electrode extraction part 26 and the electrode extraction part 27 are located on opposite sides of the light emitting layer 22.
 陰極用の電極取出部26上には、導電性ペースト53を用いて外部配線部材51が接続される。陽極用の電極取出部27上には、棒状の形状を有する補助電極41(給電部材)が設けられる。補助電極41には、導電性ペースト54を用いて外部配線部材52が接続される。補助電極41は、透明電極21よりも高い導電性を有する部材により形成され、給電部S1(詳細は後述する)に電気的に接続される。 An external wiring member 51 is connected to the cathode electrode extraction portion 26 using a conductive paste 53. On the electrode extraction part 27 for the anode, an auxiliary electrode 41 (a power supply member) having a rod shape is provided. An external wiring member 52 is connected to the auxiliary electrode 41 using a conductive paste 54. The auxiliary electrode 41 is formed of a member having higher conductivity than the transparent electrode 21 and is electrically connected to a power feeding part S1 (details will be described later).
 補助電極41は、電極取出部27側の透明電極21上の給電部S1に直接貼り付けられていてもよく、異方性導電フィルム(ACF:Anisotropic Conductive Film)などを介在させて給電部S1上に固定されていてもよく、給電部S1に単に接触しているという構成であってもよい。補助電極41のそのものが異方性導電フィルムにより構成されていてもよい。 The auxiliary electrode 41 may be directly attached to the power feeding part S1 on the transparent electrode 21 on the electrode extraction part 27 side, and an anisotropic conductive film (ACF) is interposed on the power feeding part S1. The power supply unit S1 may be simply in contact with the power supply unit S1. The auxiliary electrode 41 itself may be made of an anisotropic conductive film.
 図3を参照して、本実施の形態における透明電極21は、電極取出部27の表面上に、給電部S1を有している。発光層22を中心として見た場合、給電部S1は、端面14が位置している側とは反対側に位置している。上述の通り、端面14は、光出射部18(図1,図2参照)が形成される部位である。発光層22を図1に示すように平面視した場合、発光層22は、給電部S1と光出射部18との間に位置している。 Referring to FIG. 3, transparent electrode 21 in the present embodiment has power feeding portion S <b> 1 on the surface of electrode extraction portion 27. When viewed from the light emitting layer 22 as the center, the power feeding portion S1 is located on the side opposite to the side where the end face 14 is located. As described above, the end surface 14 is a portion where the light emitting portion 18 (see FIGS. 1 and 2) is formed. When the light emitting layer 22 is viewed in plan as shown in FIG. 1, the light emitting layer 22 is located between the power feeding unit S <b> 1 and the light emitting unit 18.
 図3は、給電部S1上に設けられる上記の補助電極41(図1,図2)を、給電部S1上から取り除いた状態を示している。給電部S1は、電極取出部27の表面のうち、電極取出部27に給電が行なわれる際にその給電に供される領域である。本実施の形態では、給電部S1および補助電極41を平面視した場合(図1参照)、給電部S1の形状は補助電極41の形状に略一致している。 FIG. 3 shows a state in which the auxiliary electrode 41 (FIGS. 1 and 2) provided on the power feeding unit S1 is removed from the power feeding unit S1. The power supply unit S1 is a region of the surface of the electrode extraction unit 27 that is used for power supply when the electrode extraction unit 27 is supplied with power. In the present embodiment, when the power feeding unit S1 and the auxiliary electrode 41 are viewed in plan (see FIG. 1), the shape of the power feeding unit S1 substantially matches the shape of the auxiliary electrode 41.
 図1~図3を参照して、給電部S1は、光出射部18(図1)が延びている方向(図1紙面内における上下方向)に対して略平行な方向に沿って直線状に延びる形状を有している。ここで、給電部S1が光出射部18の延びている方向に対して略平行である場合には、給電部S1が光出射部18の延びている方向に対して平行である場合、および、給電部S1が光出射部18の延びている方向に対して実質的に平行である場合が含まれる。 1 to 3, the power feeding unit S1 is linearly formed along a direction substantially parallel to the direction in which the light emitting unit 18 (FIG. 1) extends (the vertical direction in FIG. 1). It has an extending shape. Here, when the power feeding part S1 is substantially parallel to the extending direction of the light emitting part 18, the power feeding part S1 is parallel to the extending direction of the light emitting part 18, and The case where the power feeding unit S1 is substantially parallel to the direction in which the light emitting unit 18 extends is included.
 実質的に平行であるとは、一方が他方に対して平行な状態からたとえば0°より大きく±15°以下の範囲でずれた状態で延びている場合を含む。好ましくは、給電部S1は、光出射部18が延びている方向に対して-10°以上10°以下の角度範囲となるように延びているとよい。より好ましくは、給電部S1は、光出射部18が延びている方向に対して-5°以上5°以下の角度範囲となるように延びているとよい。最適には、給電部S1は、光出射部18が延びている方向に対して平行であるとよい。 “Substantially parallel” includes a case where one side extends from a state parallel to the other side, for example, in a state of being deviated within a range of more than 0 ° and ± 15 ° or less. Preferably, the power feeding unit S1 may extend so as to have an angle range of −10 ° to 10 ° with respect to the direction in which the light emitting unit 18 extends. More preferably, the power feeding unit S1 may extend so as to have an angle range of −5 ° to 5 ° with respect to the direction in which the light emitting unit 18 extends. Optimally, the power feeding part S1 may be parallel to the direction in which the light emitting part 18 extends.
 本実施の形態においては、光出射部18および給電部S1は、いずれも直線状に延びる形状を有している。これに限られず、これらの一方および/または他方がわずかに湾曲するように円弧状に延びているという構成を有していても、この構成は、給電部S1が光出射部18が延びている方向と略平行な方向に沿って延びている場合に含まれる。これらの一方および/または他方がその一部にわずかに直線でない部分が含まれるという構成を有していても、この構成は、給電部S1が光出射部18が延びている方向と略平行な方向に沿って延びている場合に含まれる。 In the present embodiment, both the light emitting portion 18 and the power feeding portion S1 have a shape extending linearly. However, the present invention is not limited thereto, and even if one of these and / or the other extends in an arc shape so as to be slightly curved, this configuration is such that the power supply portion S1 extends from the light emitting portion 18. Included when extending along a direction substantially parallel to the direction. Even if one of these and / or the other has a configuration in which a portion that is not slightly straight is included in a part thereof, this configuration is substantially parallel to the direction in which the power supply portion S1 extends. Included when extending along direction.
 以上のように構成される発光装置100においては、透明電極21の電極取出部27(陽極側)への給電は、外部配線部材52、導電性ペースト54、補助電極41および給電部S1を通して行なわれる。電極取出部26(陰極側)への給電は、外部配線部材51および導電性ペースト53を通して行なわれる。発光層22は、透明電極21および反射電極23を通して給電される。発光層22で生成された光は、透明電極21を通過して透明基板11内に入射する。光は、反射部材30によって反射され、透明基板11内で反射を繰り返した後、端面14内の光出射部18から外部へと取り出される(図1,図2中における白色矢印参照)。 In the light emitting device 100 configured as described above, power is supplied to the electrode extraction portion 27 (anode side) of the transparent electrode 21 through the external wiring member 52, the conductive paste 54, the auxiliary electrode 41, and the power supply portion S1. . Power supply to the electrode extraction part 26 (cathode side) is performed through the external wiring member 51 and the conductive paste 53. The light emitting layer 22 is supplied with power through the transparent electrode 21 and the reflective electrode 23. The light generated in the light emitting layer 22 passes through the transparent electrode 21 and enters the transparent substrate 11. The light is reflected by the reflecting member 30 and is repeatedly reflected in the transparent substrate 11, and then extracted from the light emitting portion 18 in the end face 14 to the outside (see white arrows in FIGS. 1 and 2).
 (作用および効果)
 透明電極21のような透明性および導電性の双方を備えた部材は、一般的に高い電気抵抗値を有する。透明電極21に電圧を印加した際、透明電極21内には電圧降下が生じる。たとえば、発光層22に印加される電圧の図1,図2中における左側の電位が高く、同右側に向かうにつれて電位が低くなるという電位分布が形成される。この電位分布に基づいて複数の等電位線を描いた場合、その等電位線は、給電部S1が延びている方向に対して略平行となるように並んで形成される。
(Function and effect)
A member having both transparency and conductivity such as the transparent electrode 21 generally has a high electric resistance value. When a voltage is applied to the transparent electrode 21, a voltage drop occurs in the transparent electrode 21. For example, a potential distribution is formed in which the potential on the left side in FIGS. 1 and 2 of the voltage applied to the light emitting layer 22 is high and the potential decreases toward the right side. When a plurality of equipotential lines are drawn based on this potential distribution, the equipotential lines are formed side by side so as to be substantially parallel to the direction in which the power feeding portion S1 extends.
 発光層22で生成される光の輝度分布としては、たとえば図1,図2中における左側の輝度が高く、同右側に向かうにつれて輝度が低くなるという輝度分布が形成される。この輝度分布に基づいて等輝度線を描いた場合、この等輝度線も、給電部S1が延びている方向に対して略平行となるように並んで形成される。 As the luminance distribution of the light generated in the light emitting layer 22, for example, a luminance distribution is formed in which the luminance on the left side in FIGS. 1 and 2 is high and the luminance decreases toward the right side. When isoluminance lines are drawn based on the luminance distribution, the isoluminance lines are also formed side by side so as to be substantially parallel to the direction in which the power feeding portion S1 extends.
 上述のとおり、反射部材30は、透明基板11の表面12および端面15~17を被覆している。発光層22で生成された光は、透明基板11内で反射を繰り返した後、光出射部18から外部に向かって出射される。給電部S1が光出射部18の延在方向(長手方向)に対して略平行であることにより、光出射部18の延在方向における電位差が生じることが抑制されている。 As described above, the reflecting member 30 covers the surface 12 and the end faces 15 to 17 of the transparent substrate 11. The light generated in the light emitting layer 22 is repeatedly reflected in the transparent substrate 11 and then emitted outward from the light emitting unit 18. Since the power feeding part S1 is substantially parallel to the extending direction (longitudinal direction) of the light emitting part 18, the occurrence of a potential difference in the extending direction of the light emitting part 18 is suppressed.
 したがって、光出射部18から取り出される光は、上記の輝度分布と略同様な分布を有した状態で、光出射部18から外部に向かって取り出される。光出射部18の延在方向における輝度差が生じることは抑制されており、発光装置100は、端面14の光出射部18から取り出される光に輝度むらが発生することを効果的に抑制することが可能となっている。 Therefore, the light extracted from the light emitting unit 18 is extracted from the light emitting unit 18 to the outside in a state having a distribution substantially similar to the above luminance distribution. It is suppressed that the brightness | luminance difference in the extension direction of the light emission part 18 arises, and the light-emitting device 100 suppresses effectively that the brightness | luminance nonuniformity generate | occur | produces in the light taken out from the light emission part 18 of the end surface 14. FIG. Is possible.
 図1~図3からも読み取れるように、発光装置100を平面視したとき、本実施の形態の給電部S1は、透明電極21の図中の左側の一端辺において光出射部18に対応する位置または範囲に存在するように形成されている。当該構成は必須のものではないが、当該構成を採用することによって、透明電極21のうちの光出射部18に対応する位置または範囲、すなわち光出射部18が存在している範囲(長さ)内で略均等な給電が行われることが可能となり、その結果、光出射部18からより一層均等な光が取り出されることが可能となる。 As can be seen from FIGS. 1 to 3, when the light emitting device 100 is viewed in plan, the power feeding unit S <b> 1 of the present embodiment corresponds to the light emitting unit 18 at one end side on the left side of the transparent electrode 21 in the drawing. Or it is formed to exist in the range. Although the said structure is not essential, the position or range corresponding to the light emission part 18 among the transparent electrodes 21, ie, the range (length) in which the light emission part 18 exists, by adopting this structure. Accordingly, it is possible to perform substantially uniform power feeding, and as a result, even more uniform light can be extracted from the light emitting portion 18.
 図1~図3からも読み取れるように、本実施の形態の給電部S1は、光出射部18が延びる方向(図1紙面内の上下方向)において、光出射部18と略等しい長さを有している。ここでいう略等しい長さとは、給電部S1と光出射部18とが完全に同一の長さを有している場合に限られない。ここでいう略等しい長さとは、光出射部18から外部へ取り出される光を視認したときに実質的に輝度ムラが認識されない程度に均一な光を光出射部18が出射できるに足る長さ関係を、給電部S1と光出射部18とが有している場合も含まれる。すなわち、光出射部18から外部へ取り出される光を視認したときに実質的に輝度ムラが認識されない程度に均一な光を光出射部18が出射可能であれば、給電部S1は、光出射部18よりも長い若しくは短い長さを有していてもよい。また、給電部S1および/または光出射部18が湾曲する箇所を含む形状を有している場合であっても、光出射部18から外部へ取り出される光を視認したときに実質的に輝度ムラが認識されない程度に均一な光を光出射部18が出射可能なような長さ関係を、給電部S1と光出射部18とが有していることが好ましい。これらの構成は必須のものではないが、給電部S1と光出射部18との長さが上記のような関係を満足していることによって、光出射部18からより一層均等な光が取り出されることが可能となる。 As can be seen from FIGS. 1 to 3, the power feeding portion S1 of the present embodiment has a length substantially equal to that of the light emitting portion 18 in the direction in which the light emitting portion 18 extends (the vertical direction in FIG. 1). is doing. The substantially equal length here is not limited to the case where the power feeding unit S1 and the light emitting unit 18 have the same length. The substantially equal length referred to here is a length relationship sufficient for the light emitting portion 18 to emit uniform light to such an extent that luminance unevenness is not substantially recognized when viewing the light extracted from the light emitting portion 18 to the outside. Is also included in the case where the power feeding unit S1 and the light emitting unit 18 have the above. That is, if the light emitting unit 18 can emit light that is uniform enough that luminance unevenness is not substantially recognized when viewing the light extracted from the light emitting unit 18 to the outside, the power feeding unit S1 has the light emitting unit. It may have a length longer or shorter than 18. Further, even when the power feeding unit S1 and / or the light emitting unit 18 has a shape including a curved portion, the luminance unevenness is substantially reduced when the light extracted from the light emitting unit 18 is visually recognized. It is preferable that the feeding portion S1 and the light emitting portion 18 have such a length relationship that the light emitting portion 18 can emit light that is uniform enough to prevent the light from being recognized. Although these configurations are not essential, when the lengths of the power feeding unit S1 and the light emitting unit 18 satisfy the above relationship, more even light is extracted from the light emitting unit 18. It becomes possible.
 図1~図3からも読み取れるように、本実施の形態では、給電部S1の延在方向、すなわち光出射部18が延びる方向に対して略平行な方向(図1紙面内の上下方向)に沿うように補助電極41が配置されており、さらに、補助電極41は給電部S1の略全長に亘って接続されており、補助電極41は給電部S1を通して給電を行なう。ここでいう「補助電極41は給電部S1の略全長に亘って接続されている」とは、補助電極41が給電部S1の一端から給電部S1の他端までの全ての範囲に亘って接続されている場合に限られない。ここでいう「補助電極41は給電部S1の略全長に亘って接続されている」とは、光出射部18から外部へ取り出される光を視認したときに実質的に輝度ムラが認識されない程度に均一な光を光出射部18が出射できるに足る範囲に亘って補助電極41が給電部S1に接続されている場合も含まれる。すなわち、光出射部18から外部へ取り出される光を視認したときに実質的に輝度ムラが認識されない程度に均一な光を光出射部18が出射可能であれば、補助電極41は、給電部S1よりも長い若しくは短い長さを有していてもよい。また、給電部S1および/または光出射部18が湾曲する箇所を含む形状を有している場合であっても、光出射部18から外部へ取り出される光を視認したときに実質的に輝度ムラが認識されない程度に均一な光を光出射部18が出射可能なような範囲に亘って補助電極41が給電部S1に接続されていることが好ましい。これらの構成は必須のものではないが、補助電極41と給電部S1とが上記のような関係を満足していることによって、光出射部18からより一層均等な光が取り出されることが可能となる。なお、これらについては後に述べる他の実施の形態においても適用され得るものである。 As can be seen from FIGS. 1 to 3, in the present embodiment, in the extending direction of the power feeding portion S 1, that is, in the direction substantially parallel to the direction in which the light emitting portion 18 extends (vertical direction in FIG. 1). An auxiliary electrode 41 is disposed along the auxiliary electrode 41. Further, the auxiliary electrode 41 is connected over substantially the entire length of the power feeding part S1, and the auxiliary electrode 41 feeds power through the power feeding part S1. Here, “auxiliary electrode 41 is connected over substantially the entire length of power supply portion S1” means that auxiliary electrode 41 is connected over the entire range from one end of power supply portion S1 to the other end of power supply portion S1. It is not limited to the case. Here, “the auxiliary electrode 41 is connected over substantially the entire length of the power feeding portion S1” means that the luminance unevenness is not substantially recognized when the light extracted from the light emitting portion 18 is visually recognized. This includes the case where the auxiliary electrode 41 is connected to the power supply unit S1 over a range that allows the light emitting unit 18 to emit uniform light. In other words, if the light emitting unit 18 can emit light that is uniform enough that the luminance unevenness is not substantially recognized when viewing the light extracted from the light emitting unit 18 to the outside, the auxiliary electrode 41 is connected to the power supply unit S1. It may have a longer or shorter length. Further, even when the power feeding unit S1 and / or the light emitting unit 18 has a shape including a curved portion, the luminance unevenness is substantially reduced when the light extracted from the light emitting unit 18 is visually recognized. It is preferable that the auxiliary electrode 41 is connected to the power feeding portion S1 over a range where the light emitting portion 18 can emit light that is uniform enough to prevent the light from being recognized. These configurations are not essential, but the auxiliary electrode 41 and the power feeding unit S1 satisfy the above relationship, so that more uniform light can be extracted from the light emitting unit 18. Become. These can also be applied to other embodiments described later.
 (比較例)
 図4は、比較例における発光装置100Zを示す平面図である。発光装置100Zの反射部材30は、透明基板11の表面(発光装置100の表面12に対応する面)、端面14、および端面16,17を被覆している。光出射部18は、端面15内に形成されている。発光装置100Zの給電部S1は、発光装置100の給電部S1(図3参照)と同様に設けられる。発光装置100Zにおいては、給電部S1の延在方向および光出射部18の延在方向が、互いに直交する関係にある。
(Comparative example)
FIG. 4 is a plan view showing a light emitting device 100Z in a comparative example. The reflecting member 30 of the light emitting device 100Z covers the surface of the transparent substrate 11 (the surface corresponding to the surface 12 of the light emitting device 100), the end surface 14, and the end surfaces 16 and 17. The light emitting part 18 is formed in the end face 15. The power feeding unit S1 of the light emitting device 100Z is provided in the same manner as the power feeding unit S1 (see FIG. 3) of the light emitting device 100. In the light emitting device 100Z, the extending direction of the power feeding unit S1 and the extending direction of the light emitting unit 18 are in a relationship orthogonal to each other.
 発光層22で生成された光の輝度分布としては、上述の実施の形態1の場合と同様に、図4中における左側の輝度が高く、同右側に向かうにつれて輝度が低くなるという輝度分布が形成される。等輝度線は、実施の形態1と同様に、給電部S1が延びている方向に対して略平行となるように並んで形成される。 As the luminance distribution of the light generated in the light emitting layer 22, a luminance distribution is formed in which the luminance on the left side in FIG. 4 is high and the luminance decreases toward the right side in the same manner as in the first embodiment. Is done. As in the first embodiment, the isoluminance lines are formed side by side so as to be substantially parallel to the direction in which the power feeding portion S1 extends.
 給電部S1が光出射部18の延在方向(長手方向)に対して直交していることにより、光出射部18から取り出される光は、上記の輝度分布と略同様な分布を有した状態で、光出射部18から外部に向かって取り出されることになる。すなわち、光出射部18のうちの図4中における左側の輝度が高く、同右側に向かうにつれて輝度が低くなるという輝度分布が形成される。比較例の発光装置100Zは、光出射部18の延在方向における電位差が生じていることに起因して、光出射部18から取り出される光に輝度むらが発生することを抑制困難な構成を有している。 Since the power feeding part S1 is orthogonal to the extending direction (longitudinal direction) of the light emitting part 18, the light extracted from the light emitting part 18 has a distribution substantially similar to the above luminance distribution. The light is emitted from the light emitting portion 18 toward the outside. That is, a luminance distribution is formed in which the luminance on the left side in FIG. 4 of the light emitting portion 18 is high and the luminance decreases toward the right side. The light emitting device 100Z of the comparative example has a configuration in which it is difficult to suppress the occurrence of luminance unevenness in the light extracted from the light emitting unit 18 due to the potential difference in the extending direction of the light emitting unit 18. is doing.
 この比較例に対して実施の形態1の発光装置100によれば、給電部S1が光出射部18の延在方向(長手方向)に対して略平行であることにより、光出射部18から取り出される光に輝度むらが発生することを効果的に抑制することが可能となっている。 In contrast to this comparative example, according to the light emitting device 100 of the first embodiment, since the power feeding part S1 is substantially parallel to the extending direction (longitudinal direction) of the light emitting part 18, it is taken out from the light emitting part 18. It is possible to effectively suppress the occurrence of uneven brightness in the emitted light.
 [実施の形態2]
 図5および図6を参照して、本実施の形態の発光装置101は、実施の形態1の発光装置100の構成に加えて、制御基板60(PCB:Printed Circuit Board)をさらに備えている。制御基板60は、制御回路61(図6)と、配線パターン62(電極部材)とを含んでいる。制御回路61は、発光装置101(発光層22)の発光を制御する。配線パターン62は、制御基板60の表面上に設けられ、制御回路61に電気的に接続されている。図示上の便宜のため、図5および図6の中の制御基板60は、配線パターン62を除いて一点鎖線を用いて図示している。
[Embodiment 2]
Referring to FIGS. 5 and 6, light emitting device 101 of the present embodiment further includes a control board 60 (PCB: Printed Circuit Board) in addition to the configuration of light emitting device 100 of the first embodiment. The control board 60 includes a control circuit 61 (FIG. 6) and a wiring pattern 62 (electrode member). The control circuit 61 controls light emission of the light emitting device 101 (light emitting layer 22). The wiring pattern 62 is provided on the surface of the control board 60 and is electrically connected to the control circuit 61. For convenience in illustration, the control board 60 in FIGS. 5 and 6 is illustrated using a one-dot chain line except for the wiring pattern 62.
 本実施の形態では、配線パターン62が、上述の実施の形態1における補助電極41(図1,図2)の代わりに用いられている。配線パターン62は、透明電極21よりも高い導電性を有しており、給電部S1に電気的に接続された給電部材として機能することができる。配線パターン62は、透明電極21上の給電部S1に直接貼り付けられていてもよく、異方性導電フィルムなどを介在させて給電部S1上に固定されていてもよく、給電部S1に単に接触しているという構成であってもよい。 In the present embodiment, the wiring pattern 62 is used instead of the auxiliary electrode 41 (FIGS. 1 and 2) in the first embodiment described above. The wiring pattern 62 has higher conductivity than the transparent electrode 21, and can function as a power supply member electrically connected to the power supply unit S1. The wiring pattern 62 may be directly attached to the power supply unit S1 on the transparent electrode 21, or may be fixed on the power supply unit S1 with an anisotropic conductive film or the like interposed therebetween. The structure of contacting may be sufficient.
 発光装置101においては、配線パターン62が制御基板60上に設けられ、配線パターン62が制御基板60の一部として構成されている。発光装置101のような構成であっても、給電部S1が光出射部18の延在方向(長手方向)に対して略平行であることにより、光出射部18の延在方向における電位差が生じることが抑制され、光出射部18から取り出される光に輝度むらが発生することを効果的に抑制することができる。 In the light emitting device 101, the wiring pattern 62 is provided on the control board 60, and the wiring pattern 62 is configured as a part of the control board 60. Even in the configuration of the light emitting device 101, a potential difference in the extending direction of the light emitting unit 18 occurs because the power feeding unit S <b> 1 is substantially parallel to the extending direction (longitudinal direction) of the light emitting unit 18. This can suppress the occurrence of uneven brightness in the light extracted from the light emitting portion 18.
 配線パターン62に加えて、実施の形態1における補助電極41(図1,図2)と同様な棒状の形状を有する補助電極部材がさらに用いられてもよい。この場合、補助電極部材は、給電部S1と配線パターン62との間に設けられる。補助電極部材は、透明電極21上の給電部S1に直接貼り付けられていてもよく、異方性導電フィルムなどを介在させて給電部S1上に固定されていてもよく、給電部S1に単に接触しているという構成であってもよい。補助電極部材のそのものが異方性導電フィルムにより構成されていてもよい。 In addition to the wiring pattern 62, an auxiliary electrode member having a bar shape similar to that of the auxiliary electrode 41 (FIGS. 1 and 2) in the first embodiment may be further used. In this case, the auxiliary electrode member is provided between the power feeding unit S <b> 1 and the wiring pattern 62. The auxiliary electrode member may be directly attached to the power feeding part S1 on the transparent electrode 21, or may be fixed on the power feeding part S1 with an anisotropic conductive film or the like interposed therebetween. The structure of contacting may be sufficient. The auxiliary electrode member itself may be made of an anisotropic conductive film.
 補助電極部材は、配線パターン62に直接貼り付けられていてもよく、異方性導電フィルムなどを介在させて配線パターン62上に固定されていてもよく、配線パターン62に単に接触しているという構成であってもよい。これらの構成であっても、給電部S1が光出射部18の延在方向(長手方向)に対して略平行であることにより、光出射部18の延在方向における電位差が生じることが抑制され、光出射部18から取り出される光に輝度むらが発生することを効果的に抑制することができる。 The auxiliary electrode member may be directly attached to the wiring pattern 62, may be fixed on the wiring pattern 62 with an anisotropic conductive film or the like interposed therebetween, and is simply in contact with the wiring pattern 62. It may be a configuration. Even in these configurations, since the power feeding portion S1 is substantially parallel to the extending direction (longitudinal direction) of the light emitting portion 18, the occurrence of a potential difference in the extending direction of the light emitting portion 18 is suppressed. It is possible to effectively suppress the occurrence of uneven brightness in the light extracted from the light emitting portion 18.
 [実施の形態3]
 図7を参照して、本実施の形態の発光装置102は、実施の形態1の発光装置100の構成に加えて、導光部材70をさらに備えている。本実施の形態では、透明基板11が2層構造を有している。透明基板11は、透明基材11Aとこれに密着するように配置された導光部材70とを含んでいる。透明基材11Aは、上述の実施の形態1における透明基板(透明基板11)と同様の構成を有する。導光部材70は、表面72、裏面73、および端面74,76を有している。反射部材30は、導光部材70の端面74が露出するように透明基板11(透明基材11Aおよび導光部材70)の外表面を被覆しており、端面74に光出射部78が形成されている。
[Embodiment 3]
Referring to FIG. 7, light emitting device 102 of the present embodiment further includes light guide member 70 in addition to the configuration of light emitting device 100 of the first embodiment. In the present embodiment, the transparent substrate 11 has a two-layer structure. The transparent substrate 11 includes a transparent substrate 11A and a light guide member 70 disposed so as to be in close contact therewith. The transparent base material 11A has the same configuration as the transparent substrate (transparent substrate 11) in the first embodiment. The light guide member 70 has a front surface 72, a back surface 73, and end surfaces 74 and 76. The reflecting member 30 covers the outer surface of the transparent substrate 11 (the transparent base material 11 </ b> A and the light guide member 70) so that the end surface 74 of the light guide member 70 is exposed, and a light emitting portion 78 is formed on the end surface 74. ing.
 発光装置102においても、給電部S1は、光出射部78が延びている方向(図7紙面に対して垂直な方向)に対して略平行な方向に沿って直線状に延びる形状を有している。発光層22で生成された光は、透明基板11(透明基材11Aおよび導光部材70)内で反射を繰り返した後、光出射部78から外部に向かって出射される。給電部S1が光出射部78の延在方向(長手方向)に対して略平行であることにより、光出射部78の延在方向における電位差が生じることは抑制されている。発光装置102によっても、光出射部78から取り出される光に輝度むらが発生することを効果的に抑制することができる。 Also in the light emitting device 102, the power feeding portion S1 has a shape extending linearly along a direction substantially parallel to the direction in which the light emitting portion 78 extends (direction perpendicular to the paper surface of FIG. 7). Yes. The light generated in the light emitting layer 22 is repeatedly reflected in the transparent substrate 11 (the transparent base material 11A and the light guide member 70), and then emitted from the light emitting unit 78 to the outside. Since the power feeding part S1 is substantially parallel to the extending direction (longitudinal direction) of the light emitting part 78, the occurrence of a potential difference in the extending direction of the light emitting part 78 is suppressed. The light emitting device 102 can also effectively suppress the occurrence of uneven brightness in the light extracted from the light emitting unit 78.
 [実施の形態4]
 図8および図9を参照して、本実施の形態の発光装置103においては、陰極用の電極取出部26(透明電極21A)上に、棒状の形状を有する補助電極42(他の給電部材)が設けられる。上述の通り、透明電極21A(電極取出部26側の透明電極21)は、反射電極23の一部として機能する部位である。補助電極42には、導電性ペースト53を用いて外部配線部材51が接続される。
[Embodiment 4]
Referring to FIGS. 8 and 9, in light emitting device 103 of the present embodiment, auxiliary electrode 42 (another power supply member) having a rod-like shape on cathode electrode extraction portion 26 (transparent electrode 21 </ b> A). Is provided. As described above, the transparent electrode 21 </ b> A (the transparent electrode 21 on the electrode extraction portion 26 side) is a part that functions as a part of the reflective electrode 23. An external wiring member 51 is connected to the auxiliary electrode 42 using a conductive paste 53.
 補助電極42は、透明電極21Aよりも高い導電性を有する部材により形成され、給電部S2(詳細は次述する)に電気的に接続される。補助電極42は、透明電極21A上の給電部S2に直接貼り付けられていてもよく、異方性導電フィルムなどを介在させて給電部S2上に固定されていてもよく、給電部S2に単に接触しているという構成であってもよい。 The auxiliary electrode 42 is formed of a member having higher conductivity than the transparent electrode 21A, and is electrically connected to the power feeding unit S2 (details will be described below). The auxiliary electrode 42 may be directly attached to the power feeding part S2 on the transparent electrode 21A, may be fixed on the power feeding part S2 with an anisotropic conductive film or the like interposed therebetween, and is simply attached to the power feeding part S2. The structure of contacting may be sufficient.
 透明電極21Aは、電極取出部26の表面上に給電部S2(他の給電部)を有している。給電部S2は、電極取出部26の表面のうち、電極取出部26に給電が行なわれる際にその給電に供される領域である。本実施の形態では、給電部S2および補助電極42を平面視した場合(図8参照)、給電部S2の形状は補助電極42の形状に略一致している。給電部S2は、光出射部18が延びている方向(図8紙面内における上下方向)に対して略平行な方向に沿って直線状に延びる形状を有している。 The transparent electrode 21A has a power feeding part S2 (another power feeding part) on the surface of the electrode extraction part 26. The power feeding unit S <b> 2 is a region of the surface of the electrode extraction unit 26 that is used for power supply when power is supplied to the electrode extraction unit 26. In the present embodiment, when the power feeding unit S2 and the auxiliary electrode 42 are viewed in plan (see FIG. 8), the shape of the power feeding unit S2 substantially matches the shape of the auxiliary electrode 42. The power feeding unit S2 has a shape extending linearly along a direction substantially parallel to the direction in which the light emitting unit 18 extends (the vertical direction in the plane of FIG. 8).
 透明電極21Aを通して反射電極23に電圧を印加した際、透明電極21Aおよび/または反射電極23内にも電圧降下が生じる。この電圧降下による影響は、仮になんら対策を施していない場合には、わずかではあるものの光出射部18から取り出される光の中で視認可能な輝度分布となって顕在化することもある。 When a voltage is applied to the reflective electrode 23 through the transparent electrode 21A, a voltage drop also occurs in the transparent electrode 21A and / or the reflective electrode 23. If no countermeasure is taken, the influence of this voltage drop may become apparent as a luminance distribution that can be visually recognized in the light extracted from the light emitting unit 18 although it is slight.
 この電圧降下による影響は、透明電極21Aおよび/または反射電極23の電気抵抗値が高い場合に特に顕在化しやすい。このような現象は、本実施の形態で例示するように透明電極21Aを介して反射電極23に給電する場合に限られず、透明電極21Aの代わりに反射電極23の一部を封止部材24から露出させて反射電極23上に電極取出部27を形成する場合にも同様に生じ得るものである。 The effect of this voltage drop is particularly apparent when the electrical resistance value of the transparent electrode 21A and / or the reflective electrode 23 is high. Such a phenomenon is not limited to the case where power is supplied to the reflective electrode 23 via the transparent electrode 21A as exemplified in the present embodiment, and a part of the reflective electrode 23 is removed from the sealing member 24 instead of the transparent electrode 21A. The same can occur when the electrode extraction part 27 is formed on the reflective electrode 23 by being exposed.
 透明電極21Aおよび/または反射電極23内で生じた電圧降下の影響により、たとえば発光層22で生成される光の輝度分布としては、たとえば図8,図9中における左側の輝度が高く、同右側に向かうにつれて輝度が低くなるという輝度分布が形成される。本実施の形態では、給電部S2が光出射部18の延在方向(長手方向)に対して略平行である。光出射部18から取り出される光は、上記の輝度分布と略同様な分布を有した状態で、光出射部18から外部に向かって取り出されることになる。 Due to the influence of the voltage drop generated in the transparent electrode 21A and / or the reflective electrode 23, for example, the luminance distribution of the light generated in the light emitting layer 22 has a high luminance on the left side in FIGS. A luminance distribution is formed such that the luminance decreases toward the. In the present embodiment, the power feeding unit S2 is substantially parallel to the extending direction (longitudinal direction) of the light emitting unit 18. The light extracted from the light emitting unit 18 is extracted from the light emitting unit 18 toward the outside in a state having a distribution substantially similar to the above luminance distribution.
 本実施の形態の発光装置103においては、給電部S1の光出射部18に対する配置関係のみならず、給電部S2の光出射部18に対する配置関係によっても光出射部18の延在方向における電位差が生じることが抑制されている。発光装置103によれば、端面14の光出射部18から取り出された光に輝度むらが発生することをより一層抑制することが可能となっている。 In the light emitting device 103 of the present embodiment, the potential difference in the extending direction of the light emitting portion 18 is not only due to the positional relationship of the power feeding portion S1 with respect to the light emitting portion 18 but also due to the positional relationship of the power feeding portion S2 with respect to the light emitting portion 18. Occurrence is suppressed. According to the light emitting device 103, it is possible to further suppress the occurrence of uneven luminance in the light extracted from the light emitting portion 18 of the end face 14.
 [実施の形態5]
 図10および図11を参照して、本実施の形態の発光装置104においては、端面14上に反射部材30が設けられていないことに加えて、端面14の反対側の端面16上にも反射部材30が設けられていない。反射部材30は、表面12および端面15,17を被覆している。4つの端面のうち、端面14内に光出射部18が形成され、端面14とは反対側に位置する端面16内に光出射部19(他の光出射部)が形成される。光出射部18および光出射部19は、互いに略平行な方向となるように形成される。
[Embodiment 5]
Referring to FIGS. 10 and 11, in light emitting device 104 of the present embodiment, reflection member 30 is not provided on end surface 14, and reflection is also performed on end surface 16 opposite to end surface 14. The member 30 is not provided. The reflecting member 30 covers the surface 12 and the end faces 15 and 17. Of the four end surfaces, a light emitting portion 18 is formed in the end surface 14, and a light emitting portion 19 (another light emitting portion) is formed in the end surface 16 located on the opposite side of the end surface 14. The light emitting part 18 and the light emitting part 19 are formed so as to be substantially parallel to each other.
 発光層22で生成された光は、反射部材30の反射によって透明基板11内で反射を繰り返した後、光出射部18,19から外部に向かってそれぞれ出射される。給電部S1が光出射部18,19の延在方向(長手方向)に対して略平行であることにより、光出射部18,19の延在方向における電位差が生じることが抑制され、光出射部18,19から取り出される光に輝度むらが発生することを効果的に抑制することができる。 The light generated in the light emitting layer 22 is repeatedly reflected in the transparent substrate 11 by the reflection of the reflecting member 30, and then emitted from the light emitting portions 18 and 19 to the outside. Since the power feeding part S1 is substantially parallel to the extending direction (longitudinal direction) of the light emitting parts 18 and 19, occurrence of a potential difference in the extending direction of the light emitting parts 18 and 19 is suppressed, and the light emitting part It is possible to effectively suppress the occurrence of luminance unevenness in the light extracted from 18 and 19.
 本実施の形態においては、給電部S2も、光出射部18,19の延在方向(長手方向)に対して略平行である。光出射部18,19の延在方向における電位差が生じることはさらに抑制され、光出射部18,19から取り出される光に輝度むらが発生することをより一層抑制することが可能となっている。 In the present embodiment, the power feeding unit S2 is also substantially parallel to the extending direction (longitudinal direction) of the light emitting units 18 and 19. Occurrence of a potential difference in the extending direction of the light emitting portions 18 and 19 is further suppressed, and it is possible to further suppress the occurrence of uneven brightness in the light extracted from the light emitting portions 18 and 19.
 [実施の形態6]
 図12および図13を参照して、本実施の形態における発光装置105について説明する。上述の各実施の形態においては、発光層22が、電極取出部27(給電部S1)と電極取出部26(給電部S2)との間に位置している(たとえば図1,図8参照)。発光層22の両側に、電極取出部26,27がそれぞれ設けられている。
[Embodiment 6]
With reference to FIG. 12 and FIG. 13, the light-emitting device 105 in this Embodiment is demonstrated. In each of the above-described embodiments, the light emitting layer 22 is located between the electrode extraction unit 27 (power supply unit S1) and the electrode extraction unit 26 (power supply unit S2) (see, for example, FIGS. 1 and 8). . Electrode extraction portions 26 and 27 are provided on both sides of the light emitting layer 22, respectively.
 発光装置105においては、電極取出部27(給電部S1)および電極取出部26(給電部S2)の双方が、発光層22から見て端面16の側に位置している。発光層22の片側に、電極取出部26,27の双方が設けられている。絶縁層25上には、反射電極23に導通する導電部材23Aが設けられており、導電部材23A上に陰極用の電極取出部26が形成されている。 In the light emitting device 105, both the electrode extraction unit 27 (power supply unit S <b> 1) and the electrode extraction unit 26 (power supply unit S <b> 2) are located on the end face 16 side when viewed from the light emitting layer 22. Both electrode extraction portions 26 and 27 are provided on one side of the light emitting layer 22. A conductive member 23A conducting to the reflective electrode 23 is provided on the insulating layer 25, and a cathode electrode extraction portion 26 is formed on the conductive member 23A.
 本実施の形態で例示するように、発光層22の両側に電極取出部26,27がそれぞれ設けられているという構成を有していなくてもかまわない。発光層22の片側に電極取出部26,27の双方が設けられている場合であっても、給電部S1が光出射部18の延在方向(長手方向)に対して略平行であることにより、光出射部18の延在方向における電位差が生じることが抑制され、光出射部18から取り出される光に輝度むらが発生することを効果的に抑制することができる。給電部S2が光出射部18の延在方向(長手方向)に対して略平行であることにより、光出射部18の延在方向における電位差が生じることがさらに抑制され、光出射部18から取り出される光に輝度むらが発生することをより一層抑制することができる。 As exemplified in the present embodiment, the electrode extraction portions 26 and 27 may not be provided on both sides of the light emitting layer 22. Even when both electrode extraction portions 26 and 27 are provided on one side of the light emitting layer 22, the feeding portion S <b> 1 is substantially parallel to the extending direction (longitudinal direction) of the light emitting portion 18. It is possible to suppress the occurrence of a potential difference in the extending direction of the light emitting portion 18 and to effectively suppress the occurrence of uneven brightness in the light extracted from the light emitting portion 18. Since the power feeding unit S <b> 2 is substantially parallel to the extending direction (longitudinal direction) of the light emitting unit 18, a potential difference in the extending direction of the light emitting unit 18 is further suppressed, and the power supply unit S <b> 2 is taken out from the light emitting unit 18. It is possible to further suppress the occurrence of uneven brightness in the emitted light.
 [実施の形態7]
 図14および図15を参照して、本実施の形態の発光装置106は、給電部S1が封止部材24によって封止されたという構成を有している。透明電極21のうちの端面16側の外縁部分に、導電部材45が接合されている。導電部材45のうちの端面16側の部分は、封止部材24から露出している。導電部材45上に、陰極用の電極取出部27が形成されている。本実施の形態の給電部S1は、導電部材45と透明電極21のうちの端面16側の外縁部分との間に形成される領域(界面)である。
[Embodiment 7]
Referring to FIG. 14 and FIG. 15, the light emitting device 106 of the present embodiment has a configuration in which the power feeding portion S <b> 1 is sealed with the sealing member 24. A conductive member 45 is joined to the outer edge portion of the transparent electrode 21 on the end face 16 side. A portion of the conductive member 45 on the end face 16 side is exposed from the sealing member 24. On the conductive member 45, an electrode extraction portion 27 for the cathode is formed. The power supply portion S1 of the present embodiment is a region (interface) formed between the conductive member 45 and the outer edge portion on the end face 16 side of the transparent electrode 21.
 当該構成によっても、給電部S1が光出射部18の延在方向(長手方向)に対して略平行であることにより、光出射部18の延在方向における電位差が生じることが抑制され、光出射部18から取り出される光に輝度むらが発生することを効果的に抑制することができる。 Also with this configuration, since the power feeding unit S1 is substantially parallel to the extending direction (longitudinal direction) of the light emitting unit 18, the occurrence of a potential difference in the extending direction of the light emitting unit 18 is suppressed, and the light emission is performed. It is possible to effectively suppress the occurrence of luminance unevenness in the light extracted from the portion 18.
 [実施の形態8]
 図16を参照して、本実施の形態の発光装置107について説明する。発光装置107は、上述の実施の形態1の発光装置100における反射部材30の代わりに、発光体120および封止部材124を備えている。発光体120(第2発光体)は、透明基板11の表面12側(透明基板11の発光体20が設けられる側とは反対側)に設けられる。
[Embodiment 8]
With reference to FIG. 16, the light-emitting device 107 of this Embodiment is demonstrated. The light emitting device 107 includes a light emitter 120 and a sealing member 124 instead of the reflecting member 30 in the light emitting device 100 of the first embodiment. The light emitter 120 (second light emitter) is provided on the surface 12 side of the transparent substrate 11 (the side opposite to the side on which the light emitter 20 is provided of the transparent substrate 11).
