WO2014205850A1 - 上行功率控制方法及装置 - Google Patents

上行功率控制方法及装置 Download PDF

Info

Publication number
WO2014205850A1
WO2014205850A1 PCT/CN2013/078517 CN2013078517W WO2014205850A1 WO 2014205850 A1 WO2014205850 A1 WO 2014205850A1 CN 2013078517 W CN2013078517 W CN 2013078517W WO 2014205850 A1 WO2014205850 A1 WO 2014205850A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
serving cell
terminal
phr
path loss
Prior art date
Application number
PCT/CN2013/078517
Other languages
English (en)
French (fr)
Inventor
张健
黄曲芳
戴明增
曾清海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/078517 priority Critical patent/WO2014205850A1/zh
Priority to CN201380001996.1A priority patent/CN104854925B/zh
Publication of WO2014205850A1 publication Critical patent/WO2014205850A1/zh
Priority to US14/978,060 priority patent/US10104622B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an uplink power control method and apparatus. Background technique
  • CA Carrier Aggregation
  • the CA can obtain larger bandwidth by aggregating multiple consecutive or non-contiguous Component Carriers (CCs), where CCs can be provided by the same base station. It can also be provided by different base stations, the former being called the intra-base station CA and the latter being called the inter-base station CA.
  • CCs Component Carriers
  • the inter-base station CA multiple base stations provide multiple serving cells, and multiple serving cells have overlapping areas, and the base station can have user terminals (User Equipment, hereinafter referred to as UE) pairs according to specific radio conditions and service conditions.
  • UE User Equipment
  • the serving cell of the overlapping area performs carrier aggregation.
  • the UE sends a power headroom report (PHR) in any serving cell.
  • the power headroom report (PHR) can only be received by the base station corresponding to the serving cell, and the PHR is received.
  • the base station cannot know the uplink resource allocation of the serving cell provided by the other base station, and may cause the uplink resources allocated by the base station to the UE not to meet the actual transmitting capability of the UE in the same subframe, and thus cannot effectively control the transmitting power of the UE.
  • the present invention provides a method and an apparatus for uplink power control, which are used to solve the technical problem that the uplink resources allocated by the base stations for the UE in the prior art do not conform to the actual transmission capability of the UE, and thus cannot effectively control the transmit power of the UE.
  • a first aspect of the embodiments of the present invention provides an uplink power control method, including:
  • the first base station receives a power headroom report PHR sent by the terminal, where the PHR includes: a power headroom PH of the terminal in the serving cell of the first base station, and the second base station is the terminal in the second The number of physical resource blocks PRB allocated by the serving cell of the base station, and the terminal at the second base station PH of the service area;
  • the first base station controls, according to the PHR, a transmit power of the terminal in a serving cell of the first base station.
  • the PHR further includes: a maximum transmit power of the terminal in a serving cell of the second base station.
  • the controlling, by the first base station, the transmit power of the serving cell of the first base station includes:
  • the first base station is configured according to the PH of the serving cell of the first base station, the downlink path loss of the terminal in the serving cell of the first base station, and the serving cell of the terminal in the second base station.
  • the PH and the downlink path loss of the terminal in the serving cell of the second base station allocate the uplink resource of the terminal to the serving cell of the first base station.
  • the first base station determines, according to the PHR, that the terminal is in a serving cell of the first base station
  • the downlink path loss and the downlink path loss of the serving cell of the second base station are determined by:
  • the first base station according to the first base station, the number of PRBs allocated by the terminal in the serving cell of the first base station, the PH of the terminal in the serving cell of the first base station, and the terminal in the The maximum transmit power of the serving cell of the first base station determines a downlink path loss of the serving cell of the first base station;
  • the first base station according to the second base station, the number of PRBs allocated by the terminal in the serving cell of the second base station, the PH of the terminal in the serving cell of the second base station, and the terminal in the The maximum transmit power of the serving cell of the second base station determines the downlink path loss of the serving cell of the second base station.
  • the third possible implementation manner of the first aspect Data modulation coding mode MCS index information and/or closed loop power control parameters of the serving cell of the second base station;
  • the downlink path loss and the downlink path loss of the serving cell of the second base station are determined by: the first base station is configured to allocate, according to the first base station, the serving cell of the terminal in the first base station The number of PRBs, the PH of the serving cell of the first base station, the maximum transmit power of the terminal in the serving cell of the first base station, the MCS index information of the serving cell of the first base station, and/or Or the closed loop power control parameter of the serving cell of the first base station determines a downlink path loss of the terminal in the serving cell of the first base station;
  • the first base station according to the second base station is the number of PRBs allocated by the terminal in the serving cell of the second base station, the PH of the terminal in the serving cell of the second base station, and the terminal is in the Determining that the terminal is at the second base station, the maximum transmit power of the serving cell of the second base station, the MCS index information of the serving cell of the second base station, and/or the closed loop power control parameter of the serving cell of the second base station The downlink path loss of the serving cell.
  • the method further includes:
  • the method further includes:
  • the first base station is configured to allocate the number of PRBs that the terminal allocates to the serving cell of the first base station, or the first base station allocates the serving cell of the terminal to the first base station.
  • the number of PRBs and the MCS index information of the serving cell of the first base station, or the first base station is the number of PRBs allocated by the terminal in the serving cell of the first base station and the closed loop function of the first base station Controlling parameters, or the first base station is the number of PRBs allocated by the terminal in the serving cell of the first base station, and the MCS index information of the serving cell of the first base station, and the closed loop power control of the first base station Parameters are carried in the PHR.
  • a second aspect of the embodiments of the present invention provides an uplink power control method, including:
  • the terminal sends a power headroom report PHR to the first base station, where the first base station controls the transmit power of the terminal in the serving cell of the first base station, where the PHR includes: the terminal is in the The power headroom PH of the serving cell of the first base station, the number of physical resource blocks PRB allocated by the second base station to the serving cell of the second base station, and the power of the serving cell of the terminal at the second base station Balance PH;
  • the terminal adjusts a transmit power of the terminal in a serving cell of the first base station by using control of the first base station.
  • the method further includes: the terminal adjusting, by the control of the second base station, the terminal in a serving cell of the second base station Transmit power, the control of the second base station is determined by the second base station according to the PHR sent by the first base station to the second base station.
  • the PHR further includes:
  • the data modulation and coding mode MCS index information of the serving cell of the second base station and/or the closed loop power control parameter of the serving cell of the second base station are provided.
  • a third aspect of the present invention provides a base station, including:
  • a receiving module configured to receive a power headroom report PHR sent by the terminal, where the PHR includes: a power headroom PH of the serving cell of the first base station, and a second base station that is the terminal at the second base station a number of physical resource block PRBs allocated by the serving cell, and a PH of the serving cell of the second base station;
  • a control module configured to control, according to the PHR, a transmit power of the terminal in a serving cell of the first base station.
  • the PHR further includes: a maximum transmit power of the terminal in a serving cell of the second base station.
  • control module includes:
  • a downlink path loss determining unit configured to determine, according to the PHR, a downlink path loss of the terminal in the serving cell of the first base station, and determine a downlink path loss of the terminal in the serving cell of the second base station;
  • control unit configured to: according to the PH of the serving cell of the first base station, the downlink path loss of the terminal in the serving cell of the first base station, and the serving cell of the terminal in the second base station The PH and the downlink path loss of the terminal in the serving cell of the second base station allocate the uplink resource of the serving cell of the terminal in the first base station to the terminal.
  • the downlink path loss determining unit is specifically configured to be used according to the first base station Determining, by the terminal, the number of PRBs allocated by the serving cell of the first base station, the PH of the terminal at the serving cell of the first base station, and the maximum transmit power of the serving cell of the terminal at the first base station
  • the downlink path loss of the serving cell of the first base station is further used for: according to the second base station, the number of PRBs allocated by the terminal in the serving cell of the second base station, and the terminal at the second base station
  • the PH of the serving cell and the maximum transmit power of the terminal in the serving cell of the second base station determine the downlink path loss of the serving cell of the second base station.
  • the PHR further includes: a serving cell of the second base station Data modulation coding mode MCS index information and/or closed loop power control parameters of the serving cell of the second base station;
  • the downlink path loss determining unit is specifically configured to: according to the first base station, a number of PRBs allocated by the terminal in a serving cell of the first base station, a PH of a serving cell of the terminal in the first base station, Determining, by the terminal, the maximum transmit power of the serving cell of the first base station, the MCS index information of the serving cell of the first base station, and/or the closed loop power control parameter of the serving cell of the first base station,
  • the downlink path loss of the serving cell of the first base station is further used to: according to the second base station, the number of PRBs allocated by the terminal in the serving cell of the second base station, and the terminal at the second base station.
  • the PH of the serving cell, the maximum transmit power of the serving cell of the second base station, the MCS index information of the serving cell of the second base station, and/or the closed loop power control parameter of the serving cell of the second base station Determining a downlink path loss of the terminal in the serving cell of the second base station.
  • a sending module configured to send the PHR to the second base station after the receiving module receives the power headroom report PHR sent by the terminal, so that the second base station controls the terminal according to the PHR The transmit power of the serving cell of the second base station.
  • the sending module is further configured to: before sending the PHR to the second base station,
  • the first base station is the number of PRBs allocated by the terminal in the serving cell of the first base station, or the first base station is the number of PRBs allocated by the terminal in the serving cell of the first base station.
  • the MCS index information of the serving cell of the first base station, or the first base station is the number of PRBs allocated by the terminal in the serving cell of the first base station, and the closed loop power control parameter of the first base station
  • the first base station is the number of PRBs allocated by the terminal in the serving cell of the first base station, the MCS index information of the serving cell of the first base station, and the closed loop power control parameter of the first base station.
  • a fourth aspect of the embodiments of the present invention provides a terminal, including:
  • a sending module configured to send a power headroom report PHR to the first base station, where the first base station controls, by the first base station, a transmit power of the serving cell of the first base station, where the PHR includes: a power headroom PH of the serving cell of the first base station, a second base station, a number of physical resource blocks PRB allocated by the terminal in a serving cell of the second base station, and a serving cell of the terminal in the second base station Power headroom PH;
  • an adjusting module configured to adjust, by the control of the first base station, a transmit power of the serving cell of the terminal at the first base station.
  • the adjusting module is further configured to adjust, by using a control of the second base station, a transmit power of the terminal in a serving cell of the second base station
  • the control of the second base station is determined by the second base station according to the PHR sent by the first base station to the second base station.
  • the PHR further includes:
  • the data modulation and coding mode MCS index information of the serving cell of the second base station and/or the closed loop power control parameter of the serving cell of the second base station are provided.
  • the uplink power control method provided by the embodiment of the present invention sends a PHR to the first base station by using the terminal, and carries the PH of the terminal at the first base station and the second base station in the PHR, and the second base station allocates the serving cell of the terminal in the second base station.
  • the number of PRBs is such that the first base station can learn the radio conditions of the serving cell of the first base station and the second base station according to the PHR, and then dynamically adjust the uplink resource allocation of the serving cell of the first base station according to the wireless condition, thereby controlling
  • the transmit power of the terminal in the serving cell of the first base station improves the accuracy of the transmit power of the base station control terminal.
  • FIG. 1 is a schematic flowchart of Embodiment 1 of an uplink power control method according to the present invention
  • FIG. 2 is a schematic flowchart of Embodiment 2 of an uplink power control method provided by the present invention
  • FIG. 4 is a schematic diagram of the application of the third embodiment of the uplink power control method according to the present invention
  • FIG. 5 is a schematic flowchart of the fourth embodiment of the uplink power control method provided by the present invention
  • FIG. 7 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention
  • FIG. 8 is a schematic structural diagram of Embodiment 2 of a base station according to the present invention.
  • FIG. 9 is a schematic structural diagram of Embodiment 1 of a first base station according to the present invention.
  • FIG. 10 is a schematic structural diagram of Embodiment 1 of a second base station according to the present invention.
  • FIG. 11 is a schematic structural diagram of Embodiment 1 of a terminal provided by the present invention.
  • FIG. 12 is a schematic structural diagram of Embodiment 3 of a base station according to the present invention.
  • FIG. 13 is a schematic structural diagram of Embodiment 4 of a base station according to the present invention.
  • FIG. 14 is a schematic structural diagram of Embodiment 2 of a first base station according to the present invention.
  • FIG. 15 is a schematic structural diagram of Embodiment 2 of a second base station according to the present invention.
  • FIG. 16 is a schematic structural diagram of Embodiment 2 of a terminal provided by the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • OFDMA Frequency Division Multiple Addressing
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • SC-FDMA single carrier FDMA
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • the terminal involved in the present application may be a wireless terminal or a wired terminal, and the wireless terminal may be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connection function, or is connected to Other processing devices for wireless modems.
  • the wireless terminal can communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and with a mobile terminal Computers, for example, can be portable, pocket, handheld, computer built-in or in-vehicle mobile devices that exchange language and/or data with the wireless access network.
  • a radio access network eg, RAN, Radio Access Network
  • a mobile terminal such as a mobile phone (or "cellular" phone)
  • Computers for example, can be portable, pocket, handheld, computer built-in or in-vehicle mobile devices that exchange language and/or data with the wireless access network.
  • a wireless terminal may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, an access point, or an access point.
  • Remote Terminal Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
  • a base station (e.g., an access point) referred to in this application may refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA. It may be an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in LTE.
  • the base station may be a primary base station, a secondary base station, a small station (smal l cel l, pico or femto), a macro station (macro cel l), etc., and the present application is not limited thereto.
  • the foregoing base station may also be implemented by a relay node, a remote radio head (RRH), a radio remote unit (RRU), an antenna port (antenna port, etc., and may also be collectively referred to as Transmi ss ion point (TP).
  • RRH remote radio head
  • RRU radio remote unit
  • TP Transmi ss ion point
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this paper is merely an association describing the associated object, indicating that there can be three relationships, for example, A and / or B, which can mean: A exists separately, and both A and B exist separately. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • Embodiment 1 is a schematic flowchart of Embodiment 1 of an uplink power control method provided by the present invention, where an active base station of the method is used, or an uplink power control device, where the uplink power control device can be integrated in a base station, as shown in FIG. Methods include:
  • the first base station receives a power headroom report sent by the terminal (Power Headroom
  • the PHR includes: a power headroom (hereinafter referred to as PH) of the serving cell of the first base station, and the second base station is the terminal in the The number of physical resource blocks (Physical Resource Blocks, hereinafter referred to as PRBs) allocated by the serving cell of the second base station, and the PH of the serving cell of the second base station.
  • PH power headroom
  • PRBs Physical Resource Blocks
  • the second base station in the present invention may be one base station or multiple base stations.
  • the serving cell of the first base station or the serving cell of the second base station may be one serving cell or multiple serving cells.
  • the first base station sends, to the terminal, the first base station is an uplink resource allocated by the terminal in the serving cell of the first base station, and the second base station sends the second base station to the terminal as an uplink resource allocated by the terminal in the serving cell of the second base station.
  • the uplink resource of the serving cell of the first base station includes the number of PRBs allocated by the first base station to the serving cell of the first base station, and the uplink resource of the serving cell of the second base station includes the second base station is the terminal.
  • the condition triggers the PHR.
  • the terminal sends a PHR to the first base station, where the PHR includes: the PH of the serving cell of the first base station, the number of PRBs allocated by the second base station to the serving cell of the second base station, and the terminal The PH of the serving cell of the second base station.
  • the PHR may further include, by the first base station, a number of PRBs allocated by the terminal in the serving cell of the first base station.
  • the terminal may also simultaneously send the PHR to the first base station and the second base station.
  • the first base station and the second base station can obtain the number of PRBs allocated by the other base stations to the terminal through the PHR reported by the terminal, and no longer need to forward the PHR through the inter-base station interface, thereby reducing the uncertainty period caused by the interface delay between the base stations.
  • the first base station and the second base station independently schedule the terminals respectively and cannot effectively control the transmission power of the UE.
  • the number of PRBs is 100, which means 100 PRBs, and 7 bits are needed.
  • the format of PHR is as shown in Table 1. In order to reduce the number of information bits occupied by the number of PRBs, the number of PRBs can be divided into several.
  • the level is, for example, the maximum number of PRB pairs is 16, 24, 32, 36, 40, 48, 50 divided into 8 levels and 1j, so only 3 bits are occupied, and the PRB index is used.
  • the format of PHR is shown in Table 2. Because the base station schedules resources according to the PRB pair, that is, the minimum scheduling unit of the resources is 2 PRBs. Through this representation method, the number of bits occupied by the PRB information can be effectively reduced, and the MCS index information field can be combined into one byte for byte alignment, and the signaling overhead is reduced.
  • the Pcells in Table 1 and Table 2 represent the primary serving cell, the Scell represents the secondary serving cell, and the dC 7 represents the serving cell of the first base station or the second base station.
  • the PHR includes the information of the cell, and the V value.
  • a value of 1 indicates a virtual PHR format, indicating that no uplink resource is allocated on the serving cell, P indicates whether the current serving cell has power back, and R is a reserved field.
  • the first base station receives the PHR sent by the terminal, and calculates, according to the maximum transmit power configured by the terminal in the serving cell of the first base station, and the PH of the receiving terminal in the serving cell of the first base station, the terminal is in the serving cell of the first base station. Transmit power, where the terminal can communicate with the first base station through one of the serving cells provided by the first base station, or communicate with the first base station through multiple serving cells, so the transmit power of the terminal can be based on the first
  • the base station calculates the uplink resources allocated by the terminal in the serving cell of the first base station, that is, the sum of the transmit powers when the terminal transmits data in each serving cell according to the uplink resources.
  • the terminal sends data on a Physical Uplink Shared Channel (PUSCH) and/or a Physical Uplink Control Channel (PUCCH), which includes user data and/or a letter.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PM ⁇ is the maximum transmit power of the terminal on the primary serving cell (Pcell) or each active state serving cell of the first base station or the second base station, and is the transmission of the terminal on the PUSCH of the serving cell of the first base station or the second base station.
  • the power, / ⁇ ⁇ is the transmit power of the terminal on the PUCCH of the serving cell of the first base station or the second base station; and, ⁇ may be the maximum transmit power based on the case of the allocated uplink resource (the terminal known by the base station)
  • the maximum transmit power is a range, and the terminal needs to report the accurate maximum transmit power value to the first base station.
  • the maximum transmit power when the first base station or the second base station does not allocate uplink resources to the terminal (by the first base station) And a maximum transmit power upper limit value of the serving cell of the first base station or the second base station that is configured by the second base station in advance, and the maximum transmit power of the terminal is the maximum transmit power upper limit value configured by the base station).
  • the first base station controls, according to the PHR, a transmit power of the terminal in a serving cell of the first base station.
  • the present invention describes the overall technical solution by taking the case where the terminal transmits data only on the PUSCH.
  • the present invention is also applicable to the case where the terminal simultaneously transmits data on the PUSCH and the PUCCH, but only in the formula used, and An example will be given in the examples.
  • the first base station can obtain the rae of the serving cell of the first base station according to the PH of the serving cell of the first base station and the maximum transmit power of the serving cell of the first base station reported by the terminal.
  • the maximum transmit power of the terminal in the serving cell of the first base station can be obtained by using the prior art.
  • the maximum transmit power of the terminal known by the first base station is a range, and the terminal needs to report the accuracy in the range.
  • the maximum transmit power value is given to the first base station, or the first base station is configured in advance for the terminal to be the upper limit of the maximum transmit power of the serving cell of the first base station, and the maximum transmit power of the terminal is also the maximum configured by the first base station.
  • the upper limit of the transmit power (the terminal does not need to report the maximum transmit power of the terminal to the first base station at this time); then according to formula 3: P O PUSC3 ⁇ 4c ( ) + c (j) ⁇ PL c
  • the number of PRBs is allocated in the serving cell of the first base station, and the first base station can learn the radio condition of the serving cell of the first base station (the wireless condition may be the downlink path loss or other when the terminal sends data in the serving cell of the first base station)
  • the parameter information of the radio transmission quality of the first base station serving cell is determined according to the radio condition, and the first base station is determined to allocate the uplink resource to the serving cell of the first base station according to the radio condition (the uplink resource determined here refers to the An uplink resource when a base station allocates data to a terminal for the next time).
  • P pmcH , c (i) in Equation 3 is the maximum transmit power transmitted by the terminal to the serving cell of the first base station or the serving cell of the second base station in subframe i;
  • M praa ⁇ (0 is the first base station is the terminal The uplink resource allocation bandwidth indicated by the number of PRBs allocated by the serving cell of the first base station, or the uplink resource allocation bandwidth indicated by the number of PRBs allocated by the terminal to the serving cell of the second base station by the second base station; P.
  • the layer is the transmit power configured by the terminal; (the path loss compensation coefficient specific to the serving cell of the first base station or the second base station; PL is the downlink path loss of the serving cell of the terminal at the first base station or the second base station; ⁇ ⁇ , ⁇ (The unit of 0 is milliwatt decibels (dBm).
  • the parameter used by the first base station to determine the uplink resource allocated by the terminal in the serving cell of the first base station is the parameter related to the first base station. For example: used
  • the first base station For the maximum transmit power transmitted by the terminal to the serving cell of the first base station in subframe i, the first base station allocates bandwidth for the uplink resource indicated by the number of PRBs allocated by the terminal in the serving cell of the first base station, and the used ⁇ is The serving cell specific path loss compensation coefficient of the first base station, and the used PL is the downlink path loss of the serving cell of the first base station.
  • the second base station may be the first base station and the terminal according to the above formula 1 ⁇ maximum transmit power in the serving cell of the second base station ⁇ , maximum transmit power of the terminal in the serving cell of the second base station the second base station knows the terminal Is a range in which the terminal reports an accurate maximum transmit power value to the first base station, or is configured by the second base station in advance for the terminal.
  • the upper limit of the maximum transmit power of the serving cell of the second base station, then the maximum transmit power of the terminal is the maximum transmit power upper limit configured by the second base station.
  • the first base station may learn the radio condition of the serving cell of the second base station (the wireless condition may be that the terminal is at the second base station) The downlink path loss when the serving cell transmits data or other parameter information reflecting the radio transmission quality of the serving cell of the second base station, and further knows that the second base station is the uplink resource allocated by the terminal in the serving cell of the second base station.
  • the first base station determines the uplink resource allocation of the serving cell of the first base station and the allocation of the uplink resource of the serving cell of the second base station, not only by formula 1 and formula 3, but also By combining Equation 1 with other formulas, Equation 3 here is not the only formula. In the technical field of uplink power control, Equation 3 can be replaced by other related formulas, for example, when the terminal is in the PUSCH of the serving cell of the first base station. And PUC
  • the first base station determines the uplink resource allocation of the terminal in the serving cell of the first base station and learns the terminal After the allocation of the uplink resources of the serving cell of the second base station, optionally, the first base station learns the resource adjustment rule of the second base station through the ⁇ 2 interface, and adjusts the service of the terminal at the first base station according to the resource adjustment situation of the second base station.
  • the resource allocation of the cell, and the transmission power of the serving cell of the first base station is controlled by the terminal; or, optionally, the first base station and the second base station may also interact with the uplink resource allocation algorithm through the ⁇ 2 interface in advance, and the first base station according to the terminal.
  • the number of PRBs of the serving cell of the second base station and the foregoing uplink resource allocation algorithm determine that the second base station allocates uplink resources to the terminal, and further allocates appropriate uplink resources to the terminal according to the case that the second base station allocates uplink resources to the terminal.
  • the uplink power control method provided by the embodiment of the present invention sends a PHR to the first base station by using the terminal, and carries the terminal at the first base station and the second base station and the second base station in the PHR.
  • the number of PRBs allocated by the terminal in the serving cell of the second base station so that the first base station can learn the radio conditions of the serving cell of the first base station and the second base station according to the PHR, and then dynamically adjust the service of the terminal at the first base station according to the wireless condition.
  • the uplink resource allocation of the cell further controls the transmission power of the terminal in the serving cell of the first base station, thereby improving the accuracy of the base station controlling the transmission power of the terminal.
  • the PHR further includes: a maximum transmit power of the serving cell of the second base station; and the transmit power of the first base station controlling the serving cell of the first base station, including: Determining, by the first base station, a downlink path loss of the serving cell of the first base station according to the PHR, and determining a downlink path loss of the serving cell of the second base station by the terminal; the first base station according to the terminal in the serving cell of the first base station PH, the downlink path loss of the serving cell in the first base station, the PH of the serving cell in the second base station, and the downlink path loss of the serving cell in the second base station are the terminal allocation terminal in the serving cell of the first base station.
  • Upstream resources are the terminal allocation terminal in the serving cell of the first base station.
  • the first base station determines, according to the PHR, a downlink path loss of the serving cell of the first base station, and determines a downlink path loss of the serving cell of the second base station by the terminal, specifically: The first base station according to the first base station, the number of PRBs allocated by the terminal in the serving cell of the first base station, the PH of the terminal in the serving cell of the first base station, and the terminal in the The maximum transmit power of the serving cell of the first base station determines the downlink path loss of the serving cell of the first base station; the first base station is the second base station according to the second base station Determining the number of PRBs allocated by the serving cell, the PH of the serving cell of the second base station, and the maximum transmit power of the serving cell of the second base station, determining that the terminal is at the second base station Downlink loss of the serving cell.
  • the first base station obtains, according to formula 1, the terminal in the serving cell of the first base station in the subframe i according to the PH of the serving cell of the first base station and the maximum transmit power of the serving cell of the first base station reported by the terminal. Then, according to Equation 3 and the number of PRBs allocated by the first base station to the serving cell of the first base station (the number of PRBs here determines the value of M P , in Equation 3), the service of the terminal at the first base station is obtained.
  • the downlink path loss of the cell indicates the radio condition of the serving cell of the first base station. Note that in Equation 3, P.
  • the transmit power configured for the terminal for the higher layer protocol layer ( ) is the first base station or the second
  • the serving cell-specific path loss compensation coefficient of the base station is known to the first base station
  • the PL obtained by the first base station according to Equation 3 is the downlink path loss when the terminal sends the PHR this time
  • the first base station is configured according to The calculated PL can estimate the next time the terminal transmits data in the serving cell of the first base station.
  • the first base station is also based on the PH of the serving cell of the second base station and the maximum transmit power of the serving cell of the second base station reported by the terminal.
  • the downlink path loss i3 ⁇ 4 when the cell transmits data, and the downlink path loss when the terminal transmits data in the serving cell of the second base station indicates the radio condition of the serving cell of the second base station.
  • the downlink path loss/time when the terminal obtains the data in the serving cell of the second base station by the first base station according to Equation 3 is the downlink path loss when the terminal sends the PHR, and the first base station can estimate the calculated according to the calculated The next time the terminal transmits data in the serving cell of the second base station.
  • the first base station After the first base station obtains the downlink path loss PL when the terminal transmits data in the serving cell of the first base station, the first base station is based on the PH of the serving cell of the first base station and the next serving terminal of the first base station by the terminal.
  • the downlink path loss when transmitting data is the uplink resource required for the terminal to allocate data for the next time in the serving cell of the first base station.
  • the first base station further estimates, according to the downlink path loss when the terminal transmits data in the serving cell of the second base station next time and the PH of the serving cell of the second base station, that the second base station is the serving cell allocation of the terminal in the second base station. The situation of the upstream resources required for the next transmission of data.
  • the first base station learns, by using the X2 interface between the second base station, the second base station to adjust the rule of the uplink resource, and further adjusts the first base station to serve the terminal in the first base station according to the rule that the second base station adjusts the uplink resource.
  • the uplink resource allocated by the cell, and the first base station is configured to allocate the uplink power control terminal to the transmit power of the serving cell of the first base station according to the first base station; or, optionally, the first base station and the second base station may also perform uplink uplink through the X2 interface.
  • the first base station determines, according to the number of PRBs of the serving cell of the second base station, and the foregoing uplink resource allocation algorithm, that the second base station allocates uplink resources to the terminal, and further allocates uplink resources to the terminal according to the second base station. Assign appropriate uplink resources to the terminal.
  • the PHR further includes: a data modulation and coding mode of the serving cell of the second base station (Modulation and Coding Scheme, below)
  • the MCS is referred to as the index information and/or the closed loop power control parameter of the serving cell of the second base station;
  • the first base station determines, according to the PHR, the downlink path loss of the terminal in the serving cell of the first base station, and determines
  • the downlink path loss of the terminal in the serving cell of the second base station is specifically: the first base station is configured according to the first base station, the number of PRBs allocated by the terminal in the serving cell of the first base station, The PH of the serving cell of the first base station, the maximum transmit power of the terminal in the serving cell of the first base station, the MCS index information of the serving cell of the first base station, and/or the first a closed loop power control parameter of the serving cell of the base station determines a downlink path loss of the terminal in the serving cell of the first base station;
  • the first base station serves as
  • the first base station obtains , according to formula 1, the service of the terminal in the subframe i at the first base station according to the PH of the serving cell of the first base station and the maximum transmit power of the serving cell of the first base station reported by the terminal.
  • Equation 4 For the community, then use Equation 4:
  • the base station is the number of PRBs allocated by the terminal in the serving cell of the first base station (the number of PRBs here determines the value of M praeH in Equation 4), and the downlink loss/ ⁇ of the serving cell of the first base station is obtained, and the terminal is in the
  • the downlink path loss / ⁇ of the serving cell of a base station indicates the radio condition of the serving cell of the terminal at the first base station.
  • Equation 4 / ⁇ 5 ⁇ ⁇ ) is the maximum transmit power of the terminal in the serving cell of the first base station or the second base station in subframe i; M praa ⁇ (0 is the first base station is the terminal at the The uplink resource allocation bandwidth indicated by the number of PRBs allocated by the serving cell of the base station, or the uplink resource allocation bandwidth indicated by the number of PRBs allocated by the terminal in the serving cell of the second base station; ⁇ ) is a higher layer protocol layer The transmit power of the terminal configuration; (the path loss compensation coefficient specific to the serving cell of the first base station or the second base station; A mc ( ) For the transmission power offset determined by the terminal in the serving cell of the first base station or the second base station according to the MCS index information, if the wireless condition of the serving cell is unstable, the difference in the MCS index information may bring about a change in the transmit power of the terminal.
  • the first base station obtains the downlink path loss when the terminal transmits the data in the serving cell of the first base station according to the formula 4, and estimates the next time the terminal transmits the data in the serving cell of the first base station according to the calculation.
  • the first base station also obtains the terminal in the subframe i at the second base station according to the ⁇ of the serving cell of the second base station and the maximum transmit power of the serving cell of the second base station reported by the terminal according to Equation 1.
  • the number of PRBs allocated by the terminal in the serving cell of the second base station (the number of PRBs here determines the value in Equation 4), and the service of the terminal at the second base station is obtained.
  • the downlink path loss PL and PZ ⁇ when the cell transmits data indicates the radio condition of the serving cell of the second base station. It should be noted that, in Equation 4, P 0 — ⁇ c c (j) , ⁇ ⁇ ( ), f c (i) are known to the first base station; and, the first base station obtains according to Equation 4.
  • the first base station estimates the next time the terminal transmits data in the serving cell of the second base station according to the calculated / ⁇ and is in the above formula 4 If there is no ⁇ ⁇ (0 and / or ⁇ in the PHR, in the case of 0, the value of the parameter ⁇ ⁇ (0 and / or f c (i) can be ignored in the formula 4, that is, ⁇ ⁇ ( ) And/or f c (i) is used to enable the first base station to obtain a downlink path loss when the terminal transmits data in the serving cell of the first base station or the second base station, and thus there is no case in the PHR.
  • the first base station can also obtain the downlink path loss when the terminal transmits data in the serving cell of the first base station or the second base station according to Equation 4.
  • the next base station obtains the terminal next time.
  • the first base station when the downlink path data terminal at a base station serving a first cell and a terminal PH a base station serving a first cell transmission loss / ⁇ , as a first terminal group
  • the serving cell of the station allocates an uplink resource; and the first base station is further configured according to the downlink path loss when the terminal transmits data in the serving cell of the second base station next time and the serving cell of the terminal in the second base station
  • the first base station learns, by using the X2 interface between the second base station, the second base station to adjust the rule of the uplink resource, and further adjusts the first base station to serve the terminal in the first base station according to the rule that the second base station adjusts the uplink resource.
  • the uplink resource allocated by the cell; or, optionally, the first base station and the second base station may also interact with the uplink resource allocation algorithm in advance through the X2 interface, where the first base station is based on the number of PRBs of the serving cell of the second base station and the foregoing uplink
  • the resource allocation algorithm determines that the second base station allocates the uplink resource to the terminal, and further allocates the appropriate uplink resource to the terminal according to the case that the second base station allocates the uplink resource to the terminal.
  • the first base station may be in the first The serving cell of a base station allocates more uplink resources to the terminal, and further allocates, according to the first base station, the transmit power of the uplink resource control terminal in the serving cell of the first base station.
  • Embodiment 2 is a schematic flowchart of Embodiment 2 of an uplink power control method provided by the present invention, where
  • the method further includes:
  • the first base station is the number of PRBs allocated by the terminal in the serving cell of the first base station, or the first base station is allocated by the terminal in the serving cell of the first base station.
  • the number of PRBs and the MCS index information of the serving cell of the first base station, or the first base station is the number of PRBs allocated by the terminal in the serving cell of the first base station, and the closed loop power control of the first base station a parameter, or, the first base station is a number of PRBs allocated by the terminal in a serving cell of the first base station, and MCS index information of a serving cell of the first base station, and a closed loop power control parameter of the first base station Carry in the PHR.
  • S202 The first base station sends the PHR to the second base station.
  • the second base station controls, according to the PHR, a transmit power of the terminal in the serving cell of the second base station.
  • the first base station after receiving the PHR sent by the terminal, the first base station carries the number of PRBs of the serving cell of the first base station in the PHR, or the first base station is the number of PRBs allocated by the terminal in the serving cell of the first base station.
  • the MCS index information of the serving cell of a base station is carried in the PHR, or the first base station is the number of PRBs allocated by the terminal in the serving cell of the first base station.
  • the closed loop power control parameter of the first base station is carried in the PHR, or the first base station is the number of PRBs allocated by the terminal in the serving cell of the first base station, and the MCS index information of the serving cell of the first base station, and the first base station
  • the closed loop power control parameters are carried in the PHR.
  • the first base station transmits the PHR to the second base station.
  • the first base station sends the PHR to the second base station, mainly because the terminal sends only one of the base stations after the PHR is triggered. If the second base station does not receive the PHR, the second base station cannot allocate uplink resources to the terminal of the serving cell under its jurisdiction.
  • the first base station and the first base station also exchange some parameter information in advance through the X2 interface, so that the second base station can learn the time when the first base station updates the uplink resource, and the first base station adjusts the uplink resource condition of the terminal in the serving cell of the first base station, that is, the first The base station and the second base station need to negotiate the regulation rules of the two through the X2 interface in advance.
  • the adjustment rule here may be that the two adjust the frequency of the uplink resource and adjust the rules of the uplink resource, for example, mutually move each other according to a certain size, and can define a lot by Rules and conditions to try to adjust independently by both The combined effect makes the control power more accurate. Specifically:
  • the second base station receives the PHR forwarded by the first base station, and according to the PH of the serving cell of the second base station and the maximum transmit power of the serving cell of the second base station in the PHR
  • P c obtains the number of PRBs allocated by the terminal in the serving cell of the second base station in subframe i at / ⁇ 5 ⁇ ⁇ according to Equation 1, and then according to Equation 3 and the second base station, the number of PRBs allocated by the terminal in the serving cell of the second base station (the number of PRBs here) Determine the ⁇ ⁇ resort (value of 0) in Equation 3, and obtain the downlink loss of the serving cell of the second base station, and ⁇ denote the wireless condition of the serving cell of the second base station.
  • Equation 3 Medium n ⁇ ) is a transmit power configured for the terminal by the upper layer protocol layer, ⁇ is a serving cell specific path loss compensation coefficient of the first base station or the second base station, is known for the second base station; and second the base station according to formula 3 is obtained when the downlink pathloss terminal transmits the PHR, the second base station according to the calculated / estimated PL c ⁇ upon data transmission in a base station serving the second cell at the terminal.
  • the second base station obtains, according to the PH of the serving cell of the first base station and the maximum transmit power of the serving cell of the first base station, the terminal according to the formula 1 that the terminal is in the serving cell of the first base station in subframe i. Rae , then according to formula 3 and the number of PRBs allocated by the first base station to the serving cell of the first base station, the terminal is obtained at the first base station.
  • the downlink path loss P ⁇ when the serving cell transmits data, and the downlink path loss / ⁇ when the terminal transmits data in the serving cell of the first base station indicates the radio condition of the serving cell of the first base station.
  • the downlink path loss when the terminal obtained by the second base station according to formula 3 transmits data in the serving cell of the first base station
  • / ⁇ is the downlink path loss when the terminal transmits the PHR this time, and the second base station calculates the next time the terminal transmits data in the serving cell of the first base station according to the calculated estimate.
  • the second base station After the second base station obtains the downlink path loss when the terminal transmits data in the serving cell of the second base station next time, the second base station transmits according to the terminal of the serving cell of the second base station and the next time the terminal transmits the serving cell of the second base station.
  • the downlink path loss/ ⁇ at the time of data is that the terminal allocates uplink resources in the serving cell of the second base station.
  • the second base station further estimates, according to the downlink path loss when the terminal transmits data in the serving cell of the first base station, and the ⁇ of the serving cell of the first base station, that the first base station is the serving cell allocation of the terminal in the first base station. The situation of uplink resources.
  • the second base station learns, by using the ⁇ 2 interface between the first base station, the first base station to adjust the uplink resource, and further adjusts the second base station to serve the terminal in the second base station according to the rule that the first base station adjusts the uplink resource.
  • the uplink resource allocated by the cell, and the second base station is configured to allocate the uplink power control terminal to the transmit power of the serving cell of the second base station; or, optionally, the first base station and the second base station may also perform uplink uplink through the ⁇ 2 interface.
  • the first base station determines, according to the number of PRBs of the serving cell of the second base station, and the foregoing uplink resource allocation algorithm, that the second base station allocates uplink resources to the terminal, and further allocates uplink resources to the terminal according to the second base station. Assign appropriate uplink resources to the terminal.
  • the first base station may be in the first The serving cell of a base station allocates more uplink resources to the terminal, and further allocates, according to the first base station, the transmit power of the uplink resource control terminal in the serving cell of the first base station.
  • the first base station and the second base station determine, according to the PHR, a resource allocation situation of the terminal in the serving cell of the first base station or the serving cell in the second base station, and control the terminal according to the resource allocated for the terminal.
  • the process of transmitting power is the same.
  • the uplink power control method provided by the embodiment of the present invention sends a PHR to the first base station by using the terminal, and the first base station carries the number of PRBs of the serving cell of the first base station in the PHR to the second base station, so that the second base station
  • the radio condition of the serving cell of the first base station and the second base station may be known according to the PHR, and then the terminal is dynamically adjusted according to the wireless condition.
  • the uplink resource allocation of the serving cell of the station, and thus the transmission power of the serving cell of the second base station improves the accuracy of the transmitting power of the base station control terminal.
  • FIG. 3 is a schematic flowchart of Embodiment 3 of an uplink power control method provided by the present invention
  • FIG. 4 is a schematic diagram of application of Embodiment 3 of an uplink power control method provided by the present invention.
  • the method according to the embodiment is that the first base station generates pre-scheduling information according to the downlink path loss of the serving cell of the first base station and the uplink resource allocated for the terminal, and sends the pre-scheduling information to the second base station to enable the second
  • the base station controls the transmit power of the terminal in the serving cell of the second base station according to the pre-scheduling information
  • the execution entity of the method in this embodiment is the first base station
  • the downlink path loss determined by the first base station according to the PHR is the terminal at the first base station.
  • the uplink resource of the serving cell of the first base station in the time period is set.
  • the first base station receives the PHR sent by the terminal, where the PHR includes: a PH of the serving cell of the terminal at the first base station and a PH of the serving cell of the terminal at the second base station.
  • the terminal sends the PHR to the first base station, and the terminal also sends the PHR to the second base station.
  • the PHR includes: the PH of the serving cell of the terminal in the first base station and the PH of the serving cell of the terminal in the second base station;
  • the PHR may further include a maximum transmit power of the serving cell of the terminal at the first base station and a maximum transmit power of the serving cell of the terminal at the second base station.
  • the terminal sends data on the PUSCH and/or the PUCCH, where the data includes user data and/or signaling, and the PH sent by the terminal to the first base station can be divided into two types of PHs, namely type 1 and type respectively. 2.
  • type 1 type 1
  • type 2 type 2
  • % PH P CMAX , c _ P PUSCH , c (formula 1).
  • the first base station determines, according to the PHR, a downlink path loss of the serving cell of the first base station, and according to the PH of the serving cell of the first base station and the determined downlink loss of the serving cell of the first base station. Allocating uplink resources to the serving cell of the first base station for the terminal.
  • the first base station generates pre-scheduling information according to the downlink path loss of the serving cell of the first base station and the uplink resource allocated for the terminal.
  • the first base station sends the foregoing pre-scheduling information to the second base station, so that the second base station controls, according to the pre-scheduling information, the transmit power of the terminal in the serving cell of the second base station.
  • the overall technical solution is described by taking the case where the terminal transmits data only on the PUSCH.
  • the present invention is also applicable to the case where the terminal simultaneously transmits data on the PUSCH and the PUCCH, but differs in the formula used.
  • the first base station can obtain the rae of the serving cell of the first base station according to the PH of the serving cell of the first base station and the maximum transmit power of the serving cell of the first base station reported by the terminal.
  • a first cell serving the terminal in the base station maximum transmission power of the prior art may be utilized ⁇ ⁇ acquired, optionally, the first base station knew the maximum transmit power of the terminal is a range, needs to be reported by the terminal is within this range
  • the maximum transmit power value is given to the first base station, or the first base station is configured in advance for the terminal to be the upper limit of the maximum transmit power of the serving cell of the first base station, and the maximum transmit power of the terminal is also configured by the first base station.
  • the maximum transmit power upper limit value (the terminal does not need to report the maximum transmit power of the terminal to the first base station at this time); then according to formula 3:
  • P PUSCH c ( ) min i PcMAX ⁇ c ( °' ⁇ and the first base station is the terminal
  • M praa ⁇ the value of 0, and is known by the first base station itself
  • the transmit power configured by the higher layer protocol layer for the terminal
  • is the serving channel specific path loss compensation coefficient of the first base station or the second base station, for the first base station.
  • the determined downlink path loss is the downlink path loss in the set time period after the terminal of the serving cell of the first base station passes the current time of 20 ms, where the set time period may be 10 ms in FIG. 4;
  • the downlink path loss determines that the first base station is an uplink resource allocated by the terminal in the serving cell of the first base station, or the first base station determines the terminal according to the PH of the terminal in the serving cell of the second base station and the transmitting power of the terminal in the serving cell of the second base station.
  • the first base station in serving cell raa ⁇ second base station, downlink pathloss and binding determined as described above with the terminal in the terminal in the cell of the first base station serving uplink resource allocation, wherein the uplink resource is After a time delay before a first set period when the uplink resources in a serving cell of the first base station.
  • the first base station generates pre-scheduling information according to the determined downlink path loss and the uplink resource allocated by the first base station to the terminal, where the pre-scheduling information includes: a PRB allocated by the terminal in each serving cell of the first base station in each subframe.
  • the number, the MCS index information may further include: a closed loop power control parameter of the serving cell of the first base station.
  • the first base station sends pre-scheduling information of the first base station in the first 10 ms after 20 ms at the current time, and the second base station receives the pre-scheduling information sent by the first base station after 20 ms, and the first base station learned according to the pre-scheduling message
  • the downlink path loss and the uplink resource allocation within 10ms are the uplink resource allocation of the first base station at this moment (because the pre-scheduling information sent by the first base station to the second base station itself is the uplink resource of the first base station after 20ms) Allocating information), the first base station continues to send the second pre-scheduling information within 10 ms to the second base station after 10 ms, and so on.
  • the time length of the foregoing first delay should be greater than or equal to the transmission delay of the interface between the first base station and the second base station X2, and may be estimated according to an average delay within a certain time range, and different time ranges, the first The value of a delay can vary.
  • the second base station receives the pre-scheduling information sent by the first base station, and determines the PH of the serving cell of the second base station according to the number of PRBs of the serving cell of the second base station and the PHR sent by the terminal received by the terminal. The downlink path loss of the serving cell of the second base station is determined by the second base station.
  • the method for determining the downlink path loss of the serving cell of the second base station by the second base station may refer to the determining, by the first base station, the downlink path loss of the serving cell of the first base station. The method is not described here again.
  • the terminal allocates uplink resources to the serving cell of the second base station in combination with the foregoing pre-scheduling information, so as to achieve the purpose of controlling the transmit power of the serving cell of the second base station, for example: according to the received
  • the first base station calculates, according to the uplink resource allocated by the terminal in the serving cell of the first base station, the transmit power of the terminal in the serving cell of the first base station, and according to the second base station, the uplink resource allocated by the terminal in the serving cell managed by the second base station.
  • the first base station receives the PHR sent by the terminal, determines the downlink path loss of the serving cell of the first base station according to the PHR, and allocates the uplink to the serving cell of the first base station according to the downlink path loss. And generating, by the terminal, the downlink path loss of the serving cell of the first base station and the uplink resource for the terminal to allocate the uplink resource to the second base station, so that the second base station performs the pre-scheduling information according to the The second base station controls the transmission power of the serving cell of the second base station by the downlink path loss control terminal of the serving cell of the second base station determined by the PHR, and improves the accuracy of the transmission power of the base station control terminal.
  • FIG. 5 is a schematic flowchart of Embodiment 4 of an uplink power control method according to the present invention. The method is performed by the second base station, and the method includes the following steps:
  • the second base station receives the PHR sent by the terminal, where the PHR includes the PH of the serving cell of the terminal at the first base station and the PH of the serving cell of the terminal at the second base station.
  • the terminal sends a PHR to the first base station and the second base station, where the PHR includes the PH of the serving cell of the first base station and the PH of the serving cell of the terminal at the second base station; optionally, the PHR
  • the maximum transmit power ⁇ ⁇ of the serving cell of the terminal at the first base station and the second base station may be included.
  • the second base station determines, according to the PH of the serving cell of the second base station and the maximum transmit power of the serving cell of the second base station, ⁇ / ⁇ , using Equation 1 to determine that the terminal is The rae of the serving cell of the second base station, and then the number of PRBs allocated to the serving cell of the first base station according to Equation 3 and the second base station (the number of PRBs here determines the value of M pulate in Equation 3, and is the number
  • the second base station itself knows, and obtains the downlink loss/me of the terminal in the serving cell of the second base station.
  • the second base station receives the pre-scheduling information sent by the first base station, where the pre-scheduling information is the downlink path loss of the terminal determined by the first base station according to the first base station, and the serving cell of the first base station is the terminal of the first base station.
  • the allocated uplink resources are determined.
  • the second base station controls, according to the foregoing pre-scheduling information, an uplink resource of the serving cell of the second base station.
  • the second base station receives the pre-scheduling information sent by the first base station, where the pre-scheduling information is determined by the first base station according to the downlink path loss of the first base station and the first base station is the terminal according to the first base station.
  • the specific acquiring method of the pre-scheduling information is as follows:
  • the first base station After receiving the PHR sent by the terminal, the first base station obtains the terminal according to the PH of the serving cell of the first base station and the maximum transmit power of the serving cell of the first base station/ ⁇ . / ⁇ 5 ⁇ ⁇ of the serving cell of the base station.
  • the terminal ⁇ maximum transmit power of the base station serving the first cell of the prior art can be acquired by using, optionally, the first base station knew the maximum transmit power of the terminal is a range, accuracy needs to be reported by the terminal is within this range
  • the maximum transmit power value is given to the first base station, or the first base station is configured in advance for the terminal to be the upper limit of the maximum transmit power of the serving cell of the first base station, and the maximum transmit power of the terminal is also configured by the first base station.
  • Maximum transmit power upper limit value (in this case, the terminal does not need to report the maximum transmit power of the terminal to the first base station); then, according to formula 3 and the first base station, the terminal allocates the number of PRBs in the serving cell of the first base station (the number of PRBs here) Determining the value of M praa ⁇ (the value of 0, which is also known by the first base station itself) in Equation 3, and obtaining the downlink loss/ me of the serving cell of the first base station, the first base station according to the terminal at the first base station
  • the downlink path loss of the serving cell/ ⁇ is that the terminal allocates uplink resources in the serving cell of the first base station, and it should be noted that, referring to FIG.
  • the downlink path loss determined by the base station according to the PHR is the downlink path loss in the set time period after the terminal of the serving cell of the first base station passes the current time of 20 ms, where the set time period may be 10 ms in FIG. 4;
  • a base station determines, according to the downlink path loss, that the first base station is an uplink resource allocated by the terminal in the serving cell of the first base station, and the uplink resource And is an uplink resource of the serving cell of the first base station in the set time period after the first time delay of the terminal at the current time.
  • the first base station generates pre-scheduling information according to the determined downlink path loss and the uplink resource allocated by the first base station to the terminal, where the pre-scheduling information includes: a PRB allocated by the terminal in each serving cell of the first base station in each subframe.
  • the number, the MCS index information may further include: a closed loop power control parameter of the serving cell of the first base station and a downlink path loss of the serving cell of the first base station.
  • the first base station sends the pre-scheduling information to the second base station. Because there is a communication delay between the first base station and the second base station, the pre-scheduling information sent by the first base station at the current time is the first base station after 20 ms. The pre-scheduling information in the first 10 ms, the second base station receives the pre-scheduling information sent by the first base station after 20 ms, and the downlink path loss and the uplink resource allocation of the first base station within 10 ms according to the pre-scheduling message are positive.
  • the first base station It is the uplink resource allocation situation of the first base station at this moment (because the pre-scheduling information sent by the first base station to the second base station itself is the uplink resource allocation information of the first base station after 20 ms), and the first base station continues to the second after 10 ms.
  • the base station sends the second pre-scheduling information within 10ms, and so on.
  • the time length of the foregoing first delay should be greater than or equal to the transmission delay of the interface between the first base station and the second base station X2, and may be estimated according to an average delay within a certain time range, and different time ranges, the first The value of a delay can vary.
  • the second base station controls the transmit power of the serving cell of the second base station according to the pre-scheduling information and the previously determined downlink loss of the serving cell of the second base station, for example: according to the received first base station
  • the uplink resource of the terminal allocated by the serving cell in the serving cell of the first base station calculates the transmitting power of the serving cell of the first base station, and calculates the terminal according to the second base station as the uplink resource allocated by the terminal in the serving cell of the second base station.
  • the transmit power of the serving cell managed by the base station, and the transmit power of the serving cell managed by the second base station is adjusted by a preset adjustment rule or algorithm with the first base station, so that the sum of the two does not exceed the maximum transmission of the terminal power.
  • FIG. 6 is a schematic flowchart of Embodiment 5 of an uplink power control method according to the present invention. The method is performed by a terminal, and the method includes:
  • the terminal sends a PHR to the first base station, where the first base station controls a transmit power of the serving cell of the first base station, where the PHR includes: a PH of the serving cell of the first base station, and a second
  • the base station is the number of PRBs allocated by the terminal in the serving cell of the second base station and the PH of the serving cell of the terminal in the second base station.
  • the terminal adjusts, according to the control of the first base station, the transmit power of the terminal in the serving cell of the first base station.
  • the first base station sends the number of PRBs allocated by the terminal to the serving cell of the first base station to the terminal
  • the second base station sends the number of PRBs allocated by the terminal to the serving cell of the second base station to the terminal; after receiving the number of the PRBs,
  • the PHR is triggered according to a trigger condition that the PHR period timer expires and the serving cell reports that the downlink path loss changes beyond the threshold after the PHR is last reported.
  • the terminal sends a PHR to the first base station, where the PHR includes: The PH of the serving cell of the base station, the second base station is the number of PRBs allocated by the terminal in the serving cell of the second base station, and the PH of the serving cell of the second base station, and optionally the first base station may also be included in the PHR.
  • the number of PRBs allocated by the terminal in the serving cell of the first base station; and optionally, the terminal may also simultaneously send the PHR to the first base station and the second base station; wherein, for example, the number of PRBs is 100, indicating 100 PRBs.
  • the number of PRBs can be divided into several The level, for example, according to the maximum number of PRB pairs is 16, 24, 32, 36, 40, 48, 50 divided into 8 levels, so only occupy 3 bits, represented by PRB index (PRB index), as shown in Table 2.
  • PRB index PRB index
  • the terminal reporting the terminal at the PH of the serving cell of the first base station and the maximum transmit power of the serving cell of the first base station may obtain the raa ⁇ of the serving cell of the terminal in the first base station, Then, according to formula 3 and the number of PRBs allocated by the first base station to the serving cell of the first base station, the downlink loss of the serving cell of the first base station is obtained, and ⁇ represents the wireless condition of the serving cell of the first base station, Note that in Equation 3, P.
  • the transmit power configured for the terminal by the higher layer protocol layer a c (j) is the serving cell specific path loss compensation coefficient of the first base station or the second base station, which is known to the first base station, and
  • the base station obtains the downlink path loss when the terminal transmits the PHR according to the formula 3, and the first base station estimates the next time the terminal is in the first base station according to the calculated
  • the serving cell transmits data the first base station obtains the terminal in accordance with Equation 1 according to the ⁇ of the serving cell of the second base station and the maximum transmit power P c of the serving cell of the second base station.
  • the frame i is in the raa ⁇ of the serving cell of the second base station, and then according to the formula 3 and the number of PRBs allocated by the second base station to the serving cell of the second base station, the downlink of the terminal when the serving cell of the second base station transmits data is obtained.
  • Loss/ ⁇ , the downlink path loss/ ⁇ at the time when the terminal transmits data in the serving cell of the second base station indicates the radio condition of the serving cell of the second base station, and the terminal obtained by the first base station according to Equation 3 is in the serving cell of the second base station.
  • the downlink path loss/ ⁇ when transmitting data is the downlink path loss when the terminal transmits the PHR this time, and the first base station estimates the ⁇ of the next time the terminal transmits data in the serving cell of the second base station according to the calculated value.
  • the first base station After the first base station obtains the downlink path loss when the terminal transmits data in the serving cell of the first base station, the first base station transmits according to the terminal of the serving cell of the first base station and the next time the terminal transmits to the serving cell of the first base station.
  • the downlink path loss/ ⁇ of the data is that the terminal allocates the uplink resource in the serving cell of the first base station; and the first base station further performs the downlink path loss according to the next time the terminal transmits data in the serving cell of the second base station, and the terminal is in the second
  • the eNB of the serving cell of the base station estimates that the second base station allocates uplink resources to the serving cell of the second base station; the first base station learns, by using the ⁇ 2 interface between the second base station, that the second base station adjusts the uplink resource.
  • the first base station is an uplink resource allocated by the terminal in the serving cell of the first base station, and then, according to the first base station, the uplink resource control terminal is allocated to the serving cell of the first base station.
  • Power that is, the terminal adjusts the terminal at the first base station according to the uplink resource allocated by the first base station.
  • the transmit power of the serving cell; or the first base station and the second base station may also interact with the uplink resource allocation algorithm in advance through the ⁇ 2 interface, where the first base station determines according to the number of PRBs of the serving cell of the second base station and the uplink resource allocation algorithm described above.
  • the second base station allocates uplink resources to the terminal, and further allocates appropriate uplink resources to the terminal according to the case where the second base station allocates uplink resources to the terminal. For example: if the downlink path loss of the serving cell under the jurisdiction of the first base station is small, and the downlink channel loss of the serving cell under the control of the second base station is large and the uplink resource is small, and the MCS index is small, the first base station may be in the first The serving cell of a base station allocates more uplink resources to the terminal, and further allocates, according to the first base station, the transmit power of the uplink resource control terminal in the serving cell of the first base station. .
  • the uplink power control method provided by the embodiment of the present invention is sent to the first base station by using the terminal PHR, and in the PHR, carrying the PH of the serving cell of the first base station, the second base station is the number of PRBs allocated by the terminal in the serving cell of the second base station, and the PH of the serving cell of the terminal at the second base station, so that
  • the first base station can learn the radio conditions of the serving cell of the first base station and the second base station according to the PHR, and then dynamically adjust the uplink resource allocation of the serving cell of the first base station according to the radio condition, and then control the terminal at the first base station.
  • the transmit power of the serving cell improves the accuracy of the transmit power of the base station control terminal.
  • the method further includes: adjusting, by the terminal, the transmit power of the serving cell of the second base station by using the control of the second base station, where the control of the second base station is the second base station according to the foregoing A base station determines the PHR transmitted to the second base station.
  • the uplink resource allocation and the adjustment of the first base station and the second base station in the serving cell under the control of the terminal are based on the downlink path loss when the terminal transmits data in the serving cell under its jurisdiction, and the second base station is configured according to the downlink.
  • the PHR forwarded by the first base station estimates the downlink path loss when the terminal transmits data in the serving cell of the second base station next time and estimates the downlink path loss when the terminal transmits data in the serving cell of the first base station next time.
  • the serving cell of the second base station allocates an uplink resource, that is, the second base station is related to the uplink resource allocation of the terminal in the second base station serving cell to the PHR sent by the first base station to the second base station, and the terminal allocates the uplink according to the second base station.
  • the resource adjusts the transmit power of the terminal in the serving cell of the second base station.
  • the PHR further includes: data MCS index information of the serving cell of the second base station and/or closed loop power control parameter of the serving cell of the second base station.
  • the PHR sent by the terminal to the first base station may further include: data MCS index information of the serving cell of the second base station and/or closed loop power control parameter of the serving cell of the second base station, where the MCS index information is Corresponding to ⁇ ⁇ in Equation 4 (0, the closed-loop power control parameter of the serving cell of the second base station corresponds to / in Equation 4), the MCS index information may indicate different data modulation and coding modes, and the radio quality of the serving cell is unstable. In this case, different modulation and coding modes will affect the transmit power of the terminal.
  • the first base station obtains , according to the formula 1, the terminal in the serving cell of the first base station in the subframe i according to the ⁇ of the serving cell of the first base station and the maximum transmit power of the serving cell of the first base station. Then, using Equation 4 and the number of PRBs allocated by the first base station to the serving cell of the first base station, the service of the terminal at the first base station is obtained.
  • the downlink path loss P ⁇ of the cell, the downlink path loss of the terminal in the serving cell of the first base station / ⁇ indicates the radio condition of the serving cell of the terminal in the first base station; and the first base station obtains the terminal to transmit according to the formula 4
  • the terminal is obtained in the subframe i in the serving cell of the second base station, and then according to the formula 4 and the second base station is the terminal at the second base station.
  • the number of PRBs allocated by the serving cell obtains the downlink loss when the terminal transmits data in the serving cell of the second base station, indicating the wireless condition of the terminal in the serving cell of the second base station, and it is noted that, in Equation 4, U ), a c (j), ⁇ ⁇ are known to the first base station; and the first base station according to formula 4 is obtained when the downlink pathloss the terminal transmits the PHR, a first group Obtaining, according to the calculated / ⁇ , the next time the terminal transmits data in the serving cell of the second base station, the first base station allocates the downlink path loss of the serving cell of the first base station and the second base station to the terminal according to the determined terminal.
  • the uplink resource controls the transmission power of the terminal according to the uplink resource allocated for the terminal.
  • the uplink power control method provided by the embodiment of the present invention further enables the first base station to learn the radio conditions of the serving cell of the first base station and the second base station according to the PHR by further carrying the MCS index information and the closed loop power control parameter in the PHR. Further, the uplink resource allocation of the serving cell of the first base station is dynamically adjusted according to the wireless condition, and then the transmit power of the serving cell of the first base station is controlled, thereby improving the accuracy of the transmit power of the base station control terminal.
  • FIG. 7 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention.
  • the base station includes: a receiving module 40, configured to receive a power headroom report PHR sent by a terminal, where the PHR includes: a power headroom PH of the serving cell of the first base station, a second base station, a number of physical resource blocks PRB allocated by the terminal in the serving cell of the second base station, and a PH of the serving cell of the terminal in the second base station a control module 41, configured to control according to the PHR And transmitting, by the terminal, a transmit power of a serving cell of the first base station.
  • a receiving module 40 configured to receive a power headroom report PHR sent by a terminal, where the PHR includes: a power headroom PH of the serving cell of the first base station, a second base station, a number of physical resource blocks PRB allocated by the terminal in the serving cell of the second base station, and a PH of the serving cell of the terminal in the second base
  • the base station in this embodiment can perform the method embodiment shown in FIG. 1, and the implementation principles are similar, and details are not described herein again.
  • FIG. 8 is a schematic structural diagram of Embodiment 2 of a base station according to the present invention.
  • the control module 41 further includes: a downlink path loss determining unit 410. Determining, according to the PHR, a downlink path loss of the serving cell of the first base station, and determining a downlink path loss of the serving cell of the second base station by the terminal; and a control unit 411, configured to be according to the terminal a PH of the serving cell of the first base station, a downlink path loss of the terminal in the serving cell of the first base station, a PH of the serving cell of the terminal in the second base station, and the terminal in the
  • the downlink path loss of the serving cell of the second base station is that the terminal allocates the uplink resource of the serving cell of the terminal in the first base station, and controls the terminal according to the uplink resource of the serving cell of the first base station.
  • the transmit power of the serving cell of the first base station is that the terminal allocates the uplink resource of the serving cell of the
  • the downlink path loss determining unit 410 is specifically configured to: according to the first base station, a number of PRBs allocated by the terminal in a serving cell of the first base station, and the terminal Determining a downlink path loss of the terminal in a serving cell of the first base station by using a PH of a serving cell of the first base station and a maximum transmit power of the terminal in a serving cell of the first base station;
  • the second base station is the number of PRBs allocated by the terminal in the serving cell of the second base station, the PH of the serving cell of the terminal in the second base station, and the serving cell of the terminal in the second base station.
  • the maximum transmit power determines the downlink path loss of the terminal in the serving cell of the second base station.
  • the PHR further includes: a data modulation and coding mode MCS index information of the serving cell of the second base station and/or a closed loop power control parameter of the serving cell of the second base station; and the downlink path loss determining unit 410 Specifically, according to the first base station, the number of PRBs allocated by the terminal in the serving cell of the first base station, the PH of the terminal in the serving cell of the first base station, and the terminal in the The maximum transmit power of the serving cell of the base station, the MCS index information of the serving cell of the first base station, and/or the closed loop power control parameter of the serving cell of the first base station determine the service of the terminal at the first base station
  • the downlink path loss of the cell is further used to: according to the second base station, the number of PRBs allocated by the terminal in the serving cell of the second base station, and the PH of the serving cell of the terminal in the second base station, The terminal is at the second base Determining the service of the terminal in the second base station, the maximum transmit power of the serving
  • the base station provided by this embodiment can perform the foregoing method embodiments, and the implementation principle is similar, and details are not described herein again.
  • the base station further includes: a sending module 42, configured to send, after the receiving module receives the power headroom report PHR sent by the terminal, the PHR to the a second base station, so that the second base station controls, according to the PHR, a transmit power of the terminal in a serving cell of the second base station; and, the sending module 42 is further configured to send the PHR to Before the second base station, the first base station is the number of PRBs allocated by the terminal in the serving cell of the first base station, or the first base station is the service of the terminal in the first base station.
  • the number of PRBs allocated by the cell and the MCS index information of the serving cell of the first base station, or the number of PRBs allocated by the first base station to the serving cell of the first base station and the first base station is the number of PRBs allocated by the terminal in the serving cell of the first base station, and the MCS index information of the serving cell of the first base station Closed loop power control parameter of the first base station is carried in the PHR.
  • the base station provided by this embodiment can perform the foregoing method embodiments, and the implementation principle is similar, and details are not described herein again.
  • FIG. 9 is a schematic structural diagram of Embodiment 1 of a first base station according to the present invention.
  • the first base station includes: a first receiving module 50, configured to receive a PHR sent by a terminal, where the PHR includes: a PH of the serving cell of the base station and a PH of the serving cell of the second base station; a first determining module 51, configured to determine, according to the PHR, a downlink path loss of the serving cell of the first base station according to the PHR, and according to the terminal at the first The PH of the serving cell of the base station and the determined downlink loss of the serving cell of the first base station are the uplink resources allocated by the terminal to the serving cell of the first base station; the information generating module 52 is configured to use the serving cell of the first base station Generating pre-scheduling information for the downlink path loss and the uplink resource allocated to the terminal; the second sending module 53 is configured to send the pre-scheduling information to the second base station, so that the second
  • the first base station provided in this embodiment may perform the foregoing method embodiment shown in FIG. 3, and the implementation thereof is implemented. The principle is similar and will not be described here.
  • FIG. 10 is a schematic structural diagram of Embodiment 1 of a second base station according to the present invention.
  • the second base station includes: a second receiving module 54, configured to receive a PHR sent by a terminal, where the PHR includes a terminal.
  • a third receiving module 55 configured to receive pre-scheduling information sent by the first base station, where the pre-scheduling information is determined by the base station according to the first base station Determining the downlink path loss of the first base station and the uplink resource allocated by the first base station to the serving cell of the first base station by the terminal; the first control module 56 is configured to control the service of the terminal in the second base station according to the pre-scheduling information Upstream resources of the cell.
  • the second base station provided in this embodiment can perform the foregoing method embodiment shown in FIG. 5, and the principle and technical effects are similar, and details are not described herein again.
  • FIG. 11 is a schematic structural diagram of Embodiment 1 of a terminal according to the present invention.
  • the terminal includes: a sending module 57, configured to send a power headroom report PHR to a first base station, where the first base station controls the a transmit power of the serving cell of the first base station, where the PHR includes: a power headroom PH of the terminal in the serving cell of the first base station, and a second base station as the terminal in the second a number of physical resource blocks PRB allocated by the serving cell of the base station and a power headroom PH of the serving cell of the second base station; and an adjustment module 58 configured to adjust, by the control of the first base station, the terminal in the The transmit power of the serving cell of the first base station.
  • a sending module 57 configured to send a power headroom report PHR to a first base station, where the first base station controls the a transmit power of the serving cell of the first base station
  • the PHR includes: a power headroom PH of the terminal in the serving cell
  • the terminal provided in this embodiment can perform the method embodiment shown in FIG. 6 , and the implementation principle is similar, and details are not described herein again.
  • the adjusting module 58 is further configured to adjust, according to the control of the second base station, a transmit power of the serving cell of the terminal in the second base station, where the second base station The control is determined by the second base station according to the PHR sent by the first base station to the second base station; the PHR further includes: a data modulation and coding mode MCS index information and/or a location of the serving cell of the second base station The closed loop power control parameter of the serving cell of the second base station.
  • the terminal provided in this embodiment can perform the foregoing method embodiments, and the implementation principles are similar, and details are not described herein again.
  • FIG. 12 is a schematic structural diagram of Embodiment 3 of a base station according to the present invention.
  • the base The station includes: a receiver 60, a processor 61.
  • the receiver 60 is configured to receive a power headroom report PHR sent by the terminal, where the PHR includes: a power headroom PH of the serving cell of the first base station, and a second base station that is the terminal at the second base station.
  • the processor 61 is configured to control, according to the PHR, a transmit power of the terminal in a serving cell of the first base station.
  • the base station provided by this embodiment can perform the foregoing method embodiments, and the implementation principle is similar, and details are not described herein again.
  • the PHR further includes: a maximum transmit power of the terminal in a serving cell of the second base station.
  • the processor 61 is further configured to determine, according to the PHR, a downlink path loss of the terminal in the serving cell of the first base station, and determine a downlink path loss of the terminal in the serving cell of the second base station. And can also be used according to the PH of the serving cell of the first base station, the downlink path loss of the terminal in the serving cell of the first base station, and the serving cell of the terminal in the second base station.
  • the PH and the downlink path loss of the serving cell of the second base station to the terminal to allocate the uplink resource of the terminal to the serving cell of the first base station, and according to the terminal at the first base station
  • the uplink resource of the serving cell controls the transmit power of the terminal in the serving cell of the first base station.
  • the processor 61 is further configured to: according to the first base station, a number of PRBs allocated by the terminal in a serving cell of the first base station, a PH of a serving cell of the terminal in the first base station, and Determining, by the terminal, a downlink transmission loss of the serving cell of the first base station in a maximum transmit power of the serving cell of the first base station; and further configured to use, according to the second base station, the terminal Determining, by the terminal, the number of PRBs allocated by the serving cell of the second base station, the PH of the serving cell of the second base station, and the maximum transmit power of the serving cell of the second base station Downlink loss of the serving cell of the second base station.
  • the processor 61 is further configured to: according to the first base station, the number of PRBs allocated by the terminal in the serving cell of the first base station, the PH of the terminal in the serving cell of the first base station, The maximum transmit power of the serving cell of the first base station, the MCS index information of the serving cell of the first base station, and/or the closed loop of the serving cell of the first base station
  • the power control parameter determines a downlink path loss of the serving cell of the first base station, and is further configured to: according to the second base station, a number of PRBs allocated by the terminal in a serving cell of the second base station, The PH of the serving cell of the second base station, the maximum transmit power of the terminal at the serving cell of the second base station, the MCS index information of the serving cell of the second base station, and/or the second base station
  • the closed loop power control parameter of the serving cell determines a downlink path loss of the terminal in the serving cell of the second base station.
  • FIG. 13 is a schematic structural diagram of Embodiment 4 of a base station according to the present invention.
  • the base station further includes a transmitter 62, configured to receive, at the receiver 60, a power headroom report PHR sent by the terminal. And sending the PHR to the second base station, so that the second base station controls, according to the PHR, a transmit power of the terminal in a serving cell of the second base station.
  • the transmitter 62 is further configured to: before the sending the PHR to the second base station, use the first base station as a PRB number allocated by the terminal in a serving cell of the first base station, or
  • the first base station is the number of PRBs allocated by the terminal in the serving cell of the first base station, and the MCS index information of the serving cell of the first base station, or the first base station is in the terminal a number of PRBs allocated by the serving cell of the first base station and a closed loop power control parameter of the first base station, or, the first base station is a number of PRBs allocated by the terminal in a serving cell of the first base station, and
  • the MCS index information of the serving cell of the first base station and the closed loop power control parameter of the first base station are carried in the PHR.
  • the base station provided by this embodiment can perform the foregoing method embodiments, and the implementation principle is similar, and details are not described herein again.
  • FIG. 14 is a schematic structural diagram of Embodiment 2 of a first base station according to the present invention.
  • the first base station includes: a receiver 70, configured to receive a PHR sent by a terminal, where the PHR includes: The PH of the serving cell and the PH of the serving cell of the second base station; the processor 71, configured to determine, according to the PHR, a downlink path loss of the serving cell of the first base station according to the PHR, and according to the serving cell of the first base station according to the terminal The PH and the determined downlink loss of the serving cell of the first base station are the uplink resources allocated by the terminal to the serving cell of the first base station, and are also used for the downlink path loss of the serving cell of the first base station and for the terminal.
  • the uplink resource generates pre-scheduling information
  • the transmitter 72 is configured to send the pre-scheduling information to the second base station, so that the second base station controls the transmit power of the serving cell of the second base station according to the pre-scheduling information.
  • the base station provided in this embodiment can perform the foregoing method embodiment shown in FIG. 9 , and the implementation principle is similar, and details are not described herein again.
  • FIG. 15 is a schematic structural diagram of Embodiment 2 of a second base station according to the present invention.
  • the second base station includes: a receiver 80, configured to receive a PHR sent by a terminal, where the PHR includes a terminal at a first base station.
  • the PH of the serving cell and the PH of the serving cell in the serving cell of the second base station are also used to receive pre-scheduling information sent by the first base station, where the pre-scheduling information is that the terminal determined by the first base station according to the first base station is under the first base station.
  • the path loss and the first base station are determined by the uplink resource allocated by the terminal in the serving cell of the first base station.
  • the processor 81 is configured to control the uplink resource of the serving cell of the second base station according to the pre-scheduling information.
  • the base station provided in this embodiment can perform the method embodiment shown in FIG. 10, and the implementation principle is similar, and details are not described herein again.
  • FIG. 16 is a schematic structural diagram of a second embodiment of a terminal according to the present invention.
  • the terminal includes: a transmitter 90, configured to send a power headroom report PHR to the first base station, where the first base station controls the a transmit power of the serving cell of the first base station, where the PHR includes: a power headroom PH of the terminal in the serving cell of the first base station, and a second base station as the terminal in the second a number of physical resource blocks PRB allocated by the serving cell of the base station and a power headroom PH of the serving cell of the second base station; the processor 91, configured to adjust, by using the control of the first base station, the terminal in the The transmit power of the serving cell of the first base station.
  • the terminal provided in this embodiment can perform the foregoing method embodiments, and the implementation principles are similar, and details are not described herein again.
  • the processor 91 is further configured to adjust, by using the control of the second base station, a transmit power of the serving cell of the second base station, where the control of the second base station is The first base station determines the PHR sent by the second base station; the PHR further includes: a data modulation and coding mode MCS index information of the serving cell of the second base station, and/or a serving cell of the second base station Closed loop power control parameters.
  • the terminal provided in this embodiment can perform the foregoing method embodiments, and the implementation principles are similar, and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种上行功率控制方法及装置,该方法包括:第一基站接收终端发送的功率余量报告PHR,所述PHR包括:所述终端在所述第一基站的服务小区的功率余量PH、所述第二基站为所述终端在所述第二基站的服务小区分配的物理资源块PRB数目、所述终端在所述第二基站的服务小区的PH;所述第一基站根据所述PHR,控制所述终端在所述第一基站的服务小区的发射功率。本发明提供的上行功率控制方法,解决了现有技术中无法根据无线条件变化动态调整上行资源分配,进而无法准确控制UE的发射功率的技术问题。

Description

上行功率控制方法及装置
技术领域
本发明涉及通信技术领域, 尤其涉及一种上行功率控制方法及装置。 背景技术
为满足第三代合作伙伴项目 (The Third Generation Partnership Project, 以 下简称 3GPP) 通信***对峰值数据速率和***带宽的要求, 3GPP长期演进 高级*** (Long Term Evolution Advanced, 以下简称 LTE-A) 引入了载波聚 合 (Carrier Aggregation, 以下简称 CA) , CA通过对多个连续或者非连续的 分量载波 (Component Carrier, 以下简称 CC) 的聚合可以获取更大的带宽, 其中, CC可以由同一个基站提供, 也可以由不同的基站提供, 前者称为基站 内 CA, 后者称为基站间 CA。 对于基站间 CA, 多个基站提供多个服务小区, 并且多个服务小区之间具有交叠区域, 基站可以根据具体的无线条件和业务 情况为用户终端 (User Equipment, 以下简称 UE) 对具有交叠区域的服务小 区进行载波聚合; 对于基站间 CA, UE在任一服务小区发送功率余量报告 (Power Headroom Report, 以下简称 PHR) 只能被该服务小区对应的基站接 收到,接收到 PHR的该基站则不能获知其他基站所提供的服务小区的上行资 源分配情况, 可能导致在同一个子帧上, 各基站为 UE所分配的上行资源不 符合 UE的实际发射能力, 进而无法有效控制 UE的发射功率。 发明内容
本发明提供一种上行功率控制的方法及装置, 用以解决现有技术中各基 站为 UE分配的上行资源不符合 UE的实际发射能力从而无法有效控制 UE的 发射功率的技术问题。
本发明实施例第一方面提供一种上行功率控制方法, 包括:
第一基站接收终端发送的功率余量报告 PHR,所述 PHR包括:所述终端 在所述第一基站的服务小区的功率余量 PH、所述第二基站为所述终端在所述 第二基站的服务小区分配的物理资源块 PRB数目、所述终端在所述第二基站 的服务小区的 PH;
所述第一基站根据所述 PHR, 控制所述终端在所述第一基站的服务小区 的发射功率。
结合第一方面,在第一方面的第一种可能的实施方式中,所述 PHR还包 括: 所述终端在所述第二基站的服务小区的最大发射功率。
结合第一方面, 在第一方面的第二种可能的实施方式中, 所述第一基站 控制所述终端在所述第一基站的服务小区的发射功率, 包括:
所述第一基站根据所述 PHR确定所述终端在所述第一基站的服务小区的 下行路损以及确定所述终端在第二基站的服务小区的下行路损;
所述第一基站根据所述终端在所述第一基站的服务小区的 PH、所述终端 在所述第一基站的服务小区的下行路损、 所述终端在所述第二基站的服务小 区的 PH 以及所述终端在所述第二基站的服务小区的下行路损为所述终端分 配所述终端在第一基站的服务小区的上行资源。
结合第一方面的第二种可能的实施方式, 在第一方面的第三种可能的实 施方式中,所述第一基站根据所述 PHR确定所述终端在所述第一基站的服务 小区的下行路损以及确定所述终端在所述第二基站的服务小区的下行路损, 具体为:
所述第一基站根据所述第一基站为所述终端在所述第一基站的服务小区 分配的 PRB数目、 所述终端在所述第一基站的服务小区的 PH以及所述终端 在所述第一基站的服务小区的最大发射功率确定所述终端在所述第一基站的 服务小区的下行路损;
所述第一基站根据所述第二基站为所述终端在所述第二基站的服务小区 分配的 PRB数目、 所述终端在所述第二基站的服务小区的 PH以及所述终端 在所述第二基站的服务小区的最大发射功率, 确定所述终端在所述第二基站 的服务小区的下行路损。
结合第一方面至第一方面的第三种可能的实施方式中的任一项, 在第一 方面的第四种可能的实施方式中, 所述 PHR还包括: 所述第二基站的服务小 区的数据调制编码方式 MCS索引信息和 /或所述第二基站的服务小区的闭环 功控参数;
所述第一基站根据所述 PHR确定所述终端在所述第一基站的服务小区的 下行路损以及确定所述终端在所述第二基站的服务小区的下行路损,具体为: 所述第一基站根据所述第一基站为所述终端在所述第一基站的服务小区 分配的 PRB数目、 所述终端在所述第一基站的服务小区的 PH、 所述终端在 所述第一基站的服务小区的最大发射功率、所述第一基站的服务小区的 MCS 索引信息和 /或所述第一基站的服务小区的闭环功控参数确定所述终端在所 述第一基站的服务小区的下行路损;
所述第一基站根据所述第二基站为所述终端在所述第二基站的服务小区 分配的 PRB数目、 所述终端在所述第二基站的服务小区的 PH、 所述终端在 所述第二基站的服务小区的最大发射功率、所述第二基站的服务小区的 MCS 索引信息和 /或所述第二基站的服务小区的闭环功控参数, 确定所述终端在所 述第二基站的服务小区的下行路损。
结合第一方面至第一方面的第四种可能的实施方式中的任一项, 在第一 方面的第五种可能的实施方式中, 所述方法还包括:
所述第一基站将所述 PHR发送给所述第二基站, 以使所述第二基站根据 所述 PHR控制所述终端在所述第二基站的服务小区的发射功率。
结合第一方面的第五种可能的实施方式, 在第一方面的第六种可能的实 施方式中, 所述方法还包括:
所述第一基站将所述第一基站为所述终端在所述第一基站的服务小区分 配的 PRB数目, 或, 所述第一基站为所述终端在所述第一基站的服务小区 分配的 PRB数目和所述第一基站的服务小区的 MCS索引信息, 或, 所述 第一基站为所述终端在所述第一基站的服务小区分配的 PRB 数目和所述 第一基站的闭环功控参数, 或, 所述第一基站为所述终端在所述第一基站 的服务小区分配的 PRB数目和所述第一基站的服务小区的 MCS索引信息 以及所述第一基站的闭环功控参数携带在所述 PHR中。
本发明实施例第二方面提供一种上行功率控制方法, 包括:
所述终端向第一基站发送功率余量报告 PHR,用于所述第一基站控制所 述终端在所述第一基站的服务小区的发射功率, 所述 PHR中包括: 所述终 端在所述第一基站的服务小区的功率余量 PH、第二基站为所述终端在所述第 二基站的服务小区分配的物理资源块 PRB数目以及所述终端在所述第二基站 的服务小区的功率余量 PH; 所述终端经由所述第一基站的控制调整所述终端在所述第一基站的 服务小区的发射功率。
结合第二方面, 在第二方面的第一种可能的实施方式中, 所述方法还包 括: 所述终端经由所述第二基站的控制调整所述终端在所述第二基站的服 务小区的发射功率, 所述第二基站的控制为所述第二基站根据所述第一基 站向所述第二基站发送的 PHR所确定。
结合第二方面的第一种可能的实施方式, 在第二方面的第二种可能的实 施方式中, 所述 PHR还包括:
所述第二基站的服务小区的数据调制编码方式 MCS索引信息和 /或所 述第二基站的服务小区的闭环功控参数。
本发明第三方面提供一种基站, 包括:
接收模块, 用于接收终端发送的功率余量报告 PHR, 所述 PHR包括: 所述终端在第一基站的服务小区的功率余量 PH、 第二基站为所述终端在 所述第二基站的服务小区分配的物理资源块 PRB 数目、 所述终端在所述 第二基站的服务小区的 PH;
控制模块, 用于根据所述 PHR, 控制所述终端在所述第一基站的服务 小区的发射功率。
结合第三方面, 在第三方面的第一种可能的实施方式中, 所述 PHR 还包括: 所述终端在所述第二基站的服务小区的最大发射功率。
结合第三方面, 在第三方面的第二种可能的实施方式中, 所述控制模 块包括:
下行路损确定单元, 用于根据所述 PHR确定所述终端在所述第一基 站的服务小区的下行路损以及确定所述终端在所述第二基站的服务小区 的下行路损;
控制单元, 用于根据所述终端在所述第一基站的服务小区的 PH、 所 述终端在所述第一基站的服务小区的下行路损、所述终端在所述第二基站 的服务小区的 PH以及所述终端在所述第二基站的服务小区的下行路损为 所述终端分配所述终端在第一基站的服务小区的上行资源。
结合第三方面的第二种可能的实施方式, 在第三方面的第三种可能的 实施方式中, 所述下行路损确定单元, 具体用于根据所述第一基站为所述 终端在所述第一基站的服务小区分配的 PRB 数目、 所述终端在所述第一 基站的服务小区的 PH以及所述终端在所述第一基站的服务小区的最大发 射功率确定所述终端在所述第一基站的服务小区的下行路损; 还用于根据 所述第二基站为所述终端在所述第二基站的服务小区分配的 PRB 数目、 所述终端在所述第二基站的服务小区的 PH以及所述终端在所述第二基站 的服务小区的最大发射功率, 确定所述终端在所述第二基站的服务小区的 下行路损。
结合第三方面至第三方面的第三种可能的实施方式中的任一项, 在第三 方面的第四种可能的实施方式中, 所述 PHR还包括: 所述第二基站的服 务小区的数据调制编码方式 MCS索引信息和 /或所述第二基站的服务小区 的闭环功控参数;
所述下行路损确定单元, 具体用于根据所述第一基站为所述终端在所 述第一基站的服务小区分配的 PRB 数目、 所述终端在所述第一基站的服 务小区的 PH、 所述终端在所述第一基站的服务小区的最大发射功率、 所 述第一基站的服务小区的 MCS索引信息和 /或所述第一基站的服务小区的 闭环功控参数确定所述终端在所述第一基站的服务小区的下行路损; 还用 于根据所述第二基站为所述终端在所述第二基站的服务小区分配的 PRB 数目、 所述终端在所述第二基站的服务小区的 PH、 所述终端在所述第二 基站的服务小区的最大发射功率、 所述第二基站的服务小区的 MCS索引 信息和 /或所述第二基站的服务小区的闭环功控参数,确定所述终端在所述 第二基站的服务小区的下行路损。
结合第三方面至第三方面的第四种可能的实施方式中的任一项, 在第三 方面的第五种可能的实施方式中, 所述基站还包括:
发送模块, 用于在所述接收模块接收终端发送的功率余量报告 PHR 之后,将所述 PHR发送给所述第二基站,以使所述第二基站根据所述 PHR 控制所述终端在所述第二基站的服务小区的发射功率。
结合第三方面的第五种可能的实施方式, 在第三方面的第六种可能的实 施方式中,所述发送模块,还用于在将所述 PHR发送给所述第二基站之前, 将所述第一基站为所述终端在所述第一基站的服务小区分配的 PRB数目, 或, 所述第一基站为所述终端在所述第一基站的服务小区分配的 PRB 数 目和所述第一基站的服务小区的 MCS索引信息, 或, 所述第一基站为所 述终端在所述第一基站的服务小区分配的 PRB 数目和所述第一基站的闭 环功控参数, 或, 所述第一基站为所述终端在所述第一基站的服务小区分 配的 PRB数目和所述第一基站的服务小区的 MCS索引信息以及所述第一 基站的闭环功控参数携带在所述 PHR中。
本发明实施例第四方面提供一种终端, 包括:
发送模块, 用于向第一基站发送功率余量报告 PHR, 用于所述第一基 站控制所述终端在所述第一基站的服务小区的发射功率, 所述 PHR 中包 括: 所述终端在所述第一基站的服务小区的功率余量 PH、 第二基站为所 述终端在所述第二基站的服务小区分配的物理资源块 PRB 数目以及所述 终端在所述第二基站的服务小区的功率余量 PH;
调整模块, 用于经由所述第一基站的控制调整所述终端在所述第一基 站的服务小区的发射功率。
结合第四方面, 在第四方面的第一种可能的实施方式中, 所述调整模 块还用于经由所述第二基站的控制调整所述终端在所述第二基站的服务 小区的发射功率, 所述第二基站的控制为所述第二基站根据所述第一基站 向所述第二基站发送的 PHR所确定。
结合第四方面的第一种可能的实施方式, 在第四方面的第二种可能的 实施方式中, 所述 PHR还包括:
所述第二基站的服务小区的数据调制编码方式 MCS索引信息和 /或所 述第二基站的服务小区的闭环功控参数。
本发明实施例提供的上行功率控制方法, 通过终端向第一基站发送 PHR,并在 PHR中携带终端在第一基站和第二基站的 PH以及第二基站为 终端在第二基站的服务小区分配的 PRB数目,使得第一基站可以根据 PHR 获知终端在第一基站和第二基站的服务小区的无线条件, 进而根据无线条 件动态调整终端在第一基站的服务小区的上行资源分配情况, 进而控制终 端在第一基站的服务小区的发射功率, 提高了基站控制终端的发射功率的 准确性。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见 地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附 图。 图 1为本发明提供的上行功率控制方法实施例一的流程示意图; 图 2为本发明提供的上行功率控制方法实施例二的流程示意图; 图 3为本发明提供的上行功率控制方法实施例三的流程示意图; 图 4为本发明提供的上行功率控制方法实施例三的应用示意图; 图 5为本发明提供的上行功率控制方法实施例四的流程示意图; 图 6为本发明提供的上行功率控制方法实施例五的流程示意图; 图 7为本发明提供的基站实施例一的结构示意图;
图 8为本发明提供的基站实施例二的结构示意图;
图 9为本发明提供的第一基站实施例一的结构示意图;
图 10为本发明提供的第二基站实施例一的结构示意图;
图 11为本发明提供的终端实施例一的结构示意图;
图 12为本发明提供的基站实施例三的结构示意图;
图 13为本发明提供的基站实施例四的结构示意图;
图 14为本发明提供的第一基站实施例二的结构示意图;
图 15为本发明提供的第二基站实施例二的结构示意图;
图 16为本发明提供的终端实施例二的结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然,所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
本文中描述的技术可用于各种通信***, 例如当前 2G, 3G通信*** 和下一代通信***, 例如全球移动通信*** (GSM, Global System for Mobile communications ) , 石马分多址 (CDMA, Code Division Multiple Access) ***, 时分多址 (TDMA, Time Division Multiple Access) 系 统, 宽带码分多址 (WCDMA, Wideband Code Division Multiple Access Wireless ), 步员分多址 (FDMA, Frequency Division Multiple Addressing) ***, 正交频分多址 (OFDMA, Orthogonal Frequency-Division Multiple Access) ***, 单载波 FDMA (SC-FDMA) ***, 通用分组无线业务 (GPRS, General Packet Radio Service) ***, 长期演进 (LTE, Long Term Evolution) ***, 以及其他此类通信***。
本申请中涉及的终端, 即用户设备, 可以是无线终端也可以是有线终 端, 无线终端可以是指向用户提供语音和 /或数据连通性的设备, 具有无 线连接功能的手持式设备、 或连接到无线调制解调器的其他处理设备。 无 线终端可以经无线接入网 (例如, RAN, Radio Access Network) 与一个 或多个核心网进行通信, 无线终端可以是移动终端, 如移动电话 (或称为 "蜂窝" 电话)和具有移动终端的计算机, 例如, 可以是便携式、袖珍式、 手持式、 计算机内置的或者车载的移动装置, 它们与无线接入网交换语言 禾口 /或数据。例如,个人通信业务(PCS, Personal Communication Service) 电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(WLL, Wireless Local Loop) 站、 个人数字助理 (PDA, Personal Digital Assistant) 等设备。 无线终端也可以称为***、 订户单元 (Subscriber Unit) 、 订 户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、 远程站 (Remote Station) 、 接入点 (Access Point) 、 远程终端 (Remote Terminal )、接入终端 (Access Terminal )、用户终端 (User Terminal )、 用户代理 (User Agent) 、 用户设备 (User Device) 、 或用户装备 (User Equipment ) 。
本申请中涉及的基站 (例如, 接入点) 可以是指接入网中在空中接口 上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中 帧与 IP分组进行相互转换, 作为无线终端与接入网的其余部分之间的路 由器, 其中接入网的其余部分可包括网际协议 (IP) 网络。 基站还可协调 对空中接口的属性管理。 例如, 基站可以是 GSM或 CDMA中的基站 (BTS, Base Transceiver Station) , 也可以是 WCDMA中的基站 (NodeB) , 还 可以是 LTE中的演进型基站 (NodeB或 eNB或 e- NodeB, evolutional Node B ) 。 又如, 上述基站也可以为主基站、 辅基站、 小站 (smal l cel l、 pico 或 femto ) 、 宏站(macro cel l)等, 本申请并不限定。
本申请中, 上述基站也可以由中继节点、 远端射频头 (remote radio head , RRH)、射频拉远单元 ( radio remote uni t , RRU )、天线端口 ( antenna port等实现, 也可以统称为传输点 (transmi ss ion point , TP ) 。
另外, 本文中术语 "***" 和 "网络"在本文中常被可互换使用。 本 文中术语 "和 /或" , 仅仅是一种描述关联对象的关联关系, 表示可以存 在三种关系, 例如, A和 /或 B , 可以表示: 单独存在 A, 同时存在 A和 B , 单独存在 B这三种情况。 另外, 本文中字符 "/ " , 一般表示前后关联对 象是一种 "或" 的关系。
图 1为本发明提供的上行功率控制方法实施例一的流程示意图, 该方 法的执行主体基站; 或为上行功率控制装置, 该上行功率控制装置可以集 成在基站中, 如图 1所示, 该方法包括:
S101 : 第一基站接收终端发送的功率余量报告 (Power Headroom
Report, 以下简称 PHR) , 所述 PHR包括: 所述终端在所述第一基站的服 务小区的功率余量 (Power Headroom, 以下简称 PH ) 、 所述第二基站为 所述终端在所述第二基站的服务小区分配的物理资源块 (Physical Resource Block, 以下简称 PRB ) 数目、 所述终端在所述第二基站的服务 小区的 PH。
本发明中的第二基站可以是一个基站, 也可以是多个基站。 本发明中 第一基站的服务小区或第二基站的服务小区可以为一个服务小区, 也可以 为多个服务小区。
具体的, 第一基站向终端发送第一基站为终端在第一基站的服务小区 分配的上行资源, 第二基站向终端发送第二基站为终端在第二基站的服务 小区分配的上行资源。 上述终端在第一基站的服务小区的上行资源包含第 一基站为该终端在第一基站的服务小区分配的 PRB 数目, 上述终端在第 二基站的服务小区的上行资源包含第二基站为该终端在第二基站的服务 小区分配的 PRB数目。 终端在接收到上述上行资源之后, 根据 PHR周期 定时器超时、 服务小区自上一次报告 PHR后下行路损变化超过门限等触 发条件触发 PHR。在终端触发 PHR后,终端向第一基站发送 PHR,该 PHR 中包括: 上述终端在第一基站的服务小区的 PH、 第二基站为终端在第二 基站的服务小区分配的 PRB数目以及终端在第二基站的服务小区的 PH。 可选的, 该 PHR 中还可以包括第一基站为终端在第一基站的服务小区分 配的 PRB数目。可选的,终端也可以向第一基站和第二基站同时发送 PHR。 从而使第一基站和第二基站均可以通过终端报告的 PHR获取其他基站为 终端分配的 PRB数目, 不再需要通过基站间接口转发 PHR, 降低了因基 站间接口延迟导致的不确定期。 在该不确定期, 第一基站和第二基站分别 独立调度终端而无法有效控制 UE的发射功率。其中, 例如 PRB的个数为 100个, 表示 100个 PRB , 需要 7个比特, PHR的格式如表 1所示; 为了 减少 PRB个数所占用的信息比特数, 可以将 PRB个数分为几个级别, 例 如按照 PRB对 (PRB pair) 的数目最大为 16,24,32,36,40,48,50分为 8个级 另 lj, 于是只占用 3比特, 用 PRB索引 (PRB index) 表示, PHR的格式如 表 2所示。 因为基站调度资源时按照 PRB对为单位进行, 即资源的最小 调度单位是 2个 PRB。 通过这种表示方法, 可以有效减少 PRB信息所占 用的 bit位数、 便于和 MCS索引 (MCS index) 信息字段组合成 1个 byte 进行字节对齐, 并降低了信令开销。 表 1和表 2中的 Pcell表示主服务小 区, Scell表示辅服务小区, d-C7表示第一基站或第二基站的服务小区, C值取 1时, 说明 PHR中包含该小区的信息, V值取 1表示虚拟的 PHR 格式, 表示在这个服务小区上没有分配上行资源, P表示当前的服务小区 是否进行了功率回退, R是保留字段。
表 1
Figure imgf000012_0001
R R PcMAX,C 3
R PRB
R R R MCS index
···
P V PH (Typel,Scell n)
R R PCMAX,C m 表 2
Figure imgf000013_0001
第一基站接收终端发送的 PHR,并根据其为终端在第一基站的服务小 区配置的最大发射功率以及接收的终端在第一基站的服务小区的 PH计算 得到终端在第一基站的服务小区的发射功率, 这里的终端可以通过第一基 站提供的服务小区中的一个小区与第一基站进行通信, 也可以通过多个服 务小区与第一基站进行通信, 因此终端的发射功率就可以根据第一基站为 终端在第一基站的服务小区分配的上行资源计算得到, 也就是终端在根据 这些上行资源在每个服务小区发送数据时的发射功率之和。
一般的,终端会在物理上行共享信道(Physical Uplink Shared Channel, 以下简称 PUSCH ) 和 /或物理上行控制信道 (Physical Uplink Control Channel, 以下简称 PUCCH)上发送数据,该数据包括用户数据和 /或信令, 上述终端给第一基站发送的 PH可以分为两种类型的 PH, 分别为类型 1 和类型 2, 对于类型 1 (Typel ) 的 PH, 计算公式为: PH = ^ - ^^ (公 式 1 ) , 公式 1针对的是终端只在 PUSCH上发送数据的情况; 对于类型 2 (Type2) 的 PH, 计算公式为: PH = PC , C - P H,C - PPUCCH,C (公式 2 ) , 公 式 2针对的是终端同时在 PUSCH和 PUCCH上发送数据的情况; 其中,
P M^为终端在第一基站或第二基站的主服务小区 (Pcell ) 或各激活状态 服务小区上的最大发射功率, ^为终端在第一基站或第二基站的服务 小区的 PUSCH上的发射功率, /^^ ^为终端在第一基站或第二基站的服 务小区的 PUCCH上的发射功率; 并且, ^可以是基于所分配的上行资 源的情况的最大发射功率 (基站所知道的终端的最大发射功率是一个范 围, 需要由终端上报准确的最大发射功率数值给第一基站) , 也可以是第 一基站或第二基站没有为终端分配上行资源情况时的最大发射功率(由第 一基站和第二基站预先为终端配置的在第一基站或第二基站的服务小区 的最大发射功率上限值, 终端的最大发射功率也就是基站所配置的这个最 大发射功率上限值) 。
S102: 所述第一基站根据所述 PHR, 控制所述终端在所述第一基站的 服务小区的发射功率。
本发明以终端只在 PUSCH上发送数据的情况为例来说明整体的技术 方案, 但本发明也适用于终端同时在 PUSCH和 PUCCH上发送数据的情 况, 只是在所用公式上有所不同, 后面在实施例中会举例说明。
第一基站根据终端上报的终端在所述第一基站的服务小区的 PH以及 在第一基站的服务小区的最大发射功率 利用公式 1 可以得到终端 在第一基站的服务小区的 rae 。 其中, 终端在第一基站的服务小区的最 大发射功率 可以利用现有技术获取, 可选的, 第一基站所知道的终 端的最大发射功率是一个范围, 需要由终端在该范围内上报准确的最大发 射功率数值给第一基站, 或者, 由第一基站预先为终端配置在第一基站的 服务小区的最大发射功率的上限值, 终端的最大发射功率也就是第一基站 所配置的这个最大发射功率上限值(此时不需要终端去向第一基站上报终 端 的 最 大 发 射 功 率 了 ) ; 之 后 根 据 公 式 3 :
Figure imgf000015_0001
PO PUSC¾c ( ) + c (j) · PLc
在第一基站的服务小区分配 PRB 数目, 第一基站可以获知终端在第一基 站的服务小区的无线条件(该无线条件可以为终端在第一基站的服务小区 发送数据时的下行路损或者其他的反映第一基站服务小区的无线传输质 量的参数信息) , 进而根据该无线条件确定第一基站为终端在第一基站的 服务小区分配上行资源的情况(这里所确定的上行资源指的是第一基站为 终端分配的终端下一次传输数据时的上行资源)。其中,公式 3中的 PpmcH,c (i) 为终端在子帧 i向第一基站的服务小区或第二基站的服务小区发射的最大 发射功率; Mpraa^(0为第一基站为终端在第一基站的服务小区分配的 PRB 数目所表示的上行资源分配带宽, 或者, 第二基站为终端在第二基站的服 务小区分配的 PRB数目所表示的上行资源分配带宽; P。 为高层协 议层为终端配置的发射功率; ( 为第一基站或第二基站的服务小区特定 的路损补偿系数; PL为终端在第一基站或第二基站的服务小区的下行路 损; ΡΡΐΒαι,ε(0的单位为毫瓦分贝 (dBm) 。
需要说明的是, 第一基站确定下一次为终端在第一基站的服务小区分 配的上行资源所用的参数为与第一基站相关的参数。例如:所用的
为终端在子帧 i 向第一基站的服务小区发射的最大发射功率, 所用的 为第一基站为终端在第一基站的服务小区分配的 PRB 数目所表 示的上行资源分配带宽, 所用的 ω为第一基站的服务小区特定的路损补 偿系数, 所用的 PL为终端在第一基站的服务小区的下行路损。
另一方面, 第一基站也可以根据上述公式 1和终端在第二基站的服务 小区的最大发射功率 ΜΑ^, 得到终端在第二基站的服务小区的 第 二基站所知道的终端的最大发射功率是一个范围, 终端在该范围内上报准 确的最大发射功率数值给第一基站, 或者, 由第二基站预先为终端配置在 第二基站的服务小区的最大发射功率的上限值, 那么终端的最大发射功率 也就是第二基站所配置的这个最大发射功率上限值。之后根据公式 3以及 第二基站为终端在第二基站的服务小区分配的 PRB 数目, 第一基站可以 获知终端在第二基站的服务小区的无线条件(该无线条件可以为终端在第 二基站的服务小区发送数据时的下行路损或者其他的反映第二基站服务 小区的无线传输质量的参数信息) , 进而获知第二基站为终端在第二基站 的服务小区分配的上行资源的情况。 需要注意的是, 第一基站确定终端在第一基站的服务小区的上行资源 分配情况以及终端在第二基站的服务小区的上行资源的分配情况, 不仅仅 可以通过公式 1和公式 3, 还可以通过公式 1与其他公式结合得知, 这里 的公式 3不是唯一的公式, 在上行功率控制的技术领域里, 公式 3可以被 其他相关的公式代替, 例如当终端在第一基站的服务小区的 PUSCH 和 PUC
Figure imgf000016_0001
ΜΑ^(0表示终端在对应服务小区上的最大发射功率; ΡυεεΗ(0表示终端 在 PUCCH上的发射功率。 在第一基站确定终端在第一基站的服务小区的上行资源分配情况以 及获知终端在第二基站的服务小区的上行资源的分配情况之后, 可选的, 第一基站通过 Χ2接口获知第二基站的资源调整规律, 根据第二基站的资 源调整情况调整终端在第一基站的服务小区的资源分配情况, 进而控制终 端在第一基站的服务小区的发射功率; 或者, 可选的, 第一基站和第二基 站也可以预先通过 Χ2接***互上行资源分配算法, 第一基站根据终端在 第二基站的服务小区的 PRB 数目以及上述的上行资源分配算法确定第二 基站为终端分配上行资源的情况, 进而根据第二基站为终端分配上行资源 的情况为终端分配合适的上行资源。
本发明实施例提供的上行功率控制方法, 通过终端向第一基站发送 PHR,并在 PHR中携带终端在第一基站和第二基站的 ΡΗ以及第二基站为 终端在第二基站的服务小区分配的 PRB数目,使得第一基站可以根据 PHR 获知终端在第一基站和第二基站的服务小区的无线条件, 进而根据无线条 件动态调整终端在第一基站的服务小区的上行资源分配情况, 进而控制终 端在第一基站的服务小区的发射功率, 提高了基站控制终端的发射功率的 准确性。
在本发明实施例一的基础上, 进一步地, 上述 PHR还包括: 终端在 第二基站的服务小区的最大发射功率; 上述第一基站控制终端在第一基站 的服务小区的发射功率, 包括: 第一基站根据上述 PHR确定上述终端在 第一基站的服务小区的下行路损以及确定终端在第二基站的服务小区的 下行路损; 第一基站根据终端在所述第一基站的服务小区的 PH、 终端在 第一基站的服务小区的下行路损、 终端在第二基站的服务小区的 PH以及 终端在第二基站的服务小区的下行路损为终端分配终端在第一基站的服 务小区的上行资源。
其中, 所述第一基站根据所述 PHR 确定所述终端在所述第一基站的 服务小区的下行路损以及确定所述终端在所述第二基站的服务小区的下 行路损, 具体为: 所述第一基站根据所述第一基站为所述终端在所述第一 基站的服务小区分配的 PRB 数目、 所述终端在所述第一基站的服务小区 的 PH以及所述终端在所述第一基站的服务小区的最大发射功率确定所述 终端在所述第一基站的服务小区的下行路损; 所述第一基站根据所述第二 基站为所述终端在所述第二基站的服务小区分配的 PRB 数目、 所述终端 在所述第二基站的服务小区的 PH以及所述终端在所述第二基站的服务小 区的最大发射功率, 确定所述终端在所述第二基站的服务小区的下行路 损。
具体的, 第一基站根据终端上报的终端在第一基站的服务小区的 PH 以及在第一基站的服务小区的最大发射功率 皿 , 根据公式 1 得到终端 在子帧 i在第一基站的服务小区的 ^ , 之后根据公式 3 以及第一基站 为终端在第一基站的服务小区分配的 PRB数目 (这里的 PRB数目决定了 公式 3中 MP, )的值),得到终端在第一基站的服务小区的下行路损 ^, 表示第一基站的服务小区的无线条件。 需要注意的是, 在公式 3 中, P。 为高层协议层为终端配置的发射功率, ( )为第一基站或第二 基站的服务小区特定的路损补偿系数, 对于第一基站来说均是已知的, 并 且, 第一基站根据公式 3得到的 PL是终端此次发送 PHR时的下行路损, 第一基站根据计算得到的 PL可以估算出终端下一次在第一基站的服务小 区传输数据时的/¾。 另一方面, 第一基站也根据终端上报的终端在第二 基站的服务小区的 PH以及在第二基站的服务小区的最大发射功
根据公式 1得到终端在子帧 i在第二基站的服务小区的 raa^, 之后根据 公式 3 以及第二基站为终端在第二基站的服务小区分配的 PRB数目, 得 到终端在第二基站的服务小区传输数据时的下行路损 i¾, 终端在第二基 站的服务小区传输数据时的下行路损 表示第二基站的服务小区的无线 条件。 并且, 第一基站根据公式 3得到的终端在第二基站的服务小区传输 数据时的下行路损 /¾是终端此次发送 PHR时的下行路损, 第一基站根据 计算得到的该 可以估算出终端下一次在第二基站的服务小区传输数据 时的 。
在第一基站得到终端下一次在第一基站的服务小区传输数据时的下 行路损 PL后,第一基站根据终端在第一基站的服务小区的 PH以及终端下 一次在第一基站的服务小区传输数据时的下行路损 i^, 为终端在第一基 站的服务小区分配下一次传输数据所需的上行资源。 并且第一基站还根据 终端下一次在第二基站的服务小区传输数据时的下行路损 以及终端在 第二基站的服务小区的 PH, 估算出第二基站为终端在第二基站的服务小 区分配下一次传输数据所需的上行资源的情况。 可选的, 第一基站通过与 第二基站之间的 X2接口获知第二基站调整上行资源的规律, 并根据第二 基站调整上行资源的规律进一步调整第一基站为终端在第一基站的服务 小区分配的上行资源, 进而根据第一基站为终端分配上行资源控制终端在 第一基站的服务小区的发射功率; 或者, 可选的, 第一基站和第二基站也 可以预先通过 X2接***互上行资源分配算法, 第一基站根据终端在第二 基站的服务小区的 PRB 数目以及上述的上行资源分配算法确定第二基站 为终端分配上行资源的情况, 进而根据第二基站为终端分配上行资源的情 况为终端分配合适的上行资源。
进一步地, 在上述实施例的基础上, 所述 PHR还包括: 所述第二基 站的服务小区的数据调制编码方式 (Modulation and Coding Scheme, 以下 简称 MCS ) 索引信息和 /或所述第二基站的服务小区的闭环功控参数; 所 述第一基站根据所述 PHR 确定所述终端在所述第一基站的服务小区的下 行路损以及确定所述终端在所述第二基站的服务小区的下行路损, 具体 为: 所述第一基站根据所述第一基站为所述终端在所述第一基站的服务小 区分配的 PRB数目、 所述终端在所述第一基站的服务小区的 PH、 所述终 端在所述第一基站的服务小区的最大发射功率、所述第一基站的服务小区 的 MCS索引信息和 /或所述第一基站的服务小区的闭环功控参数确定所述 终端在所述第一基站的服务小区的下行路损; 所述第一基站根据所述第二 基站为所述终端在所述第二基站的服务小区分配的 PRB 数目、 所述终端 在所述第二基站的服务小区的 PH、 所述终端在所述第二基站的服务小区 的最大发射功率、 所述第二基站的服务小区的 MCS索引信息和 /或所述第 二基站的服务小区的闭环功控参数, 确定所述终端在所述第二基站的服务 小区的下行路损。
具体的, 第一基站根据终端上报的终端在第一基站的服务小区的 PH 以及在第一基站的服务小区的最大发射功率 ΜΑ^, 根据公式 1 得到终端 在子帧 i 在第一基站的服务小区的 , 之后采用公式 4 :
Figure imgf000019_0001
基站为终端在第一基站的服务小区分配的 PRB数目 (这里的 PRB数目决 定了公式 4中 MpraeH )的值) , 得到终端在第一基站的服务小区的下行路 损 /^, 终端在第一基站的服务小区的下行路损/ ^表示终端在第一基站的 服务小区的无线条件。 需要注意的是, 在公式 4 中, /^5Ωί ·)为终端在子 帧 i在第一基站或第二基站的服务小区的最大发射功率; Mpraa^(0为第一 基站为终端在第一基站的服务小区分配的 PRB 数目所表示的上行资源分 配带宽, 或者, 第二基站为终端在第二基站的服务小区分配的 PRB 数目 所表示的上行资源分配带宽; ^ )为高层协议层为终端配置的发射 功率; ( 为第一基站或第二基站的服务小区特定的路损补偿系数; Amc( ) 为终端在第一基站或第二基站的服务小区根据 MCS索引信息确定的发射 功率偏移量,在服务小区的无线条件不稳定的情况下, MCS索引信息的不 同会带来终端发射功率的变化; / )为终端在第一基站或第二基站的服务 小区的闭环功率控制参数。 并且, 第一基站根据公式 4得到的 是终端 上一次在第一基站的服务小区传输数据时的下行路损, 并根据计算得到的 估算出终端下一次在第一基站的服务小区传输数据时的 另一方 面, 第一基站也根据终端上报的终端在第二基站的服务小区的 ΡΗ以及在 第二基站的服务小区的最大发射功率/^皿 根据公式 1得到终端在子帧 i 在第二基站的服务小区的 raa^, 之后根据公式 4以及第二基站为终端在 第二基站的服务小区分配的 PRB数目 (这里的 PRB数目决定了公式 4中 的值) , 得到终端在第二基站的服务小区传输数据时的下行路损 PL , PZ^表示第二基站的服务小区的无线条件。 需要注意的是, 在公式 4 中, P0— ΗΛ cc (j) , ΔΤ ( )、 fc (i) , 对于第一基站均是已知的; 并且, 第一基站根据公式 4得到的 是终端上一次在第二基站的服务小区传输 数据时的下行路损, 第一基站根据计算得到的/ ^估算出终端下一次在第 二基站的服务小区传输数据时的 并且在上述公式 4中, 如若 PHR中 不存在 Δτ (0和 /或 Λ(0信息时, 在该公式 4是可以忽略掉参数 Δτ (0和 /或 fc (i)的值的, 即 ΔΤ ( )和 /或 fc (i)的作用是为了使得第一基站能够获取终端 在第一基站或第二基站的服务小区传输数据时的下行路损更为准确, 因此 在 PHR 中没有二者的情况或者只有二者之一的情况下, 第一基站同样也 是可以根据公式 4获取到终端在第一基站或第二基站的服务小区传输数据 时的下行路损的。 在第一基站得到终端下一次在第一基站的服务小区传输数据时的下 行路损 后,第一基站根据终端在第一基站的服务小区的 PH以及终端下 一次在第一基站的服务小区传输数据时的下行路损 /^, 为终端在第一基 站的服务小区分配上行资源; 并且第一基站还根据终端下一次在第二基站 的服务小区传输数据时的下行路损 以及终端在第二基站的服务小区的
PH, 估算出第二基站为终端在第二基站的服务小区分配上行资源的情况。 可选的, 第一基站通过与第二基站之间的 X2接口获知第二基站调整上行 资源的规律, 并根据第二基站调整上行资源的规律进一步调整第一基站为 终端在第一基站的服务小区分配的上行资源; 或者, 可选的, 第一基站和 第二基站也可以预先通过 X2接***互上行资源分配算法, 第一基站根据 终端在第二基站的服务小区的 PRB 数目以及上述的上行资源分配算法确 定第二基站为终端分配上行资源的情况, 进而根据第二基站为终端分配上 行资源的情况为终端分配合适的上行资源。 例如: 如果第一基站自己所辖 服务小区的下行路损较小, 而第二基站所辖服务小区的下行路损较大且上 行资源较少, MCS索引较小,则第一基站可以在第一基站的服务小区为终 端分配更多的上行资源, 进而根据第一基站为终端分配上行资源控制终端 在第一基站的服务小区的发射功率。
图 2 为本发明提供的上行功率控制方法实施例二的流程示意图, 在
S101之后, 该方法还包括:
S201 :第一基站将第一基站为终端在第一基站的服务小区分配的 PRB 数目, 或, 所述第一基站为所述终端在所述第一基站的服务小区分配的
PRB数目和所述第一基站的服务小区的 MCS索引信息, 或, 所述第一基 站为所述终端在所述第一基站的服务小区分配的 PRB 数目和所述第一基 站的闭环功控参数, 或, 所述第一基站为所述终端在所述第一基站的服务 小区分配的 PRB数目和所述第一基站的服务小区的 MCS索引信息以及所 述第一基站的闭环功控参数携带在 PHR中。
S202: 第一基站将上述 PHR发送给第二基站。
S203 : 第二基站根据 PHR控制终端在第二基站的服务小区的发射功 率。
具体的, 第一基站接收终端发送的 PHR后, 将第一基站的服务小区 的 PRB数目携带在该 PHR中, 或, 将第一基站为终端在第一基站的服务 小区分配的 PRB 数目和第一基站的服务小区的 MCS 索引信息携带在该 PHR中, 或, 将第一基站为终端在第一基站的服务小区分配的 PRB数目 和第一基站的闭环功控参数携带在该 PHR 中, 或, 将第一基站为终端在 第一基站的服务小区分配的 PRB数目和第一基站的服务小区的 MCS索引 信息以及第一基站的闭环功控参数携带在该 PHR 中。 之后, 第一基站向 第二基站发送该 PHR。 这里第一基站向第二基站发送上述 PHR, 主要是 因为终端在 PHR触发后仅发送给其中一个基站, 第二基站如果没有接收 到 PHR 则无法为自己所辖服务小区的终端正常分配上行资源, 也就更无 法根据第一基站为终端分配的上行资源的情况调整终端在第二基站的服 务小区的上行资源分配情况, 进而无法准确控制终端的发射功率; 并且另 一方面, 第一基站和第二基站之间也会预先通过 X2接***互一些参数信 息, 使得第二基站可以获知第一基站更新上行资源的时刻以及第一基站调 整终端在第一基站的服务小区的上行资源情况, 即第一基站和第二基站需 要事先通过 X2接口协商规定两者的调节规律, 这里的调节规律可以是二 者调整上行资源的频率以及调整上行资源的规则例如相互按照一定大小 迁就对方, 可以通过定义很多的规则和条件来尽量通过两者独立调整时综 合效果使得控制功率更为准确。 具体为:
第二基站接收第一基站转发的 PHR, 并根据 PHR中的终端在所述第 二基站的服务小区的 PH 以及在第二基站的服务小区的最大发射功率
Pc 根据公式 1得到终端在子帧 i在第二基站的服务小区的 /^^, 之 后根据公式 3 以及第二基站为终端在第二基站的服务小区分配的 PRB数 目 (这里的 PRB数目决定了公式 3中 Μρ„(0的值) , 得到终端在第二基 站的服务小区的下行路损 Ρ , ΡΖ^表示第二基站的服务小区的无线条件。 需要注意的是, 在公式 3 中, n^ )为高层协议层为终端配置的发射 功率, ^为第一基站或第二基站的服务小区特定的路损补偿系数, 对于 第二基站来说均是已知的; 并且第二基站根据公式 3 得到的 是终端此 次发送 PHR时的下行路损, 第二基站根据计算得到的/ ^估算出终端下一 次在第二基站的服务小区传输数据时的 PLc
另一方面, 第二基站也根据终端上报的终端在第一基站的服务小区的 PH以及在第一基站的服务小区的最大发射功 根据公式 1得到终 端在子帧 i在第一基站的服务小区的 rae , 之后根据公式 3 以及第一基 站为终端在第一基站的服务小区分配的 PRB 数目, 得到终端在第一基站 的服务小区传输数据时的下行路损 P ^, 终端在第一基站的服务小区传输 数据时的下行路损/ ^表示第一基站的服务小区的无线条件。 并且, 第二 基站根据公式 3得到的终端在第一基站的服务小区传输数据时的下行路损
/^是终端此次发送 PHR时的下行路损,第二基站根据计算得到的该/^估 算出终端下一次在第一基站的服务小区传输数据时的 ΡΖ^。
在第二基站得到终端下一次在第二基站的服务小区传输数据时的下 行路损 后,第二基站根据终端在第二基站的服务小区的 ΡΗ以及终端下 一次在第二基站的服务小区传输数据时的下行路损 /^, 为终端在第二基 站的服务小区分配上行资源。 并且第二基站还根据终端下一次在第一基站 的服务小区传输数据时的下行路损 以及终端在第一基站的服务小区的 ΡΗ, 估算出第一基站为终端在第一基站的服务小区分配上行资源的情况。 可选的, 第二基站通过与第一基站之间的 Χ2接口获知第一基站调整上行 资源的规律, 并根据第一基站调整上行资源的规律进一步调整第二基站为 终端在第二基站的服务小区分配的上行资源, 进而根据第二基站为终端分 配上行资源控制终端在第二基站的服务小区的发射功率; 或者, 可选的, 第一基站和第二基站也可以预先通过 Χ2接***互上行资源分配算法, 第 一基站根据终端在第二基站的服务小区的 PRB 数目以及上述的上行资源 分配算法确定第二基站为终端分配上行资源的情况, 进而根据第二基站为 终端分配上行资源的情况为终端分配合适的上行资源。 例如: 如果第一基 站自己所辖服务小区的下行路损较小, 而第二基站所辖服务小区的下行路 损较大且上行资源较少, MCS索引较小,则第一基站可以在第一基站的服 务小区为终端分配更多的上行资源, 进而根据第一基站为终端分配上行资 源控制终端在第一基站的服务小区的发射功率。
综上, 也就是说, 第一基站和第二基站根据 PHR确定为终端在第一 基站的服务小区或在第二基站的服务小区的资源分配情况, 以及根据为终 端所分配的资源控制终端的发射功率的过程是相同的。
本发明实施例提供的上行功率控制方法, 通过终端向第一基站发送 PHR, 并由第一基站将第一基站的服务小区的 PRB数目携带在该 PHR中 转发给第二基站, 使得第二基站可以根据 PHR获知终端在第一基站和第 二基站的服务小区的无线条件, 进而根据无线条件动态调整终端在第二基 站的服务小区的上行资源分配情况, 进而控制终端在第二基站的服务小区 的发射功率, 提高了基站控制终端的发射功率的准确性。
图 3为本发明提供的上行功率控制方法实施例三的流程示意图, 图 4 为本发明提供的上行功率控制方法实施例三的应用示意图。 本实施例涉及 的方法是通过第一基站根据第一基站的服务小区的下行路损以及为终端 分配的上行资源生成预调度信息, 并将该预调度信息发送给第二基站, 以 使第二基站根据预调度信息控制终端在第二基站的服务小区的发射功率, 本实施例的方法的执行主体是第一基站, 并且, 第一基站根据 PHR确定 的下行路损为终端在第一基站的服务小区在当前时刻经过第一时延后的 设定时间段内的下行路损; 第一基站为终端在第一基站的服务小区分配的 上行资源为终端在当前时刻经过第一时延后的设定时间段内在第一基站 的服务小区的上行资源。 本实施例涉及的方法包括如下步骤:
S301 : 第一基站接收终端发送的 PHR, 该 PHR包括: 终端在第一基 站的服务小区的 PH和终端在第二基站的服务小区的 PH。
具体的,终端向第一基站发送 PHR,并且终端也向第二基站发送 PHR; 该 PHR中包括:上述终端在第一基站的服务小区的 PH以及终端在第二基 站的服务小区的 PH; 可选的, 该 PHR中还可以包括终端在第一基站的服 务小区的最大发射功率和终端在第二基站的服务小区的最大发射功率。
一般的, 终端会在 PUSCH和 /或 PUCCH上发送数据, 该数据包括用 户数据和 /或信令, 上述终端给第一基站发送的 PH 可以分为两种类型的 PH, 分别为类型 1 和类型 2, 对于类型 1 ( Typel ) 的 PH, 计算公式 % PH = PCMAX,c _ PPUSCH,c (公式 1 ) , 公式 1针对的是终端只在 PUSCH上发 送数据的情况; 对于类型 2 ( Type2 ) 的 PH, 计算公式为: PH = PCMAX,C - PPUSCH,C - PPUCCH,C (公式 2 ) , 公式 2针对的是终端同时在 PUSCH 和 PUCCH上发送数据的情况; 其中, ΜΑ 为终端在第一基站或第二基站 的主服务小区(Pcdl)或各激活状态服务小区上的最大发射功率, P ^为 终端在第一基站或第二基站的服务小区的 PUSCH上的发射功率, PPUCCH,C为 终端在第一基站或第二基站的服务小区的 PUCCH上的发射功率; 并且, PeMA 可以是基于所分配的上行资源的情况的最大发射功率 (第一基站所 知道的终端的最大发射功率是一个范围, 需要由终端上报准确的最大发射 功率数值给第一基站) , 也可以是第一基站或第二基站没有为终端分配上 行资源情况时的最大发射功率(由第一基站和第二基站预先为终端配置的 在第一基站或第二基站的服务小区的最大发射功率上限值, 终端的最大发 射功率也就是基站所配置的这个最大发射功率上限值) , 此时不需要终端 上报终端在第一基站服务小区的发射功率, 只需上报终端在第二基站的服 务小区的上行功率即可。
S302: 第一基站根据上述 PHR确定终端在第一基站的服务小区的下 行路损, 并根据终端在第一基站的服务小区的 PH和所确定的终端在第一 基站的服务小区的下行路损为终端在第一基站的服务小区分配上行资源。
S303 : 第一基站根据第一基站的服务小区的下行路损以及为终端分配 的上行资源生成预调度信息。
S304: 第一基站将上述预调度信息发送给第二基站, 以使第二基站根 据该预调度信息控制终端在第二基站的服务小区的发射功率。
本发明实施例以终端只在 PUSCH上发送数据的情况为例来说明整体 的技术方案, 但本发明也适用于终端同时在 PUSCH和 PUCCH上发送数 据的情况, 只是在所用公式上有所不同。
第一基站根据终端上报的终端在所述第一基站的服务小区的 PH以及 在第一基站的服务小区的最大发射功率 利用公式 1 可以得到终端 在第一基站的服务小区的 rae 。 其中, 终端在第一基站的服务小区的最 大发射功率 ΜΑ ^可以利用现有技术获取, 可选的, 第一基站所知道的终 端的最大发射功率是一个范围, 需要由终端在该范围内上报准确的最大发 射功率数值给第一基站, 或者, 由第一基站预先为终端配置在第一基站的 服务小区的最大发射功率的上限值, 终端的最大发射功率也就是第一基站 所配置的这个最大发射功率上限值(此时不需要终端去向第一基站上报终 端 的 最 大 发 射 功 率 了 ) ; 之 后 根 据 公 式 3 :
PPUSCH c ( ) = min iPcMAX^c (°' }以及第一基站为终端
' ll01og10 (MPUSCH,c ( )) + PO PUSC¾c (7) + ac (j) · PL j 在第一基站的服务小区分配 PRB数目 (这里的 PRB数目决定了公式 3中 Mpraa^(0的值, 并且是第一基站自身所知道的) , 得到终端在第一基站的 服务小区的下行路损 Ρ , ΡΖ^表示第一基站的服务小区的无线条件。 需要 注意的是, 在公式 3中, ^^ϋ·)为高层协议层为终端配置的发射功率, ω为第一基站或第二基站的服务小区特定的路损补偿系数, 对于第一基 站来说均是已知的, 并且因为第一基站与第二基站之间进行通信时会有一 定的时延, 如图 4所示, 第一时延的时长为 20ms, 则第一基站根据上述 PHR确定的下行路损为终端在第一基站的服务小区在当前时刻经过 20ms 后的设定时间段内的下行路损, 这里的设定时间段可以为图 4中的 10ms; 第一基站根据上述下行路损确定第一基站为终端在第一基站的服务小区 分配的上行资源, 或者, 第一基站根据终端在第二基站服务小区的 PH和 终端在第二基站的服务小区的发射功率确定终端在第二基站的服务小区 的 raa^, 并结合上述所确定的下行路损一同为终端在第一基站的服务小 区分配上行资源, 其中该上行资源为上述终端在当前时刻经过第一时延后 的设定时间段内在第一基站的服务小区的上行资源。 第一基站根据上述确定的下行路损和第一基站为终端分配的上行资 源生成预调度信息, 该预调度信息包括: 终端在每个子帧上在第一基站的 每个服务小区所分配的 PRB数目、 MCS索引信息, 可选的, 还可以包括: 第一基站的服务小区的闭环功控参数。
第一基站在当前时刻发送第一基站在 20ms以后的第一个 10ms内的预 调度信息, 第二基站在 20ms后接收到第一基站发送的预调度信息, 根据 预调度消息获知的第一基站在 10ms 以内的下行路损以及上行资源分配情 况正是第一基站此时此刻的上行资源分配情况(因为第一基站发送给第二 基站的预调度信息本身就是第一基站在 20ms以后的上行资源分配信息), 第一基站 10ms之后继续向第二基站发送第二个 10ms以内的预调度信息, 并依次类推。 需要注意的是, 上述第一时延的时间长度应该大于等于第一 基站和第二基站 X2接口的传输延迟, 可以按在一定时间范围内的平均时 延进行估计, 不同的时间范围, 该第一时延的值是可以变化的。 进一步地, 第二基站接收第一基站发送的预调度信息, 并根据终端在 第二基站的服务小区的 PRB数目以及之前接收到的终端发送的 PHR中终 端在第二基站的服务小区的 PH确定终端在第二基站的服务小区的下行路 损(第二基站确定终端在第二基站的服务小区的下行路损的方法可以参照 第一基站确定终端在第一基站的服务小区的下行路损的方法, 在此不再赘 述) , 然后结合上述预调度信息为终端在第二基站的服务小区分配上行资 源, 从而达到控制终端在第二基站的服务小区的发射功率的目的, 例如: 根据接收到的第一基站为终端在第一基站的服务小区分配的上行资源计 算终端在第一基站的服务小区的发射功率, 并根据第二基站为终端在第二 基站所辖服务小区所分配的上行资源计算终端在第二基站所辖服务小区 的发射功率, 并通过与第一基站之间预设的调整规律或算法进行调整终端 在第二基站所辖服务小区的发射功率, 使得两者之和不超过终端的最大发 射功率。
本实施例提供的方法, 通过第一基站接收终端发送的 PHR, 根据该 PHR 确定终端在第一基站的服务小区的下行路损以及根据该下行路损为 终端在第一基站的服务小区分配上行资源, 并根据终端在第一基站的服务 小区的下行路损以及为终端在第一基站的服务小区分配上行资源生成预 调度信息之后发送给第二基站, 使得第二基站根据该预调度信息以及第二 基站根据上述 PHR所确定的终端在第二基站的服务小区的下行路损控制 终端在第二基站的服务小区的发射功率, 提高了基站控制终端的发射功率 的准确性。
图 5为本发明提供的上行功率控制方法实施例四的流程示意图, 该方 法的执行主体为第二基站, 该方法包括如下步骤:
S501 : 第二基站接收终端发送的 PHR, 该 PHR中包括终端在第一基 站的服务小区的 PH和终端在第二基站的服务小区的 PH。
具体的, 终端分别向第一基站和第二基站发送 PHR, 该 PHR中包括 终端在第一基站的服务小区的 PH和终端在第二基站的服务小区的 PH;可 选的, 该 PHR 中该可以包括终端在第一基站和第二基站的服务小区的最 大发射功率 ΜΑ ^。第二基站根据终端在第二基站的服务小区的 PH以及终 端在第二基站的服务小区的最大发射功率 ^Μ/^, 利用公式 1 确定终端在 第二基站的服务小区的 rae , 之后根据公式 3 以及第二基站为终端在第 一基站的服务小区分配 PRB 数目 (这里的 PRB 数目决定了公式 3 中 Mp„(0的值, 并且是第二基站自身所知道的) , 得到终端在第二基站的 服务小区的下行路损 /^。
S502 : 第二基站接收第一基站发送的预调度信息, 该预调度信息为第 基站根据第一基站确定的终端在第一基站的下行路损和第一基站为终端 在第一基站的服务小区分配的上行资源确定的。
S503 : 第二基站根据上述预调度信息控制终端在第二基站的服务小区 的上行资源。
具体的, 第二基站接收第一基站发送的预调度信息, 该预调度信息是 由第一基站根据第一基站所确定的终端在第一基站的下行路损 和第一 基站为终端在第一基站的服务小区分配的上行资源生成的, 该预调度信息 具体的获取方法如下:
第一基站接收到终端发送的 PHR 后, 根据终端上报的终端在第一基 站的服务小区的 PH以及在第一基站的服务小区的最大发射功率/^ ^,利 用公式 1可以得到终端在第一基站的服务小区的 /^^。 其中, 终端在第 一基站的服务小区的最大发射功率 ΜΑ 可以利用现有技术获取, 可选的, 第一基站所知道的终端的最大发射功率是一个范围, 需要由终端在该范围 内上报准确的最大发射功率数值给第一基站, 或者, 由第一基站预先为终 端配置在第一基站的服务小区的最大发射功率的上限值, 终端的最大发射 功率也就是第一基站所配置的这个最大发射功率上限值(此时不需要终端 去向第一基站上报终端的最大发射功率了) ; 之后根据公式 3以及第一基 站为终端在第一基站的服务小区分配 PRB数目 (这里的 PRB数目决定了 公式 3中 Mpraa^(0的值, 也是第一基站自身所知道的) , 得到终端在第一 基站的服务小区的下行路损 /^, 第一基站根据该终端在第一基站的服务 小区的下行路损/^为终端在第一基站的服务小区分配上行资源, 需要注 意的是, 参照图 4, 第一基站根据 PHR确定的下行路损为终端在第一基站 的服务小区在当前时刻经过 20ms后的设定时间段内的下行路损, 这里的 设定时间段可以为图 4 中的 10ms; 第一基站根据上述下行路损确定第一 基站为终端在第一基站的服务小区分配的上行资源情况, 并且该上行资源 为上述终端在当前时刻经过第一时延后的设定时间段内在第一基站的服 务小区的上行资源。第一基站根据上述确定的下行路损和第一基站为终端 分配的上行资源生成预调度信息, 该预调度信息包括: 终端在每个子帧上 在第一基站的每个服务小区所分配的 PRB数目、 MCS索引信息, 可选的, 还可以包括: 第一基站的服务小区的闭环功控参数以及终端在第一基站的 服务小区的下行路损。
进一步地, 第一基站向第二基站发送该预调度信息, 由于第一基站和 第二基站之间有通信时延, 因此第一基站在当前时刻发送的预调度信息为 第一基站在 20ms以后的第一个 10ms内的预调度信息, 第二基站在 20ms 后接收到第一基站发送的预调度信息, 根据预调度消息获知的第一基站在 10ms 以内的下行路损以及上行资源分配情况正是第一基站此时此刻的上 行资源分配情况(因为第一基站发送给第二基站的预调度信息本身就是第 一基站在 20ms以后的上行资源分配信息),第一基站 10ms之后继续向第 二基站发送第二个 10ms以内的预调度信息, 并依次类推。 需要注意的是, 上述第一时延的时间长度应该大于等于第一基站和第二基站 X2接口的传 输延迟,可以按在一定时间范围内的平均时延进行估计,不同的时间范围, 该第一时延的值是可以变化的。
进一步地, 第二基站根据上述预调度信息和之前确定的终端在第二基 站的服务小区的下行路损控制终端在第二基站的服务小区的发射功率, 例 如: 根据接收到的第一基站为终端在第一基站的服务小区分配的上行资源 计算终端在第一基站的服务小区的发射功率, 并根据第二基站为终端在第 二基站所辖服务小区所分配的上行资源计算终端在第二基站所辖服务小 区的发射功率, 并通过与第一基站之间预设的调整规律或算法进行调整终 端在第二基站所辖服务小区的发射功率, 使得两者之和不超过终端的最大 发射功率。
本实施例提供的方法, 通过第二基站接收终端发送的 PHR 确定终端 在第二基站的服务小区的下行路损, 并结合第一基站所发送的预调度信息 控制终端在第二基站的服务小区的发射功率, 提高了基站控制终端的发射 功率的准确性。 图 6为本发明提供的上行功率控制方法实施例五的流程示意图, 本实 施例涉及的方法的执行主体是终端, 该方法包括:
S601 : 终端向第一基站发送 PHR , 用于第一基站控制所述终端在所述 第一基站的服务小区的发射功率, 该 PHR 中包括: 终端在第一基站的服 务小区的 PH、 第二基站为终端在第二基站的服务小区分配的 PRB数目以 及终端在所述第二基站的服务小区的 PH。
S602 : 终端经由第一基站的控制调整终端在第一基站的服务小区的发 射功率。
具体的,第一基站向终端发送终端在第一基站的服务小区分配的 PRB 数目, 第二基站向终端发送终端在第二基站的服务小区分配的 PRB数目; 终端在接收到上述 PRB数目之后, 根据 PHR周期定时器超时、 服务小区 自上一次报告 PHR后下行路损变化超过门限等触发条件触发 PHR; 在终 端触发 PHR后, 终端向第一基站发送 PHR , 该 PHR中包括: 上述终端在 第一基站的服务小区的 PH、 第二基站为终端在所述第二基站的服务小区 分配的 PRB数目以及终端在第二基站的服务小区的 PH ,该 PHR中可选的 还可以包括第一基站为终端在第一基站的服务小区分配的 PRB 数目; 并 且可选的, 终端也可以向第一基站和第二基站同时发送 PHR; 其中, 例如 PRB的个数为 100个, 表示 100个 PRB , 需要 7个比特, 如表 1所示; 为 了减少 PRB个数所占用的信息比特数, 可以将 PRB个数分为几个级别, 例如按照 PRB对的数目最大为 16,24,32,36,40,48,50分为 8个级别, 于是 只占用 3比特, 用 PRB索引 (PRB index ) 表示, 如表 2所示。
第一基站接收到该 PHR 之后, 终端上报的终端在第一基站的服务小 区的 PH以及在第一基站的服务小区的最大发射功率 皿 ,可以得到终端 在第一基站的服务小区的 raa^, 之后根据公式 3 以及第一基站为终端在 第一基站的服务小区分配的 PRB 数目, 得到终端在第一基站的服务小区 的下行路损 Ρ , ΡΖ^表示第一基站的服务小区的无线条件,需要注意的是, 在公式 3 中, P。 为高层协议层为终端配置的发射功率, ac (j)为第 一基站或第二基站的服务小区特定的路损补偿系数, 对于第一基站来说均 是已知的, 并且, 第一基站根据公式 3得到的 是终端此次发送 PHR时 的下行路损, 第一基站根据计算得到的/ ^估算出终端下一次在第一基站 的服务小区传输数据时的 另一方面, 第一基站也根据终端上报的终 端在第二基站的服务小区的 ΡΗ以及在第二基站的服务小区的最大发射功 率 Pc 根据公式 1得到终端在子帧 i在第二基站的服务小区的 raa^, 之后根据公式 3 以及第二基站为终端在第二基站的服务小区分配的 PRB 数目, 得到终端在第二基站的服务小区传输数据时的下行路损 /^, 终端 在第二基站的服务小区传输数据时的下行路损/ ^表示第二基站的服务小 区的无线条件, 并且, 第一基站根据公式 3得到的终端在第二基站的服务 小区传输数据时的下行路损 /^是终端此次发送 PHR时的下行路损, 第一 基站根据计算得到的该/^估算出终端下一次在第二基站的服务小区传输 数据时的 Ρ 。
在第一基站得到终端下一次在第一基站的服务小区传输数据时的下 行路损 后,第一基站根据终端在第一基站的服务小区的 ΡΗ以及终端下 一次在第一基站的服务小区传输数据时的下行路损 /^, 为终端在第一基 站的服务小区分配上行资源; 并且第一基站还根据终端下一次在第二基站 的服务小区传输数据时的下行路损 以及终端在第二基站的服务小区的 ΡΗ, 估算出第二基站为终端在第二基站的服务小区分配上行资源的情况; 第一基站通过与第二基站之间的 Χ2接口获知第二基站调整上行资源的规 律, 并根据第二基站调整上行资源的规律进一步调整第一基站为终端在第 一基站的服务小区分配的上行资源, 进而根据第一基站为终端分配上行资 源控制终端在第一基站的服务小区的发射功率, 即终端根据第一基站所分 配的上行资源调整终端在第一基站的服务小区的发射功率; 或者, 第一基 站和第二基站也可以预先通过 Χ2接***互上行资源分配算法, 第一基站 根据终端在第二基站的服务小区的 PRB 数目以及上述的上行资源分配算 法确定第二基站为终端分配上行资源的情况, 进而根据第二基站为终端分 配上行资源的情况为终端分配合适的上行资源。 例如: 如果第一基站自己 所辖服务小区的下行路损较小, 而第二基站所辖服务小区的下行路损较大 且上行资源较少, MCS索引较小, 则第一基站可以在第一基站的服务小区 为终端分配更多的上行资源, 进而根据第一基站为终端分配上行资源控制 终端在第一基站的服务小区的发射功率。 。
本发明实施例提供的上行功率控制方法, 通过终端向第一基站发送 PHR, 并在该 PHR中携带终端在第一基站的服务小区的 PH、 第二基站为 终端在第二基站的服务小区分配的 PRB 数目以及终端在所述第二基站的 服务小区的 PH, 使得第一基站可以根据 PHR获知终端在第一基站和第二 基站的服务小区的无线条件, 进而根据无线条件动态调整终端在第一基站 的服务小区的上行资源分配情况, 进而控制终端在第一基站的服务小区的 发射功率, 提高了基站控制终端的发射功率的准确性。
进一步地, 在上述实施例的基础上, 所述方法还包括: 终端经由第二 基站的控制调整终端在第二基站的服务小区的发射功率, 上述第二基站的 控制为第二基站根据上述第一基站向第二基站发送的 PHR所确定。
具体的, 第一基站和第二基站对于终端在自身所辖服务小区内的上行 资源分配以及调整情况都是依据终端在各自所辖服务小区内传输数据时 的下行路损, 在第二基站根据第一基站转发的 PHR估算出终端下一次在 第二基站的服务小区传输数据时的下行路损以及估算出终端下一次在第 一基站的服务小区传输数据时的下行路损之后, 为终端在第二基站的服务 小区分配上行资源, 即第二基站对于终端在第二基站服务小区的上行资源 分配情况与第一基站发送给第二基站的 PHR有关, 终端根据第二基站为 其分配的上行资源调整终端在第二基站的服务小区的发射功率。
进一步地, 在上述实施例的基础上, PHR还包括: 所述第二基站的服 务小区的数据 MCS索引信息和 /或所述第二基站的服务小区的闭环功控参 数。
具体的, 终端向第一基站发送的 PHR 中, 还可以包括: 第二基站的 服务小区的数据 MCS索引信息和 /或所述第二基站的服务小区的闭环功控 参数, 这里的 MCS索引信息对应公式 4中的 Δτ (0, 第二基站的服务小区 的闭环功控参数对应公式 4中的/ ), MCS索引信息可以表示不同的数据 调制编码方式, 在服务小区的无线质量不稳定的情况下, 不同的调制编码 方式会对终端的发射功率造成影响。
第一基站根据终端上报的终端在所述第一基站的服务小区的 ΡΗ以及 在第一基站的服务小区的最大发射功率 ΜΑ^, 根据公式 1 得到终端在子 帧 i在第一基站的服务小区的 ^ , 之后采用公式 4以及第一基站为终 端在第一基站的服务小区分配的 PRB 数目, 得到终端在第一基站的服务 小区的下行路损 P ^, 终端在第一基站的服务小区的下行路损/ ^表示终端 在第一基站的服务小区的无线条件;并且,第一基站根据公式 4得到的 是终端此次发送 PHR时的下行路损, 并根据计算得到的 估算出终端下 一次在第一基站的服务小区传输数据时的 另一方面, 第一基站也根 据终端上报的终端在第二基站的服务小区的 ΡΗ以及在第二基站的服务小 区的最大发射功率 Μ^ε,根据公式 1得到终端在子帧 i在第二基站的服务 小区的 ^ , 之后根据公式 4以及第二基站为终端在第二基站的服务小 区分配的 PRB 数目, 得到终端在第二基站的服务小区传输数据时的下行 路损 ΡΖ^, 表示终端在第二基站的服务小区的无线条件,需要注意的是, 在公式 4中, U )、 ac (j) , Δτ 对于第一基站均是已知的; 并且,第一基站根据公式 4得到的 是终端此次发送 PHR时的下行路损, 第一基站根据计算得到的/ ^估算出终端下一次在第二基站的服务小区传 输数据时的 之后, 第一基站根据上述确定的终端在第一基站和第二 基站的服务小区的下行路损为终端分配上行资源, 并根据为终端分配的上 行资源控制终端的发射功率。
本发明实施例提供的上行功率控制方法, 通过在 PHR 中进一步携带 MCS索引信息以及闭环功控参数, 使得第一基站可以根据 PHR获知终端 在第一基站和第二基站的服务小区的无线条件, 进而根据无线条件动态调 整终端在第一基站的服务小区的上行资源分配情况, 进而控制终端在第一 基站的服务小区的发射功率, 提高了基站控制终端的发射功率的准确性。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
图 7为本发明提供的基站实施例一的结构示意图, 如图 7所示, 该基站 包括: 接收模块 40, 用于接收终端发送的功率余量报告 PHR, 所述 PHR 包括: 所述终端在第一基站的服务小区的功率余量 PH、 第二基站为所述 终端在所述第二基站的服务小区分配的物理资源块 PRB 数目、 所述终端 在所述第二基站的服务小区的 PH; 控制模块 41, 用于根据所述 PHR, 控 制所述终端在所述第一基站的服务小区的发射功率。
本实施例的基站可以执行图 1所示方法实施例, 其实现原理相类似, 此 处不再赘述。
图 8为本发明提供的基站实施例二的结构示意图, 如图 8所示, 在图 7 所示实施例的基础上, 进一步地, 所述控制模块 41包括: 下行路损确定单 元 410,用于根据所述 PHR确定所述终端在所述第一基站的服务小区的下 行路损以及确定所述终端在第二基站的服务小区的下行路损; 控制单元 411, 用于根据所述终端在所述第一基站的服务小区的 PH、 所述终端在所 述第一基站的服务小区的下行路损、 所述终端在所述第二基站的服务小区 的 PH以及所述终端在所述第二基站的服务小区的下行路损为所述终端分 配所述终端在第一基站的服务小区的上行资源, 并根据所述终端在所述第 一基站的服务小区的上行资源控制所述终端在所述第一基站的服务小区 的发射功率。
进一步地, 在上述实施例的基础上, 所述下行路损确定单元 410, 具体 用于根据所述第一基站为所述终端在所述第一基站的服务小区分配的 PRB数目、 所述终端在所述第一基站的服务小区的 PH以及所述终端在所 述第一基站的服务小区的最大发射功率确定所述终端在所述第一基站的 服务小区的下行路损; 还用于根据所述第二基站为所述终端在所述第二基 站的服务小区分配的 PRB 数目、 所述终端在所述第二基站的服务小区的 PH 以及所述终端在所述第二基站的服务小区的最大发射功率, 确定所述 终端在所述第二基站的服务小区的下行路损。
进一步地, 所述 PHR还包括: 所述第二基站的服务小区的数据调制编 码方式 MCS索引信息和 /或所述第二基站的服务小区的闭环功控参数; 所 述下行路损确定单元 410, 具体用于根据所述第一基站为所述终端在所述 第一基站的服务小区分配的 PRB 数目、 所述终端在所述第一基站的服务 小区的 PH、 所述终端在所述第一基站的服务小区的最大发射功率、 所述 第一基站的服务小区的 MCS索引信息和 /或所述第一基站的服务小区的闭 环功控参数确定所述终端在所述第一基站的服务小区的下行路损; 还用于 根据所述第二基站为所述终端在所述第二基站的服务小区分配的 PRB 数 目、 所述终端在所述第二基站的服务小区的 PH、 所述终端在所述第二基 站的服务小区的最大发射功率、 所述第二基站的服务小区的 MCS索引信 息和 /或所述第二基站的服务小区的闭环功控参数,确定所述终端在所述第 二基站的服务小区的下行路损。
本实施例提供的基站可以执行上述方法实施例, 其实现原理类似, 在此 不再赘述。
进一步地, 在上述图 8所示实施例的基础上, 该基站还包括: 发送模块 42, 用于在所述接收模块接收终端发送的功率余量报告 PHR 之后, 将所 述 PHR发送给所述第二基站, 以使所述第二基站根据所述 PHR控制所述 终端在所述第二基站的服务小区的发射功率; 并且, 所述发送模块 42, 还 用于在将所述 PHR发送给所述第二基站之前, 将所述第一基站为所述终 端在所述第一基站的服务小区分配的 PRB 数目, 或, 所述第一基站为所 述终端在所述第一基站的服务小区分配的 PRB 数目和所述第一基站的服 务小区的 MCS索引信息, 或, 所述第一基站为所述终端在所述第一基站 的服务小区分配的 PRB 数目和所述第一基站的闭环功控参数, 或, 所述 第一基站为所述终端在所述第一基站的服务小区分配的 PRB 数目和所述 第一基站的服务小区的 MCS索引信息以及所述第一基站的闭环功控参数 携带在所述 PHR中。
本实施例提供的基站可以执行上述方法实施例, 其实现原理类似, 在此 不再赘述。
图 9为本发明提供的第一基站实施例一的结构示意图, 如图 9所示, 该 第一基站包括:第一接收模块 50,用于接收终端发送的 PHR,该 PHR包括: 终端在第一基站的服务小区的 PH和终端在第二基站的服务小区的 PH;第 一确定模块 51, 用于根据上述 PHR确定终端在第一基站的服务小区的下 行路损, 并根据终端在第一基站的服务小区的 PH和所确定的终端在第一 基站的服务小区的下行路损为终端在第一基站的服务小区分配上行资源; 信息生成模块 52,用于根据第一基站的服务小区的下行路损以及为终端分 配的上行资源生成预调度信息; 第二发送模块 53, 用于将上述预调度信息 发送给第二基站, 以使第二基站根据该预调度信息控制终端在第二基站的 服务小区的发射功率。
本实施例提供的第一基站可以执行上述图 3所示的方法实施例, 其实现 原理类似, 在此不再赘述。
图 10为本发明提供的第二基站实施例一的结构示意图, 如图 10所示, 该第二基站包括: 第二接收模块 54, 用于接收终端发送的 PHR, 该 PHR中 包括终端在第一基站的服务小区的 PH 和终端在第二基站的服务小区的 PH; 第三接收模块 55, 用于接收第一基站发送的预调度信息, 该预调度 信息为第基站根据第一基站确定的终端在第一基站的下行路损和第一基 站为终端在第一基站的服务小区分配的上行资源确定的; 第一控制模块 56, 用于根据上述预调度信息控制终端在第二基站的服务小区的上行资 源。
本实施例提供的第二基站可以执行上述图 5所示的方法实施例, 其实 现原理和技术效果类似, 在此不再赘述。
图 11为本发明提供的终端实施例一的结构示意图, 如图 11所示, 该终 端包括: 发送模块 57, 用于向第一基站发送功率余量报告 PHR, 用于第一 基站控制所述终端在所述第一基站的服务小区的发射功率, 所述 PHR 中 包括: 所述终端在所述第一基站的服务小区的功率余量 PH、 第二基站为 所述终端在所述第二基站的服务小区分配的物理资源块 PRB 数目以及所 述终端在所述第二基站的服务小区的功率余量 PH; 调整模块 58, 用于经 由所述第一基站的控制调整所述终端在所述第一基站的服务小区的发射 功率。
本实施例提供的终端可以执行上述图 6所示的方法实施例, 其实现原理 类似, 在此不再赘述。
进一步地,在上述终端实施例的基础上,上述调整模块 58还用于经由所 述第二基站的控制调整所述终端在所述第二基站的服务小区的发射功率, 所述第二基站的控制为所述第二基站根据所述第一基站向所述第二基站 发送的 PHR所确定; 上述 PHR还包括: 所述第二基站的服务小区的数据 调制编码方式 MCS索引信息和 /或所述第二基站的服务小区的闭环功控参 数。
本实施例提供的终端可以执行上述方法实施例, 其实现原理类似, 在此 不再赘述。
图 12为本发明提供的基站实施例三的结构示意图, 如图 12所示, 该基 站包括: 接收器 60、 处理器 61。
接收器 60, 用于接收终端发送的功率余量报告 PHR, 所述 PHR包括: 所述终端在第一基站的服务小区的功率余量 PH、 第二基站为所述终端在 所述第二基站的服务小区分配的物理资源块 PRB 数目、 所述终端在所述 第二基站的服务小区的 PH;
处理器 61, 用于根据所述 PHR, 控制所述终端在所述第一基站的服 务小区的发射功率。
本实施例提供的基站可以执行上述方法实施例, 其实现原理类似, 在此 不再赘述。
在上述图 12所示实施例的基础上, 可选的, 所述 PHR还包括: 所述终 端在所述第二基站的服务小区的最大发射功率。
可选的,处理器 61还可以用于根据所述 PHR确定所述终端在所述第一 基站的服务小区的下行路损以及确定所述终端在所述第二基站的服务小 区的下行路损; 还可以用于根据所述终端在所述第一基站的服务小区的 PH、所述终端在所述第一基站的服务小区的下行路损、所述终端在所述第 二基站的服务小区的 PH以及所述终端在所述第二基站的服务小区的下行 路损为所述终端分配所述终端在第一基站的服务小区的上行资源, 并根据 所述终端在所述第一基站的服务小区的上行资源控制所述终端在所述第 一基站的服务小区的发射功率。
可选的, 处理器 61 还可以用于根据所述第一基站为所述终端在所述 第一基站的服务小区分配的 PRB 数目、 所述终端在所述第一基站的服务 小区的 PH以及所述终端在所述第一基站的服务小区的最大发射功率确定 所述终端在所述第一基站的服务小区的下行路损; 还用于根据所述第二基 站为所述终端在所述第二基站的服务小区分配的 PRB 数目、 所述终端在 所述第二基站的服务小区的 PH以及所述终端在所述第二基站的服务小区 的最大发射功率, 确定所述终端在所述第二基站的服务小区的下行路损。
可选的, 处理器 61还可以用于根据所述第一基站为所述终端在所述第 一基站的服务小区分配的 PRB 数目、 所述终端在所述第一基站的服务小 区的 PH、 所述终端在所述第一基站的服务小区的最大发射功率、 所述第 一基站的服务小区的 MCS索引信息和 /或所述第一基站的服务小区的闭环 功控参数确定所述终端在所述第一基站的服务小区的下行路损; 还用于根 据所述第二基站为所述终端在所述第二基站的服务小区分配的 PRB数目、 所述终端在所述第二基站的服务小区的 PH、 所述终端在所述第二基站的 服务小区的最大发射功率、 所述第二基站的服务小区的 MCS索引信息和 / 或所述第二基站的服务小区的闭环功控参数, 确定所述终端在所述第二基 站的服务小区的下行路损。
图 13为本发明提供的基站实施例四的结构示意图, 在上述图 12所示 实施例的基础上, 该基站还包括发送器 62, 用于在接收器 60接收终端发 送的功率余量报告 PHR之后, 将所述 PHR发送给所述第二基站, 以使所 述第二基站根据所述 PHR控制所述终端在所述第二基站的服务小区的发 射功率。
可选的,发送器 62还可以用于在将所述 PHR发送给所述第二基站之前, 将所述第一基站为所述终端在所述第一基站的服务小区分配的 PRB数目, 或, 所述第一基站为所述终端在所述第一基站的服务小区分配的 PRB 数 目和所述第一基站的服务小区的 MCS索引信息, 或, 所述第一基站为所 述终端在所述第一基站的服务小区分配的 PRB 数目和所述第一基站的闭 环功控参数, 或, 所述第一基站为所述终端在所述第一基站的服务小区分 配的 PRB数目和所述第一基站的服务小区的 MCS索引信息以及所述第一 基站的闭环功控参数携带在所述 PHR中。
本实施例提供的基站可以执行上述方法实施例, 其实现原理类似, 在此 不再赘述。
图 14为本发明提供的第一基站实施例二的结构示意图, 如图 14所示, 该第一基站包括: 接收器 70, 用于接收终端发送的 PHR, 该 PHR包括: 终 端在第一基站的服务小区的 PH和终端在第二基站的服务小区的 PH;处理 器 71, 用于根据上述 PHR确定终端在第一基站的服务小区的下行路损, 并根据终端在第一基站的服务小区的 PH和所确定的终端在第一基站的服 务小区的下行路损为终端在第一基站的服务小区分配上行资源, 还用于根 据第一基站的服务小区的下行路损以及为终端分配的上行资源生成预调 度信息; 发送器 72, 用于将上述预调度信息发送给第二基站, 以使第二基 站根据该预调度信息控制终端在第二基站的服务小区的发射功率。 本实施例提供的基站可以执行上述图 9所示的方法实施例, 其实现原理 类似, 在此不再赘述。
图 15为本发明提供的第二基站实施例二的结构示意图, 如图 15所示, 该第二基站包括: 接收器 80, 用于接收终端发送的 PHR, 该 PHR中包括终 端在第一基站的服务小区的 PH和终端在第二基站的服务小区的 PH,还用 于接收第一基站发送的预调度信息, 该预调度信息为第基站根据第一基站 确定的终端在第一基站的下行路损和第一基站为终端在第一基站的服务 小区分配的上行资源确定的; 处理器 81, 用于根据上述预调度信息控制终 端在第二基站的服务小区的上行资源。
本实施例提供的基站可以执行上述图 10所示的方法实施例,其实现原理 类似, 在此不再赘述。
图 16为本发明提供的终端实施例二的结构示意图, 如图 16所示, 该终 端包括: 发送器 90, 用于向第一基站发送功率余量报告 PHR, 用于第一基 站控制所述终端在所述第一基站的服务小区的发射功率, 所述 PHR 中包 括: 所述终端在所述第一基站的服务小区的功率余量 PH、 第二基站为所 述终端在所述第二基站的服务小区分配的物理资源块 PRB 数目以及所述 终端在所述第二基站的服务小区的功率余量 PH; 处理器 91, 用于经由所 述第一基站的控制调整所述终端在所述第一基站的服务小区的发射功率。
本实施例提供的终端可以执行上述方法实施例, 其实现原理类似, 在此 不再赘述。
可选的, 处理器 91, 还用于经由所述第二基站的控制调整所述终端在 所述第二基站的服务小区的发射功率, 所述第二基站的控制为所述第二基 站根据所述第一基站向所述第二基站发送的 PHR所确定; 所述 PHR还包 括: 所述第二基站的服务小区的数据调制编码方式 MCS索引信息和 /或所 述第二基站的服务小区的闭环功控参数。
本实施例提供的终端可以执行上述方法实施例, 其实现原理类似, 在此 不再赘述。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种上行功率控制方法, 其特征在于, 包括:
第一基站接收终端发送的功率余量报告 PHR, 所述 PHR包括: 所述 终端在所述第一基站的服务小区的功率余量 PH、 第二基站为所述终端在 所述第二基站的服务小区分配的物理资源块 PRB 数目、 所述终端在所述 第二基站的服务小区的 PH;
所述第一基站根据所述 PHR,控制所述终端在所述第一基站的服务小 区的发射功率。
2、 根据权利要求 1所述的方法, 其特征在于, 所述 PHR还包括: 所 述终端在所述第二基站的服务小区的最大发射功率。
3、 根据权利要求 1 所述的方法, 其特征在于, 所述第一基站控制所 述终端在所述第一基站的服务小区的发射功率, 包括:
所述第一基站根据所述 PHR确定所述终端在所述第一基站的服务小 区的下行路损以及确定所述终端在所述第二基站的服务小区的下行路损; 所述第一基站根据所述终端在所述第一基站的服务小区的 PH、 所述 终端在所述第一基站的服务小区的下行路损、所述终端在所述第二基站的 服务小区的 PH以及所述终端在所述第二基站的服务小区的下行路损为所 述终端分配所述终端在第一基站的服务小区的上行资源。
4、 根据权利要求 3所述的方法, 其特征在于, 所述第一基站根据所 述 PHR确定所述终端在所述第一基站的服务小区的下行路损以及确定所 述终端在所述第二基站的服务小区的下行路损, 具体为:
所述第一基站根据所述第一基站为所述终端在所述第一基站的服务 小区分配的 PRB数目、所述终端在所述第一基站的服务小区的 PH以及所 述终端在所述第一基站的服务小区的最大发射功率确定所述终端在所述 第一基站的服务小区的下行路损;
所述第一基站根据所述第二基站为所述终端在所述第二基站的服务 小区分配的所述 PRB数目、所述终端在所述第二基站的服务小区的 PH以 及所述终端在所述第二基站的服务小区的最大发射功率, 确定所述终端在 所述第二基站的服务小区的下行路损。
5、 根据权利要求 1-4任一项所述的方法, 其特征在于, 所述 PHR还 包括: 所述第二基站的服务小区的数据调制编码方式 MCS索引信息和 /或 所述第二基站的服务小区的闭环功控参数;
所述第一基站根据所述 PHR确定所述终端在所述第一基站的服务小 区的下行路损以及确定所述终端在所述第二基站的服务小区的下行路损, 具体为:
所述第一基站根据所述第一基站为所述终端在所述第一基站的服务 小区分配的 PRB数目、 所述终端在所述第一基站的服务小区的 PH、 所述 终端在所述第一基站的服务小区的最大发射功率、所述第一基站的服务小 区的 MCS索引信息和 /或所述第一基站的服务小区的闭环功控参数确定所 述终端在所述第一基站的服务小区的下行路损;
所述第一基站根据所述第二基站为所述终端在所述第二基站的服务 小区分配的 PRB数目、 所述终端在所述第二基站的服务小区的 PH、 所述 终端在所述第二基站的服务小区的最大发射功率、所述第二基站的服务小 区的 MCS索引信息和 /或所述第二基站的服务小区的闭环功控参数, 确定 所述终端在所述第二基站的服务小区的下行路损。
6、 根据权利要求 1-5任一项所述的方法, 其特征在于, 所述方法还包 括:
所述第一基站将所述 PHR发送给所述第二基站, 以使所述第二基站 根据所述 PHR控制所述终端在所述第二基站的服务小区的发射功率。
7、 根据权利要求 6所述的方法, 其特征在于, 所述方法还包括: 所述第一基站将所述第一基站为所述终端在所述第一基站的服务小 区分配的 PRB 数目, 或, 所述第一基站为所述终端在所述第一基站的服 务小区分配的 PRB数目和所述第一基站的服务小区的 MCS索引信息,或, 所述第一基站为所述终端在所述第一基站的服务小区分配的 PRB 数目和 所述第一基站的闭环功控参数, 或, 所述第一基站为所述终端在所述第一 基站的服务小区分配的 PRB数目和所述第一基站的服务小区的 MCS索引 信息以及所述第一基站的闭环功控参数携带在所述 PHR中。
8、 一种上行功率控制方法, 其特征在于, 包括:
终端向第一基站发送功率余量报告 PHR,用于所述第一基站控制所述 终端在所述第一基站的服务小区的发射功率, 所述 PHR 中包括: 所述终 端在所述第一基站的服务小区的功率余量 PH、 第二基站为所述终端在所 述第二基站的服务小区分配的物理资源块 PRB 数目以及所述终端在所述 第二基站的服务小区的功率余量 PH;
所述终端经由所述第一基站的控制调整所述终端在所述第一基站的 服务小区的发射功率。
9、 根据权利要求 8所述的方法, 其特征在于, 所述方法还包括: 所述终端经由所述第二基站的控制调整所述终端在所述第二基站的 服务小区的发射功率, 所述第二基站的控制为所述第二基站根据所述第一 基站向所述第二基站发送的 PHR所确定。
10、 根据权利要求 9所述的方法, 其特征在于, 所述 PHR还包括: 所述第二基站的服务小区的数据调制编码方式 MCS索引信息和 /或所 述第二基站的服务小区的闭环功控参数。
11、 一种基站, 其特征在于, 包括:
接收模块, 用于接收终端发送的功率余量报告 PHR, 所述 PHR包括: 所述终端在第一基站的服务小区的功率余量 PH、 第二基站为所述终端在 所述第二基站的服务小区分配的物理资源块 PRB 数目、 所述终端在所述 第二基站的服务小区的 PH;
控制模块, 用于根据所述 PHR, 控制所述终端在所述第一基站的服务 小区的发射功率。
12、 根据权利要求 11所述的基站, 其特征在于, 所述 PHR还包括: 所述终端在所述第二基站的服务小区的最大发射功率。
13、 根据权利要求 11所述的基站, 其特征在于, 所述控制模块包括: 下行路损确定单元, 用于根据所述 PHR确定所述终端在所述第一基 站的服务小区的下行路损以及确定所述终端在所述第二基站的服务小区 的下行路损;
控制单元, 用于根据所述终端在所述第一基站的服务小区的 PH、 所 述终端在所述第一基站的服务小区的下行路损、所述终端在所述第二基站 的服务小区的 PH以及所述终端在所述第二基站的服务小区的下行路损为 所述终端分配所述终端在第一基站的服务小区的上行资源。
14、 根据权利要求 13 所述的基站, 其特征在于, 所述下行路损确定 单元, 具体用于根据所述第一基站为所述终端在所述第一基站的服务小区 分配的 PRB数目、所述终端在所述第一基站的服务小区的 PH以及所述终 端在所述第一基站的服务小区的最大发射功率确定所述终端在所述第一 基站的服务小区的下行路损; 还用于根据所述第二基站为所述终端在所述 第二基站的服务小区分配的 PRB 数目、 所述终端在所述第二基站的服务 小区的 PH以及所述终端在所述第二基站的服务小区的最大发射功率, 确 定所述终端在所述第二基站的服务小区的下行路损。
15、 根据权利 11-14任一项所述的基站, 其特征在于, 所述 PHR还包 括: 所述第二基站的服务小区的数据调制编码方式 MCS索引信息和 /或所 述第二基站的服务小区的闭环功控参数;
所述下行路损确定单元, 具体用于根据所述第一基站为所述终端在所 述第一基站的服务小区分配的 PRB 数目、 所述终端在所述第一基站的服 务小区的 PH、 所述终端在所述第一基站的服务小区的最大发射功率、 所 述第一基站的服务小区的 MCS索引信息和 /或所述第一基站的服务小区的 闭环功控参数确定所述终端在所述第一基站的服务小区的下行路损; 还用 于根据所述第二基站为所述终端在所述第二基站的服务小区分配的 PRB 数目、 所述终端在所述第二基站的服务小区的 PH、 所述终端在所述第二 基站的服务小区的最大发射功率、 所述第二基站的服务小区的 MCS索引 信息和 /或所述第二基站的服务小区的闭环功控参数,确定所述终端在所述 第二基站的服务小区的下行路损。
16、 根据权利要求 11-15任一项所述基站, 其特征在于, 所述基站还 包括:
发送模块, 用于在所述接收模块接收终端发送的功率余量报告 PHR 之后,将所述 PHR发送给所述第二基站,以使所述第二基站根据所述 PHR 控制所述终端在所述第二基站的服务小区的发射功率。
17、 根据权利要求 16所述的基站, 其特征在于, 所述发送模块, 还 用于在将所述 PHR发送给所述第二基站之前, 将所述第一基站为所述终 端在所述第一基站的服务小区分配的 PRB 数目, 或, 所述第一基站为所 述终端在所述第一基站的服务小区分配的 PRB 数目和所述第一基站的服 务小区的 MCS索引信息, 或, 所述第一基站为所述终端在所述第一基站 的服务小区分配的 PRB 数目和所述第一基站的闭环功控参数, 或, 所述 第一基站为所述终端在所述第一基站的服务小区分配的 PRB 数目和所述 第一基站的服务小区的 MCS索引信息以及所述第一基站的闭环功控参数 携带在所述 PHR中。
18、 一种终端, 其特征在于, 包括:
发送模块, 用于向第一基站发送功率余量报告 PHR, 用于所述第一基 站控制所述终端在所述第一基站的服务小区的发射功率, 所述 PHR 中包 括: 所述终端在所述第一基站的服务小区的功率余量 PH、 第二基站为所 述终端在所述第二基站的服务小区分配的物理资源块 PRB 数目以及所述 终端在所述第二基站的服务小区的功率余量 PH;
调整模块, 用于经由所述第一基站的控制调整所述终端在所述第一基 站的服务小区的发射功率。
19、 根据权利要求 18所述的终端, 其特征在于, 所述调整模块还用 于经由所述第二基站的控制调整所述终端在所述第二基站的服务小区的 发射功率, 所述第二基站的控制为所述第二基站根据所述第一基站向所述 第二基站发送的 PHR所确定。
20、 根据权利要求 19所述的终端, 其特征在于, 所述 PHR还包括: 所述第二基站的服务小区的数据调制编码方式 MCS索引信息和 /或所 述第二基站的服务小区的闭环功控参数。
PCT/CN2013/078517 2013-06-29 2013-06-29 上行功率控制方法及装置 WO2014205850A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2013/078517 WO2014205850A1 (zh) 2013-06-29 2013-06-29 上行功率控制方法及装置
CN201380001996.1A CN104854925B (zh) 2013-06-29 2013-06-29 上行功率控制方法及装置
US14/978,060 US10104622B2 (en) 2013-06-29 2015-12-22 Uplink power control method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/078517 WO2014205850A1 (zh) 2013-06-29 2013-06-29 上行功率控制方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/978,060 Continuation US10104622B2 (en) 2013-06-29 2015-12-22 Uplink power control method and apparatus

Publications (1)

Publication Number Publication Date
WO2014205850A1 true WO2014205850A1 (zh) 2014-12-31

Family

ID=52140912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078517 WO2014205850A1 (zh) 2013-06-29 2013-06-29 上行功率控制方法及装置

Country Status (3)

Country Link
US (1) US10104622B2 (zh)
CN (1) CN104854925B (zh)
WO (1) WO2014205850A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105873213A (zh) * 2015-01-20 2016-08-17 电信科学技术研究院 一种进行上行调度的方法和设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105191448B (zh) * 2013-04-19 2019-04-05 Lg电子株式会社 在无线接入***中的功率控制方法和设备
EP2854460B1 (en) 2013-09-27 2017-04-05 Sun Patent Trust Power control and power headroom reporting for dual connectivity
US10057861B2 (en) * 2014-06-03 2018-08-21 Qualcomm Incorporated Techniques for reporting power headroom in multiple connectivity wireless communications
US10581722B2 (en) * 2016-08-22 2020-03-03 Qualcomm Incorporated Power control for independent links
US10506596B2 (en) 2016-10-28 2019-12-10 Qualcomm Incorporated Coexistence of interleaved and contiguous uplink transmissions
US10021693B1 (en) * 2017-08-28 2018-07-10 Sprint Spectrum L.P. Method and system for invoking uplink coverage boosting in response to threshold low power headroom and threshold low downlink receive signal strength
CN117377050A (zh) * 2017-09-14 2024-01-09 联想(新加坡)私人有限公司 功率余量报告生成
CN111050390B (zh) * 2018-10-12 2021-11-02 大唐移动通信设备有限公司 一种上行功率控制方法、终端设备及网络设备
EP4342231A1 (en) * 2021-05-18 2024-03-27 Telefonaktiebolaget LM Ericsson (publ) Methods and apparatus for uplink power control

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120113845A1 (en) * 2010-11-05 2012-05-10 Samsung Electronics Co. Ltd. Uplink scheduling apparatus and method based on uplink report in wireless communication system
CN102595477A (zh) * 2011-01-10 2012-07-18 上海贝尔股份有限公司 一种用于传输功率余量报告的方法及装置
CN102638894A (zh) * 2012-04-27 2012-08-15 电信科学技术研究院 一种pdsch功率分配的方法和设备
CN103069870A (zh) * 2010-08-17 2013-04-24 Lg电子株式会社 用于在支持多载波的无线通信***中发送功率余量报告的装置和方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009002854A1 (de) * 2009-05-06 2010-11-11 Doka Industrie Gmbh Gerüstelement, Gerüstsystem mit einem Gerüstelement und Verfahren zum Aufstellen eines Gerüstsystems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103069870A (zh) * 2010-08-17 2013-04-24 Lg电子株式会社 用于在支持多载波的无线通信***中发送功率余量报告的装置和方法
US20120113845A1 (en) * 2010-11-05 2012-05-10 Samsung Electronics Co. Ltd. Uplink scheduling apparatus and method based on uplink report in wireless communication system
CN102595477A (zh) * 2011-01-10 2012-07-18 上海贝尔股份有限公司 一种用于传输功率余量报告的方法及装置
CN102638894A (zh) * 2012-04-27 2012-08-15 电信科学技术研究院 一种pdsch功率分配的方法和设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105873213A (zh) * 2015-01-20 2016-08-17 电信科学技术研究院 一种进行上行调度的方法和设备
CN105873213B (zh) * 2015-01-20 2019-11-19 电信科学技术研究院 一种进行上行调度的方法和设备

Also Published As

Publication number Publication date
US10104622B2 (en) 2018-10-16
US20160112961A1 (en) 2016-04-21
CN104854925B (zh) 2018-08-21
CN104854925A (zh) 2015-08-19

Similar Documents

Publication Publication Date Title
US10104622B2 (en) Uplink power control method and apparatus
US10136400B2 (en) Apparatus and method for controlling transmission power in wireless communication system
US20210352591A1 (en) Power Control Method and Apparatus
JP6586091B2 (ja) 端末装置および方法
CN107248906B (zh) 辅助主小区的调整方法以及基站
WO2016021542A1 (ja) 端末装置、基地局装置および方法
JP6523278B2 (ja) 端末装置、基地局装置、および通信方法
EP3793271B1 (en) Power configuration method, user equipment, and computer-readable storage medium
WO2016021597A1 (ja) 端末装置、基地局装置および方法
CN108632965B (zh) 一种上行发射功率控制的方法和设备
JP6495279B2 (ja) 端末装置、基地局装置、および通信方法
JP2016529814A (ja) 出力制御方法、ユーザ機器、および基地局
JP6587612B2 (ja) 端末装置、基地局装置、および通信方法
CN106465285B (zh) 无线通信***中传输功率控制方法及装置
JP6656150B2 (ja) 端末装置、基地局装置、および通信方法
WO2016047747A1 (ja) 端末装置、基地局装置、および通信方法
WO2014204203A1 (ko) 무선 자원의 용도 변경을 지원하는 무선 통신 시스템에서 전력 제어 방법 및 이를 위한 장치
US10117189B2 (en) Uplink power control method, user equipment, and base station
JP5364048B2 (ja) 基地局装置及び方法
WO2022208490A1 (en) Ul power control for transport block transmission over multiple slots
WO2015168917A1 (zh) 一种通信方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888503

Country of ref document: EP

Kind code of ref document: A1