WO2014207785A1 - Heat exchanger, heat exchanger structure, and fin for heat exchanger - Google Patents

Heat exchanger, heat exchanger structure, and fin for heat exchanger Download PDF

Info

Publication number
WO2014207785A1
WO2014207785A1 PCT/JP2013/004041 JP2013004041W WO2014207785A1 WO 2014207785 A1 WO2014207785 A1 WO 2014207785A1 JP 2013004041 W JP2013004041 W JP 2013004041W WO 2014207785 A1 WO2014207785 A1 WO 2014207785A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
heat transfer
heat
fin
tubes
Prior art date
Application number
PCT/JP2013/004041
Other languages
French (fr)
Japanese (ja)
Inventor
秀哲 立野井
芳裕 波良
克弘 齊藤
陽一 上藤
青木 泰高
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2013/004041 priority Critical patent/WO2014207785A1/en
Priority to EP13888478.8A priority patent/EP3015808B1/en
Priority to JP2015523665A priority patent/JPWO2014207785A1/en
Publication of WO2014207785A1 publication Critical patent/WO2014207785A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins

Definitions

  • the present invention relates to a heat exchanger used in an air conditioner.
  • one heat exchanger functions as a condenser during cooling operation and functions as an evaporator during heating operation.
  • the heat exchanger of the outdoor unit functions as an evaporator when heating operation is performed.
  • the evaporator is in the air when the outside air temperature decreases to, for example, about 5 ° C. below freezing point.
  • a frosting phenomenon occurs in which moisture adheres to the evaporator as frost.
  • frost formation occurs from the windward side of the heat exchanger and gradually grows toward the leeward side.
  • the heat exchanger is frosted, the fin heat transfer area that directly exchanges heat with air decreases, and the heating capacity decreases.
  • the ventilation path between fins narrows by frost formation, and heating capacity also falls even if air volume falls. Therefore, during the heating operation when the outside air temperature is low, the defrosting operation is performed periodically, for example, in order to remove the attached frost. During the defrosting operation, the heating operation is stopped, which may impair the comfort for the user of the air conditioner. Therefore, various techniques for making it difficult for frost to form on the windward side of the heat exchanger (evaporator) have been proposed.
  • a typical example of the defrosting operation is a method in which a refrigeration cycle is used as a circuit during cooling operation, the outdoor heat exchanger functions as a condenser, and high-temperature refrigerant is flowed to melt frost.
  • the water generated by the frost melting by the defrosting operation (hereinafter referred to as melted water) is not drained during the defrosting operation, but on the fins. Sometimes it remains. If the heating operation is resumed after the defrosting operation while the molten water remains, the molten water is frozen and frosted again, and the ventilation path is likely to narrow.
  • the present inventors have proposed a heat exchanger capable of suppressing frost formation during heating operation and promoting drainage of molten water generated when the defrost operation is performed.
  • a heat conduction suppressing portion extending along the direction in which the outside air flows is formed in the fin.
  • the proposal of patent document 1 can suppress the fall of the temperature of the windward side part of the flow direction of the external air of a fin, and can suppress frost formation, when the heat exchanger of an outdoor unit functions as an evaporator.
  • the heat exchanger of patent document 1 can drain
  • the present invention can maintain the ventilation path even if frost is formed on the windward side of the heat exchanger from a viewpoint different from Patent Document 1. It aims at providing the heat exchanger which can improve drainage more.
  • the heat exchanger according to the present invention includes a plurality of tubes in which flow paths through which refrigerant flows are formed, and a plurality of heat transfer walls extending from one to the other of adjacent tubes in the tube extending direction.
  • the heat transfer wall according to the present invention includes a first heat transfer piece connected to the first edge located on the windward side of the passing air flow, and a second retreating to the leeward side of the air flow direction from the first edge. And the first heat transfer piece is arranged at least every other layer of the array.
  • the heat transfer wall includes a first edge and a second edge that recedes leeward from the first edge, and the first edge and the second edge transfer heat. At least every other layer is arranged in the direction of the wall arrangement. Therefore, the fin pitch between the 1st edge parts adjacent to the direction of an arrangement
  • the heat transfer wall is interrupted on the windward side of the second edge portion.
  • the heat exchanger according to the present invention is more effective than the molten water flowing down while meandering through the fins. Can be discharged to the outside of the heat exchanger in a short time.
  • the heat exchanger of the present invention since the boundary portion with the tube in which the molten water is particularly likely to stay is reduced due to the interruption of the heat transfer wall, the amount of the retained molten water is reduced. Therefore, even if the molten water solidifies after restarting the heating operation, the heat transfer area of the fins can be secured.
  • Each of the heat transfer walls in the present invention includes a first heat transfer piece connected to the first edge located on the windward side of the passing air flow, and a first heat transfer wall receding to the leeward side of the air flow direction from the first edge.
  • the first heat transfer piece can be alternately arranged on the side of one adjacent tube and the side of the other tube.
  • the heat transfer wall includes a first edge and a second edge that recedes leeward from the first edge, and the first edge and the second edge transfer heat. Alternating in the direction of the array of walls. Therefore, between the first edges adjacent to each other in the arrangement direction, there is a portion where the heat transfer wall does not exist because the second edge is retracted to the leeward side, so that the fin pitch is widened. Therefore, even if frost is concentrated on the first edge located at the tip of the fin on the windward side, heat exchange can be maintained on the leeward side by securing the ventilation path.
  • the heat transfer wall is provided with heat transfer promoting means on the windward side.
  • the heat transfer performance of the heat transfer wall can be promoted on the windward side.
  • a heat transfer wall is provided with a heat transfer promotion means on the leeward side.
  • each heat transfer wall includes a second heat transfer piece connected to the third edge located on the leeward side of the air flow, a fourth edge that recedes further to the windward side than the third edge, It is preferable that the second heat transfer pieces are alternately arranged on the side of one adjacent tube and the side of the other tube, every other layer in the arrangement. Since there is a region where no heat transfer wall exists on the leeward side, the drainage of the molten water can be improved also on the leeward side. Furthermore, even if the remaining molten water is solidified, in addition to ensuring the heat transfer area of the fins used for heat exchange directly with air, it is possible to prevent the ventilation path from becoming narrow.
  • the heat exchanger structure of the present invention is a corrugated type that is arranged along a predetermined direction and is provided between a plurality of tubes each having a flow path through which a refrigerant flows, and between adjacent tubes, and is capable of exchanging heat with the tubes.
  • a heat exchanger assembly comprising a plurality of heat exchangers arranged in the direction of air flow passing therethrough, wherein the heat exchanger arranged at the furthest upstream side in the direction of air flow is It consists of a heat exchanger.
  • the fin for a heat exchanger used in the heat exchanger of the present invention described above is preferably a corrugated fin provided between adjacent tubes and capable of exchanging heat with the tube.
  • the corrugated fin has a wide fin pitch even if the fin pitch on the tip side located on the windward side is widened so that frost is concentrated on the first edge as the tip of the fin. Since the portion is secured as a ventilation path, heat exchange can be continued on the leeward side of the fin. Therefore, in the air conditioner using the heat exchanger of the present invention, the time until performing the defrosting operation becomes longer, and the frequency of the defrosting operation can be reduced.
  • the first edge and the second edge are alternately arranged in the direction of the heat transfer wall arrangement, the molten water can be excluded from the heat exchanger in a short time. Since it is possible, the drainage of molten water can be improved. Furthermore, according to the present invention, since the amount of retained molten water is reduced, the heat transfer area of the fin can be secured even if the molten water solidifies after restarting the heating operation.
  • FIG. 1 It is a perspective view which shows the heat exchanger concerning embodiment of this invention. It is a partial exploded perspective view showing the heat exchanger concerning a 1st embodiment of the present invention.
  • the heat exchanger of 1st Embodiment is shown, (a) is a top view which shows between adjacent tubes, (b) is a figure which shows the cross section of a fin typically, (c) is an expanded view of a fin. It is a schematic diagram for demonstrating the effect of 1st Embodiment.
  • FIG. 1st Embodiment It is a schematic diagram for demonstrating the effect of 1st Embodiment, (a) shows the cross section of the fin of embodiment, (b) shows the cross section of the conventional fin, (c) is embodiment of the embodiment The cross section of a heat exchanger is shown, (d) has shown the cross section of the conventional heat exchanger. It is a perspective view which shows the modification of the fin of 1st Embodiment. It is a cross-sectional view showing another modification of the fin of the first embodiment. It is a cross-sectional view showing another modification of the fin of the first embodiment.
  • FIG. 1 It is a partial exploded perspective view which shows the heat exchanger concerning 2nd Embodiment of this invention, (a) provides a louver on the leeward side, (b) provides undulation on the leeward side and louver on the leeward side, (c ) Shows an example in which louvers are provided on both the leeward side and the leeward side.
  • the heat exchanger concerning 3rd Embodiment of this invention is shown, (a) is a partial exploded perspective view, (b) is a top view which shows between adjacent tubes, (c) shows the expanded view of a fin. It is a perspective view which shows the heat exchanger structure concerning 4th Embodiment of this invention. It is a figure which shows the example of a change of this invention.
  • the heat exchanger 10 in the present embodiment is connected to the core 20 formed by alternately laminating a plurality of tubes 21 and a plurality of fins 22 through which refrigerant flows, and the ends of the tubes 21 are connected.
  • a pair of header tubes 30 that perform heat exchange between the outside air and the refrigerant.
  • the heat exchanger 10 is applied to an outdoor heat exchanger of a heat pump type air conditioner. In this case, the heat exchanger 10 is incorporated in the outdoor unit of the air conditioner with the tube 21 standing in the vertical direction Y.
  • the heat exchanger 10 receives an air flow A generated by a fan (not shown), and the air flow passes through an air passage 27 that is a gap formed between the tube 21 and the fin 22 of the core 20. Exchanges heat with the outside air.
  • the tube 21 is a member having a flat cross section provided with a refrigerant flow path penetrating in the axial direction.
  • the tube 21 is produced by extruding copper or copper alloy having excellent thermal conductivity, aluminum or aluminum alloy, or roll-molding a plate-like material.
  • both ends in the axial direction are joined to the header tube 30 by brazing, for example, and a refrigerant channel 21a formed inside along the axial direction communicates with a refrigerant channel of the header tube 30 described later.
  • the circulation of the refrigerant between the tube 21 and the header tube 30 is ensured.
  • the fin 22 is a corrugated fin formed by alternately repeating mountain folding and valley folding.
  • the fin 22 includes a heat transfer wall 23 and a turn-back 24 that connects the adjacent heat transfer walls 23 and 23 with a space therebetween, and meanders at both ends in the width direction X.
  • interval of the heat-transfer walls 23 and 23 ... in which a some layer is arranged in the perpendicular direction Y is set substantially equal. It is assumed that one heat transfer wall 23 forms one layer.
  • an example in which the folding 24 is rectangular is shown, but the folding 24 may have another shape such as a V-shape.
  • the fins 22 are integrally formed by bending a plate-like material made of the same material as the tube 21.
  • the fin 22 has a feature in the windward side configuration, which will be described later.
  • the core 20 is configured by alternately stacking the above tubes 21 and fins 22 in the width direction X of the heat exchanger 10.
  • the fins 22 arranged between the tubes 21 and 21 adjacent to each other in the width direction X are joined to the tubes 21 and 21 by, for example, brazing, so that the fins 22 and the tubes 21 can exchange heat with each other. It is said.
  • the core 20 is provided with side plates 26 at both ends in the width direction X.
  • the side plate 26 functions as a reinforcing member for the core 20, and both end portions in the vertical direction are supported by the header tube 30.
  • the header tube 30 is a member in which a coolant channel (not shown) is formed.
  • a refrigerant inlet is provided on one end side in the width direction X of the header tube 30 (lower header tube 32) arranged on the lower side in the figure, and is supplied to the inlet from refrigerant piping constituting the refrigeration cycle.
  • the refrigerant flows through the flow path of the lower header tube 32 and flows into the plurality of tubes 21.
  • a refrigerant outlet is provided on one end side in the width direction X, and the refrigerant flowing through the tube 21 flows into the upper header tube 31. It flows out from the outlet toward the refrigerant pipe constituting the refrigeration cycle.