 発光体120は、透明電極121(第2透明電極)、発光層122(第2発光層)、および反射電極123(第2反射電極)を含む。発光層122は、透明電極121および反射電極123の間に設けられ、透明電極121は、発光層122から見て透明基板11の側に位置している。本実施の形態においては、反射電極123が、反射部材として機能している。反射電極123と透明電極121とが短絡しないように、反射電極123と透明電極121のうちの電極取出部127側に位置する部分との間には、絶縁層125が設けられる。 The light emitter 120 includes a transparent electrode 121 (second transparent electrode), a light emitting layer 122 (second light emitting layer), and a reflective electrode 123 (second reflective electrode). The light emitting layer 122 is provided between the transparent electrode 121 and the reflective electrode 123, and the transparent electrode 121 is located on the transparent substrate 11 side when viewed from the light emitting layer 122. In the present embodiment, the reflective electrode 123 functions as a reflective member. An insulating layer 125 is provided between the reflective electrode 123 and the portion of the transparent electrode 121 located on the electrode extraction part 127 side so that the reflective electrode 123 and the transparent electrode 121 are not short-circuited.
 反射電極123のうちの絶縁層125が設けられる側とは反対側の部分は、電極取出部126側の透明電極121(透明電極121A)に接続される。電極取出部26側の透明電極121(透明電極121A)は、反射電極123の一部として機能している。透明電極121Aとして設けられている部分は、必ずしもITO膜等で形成されている必要はなく、反射電極123を形成する工程において、反射電極123の一部として反射電極123を構成する部材と同じ部材により形成されていてもよい。 The portion of the reflective electrode 123 opposite to the side where the insulating layer 125 is provided is connected to the transparent electrode 121 (transparent electrode 121A) on the electrode extraction portion 126 side. The transparent electrode 121 (transparent electrode 121A) on the electrode extraction part 26 side functions as a part of the reflective electrode 123. The portion provided as the transparent electrode 121A is not necessarily formed of an ITO film or the like, and in the process of forming the reflective electrode 123, the same member as the member constituting the reflective electrode 123 as a part of the reflective electrode 123 May be formed.
 封止部材124は、絶縁性を有する樹脂、またはガラス基板等から構成される。封止部材124は、接着剤等を用いて発光体120および透明基板11に取り付けられる。封止部材124は、透明電極121、発光層122、および反射電極123の略全体を透明基板11上に封止し、これらを水分等から保護する。透明電極121(ITO膜)の一部は、電気的な接続のために封止部材124から露出している。 The sealing member 124 is made of an insulating resin, a glass substrate, or the like. The sealing member 124 is attached to the light emitter 120 and the transparent substrate 11 using an adhesive or the like. The sealing member 124 seals substantially the entire transparent electrode 121, the light emitting layer 122, and the reflective electrode 123 on the transparent substrate 11, and protects them from moisture and the like. A part of the transparent electrode 121 (ITO film) is exposed from the sealing member 124 for electrical connection.
 透明電極121のうちの封止部材124から露出している図16における右側の部分は、陰極用の電極取出部126を構成する。透明電極121のうちの封止部材124から露出している図16における左側の部分は、陽極用の電極取出部127を構成する。電極取出部126および電極取出部127は、発光層122を挟んで相互に反対側に位置している。 The portion on the right side in FIG. 16 exposed from the sealing member 124 of the transparent electrode 121 constitutes an electrode extraction portion 126 for the cathode. The left part in FIG. 16 exposed from the sealing member 124 in the transparent electrode 121 constitutes an electrode extraction part 127 for the anode. The electrode extraction part 126 and the electrode extraction part 127 are located on the opposite sides of the light emitting layer 122.
 陽極用の電極取出部127上には、棒状の形状を有する補助電極141(さらに他の給電部材)が設けられる。補助電極141には、導電性ペースト等を用いて外部配線部材(図示せず)が接続される。補助電極141は、透明電極121よりも高い導電性を有する部材により形成され、給電部S3(第2給電部)に電気的に接続される。給電部S3は、給電部S1に対応する部位であり、電極取出部127の表面のうち、電極取出部127に給電が行なわれる際にその給電に供される領域である。給電部S3は、光出射部18が延びている方向(図16紙面に対して垂直な方向)に対して略平行な方向に沿って直線状に延びる形状を有している。 On the electrode extraction part 127 for the anode, an auxiliary electrode 141 (further another power supply member) having a rod shape is provided. An external wiring member (not shown) is connected to the auxiliary electrode 141 using a conductive paste or the like. The auxiliary electrode 141 is formed of a member having higher conductivity than the transparent electrode 121, and is electrically connected to the power feeding unit S3 (second power feeding unit). The power supply unit S3 is a part corresponding to the power supply unit S1, and is a region of the surface of the electrode extraction unit 127 that is used for power supply when power is supplied to the electrode extraction unit 127. The power feeding unit S3 has a shape extending linearly along a direction substantially parallel to the direction in which the light emitting unit 18 extends (direction perpendicular to the paper surface of FIG. 16).
 陰極用の電極取出部126上には、棒状の形状を有する補助電極142が設けられる。補助電極142には、導電性ペースト等を用いて外部配線部材(図示せず)が接続される。補助電極142は、透明電極121Aよりも高い導電性を有する部材により形成され、給電部S4に電気的に接続される。給電部S4は、給電部S2に対応する部位であり、電極取出部126の表面のうち、電極取出部126に給電が行なわれる際にその給電に供される領域である。給電部S4は、光出射部18が延びている方向(図16紙面に対して垂直な方向)に対して略平行な方向に沿って直線状に延びる形状を有している。 An auxiliary electrode 142 having a rod shape is provided on the electrode extraction portion 126 for the cathode. An external wiring member (not shown) is connected to the auxiliary electrode 142 using a conductive paste or the like. The auxiliary electrode 142 is formed of a member having higher conductivity than the transparent electrode 121A, and is electrically connected to the power feeding unit S4. The power feeding unit S4 is a part corresponding to the power feeding unit S2, and is a region of the surface of the electrode extraction unit 126 that is used for power supply when power is supplied to the electrode extraction unit 126. The power feeding unit S4 has a shape extending linearly along a direction substantially parallel to a direction in which the light emitting unit 18 extends (a direction perpendicular to the paper surface of FIG. 16).
 以上のように構成される発光装置107においては、発光層22で生成された光は、透明電極21を通過して透明基板11内に入射し、発光層122で生成された光は、透明電極121を通過して透明基板11内に入射する。光は、反射電極23および反射電極123によって反射され、反射を繰り返した後、端面14内の光出射部18および端面16内の光出射部19から外部へと取り出される(図16中における白色矢印参照)。 In the light emitting device 107 configured as described above, the light generated in the light emitting layer 22 passes through the transparent electrode 21 and enters the transparent substrate 11, and the light generated in the light emitting layer 122 is transparent electrode. The light passes through 121 and enters the transparent substrate 11. The light is reflected by the reflective electrode 23 and the reflective electrode 123, and after being repeatedly reflected, is extracted from the light emitting part 18 in the end face 14 and the light emitting part 19 in the end face 16 to the outside (white arrow in FIG. 16). reference).
 本実施の形態においては、給電部S1,S2,S3,S4が光出射部18,19の延在方向(長手方向)に対して略平行であることにより、光出射部18,19の延在方向における電位差が生じることは抑制されている。発光装置107によっても、光出射部18,19から取り出される光に輝度むらが発生することを効果的に抑制することができる。発光装置107によれば、発光層22および発光層122の双方で光が生成されるため、端面から出射される光の量を増加させることができる。透明基板11の表面12および裏面13側に、異なる色で光を出射する発光層22,122を配置することで、光出射部18,19から出射される光の調色を行うことも可能である。 In the present embodiment, since the power feeding portions S1, S2, S3, and S4 are substantially parallel to the extending direction (longitudinal direction) of the light emitting portions 18 and 19, the light emitting portions 18 and 19 are extended. Generation of a potential difference in the direction is suppressed. The light emitting device 107 can also effectively suppress the occurrence of uneven brightness in the light extracted from the light emitting portions 18 and 19. According to the light emitting device 107, since light is generated in both the light emitting layer 22 and the light emitting layer 122, the amount of light emitted from the end face can be increased. By arranging the light emitting layers 22 and 122 that emit light in different colors on the front surface 12 and the back surface 13 side of the transparent substrate 11, it is possible to perform toning of the light emitted from the light emitting portions 18 and 19. is there.
 以上説明した発光装置は、端面に光出射部を有する透明基板と、第1透明電極、第1反射電極、およびこれらの間に設けられた第1発光層を含み、上記第1透明電極が上記透明基板の側に位置するように上記透明基板上に設けられた第1発光体と、上記透明基板の上記第1発光体が設けられている側とは反対側に設けられ、上記第1発光体から上記透明基板に入射した光を反射させることによりその光を上記透明基板の上記光出射部から出射させる反射部材と、を備え、上記第1透明電極は、上記光出射部が延びている方向と略平行な方向に沿って延びる第1給電部を含み、上記第1透明電極への給電は、上記第1給電部に電気的に接続され上記第1透明電極よりも高い導電性を有する給電部材から上記第1給電部を通して行われる。 The light-emitting device described above includes a transparent substrate having a light emitting portion on an end surface, a first transparent electrode, a first reflective electrode, and a first light-emitting layer provided therebetween, wherein the first transparent electrode is the above-mentioned A first light-emitting body provided on the transparent substrate so as to be positioned on the transparent substrate side; and a first light-emitting body provided on the opposite side of the transparent substrate from the side on which the first light-emitting body is provided. A reflecting member that reflects light incident on the transparent substrate from a body to emit the light from the light emitting portion of the transparent substrate, and the light emitting portion extends from the first transparent electrode. A first power supply portion extending along a direction substantially parallel to the direction, and the power supply to the first transparent electrode is electrically connected to the first power supply portion and has higher conductivity than the first transparent electrode. This is performed from the power supply member through the first power supply unit.
 好ましくは、上記第1給電部は、上記光出射部が延びている方向に対して略平行な方向において上記光出射部と略等しい長さを有している。 Preferably, the first power feeding portion has a length substantially equal to the light emitting portion in a direction substantially parallel to a direction in which the light emitting portion extends.
 好ましくは、上記給電部材は、上記光出射部が延びている方向に対して略平行な方向において、上記第1給電部の略全長に亘って給電可能に接続されている。 Preferably, the power supply member is connected to be able to supply power over substantially the entire length of the first power supply unit in a direction substantially parallel to the direction in which the light emitting unit extends.
 好ましくは、上記透明基板は、上記光出射部が形成される上記端面とは反対側の端面に、他の光出射部をさらに有し、上記反射部材は、上記第1発光体から上記透明基板に入射した光を反射させることによりその光を上記光出射部および上記他の光出射部から出射させる。 Preferably, the transparent substrate further includes another light emitting portion on an end surface opposite to the end surface on which the light emitting portion is formed, and the reflecting member extends from the first light emitter to the transparent substrate. By reflecting the light incident on the light, the light is emitted from the light emitting part and the other light emitting part.
 好ましくは、上記透明基板の上記第1発光体が設けられている側とは反対側に設けられた第2発光体をさらに備え、上記第2発光体は、第2透明電極、第2反射電極、およびこれらの間に設けられた第2発光層を含み、上記第2透明電極が上記透明基板の側に位置するように設けられており、上記反射部材は、上記第2発光体の上記第2反射電極である。 Preferably, the transparent substrate further includes a second light emitter provided on a side opposite to the side on which the first light emitter is provided, and the second light emitter includes a second transparent electrode and a second reflective electrode. , And a second light emitting layer provided therebetween, wherein the second transparent electrode is provided so as to be located on the transparent substrate side, and the reflective member is the second light emitter. 2 reflective electrodes.
 好ましくは、制御基板をさらに備え、上記制御基板は、当該発光装置の発光を制御する制御回路と、上記制御基板の表面上に設けられ、上記制御回路に電気的に接続された電極部材と、を含み、上記給電部材は、上記制御基板に設けられた上記電極部材である。 Preferably, a control board is further provided, and the control board controls a light emission of the light emitting device, an electrode member provided on the surface of the control board and electrically connected to the control circuit, The power supply member is the electrode member provided on the control board.
 好ましくは、制御基板をさらに備え、上記制御基板は、当該発光装置の発光を制御する制御回路と、上記制御基板の表面上に設けられ、上記制御回路に電気的に接続された電極部材と、を含み、上記給電部材は、上記第1給電部と上記電極部材との間に設けられた補助電極部材である。 Preferably, a control board is further provided, and the control board controls a light emission of the light emitting device, an electrode member provided on the surface of the control board and electrically connected to the control circuit, The power supply member is an auxiliary electrode member provided between the first power supply unit and the electrode member.
 好ましくは、上記第1発光層を中心として見た場合、上記第1給電部は、上記光出射部が形成される上記端面の位置とは反対側に位置している。 Preferably, when viewed with the first light emitting layer as a center, the first power feeding portion is located on the opposite side of the end face where the light emitting portion is formed.
 好ましくは、上記第1反射電極は、上記光出射部が延びている方向と略平行な方向に沿って延びる他の給電部を含み、上記第1反射電極への給電は、上記他の給電部に電気的に接続され上記第1透明電極よりも高い導電性を有する他の給電部材から上記他の給電部を通して行われる。 Preferably, the first reflective electrode includes another power feeding unit extending along a direction substantially parallel to a direction in which the light emitting unit extends, and power feeding to the first reflective electrode is performed by using the other power feeding unit. The other power supply member that is electrically connected to the first transparent electrode and has higher conductivity than the first transparent electrode passes through the other power supply unit.
 好ましくは、上記第2透明電極は、上記光出射部が延びている方向と略平行な方向に沿って延びる第2給電部を含み、上記第2透明電極への給電は、上記第2給電部に電気的に接続され上記第2透明電極よりも高い導電性を有するさらに他の給電部材から上記第2給電部を通して行われる。 Preferably, the second transparent electrode includes a second power feeding part extending along a direction substantially parallel to a direction in which the light emitting part extends, and power feeding to the second transparent electrode is performed by the second power feeding part. Is conducted through the second power feeding unit from still another power feeding member which is electrically connected to the second transparent electrode and has higher conductivity than the second transparent electrode.
 好ましくは、上記透明基板は、透明基材と上記透明基材に密着するように配置された導光部材とを含む。 Preferably, the transparent substrate includes a transparent base material and a light guide member disposed so as to be in close contact with the transparent base material.
 上記の各構成によれば、端面から取り出された光に輝度むらが発生することを抑制可能な発光装置を得ることができる。 According to each configuration described above, it is possible to obtain a light emitting device capable of suppressing the occurrence of uneven brightness in the light extracted from the end face.
 以上、本発明に基づいた各実施の形態について説明したが、今回開示された各実施の形態はすべての点で例示であって制限的なものではない。本発明の技術的範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 As mentioned above, although each embodiment based on this invention was described, each embodiment disclosed this time is an illustration and restrictive at no points. The technical scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 18,19,78 光出射部、11 透明基板、11A 透明基材、12,72 表面、13,73 裏面、14,15,16,17,74,76 端面、20,120 発光体、21,21A,121,121A 透明電極、22,122 発光層、23,123 反射電極、23A,45 導電部材、24,124 封止部材、25,125 絶縁層、26,27,126,127 電極取出部、30 反射部材、41,42,141,142 補助電極、51,52 外部配線部材、53,54 導電性ペースト、60 制御基板、61 制御回路、62 配線パターン、70 導光部材、100,100Z,101,102,103,104,105,106,107 発光装置、S1,S2,S3,S4 給電部。 18, 19, 78 light emitting part, 11 transparent substrate, 11A transparent base material, 12, 72 surface, 13, 73 back surface, 14, 15, 16, 17, 74, 76 end surface, 20, 120 light emitter, 21, 21A , 121, 121A transparent electrode, 22, 122 light emitting layer, 23, 123 reflective electrode, 23A, 45 conductive member, 24, 124 sealing member, 25, 125 insulating layer, 26, 27, 126, 127 electrode extraction part, 30 Reflective member, 41, 42, 141, 142 auxiliary electrode, 51, 52 external wiring member, 53, 54 conductive paste, 60 control board, 61 control circuit, 62 wiring pattern, 70 light guide member, 100, 100Z, 101, 102, 103, 104, 105, 106, 107 Light-emitting device, S1, S2, S3, S4 feeding part.

Claims (11)

  1.  端面に光出射部を有する透明基板と、
     第1透明電極、第1反射電極、およびこれらの間に設けられた第1発光層を含み、前記第1透明電極が前記透明基板の側に位置するように前記透明基板上に設けられた第1発光体と、
     前記透明基板の前記第1発光体が設けられている側とは反対側に設けられ、前記第1発光体から前記透明基板に入射した光を反射させることによりその光を前記透明基板の前記光出射部から出射させる反射部材と、を備え、
     前記第1透明電極は、前記光出射部が延びている方向と略平行な方向に沿って延びる第1給電部を含み、
     前記第1透明電極への給電は、前記第1給電部に電気的に接続され前記第1透明電極よりも高い導電性を有する給電部材から前記第1給電部を通して行われる、
    発光装置。
    A transparent substrate having a light emitting portion on the end face;
    A first transparent electrode, a first reflective electrode, and a first light emitting layer provided therebetween, the first transparent electrode being provided on the transparent substrate such that the first transparent electrode is positioned on the transparent substrate side One light emitter,
    The transparent substrate is provided on a side opposite to the side on which the first light emitter is provided, and reflects light incident on the transparent substrate from the first light emitter to reflect the light on the transparent substrate. A reflecting member that emits from the emitting portion,
    The first transparent electrode includes a first power feeding portion that extends along a direction substantially parallel to a direction in which the light emitting portion extends,
    Power feeding to the first transparent electrode is performed through the first power feeding unit from a power feeding member that is electrically connected to the first power feeding unit and has higher conductivity than the first transparent electrode.
    Light emitting device.
  2.  前記第1給電部は、前記光出射部が延びている方向に対して略平行な方向において前記光出射部と略等しい長さを有している、
    請求項1に記載の発光装置。
    The first feeding part has a length substantially equal to the light emitting part in a direction substantially parallel to the direction in which the light emitting part extends.
    The light emitting device according to claim 1.
  3.  前記給電部材は、前記光出射部が延びている方向に対して略平行な方向において、前記第1給電部の略全長に亘って給電可能に接続されている、
    請求項1または2に記載の発光装置。
    The power supply member is connected to be able to supply power over substantially the entire length of the first power supply unit in a direction substantially parallel to the direction in which the light emitting unit extends.
    The light emitting device according to claim 1.
  4.  前記透明基板は、前記光出射部が形成される前記端面とは反対側の端面に、他の光出射部をさらに有し、
     前記反射部材は、前記第1発光体から前記透明基板に入射した光を反射させることによりその光を前記光出射部および前記他の光出射部から出射させる、
    請求項1から3のいずれか1項に記載の発光装置。
    The transparent substrate further has another light emitting portion on the end surface opposite to the end surface on which the light emitting portion is formed,
    The reflective member reflects the light incident on the transparent substrate from the first light emitter to emit the light from the light emitting part and the other light emitting part.
    The light-emitting device according to claim 1.
  5.  前記透明基板の前記第1発光体が設けられている側とは反対側に設けられた第2発光体をさらに備え、
     前記第2発光体は、第2透明電極、第2反射電極、およびこれらの間に設けられた第2発光層を含み、前記第2透明電極が前記透明基板の側に位置するように設けられており、
     前記反射部材は、前記第2発光体の前記第2反射電極である、
    請求項1から4のいずれか1項に記載の発光装置。
    A second light emitter provided on the opposite side of the transparent substrate from the side on which the first light emitter is provided;
    The second light emitter includes a second transparent electrode, a second reflective electrode, and a second light emitting layer provided therebetween, and the second transparent electrode is provided so as to be positioned on the transparent substrate side. And
    The reflective member is the second reflective electrode of the second light emitter;
    The light-emitting device according to claim 1.
  6.  制御基板をさらに備え、
     前記制御基板は、
     当該発光装置の発光を制御する制御回路と、
     前記制御基板の表面上に設けられ、前記制御回路に電気的に接続された電極部材と、を含み、
     前記給電部材は、前記制御基板に設けられた前記電極部材である、
    請求項1から5のいずれか1項に記載の発光装置。
    A control board,
    The control board is
    A control circuit for controlling light emission of the light emitting device;
    An electrode member provided on the surface of the control board and electrically connected to the control circuit,
    The power supply member is the electrode member provided on the control board.
    The light-emitting device according to claim 1.
  7.  制御基板をさらに備え、
     前記制御基板は、
     当該発光装置の発光を制御する制御回路と、
     前記制御基板の表面上に設けられ、前記制御回路に電気的に接続された電極部材と、を含み、
     前記給電部材は、前記第1給電部と前記電極部材との間に設けられた補助電極部材である、
    請求項1から5のいずれか1項に記載の発光装置。
    A control board,
    The control board is
    A control circuit for controlling light emission of the light emitting device;
    An electrode member provided on the surface of the control board and electrically connected to the control circuit,
    The power supply member is an auxiliary electrode member provided between the first power supply unit and the electrode member.
    The light-emitting device according to claim 1.
  8.  前記第1発光層を中心として見た場合、前記第1給電部は、前記光出射部が形成される前記端面の位置とは反対側に位置している、
    請求項1から7のいずれか1項に記載の発光装置。
    When viewed from the center of the first light emitting layer, the first power feeding unit is located on the side opposite to the position of the end surface where the light emitting unit is formed.
    The light-emitting device according to claim 1.
  9.  前記第1反射電極は、前記光出射部が延びている方向と略平行な方向に沿って延びる他の給電部を含み、
     前記第1反射電極への給電は、前記他の給電部に電気的に接続され前記第1透明電極よりも高い導電性を有する他の給電部材から前記他の給電部を通して行われる、
    請求項1から8のいずれか1項に記載の発光装置。
    The first reflective electrode includes another power feeding portion extending along a direction substantially parallel to a direction in which the light emitting portion extends,
    Power feeding to the first reflective electrode is performed through the other power feeding unit from another power feeding member that is electrically connected to the other power feeding unit and has higher conductivity than the first transparent electrode.
    The light-emitting device according to claim 1.
  10.  前記第2透明電極は、前記光出射部が延びている方向と略平行な方向に沿って延びる第2給電部を含み、
     前記第2透明電極への給電は、前記第2給電部に電気的に接続され前記第2透明電極よりも高い導電性を有するさらに他の給電部材から前記第2給電部を通して行われる、
    請求項5に記載の発光装置。
    The second transparent electrode includes a second power feeding portion that extends along a direction substantially parallel to a direction in which the light emitting portion extends,
    The power supply to the second transparent electrode is performed through the second power supply unit from still another power supply member that is electrically connected to the second power supply unit and has higher conductivity than the second transparent electrode.
    The light emitting device according to claim 5.
  11.  前記透明基板は、透明基材と前記透明基材に密着するように配置された導光部材とを含む、
    請求項1から10のいずれか1項に記載の発光装置。
    The transparent substrate includes a transparent base material and a light guide member arranged to be in close contact with the transparent base material,
    The light-emitting device according to claim 1.
PCT/JP2014/063650 2013-06-24 2014-05-23 Light emission device WO2014208229A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014559000A JP5704290B1 (en) 2013-06-24 2014-05-23 Light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-131733 2013-06-24
JP2013131733 2013-06-24

Publications (1)

Publication Number Publication Date
WO2014208229A1 true WO2014208229A1 (en) 2014-12-31

Family

ID=52141581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063650 WO2014208229A1 (en) 2013-06-24 2014-05-23 Light emission device

Country Status (2)

Country Link
JP (1) JP5704290B1 (en)
WO (1) WO2014208229A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03205783A (en) * 1989-10-13 1991-09-09 Ricoh Co Ltd End face luminescence type el element
JPH0428197A (en) * 1990-05-22 1992-01-30 Ricoh Co Ltd End-face radiating type electroluminescent element and its driving method
JP2003168553A (en) * 2001-11-30 2003-06-13 Sharp Corp Organic led element
JP2007294137A (en) * 2006-04-21 2007-11-08 Matsushita Electric Works Ltd Lighting fixture
JP2007324062A (en) * 2006-06-02 2007-12-13 Fujifilm Corp End face light emission type light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03205783A (en) * 1989-10-13 1991-09-09 Ricoh Co Ltd End face luminescence type el element
JPH0428197A (en) * 1990-05-22 1992-01-30 Ricoh Co Ltd End-face radiating type electroluminescent element and its driving method
JP2003168553A (en) * 2001-11-30 2003-06-13 Sharp Corp Organic led element
JP2007294137A (en) * 2006-04-21 2007-11-08 Matsushita Electric Works Ltd Lighting fixture
JP2007324062A (en) * 2006-06-02 2007-12-13 Fujifilm Corp End face light emission type light emitting device

Also Published As

Publication number Publication date
JP5704290B1 (en) 2015-04-22
JPWO2014208229A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP4968967B2 (en) Light emitting device
JP2005078906A (en) Organic electroluminescence panel
JP5704290B1 (en) Light emitting device
JP5356278B2 (en) Display device
JP5352494B2 (en) Display device
US20220158116A1 (en) Organic el panel
JP5700185B1 (en) Planar light emitting unit
WO2016132870A1 (en) Organic el panel
JP2011100593A (en) Organic el panel
JP6609939B2 (en) Light emitting device
US20140218921A1 (en) Lighting Device
WO2016042921A1 (en) Light emitting device
JP6213940B2 (en) ORGANIC EL ELEMENT AND METHOD FOR PRODUCING ORGANIC EL ELEMENT
WO2018151027A1 (en) Light emission device
WO2015079542A1 (en) Light emitting device
WO2015114763A1 (en) Light emitting device
US10355233B2 (en) Organic light-emitting diode and vehicle exterior lighting
JP5293910B1 (en) lighting equipment
JP6306850B2 (en) Light emitting device
JP6294071B2 (en) Light emitting device
WO2017145861A1 (en) Light-emitting device
WO2017006392A1 (en) Light emitting device
JP2015106452A (en) Light emitting device
JP2016046001A (en) Organic EL panel
WO2016059714A1 (en) Light emitting device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014559000

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14817633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14817633

Country of ref document: EP

Kind code of ref document: A1