WO2014203828A1 - 空気調和機及び空気調和機の制御方法 - Google Patents

空気調和機及び空気調和機の制御方法 Download PDF

Info

Publication number
WO2014203828A1
WO2014203828A1 PCT/JP2014/065764 JP2014065764W WO2014203828A1 WO 2014203828 A1 WO2014203828 A1 WO 2014203828A1 JP 2014065764 W JP2014065764 W JP 2014065764W WO 2014203828 A1 WO2014203828 A1 WO 2014203828A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
refrigerant
air conditioner
crankcase heater
temperature
Prior art date
Application number
PCT/JP2014/065764
Other languages
English (en)
French (fr)
Inventor
隆博 加藤
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP14813089.1A priority Critical patent/EP2960598A4/en
Priority to CN201480016525.2A priority patent/CN105190196B/zh
Publication of WO2014203828A1 publication Critical patent/WO2014203828A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/34Heater, e.g. gas burner, electric air heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • F25B2313/02331Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements during cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • F25B2313/02334Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/01Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures

Definitions

  • the present invention relates to an air conditioner and an air conditioner control method.
  • the compressor If the air conditioner is stopped for a long time, the refrigerant becomes liquid and accumulates in the compressor. If the compressor is started in this state, the compressor may be damaged by liquid compression. For this reason, particularly in an air conditioner for cold regions, a crankcase heater is attached to the compressor, and before the air conditioner is operated, the crankcase heater is energized to heat the compressor, thereby collecting liquid refrigerant. This prevents liquid compression due to intrusion.
  • crankcase heater is continuously energized while the compressor is stopped, the power consumption of the crankcase heater increases and the standby power of the air conditioner increases.
  • Patent Document 1 discloses that after the crankcase heater is operated when the compressor is in a stopped state, the operation of the crankcase heater is stopped when the refrigeration oil temperature exceeds a predetermined temperature. An air conditioner prepared for restarting the compressor is described.
  • the present invention has been made in view of such circumstances, and an air conditioner and an air conditioner that can further reduce standby power generated by energizing a crankcase heater during a period in which the compressor is stopped. It aims at providing the control method of a machine.
  • the air conditioner and the air conditioner control method of the present invention employ the following means.
  • An air conditioner is an air conditioner in which a crankcase heater is attached to a compressor, and the compressor can be heated by energizing the crankcase heater.
  • Control means for determining a timing for starting energization of the crankcase heater based on a parameter having a correlation with a refrigerant temperature before the compressor is started in a period during which the engine is stopped.
  • the air conditioner has the crankcase heater attached to the compressor, and the compressor can be heated by energizing the crankcase heater.
  • the air conditioner heats the compressor by energizing the crankcase heater before starting the stopped compressor.
  • the timing for starting energization of the crankcase heater is determined based on a parameter having a correlation with the refrigerant temperature before the compressor is started in the period in which the compressor is stopped. That is, the timing for starting energization of the crankcase heater is determined so that the parameter reaches a predetermined target value at the time when the compressor starts to start.
  • energization of the crankcase heater is started as the value of the parameter having a correlation with the refrigerant temperature decreases so that the refrigerant temperature reaches a temperature at which accumulation can be eliminated at the start of operation of the compressor. Timing is made early. On the other hand, the higher the value of the parameter correlated with the refrigerant temperature, the later the timing for starting energization of the crankcase heater. Thereby, it is suppressed that the energization time of a crankcase heater becomes longer than necessary.
  • this configuration can further reduce the standby power generated by energizing the crankcase heater while the compressor is stopped.
  • the parameter is preferably the degree of superheat of the refrigerant.
  • the accumulation of liquid refrigerant is small when the degree of superheat is sufficiently high. Also, if the lower temperature of the compressor is sufficiently high, the liquid refrigerant will not accumulate. However, the lower temperature of the compressor is easily affected by the outside air temperature, and the state of the refrigerant is not necessarily measured correctly.
  • the degree of superheat of the refrigerant is a parameter correlated with not only the temperature of the refrigerant but also the pressure of the refrigerant. For this reason, the measurement of the superheat degree of the refrigerant measures the state of the refrigerant more correctly than the measurement of the lower temperature of the compressor. Therefore, this structure can determine the timing which supplies with electricity to a crankcase heater more correctly.
  • control means starts energization of the crankcase heater based on the parameters and the outside air temperature before the compressor is started in a period in which the compressor is stopped. It is preferable to determine the timing to perform.
  • the timing for starting energization of the crankcase heater is determined based on a parameter correlated with the temperature of the refrigerant and the outside air temperature. That is, even when the parameter values are the same, the lower the outside air temperature, the earlier the timing for starting energization of the crankcase heater, and the higher the outside air temperature, the later the timing for starting energization of the crankcase heater. Therefore, this structure can determine the timing which supplies with electricity to a crankcase heater more correctly.
  • the compressor is started according to a predetermined schedule.
  • This configuration can determine the timing of energizing the crankcase heater more accurately.
  • an indicator lamp indicating a control state is provided on the control board, and the indicator lamp is turned off when the control is stable for a predetermined time or more.
  • This configuration can further reduce the power consumption of the air conditioner.
  • the control method of the air conditioner according to the second aspect of the present invention is a control of an air conditioner in which a crankcase heater is attached to a compressor and the compressor can be heated by energizing the crankcase heater.
  • FIG. 1 shows a schematic configuration diagram of a multi-air conditioner according to the first embodiment of the present invention
  • FIG. 2 shows a configuration diagram around a compressor provided with the crankcase heater.
  • the multi-type air conditioner 1 has a branching unit 6 between a gas side pipe 4 and a liquid side pipe 5 from which a plurality of indoor units 3A and 3B are led out from the outdoor unit 2 with respect to one outdoor unit 2. Are connected to each other in parallel.
  • the outdoor unit 2 heats an inverter-driven compressor 10 that compresses refrigerant, an oil separator 11 that separates lubricating oil from refrigerant gas, a four-way switching valve 12 that switches the circulation direction of refrigerant, and refrigerant and outside air.
  • an accumulator 19 that sucks only the gas component to the compressor 10 side, a gas side operation valve 20, and a liquid side operation valve 21.
  • Each of the above devices on the outdoor unit 2 side is connected in a known manner via a refrigerant pipe 22 to constitute an outdoor refrigerant circuit 23.