  • the header tube 30 is made of the same material as the tube 21.
  • the tube 21 can be manufactured integrally or by combining a plurality of members.
  • the air conditioner provided with the heat exchanger 10 as an outdoor heat exchanger is performing a heating operation when the outside air temperature is low, frosting occurs on the fin 22 on the windward side of the air flow A.
  • the windward side of the airflow A may be simply referred to as the windward side.
  • the air conditioner performs a defrosting operation, for example, periodically to remove the attached frost.
  • the defrosting operation if the molten water remains without being sufficiently drained from the heat exchanger 10, heating is performed. After resuming operation, the molten water may freeze and frost again.
  • the heat exchanger 10 widens the fin pitch on the windward side of the fins 22 from the leeward side, thereby extending the time until the defrosting operation is performed by maintaining the heat exchange on the leeward side even if frost formation occurs. . Moreover, the heat exchanger 10 improves the drainage of molten water.
  • FIGS. 3B the fin 22 has a cross section in the leeward range U indicated by a solid line and a cross section in the leeward range D indicated by a broken line. The same applies to FIGS. 5 and 7 to 9.
  • the fin 22 has a fin pitch P1 in a predetermined range U on the windward side (FIG. 3A) wider than the fin pitch P2 in the range D on the leeward side. Is set.
  • the heat transfer wall 23 of the fin 22 has the following two conditions. The first condition is that either side of the width direction X is cut out with the middle point M of the heat transfer wall 23 as a boundary. Due to the formation of the notch, the front edge 23b on the side that is not cut back is retracted to the leeward side from the front edge 23a on the side that is not cut.
  • Heat transfer pieces 23 ⁇ / b> L and 23 ⁇ / b> R that protrude to the windward side of the front edge 23 b are provided on the side that is not cut out.
  • the second condition is that the heat transfer pieces 23L and 23R are alternately arranged in the width direction X every other layer of the heat transfer wall 23 with the middle point M as a boundary.
  • This condition is equivalent to that the notches are alternately arranged in the width direction X every other layer of the heat transfer wall 23 with the middle point M as a boundary when the notches are mainly used.
  • the fins 22 are arranged with the heat transfer pieces 23L every other layer on the one side L (left side of FIG. 3B) with the midpoint M as a boundary.
  • the heat transfer pieces 23R are arranged every other layer. Moreover, on one side L and the other side R, the phase of the fin pitch P1 is shifted by 1 ⁇ 2 (half cycle).
  • turnback which opposes the tube 21 of the heat-transfer pieces 23L and 23R is notched, and the fin 22 is not provided with the return
  • the edge which opposes the tube 21 may be joined by brazing so that the heat transfer pieces 23L and 23R may be heat-exchanged, or may be separated from the tube 21.
  • the fin material 25 used to configure the fin 22 is a plate made of a rectangular metal material as described above, but when the fin 22 is assembled to the heat exchanger 10 as the fin 22.
  • a plurality of rectangular cutouts 25a are formed at equal intervals on the edge corresponding to the windward side.
  • the material portion 25b remaining between the adjacent cutouts 25a and 25a constitutes the heat transfer pieces 23L and 23R.
  • the fin material 25 is formed by alternately repeating notches 25a and material portions 25b at the end edges.
  • the fin 22 has a fin pitch P1 in the range U located on the leeward side wider than the fin pitch P2 in the range D on the leeward side.
  • the frost Fa is concentrated on the front edge 23a of the heat transfer wall 23 located on the windward side
  • the ventilation path 27 is narrowed, but the fin pitch P1 is wide so that the windward side is frosted. It is possible to lengthen the time until closing with Fa.
  • the heat exchanger 10 can maintain the heat exchange in the range D which is the leeward side of the fin 22 over a long time, the air conditioner using the heat exchanger 10 is defrosting. The frequency of driving can be reduced.
  • the fins 22 can minimize a decrease in the efficiency of heat exchange.
  • the improvement of drainage in the present invention includes reducing the amount of retained molten water in addition to promoting the drainage itself.
  • the promotion of drainage will be explained. Since the heat exchanger 10 is provided with the front edge portion 23b that recedes to the leeward side, the heat transfer wall 23 is interrupted on the windward side (range U) of the fins 22, so that the frost F is melted during the defrosting operation.
  • the resulting molten water W flows down from both ends of the heat transfer pieces 23R, 23L in the width direction X as indicated by arrows Wf in FIG.
  • the molten water W flows down through the tube 21 on the side facing the tube 21 (not shown in FIG.
  • the heat exchanger 10 has the front edge portion 23b retracted to the leeward side, and the inner side IN of the turn-back 24 does not exist in the leeward range U where frost formation is likely to occur. As shown in FIG. 5 (c), it is only above the boundary between the heat transfer pieces 23 ⁇ / b> L and 23 ⁇ / b> R and the tube 21. Therefore, according to the heat exchanger 10, since the amount of the molten water W staying in the fin 22 can be reduced, even if the molten water W solidifies after restarting the heating operation, a wider heat transfer area of the fin 22 is secured. In addition to this, it is possible to prevent the ventilation path from becoming narrow.
  • the heat exchanger 10 can ensure heat transfer performance in the range U if the heat transfer pieces 23L and 23R are connected to the tube 21 so as to be able to exchange heat.
  • the shape of the notch of the fin 22 in plan view is rectangular, but the shape of the notch is arbitrary as long as the object of the present invention can be achieved.
  • a circular cutout FIG. 6A
  • a triangular cutout FIG. 6B
  • a polygonal cutout FIG. 6C
  • a stepped shape Various forms such as a notch (FIG. 6D) can be adopted.
  • the folding pattern of the fins 22 is arbitrary as long as the object of the present invention can be achieved.
  • 7 and 8 show some patterns that can be used in the present invention, and the present invention can adopt these patterns.
  • FIG. 7A the lower side of the heat transfer wall 23 connected to the turn 24 is cut away, whereas FIG. 7B is opposite to FIG.
  • the upper side of the hot wall 23 is cut off. 7A and 7B, compared with the conventional corrugated fin in which the heat transfer wall 23 is provided over almost the entire area between the tubes 21 and 21, the molten water flows downward due to the shortcut. Therefore, the drainage of molten water can be promoted.
  • the heat transfer wall 23 is formed along the horizontal direction, but as shown in FIG. 7C, the heat transfer wall 23 faces upward toward the center in the width direction of the fin 22. Can be tilted.
  • the heat transfer wall 23 can be inclined downward toward the center of the fin 22 in the width direction, as shown in FIG. 7D. By inclining the heat transfer wall 23 in this way, the drainage of the molten water can be further promoted.
  • the heat transfer piece 23L provided on one side in the width direction X and the heat transfer piece 23R provided on the other side are viewed in the vertical direction (in plan view).
  • the present invention is not limited to this.
  • the fin pitch P1 of the heat transfer pieces 23L, 23L, and the fin pitch P1 of the heat transfer pieces 23R, 23R, ... are as wide as twice the fin pitch P2 in the range D.
  • this invention is the center part of the width direction X of the fin 22, between the heat transfer piece 23L provided in one side, and the heat transfer piece 23R provided in the other side.
  • a gap G in the width direction can be provided.
  • the fin 22 of 1st Embodiment expands the fin pitch P1 of the range U by notching a part of fin raw material 25, this invention is not limited to this.
  • a region corresponding to the notch can also be formed by bending the heat transfer pieces 23L and R downward.
  • the fin pitch P1 in the range U can be made larger than the fin pitch P2 in the range D, as with the fins 22 of the first embodiment.
  • the drooping piece 23e generated by the bending may contact the surface of the heat transfer wall 23 located at the lower layer as shown in FIG. 8C, or as shown in FIG.
  • the tip may be separated from the surface of the heat transfer wall 23 located in the lower layer.
  • the drooping piece 23e constitutes a path for guiding the molten water downward and contributes to promoting drainage.
  • the bending angle is arbitrary.
  • the fins 22 can be provided with means for improving the heat conductivity of one or both of the windward side and the leeward side.
  • a louver 28 can be formed on the leeward side of the fin 22 (heat transfer wall 23) (second type 2-1). If the heat transfer performance of the fins 22 on the leeward side is made higher than that on the leeward side, dehumidification on the leeward side can be suppressed, so that dehumidification can also be performed on the leeward side.
  • frost formation is caused by dehumidification by the fins 22, so if the heat transfer performance on the leeward side is increased as in the case of the embodiment 2-1, the idea is concentrated on the leeward side. Since it is suppressed, it is easy to ensure the ventilation path 27.
  • the heat exchange on the leeward side can be continued, so the time during which the heating operation can be continued can be lengthened.
  • the upwind side of the fin 22 does not require processing, an increase in processing cost can be suppressed.
  • the louver 28 is formed by cutting and raising the heat transfer wall 23, and the heat transfer between the air and the heat transfer wall 23 is promoted by disturbing the flow of air passing through the louver 28. Note that the louver 28 has a greater effect of promoting heat transfer than the undulation 29 described later. Moreover, the area
  • the present invention can also improve the heat transfer on the windward side.
  • a undulation 29 can be formed on the windward side of the fin 22 (heat transfer wall 23) (second type 2-2).
  • This undulation 29 has a waveform in the longitudinal section of the heat transfer wall 23, and has a shape in which mountains, valleys, mountains,... Are repeated from the windward side toward the leeward side.
  • the heat transfer area on the windward side is increased, so that the heat transfer performance can be improved compared to fins made of flat plates.
  • heat transfer can be improved by generating eddy currents in the process of airflow passing through the undulations 29.
  • not only the undulation 29 but also a louver 28 can be provided as shown in FIG.
  • the same configuration as the front end side of the windward fin 22 of the first embodiment can be provided on the front end side of the leeward fin 22. That is, as shown in FIG. 10, one side of the width direction X is notched with the middle point M of the heat transfer wall 23 as a boundary. Due to the formation of the cutout, the front edge portion 23d on the side that is not cut away from the front edge portion 23c on the side that is not cut out is retracted to the windward side. Heat transfer pieces 23L and 23R are provided on the non-notched side to protrude leeward from the front edge 23d.
  • the heat transfer pieces 23L and 23R are alternately arranged in the width direction X every other layer of the heat transfer wall 23 with the middle point M as a boundary.
  • frost formation is less on the leeward side
  • the frost formation also occurs on the leeward side of the fins 22, so that when the defrosting operation is performed, the molten water may stay on the leeward side of the fins 22. Therefore, the third embodiment reduces the amount of molten water staying on the leeward side by adopting a configuration in which the fin pitch is widened also on the leeward side.
  • the air conditioner may arrange a plurality of (here, two) heat exchangers 10 (10a, 10b) in the direction in which the wind flows in order to obtain high heat transfer properties.
  • the present invention can be applied to an air conditioner including a plurality of heat exchangers 10.
  • the present invention should be applied to the heat exchanger 10a disposed on the leeward side, the necessity for application is small for the heat exchanger 10b disposed on the leeward side.
  • the airflow that has passed through the windward heat exchanger 10a flows into the leeward heat exchanger 10b, and this airflow passes through the windward heat exchanger 10a.
  • the application of the present invention to the leeward heat exchanger 10b is not excluded, but the leeward heat exchanger 10b can secure the heat transfer area of the fins and suppress the heat transfer loss as much as possible. It fits the purpose of providing a plurality of heat exchangers. Even if it is a case where not only two but three or more heat exchangers are provided, the present invention may be applied to a heat exchanger arranged on the furthest side.
  • the “application of the present invention” mentioned here includes all the individual elements disclosed in the first to third embodiments described so far.
  • the configuration described in the above embodiment can be selected or modified as appropriate to another configuration without departing from the gist of the present invention.
  • the heat-transfer piece 23L and the heat-transfer piece 23R can also be arrange

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

Provided is a heat exchanger capable of sustaining heat exchange in fins on the downwind side of the heat exchanger and improving discharge of melted water by ensuring ventilation passage even when frost forms on the upwind side of the heat exchanger. This heat exchanger (10) comprises a plurality of tubes (21) in which a refrigerant channel (21a) through which refrigerant flows is formed, and corrugated fins (22) that can exchange heat with the tubes (21) and in which a plurality of heat transfer walls (23) that span from one side of adjacent tubes (21) to the other side are disposed in a direction extending from the tubes (21). In addition, each heat transfer wall (23) has a heat transfer part (23R (L)) that is continuous with a front edge section (23a) positioned on the upwind side of the air flow (A) that passes through, and a front edge section (23b) that recedes further on the downwind side than the front edge section (23a) in the direction of the air flow (A). A first heat transfer part is disposed alternately on every other layer on one tube (21) and another adjacent tube (21).

