WO2014205706A1 - Photodiode - Google Patents

Photodiode Download PDF

Info

Publication number
WO2014205706A1
WO2014205706A1 PCT/CN2013/078087 CN2013078087W WO2014205706A1 WO 2014205706 A1 WO2014205706 A1 WO 2014205706A1 CN 2013078087 W CN2013078087 W CN 2013078087W WO 2014205706 A1 WO2014205706 A1 WO 2014205706A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
region
type
photodiode
contact
Prior art date
Application number
PCT/CN2013/078087
Other languages
French (fr)
Chinese (zh)
Inventor
张云山
Original Assignee
林大伟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 林大伟 filed Critical 林大伟
Priority to PCT/CN2013/078087 priority Critical patent/WO2014205706A1/en
Priority to JP2016522162A priority patent/JP6216448B2/en
Publication of WO2014205706A1 publication Critical patent/WO2014205706A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier

Definitions

  • the object of the present invention is to provide a photodiode, which is disposed at a certain distance from the well region by a layout design, and solves the problem that the isolation layer of the photodiode element in the prior art is adjacent to the N-type due to high stress.
  • a second type doped region is formed in the second type doping well and extends from a surface of the second type doping well;
  • the isolation region is silicon nitride or silicon oxide.
  • the absorption depth of the incident light in the photodiode is related to the wavelength of the incident light, the shorter wavelength light is absorbed by the surface portion of the photodiode, and the longer wavelength light has a deeper absorption path.
  • the photodiode complementary metal oxide image sensing element senses the optical language with infrared light (700 ⁇ 800nm), and the best quantum efficiency has a wavelength of 850 nm.
  • the spectral response curve is increased with the increase of the wavelength of light, because the long-wavelength photon penetration depth is deeper, and the conversion efficiency is improved close to the PN junction. (The internal electric field of the PN junction can efficiently disassemble the electrons after absorbing the photons.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

Provided in the present invention is a photodiode. The photodiode comprises a first substrate; the first substrate comprises a second doped well and a second doped region therein, and an isolation layer is formed to surround the second doped well and comes into no contact with the second doped well; the second doped region is formed in the second doped well and extends from the surface of the second doped well; the photodiode further comprises a protective layer which covers the first substrate, and a contact conductor which runs through the protective layer and comprises a contact layer and a conductive strip; the contact layer is formed at one end of the conductive strip, comes into contact with the second doped region and is connected with the second doped region. Compared with the prior art, the isolation region of the photodiode of the present invention has no contact with the second doped well, thereby avoiding dark current interferences that possibly originate from an interface defect between the isolation layer and an active region.

Description

说明书  Instruction manual
光电二极管  Photodiode
技术领域 Technical field
本发明一种影像感测元件, 尤其涉及一种光电二极管。  An image sensing component of the present invention, and more particularly to a photodiode.
背景技术 Background technique
互补式金属氧化物半导体影像传感器主要利用一包括光二极管元件的主动 像素阵歹1 J (active pixel matrix)或影像感测元 (image sensor cell)阵列,而这两种阵列 能将入射的影像光能转换成数位资料。传统的影像感测元 (image sensor cell)包括 感测光照强度的光电二极管 (photodiode)以及邻近的晶体管。 CMOS image sensors are active pixel array comprises using a light emitting diode element bad 1 J (active pixel matrix) or an image sensing element (image sensor cell) array, both of the array of image light incident can Can be converted into digital data. A conventional image sensor cell includes a photodiode that senses light intensity and an adjacent transistor.
上述晶体管连带周边区域的其他额外的元件包括控制与信号处理电路以及 周边的逻辑电路构成光二极管互补式金属氧化物半导体影像感测元件 (photodiode-type CMOS image sensor)。 因此, 为降低制造成本与制程的复杂度, 二极管互补式金属氧化物半导体影像感测元件周边的电路与主要区域内影像感 测元的晶体管于相同的制程步骤中形成。  Other additional components associated with the peripheral region of the transistor include a control and signal processing circuit and peripheral logic circuitry to form a photodiode-type CMOS image sensor. Therefore, in order to reduce the manufacturing cost and the complexity of the process, the circuit around the diode-complementary MOS image sensing element and the transistor of the image sensing element in the main area are formed in the same process step.
然而, 上述方法往往造成主要光感测区域内影像感测元的晶体管电性不良 的影响。更明确地说,在半导体与氧化层界面会因硅悬浮键缺陷 (Si dangling bond defect),产生表面复合中心 (recombination centers)而降低元件少数载子生命周期, 产生漏电流现象。 而当形成自对准硅化物 (silicide, self-aligned silicidation)于周边 电路 (例如 CMOS逻辑电路)的闸极与汲极 /源极区域时, 同时该自对准硅化物亦 形成于光二极管元件的表面, 则会加深此缺陷。 这样, 将导致该影像感测元生 成不必要的暗电流 (dark current) , 进而降低信号 /噪声(S/N or SNR, Signal-to-noise ratio)的比值, 影响传感器装置的质量。  However, the above methods often cause the effects of poor transistor electrical characteristics of the image sensing elements in the main light sensing region. More specifically, at the interface between the semiconductor and the oxide layer, due to silicon dangling bond defects, surface recombination centers are generated to reduce the minority carrier life cycle of the device, resulting in leakage current. When a silicide (self-aligned silicidation) is formed in a gate and a drain/source region of a peripheral circuit (for example, a CMOS logic circuit), the salicide is also formed on the photodiode device. The surface will deepen this defect. In this way, the image sensing element generates an unnecessary dark current, thereby reducing the ratio of signal/to-noise ratio (S/N or SNR), which affects the quality of the sensor device.
随着半导体制程技术进步, 互补式金属氧化半导体 (COMS, Complementary Metal Oxide Semiconductor)元件制程技术对缩小元件与高精度的要求下,元件间 干扰越来越明显, 被用来作为元件之间绝缘的浅沟槽隔离制程 (STI, Shallow Trench Isolation)也就变得愈来愈重要。在熟知的光电二极管元件中,位于围绕光 电二极管元件的隔离层与主动区域之间界面的缺陷可能会导致暗电流, 而位于 光电二极管侧面部分周围或邻近于硅基板表面的硅悬键亦会导致暗电流。 也就 是说, 在无入射光的情况下, 围绕光电二极管的界面部分, 符合表面物理学理 论所存在晶界的悬键 (dangling bonds), 电荷载子在界面移动时, 某些载子将被随 机捕捉, 然后以此能阶释放, 导致暗电流的产生以致影像传感器所撷取的影像 的质量降低。 With the advancement of semiconductor process technology, the complementary metal oxide semiconductor (COMS, Complementary Metal Oxide Semiconductor) component process technology has become more and more obvious in terms of component reduction and high precision, and is used as insulation between components. The shallow trench isolation process (STI, Shallow Trench Isolation) has become more and more important. In well-known photodiode elements, defects located at the interface between the isolation layer and the active region surrounding the photodiode element may cause dark current, and silicon dangling bonds located around or adjacent to the side surface of the photodiode may also cause Dark current. That is to say, in the absence of incident light, the interface portion surrounding the photodiode conforms to the dangling bonds of the grain boundary existing in the surface physics theory. When the charge carriers move at the interface, some carriers will be With The camera captures and then releases the energy level, resulting in a dark current that causes the quality of the image captured by the image sensor to decrease.
发明内容 Summary of the invention
本发明的目的在于提供一种光电二极管, 通过布局 (layout)的设计, 使隔离 层与井区分离一定距离设置, 解决了现有技术中的光电二极管元件的隔离层因 高应力造成邻近 N型井区晶格错位而导致漏电流 ((Leakage Current))的问题。  The object of the present invention is to provide a photodiode, which is disposed at a certain distance from the well region by a layout design, and solves the problem that the isolation layer of the photodiode element in the prior art is adjacent to the N-type due to high stress. The problem of leakage current ((Leakage Current)) caused by misalignment of the well region.
本发明是这样实现的, 一种光电二极管, 包括:  The present invention is achieved by a photodiode comprising:
一第一型基底, 包含一上表面;  a first type substrate comprising an upper surface;
一第二型掺杂井, 设置于该第一型基底内, 该第一型基底与该第二型掺杂 井相邻接面区域为一 PN连接界面;  a second type doping well is disposed in the first type substrate, and the first type substrate and the second type doping well adjacent region are a PN connection interface;
一第二型掺杂区, 形成于该第二型掺杂井内, 并且从该第二型掺杂井的表 面延伸;  a second type doped region is formed in the second type doping well and extends from a surface of the second type doping well;
一隔离区域, 形成于该第一型基底内, 并且不接触该第二型掺杂井; 一保护层, 形成于该第一型基底的上表面, 并且覆盖该第二型掺杂区与该 第二型掺杂井; 以及  An isolation region formed in the first type substrate and not contacting the second type doping well; a protective layer formed on an upper surface of the first type substrate and covering the second type doping region and the Type II doping well;
一接触导体, 贯穿该保护层, 并且包括一接触层与一导电条, 其中该接触 层形成于该导电条的一端, 并且接触及连接该第二型掺杂区。  A contact conductor extends through the protective layer and includes a contact layer and a conductive strip, wherein the contact layer is formed at one end of the conductive strip and contacts and connects the second type doped region.
具体地, 该第一型基底为一 P型基底。  Specifically, the first type substrate is a P type substrate.
具体地, 该第二型掺杂井为一相对低浓度掺杂, 该第二型掺杂区为一相对 高浓度掺杂。  Specifically, the second type doping well is doped at a relatively low concentration, and the second type doped region is doped at a relatively high concentration.
具体地, 该接触层为一金属硅化层。  Specifically, the contact layer is a metal silicide layer.
具体地, 该隔离区域为氮化硅或氧化硅。  Specifically, the isolation region is silicon nitride or silicon oxide.
具体地, 该隔离区域为局部氧化层、 浅沟槽隔离层或场氧化层。  Specifically, the isolation region is a local oxide layer, a shallow trench isolation layer or a field oxide layer.
具体地, 该保护层包含一透明导电氧化物层与一多晶硅层, 该透明导电氧 化物层设置于该多晶硅层上方。  Specifically, the protective layer comprises a transparent conductive oxide layer and a polysilicon layer, and the transparent conductive oxide layer is disposed above the polysilicon layer.
具体地, 该多晶硅层厚度为 0.1um。  Specifically, the polysilicon layer has a thickness of 0.1 um.
具体地, 该多晶硅层电连接于该第一型基底。  Specifically, the polysilicon layer is electrically connected to the first type substrate.
具体地, 该接触导体为一接触插塞。  Specifically, the contact conductor is a contact plug.
与先前技术相比较, 本发明光电二极管的隔离区域与第二型掺杂井并不接 触, 以避免隔离层与主动区域之间界面缺陷所可能导致的暗电流干扰。 附图说明 Compared with the prior art, the isolation region of the photodiode of the present invention is not in contact with the second type doping well to avoid dark current interference which may be caused by interface defects between the isolation layer and the active region. DRAWINGS
图 1是本发明一实施例的光电二极管的俯视图;  1 is a plan view of a photodiode according to an embodiment of the present invention;
图 2是图 1中沿 A-A方向的剖面示意图, 并说明其组件的分布;  Figure 2 is a schematic cross-sectional view taken along line A-A of Figure 1, and illustrating the distribution of its components;
图 3是本发明一实施例的光电二极管的剖面示意图, 并说明图 2间隔区的 形成方式;  3 is a schematic cross-sectional view showing a photodiode according to an embodiment of the present invention, and illustrating a formation manner of the spacer region of FIG. 2;
图 4是本发明一实施例的光电二极管的剖面示意图。  4 is a schematic cross-sectional view showing a photodiode according to an embodiment of the present invention.
光电二极管... 100  Photodiode... 100
第一型基底... 102  Type 1 substrate... 102
接触导体... 103  Contact conductor... 103
隔离区域... 106  Isolation area... 106
PN连接界面... 107  PN connection interface... 107
空乏区 ... 109  Depletion zone ... 109
第二型掺杂井... 118  Type 2 doping well... 118
第二型掺杂区... 119  Second type doped area... 119
接触层... 120  Contact layer... 120
间隔区... 212  Spacer... 212
钝化层... 213  Passivation layer... 213
透明导电氧化物层... 214  Transparent conductive oxide layer... 214
多晶硅层... 215  Polysilicon layer... 215
电极… 216  Electrode... 216
具体实施方式 detailed description
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述。  The technical solutions in the embodiments of the present invention will be clearly and completely described in the following with reference to the accompanying drawings in the embodiments.
图 1为本发明一实施例的光电二极管的主视图, 图 2是图 1中沿 A-A方向 的剖面示意图。本发明光电二极管 100包括第一型基底 102、第二型掺杂井 118、 第二型掺杂区 119、 空乏区 109、 PN连接界面 107、 隔离区域 106、 接触层 120、 接触导体 103以及保护层(图中未示出)。 第一型基底 102, 具有一上表面作为 光线入射面, 该保护层形成于该第一型基底 102 的上表面。 第二型掺杂井 118 设置于第一型基底 102内, 第一型基底 102与第二型掺杂井 118相邻接面区域 形成一 PN连接界面 107。 第二型掺杂区 119形成于该第二型掺杂井 118内, 并 且从该第二型掺杂井 118的表面延伸而棵露于第二型掺杂井 118的表面。 该接 触导体 103为一接触插塞。 1 is a front view of a photodiode according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line AA of FIG. The photodiode 100 of the present invention includes a first type substrate 102, a second type doping well 118, a second type doping region 119, a depletion region 109, a PN connection interface 107, an isolation region 106, a contact layer 120, a contact conductor 103, and protection. Layer (not shown). The first type substrate 102 has an upper surface as a light incident surface, and the protective layer is formed on an upper surface of the first type substrate 102. The second type doping well 118 is disposed in the first type substrate 102, and the first type substrate 102 and the second type doping well 118 adjacent to the junction area form a PN connection interface 107. a second type doping region 119 is formed in the second type doping well 118, and And extending from the surface of the second type doping well 118 to expose the surface of the second type doping well 118. The contact conductor 103 is a contact plug.
于一实施例中, 上述第一型基底 102为 P型基底 (P-substrate), 第二型掺杂 井 118是 N型掺杂井 (N-well)。 第二型掺杂区 119则设置于该第二型掺杂井 118 内的表面上, 为相对高浓度的 N型掺杂区。  In one embodiment, the first type substrate 102 is a P-substrate and the second type doping well 118 is an N-type well. The second type doping region 119 is disposed on the surface of the second type doping well 118 as a relatively high concentration N-type doping region.
上述空乏区 109为图示中虚线所包含的区域, 该区域由第一型基底 102与 第二型掺杂井 118相邻接 PN连接界面 107周围区域所定义。  The depletion region 109 is the region contained by the dashed line in the figure, which is defined by the area around the first type substrate 102 and the second type doping well 118 adjacent to the PN connection interface 107.
上述第一型基底 102内具有一隔离区域 106,作为光电二极管 100的隔离元 件且并不接触该第二型掺杂井 118。 详细而言, 本发明的隔离区域 106与第二型 掺杂区 119之间具有一间隔区 212,该间隔区 212为空乏区 109所涵盖范围的部 分区域, 间隔区 212的内部组成结构则与空乏区 109的内部组成结构相同。 因 此根据本发明的实施例,提供一种光电二极管 100, 将隔离区域 106与第二型掺 杂区 119隔离设置, 即隔离区域 106不与第一型基底 102与第二型掺杂井 118 相邻接区域的 PN连接界面 107接触,隔离区域 106形成于空乏区 109侧面扩散 范围的限制。 其中, 隔离区域 106 可为选自氮化硅或氧化硅的材质所组成, 且 由局部氧化 (LOCOS)、浅沟槽隔离物 (STI)以及场氧化区 (FOX)等方式所形成的隔 离层。  The first type substrate 102 has an isolation region 106 therein as an isolation component of the photodiode 100 and does not contact the second type doping well 118. In detail, between the isolation region 106 and the second-type doping region 119 of the present invention, there is a spacer 212, which is a partial region of the range covered by the depletion region 109, and the internal structure of the spacer 212 is The internal composition of the depletion region 109 is the same. Therefore, in accordance with an embodiment of the present invention, a photodiode 100 is provided that isolates the isolation region 106 from the second doped region 119, that is, the isolation region 106 does not interact with the first type substrate 102 and the second type doping well 118. The PN connection interface 107 of the adjacent region is in contact, and the isolation region 106 is formed to be limited in the side diffusion range of the depletion region 109. The isolation region 106 may be composed of a material selected from silicon nitride or silicon oxide, and is formed by a local oxidation (LOCOS), a shallow trench isolation (STI), and a field oxide region (FOX). .
该保护层覆盖第二型掺杂井 118与第二型掺杂区 119。第一型基底 102的上 表面另形成有一接触导体 103 ,接触导体 103包含一接触层 120与一导电条(图 中未示出), 接触层 120形成于该导电条的另一端。 当接触导体 103贯穿保护层 而与第二型掺杂区 119接触时, 通过导电条下端的接触层 120与第二型掺杂区 119接触及电连接。  The protective layer covers the second type doping well 118 and the second type doping region 119. The upper surface of the first type substrate 102 is further formed with a contact conductor 103. The contact conductor 103 includes a contact layer 120 and a conductive strip (not shown), and the contact layer 120 is formed at the other end of the conductive strip. When the contact conductor 103 penetrates the protective layer to contact the second type doping region 119, the contact layer 120 passing through the lower end of the conductive strip contacts and electrically connects to the second type doping region 119.
因此, 当第二型掺杂井 118的上表面吸收光子时, 空乏区 109 内的多数自 由电子-电洞对开始吸收光子的能量, 同时使电子-电洞对的电子与电洞相互分离 而产生电流。 隔离区域 106 用以定义电流产生区域所产生的电流则经由设置于 第二型掺杂区 119上的接触导体 103导引至 CMOS电路。  Therefore, when the upper surface of the second type doping well 118 absorbs photons, most of the free electron-hole pairs in the depletion region 109 begin to absorb the energy of the photons, and at the same time separate the electrons and holes of the electron-hole pair. Generate current. The current generated by the isolation region 106 to define the current generating region is then guided to the CMOS circuit via the contact conductor 103 disposed on the second doping region 119.
请参阅图 3 , 由于上述隔离区域 106与第二型掺杂区 119为分离设置, 隔离 区域 106与第二型掺杂区 119之间形成一间隔区 212。 于一实施例中, 间隔区 212宽度范围可为 50um以上。 这样, 隔离区域 106与第二型掺杂区 119并不接 触, 可避免隔离区域 106 因蚀刻、 化学机械研磨 (CMP)、 低压化学气相沉积 (LPCVD)等隔离制程, 所造成对沟槽侧壁结构的损坏与结构中机械应力 (mechanical stress)而引发如差排 (dislocation)等缺陷, 导致邻近 N型井区晶格漏 电流增加的问题。 Referring to FIG. 3 , since the isolation region 106 and the second doping region 119 are separately disposed, a spacer 212 is formed between the isolation region 106 and the second doping region 119 . In an embodiment, the spacer 212 may have a width in the range of 50 um or more. Thus, the isolation region 106 is not in contact with the second type doping region 119, and the isolation region 106 can be prevented from etching, chemical mechanical polishing (CMP), and low pressure chemical vapor deposition. (LPCVD) and other isolation processes, causing damage to the sidewall structure of the trench and mechanical stress in the structure, causing defects such as dislocation, resulting in an increase in lattice leakage current in the adjacent N-type well region .
请参阅图 3 , 于本发明一实施例中, 于第一型基底 102内形成隔离区域 106 后于进行离子布值 (ion implantation)之前, 设置一钝化层 213。 此钝化层 213设 置于间隔区 212与隔离区域 106上, 作为后续离子布值 (ion implantation)的遮幕 层 (mask),防止离子布值的杂质 (impurities)进入隔离区域 106与第二型掺杂区 119 间之间隔区 212。这样可减少离子布值杂质于介电材质中扩散造成污染与破坏而 产生隔离区域 106与第二型掺杂区 119之间的漏电流问题。  Referring to FIG. 3, in an embodiment of the present invention, after the isolation region 106 is formed in the first type substrate 102, a passivation layer 213 is disposed before ion implantation. The passivation layer 213 is disposed on the spacer 212 and the isolation region 106 as a mask for subsequent ion implantation, preventing impurities of the ion cloth value from entering the isolation region 106 and the second type. A spacer 212 between the doped regions 119. This can reduce the leakage current problem between the isolation region 106 and the second type doping region 119 by reducing the contamination and destruction of the ion cloth value impurities in the dielectric material.
请参阅图 2, 本发明提供一种光电二极管 100, 于第一型基底 102的上表面 形成有一保护层(图中未示出), 保护层覆盖第二型掺杂井 118与第二型掺杂区 119。 接触导体 103 包含一接触层 120与一导电条(图中未示出 ), 接触层 120 形成于导电条的另一端。 当接触导体 103贯穿保护层而与第二型掺杂区 119接 触时, 通过导电条下端的接触层 120与第二型掺杂区 119接触及电连接。  Referring to FIG. 2, the present invention provides a photodiode 100 having a protective layer (not shown) on the upper surface of the first type substrate 102. The protective layer covers the second type doping well 118 and the second type doping. Miscellaneous area 119. The contact conductor 103 includes a contact layer 120 and a conductive strip (not shown), and the contact layer 120 is formed at the other end of the conductive strip. When the contact conductor 103 penetrates the protective layer to contact the second type doping region 119, the contact layer 120 passing through the lower end of the conductive strip contacts and electrically connects with the second type doping region 119.
上述接触层 120为使用自动对准硅化物 (salicide, Self-Aligned Silicidation)制 程所制成的金属硅化层 (silicide layer), 可使用各种类型的金属包括钛( Ti )、 钴 ( Co ), 镍(Ni )、 钯(Pd )或铂 (Pt ), 以及合金, 例如, 钛 /鵠、 钛 /钼、 钴 /鵠 或钴 /钼。  The contact layer 120 is a metal silicide layer prepared by a salicide (Self-Aligned Silicidation) process, and various types of metals including titanium (Ti) and cobalt (Co) can be used. Nickel (Ni), palladium (Pd) or platinum (Pt), and alloys, for example, titanium/niobium, titanium/molybdenum, cobalt/niobium or cobalt/molybdenum.
为了降低光电二极管 100 表面的金属硅化物成为漏电流 (leakage)来源与减 低表面复合中心 (recombination center)现象。 于一实施例中, 本发明提供一光电 二极管 100,其接触层 120的大小范围不超出接触导体 103下表面周围所界定的 区域。 通过去除位于光电二极管 100表面上而未被接触导体 103所覆盖即延伸 出接触导体 103的部分金属硅化物接触层 120, 以减少此接触层 120所形成的漏 电流影响。  In order to reduce the metal silicide on the surface of the photodiode 100, it becomes a leakage source and reduces the surface recombination center phenomenon. In one embodiment, the present invention provides a photodiode 100 having a contact layer 120 that does not extend beyond the area defined by the lower surface of the contact conductor 103. A portion of the metal silicide contact layer 120 extending over the contact conductor 103 is removed by removing the surface of the photodiode 100 without being covered by the contact conductor 103 to reduce the leakage current effect formed by the contact layer 120.
另外, 入射光在光电二极管中的吸收深度与入射光的波长有关, 波长较短 的光在靠光电二极管表面部分被吸收, 波长较长的光具有较深的吸收深度 (absorption path)。光二极管互补式金属氧化物影像感测元件对光语的感测以红外 光 (700~800nm)为最佳, 最好的量子效率的波长为 850 nm。 光谱响应曲线是随着 光波长的增加而提升, 因长波长光子穿透深度较深,接近 PN接面因此转换效率 提升(因 PN接面内部电场可有效率的拆解吸收光子后的电子电洞对), 而当光波 长为短波长时, 表示吸收光落在表面附近容易被复合而使响应度下降。 因此当 光电二极管吸收入射波长较短的光, 如蓝光时, 因表面吸收 (surface absorption) 与产生电子电洞对再复合 (recombination)现象, 对应用于如红外光等较长波长光 源为主要吸收光能来源的光电二极管造成一定程度的干扰。 In addition, the absorption depth of the incident light in the photodiode is related to the wavelength of the incident light, the shorter wavelength light is absorbed by the surface portion of the photodiode, and the longer wavelength light has a deeper absorption path. The photodiode complementary metal oxide image sensing element senses the optical language with infrared light (700~800nm), and the best quantum efficiency has a wavelength of 850 nm. The spectral response curve is increased with the increase of the wavelength of light, because the long-wavelength photon penetration depth is deeper, and the conversion efficiency is improved close to the PN junction. (The internal electric field of the PN junction can efficiently disassemble the electrons after absorbing the photons. Hole pair), and when light waves When the length is short, it means that the absorbed light falls on the surface and is easily compounded to lower the responsiveness. Therefore, when the photodiode absorbs light having a short incident wavelength, such as blue light, it is mainly absorbed by a longer wavelength source such as infrared light due to surface absorption and electron hole recombination. Photoelectric diodes of light energy source cause a certain degree of interference.
本发明通过对保护层的构成设计, 应用于以如红外光的长波长为主要吸收 光能来源的光电二极管 100。 请参阅图 5 , 为本发明一实施例, 其中保护层为包 含一透明导电氧化物层 214与一多晶硅层 215的叠合结构, 该透明导电氧化物 层 214设置于该多晶硅层 215上方。 多晶硅层 215与透明导电氧化物层 214电 连接于该第一型基底 102,将透明导电氧化物层 214与多晶硅层 215吸收短波长 入射光后所产生的光电流 (photoelectric current) , 通过与多晶硅层 215电连接的 电极 216接地排除。 使透明导电氧化物层 214与多晶硅层 215具滤除短波长迷 光 ( stray light ) 的功能。  The present invention is applied to a photodiode 100 that absorbs light energy mainly by a long wavelength such as infrared light by designing a protective layer. Referring to FIG. 5, in an embodiment of the present invention, a protective layer is a stacked structure including a transparent conductive oxide layer 214 and a polysilicon layer 215. The transparent conductive oxide layer 214 is disposed above the polysilicon layer 215. The polysilicon layer 215 and the transparent conductive oxide layer 214 are electrically connected to the first type substrate 102, and the transparent conductive oxide layer 214 and the polysilicon layer 215 absorb the photocurrent current generated by the short-wavelength incident light, and pass through the polysilicon. The electrode 216 electrically connected to the layer 215 is grounded to exclude. The transparent conductive oxide layer 214 and the polysilicon layer 215 are provided with a function of filtering out short-wavelength stray light.
上述透明导电氧化物层 214 为金属化合物导电膜层, 最佳一实施例为铟锡 氧化物 (ITO, Indium Tin Oxide) 导电膜层。  The transparent conductive oxide layer 214 is a metal compound conductive film layer, and a preferred embodiment is an indium tin oxide (ITO, Indium Tin Oxide) conductive film layer.
上述的透明导电氧化物层 214与多晶硅层 215上下叠置形成于该接触导体 103周围与第一型基底 102的上表面, 此区域为原习知场氧化区 (FOX)等隔离物 的设置区域。 长波长光如 850 nm的红外光在硅材质的吸收深度约为 13 μ πι, 而 第二型掺杂井 118深度却只有 2 μ πι(井离子布值深度)。 因此大部分的长波长光 落在空乏区外电场收集不到的第一型基底 102中。 多晶硅层 215的设置具有使 原第二型掺杂井 118的掺杂浓度峰值 (peak concentration)更深的作用, 借以提升 吸收深度较深的长波长光于第二型掺杂井 118 的光子吸收效率 (absorption efficiency)。  The transparent conductive oxide layer 214 and the polysilicon layer 215 are stacked on top of the contact conductor 103 and the upper surface of the first type substrate 102, which is a region where spacers such as the original field oxide region (FOX) are disposed. . Long-wavelength light such as 850 nm has an absorption depth of about 13 μππ in silicon, while the second doping well 118 has a depth of only 2 μm (well ion depth). Therefore, most of the long-wavelength light falls in the first type substrate 102 which is not collected by the electric field outside the depletion region. The arrangement of the polysilicon layer 215 has the effect of making the peak concentration of the original second type doping well 118 deeper, thereby increasing the photon absorption efficiency of the long-wavelength light having a deeper absorption depth in the second type doping well 118. (absorption efficiency).
以上所述是本发明的优选实施方式, 应当指出, 对于本技术领域的普通技 术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这 些改进和润饰也视为本发明的保护范围。  The above is a preferred embodiment of the present invention, and it should be noted that those skilled in the art can also make several improvements and retouchings without departing from the principles of the present invention. These improvements and retouchings are also considered. It is the scope of protection of the present invention.

Claims

权利要求书 Claim
1.一种光电二极管, 其特征在于, 包括:  A photodiode, comprising:
一第一型基底, 包含一上表面;  a first type substrate comprising an upper surface;
一第二型掺杂井, 设置于该第一型基底内, 该第一型基底与该第二型掺杂 井相邻接面区域为一 PN连接界面;  a second type doping well is disposed in the first type substrate, and the first type substrate and the second type doping well adjacent region are a PN connection interface;
一第二型掺杂区, 形成于该第二型掺杂井内, 并且从该第二型掺杂井的表 面延伸;  a second type doped region is formed in the second type doping well and extends from a surface of the second type doping well;
一隔离区域, 形成于该第一型基底内, 并且不接触该第二型掺杂井; 一保护层, 形成于该第一型基底的上表面, 并且覆盖该第二型掺杂区与该 第二型掺杂井; 以及  An isolation region formed in the first type substrate and not contacting the second type doping well; a protective layer formed on an upper surface of the first type substrate and covering the second type doping region and the Type II doping well;
一接触导体, 贯穿该保护层, 并且包括一接触层与一导电条, 其中该接触 层形成于该导电条的一端, 并且接触及连接该第二型掺杂区。  A contact conductor extends through the protective layer and includes a contact layer and a conductive strip, wherein the contact layer is formed at one end of the conductive strip and contacts and connects the second type doped region.
2.根据权利要求 1 所述的光电二极管, 其特征在于, 该第一型基底为一 P 型基底。  The photodiode according to claim 1, wherein the first type substrate is a P type substrate.
3.根据权利要求 1 所述的光电二极管, 其特征在于, 该第二型掺杂井为一 相对低浓度掺杂, 该第二型掺杂区为一相对高浓度掺杂。  The photodiode according to claim 1, wherein the second type doping well is doped at a relatively low concentration, and the second type doping region is doped at a relatively high concentration.
4.根据权利要求 1 所述的光电二极管, 其特征在于, 该接触层为一金属硅 化层。  The photodiode according to claim 1, wherein the contact layer is a metal silicide layer.
5.根据权利要求 1 所述的光电二极管, 其特征在于, 该隔离区域为氮化硅 或氧化硅。  The photodiode according to claim 1, wherein the isolation region is silicon nitride or silicon oxide.
6.根据权利要求 1 所述的光电二极管, 其特征在于, 该隔离区域为局部氧 化层、 浅沟槽隔离层或场氧化层。  The photodiode according to claim 1, wherein the isolation region is a local oxide layer, a shallow trench isolation layer or a field oxide layer.
7.根据权利要求 1 所述的光电二极管, 其特征在于, 该保护层包含一透明 导电氧化物层与一多晶硅层, 该透明导电氧化物层设置于该多晶硅层上方。  The photodiode according to claim 1, wherein the protective layer comprises a transparent conductive oxide layer and a polysilicon layer, and the transparent conductive oxide layer is disposed above the polysilicon layer.
8.根据权利要求 7 所述的光电二极管, 其特征在于, 该多晶硅层厚度为 0.1um。  The photodiode according to claim 7, wherein the polysilicon layer has a thickness of 0.1 um.
9.根据权利要求 7所述的光电二极管, 其特征在于, 该多晶硅层电连接于 该第一型基底。  The photodiode according to claim 7, wherein the polysilicon layer is electrically connected to the first type substrate.
10.根据权利要求 1所述的光电二极管, 其特征在于, 该接触导体为一接触 插塞。  The photodiode according to claim 1, wherein the contact conductor is a contact plug.
PCT/CN2013/078087 2013-06-26 2013-06-26 Photodiode WO2014205706A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/078087 WO2014205706A1 (en) 2013-06-26 2013-06-26 Photodiode
JP2016522162A JP6216448B2 (en) 2013-06-26 2013-06-26 Photodiode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/078087 WO2014205706A1 (en) 2013-06-26 2013-06-26 Photodiode

Publications (1)

Publication Number Publication Date
WO2014205706A1 true WO2014205706A1 (en) 2014-12-31

Family

ID=52140809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078087 WO2014205706A1 (en) 2013-06-26 2013-06-26 Photodiode

Country Status (2)

Country Link
JP (1) JP6216448B2 (en)
WO (1) WO2014205706A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116154022A (en) * 2023-03-14 2023-05-23 江南大学 Double-layer SiO 2 Isolated photodiode structure, array and method of manufacture

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080217666A1 (en) * 2007-03-07 2008-09-11 United Microelectronics Corp. Cmos image sensor and method of fabricating the same
CN101286518A (en) * 2007-04-12 2008-10-15 上海宏力半导体制造有限公司 Photoelectric diode device
CN101304005A (en) * 2007-05-08 2008-11-12 中芯国际集成电路制造(上海)有限公司 Method for forming CMOS image sensor
JP2010177273A (en) * 2009-01-27 2010-08-12 Oki Semiconductor Co Ltd Method of manufacturing semiconductor device
CN101901849A (en) * 2009-05-26 2010-12-01 松下电器产业株式会社 Optical semiconductor device
CN102334199A (en) * 2009-02-24 2012-01-25 浜松光子学株式会社 Photodiode and photodiode array
CN103325881A (en) * 2013-06-26 2013-09-25 林大伟 Photodiode

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1855321A3 (en) * 1996-11-01 2008-08-06 The Regents of the University of California Back-illuminated fully depleted charge coupled device comprising low-resistivity transparent window layer
DE10024473B4 (en) * 2000-05-18 2007-04-19 Vishay Semiconductor Gmbh Optical receiver
JP2005093549A (en) * 2003-09-12 2005-04-07 Seiko Instruments Inc Photoelectric converter and image sensor ic
US7652257B2 (en) * 2007-06-15 2010-01-26 General Electric Company Structure of a solid state photomultiplier
JP2009158569A (en) * 2007-12-25 2009-07-16 Seiko Instruments Inc Photodetection semiconductor device, photodetector, and image display device
JP5387212B2 (en) * 2009-07-31 2014-01-15 富士通セミコンダクター株式会社 Semiconductor device and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080217666A1 (en) * 2007-03-07 2008-09-11 United Microelectronics Corp. Cmos image sensor and method of fabricating the same
CN101286518A (en) * 2007-04-12 2008-10-15 上海宏力半导体制造有限公司 Photoelectric diode device
CN101304005A (en) * 2007-05-08 2008-11-12 中芯国际集成电路制造(上海)有限公司 Method for forming CMOS image sensor
JP2010177273A (en) * 2009-01-27 2010-08-12 Oki Semiconductor Co Ltd Method of manufacturing semiconductor device
CN102334199A (en) * 2009-02-24 2012-01-25 浜松光子学株式会社 Photodiode and photodiode array
CN101901849A (en) * 2009-05-26 2010-12-01 松下电器产业株式会社 Optical semiconductor device
CN103325881A (en) * 2013-06-26 2013-09-25 林大伟 Photodiode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116154022A (en) * 2023-03-14 2023-05-23 江南大学 Double-layer SiO 2 Isolated photodiode structure, array and method of manufacture
CN116154022B (en) * 2023-03-14 2024-03-22 江南大学 Double-layer SiO 2 Isolated photodiode structure, array and method of manufacture

Also Published As

Publication number Publication date
JP2016526791A (en) 2016-09-05
JP6216448B2 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
TWI683430B (en) Image sensor with an absorption enhancement semiconductor layer
JP5868932B2 (en) Semiconductor image sensor
US7329557B2 (en) Method of manufacturing solid-state imaging device with P-type diffusion layers
TWI476906B (en) Photodiode and photodiode array
US7999292B2 (en) Image sensor and manufacturing method thereof
US7304338B2 (en) Solid-state image sensor and method for fabricating the same
US7598136B2 (en) Image sensor and related fabrication method
KR100894391B1 (en) Image Sensor and Method for Manufacturing Thereof
US20100109060A1 (en) Image sensor with backside photodiode implant
TWI364108B (en) Fabrication method of backside illuminated image sensor
JP2013093609A (en) Semiconductor photodetection element
JP4649390B2 (en) Manufacturing method of back-illuminated image sensor
KR20180027852A (en) Backside illuminated image sensor and method of manufacturing the same
KR20190124963A (en) Backside illuminated image sensor and method of manufacturing the same
US8212327B2 (en) High fill-factor laser-treated semiconductor device on bulk material with single side contact scheme
US8133754B2 (en) Image sensor and method for manufacturing the same
US6566722B1 (en) Photo sensor in a photo diode on a semiconductor wafer
CN203377243U (en) Photoelectric diode
JP4835658B2 (en) PIN photodiode and method of manufacturing the same
KR20070107137A (en) Method of fabrication an image sensor device with reduced pixel cross-talk
WO2014205706A1 (en) Photodiode
CN103325881B (en) Photodiode
TW201501280A (en) Photodiode structure
CN107425027B (en) Semiconductor device and method for manufacturing semiconductor device
US20150084152A1 (en) Photodiode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016522162

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888034

Country of ref document: EP

Kind code of ref document: A1