WO2014204647A1 - Expandable translating joint - Google Patents

Expandable translating joint Download PDF

Info

Publication number
WO2014204647A1
WO2014204647A1 PCT/US2014/040981 US2014040981W WO2014204647A1 WO 2014204647 A1 WO2014204647 A1 WO 2014204647A1 US 2014040981 W US2014040981 W US 2014040981W WO 2014204647 A1 WO2014204647 A1 WO 2014204647A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubular member
expandable
wall portion
retainer
recessed
Prior art date
Application number
PCT/US2014/040981
Other languages
French (fr)
Inventor
Eric James Connor
Original Assignee
Enventure Global Technology, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enventure Global Technology, Llc filed Critical Enventure Global Technology, Llc
Publication of WO2014204647A1 publication Critical patent/WO2014204647A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/04Couplings; joints between rod or the like and bit or between rod and rod or the like
    • E21B17/046Couplings; joints between rod or the like and bit or between rod and rod or the like with ribs, pins, or jaws, and complementary grooves or the like, e.g. bayonet catches
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • E21B43/105Expanding tools specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • E21B43/106Couplings or joints therefor

Definitions

  • This disclosure relates generally to methods and apparatus for lining wellbores. More specifically, this disclosure relates to methods and apparatus for providing a wellbore tubular that can accommodate axial expansion or contraction after radial expansion and installation into a wellbore.
  • a wellbore typically traverses a number of zones within a subterranean formation.
  • a tubing string such as a casing or liner, may be established in the wellbore to create flow paths from the multiple producing zones to the surface of the wellbore.
  • Efficient production is highly dependent on the inner diameter of the tubing string, with greater inner diameters producing more hydrocarbons or allowing inserted equipment with appropriate pressure ratings to be used in well completions.
  • technologies have been developed that allow for tubing strings to be radially expanded after installation in a wellbore. Radially expanding tubing strings in the wellbore allows installation of larger diameter tubulars than would otherwise be possible.
  • the production fluid is normally at a temperature substantially in excess of the temperature of the majority of the tubing string, resulting in a substantial expansion of the tubing string and the production of a substantial compressive force on the tubing string.
  • changes in fluid pressure inside and outside the tubing string play a major role in the development of substantial tension or compressive forces in the tubing string.
  • a translating joint is an axially moveable or telescoping device or component designed to enable relative movement between two fixed assemblies in the event of thermal expansion or contraction. Further, the translating joint may have rotational or torque transmitting capability so that rotation can be accomplished through the joint to the right or to the left in order to perform required operations on various pieces of apparatus carried by the tubing string.
  • the principles of the present disclosure are directed to overcoming one or more of the limitations of the existing apparatus and processes for increasing fluid injection or hydrocarbon production during treatment, completion and production of subterranean wells.
  • An expandable translating joint comprises a first expandable tubular member having a lower end with a recessed inner wall portion and a second expandable tubular member having an upper end with a recessed outer wall portion.
  • the second expandable tubular member is partially disposed within the first expandable tubular member such that the recessed inner wall portion at least partially surrounds the recessed outer wall portion.
  • a retainer is coupled to the recessed inner wall portion of the first expandable tubular member and disposed within the recessed outer wall portion of the lower second expandable tubular member.
  • An expansion cone is operable to move axially through and radially expand the first and second expandable tubulars.
  • the first expandable tubular can translate relative to the second tubular member both before and after expansion.
  • a seal groove is disposed proximate to the upper end of the second expandable tubular member. In some embodiments, the seal groove is disposed between the upper end and the recessed outer wall portion of the second expandable tubular member. In some embodiments, a seal member is disposed in the seal groove and in sealing engagement with the recessed inner wall portion of the first expandable tubular member. In some embodiments, the first expandable tubular member is rotationally constrained relative to the second expandable tubular member. In some embodiments, a plurality of axial tabs extend from the upper end of the second expandable tubular member and are engaged with a corresponding plurality of axial grooves formed in the first expandable tubular member. In some embodiments, a plurality of retainer pins couple the retainer to the first expandable tubular member. In some embodiments, the retainer is welded to the first expandable tubular member.
  • An expansion system comprises an upper tubular member having a lower end with a recessed inner wall portion and a lower tubular member having an upper end with a recessed outer wall portion.
  • the lower tubular member is partially disposed within the upper tubular member such that the recessed inner wall portion at least partially surrounds the recessed outer wall portion.
  • a retainer is coupled to the upper tubular member and disposed within the recessed outer wall portion of the lower tubular member.
  • An expansion cone is operable to move axially through and radially expand the upper and lower tubulars, wherein the upper tubular can translate relative to the lower tubular member both before and after expansion.
  • a seal groove is disposed proximate to the upper end of the lower tubular member. In some embodiments, the seal groove is disposed between the upper end and the recessed outer wall portion of the lower tubular member. In some embodiments, a seal member is disposed in the seal groove and in sealing engagement with the recessed inner wall portion of the upper tubular member. In some embodiments, the upper tubular member is rotationally constrained relative to the lower tubular member. In some embodiments, a plurality of axial tabs extends from the upper end of the lower tubular member and engages a corresponding plurality of axial grooves formed in the upper tubular member. In some embodiments, a plurality of retainer pins couples the retainer to the upper tubular member. In some embodiments, the retainer is welded to the upper tubular member.
  • a method comprises inserting an upper end of a lower tubular member into a recessed inner wall portion of an upper tubular member, coupling a retainer to a lower end of the upper tubular member, wherein the retainer is disposed within a recessed outer wall portion of the lower tubular member, and axially translating an expansion cone through the upper and lower tubular members so as to radially expand the upper and lower tubular members, wherein the upper tubular can translate relative to the lower tubular member both before and after expansion.
  • the method also includes forming a seal between the lower tubular member and the recessed inner wall portion of the upper tubular member.
  • the method also includes rotationally constraining the upper tubular member relative to the lower tubular member both before and after expansion.
  • the retainer is coupled to the upper tubular member by a plurality of retainer pins.
  • Figure 1 is a partial sectional view of an expandable translating joint in an unexpanded condition.
  • Figure 2 is a partial sectional view of the lower tubular member of an expandable translating joint.
  • Figure 3 is a partial sectional view of the upper tubular member of an expandable translating joint.
  • Figure 4 is a partial sectional view of the retainer of an expandable translating joint.
  • Figures 5A-5E are partial sectional views illustrating the expansion of an expandable translating joint.
  • Figure 6 is a partial sectional view of an expandable translating joint in an expanded condition.
  • first and second features are formed in direct contact
  • additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact.
  • exemplary embodiments presented below may be combined in any combination of ways, i.e., any element from one exemplary embodiment may be used in any other exemplary embodiment, without departing from the scope of the disclosure.
  • an expandable translating joint 10 includes a lower tubular member 12, an upper tubular member 14, and a retainer 16.
  • the retainer 16 may be coupled to the upper tubular member 14 by retainer pins 18 or by welding, brazing, screws, or other means.
  • the lower tubular member 12 includes a plurality of axial tabs 20 that engage corresponding axial grooves 22 formed on the inner wall of the upper tubular member 14.
  • a seal member 24 is disposed in the annulus between the lower tubular member 12 and the upper tubular member 14.
  • the lower tubular member 12 includes a main body 26 having a recessed outer wall section 28 disposed between full thickness wall portion 34 and upper wall portion 35.
  • the upper wall portion 35 may have the same wall thickness as full thickness wall portion 34 or may have a reduced wall thickness.
  • the lower tubular member 12 may be formed from a single length of tubular or may be constructed by coupling the main body 26 to an upper body 36 that includes a seal groove 30 and axial tabs 20 formed in the upper wall portion 35.
  • the main body 26 may be coupled to the upper body 36 via a weld seam 32 or some other joining means.
  • upper tubular member 14 includes axial grooves 22 and a recessed inner wall section 38 that may include a plurality of mounting holes 40.
  • the outer diameter of the upper tubular member 13 may increase in the portion including the axial grooves 22 and the recessed inner wall section 38.
  • retainer 16 includes a plurality of mounting holes 42 corresponding to the mounting holes 40 on the upper tubular member 14.
  • Retainer pins 18 are sized so as to fit into both sets of mounting holes 40, 42 and substantially flush with the inner diameter of the retainer 16 and the outer diameter of the upper tubular member 14 when fully assembled (as shown in Figure 1).
  • translating joint 10 is assembled by first sliding the retainer 16 onto the recessed outer wall section 28 of the main body 26 of the lower tubular member 12. Once the retainer 16 is in place, the upper body 36 can be coupled to the main body 26 to form the lower tubular member 12. A seal member 24 is then installed into the seal groove 30. The lower tubular member 12 is then inserted into the upper tubular member 14 and until axial tabs 20 engage with axial grooves 22 and the mounting holes 40 on the upper tubular member 14 are aligned with the mounting holes 42 on the retainer 16. Retainer pins 18 are inserted through the aligned mounting holes 40, 42 and affixed in place by welding, brazing, threads, or other means to hold the retainer pins 18 in place. To facilitate expansion of the translating joint 10, the lower tubular member 12, upper tubular member 14, and retainer 16 are constructed from materials that can be radially expanded.
  • the lower tubular member 12 can move axially relative to the upper tubular member 14 as limited by the travel of the retainer 16 within the recessed outer wall section 28 of the main body.
  • the engagement of the axial tabs 20 and the axial grooves 22 prevents rotation of the upper tubular member 14 relative to the lower tubular member 12.
  • the seal member 24 is compressed between the upper tubular member 14 and the lower tubular member 12 so as to maintain pressure integrity of the translating joint 10.
  • the lower tubular member 12 and the upper tubular member 14 may include threads on their respective distal ends for assembling the translating joint 10 into a string of casing, or other wellbore tubular.
  • the tubular and translating joint 10 can be run into a wellbore and radially expanded using any number of expansion methods.
  • the translating joint 10 may be radially expanded by moving an expansion cone 50 axially through the translating joint 10.
  • the expansion cone 50 may be moved through the translating joint 10 by the application of a direct axial force (through pulling or pushing) and/or the application of a differential pressure across the expansion cone 50.
  • Figure 5 A illustrates the initiation of expansion of a translating joint 10 where an expansion cone 50 is moving upward through the translating joint 10 and has begun expansion of the lower tubular member 12.
  • the translating joint 10 Prior to expansion, the translating joint 10 is in the position illustrated in Figure 1 with the axial tabs 20 substantially fully engaged with the axial grooves 22.
  • the expansion cone 50 moves axially through the lower tubular member 12, the lower tubular member 12 radially expands as shown in Figure 5B.
  • the expansion cone 50 expands the upper end of the lower tubular member 12 where the upper tubular member 14 overlaps the lower tubular member 12, the expansion of the lower tubular member 12 pushes outward into and expands the upper tubular member 14.
  • the upper tubular member 14 is also pushed axially upward until retained by the retainer 16, as shown in Figure 5D and Figure 6. Once the expansion cone 50 has passed fully through the translating joint 10, the upper tubular member 14 can be moved downward relative to the lower tubular member 12 in response to axial compression of the translating joint, as shown in Figure 5E.

Abstract

An expandable translating joint comprises a first expandable tubular member having a lower end with a recessed inner wall portion and a second expandable tubular member having an upper end with a recessed outer wall portion. The second expandable tubular member is partially disposed within the first expandable tubular member such that the recessed inner wall portion at least partially surrounds the recessed outer wall portion. A retainer is coupled to the recessed inner wall portion of the first expandable tubular member and disposed within the recessed outer wall portion of the lower second expandable tubular member. An expansion cone is operable to move axially through and radially expand the first and second expandable tubulars. The first expandable tubular can translate relative to the second tubular member both before and after expansion.

Description

EXPANDABLE TRANSLATING JOINT
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] None
BACKGROUND
[0002] This disclosure relates generally to methods and apparatus for lining wellbores. More specifically, this disclosure relates to methods and apparatus for providing a wellbore tubular that can accommodate axial expansion or contraction after radial expansion and installation into a wellbore.
[0003] During hydrocarbon exploration and production, a wellbore typically traverses a number of zones within a subterranean formation. A tubing string, such as a casing or liner, may be established in the wellbore to create flow paths from the multiple producing zones to the surface of the wellbore. Efficient production is highly dependent on the inner diameter of the tubing string, with greater inner diameters producing more hydrocarbons or allowing inserted equipment with appropriate pressure ratings to be used in well completions. To provide larger inner diameters to installed tubing strings, technologies have been developed that allow for tubing strings to be radially expanded after installation in a wellbore. Radially expanding tubing strings in the wellbore allows installation of larger diameter tubulars than would otherwise be possible.
[0004] In the case of wells of substantial depth, and particularly wells where the downhole temperatures are substantially in excess of or below the surface temperatures, problems have been encountered due to excessive axial expansion or contraction of the elongated tubing string. For example, in the treatment or stimulation of the well, it is common to introduce fluids at surface ambient temperature into the tubing string. In some cases, the fluid is introduced as steam at elevated temperatures. When the major portions of the tubing string are at a much higher temperature initially, this inherently results in a cooling, and hence a substantial contraction of the tubing string, resulting in the production of substantial tensile stress in the tubing string between its surface connection and the set packer. Similarly, in the production phase of such wells, the production fluid is normally at a temperature substantially in excess of the temperature of the majority of the tubing string, resulting in a substantial expansion of the tubing string and the production of a substantial compressive force on the tubing string. Additionally, changes in fluid pressure inside and outside the tubing string play a major role in the development of substantial tension or compressive forces in the tubing string.
[0005] To address the described expansion or contraction of the downhole tubulars, a translating joint, or expansion joint can be disposed in the tubing string. A translating joint is an axially moveable or telescoping device or component designed to enable relative movement between two fixed assemblies in the event of thermal expansion or contraction. Further, the translating joint may have rotational or torque transmitting capability so that rotation can be accomplished through the joint to the right or to the left in order to perform required operations on various pieces of apparatus carried by the tubing string.
[0006] The principles of the present disclosure are directed to overcoming one or more of the limitations of the existing apparatus and processes for increasing fluid injection or hydrocarbon production during treatment, completion and production of subterranean wells.
[0007] Thus, there is a continuing need in the art for methods and apparatus that enable a radially expanded tubular string to compensate for axial loads applied after installation into a wellbore.
BRIEF SUMMARY OF THE DISCLOSURE
[0008] An expandable translating joint comprises a first expandable tubular member having a lower end with a recessed inner wall portion and a second expandable tubular member having an upper end with a recessed outer wall portion. The second expandable tubular member is partially disposed within the first expandable tubular member such that the recessed inner wall portion at least partially surrounds the recessed outer wall portion. A retainer is coupled to the recessed inner wall portion of the first expandable tubular member and disposed within the recessed outer wall portion of the lower second expandable tubular member. An expansion cone is operable to move axially through and radially expand the first and second expandable tubulars. The first expandable tubular can translate relative to the second tubular member both before and after expansion.
[0009] In some embodiments, a seal groove is disposed proximate to the upper end of the second expandable tubular member. In some embodiments, the seal groove is disposed between the upper end and the recessed outer wall portion of the second expandable tubular member. In some embodiments, a seal member is disposed in the seal groove and in sealing engagement with the recessed inner wall portion of the first expandable tubular member. In some embodiments, the first expandable tubular member is rotationally constrained relative to the second expandable tubular member. In some embodiments, a plurality of axial tabs extend from the upper end of the second expandable tubular member and are engaged with a corresponding plurality of axial grooves formed in the first expandable tubular member. In some embodiments, a plurality of retainer pins couple the retainer to the first expandable tubular member. In some embodiments, the retainer is welded to the first expandable tubular member.
[0010] An expansion system comprises an upper tubular member having a lower end with a recessed inner wall portion and a lower tubular member having an upper end with a recessed outer wall portion. The lower tubular member is partially disposed within the upper tubular member such that the recessed inner wall portion at least partially surrounds the recessed outer wall portion. A retainer is coupled to the upper tubular member and disposed within the recessed outer wall portion of the lower tubular member. An expansion cone is operable to move axially through and radially expand the upper and lower tubulars, wherein the upper tubular can translate relative to the lower tubular member both before and after expansion.
[0011] In some embodiments, a seal groove is disposed proximate to the upper end of the lower tubular member. In some embodiments, the seal groove is disposed between the upper end and the recessed outer wall portion of the lower tubular member. In some embodiments, a seal member is disposed in the seal groove and in sealing engagement with the recessed inner wall portion of the upper tubular member. In some embodiments, the upper tubular member is rotationally constrained relative to the lower tubular member. In some embodiments, a plurality of axial tabs extends from the upper end of the lower tubular member and engages a corresponding plurality of axial grooves formed in the upper tubular member. In some embodiments, a plurality of retainer pins couples the retainer to the upper tubular member. In some embodiments, the retainer is welded to the upper tubular member.
[0012] A method comprises inserting an upper end of a lower tubular member into a recessed inner wall portion of an upper tubular member, coupling a retainer to a lower end of the upper tubular member, wherein the retainer is disposed within a recessed outer wall portion of the lower tubular member, and axially translating an expansion cone through the upper and lower tubular members so as to radially expand the upper and lower tubular members, wherein the upper tubular can translate relative to the lower tubular member both before and after expansion. [0013] In some embodiments, the method also includes forming a seal between the lower tubular member and the recessed inner wall portion of the upper tubular member. In some embodiments, the method also includes rotationally constraining the upper tubular member relative to the lower tubular member both before and after expansion. In some embodiments, the retainer is coupled to the upper tubular member by a plurality of retainer pins.
BRIEF DESCRIPTION OF THE DRAWINGS
[0014] For a more detailed description of the embodiments of the present disclosure, reference will now be made to the accompanying drawings, wherein:
[0015] Figure 1 is a partial sectional view of an expandable translating joint in an unexpanded condition.
[0016] Figure 2 is a partial sectional view of the lower tubular member of an expandable translating joint.
[0017] Figure 3 is a partial sectional view of the upper tubular member of an expandable translating joint.
[0018] Figure 4 is a partial sectional view of the retainer of an expandable translating joint.
[0019] Figures 5A-5E are partial sectional views illustrating the expansion of an expandable translating joint.
[0020] Figure 6 is a partial sectional view of an expandable translating joint in an expanded condition.
DETAILED DESCRIPTION
[0021] It is to be understood that the following disclosure describes several exemplary embodiments for implementing different features, structures, or functions of the invention. Exemplary embodiments of components, arrangements, and configurations are described below to simplify the present disclosure; however, these exemplary embodiments are provided merely as examples and are not intended to limit the scope of the invention. Additionally, the present disclosure may repeat reference numerals and/or letters in the various exemplary embodiments and across the Figures provided herein. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various exemplary embodiments and/or configurations discussed in the various figures. Moreover, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact. Finally, the exemplary embodiments presented below may be combined in any combination of ways, i.e., any element from one exemplary embodiment may be used in any other exemplary embodiment, without departing from the scope of the disclosure.
[0022] Additionally, certain terms are used throughout the following description and claims to refer to particular components. As one skilled in the art will appreciate, various entities may refer to the same component by different names, and as such, the naming convention for the elements described herein is not intended to limit the scope of the invention, unless otherwise specifically defined herein. Further, the naming convention used herein is not intended to distinguish between components that differ in name but not function. Additionally, in the following discussion and in the claims, the terms "including" and "comprising" are used in an open-ended fashion, and thus should be interpreted to mean "including, but not limited to." All numerical values in this disclosure may be exact or approximate values unless otherwise specifically stated. Accordingly, various embodiments of the disclosure may deviate from the numbers, values, and ranges disclosed herein without departing from the intended scope. Furthermore, as it is used in the claims or specification, the term "or" is intended to encompass both exclusive and inclusive cases, i.e., "A or B" is intended to be synonymous with "at least one of A and B," unless otherwise expressly specified herein.
[0023] Referring initially to Figure 1, an expandable translating joint 10 includes a lower tubular member 12, an upper tubular member 14, and a retainer 16. The retainer 16 may be coupled to the upper tubular member 14 by retainer pins 18 or by welding, brazing, screws, or other means. The lower tubular member 12 includes a plurality of axial tabs 20 that engage corresponding axial grooves 22 formed on the inner wall of the upper tubular member 14. A seal member 24 is disposed in the annulus between the lower tubular member 12 and the upper tubular member 14.
[0024] Referring now to Figure 2, the lower tubular member 12 includes a main body 26 having a recessed outer wall section 28 disposed between full thickness wall portion 34 and upper wall portion 35. The upper wall portion 35 may have the same wall thickness as full thickness wall portion 34 or may have a reduced wall thickness. The lower tubular member 12 may be formed from a single length of tubular or may be constructed by coupling the main body 26 to an upper body 36 that includes a seal groove 30 and axial tabs 20 formed in the upper wall portion 35. The main body 26 may be coupled to the upper body 36 via a weld seam 32 or some other joining means.
[0025] Referring now to Figure 3, upper tubular member 14 includes axial grooves 22 and a recessed inner wall section 38 that may include a plurality of mounting holes 40. In certain embodiments, the outer diameter of the upper tubular member 13 may increase in the portion including the axial grooves 22 and the recessed inner wall section 38. As shown in Figure 4, retainer 16 includes a plurality of mounting holes 42 corresponding to the mounting holes 40 on the upper tubular member 14. Retainer pins 18 are sized so as to fit into both sets of mounting holes 40, 42 and substantially flush with the inner diameter of the retainer 16 and the outer diameter of the upper tubular member 14 when fully assembled (as shown in Figure 1).
[0026] With reference to Figures 1-4, translating joint 10 is assembled by first sliding the retainer 16 onto the recessed outer wall section 28 of the main body 26 of the lower tubular member 12. Once the retainer 16 is in place, the upper body 36 can be coupled to the main body 26 to form the lower tubular member 12. A seal member 24 is then installed into the seal groove 30. The lower tubular member 12 is then inserted into the upper tubular member 14 and until axial tabs 20 engage with axial grooves 22 and the mounting holes 40 on the upper tubular member 14 are aligned with the mounting holes 42 on the retainer 16. Retainer pins 18 are inserted through the aligned mounting holes 40, 42 and affixed in place by welding, brazing, threads, or other means to hold the retainer pins 18 in place. To facilitate expansion of the translating joint 10, the lower tubular member 12, upper tubular member 14, and retainer 16 are constructed from materials that can be radially expanded.
[0027] Once translating joint 10 is fully assembled, the lower tubular member 12 can move axially relative to the upper tubular member 14 as limited by the travel of the retainer 16 within the recessed outer wall section 28 of the main body. The engagement of the axial tabs 20 and the axial grooves 22 prevents rotation of the upper tubular member 14 relative to the lower tubular member 12. The seal member 24 is compressed between the upper tubular member 14 and the lower tubular member 12 so as to maintain pressure integrity of the translating joint 10.
[0028] The lower tubular member 12 and the upper tubular member 14 may include threads on their respective distal ends for assembling the translating joint 10 into a string of casing, or other wellbore tubular. Once assembled into a wellbore tubular, the tubular and translating joint 10 can be run into a wellbore and radially expanded using any number of expansion methods. As illustrated in Figures 5A-5E, the translating joint 10 may be radially expanded by moving an expansion cone 50 axially through the translating joint 10. The expansion cone 50 may be moved through the translating joint 10 by the application of a direct axial force (through pulling or pushing) and/or the application of a differential pressure across the expansion cone 50.
[0029] Figure 5 A illustrates the initiation of expansion of a translating joint 10 where an expansion cone 50 is moving upward through the translating joint 10 and has begun expansion of the lower tubular member 12. Prior to expansion, the translating joint 10 is in the position illustrated in Figure 1 with the axial tabs 20 substantially fully engaged with the axial grooves 22. As the expansion cone 50 moves axially through the lower tubular member 12, the lower tubular member 12 radially expands as shown in Figure 5B. As the expansion cone 50 expands the upper end of the lower tubular member 12 where the upper tubular member 14 overlaps the lower tubular member 12, the expansion of the lower tubular member 12 pushes outward into and expands the upper tubular member 14. During this process, the upper tubular member 14 is also pushed axially upward until retained by the retainer 16, as shown in Figure 5D and Figure 6. Once the expansion cone 50 has passed fully through the translating joint 10, the upper tubular member 14 can be moved downward relative to the lower tubular member 12 in response to axial compression of the translating joint, as shown in Figure 5E.
[0030] While the disclosure is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and description. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the disclosure to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present disclosure.

Claims

What is claimed is:
1. An expandable translating joint comprising:
a first expandable tubular member having a lower end with a recessed inner wall portion;
a second expandable tubular member having an upper end with a recessed outer wall portion, wherein the second expandable tubular member is partially disposed within the first expandable tubular member such that the recessed inner wall portion at least partially surrounds the recessed outer wall portion;
a retainer coupled to the recessed inner wall portion of the first expandable tubular member and disposed within the recessed outer wall portion of the lower second expandable tubular member; and
an expansion cone disposed within the second expandable tubular member and operable to move axially through and radially expand the first and second expandable tubulars, wherein the first expandable tubular can translate relative to the second tubular member both before and after expansion.
2. The expandable translating joint of claim 1, further comprising a seal groove disposed proximate to the upper end of the second expandable tubular member.
3. The expandable translating joint of claim 2, wherein the seal groove is disposed between the upper end and the recessed outer wall portion of the second expandable tubular member.
4. The expandable translating joint of claim 2, further comprising a seal member disposed in the seal groove and in sealing engagement with the recessed inner wall portion of the first expandable tubular member.
5. The expandable translating joint of claim 1, wherein the first expandable tubular member is rotationally constrained relative to the second expandable tubular member.
6. The expandable translating joint of claim 1, further comprising a plurality of axial tabs extending from the upper end of the second expandable tubular member that are engaged with a corresponding plurality of axial grooves formed in the first expandable tubular member.
7. The expandable translating joint of claim 1, further comprising a plurality of retainer pins that couple the retainer to the first expandable tubular member.
8. The expandable translating joint of claim 1, wherein the retainer is welded to the first expandable tubular member.
9. An expansion system comprising:
an upper tubular member having a lower end with a recessed inner wall portion;
a lower tubular member having an upper end with a recessed outer wall portion, wherein the lower tubular member is partially disposed within the upper tubular member such that the recessed inner wall portion at least partially surrounds the recessed outer wall portion; a retainer coupled to the upper tubular member and disposed within the recessed outer wall portion of the lower tubular member; and
an expansion cone operable to move axially through and radially expand the upper and lower tubulars, wherein the upper tubular can translate relative to the lower tubular member both before and after expansion.
10. The expansion system of claim 9, further comprising a seal groove disposed proximate to the upper end of the lower tubular member.
11. The expansion system of claim 10, wherein the seal groove is disposed between the upper end and the recessed outer wall portion of the lower tubular member.
12. The expansion system of claim 10, further comprising a seal member disposed in the seal groove and in sealing engagement with the recessed inner wall portion of the upper tubular member.
13. The expansion system of claim 9, wherein the upper tubular member is rotationally constrained relative to the lower tubular member.
14. The expansion system of claim 9, further comprising a plurality of axial tabs extending from the upper end of the lower tubular member that are engaged with a corresponding plurality of axial grooves formed in the upper tubular member.
15. The expansion system of claim 9, further comprising a plurality of retainer pins that couple the retainer to the upper tubular member.
16. The expansion system of claim 9, wherein the retainer is welded to the upper tubular member.
17. A method comprising:
inserting an upper end of a lower tubular member into a recessed inner wall portion of an upper tubular member;
coupling a retainer to a lower end of the upper tubular member, wherein the retainer is disposed within a recessed outer wall portion of the lower tubular member; and
axially translating an expansion cone through the upper and lower tubular members so as to radially expand the upper and lower tubular members, wherein the upper tubular can translate relative to the lower tubular member both before and after expansion.
18. The method of claim 17, further comprising forming a seal between the lower tubular member and the recessed inner wall portion of the upper tubular member.
19. The method of claim 17, further comprising rotationally constraining the upper tubular member relative to the lower tubular member both before and after expansion.
20. The method of claim 17, wherein the retainer is coupled to the upper tubular member by a plurality of retainer pins.
PCT/US2014/040981 2013-06-17 2014-06-05 Expandable translating joint WO2014204647A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/919,750 2013-06-17
US13/919,750 US20140367118A1 (en) 2013-06-17 2013-06-17 Expandable translating joint

Publications (1)

Publication Number Publication Date
WO2014204647A1 true WO2014204647A1 (en) 2014-12-24

Family

ID=52018233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/040981 WO2014204647A1 (en) 2013-06-17 2014-06-05 Expandable translating joint

Country Status (2)

Country Link
US (1) US20140367118A1 (en)
WO (1) WO2014204647A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10634473B2 (en) * 2014-01-29 2020-04-28 Raytheon Company Internally coupleable joint
US20200332604A1 (en) * 2019-04-22 2020-10-22 Oil States Industries, Inc. Expandable connection for expandable tubulars

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447021B1 (en) * 1999-11-24 2002-09-10 Michael Jonathon Haynes Locking telescoping joint for use in a conduit connected to a wellhead
US20050184521A1 (en) * 2003-05-22 2005-08-25 Maguire Patrick G. Tubing connector
US20110048741A1 (en) * 2009-09-01 2011-03-03 Enventure Global Technology Downhole telescoping tool with radially expandable members
US20120152565A1 (en) * 2010-12-21 2012-06-21 Enventure Global Technology, L.L.C. Downhole release joint with radially expandable member

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2231763C2 (en) * 1972-06-29 1983-09-22 ARBED S.A., 2930 Luxembourg Guardrail
US4076283A (en) * 1976-08-27 1978-02-28 Harrison George W Expansion joint and seal for sewer pipe
US6530431B1 (en) * 2000-06-22 2003-03-11 Halliburton Energy Services, Inc. Screen jacket assembly connection and methods of using same
US6648071B2 (en) * 2001-01-24 2003-11-18 Schlumberger Technology Corporation Apparatus comprising expandable bistable tubulars and methods for their use in wellbores
US7195073B2 (en) * 2003-05-01 2007-03-27 Baker Hughes Incorporated Expandable tieback
GB0313664D0 (en) * 2003-06-13 2003-07-16 Weatherford Lamb Method and apparatus for supporting a tubular in a bore
CA2560124C (en) * 2005-09-20 2012-03-20 Schlumberger Canada Limited Apparatus and method to connect two parts without rotation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447021B1 (en) * 1999-11-24 2002-09-10 Michael Jonathon Haynes Locking telescoping joint for use in a conduit connected to a wellhead
US20030029621A1 (en) * 1999-11-24 2003-02-13 Haynes Michael Jonathon Locking telescoping joint for use in a conduit connected to a wellhead
US20050184521A1 (en) * 2003-05-22 2005-08-25 Maguire Patrick G. Tubing connector
US20110048741A1 (en) * 2009-09-01 2011-03-03 Enventure Global Technology Downhole telescoping tool with radially expandable members
US20120152565A1 (en) * 2010-12-21 2012-06-21 Enventure Global Technology, L.L.C. Downhole release joint with radially expandable member

Also Published As

Publication number Publication date
US20140367118A1 (en) 2014-12-18

Similar Documents

Publication Publication Date Title
US7380593B2 (en) Expandable tubes with overlapping end portions
CA2439107C (en) Creation of a downhole seal
US9739106B2 (en) Angled segmented backup ring
CA2467899C (en) Thread integrity feature for expandable connections
US20140238692A1 (en) High pressure tie back receptacle and seal assembly
EP2952672A1 (en) Downhole expandable metal tubular
US20100300689A1 (en) Sealing assembly
CA2714411A1 (en) Expansion cone for expandable liner hanger
US20100122820A1 (en) Seal Arrangement for Expandable Tubulars
US20110048741A1 (en) Downhole telescoping tool with radially expandable members
US9109435B2 (en) Monobore expansion system—anchored liner
US20140367118A1 (en) Expandable translating joint
NO347578B1 (en) Self-locking packer carrier
US20180320474A1 (en) Wellbore isolation device
EP3411561B1 (en) Downhole completion system
CN108590577B (en) Electric ignition layered gas injection valve and layered electric ignition tubular column
WO2016048939A1 (en) Telescoping slip joint assembly
US10012058B2 (en) Expansion system
AU2020306680B2 (en) Annular barrier with press connections
US20200332604A1 (en) Expandable connection for expandable tubulars
RU2765939C2 (en) Annular barrier for small-diameter wells
CA2852351C (en) Combined casing system and method
US11795778B2 (en) Swaged in place continuous metal backup ring
CA2984810A1 (en) Swellable choke packer
EP3216978A1 (en) Downhole completion system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14813788

Country of ref document: EP

Kind code of ref document: A1