Description

熱交換器、熱交換器構造体、及び、熱交換器用のフィンHeat exchanger, heat exchanger structure, and fin for heat exchanger
 本発明は、空気調和機に用いられる熱交換器に関する。 The present invention relates to a heat exchanger used in an air conditioner.
 冷房と暖房の両者を共通の冷凍サイクルにより行う空気調和機は、一つの熱交換器が、冷房運転時には凝縮器として機能し、暖房運転時には蒸発器として機能する。
 室外機の熱交換器は、暖房運転を行う場合には、蒸発器として機能するが、寒冷時に暖房運転を行う場合、蒸発器は、例えば氷点下5℃程度まで外気温度が低下すると、空気中の水分が蒸発器に霜として付着する着霜現象が生ずる。通常、着霜は熱交換器の風上側から起こり、次第に風下側に向けて成長する。熱交換器が着霜すると、空気と直接熱交換するフィン伝熱面積が減少し、暖房能力が低下する。また、着霜によりフィン間の通風路が狭まり、風量が低下することでも暖房能力が低下する。したがって、外気温度が低いときの暖房運転時には、付着した霜を除去するために除霜運転が例えば定期的に行われている。除霜運転中は、暖房運転が停止するので、空気調和機のユーザにとって快適性を損なうこともある。したがって、熱交換器(蒸発器)の風上側に着霜を生じにくくする技術が種々提案されている。なお、除霜運転は、冷凍サイクルを冷房運転時の回路にして室外熱交換器を凝縮器として機能させ、高温の冷媒を流すことで霜を融かす方法が代表例としてある。
In an air conditioner that performs both cooling and heating using a common refrigeration cycle, one heat exchanger functions as a condenser during cooling operation and functions as an evaporator during heating operation.
The heat exchanger of the outdoor unit functions as an evaporator when heating operation is performed. However, when the heating operation is performed in cold weather, the evaporator is in the air when the outside air temperature decreases to, for example, about 5 ° C. below freezing point. A frosting phenomenon occurs in which moisture adheres to the evaporator as frost. Usually, frost formation occurs from the windward side of the heat exchanger and gradually grows toward the leeward side. When the heat exchanger is frosted, the fin heat transfer area that directly exchanges heat with air decreases, and the heating capacity decreases. Moreover, the ventilation path between fins narrows by frost formation, and heating capacity also falls even if air volume falls. Therefore, during the heating operation when the outside air temperature is low, the defrosting operation is performed periodically, for example, in order to remove the attached frost. During the defrosting operation, the heating operation is stopped, which may impair the comfort for the user of the air conditioner. Therefore, various techniques for making it difficult for frost to form on the windward side of the heat exchanger (evaporator) have been proposed. A typical example of the defrosting operation is a method in which a refrigeration cycle is used as a circuit during cooling operation, the outdoor heat exchanger functions as a condenser, and high-temperature refrigerant is flowed to melt frost.
 また、熱交換器の風上側に着霜する問題に加え、除霜運転により霜が融けて生じる水(以下、融解水)は、除霜運転の間に全てが排水されずに、フィン上に残ることもある。融解水が滞留したままで、除霜運転後に暖房運転を再開すると、融解水が凍結して再び着霜して通風路が狭まりやすくなる。 In addition to the problem of frosting on the windward side of the heat exchanger, the water generated by the frost melting by the defrosting operation (hereinafter referred to as melted water) is not drained during the defrosting operation, but on the fins. Sometimes it remains. If the heating operation is resumed after the defrosting operation while the molten water remains, the molten water is frozen and frosted again, and the ventilation path is likely to narrow.
 本発明者等は、特許文献1において、暖房運転時の着霜を抑制するとともに、除霜運転をしたときに生ずる融解水の排水を促進できる熱交換器を提案している。この提案は、外気が流れる方向に沿って延びる熱伝導抑制部をフィンに形成する。特許文献1の熱交換器によれば、外気が流れる方向の風下側に対し、風上側におけるチューブからフィンへの熱伝導を抑えることができる。したがって、特許文献1の提案は、室外機の熱交換器が蒸発器として機能する場合に、フィンの外気の流れ方向の風上側部分の温度の低下を抑え、着霜を抑制できる。また、特許文献1の熱交換器は、除霜運転時において、熱伝導抑制部として形成されるスリットを通じて、融解水を下方に排水できるので、排水性にも優れる。 In the patent document 1, the present inventors have proposed a heat exchanger capable of suppressing frost formation during heating operation and promoting drainage of molten water generated when the defrost operation is performed. In this proposal, a heat conduction suppressing portion extending along the direction in which the outside air flows is formed in the fin. According to the heat exchanger of Patent Document 1, heat conduction from the tubes to the fins on the leeward side can be suppressed compared to the leeward side in the direction in which the outside air flows. Therefore, the proposal of patent document 1 can suppress the fall of the temperature of the windward side part of the flow direction of the external air of a fin, and can suppress frost formation, when the heat exchanger of an outdoor unit functions as an evaporator. Moreover, since the heat exchanger of patent document 1 can drain | melt molten water below through the slit formed as a heat conduction suppression part at the time of a defrost operation, it is excellent also in drainage.
特開2012-72955号公報JP 2012-72955 A
 本発明は、特許文献1とは別の観点から、熱交換器の風上側に着霜したとしても通風路を確保することで、風下側のフィンにおける熱交換を持続できることに加え、融解水の排水性をより向上できる熱交換器を提供することを目的とする。 In addition to being able to maintain heat exchange in the fins on the leeward side, the present invention can maintain the ventilation path even if frost is formed on the windward side of the heat exchanger from a viewpoint different from Patent Document 1. It aims at providing the heat exchanger which can improve drainage more.
 かかる目的のもと、本発明の熱交換器は、冷媒が流れる流路が形成される複数のチューブと、隣り合うチューブの一方から他方に亘る伝熱壁が、チューブの延設方向に複数配列される、チューブと熱交換可能なコルゲート型のフィンと、を備える。
 本発明における伝熱壁には、通過する空気流の風上側に位置する第1縁部に連なる第1伝熱片と、第1縁部よりも空気流の向きの風下側に後退する第2縁部と、を有するものが存在しており、第1伝熱片は、配列の少なくとも一層おきに配置されることを特徴とする。
For this purpose, the heat exchanger according to the present invention includes a plurality of tubes in which flow paths through which refrigerant flows are formed, and a plurality of heat transfer walls extending from one to the other of adjacent tubes in the tube extending direction. A corrugated fin that is heat exchangeable with the tube.
The heat transfer wall according to the present invention includes a first heat transfer piece connected to the first edge located on the windward side of the passing air flow, and a second retreating to the leeward side of the air flow direction from the first edge. And the first heat transfer piece is arranged at least every other layer of the array.
 本発明の熱交換器は、伝熱壁が、第1縁部と、第1縁部よりも風下側に後退する第2縁部とを備え、第1縁部と第2縁部が伝熱壁の配列の方向に少なくとも一層おきに配置される。したがって、配列の方向に隣り合う第1縁部同士の間のフィンピッチを広げることができる。したがって、フィンの風上側の先端に位置する第1縁部に集中的に着霜したとしても、通風路が確保されることで、風下側において熱交換を持続することができる。
 また、本発明の熱交換器は、風下側に後退する第2縁部が存在するために、第2縁部よりも風上側において、伝熱壁が途切れることになる。したがって、除霜運転時に発生する融解水がフィンを伝って下方に流れ落ちる距離を短くできるので、本発明の熱交換器は、フィンを伝って蛇行しながら融解水が流れ落ちるのに比べて、融解水を短時間で熱交換器の外部に排出することができる。また、本発明の熱交換器は、伝熱壁が途切れることによって融解水が特に滞留しやすいチューブとの境界部位が少なくなるので、滞留する融解水の量が減少する。したがって、暖房運転を再開した後に融解水が凝固したとしても、フィンの伝熱面積を確保できる。
In the heat exchanger of the present invention, the heat transfer wall includes a first edge and a second edge that recedes leeward from the first edge, and the first edge and the second edge transfer heat. At least every other layer is arranged in the direction of the wall arrangement. Therefore, the fin pitch between the 1st edge parts adjacent to the direction of an arrangement | sequence can be expanded. Therefore, even if frost is concentrated on the first edge located at the tip of the fin on the windward side, heat exchange can be maintained on the leeward side by securing the ventilation path.
In the heat exchanger according to the present invention, since the second edge portion that recedes toward the leeward side is present, the heat transfer wall is interrupted on the windward side of the second edge portion. Therefore, since the distance that the molten water generated during the defrosting operation flows down through the fins can be shortened, the heat exchanger according to the present invention is more effective than the molten water flowing down while meandering through the fins. Can be discharged to the outside of the heat exchanger in a short time. In the heat exchanger of the present invention, since the boundary portion with the tube in which the molten water is particularly likely to stay is reduced due to the interruption of the heat transfer wall, the amount of the retained molten water is reduced. Therefore, even if the molten water solidifies after restarting the heating operation, the heat transfer area of the fins can be secured.
 本発明における各々の伝熱壁は、通過する空気流の風上側に位置する第1縁部に連なる第1伝熱片と、第1縁部よりも空気流の向きの風下側に後退する第2縁部と、を有し、第1伝熱片が、隣り合う一方のチューブの側と他方のチューブの側に、交互に配置することができる。 Each of the heat transfer walls in the present invention includes a first heat transfer piece connected to the first edge located on the windward side of the passing air flow, and a first heat transfer wall receding to the leeward side of the air flow direction from the first edge. The first heat transfer piece can be alternately arranged on the side of one adjacent tube and the side of the other tube.
 本発明の熱交換器は、伝熱壁が、第1縁部と、第1縁部よりも風下側に後退する第2縁部とを備え、第1縁部と第2縁部が伝熱壁の配列の方向に交互に配置される。したがって、配列の方向に隣り合う第1縁部同士の間には、第2縁部が風下側に後退しているために伝熱壁が存在しない部分が存在するために、フィンピッチが広がる。したがって、フィンの風上側の先端に位置する第1縁部に集中的に着霜したとしても、通風路が確保されることで、風下側において熱交換を持続することができる。 In the heat exchanger of the present invention, the heat transfer wall includes a first edge and a second edge that recedes leeward from the first edge, and the first edge and the second edge transfer heat. Alternating in the direction of the array of walls. Therefore, between the first edges adjacent to each other in the arrangement direction, there is a portion where the heat transfer wall does not exist because the second edge is retracted to the leeward side, so that the fin pitch is widened. Therefore, even if frost is concentrated on the first edge located at the tip of the fin on the windward side, heat exchange can be maintained on the leeward side by securing the ventilation path.
 本発明では、伝熱壁は、風上側に、伝熱促進手段を備えることが好ましい。
 伝熱促進手段を風上側に備えることにより、風上側で伝熱壁の伝熱性を促進できる。
 さらに、本発明では、伝熱壁は、風下側に、伝熱促進手段を備えることが好ましい。
 伝熱促進手段を風下側に備えることにより、風下側で伝熱壁の伝熱性を促進できる。
In the present invention, it is preferable that the heat transfer wall is provided with heat transfer promoting means on the windward side.
By providing the heat transfer promoting means on the windward side, the heat transfer performance of the heat transfer wall can be promoted on the windward side.
Furthermore, in this invention, it is preferable that a heat transfer wall is provided with a heat transfer promotion means on the leeward side.
By providing the heat transfer promoting means on the leeward side, the heat transfer property of the heat transfer wall can be promoted on the leeward side.
 本発明において、各々の伝熱壁は、空気流の風下側に位置する第3縁部に連なる第2伝熱片と、第3縁部よりも、風上側に後退する第4縁部と、を有し、第2伝熱片が、隣り合う一方のチューブの側と他方のチューブの側に、配列の一層おきに、交互に配置されることが好ましい。
 風下側にも伝熱壁が存在しない領域が存在するため、風下側においても融解水の排水性を向上させることができる。さらに、残留した融解水が凝固したとしても、空気と直接的に行われる熱交換に供されるフィンの伝熱面積が確保できるのに加えて、通風路が狭まりやすくなることを防止できる。
In the present invention, each heat transfer wall includes a second heat transfer piece connected to the third edge located on the leeward side of the air flow, a fourth edge that recedes further to the windward side than the third edge, It is preferable that the second heat transfer pieces are alternately arranged on the side of one adjacent tube and the side of the other tube, every other layer in the arrangement.
Since there is a region where no heat transfer wall exists on the leeward side, the drainage of the molten water can be improved also on the leeward side. Furthermore, even if the remaining molten water is solidified, in addition to ensuring the heat transfer area of the fins used for heat exchange directly with air, it is possible to prevent the ventilation path from becoming narrow.
 本発明の熱交換機構造体は、所定方向に沿って配列され、それぞれ冷媒が流れる流路が形成される複数のチューブと、隣り合うチューブの間に設けられる、チューブと熱交換可能なコルゲート型のフィンと、を備える熱交換器が、通過する空気流の向きに複数配列された熱交換器集合体であって、空気流の向きの最も風上側に配置される熱交換器が、本発明の熱交換器からなることを特徴とする。
 空気流の向きの最も風上側に本発明に係る熱交換機を設けることにより、空気流は風上側の熱交換器を通過する過程で除湿されるため、それ以降配列された熱交換器への着霜を低減できる。
The heat exchanger structure of the present invention is a corrugated type that is arranged along a predetermined direction and is provided between a plurality of tubes each having a flow path through which a refrigerant flows, and between adjacent tubes, and is capable of exchanging heat with the tubes. A heat exchanger assembly comprising a plurality of heat exchangers arranged in the direction of air flow passing therethrough, wherein the heat exchanger arranged at the furthest upstream side in the direction of air flow is It consists of a heat exchanger.
By providing the heat exchanger according to the present invention at the most upwind side in the direction of the air flow, the air flow is dehumidified in the process of passing through the heat exchanger on the upwind side. Frost can be reduced.
 以上説明した本発明の熱交換器に使用する熱交換器用のフィンは、隣り合うチューブの間に設けられる、チューブと熱交換可能なコルゲート型のフィンであることが好ましい。 The fin for a heat exchanger used in the heat exchanger of the present invention described above is preferably a corrugated fin provided between adjacent tubes and capable of exchanging heat with the tube.
 本発明によれば、コルゲートタイプのフィンを、風上側に位置する先端側のフィンピッチを広げることで、フィンの先端となる第1縁部に集中的に着霜したとしても、フィンピッチの広い部分が通風路として確保されるので、フィンの風下側では熱交換を持続することができる。したがって、本発明の熱交換器を用いる空気調和機は、除霜運転を行なうまでの時間が長くなり、除霜運転の頻度を少なくできる。
 また、本発明によれば、第1縁部と第2縁部が伝熱壁の配列の方向に交互に配置されるために、融解水を短時間で熱交換器の外に排除することができるので、融解水の排水性を向上できる。さらに本発明によれば、滞留する融解水の量が減少するので、暖房運転を再開した後に融解水が凝固したとしても、フィンの伝熱面積を確保できる。
According to the present invention, the corrugated fin has a wide fin pitch even if the fin pitch on the tip side located on the windward side is widened so that frost is concentrated on the first edge as the tip of the fin. Since the portion is secured as a ventilation path, heat exchange can be continued on the leeward side of the fin. Therefore, in the air conditioner using the heat exchanger of the present invention, the time until performing the defrosting operation becomes longer, and the frequency of the defrosting operation can be reduced.
In addition, according to the present invention, since the first edge and the second edge are alternately arranged in the direction of the heat transfer wall arrangement, the molten water can be excluded from the heat exchanger in a short time. Since it is possible, the drainage of molten water can be improved. Furthermore, according to the present invention, since the amount of retained molten water is reduced, the heat transfer area of the fin can be secured even if the molten water solidifies after restarting the heating operation.
本発明の実施形態にかかる熱交換器を示す斜視図である。It is a perspective view which shows the heat exchanger concerning embodiment of this invention. 本発明の第1実施形態にかかる熱交換器を示す部分分解斜視図である。It is a partial exploded perspective view showing the heat exchanger concerning a 1st embodiment of the present invention. 第1実施形態の熱交換器を示し、(a)は隣り合うチューブ間を示す平面図、(b)はフィンの横断面を模式的に示す図、(c)はフィンの展開図である。The heat exchanger of 1st Embodiment is shown, (a) is a top view which shows between adjacent tubes, (b) is a figure which shows the cross section of a fin typically, (c) is an expanded view of a fin. 第1実施形態の効果を説明するための模式図である。It is a schematic diagram for demonstrating the effect of 1st Embodiment. 第1実施形態の効果を説明するための模式図であり、(a)は実施形態のフィンの横断面を示し、(b)は従来のフィンの横断面を示し、(c)は実施形態の熱交換器の横断面を示し、(d)は従来の熱交換器の横断面を示している。It is a schematic diagram for demonstrating the effect of 1st Embodiment, (a) shows the cross section of the fin of embodiment, (b) shows the cross section of the conventional fin, (c) is embodiment of the embodiment The cross section of a heat exchanger is shown, (d) has shown the cross section of the conventional heat exchanger. 第1実施形態のフィンの変形例を示す斜視図である。It is a perspective view which shows the modification of the fin of 1st Embodiment. 第1実施形態のフィンの他の変形例を示す横断面図である。It is a cross-sectional view showing another modification of the fin of the first embodiment. 第1実施形態のフィンの他の変形例を示す横断面図である。It is a cross-sectional view showing another modification of the fin of the first embodiment. 本発明の第2実施形態にかかる熱交換器を示す部分分解斜視図であり、(a)は風下側にルーバを設け、(b)は風上側に起伏及び風下側にルーバを設け、(c)は風上側及び風下側の両者にルーバを設ける例を示している。It is a partial exploded perspective view which shows the heat exchanger concerning 2nd Embodiment of this invention, (a) provides a louver on the leeward side, (b) provides undulation on the leeward side and louver on the leeward side, (c ) Shows an example in which louvers are provided on both the leeward side and the leeward side. 本発明の第3実施形態にかかる熱交換器を示し、(a)は部分分解斜視図、(b)は隣り合うチューブ間を示す平面図、(c)はフィンの展開図を示す。The heat exchanger concerning 3rd Embodiment of this invention is shown, (a) is a partial exploded perspective view, (b) is a top view which shows between adjacent tubes, (c) shows the expanded view of a fin. 本発明の第4実施形態にかかる熱交換器構造体を示す斜視図である。It is a perspective view which shows the heat exchanger structure concerning 4th Embodiment of this invention. 本発明の変更例を示す図である。It is a figure which shows the example of a change of this invention.
 以下、添付図面を参照しながら、本発明の熱交換器の実施の形態を説明する。
[第1実施形態]
 本実施形態における熱交換器10は、図1~図3に示すように、冷媒が流通する複数のチューブ21と複数のフィン22を交互に積層してなるコア20と、チューブ21の端末が接続される一対のヘッダチューブ30と、を備え、外気と冷媒の間で熱交換を行うものである。
 熱交換器10は、ヒートポンプ式の空気調和機の室外熱交換器に適用される。この場合、熱交換器10は、チューブ21が鉛直方向Yに沿って起立した姿勢で、空気調和機の室外ユニットに組み込まれる。熱交換器10は、図示を省略するファンにより生ずる空気流Aを受け、この空気流がコア20のチューブ21及びフィン22の間に形成される空隙である通風路27を通過する過程で、冷媒と外気との間で熱交換を行なう。
Hereinafter, embodiments of the heat exchanger of the present invention will be described with reference to the accompanying drawings.
[First Embodiment]
As shown in FIGS. 1 to 3, the heat exchanger 10 in the present embodiment is connected to the core 20 formed by alternately laminating a plurality of tubes 21 and a plurality of fins 22 through which refrigerant flows, and the ends of the tubes 21 are connected. A pair of header tubes 30 that perform heat exchange between the outside air and the refrigerant.
The heat exchanger 10 is applied to an outdoor heat exchanger of a heat pump type air conditioner. In this case, the heat exchanger 10 is incorporated in the outdoor unit of the air conditioner with the tube 21 standing in the vertical direction Y. The heat exchanger 10 receives an air flow A generated by a fan (not shown), and the air flow passes through an air passage 27 that is a gap formed between the tube 21 and the fin 22 of the core 20. Exchanges heat with the outside air.
 チューブ21は、その軸方向に貫通する冷媒の流路を備える扁平断面の部材である。チューブ21は、熱伝導性に優れる銅又は銅合金、或いは、アルミニウム又はアルミニウム合金を押出し成形し、又は、板状素材をロール成形して作製される。
 チューブ21は、軸方向の両端末が各々ヘッダチューブ30に例えばろう付けにより接合され、軸方向に沿って内部に形成される冷媒流路21aが後述するヘッダチューブ30の冷媒流路と連通することで、チューブ21とヘッダチューブ30の間の冷媒の流通が確保される。
The tube 21 is a member having a flat cross section provided with a refrigerant flow path penetrating in the axial direction. The tube 21 is produced by extruding copper or copper alloy having excellent thermal conductivity, aluminum or aluminum alloy, or roll-molding a plate-like material.
In the tube 21, both ends in the axial direction are joined to the header tube 30 by brazing, for example, and a refrigerant channel 21a formed inside along the axial direction communicates with a refrigerant channel of the header tube 30 described later. Thus, the circulation of the refrigerant between the tube 21 and the header tube 30 is ensured.
 本実施形態では、フィン22は山折りと谷折りを交互に繰り返して成形されたコルゲートタイプのフィンを用いている。フィン22は、伝熱壁23と、間隔をあけて隣接する伝熱壁23,23とを繋ぐ折り返し24とを備えており、幅方向Xの両端で蛇行している。鉛直方向Yに複数の層が配列される伝熱壁23,23…の間隔は、略等しく設定されている。なお、一枚分の伝熱壁23が一つの層をなすものとする。
 ここでは折り返し24が矩形状の例を示しているが、折り返し24はV字状などの他の形態であってもよい。フィン22は、チューブ21と同様の材料からなる板状素材を折り曲げ成形して一体的に成形される。フィン22は風上側の形態に特徴を有するが、この特徴部分については後述する。
In the present embodiment, the fin 22 is a corrugated fin formed by alternately repeating mountain folding and valley folding. The fin 22 includes a heat transfer wall 23 and a turn-back 24 that connects the adjacent heat transfer walls 23 and 23 with a space therebetween, and meanders at both ends in the width direction X. The space | interval of the heat- transfer walls 23 and 23 ... in which a some layer is arranged in the perpendicular direction Y is set substantially equal. It is assumed that one heat transfer wall 23 forms one layer.
Here, an example in which the folding 24 is rectangular is shown, but the folding 24 may have another shape such as a V-shape. The fins 22 are integrally formed by bending a plate-like material made of the same material as the tube 21. The fin 22 has a feature in the windward side configuration, which will be described later.
 コア20は、以上のチューブ21とフィン22とが、熱交換器10の幅方向Xに交互に積層して構成される。幅方向Xに隣接するチューブ21,21の間に配置されるフィン22は、折り返し24がチューブ21,21と例えばろう付けにより接合されることで、フィン22とチューブ21は相互に熱交換が可能とされる。コア20は、幅方向Xの両端にサイドプレート26が設けられる。サイドプレート26は、コア20の補強部材として機能し、上下方向の両端部はヘッダチューブ30に支持されている。 The core 20 is configured by alternately stacking the above tubes 21 and fins 22 in the width direction X of the heat exchanger 10. The fins 22 arranged between the tubes 21 and 21 adjacent to each other in the width direction X are joined to the tubes 21 and 21 by, for example, brazing, so that the fins 22 and the tubes 21 can exchange heat with each other. It is said. The core 20 is provided with side plates 26 at both ends in the width direction X. The side plate 26 functions as a reinforcing member for the core 20, and both end portions in the vertical direction are supported by the header tube 30.
 ヘッダチューブ30は、内部に冷媒流路(図示省略)が形成される部材である。
 例えば、図中の下側に配置されるヘッダチューブ30(下部ヘッダチューブ32)の幅方向Xの一端側には冷媒の流入口が設けられ、冷凍サイクルを構成する冷媒配管から流入口に供給される冷媒は、下部ヘッダチューブ32の流路を通って、複数のチューブ21に流れ込む。図中の上側に配置されるヘッダチューブ30(上部ヘッダチューブ31)の幅方向Xの一端側には冷媒の流出口が設けられ、チューブ21を流れてきた冷媒は、上部ヘッダチューブ31に流れ込み、流出口から冷凍サイクルを構成する冷媒配管に向けて流れ出る。
 ヘッダチューブ30は、チューブ21と同様の材料から作製される。チューブ21は、一体的に作製できるし、複数の部材を組み合わせて作製することもできる。
The header tube 30 is a member in which a coolant channel (not shown) is formed.
For example, a refrigerant inlet is provided on one end side in the width direction X of the header tube 30 (lower header tube 32) arranged on the lower side in the figure, and is supplied to the inlet from refrigerant piping constituting the refrigeration cycle. The refrigerant flows through the flow path of the lower header tube 32 and flows into the plurality of tubes 21. In the header tube 30 (upper header tube 31) disposed on the upper side in the figure, a refrigerant outlet is provided on one end side in the width direction X, and the refrigerant flowing through the tube 21 flows into the upper header tube 31. It flows out from the outlet toward the refrigerant pipe constituting the refrigeration cycle.
The header tube 30 is made of the same material as the tube 21. The tube 21 can be manufactured integrally or by combining a plurality of members.
 ところで、熱交換器10を室外熱交換器として備える空気調和機が外気温度の低いときに暖房運転をしていると、フィン22には空気流Aの風上側に着霜が生じる。なお、以下、空気流Aの風上側を、単に風上側と略記することがある。風下側についても同様である。空気調和機は、付着した霜を除去するために除霜運転を例えば定期的に行なうが、除霜運転の後に、融解水が熱交換器10から十分に排水されずに残ってしまうと、暖房運転の再開後に、融解水が凍結して再び着霜するおそれがある。
 熱交換器10は、フィン22の風上側におけるフィンピッチを風下側よりも広げることにより、着霜が生じても風下側における熱交換を持続することで除霜運転を行なうまでの時間を長くする。また、熱交換器10は、融解水の排水性を向上させる。以下、この特徴部分について、図2~図4を参照して説明する。なお、図3(b)において、フィン22は、風上側の範囲Uにおける横断面を実線で示し、風下側の範囲Dにおける横断面を破線で示している。図5,図7~図9も同様である。
By the way, if the air conditioner provided with the heat exchanger 10 as an outdoor heat exchanger is performing a heating operation when the outside air temperature is low, frosting occurs on the fin 22 on the windward side of the air flow A. Hereinafter, the windward side of the airflow A may be simply referred to as the windward side. The same applies to the leeward side. The air conditioner performs a defrosting operation, for example, periodically to remove the attached frost. However, after the defrosting operation, if the molten water remains without being sufficiently drained from the heat exchanger 10, heating is performed. After resuming operation, the molten water may freeze and frost again.
The heat exchanger 10 widens the fin pitch on the windward side of the fins 22 from the leeward side, thereby extending the time until the defrosting operation is performed by maintaining the heat exchange on the leeward side even if frost formation occurs. . Moreover, the heat exchanger 10 improves the drainage of molten water. Hereinafter, this characteristic part will be described with reference to FIGS. In FIG. 3B, the fin 22 has a cross section in the leeward range U indicated by a solid line and a cross section in the leeward range D indicated by a broken line. The same applies to FIGS. 5 and 7 to 9.
[範囲UのフィンピッチP1と範囲DのフィンピッチP2の関係]
 フィン22は、図2~図3に示すように、風上側の所定範囲U(図3(a))におけるフィンピッチP1が、当該範囲よりも風下側の範囲DのフィンピッチP2に比べて広く設定されている。
 フィンピッチP1をフィンピッチP2よりも広くするために、フィン22の伝熱壁23は、以下の二つの条件を備えている。
 一つ目の条件は、伝熱壁23の中点Mを境にして、幅方向Xのいずれか一方の側が切り欠かれていることである。切り欠きの形成により、切り欠かれていない側の前縁部23aよりも、切り欠かれている側の前縁部23bが風下側に後退している。切り欠かれていない側には、前縁部23bよりも風上側に突き出す伝熱片23L,23Rが設けられている。
 二つ目の条件は、伝熱片23L,23Rが、中点Mを境にして、伝熱壁23の一層おきに、幅方向Xに交互に配置されることである。この条件は、切り欠きを主体にすると、切り欠きが、中点Mを境にして、伝熱壁23の一層おきに、幅方向Xに交互に配置されることと等価である。
 以上の二つの条件を備えることにより、範囲Uにおいて、フィン22は、中点Mを境にした一方の側(図3(b)の左側)Lにおいて、伝熱片23Lが一層おきに配置される。同様に、他方の側(図3(b)の右側)Rにおいても、伝熱片23Rが一層おきに配置される。しかも、一方の側Lと他方の側Rで、フィンピッチP1の位相が1/2(半周期)だけずれている。
 なお、伝熱片23L,23Rのチューブ21と対向する折り返しに相当する部分が切り欠かれており、フィン22は、範囲Uに折り返し24が設けられていないが、切り欠かずに当該部分に折り返しを残してもよい。また、伝熱片23L,23Rは、チューブ21と対向する縁が熱交換可能にろう付けにより接合されてもよいし、チューブ21から離れていてもよい。
[Relationship between fin pitch P1 in range U and fin pitch P2 in range D]
As shown in FIGS. 2 to 3, the fin 22 has a fin pitch P1 in a predetermined range U on the windward side (FIG. 3A) wider than the fin pitch P2 in the range D on the leeward side. Is set.
In order to make the fin pitch P1 wider than the fin pitch P2, the heat transfer wall 23 of the fin 22 has the following two conditions.
The first condition is that either side of the width direction X is cut out with the middle point M of the heat transfer wall 23 as a boundary. Due to the formation of the notch, the front edge 23b on the side that is not cut back is retracted to the leeward side from the front edge 23a on the side that is not cut. Heat transfer pieces 23 </ b> L and 23 </ b> R that protrude to the windward side of the front edge 23 b are provided on the side that is not cut out.
The second condition is that the heat transfer pieces 23L and 23R are alternately arranged in the width direction X every other layer of the heat transfer wall 23 with the middle point M as a boundary. This condition is equivalent to that the notches are alternately arranged in the width direction X every other layer of the heat transfer wall 23 with the middle point M as a boundary when the notches are mainly used.
By providing the above two conditions, in the range U, the fins 22 are arranged with the heat transfer pieces 23L every other layer on the one side L (left side of FIG. 3B) with the midpoint M as a boundary. The Similarly, on the other side (the right side in FIG. 3B) R, the heat transfer pieces 23R are arranged every other layer. Moreover, on one side L and the other side R, the phase of the fin pitch P1 is shifted by ½ (half cycle).
In addition, although the part corresponding to the return | turnback which opposes the tube 21 of the heat- transfer pieces 23L and 23R is notched, and the fin 22 is not provided with the return | turnback 24 in the range U, it does not return to the said part without being notched. May be left. Moreover, the edge which opposes the tube 21 may be joined by brazing so that the heat transfer pieces 23L and 23R may be heat-exchanged, or may be separated from the tube 21.
[フィン素材25]
 フィン22を構成するのに用いるフィン素材25は、図3(c)に示すように、前述した金属材料からなる平面が矩形の板材からなるが、フィン22として熱交換器10に組み付けられた際に風上側に対応する端縁に、複数の矩形の切り欠き25aが等間隔で形成される。隣接する切り欠き25a,25aの間に残る素材部分25bは、伝熱片23L,23Rを構成する。フィン素材25は、端縁に切り欠き25aと素材部分25bが交互に繰り返して形成されている。
[Fin material 25]
As shown in FIG. 3C, the fin material 25 used to configure the fin 22 is a plate made of a rectangular metal material as described above, but when the fin 22 is assembled to the heat exchanger 10 as the fin 22. A plurality of rectangular cutouts 25a are formed at equal intervals on the edge corresponding to the windward side. The material portion 25b remaining between the adjacent cutouts 25a and 25a constitutes the heat transfer pieces 23L and 23R. The fin material 25 is formed by alternately repeating notches 25a and material portions 25b at the end edges.
[作用・効果]
 次に、以上のフィン22を備える熱交換器10の作用及び効果について説明する。
 はじめに、図4を参照して、風下側において熱交換が持続されることについて説明する。
 フィン22は、風上側に位置する範囲UのフィンピッチP1を、風下側の範囲DのフィンピッチP2よりも広くしてある。図4に示すように、風上側に位置する伝熱壁23の前縁部23aに集中的に霜Faが付くと通風路27が狭くなるものの、フィンピッチP1が広いために、風上側が霜Faにより閉塞するまでの時間を長くすることができる。
 また、前縁部23bに霜Fbが付いたとしても、前縁部23bは風下側に後退しているために、霜Faとの間には通風路27として機能する空隙が長い時間に亘り確保される。特に、前縁部23bに達する空気流Aは前縁部23aにより除湿されることで水分の量が減少しているので、前縁部23bへの霜Fbの量は前縁部23aに比べて少なくなる。これは、通風路27として機能する空隙の確保にとって有利である。
 以上の通りであり、熱交換器10は、フィン22の風下側である範囲Dにおける熱交換を長時間に亘って持続することができるので、熱交換器10を用いる空気調和機は、除霜運転を行なう頻度を少なくできる。
 一方で、範囲Dは範囲Uよりも伝熱壁23が存在する密度が高いので、フィン22は熱交換の効率低下を最小限に抑えることができる。
[Action / Effect]
Next, the operation and effect of the heat exchanger 10 including the fins 22 will be described.
First, with reference to FIG. 4, it will be described that heat exchange is continued on the leeward side.
The fin 22 has a fin pitch P1 in the range U located on the leeward side wider than the fin pitch P2 in the range D on the leeward side. As shown in FIG. 4, when the frost Fa is concentrated on the front edge 23a of the heat transfer wall 23 located on the windward side, the ventilation path 27 is narrowed, but the fin pitch P1 is wide so that the windward side is frosted. It is possible to lengthen the time until closing with Fa.
Even if frost Fb is attached to the front edge portion 23b, the front edge portion 23b is retracted to the leeward side, so that a gap functioning as the ventilation path 27 is secured for a long time with the frost Fa. Is done. In particular, since the air flow A reaching the front edge portion 23b is dehumidified by the front edge portion 23a, the amount of moisture is reduced. Therefore, the amount of frost Fb to the front edge portion 23b is smaller than that of the front edge portion 23a. Less. This is advantageous for securing a gap that functions as the ventilation path 27.
Since it is as above and the heat exchanger 10 can maintain the heat exchange in the range D which is the leeward side of the fin 22 over a long time, the air conditioner using the heat exchanger 10 is defrosting. The frequency of driving can be reduced.
On the other hand, since the density in which the heat transfer wall 23 exists in the range D is higher than that in the range U, the fins 22 can minimize a decrease in the efficiency of heat exchange.
 次に、図5を参照して、融解水の排水性の向上について説明する。本発明における排水性の向上は、排水そのものを促進することに加え、融解水が滞留する量を低減することを含んでいる。
 はじめに、排水の促進について説明する。
 熱交換器10は、風下側に後退する前縁部23bが設けられているために、フィン22の風上側(範囲U)において伝熱壁23が途切れるので、除霜運転時に霜Fが解けて生ずる融解水Wは、図5(a)の矢印Wfに示すように、伝熱片23R,23Lの幅方向Xの両端から流れ落ちる。この融解水Wは、チューブ21(図5(a)では図示省略)と対向する側ではチューブ21を伝って下方に流れ落ち、切り欠きに臨む側ではそのまま下方に向けて落下し、熱交換器10の外部に排水される。これに対して、風下側に後退する前縁部23bを設けなければ、図5(b)に示すように、融解水Wは、矢印Wfに示すように、フィン22を伝って蛇行しながら下方に向けて流れることになる。このように、熱交換器10は、蛇行するのに比べて、融解水Wをショートカットして排水できるので、融解水Wを短時間で熱交換器10の外部に排除することができる。
 次に、滞留の低減について説明する。
 排水されなかった融解水Wは、図5(d)に示すように、折り返し24の内側INに滞留しやすい。ところが、熱交換器10は、前縁部23bを風下側に後退させており、着霜しやすい風上側の範囲Uには折り返し24の内側INが存在しないので、融解水Wが滞留するとしても、図5(c)に示すように、伝熱片23L,23Rとチューブ21の境界部分の上側に過ぎない。したがって、熱交換器10によれば、フィン22に滞留する融解水Wの量を低減できるので、暖房運転を再開した後に融解水Wが凝固したとしても、フィン22の伝熱面積をより広く確保できるのに加えて、通風路が狭まりやすくなるのを防止できる。
Next, with reference to FIG. 5, the improvement of the drainage property of the molten water will be described. The improvement of drainage in the present invention includes reducing the amount of retained molten water in addition to promoting the drainage itself.
First, the promotion of drainage will be explained.
Since the heat exchanger 10 is provided with the front edge portion 23b that recedes to the leeward side, the heat transfer wall 23 is interrupted on the windward side (range U) of the fins 22, so that the frost F is melted during the defrosting operation. The resulting molten water W flows down from both ends of the heat transfer pieces 23R, 23L in the width direction X as indicated by arrows Wf in FIG. The molten water W flows down through the tube 21 on the side facing the tube 21 (not shown in FIG. 5A), and falls down on the side facing the notch as it is. Drained outside. On the other hand, if the front edge portion 23b that recedes to the leeward side is not provided, the melted water W moves downwardly while meandering along the fins 22 as shown by the arrow Wf, as shown in FIG. 5 (b). It will flow toward. Thus, since the heat exchanger 10 can drain the molten water W as a shortcut compared to meandering, the molten water W can be removed outside the heat exchanger 10 in a short time.
Next, reduction of stay will be described.
The molten water W that has not been drained tends to stay in the inner side IN of the turn-back 24 as shown in FIG. However, the heat exchanger 10 has the front edge portion 23b retracted to the leeward side, and the inner side IN of the turn-back 24 does not exist in the leeward range U where frost formation is likely to occur. As shown in FIG. 5 (c), it is only above the boundary between the heat transfer pieces 23 </ b> L and 23 </ b> R and the tube 21. Therefore, according to the heat exchanger 10, since the amount of the molten water W staying in the fin 22 can be reduced, even if the molten water W solidifies after restarting the heating operation, a wider heat transfer area of the fin 22 is secured. In addition to this, it is possible to prevent the ventilation path from becoming narrow.
 また、熱交換器10は、伝熱片23L,23Rがチューブ21と熱交換可能に接続されていれば、範囲Uにおける伝熱性能を確保することができる。 Further, the heat exchanger 10 can ensure heat transfer performance in the range U if the heat transfer pieces 23L and 23R are connected to the tube 21 so as to be able to exchange heat.
 本実施形態に関するいくつかの変形例について説明する。
[切り欠きの平面形状]
 本実施形態はフィン22の切欠きの平面視した形状を矩形にしたが、本発明の目的を達成できる限り切り欠きの形状は任意である。例えば、図6に示すように、円形の切り欠き(図6(a))、三角形の切り欠き(図6(b))、多角形の切り欠き(図6(c))、及び、階段状の切り欠き(図6(d))などの種々の形態を採用することができる。
Several modified examples related to this embodiment will be described.
[Plane shape of cutout]
In the present embodiment, the shape of the notch of the fin 22 in plan view is rectangular, but the shape of the notch is arbitrary as long as the object of the present invention can be achieved. For example, as shown in FIG. 6, a circular cutout (FIG. 6A), a triangular cutout (FIG. 6B), a polygonal cutout (FIG. 6C), and a stepped shape Various forms such as a notch (FIG. 6D) can be adopted.
[フィンの折り返し断面形状]
 また、フィン22の折り返しのパターンも、本発明の目的を達成できる限り任意である。図7,図8は、本発明で採用できるいくつかのパターンを示しており、本発明はこれらのパターンを採用することができる。
[Folded cross-sectional shape]
Further, the folding pattern of the fins 22 is arbitrary as long as the object of the present invention can be achieved. 7 and 8 show some patterns that can be used in the present invention, and the present invention can adopt these patterns.
 図7(a)は、折り返し24に繋がる伝熱壁23の下側が切り欠かれているのに対して、図7(b)は、図7(a)とは逆に、折り返し24に繋がる伝熱壁23の上側が切りかかれている。図7(a),(b)のいずれのパターンでも、チューブ21,21の間のほぼ全域に亘って伝熱壁23が設けられる従来のコルゲートタイプのフィンに比べると、ショートカットにより融解水が下方に流れ落ちるので、融解水の排水性を促進することができる。 7A, the lower side of the heat transfer wall 23 connected to the turn 24 is cut away, whereas FIG. 7B is opposite to FIG. The upper side of the hot wall 23 is cut off. 7A and 7B, compared with the conventional corrugated fin in which the heat transfer wall 23 is provided over almost the entire area between the tubes 21 and 21, the molten water flows downward due to the shortcut. Therefore, the drainage of molten water can be promoted.
 図7(a)のパターンは伝熱壁23が水平方向に沿って形成されているが、図7(c)に示すように、伝熱壁23をフィン22の幅方向の中央に向けて上向きに傾斜させることができる。また、同様に、図7(b)のパターンは、図7(d)に示すように、伝熱壁23をフィン22の幅方向の中央に向けて下向きに傾斜させることができる。このように伝熱壁23を傾斜させることにより、融解水の排水性をより促進させることができる。 In the pattern of FIG. 7A, the heat transfer wall 23 is formed along the horizontal direction, but as shown in FIG. 7C, the heat transfer wall 23 faces upward toward the center in the width direction of the fin 22. Can be tilted. Similarly, in the pattern of FIG. 7B, the heat transfer wall 23 can be inclined downward toward the center of the fin 22 in the width direction, as shown in FIG. 7D. By inclining the heat transfer wall 23 in this way, the drainage of the molten water can be further promoted.
 次に、第1実施形態のフィン22は、幅方向Xの一方の側に設けられる伝熱片23Lと他方の側に設けられる伝熱片23Rは、鉛直方向に見て(平面視して)、重なりが生じないように設けられているが、本発明はこれに限定されない。図8(a)に示すように、フィン22の幅方向Xの中央部分で、一方の側に設けられる伝熱片23Lと他方の側に設けられる伝熱片23Rが重なりKがあってもよい。この場合でも、チューブ21に近い側では、伝熱片23L,23L…のフィンピッチP1、及び、伝熱片23R,23R…のフィンピッチP1は、範囲DにおけるフィンピッチP2の2倍と広いから、上述した範囲UのフィンピッチP1を広げることによる効果を享受することができる。
 また、本発明は、図8(b)に示すように、フィン22の幅方向Xの中央部分で、一方の側に設けられる伝熱片23Lと他方の側に設けられる伝熱片23Rの間に、幅方向の隙間Gを設けることもできる。この場合でも、図8(a)と同様に、範囲UのフィンピッチP1を広げることによる効果を享受することができる。
Next, in the fin 22 of the first embodiment, the heat transfer piece 23L provided on one side in the width direction X and the heat transfer piece 23R provided on the other side are viewed in the vertical direction (in plan view). However, the present invention is not limited to this. As shown in FIG. 8A, there may be an overlap K between the heat transfer piece 23L provided on one side and the heat transfer piece 23R provided on the other side in the center portion of the fin 22 in the width direction X. . Even in this case, on the side close to the tube 21, the fin pitch P1 of the heat transfer pieces 23L, 23L, and the fin pitch P1 of the heat transfer pieces 23R, 23R, ... are as wide as twice the fin pitch P2 in the range D. The effect of widening the fin pitch P1 in the range U described above can be enjoyed.
Moreover, as shown in FIG.8 (b), this invention is the center part of the width direction X of the fin 22, between the heat transfer piece 23L provided in one side, and the heat transfer piece 23R provided in the other side. In addition, a gap G in the width direction can be provided. Even in this case, the effect of widening the fin pitch P1 in the range U can be enjoyed as in FIG.
 次に、第1実施形態のフィン22は、フィン素材25の一部を切り欠くことで範囲UのフィンピッチP1を広げているが、本発明はこれに限定されない。
 図8(c)に示すように、伝熱片23L,Rを下向きに折り曲げることで、切り欠きに相当する領域を形成することもできる。そうすれば、第1実施形態のフィン22と同様に、範囲UのフィンピッチP1を範囲DのフィンピッチP2よりも広げることができる。折り曲げにより生じた垂下片23eは、図8(c)に示すように、その先端が下層に位置する伝熱壁23の表面に接触してもよいし、図8(d)に示すように、その先端が下層に位置する伝熱壁23の表面から離れていてもよい。いずれにしても、垂下片23eは、融解水を下向きに誘導する経路を構成し、排水を促進するのに寄与する。なお、折り曲げる角度は任意である。
Next, although the fin 22 of 1st Embodiment expands the fin pitch P1 of the range U by notching a part of fin raw material 25, this invention is not limited to this.
As shown in FIG. 8C, a region corresponding to the notch can also be formed by bending the heat transfer pieces 23L and R downward. Then, the fin pitch P1 in the range U can be made larger than the fin pitch P2 in the range D, as with the fins 22 of the first embodiment. The drooping piece 23e generated by the bending may contact the surface of the heat transfer wall 23 located at the lower layer as shown in FIG. 8C, or as shown in FIG. The tip may be separated from the surface of the heat transfer wall 23 located in the lower layer. In any case, the drooping piece 23e constitutes a path for guiding the molten water downward and contributes to promoting drainage. The bending angle is arbitrary.
[第2実施形態]
 次に、フィン22は、以下説明するように、風上側及び風下側の一方または双方の伝熱性を向上させる手段を設けることができる。
[Second Embodiment]
Next, as will be described below, the fins 22 can be provided with means for improving the heat conductivity of one or both of the windward side and the leeward side.
<第2-1形態>
 その一例として、図9(a)に示すように、フィン22(伝熱壁23)の風下側にルーバ28を形成することができる(第2-1形態)。
 風上側よりも風下側のフィン22の伝熱性能を高くすれば、風上側における除湿が抑えられる結果として、風下側でも除湿させることができる。ここで、着霜は、フィン22による除湿が一つの要因となって生ずるものであるから、第2-1形態のように風下側の伝熱性能を高くすれば、風上側に集中的に着想するのが抑制されるので通風路27を確保するのが容易である。したがって、第2-1形態によれば、風量低下による暖房能力低下を緩和することができるのに加えて、風下側における熱交換を持続できるので、暖房運転を継続できる時間を長くすることができる。一方、フィン22の風上側は加工を要しないので、加工コストの増加を抑えることができる。
<2-1 type>
As an example thereof, as shown in FIG. 9A, a louver 28 can be formed on the leeward side of the fin 22 (heat transfer wall 23) (second type 2-1).
If the heat transfer performance of the fins 22 on the leeward side is made higher than that on the leeward side, dehumidification on the leeward side can be suppressed, so that dehumidification can also be performed on the leeward side. Here, frost formation is caused by dehumidification by the fins 22, so if the heat transfer performance on the leeward side is increased as in the case of the embodiment 2-1, the idea is concentrated on the leeward side. Since it is suppressed, it is easy to ensure the ventilation path 27. FIG. Therefore, according to the 2-1 mode, in addition to alleviating the heating capacity decrease due to the decrease in the air volume, the heat exchange on the leeward side can be continued, so the time during which the heating operation can be continued can be lengthened. . On the other hand, since the upwind side of the fin 22 does not require processing, an increase in processing cost can be suppressed.
 ルーバ28は、伝熱壁23を切り起こすことによって形成されたものであり、ルーバ28を通過する空気の流れを乱すことで、空気と伝熱壁23の間の伝熱性が促進される。なお、後述する起伏29と比べるとルーバ28の方が伝熱性を促進する効果が大きい。
 また、ルーバ28を設ける領域は任意であり、風下側に限らず、風上側に設けることもできる。
The louver 28 is formed by cutting and raising the heat transfer wall 23, and the heat transfer between the air and the heat transfer wall 23 is promoted by disturbing the flow of air passing through the louver 28. Note that the louver 28 has a greater effect of promoting heat transfer than the undulation 29 described later.
Moreover, the area | region which provides the louver 28 is arbitrary, and can also be provided not only on the leeward side but on the leeward side.
<第2-2形態>
 本発明は、風上側の伝熱性を向上することもできる。
 その一例として、図9(b)に示すように、フィン22(伝熱壁23)の風上側に起伏29を形成することができる(第2-2形態)。この起伏29は、伝熱壁23の縦断面において波形をなしており、風上側から風下側に向けて山、谷、山…が繰り返される形状を有している。
 風上側に起伏29を形成することにより、風上側における伝熱面積が増加するので、平板からなるフィンに比べて伝熱性を向上できる。しかも、起伏29を気流が通過する過程で、渦流が発生することによっても伝熱性を向上できる。
 風上側の伝熱性を向上するには、起伏29に限らず、図9(c)に示すように、ルーバ28を設けることもできる。
<2-2 type>
The present invention can also improve the heat transfer on the windward side.
As an example thereof, as shown in FIG. 9B, a undulation 29 can be formed on the windward side of the fin 22 (heat transfer wall 23) (second type 2-2). This undulation 29 has a waveform in the longitudinal section of the heat transfer wall 23, and has a shape in which mountains, valleys, mountains,... Are repeated from the windward side toward the leeward side.
By forming the undulations 29 on the windward side, the heat transfer area on the windward side is increased, so that the heat transfer performance can be improved compared to fins made of flat plates. In addition, heat transfer can be improved by generating eddy currents in the process of airflow passing through the undulations 29.
In order to improve the heat transfer on the windward side, not only the undulation 29 but also a louver 28 can be provided as shown in FIG.
[第3実施形態]
 本発明は、風下側のフィン22の先端側に、第1実施形態の風上側のフィン22の先端側と同様の構成を設けることができる。つまり、図10に示すように、伝熱壁23の中点Mを境にして、幅方向Xのいずれか一方の側が切り欠かれていることである。切り欠きの形成により、切り欠かれていない側の前縁部23cよりも、切り欠かれている側の前縁部23dが風上側に後退している。切り欠かれていない側には、前縁部23dよりも風下側に突き出す伝熱片23L,23Rが設けられている。また、伝熱片23L,23Rが、中点Mを境にして、伝熱壁23の一層おきに、幅方向Xに交互に配置されている。
 着霜は、風上側よりは少ないとはいえ、フィン22の風下側においても生ずるので、除霜運転を行なうとフィン22の風下側でも融解水が滞留し得る。そこで、第3実施形態は、風下側にもフィンピッチを広げる構成を採用することによって、風下側においても滞留する融解水の量を減少させる。そうすれば、暖房運転を再開した後に残留した融解水が凝固したとしても、熱交換に供されるフィン22の伝熱面積が確保できるのに加えて、通風路が狭まりやすくなるのを防止できる。
 フィンピッチを広げる構成については、第1実施形態の欄で説明したように、種々の形態を採用できる。
[Third Embodiment]
In the present invention, the same configuration as the front end side of the windward fin 22 of the first embodiment can be provided on the front end side of the leeward fin 22. That is, as shown in FIG. 10, one side of the width direction X is notched with the middle point M of the heat transfer wall 23 as a boundary. Due to the formation of the cutout, the front edge portion 23d on the side that is not cut away from the front edge portion 23c on the side that is not cut out is retracted to the windward side. Heat transfer pieces 23L and 23R are provided on the non-notched side to protrude leeward from the front edge 23d. Further, the heat transfer pieces 23L and 23R are alternately arranged in the width direction X every other layer of the heat transfer wall 23 with the middle point M as a boundary.
Although frost formation is less on the leeward side, the frost formation also occurs on the leeward side of the fins 22, so that when the defrosting operation is performed, the molten water may stay on the leeward side of the fins 22. Therefore, the third embodiment reduces the amount of molten water staying on the leeward side by adopting a configuration in which the fin pitch is widened also on the leeward side. Then, even if the molten water remaining after resuming the heating operation is solidified, in addition to ensuring the heat transfer area of the fins 22 used for heat exchange, it is possible to prevent the ventilation path from being easily narrowed. .
About the structure which expands a fin pitch, as demonstrated in the column of 1st Embodiment, a various form is employable.
[第4実施形態]
 空気調和機は、図11に示すように、高い伝熱性を得るために、風の流れる向きに複数台(ここでは2台)の熱交換器10(10a,10b)を配列することがある。本発明は、複数台の熱交換器10を備える空気調和機に適用することができる。
 ただし、風上側に配置される熱交換器10aについて本発明を適用するべきであるが、風下側に配置される熱交換器10bについては適用の必要性は小さい。それは、除霜運転時に、風下側の熱交換器10bには、風上側の熱交換器10aを通過した空気流が流入するが、この空気流は風上側の熱交換器10aを通過する過程で除湿されているために、着霜の量が少ないか、または、着霜が殆ど生じないからである。もちろん、風下側の熱交換器10bに本発明を適用することを排除するものではないが、風下側の熱交換器10bは、フィンの伝熱面積を確保し伝熱性の損失を極力抑えることが、複数台の熱交換器を設ける趣旨に合う。
 2台に限らず、3台以上の熱交換器を備える場合であっても、最も風上側に配置される熱交換器に本発明を適用すればたりる。ここで言う「本発明の適用」とは、これまで説明した第1実施形態~第3実施形態で開示される個々の要素を全て含んでいる。
[Fourth Embodiment]
As shown in FIG. 11, the air conditioner may arrange a plurality of (here, two) heat exchangers 10 (10a, 10b) in the direction in which the wind flows in order to obtain high heat transfer properties. The present invention can be applied to an air conditioner including a plurality of heat exchangers 10.
However, although the present invention should be applied to the heat exchanger 10a disposed on the leeward side, the necessity for application is small for the heat exchanger 10b disposed on the leeward side. During the defrosting operation, the airflow that has passed through the windward heat exchanger 10a flows into the leeward heat exchanger 10b, and this airflow passes through the windward heat exchanger 10a. This is because the amount of frost formation is small or almost no frost formation occurs due to dehumidification. Of course, the application of the present invention to the leeward heat exchanger 10b is not excluded, but the leeward heat exchanger 10b can secure the heat transfer area of the fins and suppress the heat transfer loss as much as possible. It fits the purpose of providing a plurality of heat exchangers.
Even if it is a case where not only two but three or more heat exchangers are provided, the present invention may be applied to a heat exchanger arranged on the furthest side. The “application of the present invention” mentioned here includes all the individual elements disclosed in the first to third embodiments described so far.
 以上、本発明の実施の形態を説明したが、本発明の主旨を逸脱しない限り、上記実施形態で挙げた構成を取捨選択したり、他の構成に適宜変更することが可能である。
 例えば、図12(a)に示すように、伝熱壁23の幅方向の両側を切り欠いても、フィンピッチの拡大、融解水の排水性向上という効果を得ることができる。また、図12(b)に示すように、伝熱片23Lと伝熱片23Rを例えば二層おきに配置することもできる。
The embodiment of the present invention has been described above. However, the configuration described in the above embodiment can be selected or modified as appropriate to another configuration without departing from the gist of the present invention.
For example, as shown in FIG. 12 (a), even if both sides in the width direction of the heat transfer wall 23 are cut out, the effect of increasing the fin pitch and improving the drainage of the molten water can be obtained. Moreover, as shown in FIG.12 (b), the heat-transfer piece 23L and the heat-transfer piece 23R can also be arrange | positioned, for example every two layers.
10,10a,10b 熱交換器
20  コア
21  チューブ
21a 冷媒流路
22  フィン
23  伝熱壁
23L,23R 伝熱片
23a~23d 前縁部
23e 垂下片
25  フィン素材
25b 素材部分
26  サイドプレート
27  通風路
28  ルーバ
29  起伏
30  ヘッダチューブ
31  上部ヘッダチューブ
32  下部ヘッダチューブ
A   空気流
F,Fa,Fb  霜
G   隙間
IN  内側
M   中点
P1  フィンピッチ
P2  フィンピッチ
D,U   範囲
W   融解水
X   幅方向
Y   鉛直方向
10, 10a, 10b Heat exchanger 20 Core 21 Tube 21a Refrigerant flow path 22 Fin 23 Heat transfer wall 23L, 23R Heat transfer piece 23a to 23d Front edge 23e Drooping piece 25 Fin material 25b Material portion 26 Side plate 27 Ventilation path 28 Louver 29 Relief 30 Header tube 31 Upper header tube 32 Lower header tube A Air flow F, Fa, Fb Frost G Clearance IN Inside M Middle point P1 Fin pitch P2 Fin pitch D, U Range W Molten water X Width direction Y Vertical direction

Claims (7)

  1.  冷媒が流れる流路が形成される複数のチューブと、
     隣り合う前記チューブの一方から他方に亘る伝熱壁が、前記チューブの延設方向に複数配列される、前記チューブと熱交換可能なコルゲート型のフィンと、を備え、
     通過する空気流の風上側に位置する第1縁部に連なる第1伝熱片と、
     前記第1縁部よりも前記空気流の向きの風下側に後退する第2縁部と、を有する前記伝熱壁を備え、
     前記第1伝熱片は、前記配列の少なくとも一層おきに配置される、
    ことを特徴とする熱交換器。
    A plurality of tubes in which flow paths through which the refrigerant flows are formed;
    A plurality of heat transfer walls extending from one to the other of the adjacent tubes in the extending direction of the tubes, and corrugated fins capable of exchanging heat with the tubes,
    A first heat transfer piece connected to a first edge located on the windward side of the passing air flow;
    A heat transfer wall having a second edge that recedes toward the leeward side of the airflow direction than the first edge;
    The first heat transfer piece is disposed at least every other layer of the array,
    A heat exchanger characterized by that.
  2.  前記第1伝熱片は、隣り合う一方の前記チューブの側と他方の前記チューブの側に、前記配列の少なくとも一層おきに、交互に配置される、
    請求項1に記載の熱交換器。
    The first heat transfer pieces are alternately arranged on the side of the one adjacent tube and the side of the other tube, at least every other layer of the array,
    The heat exchanger according to claim 1.
  3.  前記伝熱壁は、
     前記風上側に、伝熱促進手段を備える、
    ことを特徴とする請求項1又は2に記載の熱交換器。
    The heat transfer wall is
    On the windward side, provided with heat transfer promoting means,
    The heat exchanger according to claim 1 or 2, characterized in that.
  4.  前記伝熱壁は、
     前記風下側に、伝熱促進手段を備える、
    ことを特徴とする請求項1~請求項3のいずれか一項に記載の熱交換器。
    The heat transfer wall is
    On the leeward side, heat transfer promotion means is provided,
    The heat exchanger according to any one of claims 1 to 3, wherein:
  5.  各々の前記伝熱壁は、
     前記空気流の前記風下側に位置する第3縁部に連なる第2伝熱片と、
     前記第3縁部よりも、前記風上側に後退する第4縁部と、を有し、
     前記第2伝熱片が、隣り合う一方の前記チューブの側と他方の前記チューブの側に、前記配列の一層おきに、交互に配置される、
    請求項1~請求項4のいずれか一項に記載の熱交換器。
    Each of the heat transfer walls is
    A second heat transfer piece connected to a third edge located on the leeward side of the air flow;
    A fourth edge that recedes to the windward side than the third edge,
    The second heat transfer pieces are alternately arranged on the side of the one adjacent tube and the other side of the tube, every other layer of the array,
    The heat exchanger according to any one of claims 1 to 4.
  6.  所定方向に沿って配列され、それぞれ冷媒が流れる流路が形成される複数のチューブと、
     隣り合う前記チューブの間に設けられる、前記チューブと熱交換可能なコルゲート型のフィンと、を備える熱交換器が、通過する空気流の向きに複数配列された熱交換器集合体であって、
     前記空気流の向きの最も風上側に配置される前記熱交換器が、
     請求項1~請求項5のいずれか一項に記載の熱交換器からなることを特徴とする熱交換器構造体。
    A plurality of tubes arranged along a predetermined direction, each having a flow path through which a refrigerant flows;
    A heat exchanger assembly comprising a plurality of corrugated fins provided between adjacent tubes and capable of exchanging heat with the tubes, is a heat exchanger assembly in which a plurality of heat exchangers are arranged in the direction of air flow passing therethrough,
    The heat exchanger arranged on the most windward side of the air flow direction,
    A heat exchanger structure comprising the heat exchanger according to any one of claims 1 to 5.
  7.  隣り合う前記チューブの間に設けられる、前記チューブと熱交換可能なコルゲート型のフィンであって、
     前記フィンが、
     請求項1~請求項5のいずれか一項に記載のフィンからなることを特徴とする熱交換器用のフィン。
    A corrugated fin provided between the adjacent tubes and capable of heat exchange with the tube,
    The fin is
    A fin for a heat exchanger, comprising the fin according to any one of claims 1 to 5.
PCT/JP2013/004041 2013-06-28 2013-06-28 Heat exchanger, heat exchanger structure, and fin for heat exchanger WO2014207785A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2013/004041 WO2014207785A1 (en) 2013-06-28 2013-06-28 Heat exchanger, heat exchanger structure, and fin for heat exchanger
EP13888478.8A EP3015808B1 (en) 2013-06-28 2013-06-28 Heat exchanger, heat exchanger structure, and fin for heat exchanger
JP2015523665A JPWO2014207785A1 (en) 2013-06-28 2013-06-28 Heat exchanger, heat exchanger structure, and fin for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/004041 WO2014207785A1 (en) 2013-06-28 2013-06-28 Heat exchanger, heat exchanger structure, and fin for heat exchanger

Publications (1)

Publication Number Publication Date
WO2014207785A1 true WO2014207785A1 (en) 2014-12-31

Family

ID=52141194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004041 WO2014207785A1 (en) 2013-06-28 2013-06-28 Heat exchanger, heat exchanger structure, and fin for heat exchanger

Country Status (3)

Country Link
EP (1) EP3015808B1 (en)
JP (1) JPWO2014207785A1 (en)
WO (1) WO2014207785A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018009743A (en) * 2016-07-14 2018-01-18 日立ジョンソンコントロールズ空調株式会社 Heat exchanger
JPWO2018008134A1 (en) * 2016-07-07 2019-03-14 三菱電機株式会社 Heat exchanger
JP6734002B1 (en) * 2019-11-11 2020-08-05 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JPWO2021095538A1 (en) * 2019-11-11 2021-05-20
US11035623B2 (en) 2018-03-02 2021-06-15 Hitachi-Johnson Conrols Air Conditioning, Inc. Heat exchanger, outdoor unit, refrigeration cycle device, and heat exchanger manufacturing method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6766722B2 (en) 2017-03-27 2020-10-14 ダイキン工業株式会社 Heat exchanger or refrigeration equipment
WO2018180934A1 (en) * 2017-03-27 2018-10-04 ダイキン工業株式会社 Heat exchanger and refrigeration device
JP6880901B2 (en) 2017-03-27 2021-06-02 ダイキン工業株式会社 Heat exchanger unit
AU2018246166B2 (en) 2017-03-27 2020-12-24 Daikin Industries, Ltd. Heat exchanger and refrigeration apparatus
JP6766723B2 (en) 2017-03-27 2020-10-14 ダイキン工業株式会社 Heat exchanger or refrigeration equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326694Y2 (en) * 1973-05-12 1978-07-07
JPS5916955U (en) * 1982-07-23 1984-02-01 カルソニックカンセイ株式会社 Evaporator
JPS5994270U (en) * 1982-12-16 1984-06-26 昭和アルミニウム株式会社 Condensation water drainage device in evaporator
JPH0396582U (en) * 1989-12-27 1991-10-02
JP2002130973A (en) * 2000-10-25 2002-05-09 Zexel Valeo Climate Control Corp Heat exchanger
DE102005044754A1 (en) * 2005-09-20 2007-03-29 Behr Gmbh & Co. Kg Heat exchanger has two or more rows of flat pipes with pipes of one row off-set relative to pipes of adjoining row and welded to corrugated fins
JP2009270792A (en) * 2008-05-09 2009-11-19 Sharp Corp Heat exchanger
JP2012072955A (en) 2010-09-29 2012-04-12 Mitsubishi Heavy Ind Ltd Heat exchanger
US20120227945A1 (en) * 2009-09-16 2012-09-13 Carrier Corporation Free-draining finned surface architecture for heat exchanger

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918179U (en) * 1982-07-26 1984-02-03 カルソニックカンセイ株式会社 Evaporator
JPH06347185A (en) * 1993-06-07 1994-12-20 Matsushita Refrig Co Ltd Heat exchanger
JP2005106328A (en) * 2003-09-29 2005-04-21 Sanden Corp Heat exchanging device
JP4674602B2 (en) * 2007-11-22 2011-04-20 株式会社デンソー Heat exchanger

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326694Y2 (en) * 1973-05-12 1978-07-07
JPS5916955U (en) * 1982-07-23 1984-02-01 カルソニックカンセイ株式会社 Evaporator
JPS5994270U (en) * 1982-12-16 1984-06-26 昭和アルミニウム株式会社 Condensation water drainage device in evaporator
JPH0396582U (en) * 1989-12-27 1991-10-02
JP2002130973A (en) * 2000-10-25 2002-05-09 Zexel Valeo Climate Control Corp Heat exchanger
DE102005044754A1 (en) * 2005-09-20 2007-03-29 Behr Gmbh & Co. Kg Heat exchanger has two or more rows of flat pipes with pipes of one row off-set relative to pipes of adjoining row and welded to corrugated fins
JP2009270792A (en) * 2008-05-09 2009-11-19 Sharp Corp Heat exchanger
US20120227945A1 (en) * 2009-09-16 2012-09-13 Carrier Corporation Free-draining finned surface architecture for heat exchanger
JP2012072955A (en) 2010-09-29 2012-04-12 Mitsubishi Heavy Ind Ltd Heat exchanger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3015808A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018008134A1 (en) * 2016-07-07 2019-03-14 三菱電機株式会社 Heat exchanger
JP2018009743A (en) * 2016-07-14 2018-01-18 日立ジョンソンコントロールズ空調株式会社 Heat exchanger
US11035623B2 (en) 2018-03-02 2021-06-15 Hitachi-Johnson Conrols Air Conditioning, Inc. Heat exchanger, outdoor unit, refrigeration cycle device, and heat exchanger manufacturing method
JP6734002B1 (en) * 2019-11-11 2020-08-05 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JPWO2021095538A1 (en) * 2019-11-11 2021-05-20
WO2021095087A1 (en) * 2019-11-11 2021-05-20 三菱電機株式会社 Heat exchanger and refrigeration cycle device
WO2021095538A1 (en) * 2019-11-11 2021-05-20 三菱電機株式会社 Heat exchanger, refrigeration cycle device, and method for producing corrugated fin
JP7191247B2 (en) 2019-11-11 2022-12-16 三菱電機株式会社 Heat exchanger, refrigeration cycle device, corrugated fin manufacturing device, and corrugated fin manufacturing method
US20240085122A1 (en) * 2019-11-11 2024-03-14 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus

Also Published As

Publication number Publication date
EP3015808B1 (en) 2018-08-29
EP3015808A4 (en) 2016-07-27
JPWO2014207785A1 (en) 2017-02-23
EP3015808A1 (en) 2016-05-04

Similar Documents

Publication Publication Date Title
WO2014207785A1 (en) Heat exchanger, heat exchanger structure, and fin for heat exchanger
JP5863956B2 (en) HEAT EXCHANGER, HEAT EXCHANGER MANUFACTURING METHOD, AND AIR CONDITIONER
JP5177306B2 (en) Heat exchanger and air conditioner
WO2013161802A1 (en) Heat exchanger and air conditioner
JP2007232246A (en) Heat exchanger
JP6165360B2 (en) Heat exchanger and air conditioner
CN103314267B (en) Heat exchanger and air conditioner
JP4930413B2 (en) Heat exchanger
JPWO2018003123A1 (en) Heat exchanger and refrigeration cycle apparatus
JP6330577B2 (en) Fin and tube heat exchanger
JP2013250016A (en) Fin tube heat exchanger
JPH0829016A (en) Outdoor heat exchanger for heat pump
JP2009204277A (en) Heat exchanger
JP2004271113A (en) Heat exchanger
JP2005201492A (en) Heat exchanger
JP5736794B2 (en) Heat exchanger and air conditioner
JP5569409B2 (en) Heat exchanger and air conditioner
JP7133063B1 (en) Heat exchanger
JP6355915B2 (en) Heat exchanger and heat exchanger structure
JP2010139115A (en) Heat exchanger and heat exchanger unit
JP2010236745A (en) Air heat exchanger
WO2016031032A1 (en) Heat exchanger and air conditioner
JP2012154492A (en) Heat exchanger and air conditioner
JP5815128B2 (en) Heat exchanger and air conditioner
JP2009204278A (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888478

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015523665

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013888478

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE