WO2014204243A1 - Wing for unmanned aerial vehicle and manufacturing method therefor - Google Patents

Wing for unmanned aerial vehicle and manufacturing method therefor Download PDF

Info

Publication number
WO2014204243A1
WO2014204243A1 PCT/KR2014/005436 KR2014005436W WO2014204243A1 WO 2014204243 A1 WO2014204243 A1 WO 2014204243A1 KR 2014005436 W KR2014005436 W KR 2014005436W WO 2014204243 A1 WO2014204243 A1 WO 2014204243A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
unmanned aerial
aerial vehicle
aluminum sheet
composite
Prior art date
Application number
PCT/KR2014/005436
Other languages
French (fr)
Korean (ko)
Inventor
박찬성
Original Assignee
주식회사 제이에스영테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 제이에스영테크 filed Critical 주식회사 제이에스영테크
Publication of WO2014204243A1 publication Critical patent/WO2014204243A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/20Integral or sandwich constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • B29C44/18Filling preformed cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/10Manufacturing or assembling aircraft, e.g. jigs therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/25Fixed-wing aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs

Definitions

  • the present invention relates to the wing of an unmanned aerial vehicle controlled by remote control. More particularly, the present invention relates to a wing of an unmanned aerial vehicle flying at a low speed for a long time.
  • Unmanned aerial vehicles are aircraft that are controlled by remote control. Drones are used as a substitute for manned aircraft for dangerous flights. Unmanned aerial vehicles are used for civilian purposes such as agriculture and disaster monitoring, and military aircraft such as unmanned reconnaissance aircraft and unmanned attack aircraft.
  • the fuselage and wings of a typical aircraft are mainly made of an alloy called duralumin made of a mixture of aluminum, copper, magnesium, manganese, and silicon, and recently, a composite material in which carbon fiber or aramid fiber is reinforced with resin such as epoxy resin or polyimide resin. Phosphorus fiber reinforced plastic is used for the fuselage and wing of the aircraft.
  • Fiber-reinforced plastics have the advantages of being lighter than duralumin, yet more durable and stronger. Composites used in aircraft are four times harder and 40% tougher than duralumin. In addition, by reducing the weight by 15%, fuel consumption is reduced by more than 20%.
  • Such fiber-reinforced plastic is also used as the material of the wing of an unmanned aerial vehicle.
  • unmanned aerial vehicles there are various types of unmanned aerial vehicles, and in the case of unmanned aerial vehicles that have to fly for a long time at a relatively low altitude and low speed, the strength is relatively weaker than that of fiber-reinforced plastic, but it is necessary to use a lighter wing.
  • the present invention seeks to meet the above-described needs, and an object of the present invention is to provide a new unmanned aerial vehicle wing which is very light in weight and has a smooth surface.
  • the wing for an unmanned aerial vehicle for achieving the above object is a foamed resin support that fills between the upper and lower surfaces, at least one composite frame installed between the upper and lower surfaces, and the upper, lower and composite frames. And at least one of the upper and lower surfaces may be an aluminum sheet.
  • the composite frame may be installed at one end coupled to the body of the unmanned aerial vehicle. It may also be installed at the other end of the end that is coupled to the fuselage of the unmanned aerial vehicle. It may also be installed between one end and the opposite end that are coupled to the fuselage of the unmanned aerial vehicle.
  • one of the upper and lower surfaces may be a composite sheet.
  • the composite frame is preferably a fiber-reinforced plastic, and the fiber-reinforced plastic is preferably a composite material of at least one fiber and resin of glass fiber, carbon fiber or aramid fiber.
  • Method for manufacturing a wing for an unmanned aerial vehicle for achieving the above object, the step of cutting an aluminum sheet to fit the shape of a wing for an unmanned aerial vehicle, the step of rolling the aluminum sheet roundly and bonding both ends, and rounded Arranging the dried aluminum sheet in the wing-shaped mold for the unmanned aerial vehicle, thereby forming the aluminum sheet in the shape of a wing, and arranging a composite frame in a space surrounded by the aluminum sheet disposed inside the mold; Injecting a foaming resin between the aluminum sheet and the composite frame may include foaming.
  • joining the aluminum sheet may include ultrasonic welding, high frequency induction welding, laser welding, metal inert gas welding, and tungsten inert arc welding. welding).
  • the bonding of the aluminum sheet may be a bonding using an adhesive.
  • another method of manufacturing the wing for an unmanned aerial vehicle according to the present invention for achieving the above object is the step of disposing a composite frame inside the mold of the wing shape for the unmanned aerial vehicle, and injecting a foaming resin into the inside of the mold And foaming, and separating the foamable resin from the mold, and attaching an aluminum sheet to the surface of the foamable resin.
  • a method for manufacturing a wing for an unmanned aerial vehicle for achieving the above object, the step of cutting the aluminum sheet and composite sheet to fit the shape of the wing for the unmanned aerial vehicle, and both ends of the aluminum sheet Bonding both ends of the composite sheet to each other; and placing the bonded aluminum sheet and the composite sheet into a wing-shaped mold for the unmanned aerial vehicle, such that the aluminum sheet and the composite sheet form a wing shape. And arranging a composite frame in a space surrounded by the aluminum sheet and the composite sheet disposed inside the mold, and injecting and foaming a foam resin into the space between the aluminum sheet and the composite sheet and the composite frame. It may include a step.
  • another method of manufacturing the wing for an unmanned aerial vehicle according to the present invention for achieving the above object comprises the steps of disposing a composite frame inside the mold of the wing shape for an unmanned aerial vehicle, and the foamable resin in the inside of the mold Injecting and foaming, and after separating the foaming resin from the mold may include attaching an aluminum sheet to one surface of the upper or lower surface of the foamable resin, and attaching a composite sheet to the other surface.
  • the wing for the unmanned aerial vehicle according to the present invention is very light in weight, thereby reducing the fuel consumption of the unmanned aerial vehicle.
  • the smooth surface can minimize the resistance to air hitting the wing.
  • FIG. 1 is a perspective view of one embodiment of a wing for an unmanned aerial vehicle according to the present invention.
  • FIG. 2 is a cross-sectional view of the wing for the unmanned aerial vehicle shown in FIG. 1.
  • FIG 3 is a perspective view of another embodiment of a wing for an unmanned aerial vehicle according to the present invention.
  • FIG. 4 is a cross-sectional view of another embodiment of a wing for an unmanned aerial vehicle according to the present invention.
  • 5 to 7 are views for explaining an embodiment of a method for manufacturing a wing for an unmanned aerial vehicle according to the present invention.
  • FIG 8 to 9 are views for explaining another embodiment of the method for manufacturing a wing for an unmanned aerial vehicle according to the present invention.
  • FIG. 1 is a perspective view of one embodiment of a wing for an unmanned aerial vehicle according to the present invention
  • Figure 2 is a cross-sectional view of the wing for the unmanned aerial vehicle shown in FIG.
  • one embodiment of the wing for the unmanned aerial vehicle according to the present invention includes a foamed resin support 10, an aluminum sheet 20 and the composite frame 30.
  • the expandable resin is expanded resin by the action of a blowing agent, and includes expanded polystyrene, hard urethane foam, polyethylene foam and the like. Foamed polystyrene is generally called styrofoam.
  • the expandable resin support 10 forms the shape necessary for the wing to gain lift. That is, the upper surface of the expandable resin support 10 is bent much more than the lower surface of the expandable resin support 10 so that the flow rate of air flowing over the expandable resin support 10 becomes faster than the flow rate of the air flowing downward.
  • the upper portion of the expandable resin support 10 is relatively low pressure because the air flow rate is fast, the lower portion is relatively high pressure because the flow rate is slow. This pressure difference causes the plane to lift.
  • the aluminum sheet 20 is bonded to the surface of the expandable resin support 10.
  • the aluminum sheet 20 may be bonded to the expandable resin support 10 using an adhesive made of an epoxy resin or the like.
  • the aluminum sheet 20 serves to minimize the resistance of the air that hits the surface of the wing and to protect the foamed resin support 10 having a weak strength to prevent the foamed resin support 10 from chipping.
  • the aluminum sheet 20 has a smooth surface, thereby minimizing the resistance of the air to hit the surface of the wing.
  • the thickness of the aluminum sheet 20 is 200 micrometers or less. This is to minimize the weight of the wing. Since aluminum is a light metal but relatively heavy compared to expanded polystyrene, it is desirable to minimize the thickness of the aluminum sheet 20 in order to reduce the weight of the wing.
  • the composite frame 30 is coupled to both ends of the expandable resin support 10.
  • the composite frame 30 is preferably a reinforced plastic in which fibers such as carbon fibers, aramid fibers, glass fibers, and the like are reinforced. Epoxy resin, polyimide resin, etc. can be used as resin.
  • the composite frame 30 may have various shapes according to the type of the unmanned aerial vehicle. In the case of a small unmanned aerial vehicle, as shown in FIGS. 1 and 2, the composite frame 30 is disposed only at both ends of the wing, but a plurality of composite frames may be used according to the size or structure of the unmanned aerial vehicle.
  • the side 13 of the expandable resin support 10 is not directly coupled to the fuselage of the unmanned aerial vehicle, but is bonded to the fuselage of the unmanned aerial vehicle using the composite frame 30a. . Since the composite material is stronger and lighter than aluminum, it is suitable as a material for reinforcing the foamable resin support 10.
  • FIG. 3 is a perspective view of another embodiment of a wing for an unmanned aerial vehicle according to the present invention. As shown in FIG. 3, one or more composite frame 30c may be installed between both ends of the wing as well as between both ends.
  • FIG. 4 is a cross-sectional view of another embodiment of a wing for an unmanned aerial vehicle according to the present invention.
  • the composite sheet 21 is bonded to the bottom surface of the expandable resin support 10.
  • the composite sheet 21 may be made of fiber-reinforced plastics similarly to the composite frame 30.
  • the aluminum sheet 20 is cut to fit the wing size, and then rolled round to join both ends.
  • Welding methods include ultrasonic welding, high frequency induction welding, laser welding, metal inert gas welding, tungsten inert gas welding, or an adhesive method using an adhesive. Can be.
  • the joining method is determined according to the size, lifespan, use of the unmanned aerial vehicle.
  • the aluminum sheet 20, which is rolled up, is disposed in the wing-shaped mold 1 to make the aluminum sheet 20 form a wing shape.
  • the composite frame 30 is produced.
  • the composite frame 30 is manufactured by mixing a resin such as carbon fiber, arimid fiber, and the like as a reinforcing material.
  • a through hole 32 into which a foamable resin can be injected is formed.
  • the composite frame 30 is disposed inside the space surrounded by the aluminum sheet 20 and fixed.
  • the foamed resin is injected into the space surrounded by the aluminum sheet 20 and the composite frame 30 through the through-hole of the composite frame 30 and foamed, and then the mold 1 is fixed at a predetermined temperature. Hold for a while to produce a foamable resin support 10 according to the shape of the mold.
  • the specific gravity of the expandable resin is adjusted according to the use of the unmanned aerial vehicle.
  • the aluminum sheet 20 is cut to fit the wing size and then rolled round to bond the two ends, but as shown in Figure 4, one side of the wing for the unmanned aerial vehicle composite sheet 21 In the case of manufacturing the both ends of the aluminum sheet 20 and both ends of the composite sheet 21 may be joined to make the upper and lower surfaces of the wing.
  • the composite frame 31 is disposed in the wing-shaped mold 2.
  • the mold 2 is maintained at a predetermined temperature for a predetermined time to prepare the foamable resin support 10 according to the shape of the mold 2.
  • the aluminum sheet 20 is attached to the surface of the expandable resin support 10 as shown in FIG.
  • the aluminum sheet 20 can be attached using an adhesive. And both ends of the aluminum sheet 20 are bonded using the above-described welding method or bonding method.
  • the aluminum sheet 20 may be attached to one surface of the surface of the expandable resin support 10, and the composite sheet 21 may be attached to the other surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Toys (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention relates to a wing for an unmanned aerial vehicle which is manipulated by a remote control. The wing for an unmanned aerial vehicle according to the present invention may comprise: a foaming resin support; an aluminum sheet surrounding the surface of the foaming resin support; and a composite-material frame, at least a part of which is embedded in the foaming resin support and which is coupled to the fuselage of the unmanned aerial vehicle. The wing for an unmanned aerial vehicle according to the present invention is very light in weight, and thus can reduce fuel consumption of the unmanned aerial vehicle. Further, the wing for an unmanned aerial vehicle according to the present invention has a smooth surface, and thus can minimize air resistance against the wing.

Description

무인항공기용 날개 및 그 제조방법Unmanned aerial vehicle wing and its manufacturing method
본 발명은 원격 조작에 의해서 조정되는 무인항공기의 날개에 관한 것이다. 더욱 상세하게는 저속으로 장시간 비행하는 무인항공기의 날개에 관한 것이다.The present invention relates to the wing of an unmanned aerial vehicle controlled by remote control. More particularly, the present invention relates to a wing of an unmanned aerial vehicle flying at a low speed for a long time.
무인항공기는 원격 조작에 의해서 조종되는 항공기이다. 무인항공기는 위험한 비행에 유인항공기 대용으로 사용된다. 무인항공기는 농업용, 재해 관측용 등 민간기와 무인 정찰기, 무인 공격기 등 군사용이 있다. Unmanned aerial vehicles are aircraft that are controlled by remote control. Drones are used as a substitute for manned aircraft for dangerous flights. Unmanned aerial vehicles are used for civilian purposes such as agriculture and disaster monitoring, and military aircraft such as unmanned reconnaissance aircraft and unmanned attack aircraft.
일반적인 항공기의 동체와 날개는 알루미늄, 구리, 마그네슘, 망간, 규소를 혼합해서 만든 듀랄루민이라는 합금으로 주로 만들며, 최근에는 에폭시 수지나 폴리이미드 수지와 같은 수지에 탄소 섬유나 아라미드 섬유를 강화재로 넣은 복합재료인 섬유 강화 플라스틱이 항공기의 동체와 날개의 소재로 사용되고 있다. The fuselage and wings of a typical aircraft are mainly made of an alloy called duralumin made of a mixture of aluminum, copper, magnesium, manganese, and silicon, and recently, a composite material in which carbon fiber or aramid fiber is reinforced with resin such as epoxy resin or polyimide resin. Phosphorus fiber reinforced plastic is used for the fuselage and wing of the aircraft.
섬유강화 플라스틱은 듀랄루민보다 더 가벼우면서도 내구성과 강도가 뛰어나다는 장점이 있다. 항공기에 사용하는 복합재료는 듀랄루민에 비해서 네 배나 더 단단하고, 40%가 더 질기다. 또한, 무게가 15%정도 줄어들기 때문에 연료소비량이 20%이상 줄어든다. Fiber-reinforced plastics have the advantages of being lighter than duralumin, yet more durable and stronger. Composites used in aircraft are four times harder and 40% tougher than duralumin. In addition, by reducing the weight by 15%, fuel consumption is reduced by more than 20%.
이러한 섬유강화 플라스틱은 무인항공기의 날개의 소재로도 사용되고 있다. 그러나 무인항공기는 그 용도에 따라서 다양한 종류가 있으며, 상대적으로 낮은 고도에서, 저속으로 장시간 비행을 해야하는 무인항공기의 경우에는 강도는 섬유강화 플라스틱에 비해서 상대적으로 약하나, 더욱 가벼운 날개를 사용할 필요가 있다.Such fiber-reinforced plastic is also used as the material of the wing of an unmanned aerial vehicle. However, there are various types of unmanned aerial vehicles, and in the case of unmanned aerial vehicles that have to fly for a long time at a relatively low altitude and low speed, the strength is relatively weaker than that of fiber-reinforced plastic, but it is necessary to use a lighter wing.
본 발명은 상술한 요구에 대응하고자 하는 것으로서, 본 발명은 무게가 매우 가벼우며, 표면이 매끄러운 새로운 무인항공기용 날개를 제공하는 것을 목적으로 한다. The present invention seeks to meet the above-described needs, and an object of the present invention is to provide a new unmanned aerial vehicle wing which is very light in weight and has a smooth surface.
또한, 본 발명은 무인항공기용 날개의 제조방법을 제공하는 것을 목적으로 한다.It is another object of the present invention to provide a method for manufacturing a wing for an unmanned aerial vehicle.
상술한 목적을 달성하기 위한 본 발명에 따른 무인항공기용 날개는 상면 및 하면과, 상면과 하면 사이에 설치되는 적어도 하나의 복합재료 프레임과, 상면, 하면 및 복합재료 프레임 사이를 채우는 발포성 수지 지지체를 포함하며, 상면 및 하면 중 적어도 하나는 알루미늄 시트일 수 있다.The wing for an unmanned aerial vehicle according to the present invention for achieving the above object is a foamed resin support that fills between the upper and lower surfaces, at least one composite frame installed between the upper and lower surfaces, and the upper, lower and composite frames. And at least one of the upper and lower surfaces may be an aluminum sheet.
상기 복합재료 프레임은 무인항공기의 동체와 결합되는 일단에 설치될 수 있다. 또한, 무인항공기의 동체와 결합되는 일단의 반대쪽 끝단에도 설치될 수 있다. 또한, 무인항공기의 동체와 결합되는 일단과 반대쪽 끝단의 사이에도 설치될 수도 있다. The composite frame may be installed at one end coupled to the body of the unmanned aerial vehicle. It may also be installed at the other end of the end that is coupled to the fuselage of the unmanned aerial vehicle. It may also be installed between one end and the opposite end that are coupled to the fuselage of the unmanned aerial vehicle.
또한, 상기 상면 및 하면 중 하나는 복합재료 시트일 수 있다.In addition, one of the upper and lower surfaces may be a composite sheet.
상기 복합재료 프레임은 섬유 강화 플라스틱인 것이 바람직하며, 섬유 강화 플라스틱은 유리섬유, 탄소섬유 또는 아라미드 섬유 중 적어도 하나의 섬유와 수지의 복합재료인 것이 바람직하다. The composite frame is preferably a fiber-reinforced plastic, and the fiber-reinforced plastic is preferably a composite material of at least one fiber and resin of glass fiber, carbon fiber or aramid fiber.
상술한 목적을 달성하기 위한 본 발명에 따른 무인항공기용 날개의 제조방법은, 알루미늄 시트를 무인항공기용 날개 형상에 맞게 절단하는 단계와, 상기 알루미늄 시트를 둥글게 말아서 양쪽 끝을 접합하는 단계와, 둥글게 말린 상기 알루미늄 시트를 상기 무인항공기용 날개 형상의 금형 내부에 배치하여, 상기 알루미늄 시트가 날개 형상을 이루도록 하는 단계와, 금형 내부에 배치된 상기 알루미늄 시트에 둘러싸인 공간에 복합재료 프레임을 배치하는 단계와, 상기 알루미늄 시트와 상기 복합재료 프레임 사이에 발포성 수지를 주입하여 발포하는 단계를 포함할 수 있다. Method for manufacturing a wing for an unmanned aerial vehicle according to the present invention for achieving the above object, the step of cutting an aluminum sheet to fit the shape of a wing for an unmanned aerial vehicle, the step of rolling the aluminum sheet roundly and bonding both ends, and rounded Arranging the dried aluminum sheet in the wing-shaped mold for the unmanned aerial vehicle, thereby forming the aluminum sheet in the shape of a wing, and arranging a composite frame in a space surrounded by the aluminum sheet disposed inside the mold; Injecting a foaming resin between the aluminum sheet and the composite frame may include foaming.
상술한 무인항공기용 날개의 제조방법에 있어서, 상기 알루미늄 시트를 접합하는 단계는 초음파 용접, 고주파유도 용접, 레이저 용접, 불활성가스 금속아크용접(Metal Inert Gas welding), 텅스텐 불활성 아크 용접(Tungsten Inert Gas welding) 중에서 선택된 방법에 의해서 접합하는 단계일 수 있다. In the above-described method for manufacturing a wing for an unmanned aerial vehicle, joining the aluminum sheet may include ultrasonic welding, high frequency induction welding, laser welding, metal inert gas welding, and tungsten inert arc welding. welding).
또한, 상기 알루미늄 시트를 접합하는 단계는 접착제를 이용해서 접합하는 단계일 수 있다.In addition, the bonding of the aluminum sheet may be a bonding using an adhesive.
또한, 상술한 목적을 달성하기 위한 본 발명에 따른 무인항공기용 날개의 다른 제조방법은, 복합재료 프레임을 무인항공기용 날개 형상의 금형 내부에 배치하는 단계와, 상기 금형의 내부에 발포성 수지를 주입하여 발포하는 단계와, 상기 금형에서 발포성 수지를 분리한 후 상기 발포성 수지의 표면에 알루미늄 시트를 부착하는 단계를 포함할 수 있다.In addition, another method of manufacturing the wing for an unmanned aerial vehicle according to the present invention for achieving the above object is the step of disposing a composite frame inside the mold of the wing shape for the unmanned aerial vehicle, and injecting a foaming resin into the inside of the mold And foaming, and separating the foamable resin from the mold, and attaching an aluminum sheet to the surface of the foamable resin.
또한, 상술한 목적을 달성하기 위한 본 발명에 따른 무인항공기용 날개의 또 다른 제조방법은, 알루미늄 시트와 복합재료 시트를 무인항공기용 날개 형상에 맞게 절단하는 단계와, 상기 알루미늄 시트의 양쪽 끝을 상기 복합재료 시트의 양쪽 끝과 접합하는 단계와, 접합된 상기 알루미늄 시트와 복합재료 시트를 상기 무인항공기용 날개 형상의 금형 내부에 배치하여, 상기 알루미늄 시트와 복합재료 시트가 날개 형상을 이루도록 하는 단계와, 금형 내부에 배치된 상기 알루미늄 시트와 복합재료 시트에 의해 둘러싸인 공간에 복합재료 프레임을 배치하는 단계와, 상기 알루미늄 시트와 복합재료 시트 및 복합재료 프레임 사이의 공간에 발포성 수지를 주입하여 발포하는 단계를 포함할 수 있다.In addition, another method for manufacturing a wing for an unmanned aerial vehicle according to the present invention for achieving the above object, the step of cutting the aluminum sheet and composite sheet to fit the shape of the wing for the unmanned aerial vehicle, and both ends of the aluminum sheet Bonding both ends of the composite sheet to each other; and placing the bonded aluminum sheet and the composite sheet into a wing-shaped mold for the unmanned aerial vehicle, such that the aluminum sheet and the composite sheet form a wing shape. And arranging a composite frame in a space surrounded by the aluminum sheet and the composite sheet disposed inside the mold, and injecting and foaming a foam resin into the space between the aluminum sheet and the composite sheet and the composite frame. It may include a step.
또한, 상술한 목적을 달성하기 위한 본 발명에 따른 무인항공기용 날개의 또 다른 제조방법은, 복합재료 프레임을 무인항공기용 날개 형상의 금형 내부에 배치하는 단계와, 상기 금형의 내부에 발포성 수지를 주입하여 발포하는 단계와, 상기 금형에서 발포성 수지를 분리한 후 상기 발포성 수지의 상면 또는 하면 중 일면에는 알루미늄 시트를 부착하고 나머지 일면에는 복합재료 시트를 부착하는 단계를 포함할 수 있다.In addition, another method of manufacturing the wing for an unmanned aerial vehicle according to the present invention for achieving the above object comprises the steps of disposing a composite frame inside the mold of the wing shape for an unmanned aerial vehicle, and the foamable resin in the inside of the mold Injecting and foaming, and after separating the foaming resin from the mold may include attaching an aluminum sheet to one surface of the upper or lower surface of the foamable resin, and attaching a composite sheet to the other surface.
본 발명에 따른 무인항공기용 날개는 무게가 매우 가벼우므로 무인항공기의 연료소비량을 줄일 수 있다. 또한, 표면이 매끄럽기 때문에 날개에 부딪히는 공기와의 저항을 최소화할 수 있다.The wing for the unmanned aerial vehicle according to the present invention is very light in weight, thereby reducing the fuel consumption of the unmanned aerial vehicle. In addition, the smooth surface can minimize the resistance to air hitting the wing.
도 1은 본 발명에 따른 무인항공기용 날개의 일실시예의 사시도이다. 1 is a perspective view of one embodiment of a wing for an unmanned aerial vehicle according to the present invention.
도 2는 도 1에 도시된 무인항공기용 날개의 단면도이다. FIG. 2 is a cross-sectional view of the wing for the unmanned aerial vehicle shown in FIG. 1.
도 3은 본 발명에 따른 무인항공기용 날개의 다른 실시예의 사시도이다.3 is a perspective view of another embodiment of a wing for an unmanned aerial vehicle according to the present invention.
도 4는 본 발명에 따른 무인항공기용 날개의 또 다른 실시예의 단면도이다.4 is a cross-sectional view of another embodiment of a wing for an unmanned aerial vehicle according to the present invention.
도 5 내지 7은 본 발명에 따른 무인항공기용 날개의 제조방법의 일실시예를 설명하기 위한 도면들이다. 5 to 7 are views for explaining an embodiment of a method for manufacturing a wing for an unmanned aerial vehicle according to the present invention.
도 8 내지 9는 본 발명에 따른 무인항공기용 날개의 제조방법의 다른 실시예를 설명하기 위한 도면들이다.8 to 9 are views for explaining another embodiment of the method for manufacturing a wing for an unmanned aerial vehicle according to the present invention.
이하, 첨부된 도면을 참고하여 본 발명에 대해서 상세히 설명한다. Hereinafter, with reference to the accompanying drawings will be described in detail with respect to the present invention.
다음에 소개되는 실시예는 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.The following embodiments are provided as examples to ensure that the spirit of the present invention to those skilled in the art will fully convey. Accordingly, the invention is not limited to the embodiments described below and may be embodied in other forms. And in the drawings, the width, length, thickness, etc. of the components may be exaggerated for convenience. Like numbers refer to like elements throughout.
도 1은 본 발명에 따른 무인항공기용 날개의 일실시예의 사시도이며, 도 2는 도 1에 도시된 무인항공기용 날개의 단면도이다. 1 is a perspective view of one embodiment of a wing for an unmanned aerial vehicle according to the present invention, Figure 2 is a cross-sectional view of the wing for the unmanned aerial vehicle shown in FIG.
도 1과 2를 참고하면, 본 발명에 따른 무인항공기용 날개의 일실시예는 발포성 수지 지지체(10)와 알루미늄시트(20) 및 복합재료 프레임(30)을 포함한다. 1 and 2, one embodiment of the wing for the unmanned aerial vehicle according to the present invention includes a foamed resin support 10, an aluminum sheet 20 and the composite frame 30.
발포성 수지는, 수지를 발포제의 작용으로 팽창시킨 것으로서, 발포폴리스타이렌(expanded polystyrene), 경질 우레탄 폼, 폴리에틸렌 폼 등이 있다. 발포폴리스타이렌은 일반적으로 스티로폼(styrofoam)이라고 불린다. The expandable resin is expanded resin by the action of a blowing agent, and includes expanded polystyrene, hard urethane foam, polyethylene foam and the like. Foamed polystyrene is generally called styrofoam.
발포성 수지 지지체(10)는 날개가 양력을 얻는데 필요한 형태를 이룬다. 즉, 발포성 수지 지지체(10)의 위를 흐르는 공기의 유속이 아래를 흐르는 공기의 유속에 비해서 빨라지도록, 발포성 수지 지지체(10)의 상면이 발포성 수지 지지체(10)의 하면에 비해서 많이 굽어있다. 발포성 수지 지지체(10)의 위는 공기의 유속이 빠르므로 상대적으로 저압이 되며, 아래는 유속이 느리므로 상대적으로 고압이 된다. 이러한 압력차로 비행기가 양력을 받게 된다.The expandable resin support 10 forms the shape necessary for the wing to gain lift. That is, the upper surface of the expandable resin support 10 is bent much more than the lower surface of the expandable resin support 10 so that the flow rate of air flowing over the expandable resin support 10 becomes faster than the flow rate of the air flowing downward. The upper portion of the expandable resin support 10 is relatively low pressure because the air flow rate is fast, the lower portion is relatively high pressure because the flow rate is slow. This pressure difference causes the plane to lift.
발포성 수지 지지체(10)의 표면에는 알루미늄 시트(20)가 결합한다. 알루미늄 시트(20)는 에폭시 수지 등으로 이루어진 접착제를 이용하여 발포성 수지 지지체(10)에 결합할 수 있다. The aluminum sheet 20 is bonded to the surface of the expandable resin support 10. The aluminum sheet 20 may be bonded to the expandable resin support 10 using an adhesive made of an epoxy resin or the like.
알루미늄 시트(20)는 날개의 표면에 부딪히는 공기의 저항을 최소화하는 역할과 강도가 약한 발포성 수지 지지체(10)를 보호하여 발포성 수지 지지체(10)가 부스러지는 것을 방지하는 역할을 한다. 알루미늄 시트(20)는 표면이 매끄러워, 날개의 표면에 부딪히는 공기의 저항을 최소화할 수 있다. The aluminum sheet 20 serves to minimize the resistance of the air that hits the surface of the wing and to protect the foamed resin support 10 having a weak strength to prevent the foamed resin support 10 from chipping. The aluminum sheet 20 has a smooth surface, thereby minimizing the resistance of the air to hit the surface of the wing.
알루미늄 시트(20)의 두께는 200㎛이하인 것이 바람직하다. 날개의 중량을 최소화하기 위함이다. 알루미늄은 가벼운 금속이지만 발포폴리스타이렌에 비해서 상대적으로 무겁기 때문에, 알루미늄 시트(20)의 두께를 최소화하는 것이 날개의 경량화를 위해서 바람직하다. It is preferable that the thickness of the aluminum sheet 20 is 200 micrometers or less. This is to minimize the weight of the wing. Since aluminum is a light metal but relatively heavy compared to expanded polystyrene, it is desirable to minimize the thickness of the aluminum sheet 20 in order to reduce the weight of the wing.
복합재료 프레임(30)은 발포성 수지 지지체(10)의 양단에 결합한다. 복합재료 프레임(30)은 수지에 탄소 섬유, 아라미드 섬유, 유리 섬유 등의 섬유를 강화재로 넣은 강화된 플라스틱인 것이 바람직하다. 수지로는 에폭시 수지나 폴리이미드 수지 등을 사용할 수 있다.The composite frame 30 is coupled to both ends of the expandable resin support 10. The composite frame 30 is preferably a reinforced plastic in which fibers such as carbon fibers, aramid fibers, glass fibers, and the like are reinforced. Epoxy resin, polyimide resin, etc. can be used as resin.
복합재료 프레임(30)은 무인항공기의 종류에 따라서 다양한 형태를 가질 수 있다. 소형 무인항공기인 경우에는, 도 1과 2에 도시된 바와 같이, 날개의 양끝에만 복합재료 프레임(30)이 배치되나, 무인항공기의 크기나 구조에 따라서 여러 개의 복합재료 프레임이 사용될 수 있다.The composite frame 30 may have various shapes according to the type of the unmanned aerial vehicle. In the case of a small unmanned aerial vehicle, as shown in FIGS. 1 and 2, the composite frame 30 is disposed only at both ends of the wing, but a plurality of composite frames may be used according to the size or structure of the unmanned aerial vehicle.
발포성 수지 지지체(10)의 강도가 약하기 때문에, 발포성 수지 지지체(10)의 측면(13)을 직접 무인항공기의 동체에 결합시키지 않고, 복합재료 프레임(30a)을 이용해서 무인항공기의 동체에 결합한다. 복합재료는 알루미늄에 비해서 강도가 강하고, 가볍기 때문에 발포성 수지 지지체(10)를 보강하는 소재로 적합하다.Since the strength of the expandable resin support 10 is weak, the side 13 of the expandable resin support 10 is not directly coupled to the fuselage of the unmanned aerial vehicle, but is bonded to the fuselage of the unmanned aerial vehicle using the composite frame 30a. . Since the composite material is stronger and lighter than aluminum, it is suitable as a material for reinforcing the foamable resin support 10.
도 3은 본 발명에 따른 무인항공기용 날개의 다른 실시예의 사시도이다. 도 3에 도시된 바와 같이, 날개의 양 끝단뿐 아니라 양 끝단의 사이에도 하나 이상의 복합재료 프레임(30c)이 설치될 수 있다. 3 is a perspective view of another embodiment of a wing for an unmanned aerial vehicle according to the present invention. As shown in FIG. 3, one or more composite frame 30c may be installed between both ends of the wing as well as between both ends.
도 4는 본 발명에 따른 무인항공기용 날개의 또 다른 실시예의 단면도이다. 도 4에 도시된 실시예는 도 1에 도시된 실시예와 달리 발포성 수지 지지체(10)의 아랫면에는 복합재료 시트(21)가 결합된다. 복합재료 시트(21)는 복합재료 프레임(30)과 마찬가지로 섬유 강화 플라스틱을 사용할 수 있다. 4 is a cross-sectional view of another embodiment of a wing for an unmanned aerial vehicle according to the present invention. In the embodiment shown in FIG. 4, unlike the embodiment shown in FIG. 1, the composite sheet 21 is bonded to the bottom surface of the expandable resin support 10. The composite sheet 21 may be made of fiber-reinforced plastics similarly to the composite frame 30.
도 3과 4에 도시된 실시예는 도 1과 2에 도시된 실시예에 비해서 무겁지만, 강도가 더 강하다는 장점이 있다. 3 and 4 are heavier than the embodiments shown in FIGS. 1 and 2, but have an advantage of stronger strength.
이하, 본 발명에 따른 무인항공기용 날개의 제조방법의 일실시예를 상세하게 설명한다. Hereinafter, an embodiment of a method for manufacturing a wing for an unmanned aerial vehicle according to the present invention will be described in detail.
우선, 도 5에 도시된 바와 같이, 알루미늄 시트(20)를 날개 크기에 맞게 절단한 후 둥글게 말아서 양쪽 끝을 접합한다. 접합하는 방법으로는 초음파 용접, 고주파유도 용접, 레이저 용접, 불활성가스 금속아크용접(Metal Inert Gas welding), 텅스텐 불활성 아크 용접(Tungsten Inert Gas welding) 등의 용접 방법이나, 접착제를 이용한 접착 방법을 사용할 수 있다. 접합 방법은 무인항공기의 크기, 수명, 용도 등에 따라서 결정한다. First, as shown in FIG. 5, the aluminum sheet 20 is cut to fit the wing size, and then rolled round to join both ends. Welding methods include ultrasonic welding, high frequency induction welding, laser welding, metal inert gas welding, tungsten inert gas welding, or an adhesive method using an adhesive. Can be. The joining method is determined according to the size, lifespan, use of the unmanned aerial vehicle.
다음, 도 6에 도시된 바와 같이, 둥글게 말아져 있는 알루미늄 시트(20)를 날개 형상의 금형(1) 내부에 배치하여, 알루미늄 시트(20)가 날개 형상을 이루도록 한다. Next, as shown in FIG. 6, the aluminum sheet 20, which is rolled up, is disposed in the wing-shaped mold 1 to make the aluminum sheet 20 form a wing shape.
다음, 복합재료 프레임(30)을 제작한다. 복합재료 프레임(30)은 강화재인 탄소 섬유, 아리미드 섬유 등과 수지를 혼합한 후 성형하여 제작한다. 복합재료 프레임(30)의 중심부에는 발포성 수지를 주입할 수 있는 관통구멍(32)이 형성되어 있다. Next, the composite frame 30 is produced. The composite frame 30 is manufactured by mixing a resin such as carbon fiber, arimid fiber, and the like as a reinforcing material. In the center of the composite frame 30, a through hole 32 into which a foamable resin can be injected is formed.
다음, 도 7에 도시된 바와 같이, 복합재료 프레임(30)을 알루미늄 시트(20)에 의해 둘러싸인 공간 내부에 배치하고, 고정한다. Next, as shown in FIG. 7, the composite frame 30 is disposed inside the space surrounded by the aluminum sheet 20 and fixed.
다음, 복합재료 프레임(30)의 관통구멍을 통해서, 알루미늄 시트(20)와 복합재료 프레임(30)에 의해 둘러싸인 공간 내부에 발포성 수지를 주입하여 발포한 후 금형(1)을 정해진 온도에서 일정한 시간 동안 유지하여 금형의 형상에 따른 발포성 수지 지지체(10)를 제작한다. 발포성 수지의 비중은 무인항공기의 용도에 따라서 조절한다. Next, the foamed resin is injected into the space surrounded by the aluminum sheet 20 and the composite frame 30 through the through-hole of the composite frame 30 and foamed, and then the mold 1 is fixed at a predetermined temperature. Hold for a while to produce a foamable resin support 10 according to the shape of the mold. The specific gravity of the expandable resin is adjusted according to the use of the unmanned aerial vehicle.
마지막으로, 금형을 분리하여 날개를 완성한다.Finally, the mold is separated to complete the wing.
본 실시예에서, 알루미늄 시트(20)를 날개 크기에 맞게 절단한 후 둥글게 말아서 양쪽 끝을 접합하는 것으로 설명하였으나, 도 4에 도시된 바와 같이, 일면이 복합재료 시트(21)인 무인항공기용 날개를 제조하는 경우에는 알루미늄 시트(20)의 양쪽 끝과 복합재료 시트(21)의 양쪽 끝을 접합하여 날개의 상면과 하면을 만들 수도 있다. In the present embodiment, the aluminum sheet 20 is cut to fit the wing size and then rolled round to bond the two ends, but as shown in Figure 4, one side of the wing for the unmanned aerial vehicle composite sheet 21 In the case of manufacturing the both ends of the aluminum sheet 20 and both ends of the composite sheet 21 may be joined to make the upper and lower surfaces of the wing.
이하, 본 발명에 따른 무인항공기용 날개의 제조방법의 다른 실시예를 상세하게 설명한다. Hereinafter, another embodiment of the method for manufacturing a wing for an unmanned aerial vehicle according to the present invention will be described in detail.
본 실시예에서는 발포성 수지를 발포한 후에 알루미늄 시트(20)를 발포성 수지 지지체(10)의 표면에 부착한다는 점에서 차이가 있다.In this embodiment, there is a difference in that the aluminum sheet 20 is attached to the surface of the foamable resin support 10 after the foamable resin is foamed.
우선, 도 8에 도시된 바와 같이, 날개 형상의 금형(2) 내부에 복합재료 프레임(31)을 배치한다.First, as shown in FIG. 8, the composite frame 31 is disposed in the wing-shaped mold 2.
다음, 금형(2) 내부에서 발포성 수지를 발포한 후 금형(2)을 정해진 온도에서 일정한 시간 동안 유지하여 금형(2)의 형상에 따른 발포성 수지 지지체(10)를 제작한다. Next, after the foaming resin is foamed in the mold 2, the mold 2 is maintained at a predetermined temperature for a predetermined time to prepare the foamable resin support 10 according to the shape of the mold 2.
다음, 금형을 분리한 후, 도 9에 도시된 바와 같이, 발포성 수지 지지체(10)의 표면에 알루미늄 시트(20)를 부착한다. 알루미늄 시트(20)는 접착제를 이용해서 부착할 수 있다. 그리고 알루미늄 시트(20)의 양쪽 끝은 상술한 용접 방법이나 접착방법을 이용하여 결합한다. Next, after removing the mold, the aluminum sheet 20 is attached to the surface of the expandable resin support 10 as shown in FIG. The aluminum sheet 20 can be attached using an adhesive. And both ends of the aluminum sheet 20 are bonded using the above-described welding method or bonding method.
필요한 경우에는 발포성 수지 지지체(10)의 표면의 일면에는 알루미늄 시트(20)를 부착하고, 다른 일면에는 복합재료 시트(21)를 부착할 수 있다. If necessary, the aluminum sheet 20 may be attached to one surface of the surface of the expandable resin support 10, and the composite sheet 21 may be attached to the other surface.
이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안 될 것이다. While the above has been shown and described with respect to preferred embodiments of the present invention, the present invention is not limited to the specific embodiments described above, it is usually in the technical field to which the invention belongs without departing from the spirit of the invention claimed in the claims. Various modifications can be made by those skilled in the art, and these modifications should not be individually understood from the technical spirit or the prospect of the present invention.
[부호의 설명][Description of the code]
10: 발포성 수지 지지체 20: 알루미늄 시트10: expandable resin support 20: aluminum sheet
21: 복합재료 시트 30: 복합재료 프레임21: Composite Sheet 30: Composite Frame

Claims (13)

  1. 무인항공기용 날개에 있어서,In the wing for an unmanned aerial vehicle,
    상면 및 하면과,Top and bottom,
    상기 상면과 하면 사이에 설치되는 적어도 하나의 복합재료 프레임과,At least one composite frame disposed between the upper and lower surfaces,
    상기 상면, 하면 및 복합재료 프레임 사이를 채우는 발포성 수지 지지체를 포함하며, It includes a foam resin support that fills between the upper surface, the lower surface and the composite frame,
    상기 상면 및 하면 중 적어도 하나는 알루미늄 시트인 것을 특징으로 하는 무인항공기용 날개.At least one of the upper surface and the lower surface is a wing for an unmanned aerial vehicle, characterized in that the aluminum sheet.
  2. 제1항에 있어서,The method of claim 1,
    상기 복합재료 프레임은 무인항공기의 동체와 결합되는 일단에 설치되는 것을 특징으로 하는 무인항공기용 날개.The composite frame is a wing for an unmanned aerial vehicle, characterized in that installed on one end coupled with the body of the unmanned aerial vehicle.
  3. 제2항에 있어서,The method of claim 2,
    상기 복합재료 프레임은 무인항공기의 동체와 결합되는 일단의 반대쪽 끝단에도 설치되는 것을 특징으로 하는 무인항공기용 날개.The composite frame is a wing for an unmanned aerial vehicle, characterized in that it is also installed on the opposite end of the end coupled to the body of the unmanned aerial vehicle.
  4. 제2항 또는 제3항에 있어서,The method according to claim 2 or 3,
    상기 복합재료 프레임은 무인항공기의 동체와 결합되는 일단과 반대쪽 끝단의 사이에도 설치되는 것을 특징으로 하는 무인항공기용 날개. The composite frame is a wing for an unmanned aerial vehicle, characterized in that it is also installed between one end and the opposite end coupled to the body of the unmanned aerial vehicle.
  5. 제1항에 있어서,The method of claim 1,
    상기 상면 및 하면 중 하나는 복합재료 시트인 것을 특징으로 하는 무인항공기용 날개.One of the upper and lower surfaces is a wing for an unmanned aerial vehicle, characterized in that the composite sheet.
  6. 제1항에 있어서,The method of claim 1,
    상기 복합재료 프레임은 섬유 강화 플라스틱인 것을 특징으로 하는 무인항공기용 날개. The composite frame is a wing for an unmanned aerial vehicle, characterized in that the fiber reinforced plastic.
  7. 제6항에 있어서,The method of claim 6,
    상기 섬유 강화 플라스틱은 유리섬유, 탄소섬유 또는 아라미드 섬유 중 적어도 하나의 섬유와 수지의 복합재료인 것을 특징으로 하는 무인항공기용 날개.The fiber reinforced plastic wing for an unmanned aerial vehicle, characterized in that the composite material of at least one fiber and resin of glass fiber, carbon fiber or aramid fiber.
  8. 무인항공기용 날개의 제조방법에 있어서,In the method of manufacturing a wing for an unmanned aerial vehicle,
    알루미늄 시트를 무인항공기용 날개 형상에 맞게 절단하는 단계와,Cutting the aluminum sheet to fit the shape of a wing for an unmanned aerial vehicle;
    상기 알루미늄 시트를 둥글게 말아서 양쪽 끝을 접합하는 단계와,Rolling up the aluminum sheet to join both ends;
    둥글게 말린 상기 알루미늄 시트를 상기 무인항공기용 날개 형상의 금형 내부에 배치하여, 상기 알루미늄 시트가 날개 형상을 이루도록 하는 단계와,Arranging the roundly rolled aluminum sheet in the wing-shaped mold for the unmanned aerial vehicle, such that the aluminum sheet forms a wing shape;
    금형 내부에 배치된 상기 알루미늄 시트에 둘러싸인 공간에 복합재료 프레임을 배치하는 단계와,Disposing a composite frame in a space surrounded by the aluminum sheet disposed inside the mold;
    상기 알루미늄 시트와 상기 복합재료 프레임 사이에 발포성 수지를 주입하여 발포하는 단계를 포함하는 것을 특징으로 하는 무인항공기용 날개의 제조방법. And injecting a foamable resin between the aluminum sheet and the composite frame and foaming the foamed resin.
  9. 제8항에 있어서,The method of claim 8,
    상기 알루미늄 시트를 접합하는 단계는 초음파 용접, 고주파유도 용접, 레이저 용접, 불활성가스 금속아크용접(Metal Inert Gas welding), 텅스텐 불활성 아크 용접(Tungsten Inert Gas welding) 중에서 선택된 방법에 의해서 접합하는 단계인 것을 특징으로 하는 무인항공기용 날개의 제조방법.Joining the aluminum sheet is a step of joining by a method selected from ultrasonic welding, high frequency induction welding, laser welding, metal inert gas welding (tungsten inert gas welding), tungsten inert gas welding (tungsten inert gas welding). Method for manufacturing a wing for an unmanned aerial vehicle characterized in that.
  10. 제8항에 있어서,The method of claim 8,
    상기 알루미늄 시트를 접합하는 단계는 접착제를 이용해서 접합하는 단계인 것을 특징으로 하는 무인항공기용 날개의 제조방법.Bonding the aluminum sheet is a method for manufacturing a wing for an unmanned aerial vehicle, characterized in that the step of bonding using an adhesive.
  11. 무인항공기용 날개의 제조방법에 있어서,In the method of manufacturing a wing for an unmanned aerial vehicle,
    복합재료 프레임을 무인항공기용 날개 형상의 금형 내부에 배치하는 단계와,Placing the composite frame inside a wing-shaped mold for an unmanned aerial vehicle;
    상기 금형의 내부에 발포성 수지를 주입하여 발포하는 단계와,Injecting a foamable resin into the mold and foaming the same;
    상기 금형에서 발포성 수지를 분리한 후 상기 발포성 수지의 표면에 알루미늄 시트를 부착하는 단계를 포함하는 것을 특징으로 하는 무인항공기용 날개의 제조방법. After separating the expandable resin from the mold, the method of manufacturing a wing for an unmanned aerial vehicle comprising the step of attaching an aluminum sheet on the surface of the expandable resin.
  12. 무인항공기용 날개의 제조방법에 있어서,In the method of manufacturing a wing for an unmanned aerial vehicle,
    알루미늄 시트와 복합재료 시트를 무인항공기용 날개 형상에 맞게 절단하는 단계와,Cutting the aluminum sheet and the composite sheet into the shape of a wing for an unmanned aerial vehicle;
    상기 알루미늄 시트의 양쪽 끝을 상기 복합재료 시트의 양쪽 끝과 접합하는 단계와,Bonding both ends of the aluminum sheet to both ends of the composite sheet,
    접합된 상기 알루미늄 시트와 복합재료 시트를 상기 무인항공기용 날개 형상의 금형 내부에 배치하여, 상기 알루미늄 시트와 복합재료 시트가 날개 형상을 이루도록 하는 단계와,Arranging the bonded aluminum sheet and the composite sheet in the wing-shaped mold for the unmanned aerial vehicle, such that the aluminum sheet and the composite sheet form a wing shape;
    금형 내부에 배치된 상기 알루미늄 시트와 복합재료 시트에 의해 둘러싸인 공간에 복합재료 프레임을 배치하는 단계와,Disposing a composite frame in a space surrounded by the aluminum sheet and the composite sheet disposed inside the mold;
    상기 알루미늄 시트와 복합재료 시트 및 복합재료 프레임 사이의 공간에 발포성 수지를 주입하여 발포하는 단계를 포함하는 것을 특징으로 하는 무인항공기용 날개의 제조방법. And injecting a foaming resin into the space between the aluminum sheet, the composite sheet, and the composite frame to foam the unmanned aerial vehicle wing.
  13. 무인항공기용 날개의 제조방법에 있어서,In the method of manufacturing a wing for an unmanned aerial vehicle,
    복합재료 프레임을 무인항공기용 날개 형상의 금형 내부에 배치하는 단계와,Placing the composite frame inside a wing-shaped mold for an unmanned aerial vehicle;
    상기 금형의 내부에 발포성 수지를 주입하여 발포하는 단계와,Injecting a foamable resin into the mold and foaming the same;
    상기 금형에서 발포성 수지를 분리한 후 상기 발포성 수지의 상면 또는 하면 중 일면에는 알루미늄 시트를 부착하고 나머지 일면에는 복합재료 시트를 부착하는 단계를 포함하는 것을 특징으로 하는 무인항공기용 날개의 제조방법.Separating the foamed resin from the mold and attaching an aluminum sheet to one surface of the upper surface or the lower surface of the foamed resin and attaching a composite sheet to the other surface of the foamed resin.
PCT/KR2014/005436 2013-06-19 2014-06-19 Wing for unmanned aerial vehicle and manufacturing method therefor WO2014204243A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0070445 2013-06-19
KR20130070445A KR20140147931A (en) 2013-06-19 2013-06-19 Wing for unmanned aerial vehicles and manufacturing method of the same

Publications (1)

Publication Number Publication Date
WO2014204243A1 true WO2014204243A1 (en) 2014-12-24

Family

ID=52104899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005436 WO2014204243A1 (en) 2013-06-19 2014-06-19 Wing for unmanned aerial vehicle and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR20140147931A (en)
WO (1) WO2014204243A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105014996A (en) * 2015-07-29 2015-11-04 溧阳二十八所***装备有限公司 Self-heating platform used for forming of fiber composite board
WO2019217923A1 (en) * 2018-05-11 2019-11-14 University Of Washington Untethered flying micro-robots
CN114104326A (en) * 2021-12-03 2022-03-01 西北工业大学 Unmanned aerial vehicle production method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102317844B1 (en) * 2020-05-28 2021-10-26 조남석 Unmanned aerial vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5042968A (en) * 1989-11-02 1991-08-27 United Technologies Corporation Propeller blade subassembly and method for making a propeller blade subassembly
JPH07213757A (en) * 1994-02-01 1995-08-15 Toppan Printing Co Ltd Manufacture of wing for model airplane
JP2009523097A (en) * 2006-01-11 2009-06-18 ザ・ボーイング・カンパニー Aircraft wings composed of composite and metal panels
US20120114897A1 (en) * 2010-11-05 2012-05-10 Ramesh Thiagarajan Foam Stiffened Structure and Method of Making the Same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5042968A (en) * 1989-11-02 1991-08-27 United Technologies Corporation Propeller blade subassembly and method for making a propeller blade subassembly
JPH07213757A (en) * 1994-02-01 1995-08-15 Toppan Printing Co Ltd Manufacture of wing for model airplane
JP2009523097A (en) * 2006-01-11 2009-06-18 ザ・ボーイング・カンパニー Aircraft wings composed of composite and metal panels
US20120114897A1 (en) * 2010-11-05 2012-05-10 Ramesh Thiagarajan Foam Stiffened Structure and Method of Making the Same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105014996A (en) * 2015-07-29 2015-11-04 溧阳二十八所***装备有限公司 Self-heating platform used for forming of fiber composite board
WO2019217923A1 (en) * 2018-05-11 2019-11-14 University Of Washington Untethered flying micro-robots
US11814169B2 (en) 2018-05-11 2023-11-14 University Of Washington Untethered flying micro-robots
CN114104326A (en) * 2021-12-03 2022-03-01 西北工业大学 Unmanned aerial vehicle production method
CN114104326B (en) * 2021-12-03 2024-04-26 西北工业大学 Unmanned aerial vehicle production method

Also Published As

Publication number Publication date
KR20140147931A (en) 2014-12-31

Similar Documents

Publication Publication Date Title
WO2014204243A1 (en) Wing for unmanned aerial vehicle and manufacturing method therefor
CN101786499B (en) Impact resistant aircraft leading edge structures and aircraft including the same
CN103635385B (en) Strengthen aircraft fuselage
CN112105555B (en) Mechanical adapter for a frame and unmanned aerial vehicle having a fragile frame structure
CN202574612U (en) Small-sized unmanned plane
CN103842247B (en) Panel assembly and making method thereof
US10604226B2 (en) Shielded structure for aircraft
CN105398563A (en) Wing of membrane structure
EP3750805B1 (en) Ultra light weight composite aircraft galley architecture
EP2818415B1 (en) Panel member for an airframe
US20130284339A1 (en) Ballistic Protection Systems and Methods
CN109671884A (en) Battery case, cell apparatus and the method for manufacturing battery case
US20180346095A1 (en) Foam aerofoil
US20180354603A1 (en) Aircraft wing structure
CN219141651U (en) Waterproof target drone
Borchardt Unmanned aerial vehicles spur composites use
CN105383683A (en) Three-section and impact resisting type UAV (Unmanned Aerial Vehicle) wing
CN106240812B (en) It is a kind of to lift easily unmanned plane
CN207292405U (en) Lightweight unmanned plane stand arrangement
CN206528615U (en) The unmanned machine frame of fixed-wing and fixed-wing unmanned plane
CN206050071U (en) It is a kind of to lift easily unmanned plane
CN221214591U (en) Autonomous fire control rotor unmanned aerial vehicle
CN217374880U (en) Quick portable fixed wing unmanned aerial vehicle of dismantlement installation
CN205216199U (en) Model aeroplane and model ship aircraft is located frame
CN218258743U (en) Engine mounting structure of unmanned helicopter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14813381

Country of ref document: EP

Kind code of ref document: A1