  • the outdoor unit 2 is provided with an outdoor fan 24 that ventilates the outdoor air to the outdoor heat exchanger 13, and the oil separator 11 is interposed between the oil separator 11 and the suction pipe of the compressor 10.
  • An oil return circuit 25 is provided for returning the lubricating oil separated from the discharged refrigerant gas to the compressor 10 by a predetermined amount.
  • the gas side pipe 4 and the liquid side pipe 5 are refrigerant pipes connected to the gas side operation valve 20 and the liquid side operation valve 21 of the outdoor unit 2, and are connected to the outdoor unit 2 and to it during installation on site.
  • the pipe length is set according to the distance between the plurality of indoor units 3A and 3B.
  • An appropriate number of branching devices 6 are provided in the middle of the gas side piping 4 and the liquid side piping 5, and an appropriate number of indoor units 3 ⁇ / b> A and 3 ⁇ / b> B are connected via the branching devices 6.
  • a sealed refrigeration cycle (refrigerant circuit) 7 is configured.
  • the indoor units 3A and 3B include an indoor heat exchanger 30 that exchanges heat between indoor air and refrigerant for indoor air conditioning, an indoor expansion valve (EEVC) 31, and an indoor air that circulates indoor air to the indoor heat exchanger 30.
  • the fan 32 is provided, and is connected to the branching device 6 via the indoor branch gas side pipes 4A and 4B and the branch liquid side pipes 5A and 5B.
  • the pressure of the refrigerant discharged from the compressor 10 is measured by the pressure sensor 33.
  • the cooling operation is performed as follows.
  • the high-temperature and high-pressure refrigerant gas compressed and discharged by the compressor 10 is separated from the lubricating oil contained in the refrigerant by the oil separator 11. Thereafter, the refrigerant gas is circulated to the outdoor heat exchanger 13 side by the four-way switching valve 12, and heat is exchanged with the outdoor air blown by the outdoor fan 24 in the outdoor heat exchanger 13 to be condensed and liquefied.
  • the liquid refrigerant is further cooled by the supercooling coil 14, passes through the outdoor expansion valve 15, and is temporarily stored in the receiver 16.
  • the liquid refrigerant whose circulation amount is adjusted by the receiver 16 is diverted from the liquid refrigerant pipe in the process of flowing through the liquid refrigerant pipe side through the supercooling heat exchanger 17 and is insulated by the supercooling expansion valve (EEVSC) 18. Heat exchange is performed with a part of the expanded refrigerant to provide a degree of supercooling.
  • the liquid refrigerant is led out from the outdoor unit 2 to the liquid side pipe 5 through the liquid side operation valve 21. Furthermore, the liquid refrigerant led out to the liquid side pipe 5 is diverted to the branch liquid side pipes 5A and 5B of the indoor units 3A and 3B via the branching unit 6.
  • the liquid refrigerant divided into the branch liquid side pipes 5A and 5B flows into the indoor units 3A and 3B, is adiabatically expanded by the indoor side expansion valve (EEVC) 31, and becomes a gas-liquid two-phase flow. 30.
  • EEVC indoor side expansion valve
  • the indoor air circulated by the indoor fan 32 and the refrigerant are heat-exchanged, and the indoor air is cooled and supplied to the indoor cooling.
  • the refrigerant is gasified, reaches the branching device 6 through the branch gas side pipes 4A and 4B, and is merged with the refrigerant gas from the other indoor units in the gas side pipe 4.
  • the refrigerant gas merged in the gas side pipe 4 returns to the outdoor unit 2 again, merges with the refrigerant gas from the supercooling heat exchanger 17 through the gas side operation valve 20 and the four-way switching valve 12, and then accumulator 19. To be introduced. In the accumulator 19, the liquid component contained in the refrigerant gas is separated, and only the gas component is sucked into the compressor 10. This refrigerant is compressed again in the compressor 10, and the cooling operation is performed by repeating the above cycle.
  • the heating operation is performed as follows.
  • the high-temperature and high-pressure refrigerant gas compressed and discharged by the compressor 10 is separated from the lubricating oil contained in the refrigerant by the oil separator 11 and then the gas-side operation valve 20 side through the four-way switching valve 12. It is circulated in.
  • the refrigerant circulated to the gas-side operation valve 20 side is led out from the outdoor unit 2 through the gas-side pipe 4, and passes through the branching unit 6 and the indoor-side branching gas-side pipes 4A and 4B to be a plurality of indoor units 3A and 3B. To be introduced.
  • the high-temperature and high-pressure refrigerant gas introduced into the indoor units 3A and 3B is heat-exchanged with the indoor air circulated through the indoor fan 32 in the indoor heat exchanger 30, and the indoor air is heated and used for indoor heating.
  • the liquid refrigerant condensed in the indoor heat exchanger 30 reaches the branching device 6 through the indoor expansion valve (EEVC) 31 and the branch liquid side pipes 5A and 5B, and is merged with the refrigerant from other indoor units. It returns to the outdoor unit 2 side through the liquid side pipe 5.
  • EEVC indoor expansion valve
  • the opening degree of the indoor expansion valve (EEVC) 31 is set so that the refrigerant outlet temperature or the refrigerant subcooling degree of the indoor heat exchanger 30 functioning as a condenser becomes a target value. Is to be controlled.
  • the refrigerant that has returned to the outdoor unit 2 side reaches the supercooling heat exchanger 17 via the liquid side operation valve 21, and is given supercooling as in the case of cooling, and then flows into the receiver 16 and temporarily stored. Thus, the circulation amount is adjusted.
  • the liquid refrigerant is supplied to the outdoor expansion valve (EEVH) 15 and subjected to adiabatic expansion, and then flows into the outdoor heat exchanger 13 through the supercooling coil 14.
  • the outdoor heat exchanger 13 the outside air blown through the outdoor fan 24 and the refrigerant are heat-exchanged, and the refrigerant absorbs heat from the outside air and is evaporated and gasified.
  • the refrigerant is introduced from the outdoor heat exchanger 13 through the four-way switching valve 12 to the refrigerant gas from the supercooling heat exchanger 17 and then introduced into the accumulator 19.
  • the liquid component contained in the refrigerant gas is separated, and only the gas component is sucked into the compressor 10 and compressed again in the compressor 10.
  • the heating operation is performed by repeating the above cycle.
  • the compressor 10 is provided with a crankcase heater (hereinafter referred to as “CH”) 40 on the outer periphery of the hermetic housing 10A as shown in FIG.
  • CH 40 crankcase heater
  • the compressor 10 sucks the liquid refrigerant when the compressor 10 starts up, causing liquid compression, and the compressor 10 is damaged. This is provided to prevent the liquid refrigerant from being discharged from the compressor 10 by energizing the CH 40 and heating the compressor 10 before the air conditioner 1 is operated. It is what you bear.
  • the CH40 is ON / OFF controlled for energization via the control unit 41.
  • the control unit 41 calculates a normal operation mode control unit 42 that constantly controls energization based on a predetermined specification for the CH 40 while the compressor 10 is stopped, calculates the ON timing of the CH 40, and turns the CH 40 ON / OFF.
  • An operation reduction mode control unit 43 that performs OFF control is provided.
  • the control unit 41 includes a switching unit 44 that can selectively switch the control mode to either the normal operation mode or the operation reduction mode.
  • the switching unit 44 can be switched from the remote controller 45 side, for example. Composed.
  • the control unit 41 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), and a computer-readable recording medium.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • a series of processes for realizing various functions is recorded on a recording medium or the like in the form of a program as an example, and the CPU reads the program into a RAM or the like to execute information processing / arithmetic processing. As a result, various functions are realized.
  • control part 41 is provided with the indicator lamp 50 which shows the control state of the air conditioner 1 on the control board.
  • the indicator lamp 50 is required for maintenance of the air conditioner 1 or the like.
  • the indicator lamp 50 is, for example, a 7-segment display, but is not limited thereto, and may be one or a plurality of LED lamps.
  • the control unit 41 has a measured value by the under-dome temperature sensor 52 that measures the temperature of the lower part of the compressor 10 (hereinafter referred to as “under-dome temperature”), a measured value by the outside air temperature sensor 46 that measures the outside air temperature, A measurement value by the pressure sensor 33 is input.
  • the normal operation mode control unit 42 always energizes the CH 40 while the compressor 10 is in the stop period and heats the compressor 10 by turning on the CH 40 when the CH 40 ON condition described in the spec is set. .
  • the CH 40 is turned off during the start-up, and when the compressor 10 is stopped, the CH 40 is always turned on during the stop period.
  • the air conditioner 1 heats the compressor 10 by energizing the CH 40 before starting the stopped compressor 10. Thereby, since the liquid refrigerant is heated and vaporized, liquid compression due to the accumulation of the liquid refrigerant is prevented. However, unless energization of CH40 is started at an appropriate timing, energization of CH40 is performed more than necessary, and standby power increases.
  • the operation reduction mode control unit 43 is based on parameters correlated with the refrigerant temperature before the compressor 10 is started in the period in which the compressor 10 is stopped.
  • the timing for starting energization of CH40 is determined. That is, the timing for starting energization of the CH 40 is determined so that the parameter reaches a predetermined target value at the time when the compressor 10 starts to start.
  • the parameter according to the first embodiment is the degree of superheat of the refrigerant. This is because the accumulation of liquid refrigerant is small when the degree of superheat is sufficiently high.
  • the degree of superheat is calculated by subtracting the saturation temperature calculated based on the measured value of the pressure sensor 33 from the under-dome temperature measured by the under-dome temperature sensor 52.
  • the operation reduction mode control unit 43 calculates the time for energizing the CH 40 from the relationship between the degree of superheat as shown in the graph of FIG. 3 and the ON time of the CH 40 (hereinafter referred to as “heater ON time”). Specifically, the timing at which energization of the CH 40 is started earlier as the degree of superheat is lower so that the refrigerant reaches the degree of superheat at which accumulation can be eliminated at the start of operation of the compressor 10. On the other hand, the higher the degree of superheat, the later the timing for starting energization of CH40. Furthermore, when the degree of superheat is sufficiently high, the CH 40 is not energized while the compressor 10 is stopped. Thereby, it is suppressed that the energization time of CH40 becomes longer than necessary.
  • Heater ON time f (degree of superheat) (1)
  • the function f is determined in advance based on the heat capacity of the compressor 10, the output of the CH 40, the heat radiation from the compressor 10, and the like. Note that the target value of the degree of superheat that enables the compressor 10 to start is, for example, 10 to 15 ° C.
  • the control unit 41 is a so-called schedule timer for starting and stopping the air conditioner 1, that is, starting and stopping various components such as the compressor 10 according to a predetermined schedule. It has the function of.
  • the schedule timer When the schedule timer is set, the control unit 41 cuts unnecessary power for each component device during the stop period of the air conditioner 1 according to the schedule timer, and sets the air conditioner 1 to the sleep state.
  • the operation reduction mode control unit 43 calculates a time for energizing the CH 40 (hereinafter referred to as “CH energization start time”) according to the calculated heater ON time and schedule. For example, when the air conditioner 1 is started at 8:00 am by the schedule timer, if the heater ON time is calculated as 3 hours, the CH energization start time is 5:00 am.
  • the degree of superheat of the refrigerant is a parameter correlated with not only the temperature of the refrigerant but also the pressure of the refrigerant. For this reason, the measurement of the superheat degree of the refrigerant measures the state of the refrigerant more correctly than the measurement of the lower temperature of the compressor 10. Therefore, by using the degree of superheat as a parameter having a correlation with the refrigerant temperature, it is possible to more accurately determine the timing of energizing CH40.
  • FIG. 4 is a period in which the compressor 10 is stopped and before the compressor 10 is started, the energization process to the CH 40 (hereinafter referred to as “CH energization process”) executed by the operation reduction mode control unit 43. ). Note that the CH energization process is executed during a period in which the compressor 10 is stopped.
  • step 100 the degree of superheat is calculated.
  • the heater ON time is calculated based on the calculated degree of superheat.
  • the CH energization start time is calculated based on the calculated heater ON time.
  • step 106 it is determined whether or not the current time has reached the CH energization start time. If the determination is affirmative, the process proceeds to step 108. If the determination is negative, the process returns to step 100.
  • step 108 energization of CH40 is started.
  • a new CH energization start time is calculated based on the newly calculated degree of superheat and heater ON time.
  • control unit 41 turns off the indicator lamp 50 when the control is stable for a predetermined time or more.
  • the case where the control is stable is, for example, a case where there is no operation on the remote controller 45, a case where there is no change in the capacity of the outdoor unit 2, or a case where there is no change in starting and stopping of the compressor 10.
  • the indicator lamp 50 is turned off according to the schedule timer. Thereby, the power consumption of the air conditioner 1 is further reduced.
  • the CH 10 is attached to the compressor 10, and the compressor 10 can be heated by energizing the CH 40. Then, the control unit 41 starts CH40 based on the degree of superheat that is a parameter correlated with the temperature of the refrigerant before the compressor 10 is started in the period in which the compressor 10 is stopped. Determine timing. Therefore, the air conditioner 1 according to the first embodiment can further reduce standby power generated by energizing the CH 40 during the period in which the compressor 10 is stopped.
  • the temperature of the compressor 10 that is, the degree of increase in the refrigerant temperature, depends on the difference in the outside air temperature. Come different.
  • the operation reduction mode control unit 43 is a period during which the compressor 10 is stopped and before the compressor 10 is started, based on the degree of superheat and the outside air temperature.
  • FIG. 5 is a graph showing the relationship between the degree of superheat and the heater ON time according to the second embodiment.
  • a solid line indicates a case where the outside air temperature is lower than that of the broken line.
  • the air conditioner 1 according to the second embodiment can determine the timing of energizing the crankcase heater more accurately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Compressor (AREA)

Abstract

空気調和機は、圧縮機(10)にクランクケースヒータ(40)が付設され、クランクケースヒータ(40)に通電することにより圧縮機が加熱可能とされている。そして、制御部(41)が、圧縮機(10)が停止されている期間であって圧縮機(10)が起動される前に、冷媒の温度と相関関係のあるパラメータである過熱度に基づいて、クランクケースヒータ(40)を開始するタイミングを決定する。これにより、圧縮機(10)が停止されている期間において、クランクケースヒータ(40)に通電することにより生じる待機電力をより低減できる。

Description

空気調和機及び空気調和機の制御方法
 本発明は、空気調和機及び空気調和機の制御方法に関するものである。
 空気調和機を長時間停止しておくと、冷媒が液状態となって圧縮機内に溜り込み、その状態で圧縮機を起動すると、液圧縮により圧縮機を損傷する虞がある。このため、特に寒冷地向けの空気調和機では、圧縮機にクランクケースヒータを付設し、空気調和機を運転する前にクランクケースヒータに通電して圧縮機を加熱することにより、液冷媒の溜り込みによる液圧縮を防止している。
 しかしながら、圧縮機の運転停止中にクランクケースヒータに継続的な通電がされると、クランクケースヒータの消費電力が増し、空気調和機の待機電力が増加する。
 この課題を解決するために、特許文献1には、圧縮機が停止状態にあるときにはクランクケースヒータを作動させた後、冷凍機油温度が所定温度以上となった時点でクランクケースヒータの作動を停止させて、圧縮機の再起動に備える空気調和機が記載されている。
特許第3799940号公報
 しかしながら、特許文献1に記載の空気調和機は、圧縮機の停止状態において、冷凍機油温度が所定温度未満になる毎にクランクケースヒータを繰り返し通電させる必要があり、待機電力の低減が限定的であった。
 本発明は、このような事情に鑑みてなされたものであって、圧縮機が停止されている期間において、クランクケースヒータに通電することにより生じる待機電力をより低減できる、空気調和機及び空気調和機の制御方法を提供することを目的とする。
 上記課題を解決するために、本発明の空気調和機及び空気調和機の制御方法は以下の手段を採用する。
 本発明の第一態様に係る空気調和機は、圧縮機にクランクケースヒータが付設され、前記クランクケースヒータに通電することにより前記圧縮機が加熱可能とされている空気調和機において、前記圧縮機が停止されている期間であって前記圧縮機が起動される前に、冷媒の温度と相関関係のあるパラメータに基づいて、前記クランクケースヒータの通電を開始するタイミングを決定する制御手段を備える。
 本構成によれば、空気調和機は、圧縮機にクランクケースヒータが付設され、クランクケースヒータに通電することにより圧縮機が加熱可能とされている。空気調和機は、停止されている圧縮機を起動する前に、クランクケースヒータに通電して圧縮機を加熱する。これにより、液冷媒は、加熱されて気化するので、液冷媒の溜り込みによる液圧縮が防止される。
 しかしながら、クランクケースヒータの通電を適切なタイミングで開始しないと、クランクケースヒータの通電を必要以上に行うこととなり、待機電力が増加する。
 そこで、圧縮機が停止されている期間であって圧縮機が起動される前に、冷媒の温度と相関関係のあるパラメータに基づいて、クランクケースヒータの通電を開始するタイミングを決定する。すなわち、圧縮機が起動を開始する時間に上記パラメータが予め定められた目標値に達するように、クランクケースヒータの通電を開始するタイミングが決定される。
 具体的には、冷媒の温度が、圧縮機の運転開始時に溜まり込みを解消できる温度に達するように、冷媒の温度と相関関係のあるパラメータの値が低いほど、クランクケースヒータの通電を開始するタイミングが早くされる。一方、冷媒の温度と相関関係のあるパラメータの値が高いほど、クランクケースヒータの通電を開始するタイミングが遅くされる。これにより、クランクケースヒータの通電時間が必要以上に長くなることが抑制される。
 従って、本構成は、圧縮機が停止されている期間において、クランクケースヒータに通電することにより生じる待機電力をより低減できる。
 上記第一態様では、前記パラメータが冷媒の過熱度であることが好ましい。
 液冷媒の溜まり込みは、過熱度が十分に高い場合には少ない。また、圧縮機の下部温度が十分に高いと液冷媒の溜まり込みは少ない。しかし、圧縮機の下部温度では、外気温度の影響も受けやすく、必ずしも冷媒の状態を正しく計測しているとは限らない。一方、冷媒の過熱度は、冷媒の温度のみならず、冷媒の圧力とも相関のあるパラメータである。このため、冷媒の過熱度の計測は、圧縮機の下部温度の計測に比べて、冷媒の状態をより正しく計測していることとなる。
 従って、本構成は、クランクケースヒータに通電するタイミングをより正確に決定できる。
 上記第一態様では、前記制御手段が、前記圧縮機が停止されている期間であって前記圧縮機が起動される前に、前記パラメータ及び外気温度に基づいて、前記クランクケースヒータの通電を開始するタイミングを決定することが好ましい。
 クランクケースヒータを通電しても、外気温度の違いによって、圧縮機の温度、すなわち冷媒の温度の上昇の度合いは異なってくる。
 そこで、本構成は、冷媒の温度と相関関係のあるパラメータ及び外気温度に基づいて、クランクケースヒータの通電を開始するタイミングを決定する。すなわち、上記パラメータの値が同じでも、外気温度が低いほど、クランクケースヒータの通電を開始するタイミングが早くされ、外気温度が高いほど、クランクケースヒータの通電を開始するタイミングが遅くされる。
 従って、本構成は、クランクケースヒータに通電するタイミングをより正確に決定できる。
 上記第一態様では、前記圧縮機の起動が、予め定められたスケジュールに従って行われることが好ましい。
 本構成は、クランクケースヒータに通電するタイミングをより正確に決定できる。
 上記第一態様では、制御状態を示す表示灯が制御基板に備えられ、前記表示灯が、制御が所定時間以上安定している場合に消灯することが好ましい。
 本構成は、空気調和機の消費電力をより低減できる。
 本発明の第二態様に係る空気調和機の制御方法は、圧縮機にクランクケースヒータが付設され、前記クランクケースヒータに通電することにより前記圧縮機が加熱可能とされている空気調和機の制御方法であって、前記圧縮機が停止されている期間であって前記圧縮機が起動される前に、冷媒の温度と相関関係のあるパラメータに基づいて、前記クランクケースヒータの通電を開始するタイミングを決定する。
 本発明によれば、圧縮機が停止されている期間において、クランクケースヒータに通電することにより生じる待機電力をより低減できる、という優れた効果を有する。
本発明の第1実施形態に係るマルチ空気調和機の概略構成図である。 本発明の第1実施形態に係るマルチ空気調和機のクランクケースヒータを備えた圧縮機周りの構成図である。 本発明の第1実施形態に係る過熱度とヒータON時間との関係を示すグラフである。 本発明の第1実施形態に係るCH通電処理の流れを示すフローチャートである。 本発明の第2実施形態に係る過熱度とヒータON時間との関係を示すグラフである。
 以下に、本発明に係る空気調和機及び空気調和機の制御方法の一実施形態について、図面を参照して説明する。
〔第1実施形態〕
 以下、本発明の第1実施形態について説明する。
 図1には、本発明の第1実施形態に係るマルチ空気調和機の概略構成図が示され、図2には、そのクランクケースヒータを備えた圧縮機周りの構成図が示されている。
 マルチタイプの空気調和機1は、1台の室外機2に対して、複数台の室内機3A,3Bが室外機2から導出されるガス側配管4及び液側配管5の間に分岐器6を介して互いに並列に接続される。
 室外機2は、冷媒を圧縮するインバータ駆動の圧縮機10と、冷媒ガス中から潤滑油を分離する油分離器11と、冷媒の循環方向を切換える四方切換弁12と、冷媒と外気とを熱交換させる室外熱交換器13と、室外熱交換器13と一体的に構成されている過冷却コイル14と、室外側膨張弁(EEVH)15と、液冷媒を貯留するレシーバ16と、液冷媒に過冷却を与える過冷却熱交換器17と、過冷却熱交換器17に分流される冷媒量を制御する過冷却用膨張弁(EEVSC)18と、圧縮機10に吸入される冷媒ガスから液分を分離し、ガス分のみを圧縮機10側に吸入させるアキュームレータ19と、ガス側操作弁20と、液側操作弁21とを備える。
 室外機2側の上記各機器は、冷媒配管22を介して公知の如く接続され、室外側冷媒回路23を構成している。また、室外機2には、室外熱交換器13に対して外気を通風する室外ファン24が設けられているとともに、油分離器11と圧縮機10の吸入配管との間に、油分離器11内で吐出冷媒ガスから分離された潤滑油を所定量ずつ圧縮機10側に戻すための油戻し回路25が設けられる。
 ガス側配管4及び液側配管5は、室外機2のガス側操作弁20及び液側操作弁21に接続される冷媒配管であり、現場での据え付け施工時に、室外機2とそれに接続される複数台の室内機3A,3Bとの間の距離に応じて、その配管長が設定される。ガス側配管4及び液側配管5の途中には、適宜数の分岐器6が設けられ、該分岐器6を介して適宜台数の室内機3A,3Bが接続される。これによって、密閉された1系統の冷凍サイクル(冷媒回路)7が構成される。
 室内機3A,3Bは、室内空気を冷媒と熱交換させて室内の空調に供する室内熱交換器30と、室内側膨張弁(EEVC)31と、室内空気を室内熱交換器30に循環させる室内ファン32とを備えており、室内側の分岐ガス側配管4A,4B及び分岐液側配管5A,5Bを介して分岐器6に接続される。
 また、圧縮機10から吐出される冷媒の圧力は、圧力センサ33によって測定される。
 上記の空気調和機1において、冷房運転は以下のように行われる。
 圧縮機10で圧縮され、吐出された高温高圧の冷媒ガスは、油分離器11で冷媒中に含まれている潤滑油が分離される。その後、冷媒ガスは、四方切換弁12により室外熱交換器13側に循環され、室外熱交換器13で室外ファン24により送風される外気と熱交換して凝縮液化される。この液冷媒は、過冷却コイル14で更に冷却された後、室外側膨張弁15を通過し、レシーバ16内にいったん貯留される。
 レシーバ16で循環量が調整された液冷媒は、過冷却熱交換器17を経て液冷媒配管側を流通される過程で、液冷媒配管から分流され、過冷却用膨張弁(EEVSC)18で断熱膨張された一部の冷媒と熱交換されて過冷却度が付与される。この液冷媒は、液側操作弁21を経て室外機2から液側配管5へと導出される。更に液側配管5に導出された液冷媒は、分岐器6を介して各室内機3A,3Bの分岐液側配管5A,5Bへと分流される。
 分岐液側配管5A,5Bに分流された液冷媒は、各室内機3A,3Bに流入し、室内側膨張弁(EEVC)31で断熱膨張され、気液二相流となって室内熱交換器30に流入される。室内熱交換器30では、室内ファン32により循環される室内空気と冷媒とが熱交換され、室内空気は冷却されて室内の冷房に供される。一方、冷媒はガス化され、分岐ガス側配管4A,4Bを経て分岐器6に至り、他の室内機からの冷媒ガスとガス側配管4で合流される。
 ガス側配管4で合流された冷媒ガスは、再び室外機2に戻り、ガス側操作弁20、四方切換弁12を経て、過冷却熱交換器17からの冷媒ガスと合流された後、アキュームレータ19に導入される。アキュームレータ19では、冷媒ガス中に含まれている液分が分離され、ガス分のみが圧縮機10に吸入される。この冷媒は、圧縮機10において再び圧縮され、以上のサイクルを繰り返すことによって冷房運転が行われる。
 一方、暖房運転は、以下のように行われる。
 圧縮機10により圧縮され、吐出された高温高圧の冷媒ガスは、油分離器11で冷媒中に含まれている潤滑油が分離された後、四方切換弁12を介してガス側操作弁20側に循環される。ガス側操作弁20側に循環された冷媒は、ガス側配管4を経て室外機2から導出され、分岐器6、室内側の分岐ガス側配管4A,4Bを経て複数台の室内機3A,3Bに導入される。
 室内機3A,3Bに導入された高温高圧の冷媒ガスは、室内熱交換器30で室内ファン32を介して循環される室内空気と熱交換され、室内空気は加熱されて室内の暖房に供される。室内熱交換器30で凝縮された液冷媒は、室内側膨張弁(EEVC)31、分岐液側配管5A,5Bを経て分岐器6に至り、他の室内機からの冷媒と合流された後、液側配管5を経て室外機2側に戻される。なお、暖房時、室内機3A,3Bでは、凝縮器として機能する室内熱交換器30の冷媒出口温度又は冷媒過冷却度が目標値となるように、室内側膨張弁(EEVC)31の開度が制御されるようになっている。
 室外機2側に戻った冷媒は、液側操作弁21を経て過冷却熱交換器17に至り、冷房時の場合と同様に過冷却が付与された後、レシーバ16に流入され、いったん貯留されることにより循環量が調整される。この液冷媒は、室外側膨張弁(EEVH)15に供給されて断熱膨張された後、過冷却コイル14を経て室外熱交換器13に流入される。
 室外熱交換器13においては、室外ファン24を介して送風される外気と冷媒とが熱交換され、冷媒は外気から吸熱して蒸発ガス化される。該冷媒は、室外熱交換器13から四方切換弁12を経て、過冷却熱交換器17からの冷媒ガスと合流された後、アキュームレータ19に導入される。アキュームレータ19では、冷媒ガス中に含まれている液分が分離されてガス分のみが圧縮機10に吸入され、圧縮機10において再び圧縮される。以上のサイクルを繰り返すことによって暖房運転が行われる。
 さらに、上記空気調和機1において、圧縮機10には、図2に示されるように、密閉ハウジング10Aの外周にクランクケースヒータ(以下「CH」という。)40が付設されている。このCH40は、圧縮機10が停止期間中に、圧縮機10内に冷媒が液状態となって溜り込み、その液冷媒を圧縮機10が起動時に吸込んで液圧縮を起こし、圧縮機10が損傷するのを防ぐために設けられるものであり、空気調和機1を運転する前にCH40に通電して圧縮機10を加熱することにより、液冷媒を圧縮機10から追出し、液圧縮を防止する役割を担うものである。
 CH40は、制御部41を介して通電のON/OFF制御がされる。制御部41は、圧縮機10が停止期間中、CH40に対して予め定められたスペックに基づいて常時通電制御する通常運転モード制御部42と、CH40のONタイミングを算出して該CH40をON/OFF制御する運転低減モード制御部43とを備える。制御部41は、制御モードを通常運転モード又は運転低減モードのいずれかのモードに選択的に切替えできる切替え手段44を備えており、切替え手段44は、例えば、リモコン45側から切替え操作できるように構成される。
 なお、制御部41は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、及びコンピュータ読み取り可能な記録媒体等から構成される。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記録媒体等に記録されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。
 また、制御部41は、その制御基板上に空気調和機1の制御状態を示す表示灯50を備える。表示灯50は、空気調和機1のメンテナンス等に要するものである。表示灯50は、例えば7セグメントディスプレイであるが、これに限らず、1つ又は複数のLED灯であってもよい。
 さらに、制御部41には、圧縮機10下部の温度(以下「ドーム下温度」という。)を測定するドーム下温度センサ52による測定値、外気温を測定する外気温センサ46による測定値、及び圧力センサ33による測定値が入力される。
 通常運転モード制御部42は、予め定められているスペック記載のCH40のON条件を満たす場合、圧縮機10が停止期間中はCH40に対して常に通電し、CH40をONとして圧縮機10を加熱する。この場合、CH40は、圧縮機10が起動されると、起動中はOFFとされ、圧縮機10が停止されると、停止期間中は常にONされるようになる。
 このように、空気調和機1は、停止されている圧縮機10を起動する前に、CH40に通電して圧縮機10を加熱する。これにより、液冷媒は、加熱されて気化するので、液冷媒の溜り込みによる液圧縮が防止される。
 しかしながら、CH40の通電を適切なタイミングで開始しないと、CH40の通電を必要以上に行うこととなり、待機電力が増加する。
 そこで、本第1実施形態に係る運転低減モード制御部43は、圧縮機10が停止されている期間であって圧縮機10が起動される前に、冷媒の温度と相関関係のあるパラメータに基づいて、CH40の通電を開始するタイミングを決定する。すなわち、圧縮機10が起動を開始する時間に上記パラメータが予め定められた目標値に達するように、CH40の通電を開始するタイミングが決定される。
 なお、本第1実施形態に係る上記パラメータは、冷媒の過熱度である。液冷媒の溜まり込みは、過熱度が十分に高い場合には少ないためである。過熱度は、ドーム下温度センサ52によって測定されたドーム下温度から圧力センサ33の測定値に基づいて算出される飽和温度を減算することで算出される。
 そして、運転低減モード制御部43は、図3のグラフに示されるような過熱度とCH40のON時間(以下「ヒータON時間」という。)との関係から、CH40を通電する時間を算出する。
 具体的には、冷媒は、圧縮機10の運転開始時に溜まり込みを解消できる過熱度に達するように、過熱度が低いほど、CH40の通電を開始するタイミングが早くされる。一方、過熱度が高いほど、CH40の通電を開始するタイミングが遅くされる。さらに、過熱度が十分に高い場合は、圧縮機10の停止中にCH40の通電は行われない。
 これにより、CH40の通電時間が必要以上に長くなることが抑制される。
 過熱度とヒータON時間との関係は、(1)式のように関数fで表わされるが、その関係は図3に示されるような線形でなくてもよい。
  ヒータON時間=f(過熱度) ・・・(1)
 関数fは、圧縮機10の熱容量、CH40の出力、及び圧縮機10からの放熱量等に基づいて予め決定される。なお、圧縮機10を起動可能とする過熱度の目標値は、例えば10~15℃である。
 また、本第1実施形態に係る制御部41は、空気調和機1の起動及び停止、すなわち圧縮機10等の各種構成機器の起動及び停止等を、予め定められたスケジュールに従って行う、所謂スケジュールタイマの機能を備える。制御部41は、スケジュールタイマが設定されている場合、スケジュールタイマに従って、空気調和機1の停止期間中は各構成機器に対する不要な電力をカットし、空気調和機1をスリープ状態とする。
 そして、運転低減モード制御部43は、算出したヒータON時間及びスケジュールに従って、CH40を通電する時刻(以下「CH通電開始時刻」という。)を算出する。例えば、スケジュールタイマによって空気調和機1の起動が午前8時となっている場合、ヒータON時間が3時間と算出されると、CH通電開始時刻は午前5時とされる。
 なお、ドーム下温度が十分に高いと液冷媒の溜まり込みは少ない。このため、(2)式に示されるように、運転低減モード制御部43は、ヒータON時間=f(ドーム下温度)の関数を用いて、ヒータON時間を算出してもよい。
 しかし、ドーム下温度では、外気温度の影響も受けやすく、必ずしも冷媒の状態を正しく計測しているとは限らない。一方、冷媒の過熱度は、冷媒の温度のみならず、冷媒の圧力とも相関のあるパラメータである。このため、冷媒の過熱度の計測は、圧縮機10の下部温度の計測に比べて、冷媒の状態をより正しく計測していることとなる。
 従って、冷媒の温度と相関関係のあるパラメータとして過熱度を用いることによって、CH40に通電するタイミングをより正確に決定できる。
 図4は、圧縮機10が停止されている期間であって圧縮機10が起動される前に、運転低減モード制御部43で実行されるCH40への通電処理(以下「CH通電処理」という。)の流れを示すフローチャートである。なお、CH通電処理は、圧縮機10が停止されている期間に実行される。
 まず、ステップ100では、過熱度を算出する。
 次のステップ102では、算出した過熱度に基づいて、ヒータON時間を算出する。
 次のステップ104では、算出したヒータON時間に基づいて、CH通電開始時刻を算出する。
 次のステップ106では、現在時刻がCH通電開始時刻に達したか否かを判定し、肯定判定の場合はステップ108へ移行し、否定判定の場合はステップ100へ戻る。
 ステップ108では、CH40の通電を開始する。
 なお、ステップ106からステップ100へ戻った場合は、新たに算出した過熱度、ヒータON時刻に基づいて、新たなCH通電開始時刻を算出する。
 また、本実施形態に係る制御部41は、制御が所定時間以上安定している場合に表示灯50を消灯する。制御が安定している場合とは、例えば、リモコン45への操作が無い場合、室外機2の能力に変化がない場合、圧縮機10の起動及び停止の変更が無い場合である。また、表示灯50は、スケジュールタイマに応じて消灯する。
 これにより、空気調和機1の消費電力がより低減される。
 以上説明したように、本第1実施形態に係る空気調和機1は、圧縮機10にCH40が付設され、CH40に通電することにより圧縮機10が加熱可能とされている。そして、制御部41が、圧縮機10が停止されている期間であって圧縮機10が起動される前に、冷媒の温度と相関関係のあるパラメータである過熱度に基づいて、CH40を開始するタイミングを決定する。
 従って、本第1実施形態に係る空気調和機1は、圧縮機10が停止されている期間において、CH40に通電することにより生じる待機電力をより低減できる。
〔第2実施形態〕
 以下、本発明の第2実施形態について説明する。
 なお、本第2実施形態に係る空気調和機1の構成は、図1,2に示す第1実施形態に係る空気調和機1の構成と同様であるので説明を省略する。
 圧縮機10が停止されている期間であって圧縮機10が起動される前に、CH40を通電しても、外気温度の違いによって、圧縮機10の温度、すなわち冷媒の温度の上昇の度合いは異なってくる。
 そこで、本第2実施形態に係る運転低減モード制御部43は、圧縮機10が停止されている期間であって圧縮機10が起動される前に、過熱度及び外気温度に基づいて、CH40の通電を開始するタイミングを決定する。
 すなわち、ヒータON時間は、(2)式のように表わされる。
  ヒータON時間=f(過熱度、外気温度) ・・・(2)
 図5は、本第2実施形態に係る過熱度とヒータON時間との関係を示したグラフである。実線は、破線に比べて外気温度が低い場合を示している。このように、過熱度の値が同じでも、外気温度が低いほど、CH40の通電を開始するタイミングが早くされる。また、外気温度が高いほど、CH40の通電を開始するタイミングが遅くされる。
 従って、本第2実施形態に係る空気調和機1は、クランクケースヒータに通電するタイミングをより正確に決定できる。
 以上、本発明を、上記各実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記実施形態に多様な変更又は改良を加えることができ、該変更又は改良を加えた形態も本発明の技術的範囲に含まれる。
 また、上記実施形態で説明したCH通電処理の流れも一例であり、本発明の主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよい。
1 空気調和機
10 圧縮機
40 クランクケースヒータ
41 制御部
50 表示灯

Claims (6)

  1.  圧縮機にクランクケースヒータが付設され、前記クランクケースヒータに通電することにより前記圧縮機が加熱可能とされている空気調和機において、
     前記圧縮機が停止されている期間であって前記圧縮機が起動される前に、冷媒の温度と相関関係のあるパラメータに基づいて、前記クランクケースヒータの通電を開始するタイミングを決定する制御手段を備える空気調和機。
  2.  前記パラメータは、冷媒の過熱度である請求項1記載の空気調和機。
  3.  前記制御手段は、前記圧縮機が停止されている期間であって前記圧縮機が起動される前に、前記パラメータ及び外気温度に基づいて、前記クランクケースヒータの通電を開始するタイミングを決定する請求項1又は請求項2記載の空気調和機。
  4.  前記圧縮機の起動は、予め定められたスケジュールに従って行われる請求項1から請求項3の何れか1項記載の空気調和機。
  5.  制御状態を示す表示灯が制御基板に備えられ、
     前記表示灯は、制御が所定時間以上安定している場合に消灯する請求項1から請求項4の何れか1項記載の空気調和機。
  6.  圧縮機にクランクケースヒータが付設され、前記クランクケースヒータに通電することにより前記圧縮機が加熱可能とされている空気調和機の制御方法であって、
     前記圧縮機が停止されている期間であって前記圧縮機が起動される前に、冷媒の温度と相関関係のあるパラメータに基づいて、前記クランクケースヒータの通電を開始するタイミングを決定する空気調和機の制御方法。
PCT/JP2014/065764 2013-06-20 2014-06-13 空気調和機及び空気調和機の制御方法 WO2014203828A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14813089.1A EP2960598A4 (en) 2013-06-20 2014-06-13 AIR CONDITIONING AND METHOD FOR CONTROLLING AN AIR-CONDITIONING SYSTEM
CN201480016525.2A CN105190196B (zh) 2013-06-20 2014-06-13 空气调节器及空气调节器的控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013129895A JP6440930B2 (ja) 2013-06-20 2013-06-20 空気調和機及び空気調和機の制御方法
JP2013-129895 2013-06-20

Publications (1)

Publication Number Publication Date
WO2014203828A1 true WO2014203828A1 (ja) 2014-12-24

Family

ID=52104563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065764 WO2014203828A1 (ja) 2013-06-20 2014-06-13 空気調和機及び空気調和機の制御方法

Country Status (4)

Country Link
EP (1) EP2960598A4 (ja)
JP (1) JP6440930B2 (ja)
CN (1) CN105190196B (ja)
WO (1) WO2014203828A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018086439A1 (zh) * 2016-11-14 2018-05-17 珠海格力电器股份有限公司 空调冷水机组控制方法、***及其空调***
EP3379168A4 (en) * 2015-11-20 2018-09-26 Mitsubishi Electric Corporation Refrigeration cycle device and refrigeration cycle device control method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6236734B2 (ja) * 2013-07-24 2017-11-29 三浦工業株式会社 ヒートポンプ
JP6944236B2 (ja) 2015-07-30 2021-10-06 ダイキン工業株式会社 冷凍装置
JP6690151B2 (ja) 2015-08-03 2020-04-28 ダイキン工業株式会社 判定装置
CN106016606B (zh) * 2016-05-25 2019-05-14 珠海格力电器股份有限公司 空调压缩机电加热带的控制方法及装置
CN106382777A (zh) * 2016-08-29 2017-02-08 珠海格力电器股份有限公司 一种空调***及过冷器回流冷媒的回流控制方法
US11668505B2 (en) * 2017-10-10 2023-06-06 Carrier Corporation HVAC heating system and method
JP2019138501A (ja) * 2018-02-07 2019-08-22 三菱重工サーマルシステムズ株式会社 制御装置、冷媒回路システム及び通知方法
JP7063750B2 (ja) * 2018-07-10 2022-05-09 ファナック株式会社 温度推定装置、寿命評価装置、およびロボットシステム
JP7280482B2 (ja) * 2019-03-15 2023-05-24 ダイキン工業株式会社 冷凍サイクル装置
WO2020230603A1 (ja) * 2019-05-14 2020-11-19 東芝キヤリア株式会社 熱源システム
CN114729765B (zh) * 2019-11-15 2024-05-17 三菱电机株式会社 冷热源单元以及制冷循环装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575149A (en) * 1978-12-01 1980-06-06 Sanyo Electric Co Ltd Operation controller for air conditioner
JPH10325624A (ja) * 1997-05-28 1998-12-08 Matsushita Seiko Co Ltd 冷凍サイクル装置
JP2005300100A (ja) * 2004-04-15 2005-10-27 Matsushita Electric Ind Co Ltd 冷蔵庫
JP3799940B2 (ja) 2000-03-07 2006-07-19 ダイキン工業株式会社 空気調和機及びその制御方法
JP2006349219A (ja) * 2005-06-14 2006-12-28 Corona Corp リモコン装置
JP2009085463A (ja) * 2007-09-28 2009-04-23 Fujitsu General Ltd 空気調和機
JP2013019595A (ja) * 2011-07-11 2013-01-31 Mitsubishi Electric Corp 空気調和装置
JP2013083434A (ja) * 2011-09-30 2013-05-09 Daikin Industries Ltd 冷凍装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4444017A (en) * 1982-03-29 1984-04-24 Carrier Corporation Method and apparatus for controlling the operation of a compressor crankcase heater
US5572878A (en) * 1994-10-31 1996-11-12 York International Corporation Air conditioning apparatus and method of operation
US6886354B2 (en) * 2003-04-04 2005-05-03 Carrier Corporation Compressor protection from liquid hazards
JP5404110B2 (ja) * 2009-03-12 2014-01-29 三菱電機株式会社 空気調和装置
JP2013108672A (ja) * 2011-11-21 2013-06-06 Mitsubishi Heavy Ind Ltd クランクケースヒータを備えた空気調和機

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575149A (en) * 1978-12-01 1980-06-06 Sanyo Electric Co Ltd Operation controller for air conditioner
JPH10325624A (ja) * 1997-05-28 1998-12-08 Matsushita Seiko Co Ltd 冷凍サイクル装置
JP3799940B2 (ja) 2000-03-07 2006-07-19 ダイキン工業株式会社 空気調和機及びその制御方法
JP2005300100A (ja) * 2004-04-15 2005-10-27 Matsushita Electric Ind Co Ltd 冷蔵庫
JP2006349219A (ja) * 2005-06-14 2006-12-28 Corona Corp リモコン装置
JP2009085463A (ja) * 2007-09-28 2009-04-23 Fujitsu General Ltd 空気調和機
JP2013019595A (ja) * 2011-07-11 2013-01-31 Mitsubishi Electric Corp 空気調和装置
JP2013083434A (ja) * 2011-09-30 2013-05-09 Daikin Industries Ltd 冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2960598A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3379168A4 (en) * 2015-11-20 2018-09-26 Mitsubishi Electric Corporation Refrigeration cycle device and refrigeration cycle device control method
WO2018086439A1 (zh) * 2016-11-14 2018-05-17 珠海格力电器股份有限公司 空调冷水机组控制方法、***及其空调***
US10899199B2 (en) 2016-11-14 2021-01-26 Gree Electric Appliances, Inc. Of Zhuhai Control method and system for air-conditioner water chilling units and air conditioning system

Also Published As

Publication number Publication date
JP2015004473A (ja) 2015-01-08
EP2960598A4 (en) 2016-05-25
EP2960598A1 (en) 2015-12-30
CN105190196B (zh) 2017-10-17
CN105190196A (zh) 2015-12-23
JP6440930B2 (ja) 2018-12-19

Similar Documents

Publication Publication Date Title
JP6440930B2 (ja) 空気調和機及び空気調和機の制御方法
JP4120682B2 (ja) 空気調和装置および熱源ユニット
WO2015125397A1 (ja) マルチ形空気調和機
EP3929500B1 (en) Air conditioner control method and device, and air conditioner
JP5405076B2 (ja) 空調冷凍システム
JP5263522B2 (ja) 冷凍装置
JP5511761B2 (ja) 空気調和機
JP2013178046A (ja) 空気調和装置
AU2015379472A1 (en) Air conditioning device
KR20190035060A (ko) 공기조화기 및 그의 제어방법
JP6172702B2 (ja) マルチ形空気調和システム
WO2018221052A1 (ja) 制御装置、それを備えたマルチ型空気調和システム、及び制御方法並びに制御プログラム
WO2018025935A1 (ja) ヒートポンプ装置及びその制御方法
JP5308205B2 (ja) 空気調和機
JP5506433B2 (ja) マルチ型空気調和機
JP5138292B2 (ja) 空気調和装置
JP2009085463A (ja) 空気調和機
CN107850347B (zh) 制冷装置
KR20110029447A (ko) 공기 조화기 및 그 제어 방법
CN110319542B (zh) 一种大排量变频多联机***的卸载启闭控制方法
KR102500807B1 (ko) 공기 조화기 및 그 제어방법
JP2019020081A (ja) 空気調和装置及びその運転方法
JP2011007482A (ja) 空気調和装置
KR20140093846A (ko) 공기 조화기 및 그 제어방법
JP2013108672A (ja) クランクケースヒータを備えた空気調和機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480016525.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813089

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014813089

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE