WO2014206110A1 - 多天线***和移动终端 - Google Patents

多天线***和移动终端 Download PDF

Info

Publication number
WO2014206110A1
WO2014206110A1 PCT/CN2014/073003 CN2014073003W WO2014206110A1 WO 2014206110 A1 WO2014206110 A1 WO 2014206110A1 CN 2014073003 W CN2014073003 W CN 2014073003W WO 2014206110 A1 WO2014206110 A1 WO 2014206110A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
dielectric substrate
pifa
type
antennas
Prior art date
Application number
PCT/CN2014/073003
Other languages
English (en)
French (fr)
Inventor
翟会清
李桐
李桂红
梁昌洪
余荣道
刘晟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14817649.8A priority Critical patent/EP2999046B1/en
Publication of WO2014206110A1 publication Critical patent/WO2014206110A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element

Definitions

  • Multi-antenna system and mobile terminal This application claims priority to Chinese Patent Application No. 201310269571.0, entitled “Multi-antenna System and Mobile Terminal", filed on June 28, 2013, the entire contents of which are incorporated by reference. Combined in this application.
  • the present invention relates to the field of wireless communication technologies, and in particular, to a multi-antenna system and a mobile terminal.
  • Antennas are an important component of wireless communication systems.
  • a single antenna is typically used to transmit and receive signals.
  • the channel is affected by environmental factors such as terrain, temperature, and humidity, causing radio waves to fading in the air. It affects the quality of mobile communication. Therefore, it is difficult to maintain better communication performance in a complex propagation environment using only a single antenna.
  • MIMO Multi-Input Multi-Output
  • the Magnetic Compatibility results in reduced antenna efficiency, which affects the communication quality of the mobile terminal.
  • EMC Magnetic Compatibility
  • an embodiment of the present invention provides a multi-antenna system and a mobile terminal to achieve higher isolation while increasing the number of antennas in a dual-frequency mobile terminal.
  • a multi-antenna system including: two metal floors, including a first metal floor and a second metal floor, wherein the first metal floor and the second metal floor are located in the same orientation plane.
  • the distance between the two metal floors is greater than or equal to a first preset threshold;
  • the two dielectric substrates include a first dielectric substrate and a second dielectric substrate, and the first dielectric substrate and the second dielectric substrate are located In the same orientation plane, the first dielectric substrate is located above the first metal floor, the second dielectric substrate is located above the second metal floor, and a distance between the two dielectric substrates is greater than or Equal to the second preset threshold;
  • each of the first PIFA antennas comprising a radiation patch, a probe type feed line and a metal shorting pin, the first type of PIFA antenna having a first radiation patch Slot
  • Two of the first type of PIFA antennas are disposed on each of the two dielectric substrates, and the first type of PIFA antennas are provided with isolation branches; two of the first dielectric substrates are A radiation patch of the first type of PIFA antenna is disposed on the first dielectric substrate, and the probe type feed line and the metal shorting pin of the first type of PIFA antenna are connected to the first metal floor below the first dielectric substrate a radiation patch of two of the first type of PIFA antennas on the second dielectric substrate is disposed on the second dielectric substrate, and the probe type feed line and the metal shorting pin of the first type of PIFA antenna The second metal floor below the second dielectric substrate is connected; four of the first type of PIFA antennas are symmetric about the XOZ plane and the YOZ plane.
  • the first preset threshold is 30 mm.
  • the second preset threshold is 40 mm.
  • the method further includes: a second PIFA antenna, including a radiation patch, a probe type feeder, and a metal shorting pin, wherein the radiation patch of the second PIFA antenna is provided with a second slot;
  • the radiation patch of the second PIFA antenna is disposed at 1 mm to 5 mm above the at least one of the two dielectric substrates, and the probe type feeder and the metal shorting pin of the second PIFA antenna are A metal floor below the at least one dielectric substrate is connected; an isolation branch is disposed between the first type of PIFA antenna and the second type of PIFA antenna.
  • the second type of PIFA antennas are disposed on the first dielectric substrate and the second At the 1 mm to 5 mm above the dielectric substrate, four of the first PIFA antennas and two of the second PIFA antennas are symmetrical about the XOZ plane and the YOZ plane.
  • the first slot is a U-shaped slot.
  • the second slot is a line-shaped slot.
  • the radiation patch of the first type of PIFA antenna and the second type of PIFA antenna is rectangle.
  • the dielectric substrate has a dielectric constant of 1 to 9.8.
  • an embodiment of the present invention provides a mobile terminal, including a mobile terminal body and any one of the foregoing multiple antenna systems, where the mobile terminal body is connected to the multiple antenna system, and the multiple antenna system is used to The mobile terminal body transmits and receives signals.
  • the multi-antenna system and the mobile terminal implement dual-band through the PIFA antenna on the dielectric substrate and the slot on the radiating patch of the antenna, and the isolation between the antennas is improved by providing isolation branches between the antennas.
  • the isolation between the antennas on the two dielectric substrates is further improved by two separate dielectric substrates and metal floors.
  • the antenna adopts a PIFA antenna, so that the multi-antenna system and the mobile terminal can increase the number of antennas as much as possible in a limited space.
  • FIG. 1 is a schematic structural diagram of a multi-antenna system according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a multi-antenna system according to another embodiment of the present invention
  • FIG. 3 is a schematic diagram of a multi-antenna system according to another embodiment of the present invention
  • Figure 4 is a schematic view of the multi-antenna system of Figure 3 in the XOY plane
  • Figure 5a is a front view of the antenna 1 in the multi-antenna system of Figure 3
  • Figure 5b is a side view of Figure 5a
  • Figure 6a is a view 3 is a front view of the antenna 5 in the multi-antenna system
  • FIG. 6b is a side view of FIG. 6a
  • FIG. 7a and FIG. 7b are S-parameter simulation diagrams of the multi-antenna system of FIG. 3 in the 2.53 GHz to 2.62 GHz band;
  • Figure 8b is a S-parameter simulation diagram of the multi-antenna system shown in Figure 3 in the 3.45 GHz - 3.6 GHz band;
  • FIG. 9a is a simulated radiation pattern of the antenna 1 at 2.58 GHz in the multi-antenna system shown in FIG. 3;
  • FIG. 9b is a simulated radiation pattern of the antenna 1 at 3.5 GHz in the multi-antenna system shown in FIG. 3;
  • FIG. 10b is a simulated radiation pattern of the antenna 5 at 3.5 GHz in the multi-antenna system shown in FIG. 3;
  • FIG. 11 is a movement diagram of another embodiment of the present invention. Schematic diagram of the structure of the terminal.
  • FIG. 1 is a schematic structural diagram of a multi-antenna system according to an embodiment of the present invention.
  • the multi-antenna system includes: two metal floors, two dielectric substrates, four first PIFA antennas, and four isolation branches.
  • the two metal floors include a metal floor 8a and a metal floor 8b.
  • the metal floor 8a and the metal floor 8b are located in the same azimuth plane, and the distance between the two metal floors is greater than or equal to a first preset threshold such as 30 mm.
  • the coupling between the antenna 1 and the antenna 3 on the dielectric substrate 7a and the antenna 4 and the antenna 6 on the dielectric substrate 7b can be reduced, and the isolation between the antenna 1 and the antenna 3 and the antenna 4 and the antenna 6 can be improved.
  • the two dielectric substrates include a dielectric substrate 7a and a dielectric substrate 7b.
  • the dielectric substrate 7a and the dielectric substrate 7b are located in the same azimuth plane.
  • the dielectric substrate 7a is located above the metal floor 8a, and the dielectric substrate 7b is located above the metal floor 8b.
  • the distance between the dielectric substrates is greater than or equal to a second predetermined threshold such as 40 mm, and the coupling between the antenna 1 and the antenna 3 on the dielectric substrate 7a and the antenna 4 and the antenna 6 on the dielectric substrate 7b can be reduced.
  • the four first type of PIFA antennas include: antenna 1, antenna 3, antenna 4, and antenna 6, each of the first pjpA antennas including a radiation patch, a probe type feeder, and a metal shorting pin, such as antenna 1 including a radiation patch ld , probe type feeder la and metal shorting pin lb (see description below and Figure 3 - Figure 5b).
  • a first slot is provided on the radiation patch of the first type of PIFA antenna.
  • the shape of the first slot is not limited as long as the associated antenna can be operated in a new frequency band.
  • a U-shaped slot lc is etched on the radiation patch Id of the antenna 1.
  • Two first type of PIFA antennas are disposed on each of the two dielectric substrates, and an isolation branch is disposed between the first type of PIFA antennas.
  • an antenna 1 and an antenna 3 are disposed on a dielectric substrate 7a
  • an antenna 4 and an antenna 6 are disposed on the dielectric substrate 7b
  • an isolation branch 11 and an isolation are provided between the antenna 1 and the antenna 3, and the antenna 4 and the antenna 6 are provided.
  • Branch section 12 Specifically, the isolation branch 11 and the isolation branch 12 are printed on the dielectric substrate 7a and the dielectric substrate 7b.
  • the isolation branch 11 is an E-shaped isolation branch, including a horizontal branch 111, a first longitudinal branch 112, a second longitudinal branch 113, and a third longitudinal branch 114.
  • the horizontal branch 111 is located on the side of the antenna 1 and the antenna 3 close to the dielectric substrate 7b, and is used to isolate the antenna 1 and the antenna 3 from the antenna 4 and the antenna 6.
  • the first longitudinal branch 112 is located between the antenna 1 and the antenna 3 to isolate the antenna 1 and the antenna 3; the second longitudinal branch 113 and the third longitudinal branch 114 are respectively located outside the antenna 3 and outside the antenna 1, for the antenna 1.
  • Antenna 3 is isolated from the outside world.
  • the isolation branch 12 is a T-shaped isolation branch, including a horizontal branch 121 and a longitudinal branch 122, opposite to the isolation branch 11, and the antenna 1 and the antenna 3 are wrapped in the horizontal branch 121, the horizontal branch 111 and the longitudinal branch 122, and the first longitudinal branch 112.
  • the antenna 1 on the dielectric substrate 7a and the radiation patch of the antenna 3 are disposed on the dielectric substrate 7a, and are connected to the metal floor 8a under the dielectric substrate 7a through respective probe type feed lines and metal shorting pins, respectively.
  • the radiation patch Id of the antenna 1 is connected to the metal floor 8a via a probe type feed line la and a metal shorting pin lb.
  • the radiation patches of the two first type of PIFA antennas on the dielectric substrate 7b are disposed on the dielectric substrate 7b, through the probe type feed line of the first type of PIFA antenna and the metal shorting pin and the metal floor 8b under the dielectric substrate 7b. Connected.
  • Antenna 1, Antenna 3, Antenna 4, and Antenna 6 are symmetric about the XOZ plane and the YOZ plane.
  • the multi-antenna system shown in this embodiment reduces the coupling of the antennas on the two dielectric substrates in the two frequency bands in the multi-antenna system by providing two independent dielectric substrates and two corresponding parallel independent metal floors.
  • Four symmetric first type of PIFA antennas are disposed on the dielectric substrate, and slots are provided on the antenna radiating patches to enable dual frequency bands, and isolation branches are disposed between the antennas, thereby further improving the isolation of the multi-antenna system.
  • FIG. 2 is a schematic structural diagram of a multi-antenna system according to another embodiment of the present invention. This embodiment is similar to FIG. 1 except that a second PIFA antenna, that is, an antenna 5 is disposed on the dielectric substrate 7b, and four isolation branches are provided on the dielectric substrate 7b, including two T-shaped isolation branches 9 and 2. A ⁇ -shaped isolation branch 10 (see the embodiment shown in Figure 3 below).
  • a circular isolation branch 9 is printed between the antenna 4 and the antenna 5 and between the antenna 5 and the antenna 6, which can effectively reduce the coupling of adjacent antennas at high frequencies.
  • the ⁇ -shaped isolation branch 10 is printed between the antenna 4 and the antenna 5, between the antenna 5 and the antenna 6, and the coupling of the adjacent antennas at low frequencies can be effectively reduced.
  • the antenna 5 includes a radiation patch 5d, a probe type feed line 5a and a metal shorting pin 5b.
  • the radiation patch 5d is above the dielectric substrate 7b, and the antenna 5 has a certain distance from the dielectric substrate 7b, and the adjacent antenna 4
  • the antenna 6 is not in a plane, so the coupling of the adjacent antennas 4 and 6 in the high and low frequency bands can be effectively reduced.
  • FIG. 3 is a schematic structural diagram of a multi-antenna system according to another embodiment of the present invention.
  • the multi-antenna system includes six PIFA antennas, eight isolation branches, two metal floors, and two dielectric substrates. Among them, there are four first type of PIFA antennas: antenna 1, antenna 3, antenna 4 and antenna 6, and two types of second PIFA antenna: antenna 3 and antenna 5.
  • the isolation branch includes four T-shaped isolation branches 9 and four ⁇ -shaped isolation branches 10.
  • the two metal floors include a metal floor 8a and a metal floor 8b.
  • the two dielectric substrates include a dielectric substrate 7a and a dielectric substrate 7b.
  • the dielectric substrate 7a is located above the metal floor 8a, and the dielectric substrate 7b is located above the metal floor 8b.
  • a foam supporting layer may be supported between the dielectric substrate 7a and the metal floor 8a, and between the dielectric substrate 7b and the metal floor 8b.
  • the distance between the dielectric substrate 7a and the dielectric substrate 7b is 40 mm, and the pitch of the metal floor 8a and the metal floor 8b is 30 mm, which can be adjusted by changing the pitch of the dielectric substrate 7a and the dielectric substrate 7b, the pitch of the metal floor 8a and the metal floor 8b.
  • the antenna 1, the antenna 2, and the antenna 3 are disposed on the dielectric substrate 7a, and the antenna 4, the antenna 5, and the antenna 6 are disposed on the dielectric substrate 7b.
  • the multi-antenna system provided by this embodiment is symmetric about the XOZ plane and the YOZ plane.
  • the structure and principle of the antenna 1, the antenna 3, the antenna 4, and the antenna 6 are the same.
  • the first type of PIFA antenna will be described below by taking the antenna 1 as an example. Referring to Fig. 3, the antenna 1 includes: a radiation patch ld, a probe type feed line 1a, and a metal shorting pin 1b.
  • the radiation patch Id is connected to the metal floor 8a via a probe type feed line 1a and a metal shorting pin 1b.
  • the radiation patch Id has a length of 15.1 mm and a width of 9 mm, and forms an operating frequency band of the antenna 1 in the range of 2.53 GHz to 2.62 GHz. By adjusting the size of the radiation patch Id, the low frequency working frequency band required for the antenna 1 can be obtained.
  • the radiation patch Id is etched with a U-shaped groove lc, as shown in FIG.
  • the distance C4 of the bottom edge of the patch Id is 0.6 mm
  • the U-shaped slot lc forms the operating frequency band of the antenna 1 in the range of 3.44 GHz to 3.6 GHz. By adjusting the sizes of cl and c2, the high frequency operating frequency band required by the antenna 1 can be obtained.
  • the antenna 1 covers the two bands of 2.53 GHz - 2.62 GHz and 3.44 GHz - 3.6 GHz.
  • the probe type feed line la has a radius of 0.7 mm and a height of 8.4 mm, and its center to the bottom of the radiation patch has a distance of 10.1 mm.
  • the metal shorting pin lb has a radius of 0.9 mm and a height of 8.4 mm, and its center is 3.8 mm from the center of the probe type feed line la.
  • the operating bandwidth and impedance matching characteristics of the antenna 1 can be adjusted by adjusting the radius, position, and height of the probe type feed line 1a and the metal shorting pin 1b.
  • the structure and principle of the antenna 2 and the antenna 5 are the same.
  • the antenna 5 includes a radiation patch 5d, a probe type feed line 5a, and a metal shorting pin 5b.
  • the radiation patch 5d is connected to the metal floor 8b via a probe type feed line 5a and a metal shorting pin 5b.
  • the radiation patch 5d is located above the dielectric substrate 7b, and has a large separation from the dielectric substrate 7b of 1 mm to 5 mm.
  • the radiation patch 5d has a length of 15.2 mm and a width of 10 mm, and forms an operating frequency range of 2.52 GHz to 2.63 GHz.
  • dl 9 mm
  • d2 14 mm
  • d3 lmm
  • d4 1.7 mm
  • groove width d5 of the line-shaped groove 5c.
  • d6 0.7mm
  • the line-shaped groove 5c forms an operating frequency band of the antenna 5 in the range of 3.45 GHz to 3.61 GHz.
  • the antenna 5 covers the two bands of 2.52 GHz - 2.63 GHz and 3.45 GHz - 3.61 GHz.
  • the probe type feed line 5a has a radius of 0.7 mm, a height of 10.4 mm, and a center of the radiation patch having a distance of 10.2 mm.
  • the metal shorting pin 5b has a radius of 0.9 mm and a height of 10.4 mm, and its center to the center of the probe type feeder 5a is 3.8 mm.
  • the operating bandwidth and impedance matching characteristics of the antenna 5 can be adjusted by adjusting the radius, position, and height of the probe type feed line 5a and the metal shorting pin 5b.
  • the dielectric substrate 7a has a length of 70 mm, a width of 40 mm, a height of 0.9 mm, a relative dielectric constant of 4.4, a metal floor 8a of 70 mm in length, a width of 45 mm, and a distance of 7.5 mm from the dielectric substrate 7a.
  • the operating frequency of 2 is the same as that of antenna 1 and antenna 3, so the coupling between antenna 1 and antenna 3 can be reduced, and the isolation between antenna 1 and antenna 3 can be increased.
  • the T-shaped isolation branch 9 and the inverted ⁇ -shaped isolation branch 10 are printed on the dielectric substrate 7a, and the vertical branches of the ⁇ -shaped isolation branch 9 and the inverted ⁇ -shaped isolation branch 10 are located between the antenna 1, the antenna 2 and the antenna 3, and the horizontal branches are located Antenna 1, antenna 2 and both sides of antenna 3.
  • the dove-shaped isolation branch 9 includes a horizontal branch 91 and a vertical branch 92.
  • the horizontal branch 91 abuts the upper edge of the substrate 7a, and is spaced apart from the side edge of the substrate by 1 mm.
  • the horizontal branch 91 has a length of 28 mm, a width of 1 mm, and a vertical branch 92 of 15 mm. , the width is 2mm.
  • the ⁇ -shaped isolation branch 10 is inverted, and the horizontal branch 101 is 2.9 mm away from the lower edge of the dielectric substrate 7a, and both ends of the horizontal branch 101 are in close contact with the side edge of the dielectric substrate 7a.
  • the horizontal branch 101 has a length of 33 mm and a width of 0.5 mm.
  • the first vertical branch 102 has a length of 11.5 mm and a width of 1 mm, and the second vertical branch 103 has a length of 7 mm and a width of 2.375 mm.
  • the radiation patch of the antenna is located above the dielectric substrate 7a, and has a spacing of 1 mm - 5 mm from the dielectric substrate 7a. By changing this spacing, the isolation of the antenna 1 and the antenna 2 at high frequency and low frequency, the antenna 2 and the antenna can be adjusted. 3 isolation at high frequencies and low frequencies. Since the multi-antenna system is completely symmetrical about the XOZ plane, the structure of the dielectric substrate 7b, the metal floor 8b, the antenna 3 to the antenna 6 and the isolation branch of the lower half of the multi-antenna system is the same as described above. I won't go into details here.
  • the multi-antenna system shown in this embodiment can work in the 2.53-2.62 GHz frequency band and the 3.45-3.6 GHz frequency band, and the isolation can reach below -20 dB in the working frequency band, which can meet the requirements of the new generation mobile communication system.
  • the resonant working point of the antenna can be adjusted to meet different application requirements.
  • the S-parameter simulation results for the multi-antenna system shown in Figure 3 are shown in Figures 7a to 7b and Figures 8a to 8b.
  • S11 is the impedance matching characteristic of the antenna 1
  • S22 is the impedance matching characteristic of the antenna 2
  • S33 is the impedance matching characteristic of the antenna 3
  • S12 is the isolation between the antenna 1 and the antenna 2. It can be seen that the operating frequency range of antenna 1 and antenna 3 is 2.535 GHz - 2.615 GHz, and the operating frequency range of antenna 2 is 2.528 GHz - 2.625 GHz, and S12 is lower than -20 dB.
  • S13 is the isolation between antenna 1 and antenna 3
  • S14 is the isolation between antenna 1 and antenna 4
  • S15 is the isolation between antenna 1 and antenna 6
  • S16 is antenna 1 and antenna 6.
  • the isolation between S26 is the isolation between antenna 2 and antenna 6.
  • S13, S14, S15, S16 and S26 are all lower than -20dB.
  • S11 is the impedance matching characteristic of the antenna 1
  • S22 is the impedance matching characteristic of the antenna 2
  • S33 is the impedance matching characteristic of the antenna 3
  • S12 is the isolation between the antenna 1 and the antenna 2.
  • the operating frequency range of antenna 1 and antenna 3 is 3.44 GHz - 3.6 GHz
  • the operating frequency range of antenna 2 is 3.45 GHz - 3.66 GHz
  • S12 is lower than -20 dB.
  • S13 is the isolation between antenna 1 and antenna 3
  • S14 is the isolation between antenna 1 and antenna 4
  • S15 is the isolation between antenna 1 and antenna 6
  • S16 is antenna 1 and antenna 6.
  • the isolation between S26 is the isolation between antenna 2 and antenna 6. It can be seen that S13, S14, S15, S16 and S26 are all lower than -20dB in the 3.45GHz-3.6GHz operating frequency band.
  • the 2.53GHz-2.62GHz and 3.45GHz-3.6GHz bands work well with good impedance matching.
  • the bandwidth is 2.5MHz at 2.58GHz and the impedance bandwidth is 150MHz at 3.5GHz.
  • the simulation results of the radiation direction of the multi-antenna system shown in Fig. 3 are shown in Figs. 9a to 9b and Figs. 10a to 10b.
  • FIG. 11 is a schematic structural diagram of a mobile terminal according to another embodiment of the present invention.
  • the mobile terminal shown in this embodiment includes a mobile terminal body 111 and an antenna system 112.
  • the mobile terminal body 111 is connected to the antenna system 112 and includes basic functional devices of the mobile terminal such as a processor and a memory.
  • the antenna system 112 can be any multi-antenna system provided by the foregoing embodiment, for transmitting and receiving signals to the mobile terminal body 111, and the mobile terminal body 111 processes the signals received by the antenna system 112, and generates signals to be transmitted through the antenna system 112. .
  • the mobile terminal provided by this embodiment can not only make the volume smaller by adopting the above multi-antenna system, but also can improve the communication performance of the mobile terminal by setting as many antennas as possible in a relatively small space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明提供一种多天线***和移动终端,通过介质基板上的PIFA天线及天线的辐射贴片上的槽,实现了双频段,通过天线之间设置隔离枝节,提高了天线之间的隔离度,通过两个独立的介质基板和金属地板,进一步提高了两个介质基板上的天线之间的隔离度。并且天线采用PIFA天线,使得多天线***和移动终端能够在有限的空间内尽可能地增加天线数量。

Description

多天线***和移动终端 本申请要求于 2013 年 06 月 28 日提交中国专利局、 申请号为 201310269571.0、发明名称为"多天线***和移动终端"的中国专利申请的优 先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及无线通讯技术领域, 具体涉及一种多天线***和移动终端。
背景技术 天线是无线通信***的重要组成部分, 移动通信终端中, 通常采用单 个天线来发射和接收信号。 但是, 随着移动通信***在功能、 容量、 质量 和服务业务上不断升级, 以及无线信号传播环境的复杂度提高, 信道受到 地形、 温度、 湿度等环境因素的影响, 使得电波在空中传播衰落严重, 影 响了移动通信质量, 因此, 只采用单个天线 4艮难在复杂的传播环境中保持 较好的通信性能, 需要用多入多出 ( Multi-Input Multi-Output, MMO )技 术来实现更高的传输速率、 更高的信道容量、 较低的发射功率以及克服恶 劣的传输环境等要求。 其中, MMO技术需要通过多天线***来实现。
然而多天线之间存在互扰和电磁串扰, 使得电磁环境 ( Electro
Magnetic Compatibility, 筒称为 EMC ) 变差, 导致天线效率降低, 从而影 响移动终端的通信质量。 并且, 由于移动终端的微型化和超薄化, 使得移 动终端给予天线的空间越来越少。 如何在有限的空间中集成多个天线, 并 防止多天线工作状态下各天线之间的互扰和电磁串扰引起天线效率的降 低, 成为移动终端的多天线***中天线布局亟需解决的难题。
发明内容 有鉴于此, 本发明实施例提供一种多天线***和移动终端, 以在增加 双频移动终端中的天线数量的同时实现较高的隔离度。 第一方面, 本发明实施例提供一种多天线***, 包括: 两个金属地板, 包括第一金属地板和第二金属地板, 所述第一金属地 板和第二金属地板位于同一个方位面内, 所述两个金属地板之间的距离大 于或等于第一预设门限值; 两个介质基板, 包括第一介质基板和第二介质基板, 所述第一介质基 板和第二介质基板位于同一个方位面内, 所述第一介质基板位于所述第一 金属地板的上方, 所述第二介质基板位于所述第二金属地板的上方, 所述 两个介质基板之间的距离大于或等于第二预设门限值;
四个第一种平面倒 F PIFA天线, 每个所述第一种 PIFA天线包括辐射 贴片、 探针型馈线和金属短路针, 所述第一种 PIFA天线的辐射贴片上设置 有第一槽;
所述两个介质基板中每一个介质基板上设置有两个所述第一种 PIFA 天线, 所述第一种 PIFA天线之间设置有隔离枝节; 所述第一介质基板上的两个所述第一种 PIFA 天线的辐射贴片设置于 所述第一介质基板上,通过所述第一种 PIFA天线的探针型馈线和金属短路 针与所述第一介质基板下方的第一金属地板相连; 所述第二介质基板上的两个所述第一种 PIFA 天线的辐射贴片设置于 所述第二介质基板上,通过所述第一种 PIFA天线的探针型馈线和金属短路 针与所述第二介质基板下方的第二金属地板相连; 四个所述第一种 PIFA天线关于 XOZ面和 YOZ面对称。 结合第一方面, 在第一方面的第一种可能的实现方式中, 所述第一预 设门限值为 30mm。 结合第一方面或其第一种可能的实现方式, 在第一方面的第二种可能 的实现方式中, 所述第二预设门限值为 40mm。 结合第一方面或其第一或第二种可能的实现方式, 在第一方面的第三 种可能的实现方式中, 还包括: 第二种 PIFA天线, 包括辐射贴片、 探针型馈线和金属短路针, 所述第 二种 PIFA天线的辐射贴片上设置有第二槽;
所述第二种 PIFA 天线的辐射贴片设置于所述两个介质基板中的至少 一个介质基板上方的 1mm至 5mm处,通过所述第二种 PIFA天线的探针型 馈线和金属短路针与所述至少一个介质基板的下方的金属地板相连; 所述第一种 PIFA天线和所述第二种 PIFA天线之间设置有隔离枝节。 结合第一方面的第三种可能的实现方式, 在第一方面的第四种可能的 实现方式中, 所述第二种 PIFA天线有两个, 分别设置于所述第一介质基板 和第二介质基板上方的 1mm至 5mm处,四个所述第一种 PIFA天线和两个 所述第二种 PIFA天线关于 XOZ面和 YOZ面对称。 结合第一方面或其第一至第五种可能的实现方式中的任一种, 在第一 方面的第五种可能的实现方式中, 所述第一槽为 U形槽。 结合第一方面的第三或第四种可能的实现方式, 在第一方面的第六种 可能的实现方式中, 所述第二槽为折线形槽。 结合第一方面的第三或第四种可能的实现方式, 在第一方面的第七种 可能的实现方式中, 所述第一种 PIFA天线和所述第二种 PIFA天线的辐射 贴片为矩形。 结合第一方面或其第一至第七种可能的实现方式中的任一种, 在第一 方面的第八种可能的实现方式中, 所述介质基板的介电常数为 1~9.8。 第二方面, 本发明实施例提供一种移动终端, 包括移动终端本体及上 述任一种多天线***, 所述移动终端本体与所述多天线***相连, 所述多 天线***用于为所述移动终端本体收发信号。
上述实施例提供的多天线***和移动终端,通过介质基板上的 PIFA天 线及天线的辐射贴片上的槽, 实现了双频段, 通过天线之间设置隔离枝节, 提高了天线之间的隔离度, 通过两个独立的介质基板和金属地板, 进一步 提高了两个介质基板上的天线之间的隔离度。 并且天线采用 PIFA天线, 使 得多天线***和移动终端能够在有限的空间内尽可能地增加天线数量。 附图说明 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述 中所需要使用的附图作筒要介绍, 显而易见地, 下面描述中的附图仅仅是 本发明的一些实施例, 对于本领域的普通技术人员来讲, 在不付出创造性 劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明一个实施例提供的多天线***的结构示意图; 图 2为本发明另一个实施例提供的多天线***的结构示意图; 图 3为本发明另一个实施例提供的多天线***的结构示意图; 图 4为图 3所示多天线***在 XOY面内的示意图; 图 5a为图 3所示多天线***中天线 1的主视图; 图 5b为图 5a的侧视图; 图 6a为图 3所示多天线***中天线 5的主视图; 图 6b为图 6a的侧视图; 图 7a、图 7b为图 3所示多天线***在 2.53GHz-2.62GHz频段的 S参数 仿真图; 图 8a、图 8b为图 3所示多天线***在 3.45 GHz -3.6GHz频段的 S参数 仿真图;
图 9a为图 3所示多天线***中天线 1在 2.58GHz的仿真辐射方向图; 图 9b为图 3所示多天线***中天线 1在 3.5GHz的仿真辐射方向图; 图 10a为图 3所示多天线***中天线 5在 2.58GHz的仿真辐射方向图; 图 10b为图 3所示多天线***中天线 5在 3.5GHz的仿真辐射方向图; 图 11为本发明另一个实施例提供的移动终端的结构示意图。
具体实施方式 为了使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对 本发明作进一步地详细描述, 显然, 所描述的实施例仅仅是本发明一部份 实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术 人员在没有做出创造性劳动前提下所获得的所有其它实施例, 都属于本发 明保护的范围。 图 1 为本发明一个实施例提供的多天线***的结构示意图。 本实施例 中, 多天线***包括: 两个金属地板、 两个介质基板、 四个第一种 PIFA天 线和四个隔离枝节。 两个金属地板包括金属地板 8a和金属地板 8b, 该金属地板 8a和金属 地板 8b位于同一个方位面内, 该两个金属地板之间的距离大于或等于第一 预设门限值如 30mm, 可以减小介质基板 7a上的天线 1和天线 3与介质 基板 7b上的天线 4和天线 6之间的耦合,提高天线 1和天线 3与天线 4 和天线 6之间的隔离度。 两个介质基板包括介质基板 7a和介质基板 7b, 该介质基板 7a和介质 基板 7b位于同一个方位面内, 介质基板 7a位于金属地板 8a的上方, 介质 基板 7b位于金属地板 8b的上方, 该两个介质基板之间的距离大于或等于 第二预设门限值如 40mm, 可以减小介质基板 7a上的天线 1和天线 3与 介质基板 7b上的天线 4和天线 6之间的耦合,提高天线 1和天线 3与天 线 4和天线 6之间的隔离度。 四个第一种 PIFA天线包括: 天线 1、 天线 3、 天线 4和天线 6, 每个 第一种 pjpA天线包括辐射贴片、 探针型馈线和金属短路针, 如天线 1包括 辐射贴片 ld、 探针型馈线 la和金属短路针 lb (参见下文及图 3-图 5b的说 明) 。 第一种 PIFA天线的辐射贴片上设置有第一槽。 该第一槽的形状不限, 只要能使所属天线工作在新的频段即可。 如天线 1的辐射贴片 Id上刻蚀有 U形槽 lc。 两个介质基板中每一个介质基板上设置有两个第一种 PIFA天线,第一 种 PIFA天线之间设置有隔离枝节。 如图 1所示, 介质基板 7a上设置有天线 1和天线 3, 介质基板 7b上设 置有天线 4和天线 6, 天线 1和天线 3之间、 天线 4和天线 6设置有隔离枝 节 11和隔离枝节 12。 具体的, 隔离枝节 11和隔离枝节 12印制在介质基板 7a、 介质基板 7b 上。 以介质基板 7a上的隔离枝节为例, 隔离枝节 11为 E形隔离枝节, 包 括水平枝节 111、第一纵向枝节 112、第二纵向枝节 113和第三纵向枝节 114。 其中, 水平枝节 111位于天线 1和天线 3靠近介质基板 7b的一侧, 用于对 天线 1和天线 3, 与天线 4和天线 6进行隔离。 第一纵向枝节 112位于天线 1和天线 3之间,对天线 1和天线 3进行隔离; 第二纵向枝节 113和第三纵 向枝节 114分别位于天线 3的外侧和天线 1的外侧, 用于对天线 1、 天线 3 和外界进行隔离。
隔离枝节 12为 T形隔离枝节, 包括水平枝节 121和纵向枝节 122, 与 隔离枝节 11相对扣, 将天线 1和天线 3包在水平枝节 121、 水平枝节 111 和纵向枝节 122、第一纵向枝节 112、第二纵向枝节 113和第三纵向枝节 114 形成的空间内。
介质基板 7a上的天线 1和天线 3的辐射贴片设置于介质基板 7a上,分 别通过各自的探针型馈线和金属短路针与介质基板 7a下方的金属地板 8a 相连。 如天线 1的辐射贴片 Id通过探针型馈线 la和金属短路针 lb与金属 地板 8a相连。
类似地, 介质基板 7b上的两个第一种 PIFA天线的辐射贴片设置于介 质基板 7b上, 通过第一种 PIFA天线的探针型馈线和金属短路针与介质基 板 7b下方的金属地板 8b相连。
四个第一种 PIFA天线: 天线 1、 天线 3、 天线 4和天线 6关于 XOZ面 和 YOZ面对称。 本实施例所示的多天线***通过设置两个独立的介质基板和两个对 应平行的独立的金属地板, 减小了多天线***中两个介质基板上的天线 在两个频段的耦合, 通过设置于介质基板上的 4 个对称的第一种 PIFA 天线, 且天线辐射贴片上设置有槽, 能够实现双频段, 且天线之间设置 有隔离枝节, 进一步提高了多天线***的隔离度, 并且 PIFA天线体积 小, 从而天线***在有限的空间内尽可能地增加天线数量, 并实现较高 的隔离度; 且 PIFA天线成本低, 加工方便, 易于与射频前端的微波电路 集成。 图 2为本发明另一个实施例提供的多天线***的结构示意图。 本实施 例与图 1类似, 不同之处在于, 介质基板 7b上设置有第二种 PIFA天线, 即天线 5, 且介质基板 7b上有 4个隔离枝节, 包括 2个 T形隔离枝节 9和 2个 π形隔离枝节 10 (参见下文中图 3所示实施例)。 天线 4和天线 5之间、 天线 5和天线 6之间印制 Τ形隔离枝节 9, 可以有效的减小相邻天线在高频的耦合。 天线 4和天线 5之间、 天线 5和天线 6之间印制 π形隔离枝节 10, 可以有效地减小相邻天线在低频的耦合。 其中, 天线 5包括辐射贴片 5d、 探针型馈线 5a和金属短路针 5b, 辐 射贴片 5d在介质基板 7b的上方, 由于天线 5距离介质基板 7b有一定的 距离, 与相邻的天线 4、 天线 6没在一个平面上, 因此可以有效的减小 相邻的天线 4、 天线 6在高低两个频段的耦合。 如天线 5与介质基板 7b 之间的距离为 lmm~5mm, 提高了天线 5与天线 4和天线 6之间的隔离度。 并且, 辐射贴片 5d上刻蚀有第二槽, 如折线形槽 5c, 天线 5位于天线 4和天线 6之间, 进一步有效地减小了天线 4和天线 6之间的耦合。 上述实施例中, 介质基板 7a、 介质基板 7b的介电常数可介于 1-9.8 之间。 图 3 为本发明另一个实施例提供的多天线***的结构示意图。 本实施 例中, 多天线***包括 6个 PIFA天线、 8个隔离枝节、 2个金属地板和 2 个介质基板。 其中, 第一种 PIFA天线有 4个: 天线 1、 天线 3、 天线 4和天线 6, 第 二种 PIFA天线有 2个: 天线 3和天线 5。 隔离枝节包括 4个 T形隔离枝节 9和 4个 π形隔离枝节 10。 2个金属地板包括金属地板 8a和金属地板 8b。
2个介质基板包括介质基板 7a和介质基板 7b。 介质基板 7a位于金属地板 8a的上方, 介质基板 7b位于金属地板 8b 的上方。介质基板 7a和金属地板 8a之间、介质基板 7b和金属地板 8b之间 均可用泡沫支撑层支撑。 介质基板 7a和介质基板 7b之间的间距为 40mm, 金属地板 8a和金属 地板 8b的间距为 30mm, 通过改变介质基板 7a和介质基板 7b的间距、 金 属地板 8a和金属地板 8b的间距, 可以调节基板 7a表面的天线与基板 7b 表面的天线之间的隔离度。 天线 1、 天线 2和天线 3设置于介质基板 7a上, 天线 4、 天线 5和天 线 6设置于介质基板 7b上。如图 4所示, 本实施例提供的多天线***关于 XOZ面和 YOZ面对称。 天线 1、 天线 3、 天线 4和天线 6的结构、 原理相同, 下面以天线 1为 例对第一种 PIFA天线进行说明。 参见图 3,天线 1包括: 辐射贴片 ld、探针型馈线 la和金属短路针 lb, 参见图 5b, 辐射贴片 Id通过探针型馈线 la和金属短路针 lb与金属地板 8a相连。 辐射贴片 Id 的长为 15.1mm, 宽为 9mm, 形成了天线 1 在 2.53GHz-2.62GHz的工作频段, 通过调节辐射贴片 Id的尺寸, 可以得到天 线 1所需要的低频工作频段。 辐射贴片 Id上刻蚀有 U形槽 lc,如图 5a所示, U形槽 lc的宽 cl=8mm, 长 c2=13mm,槽宽度 c3=0.5mm, U形槽 lc的底边到辐射贴片 Id底边的距 离 c4=0.6mm, 其左右两边到辐射贴片左右两边的距离 c5=c6=0.5mm。 U形 槽 lc形成了天线 1在 3.44GHz-3.6GHz的工作频段, 通过调节 cl和 c2的 大小, 可以得到天线 1 所需要的高频工作频段。 这样, 天线 1 就覆盖了 2.53GHz-2.62GHz和 3.44 GHz - 3.6GHz两个频段。 探针型馈线 la的半径为 0.7mm, 高度为 8.4mm, 其圆心到辐射贴片底 边的距离为 10.1mm。 金属短路针 lb的半径为 0.9mm, 高度为 8.4mm, 其圆心到探针型馈线 la圆心的距离为 3.8mm。 通过调节探针型馈线 la和金属短路针 lb的半径、 位置以及高度可以 调节天线 1的工作带宽和阻抗匹配特性。 天线 2和天线 5的结构、 原理相同, 下面以天线 5为例对第二种 PIFA 天线进行说明。 如图 3、 图 4、 图 6a和图 6b所示, 天线 5包括辐射贴片 5d、 探针型馈 线 5a和金属短路针 5b。 辐射贴片 5d通过探针型馈线 5a和金属短路针 5b 与金属地板 8b相连。 辐射贴片 5d位于介质基板 7b的上方, 与介质基板 7b 之间的 巨离为 lmm~5mm。 辐射贴片 5d 的长为 15.2mm , 宽为 10mm , 其形成了天线在 2.52GHz-2.63GHz的工作频段, 通过调节辐射贴片 5d的尺寸, 可以得到天 线 5所需要的低频工作频段。 如图 4、 图 6a所示, 在该辐射贴片 5d上刻蚀有折线形槽 5c, 折线形槽 5c的 dl=9mm, d2=14mm, d3=lmm, d4=1.7mm, 槽宽度 d5=0.5mm, 折线 形槽 5c的底边到辐射贴片 5d底边的距离 d6=0.7mm, 左右两边到辐射贴片 左右两边的距离 d7=d8=0.5mm。 折线形槽 5c 形成了天线 5 在 3.45GHz-3.61GHz的工作频段, 通过调节 dl、 d2、 d3和 d4的大小, 可以得 到天线 5所需要的高频工作频段。这样,天线 5就覆盖了 2.52GHz-2.63GHz 和 3.45 GHz -3.61GHz两个频段。 探针型馈线 5a的半径为 0.7mm, 高度为 10.4mm, 其圆心到辐射贴片 底边的距离为 10.2mm。 金属短路针 5b的半径为 0.9mm, 高度为 10.4mm, 其圆心到探针型馈 线 5a圆心的距离为 3.8mm。 通过调节探针型馈线 5a和金属短路针 5b的半径、 位置以及高度, 可 以调节天线 5的工作带宽和阻抗匹配特性。 介质基板 7a长为 70mm,宽为 40mm,高为 0.9mm,相对介电常数 =4.4 , 金属地板 8a长为 70mm,宽为 45mm,与介质基板 7a之间的距离为 7.5mm。 如图 4所示, 介质基板 7a两端印制有天线 1和天线 3的辐射贴片, 天 线 1和天线 3的间隔为 Wl=56mm, 天线 1和天线 3的中间放置有天线 2, 由于天线 2的工作频率与天线 1和天线 3相同, 所以可以减小天线 1与天 线 3之间的耦合, 增加天线 1与天线 3之间的隔离度。 天线 1和天线 2、 天线 2和天线 3之间的距离均为 W2=28mm。 介质基板 7a上印制有 T形隔离枝节 9和倒 π形隔离枝节 10, Τ形隔离 枝节 9和倒 π形隔离枝节 10的垂直枝节位于天线 1、天线 2和天线 3之间, 水平枝节位于天线 1、 天线 2和天线 3的两侧。
Τ形隔离枝节 9包括水平枝节 91和垂直枝节 92, 水平枝节 91紧贴基 板 7a上边缘, 与基板侧边缘距离 lmm, 水平枝节 91的长度为 28mm, 宽 度为 lmm, 垂直枝节 92的长度为 15mm, 宽度为 2mm。 通过调节 T形隔 离枝节 9的尺寸和位置, 可以调节天线 1和天线 2在高频的隔离度、 天线 和天线 3在高频的隔离度。 π形隔离枝节 10包括水平枝节 101、 第一垂直枝节 102和第二垂直枝 节 103。 π形隔离枝节 10倒放, 其水平枝节 101距离介质基板 7a下边缘 2.9mm, 水平枝节 101两端紧贴介质基板 7a侧边缘。 水平枝节 101的长度 为 33mm,宽度为 0.5mm。第一垂直枝节 102的长度为 11.5mm、宽度为 lmm, 第二垂直枝节 103的长度为 7mm, 宽度为 2.375mm。 通过调节 π形隔离枝 节 10的尺寸和位置, 可以调节天线 1和天线 2在低频的隔离度、 天线 2和 天线 3在低频的隔离度。 天线 的辐射贴片位于介质基板 7a的上方, 与介质基板 7a之间存在 lmm-5mm的间距, 通过改变这个间距, 可以调节天线 1和天线 2在高频和 低频的隔离度、 天线 2和天线 3在高频和低频的隔离度。 由于多天线***关于 XOZ面完全对称, 因此, 多天线***下半部分的 介质基板 7b、金属地板 8b、天线 3~天线 6以及隔离枝节的结构与上述相同, 这里不再赘述。 本实施例所示的多天线***能够工作在 2.53-2.62GHz 频段和 3.45-3.6GHz频段, 并且在工作频段内隔离度能够达到 -20dB以下, 能够 满足新一代移动通信***的需求。 通过改变辐射贴片、 U形槽、 曲折线 形槽、 同轴馈电单元, 短路单元及隔离枝节的尺寸及位置, 来调节天线 的谐振工作点, 能够满足不同的应用需求。 图 3所示多天线***的 S参数仿真结果如图 7a~® 7b和图 8a~® 8b所 示。
图 7a中, S11为天线 1的阻抗匹配特性, S22为天线 2的阻抗匹配特 性, S33为天线 3的阻抗匹配特性, S12为天线 1和天线 2之间的隔离度。 可以看出天线 1和天线 3的工作频率范围为 2.535GHz -2.615GHz, 天线 2 的工作频率范围为 2.528GHz -2.625GHz, S12低于 -20dB。 图 7b中, S13为天线 1和天线 3之间的隔离度, S14为天线 1和天线 4 之间的隔离度, S15为天线 1和天线 6之间的隔离度, S16为天线 1和天线 6 之间的隔离度, S26 为天线 2 和天线 6之间的隔离度。 可以看出, 在 2.53GHz-2.62GHz工作频段, S13、 S14、 S15、 S16和 S26均低于 -20dB。 图 8a中, S11为天线 1的阻抗匹配特性, S22为天线 2的阻抗匹配特 性, S33为天线 3的阻抗匹配特性, S12为天线 1和天线 2之间的隔离度。 可以看出天线 1和天线 3的工作频率范围为 3.44GHz -3.6GHz, 天线 2的工 作频率范围为 3.45GHz -3.66GHz, S12低于 -20dB。 图 8b中, S13为天线 1和天线 3之间的隔离度, S14为天线 1和天线 4 之间的隔离度, S15为天线 1和天线 6之间的隔离度, S16为天线 1和天线 6 之间的隔离度, S26 为天线 2 和天线 6之间的隔离度。 可以看出, 在 3.45GHz-3.6GHz工作频段, S13、 S14、 S15、 S16和 S26均低于 -20dB。
从上述图 7a~图 8b 可以看出, 图 3 所示的多天线***在
2.53GHz-2.62GHz和 3.45GHz-3.6GHz两个频段工作, 有较好的阻抗匹配效 果, 在 2.58GHz的带宽为 90MHz, 在 3.5GHz处的阻抗带宽为 150MHz。 并 且, 在 2.53GHz-2.62GHz和 3.45GHz -3.6GHz两个频段内有较高的隔离度, 均小于 -20dB。 图 3所示多天线***的辐射方向仿真结果如图 9a~9b和图 10a~® 10b 所示。 图 9a为天线 1在 2.58GHz的辐射方向图; 图 9b为天线 1在 3.5GHz的辐射方向图; 图 10a为天线 5在 2.58GHz的辐射方向图; 图 10b为天线 5在 3.5GHz的辐射方向图。 由于图 3所示的多天线***关于 xoz面及 yoz面分别对称, 因此,其他 天线的 S参数和辐射方向图与上述仿真结果相同, 这里不再赘述。 图 11为本发明另一个实施例提供的移动终端的结构示意图。 本实施例 所示的移动终端包括移动终端本体 111和天线*** 112。 其中, 移动终端本 体 111与天线*** 112相连,包括处理器和存储器等移动终端的基本功能器 件。 天线*** 112可为上述实施例提供的任意一种多天线***, 用于为移 动终端本体 111收发信号,移动终端本体 111对天线*** 112接收的信号进 行处理, 并产生信号通过天线*** 112发射出去。 本实施例提供的移动终端通过采用上述多天线***, 不仅能够使得体 积更小, 而且由于在比较小的空间内能够设置尽可能多的天线, 使得移动 终端的通信性能也进一步得到提高。
最后应说明的是: 以上各实施例 仅用以说明本发明的技术方案, 而非 对其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的 普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进 行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或 者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权利要求
1、 一种多天线***, 其特征在于, 包括: 两个金属地板, 包括第一金属地板和第二金属地板, 所述第一金属地 板和第二金属地板位于同一个方位面内, 所述两个金属地板之间的距离大 于或等于第一预设门限值; 两个介质基板, 包括第一介质基板和第二介质基板, 所述第一介质基 板和第二介质基板位于同一个方位面内, 所述第一介质基板位于所述第一 金属地板的上方, 所述第二介质基板位于所述第二金属地板的上方, 所述 两个介质基板之间的距离大于或等于第二预设门限值;
四个第一种平面倒 F PIFA天线, 每个所述第一种 PIFA天线包括辐射 贴片、 探针型馈线和金属短路针, 所述第一种 PIFA天线的辐射贴片上设置 有第一槽;
所述两个介质基板中每一个介质基板上设置有两个所述第一种 PIFA 天线, 所述第一种 PIFA天线之间设置有隔离枝节; 所述第一介质基板上的两个所述第一种 PIFA 天线的辐射贴片设置于 所述第一介质基板上,通过所述第一种 PIFA天线的探针型馈线和金属短路 针与所述第一介质基板下方的第一金属地板相连; 所述第二介质基板上的两个所述第一种 PIFA 天线的辐射贴片设置于 所述第二介质基板上,通过所述第一种 PIFA天线的探针型馈线和金属短路 针与所述第二介质基板下方的第二金属地板相连; 四个所述第一种 PIFA天线关于 XOZ面和 YOZ面对称。
2、 根据权利要求 1所述的***, 其特征在于, 所述第一预设门限值为 30mm„
3、 根据权利要求 1或 2所述的***, 其特征在于, 所述第二预设门限 值为 40mm。
4、 根据权利要求 1-3任一项所述的***, 其特征在于, 还包括: 第二种 PIFA天线, 包括辐射贴片、 探针型馈线和金属短路针, 所述第 二种 PIFA天线的辐射贴片上设置有第二槽;
所述第二种 PIFA 天线的辐射贴片设置于所述两个介质基板中的至少 一个介质基板上方的 1mm至 5mm处,通过所述第二种 PIFA天线的探针型 馈线和金属短路针与所述至少一个介质基板的下方的金属地板相连;
所述第一种 PIFA天线和所述第二种 PIFA天线之间设置有隔离枝节。
5、 根据权利要求 4所述的***, 其特征在于, 所述第二种 PIFA天线 有两个,分别设置于所述第一介质基板和第二介质基板上方的 1mm至 5mm 处,四个所述第一种 PIFA天线和两个所述第二种 PIFA天线关于 XOZ面和 YOZ面对称。
6、 根据权利要求 1-5任一项所述的***, 其特征在于, 所述第一槽为 U形槽。
7、 根据权利要求 4-5任一项所述的***, 其特征在于, 所述第二槽为 折线形槽。
8、根据权利要求 4-5任一项所述的***,其特征在于,所述第一种 PIFA 天线和所述第二种 PIFA天线的辐射贴片为矩形。
9、 根据权利要求 1-8任一项所述的***, 其特征在于, 所述介质基板 的介电常数为 1~9.8。
10、 一种移动终端, 其特征在于, 包括移动终端本体及上述权利要求
1-9任一项所述的多天线***, 所述移动终端本体与所述多天线***相连, 所述多天线***用于为所述移动终端本体收发信号。
PCT/CN2014/073003 2013-06-28 2014-03-06 多天线***和移动终端 WO2014206110A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14817649.8A EP2999046B1 (en) 2013-06-28 2014-03-06 Multi-antenna system and mobile terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310269571.0 2013-06-28
CN201310269571.0A CN104253303B (zh) 2013-06-28 2013-06-28 多天线***和移动终端

Publications (1)

Publication Number Publication Date
WO2014206110A1 true WO2014206110A1 (zh) 2014-12-31

Family

ID=52140972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073003 WO2014206110A1 (zh) 2013-06-28 2014-03-06 多天线***和移动终端

Country Status (3)

Country Link
EP (1) EP2999046B1 (zh)
CN (1) CN104253303B (zh)
WO (1) WO2014206110A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016174932A1 (ja) * 2015-04-30 2016-11-03 古野電気株式会社 アンテナ装置および姿勢算出装置
CN106410406A (zh) * 2016-10-28 2017-02-15 福州大学 一种双频低剖面紧耦合高隔离度mimo天线
CN108123224A (zh) * 2018-01-30 2018-06-05 厦门美图移动科技有限公司 天线结构、电子设备背壳及电子设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6557872B2 (ja) * 2016-03-17 2019-08-14 パナソニックIpマネジメント株式会社 無線モジュールおよび画像表示装置
JP6730099B2 (ja) * 2016-06-07 2020-07-29 京セラ株式会社 アンテナ基板およびアンテナ装置
CN107623187A (zh) * 2016-07-14 2018-01-23 上海诺基亚贝尔股份有限公司 微带天线、天线阵列和微带天线制造方法
CN109088153B (zh) * 2018-08-03 2021-01-01 瑞声精密制造科技(常州)有限公司 一种超宽带mimo天线及终端
CN111725617B (zh) * 2020-06-11 2022-09-16 北京小米移动软件有限公司 一种天线模组、终端设备和天线模组的制作方法
CN112968273B (zh) * 2021-02-03 2024-05-17 惠州Tcl移动通信有限公司 一种天线结构以及终端设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1675795A (zh) * 2002-08-07 2005-09-28 意大利电信股份公司 双频带天线***
CN1728455A (zh) * 2005-07-01 2006-02-01 清华大学 用于多输入多输出通信***移动终端的平面四天线***
CN1745499A (zh) * 2003-02-04 2006-03-08 皇家飞利浦电子股份有限公司 平面高频或微波天线
CN101019273A (zh) * 2004-09-13 2007-08-15 Amc森托瑞恩股份公司 天线装置和包括该天线装置的便携式无线电通信装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI112724B (fi) * 2000-05-12 2003-12-31 Nokia Corp Symmetrinen antennirakenne ja menetelmä sen valmistamiseksi sekä antennirakennetta soveltava laajennuskortti
US7259641B1 (en) * 2004-02-27 2007-08-21 University Of South Florida Microelectromechanical slow-wave phase shifter device and method
CN100372173C (zh) * 2005-07-01 2008-02-27 清华大学 用于多输入多输出无线通信终端的四平面反转f天线***
US8362968B2 (en) * 2007-02-28 2013-01-29 Nec Corporation Array antenna, radio communication apparatus, and array antenna control method
US20080266189A1 (en) * 2007-04-24 2008-10-30 Cameo Communications, Inc. Symmetrical dual-band uni-planar antenna and wireless network device having the same
US7477201B1 (en) * 2007-08-30 2009-01-13 Motorola, Inc. Low profile antenna pair system and method
US7973718B2 (en) * 2008-08-28 2011-07-05 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Systems and methods employing coupling elements to increase antenna isolation
CN201444499U (zh) * 2009-03-03 2010-04-28 精乘科技股份有限公司 一种集成式多频带模块天线
EP2518820A4 (en) * 2009-12-22 2014-08-27 Kyocera Corp LINE CONVERSION STRUCTURE AND ANTENNA THEREWITH
US8730110B2 (en) * 2010-03-05 2014-05-20 Blackberry Limited Low frequency diversity antenna system
US8786497B2 (en) * 2010-12-01 2014-07-22 King Fahd University Of Petroleum And Minerals High isolation multiband MIMO antenna system
US9653813B2 (en) * 2011-05-13 2017-05-16 Google Technology Holdings LLC Diagonally-driven antenna system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1675795A (zh) * 2002-08-07 2005-09-28 意大利电信股份公司 双频带天线***
CN1745499A (zh) * 2003-02-04 2006-03-08 皇家飞利浦电子股份有限公司 平面高频或微波天线
CN101019273A (zh) * 2004-09-13 2007-08-15 Amc森托瑞恩股份公司 天线装置和包括该天线装置的便携式无线电通信装置
CN1728455A (zh) * 2005-07-01 2006-02-01 清华大学 用于多输入多输出通信***移动终端的平面四天线***

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016174932A1 (ja) * 2015-04-30 2016-11-03 古野電気株式会社 アンテナ装置および姿勢算出装置
CN106410406A (zh) * 2016-10-28 2017-02-15 福州大学 一种双频低剖面紧耦合高隔离度mimo天线
CN108123224A (zh) * 2018-01-30 2018-06-05 厦门美图移动科技有限公司 天线结构、电子设备背壳及电子设备

Also Published As

Publication number Publication date
CN104253303A (zh) 2014-12-31
EP2999046B1 (en) 2019-11-20
CN104253303B (zh) 2017-02-15
EP2999046A4 (en) 2016-06-08
EP2999046A1 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
WO2014206110A1 (zh) 多天线***和移动终端
CN110534924B (zh) 天线模组和电子设备
CN101316008B (zh) 具有高隔离低相关特性的mimo移动终端多天线
US10535921B2 (en) Reconfigurable multi-band antenna with four to ten ports
EP3425727B1 (en) Mimo antenna and communication device using the same
WO2014206111A1 (zh) 多天线***及移动终端
WO2012088837A1 (zh) 一种移动终端的阵列天线及其实现方法
US20130002510A1 (en) Antennas with novel current distribution and radiation patterns, for enhanced antenna islation
CN104393407B (zh) 基于超材料的小型化双频mimo天线
CN110957576B (zh) 一种极低剖面微带叠层双极化基站天线及阵列
EP3214697B1 (en) Antenna and antenna module comprising the same
CN102055072A (zh) 宽波束多环形天线模块
KR20090003706A (ko) 소형화된 mimo 안테나
US9735473B2 (en) Compact radiation structure for diversity antennas
WO2019010051A1 (en) NARROWBAND RADIANT ELEMENTS WITH ULTRA-WIDE BAND WIDTH
KR20140069968A (ko) 이동통신 기지국 안테나
US20130249764A1 (en) Compact planar inverted f-antenna for multiband communication
WO2017107501A1 (en) A low coupling 2×2 mimo array
CN112290193A (zh) 毫米波模组、电子设备及毫米波模组的调节方法
KR20120026760A (ko) 다중 대역 mimo안테나
WO2018028101A1 (zh) 紧凑型激励地板正交辐射的高隔离度天线及其mimo通信***
KR101252244B1 (ko) 다중 안테나
CN111129767B (zh) 双频天线结构
KR20190087270A (ko) 무선 통신 시스템에서 안테나 장치 및 이를 구비하는 전자기기
CN104253315B (zh) 多天线***和移动终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14817649

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014817649

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE