WO2014203543A1 - Cooking device - Google Patents

Cooking device Download PDF

Info

Publication number
WO2014203543A1
WO2014203543A1 PCT/JP2014/050101 JP2014050101W WO2014203543A1 WO 2014203543 A1 WO2014203543 A1 WO 2014203543A1 JP 2014050101 W JP2014050101 W JP 2014050101W WO 2014203543 A1 WO2014203543 A1 WO 2014203543A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooking
temperature
plate
contact
cooling
Prior art date
Application number
PCT/JP2014/050101
Other languages
French (fr)
Japanese (ja)
Inventor
桂児 北林
健司 新間
板倉 克裕
晃 三雲
仲田 博彦
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013127055A external-priority patent/JP2015000262A/en
Priority claimed from JP2013131791A external-priority patent/JP6060828B2/en
Priority claimed from JP2013159994A external-priority patent/JP2015029627A/en
Priority claimed from JP2013167931A external-priority patent/JP2015036044A/en
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2014203543A1 publication Critical patent/WO2014203543A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J37/00Baking; Roasting; Grilling; Frying
    • A47J37/06Roasters; Grills; Sandwich grills
    • A47J37/067Horizontally disposed broiling griddles
    • A47J37/0676Horizontally disposed broiling griddles electrically heated

Definitions

  • the present invention relates to a cooking device that heats food by placing it on it, and more particularly to a cooking device that is excellent in absolute temperature accuracy and repeatability required in commercial facilities that provide various menus.
  • Patent Document 1 since the through hole is provided in the holding plate in the vicinity of the temperature measurement part to which the temperature sensor is attached, the temperature measurement part is likely to exchange heat with the outside air and generate heat. Sometimes it was detected below the actual temperature of the body or cooking plate. As a result, the actual temperature may be higher than the control temperature, causing problems such as scorching the food.
  • the difference between the set temperature and the actual temperature can be made extremely small, so that the food placed on the cooking plate can be cooked without excess or deficiency, and thus stable cooking without variations is possible.
  • the heating cooker of the present invention is a heating cooker for heating ingredients placed on a cooking surface using a built-in heater, and a temperature for controlling the heater on a cooking plate provided with the cooking surface.
  • a resistance temperature detector is attached as a sensor. Accordingly, the difference between the set temperature and the actual temperature can be extremely reduced, so that the food placed on the cooking plate can be cooked without excess and deficiency, and thus stable cooking without variation is possible.
  • Ceramics or a composite containing ceramics for the material of the cooking plate 11 and the support plate 12. This is because these ceramic materials are excellent in machining accuracy, so that the flatness of the cooking surface 11a can be kept good. In addition, it has excellent rigidity (Young's modulus) and does not deform even if the plate thickness is reduced, so the heat capacity of the member can be reduced compared to conventional thick iron-based materials, and thus the heating and cooling speed can be increased. It becomes possible.
  • the rectangular parallelepiped shape which has the magnitude
  • the bottom face of the counterbore 211b may be formed on the back side of the cooking plate 11, and the bottom face of the counterbore hole 211b may be brought into contact with the side face of the temperature measuring element portion 16a.
  • the contact is within the range of up to 30% of the thickness of the cooking plate 11 from the center in the thickness direction of the cooking plate 11 up and down. It is preferable that a contact surface exists.
  • the position of the contact surface can be adjusted by machining a counterbore hole in accordance with the shape of the temperature measuring element by machining.
  • the above-mentioned adhesive generally has a low thermal conductivity. Therefore, the adhesive can become a thermal resistance when transferring heat from the cooking plate 11 to the temperature measuring element portion 16a.
  • Such locally different heat generation density designs can be designed in one heating element circuit as described above, but a plurality of heating element circuits may be provided in a plane.
  • separate heating element circuits are provided on the inner and outer peripheral sides, separate heating element circuits are provided on the right and left halves, and heating element circuits are provided for each region divided by the central angle ⁇ in the circumferential direction. May be.
  • temperature control can be performed individually by providing the temperature sensor for each divided area.
  • a plurality of heating element circuits may be provided over a plurality of layers instead of a single layer.
  • a heating element layer that supplies power only when the set temperature is changed can be provided at a position different from the heating element layer for control purposes in the thickness direction. In this case, it is necessary to interpose an insulating sheet for the purpose of electrical insulation between the two heating element layers.
  • the insulating sheet is preferably flexible as compared with the cooking plate 11 and the support plate 12.
  • the insulating sheet is not flexible, it is flexible between the insulating sheet and the cooking plate 11, or between the insulating sheet and the support plate 12, and is more flexible than the cooking plate 11 or the support plate 12 and has high thermal conductivity in the planar direction.
  • Conductive sheets for example, aluminum sheet: 100 to 250 W / m ⁇ K, copper sheet: 400 W / m ⁇ K, graphite sheet: 200 to 1700 W / m ⁇ K may be disposed.
  • the material for the insulating sheet may be further selected from silicone resin, fluorine resin, polyimide resin, ceramic fiber sheet, mica, and the like.
  • Silicone resin can contribute to improvement of the characteristics of the heater 13 described above by making use of its flexibility, and fluorine resin, polyimide resin, ceramic fiber sheet, mica, etc. can be used even in a temperature range exceeding 200 ° C. I can do it.
  • mica can be used even in a temperature range exceeding 500 ° C. and is excellent in electrical insulation, so that it is suitable for use in a high temperature range.
  • a metal foil layer that is electrically insulated from the circuit of the resistance heating element is formed at the same time so as to fill a gap between the adjacent conductive wires. Also good. Since this metal foil layer is formed of the same material and the same thickness as the resistance heating element, the thermal conductivity can be made higher than that of the insulating sheet described above. Therefore, the heat transfer resistance in the layer of the heater 13 sandwiched between the cooking plate 11 and the support plate 12 can be further reduced. Further, as described above, when the cooking plate 11 and the support plate 12 are mechanically coupled, by providing a metal foil layer around the screwing portion, the thickness of the layer provided with the heater 13 is made uniform. It also contributes to preventing the deformation of the plate due to the axial force of the screw during screwing.
  • FIGS. 8B to 8D two plate-like members 25a and 25b having substantially the same shape made of metal are prepared, and a flow path is formed by machining on one or both surfaces thereof. It is possible to form the groove 26 by overlapping the two sheets so as to cover the flow path forming surface and integrating them with a coupling means such as brazing (hereinafter referred to as a brazing method). .
  • the brazing method has a higher heat exchange efficiency than the pipe method because the refrigerant directly contacts the plate-like member, and is suitable for cooling at a high speed.
  • FIGS. 8B to 8C show a case where the groove 26 serving as a flow path is processed only in one of the two plate-like members 25a and 25b to be overlapped.
  • FIG. 4d shows a case where the groove 26 serving as a flow path is processed in both the plate-like members 25a and 25b.
  • the metal plate-like member 27 is on the opposite side to the contact surface 27a that contacts the support plate 12.
  • a ring-shaped or spiral-shaped counterbore groove 28 may be provided on the surface, and, for example, a Cu pipe 29 formed in a spiral shape may be installed therein.
  • the Cu pipe 29 is bonded and fixed between the outer surface of the Cu pipe and the ring-shaped counterbore processed surface with a caulking material, sealant, adhesive, or the like. preferable.
  • a stainless steel joint (not shown), for example, is attached to the opening at the end of the copper pipe 29, and a coolant such as water can be circulated from here to keep the temperature of the cooling plate constant.
  • the coolant channel 226 may be formed in the support plate 212 in the cooking plate 211 and the support plate 212 that sandwich the thin plate-shaped heater 213 from above and below.
  • the support plate 212 with the flow path can be manufactured by the brazing method performed when the cooling plate 20 including the refrigerant flow path described above is manufactured.
  • the material of the cooling plate 20 and the support plate 212 with the flow path is selected from the group consisting of copper, aluminum, nickel, magnesium, titanium having good thermal conductivity, and an alloy such as stainless steel mainly containing any of these. It is preferable to do. Among these, in particular, aluminum is more preferable because it has excellent thermal conductivity and has a small specific gravity and can reduce the weight of the device.
  • the cooling plate 20 may be subjected to a surface treatment such as Ni plating with high corrosion resistance and oxidation resistance as necessary. Further, the cooling plate 20 may be provided with a through hole or a notch for inserting the above-described power supply wiring to the resistance heating element and the temperature sensor.
  • the cooling plate 20 may be configured to be reciprocally movable in the vertical direction. By making the cooling plate 20 reciprocating in this way, the cooling plate 20 can be separated from the heating cooker 10 as shown in FIG. 10A, or the cooling plate 20 can be moved as shown in FIG. It can be brought into contact with the heating cooker 10, and heating and cooling can be performed more efficiently.
  • the reciprocating movement of the cooling plate 20 may be manual, but it is preferable to automatically reciprocate using an elevating mechanism using an air cylinder or a motor drive.
  • the heating cooker 10 when the cooling plate 20 is reciprocated using the lifting mechanism 31, the heating cooker 10 can be connected to the cooking device 10 as much as possible under the restrictions such as the installation environment of the cooking device 10 and the allowable weight and size. It is preferable that the contact thrust is large. Thereby, the heat transfer resistance which arises in the contact surface of the cooling plate 20 and the heating cooker 10 can be made small, and required cooling time can be shortened. Furthermore, it is possible to improve the in-plane temperature distribution by eliminating local heat transfer resistance. Specifically, it is desirable that the thrust of the lifting mechanism 31 such as an air cylinder be equal to or greater than the weight of the cooling plate 20. In addition to the air cylinder lifting mechanism 31, immediately after the cooling plate 20 abuts on the heating cooker 10, the abutting surfaces may be adsorbed by vacuum adsorption to improve the adhesion. Thereby, it can cool more rapidly.
  • the cooling plate 20 When the cooling plate 20 is reciprocated, it is preferable to use copper as the material of the cooling plate 20.
  • copper has a large heat capacity, and therefore the amount of heat taken away from the object to be cooled is large in the contact / separation structure, which is suitable for cooling at high speed. Since copper has a high specific gravity and a large weight, there are cases where there are weight restrictions and cases that are not preferable from the viewpoint of handling. In such a case, aluminum may be used.
  • the material and size of the cooling block 32 can be the same as those of the cooling plate 20 described above, but the specific size of the cooling block 32 is appropriately selected in consideration of the space and cost given to the cooker. Is done.
  • the entire surface of the abutting surface is evenly transmitted. It is possible to heat, and therefore, it is possible to expect an effect that the temperature distribution on the cooking surface 11a is difficult to be attached during cooling.
  • an intervening layer 33 having a cushioning property that can be deformed in the thickness direction may be provided on the surface of the cooling plate 20 that contacts the heating cooker 10.
  • the intervening layer 33 may be disposed on the surface of the cooling plate 20 that contacts the support plate 12 of the heating cooker 10 or may be disposed on the surface of the support plate 12 of the heating cooker 10 that contacts the cooling plate 20. However, it may be arranged on both surfaces thereof, but it is preferable to provide the cooling plate 20 on the surface that contacts the support plate 12 of the heating cooker 10.
  • the flatness of the surface in contact with the cooling plate 20 in the support plate 12 of the heating cooker 10 and the flatness of the surface in contact with the support plate 12 of the heating cooker 10 in the cooling plate 20 should each be 0.5 mm or less. preferable. If the thickness exceeds 0.5 mm, it is difficult to maintain the contact property with the intervening layer 33, and the thickness of the intervening layer 33 may be increased in order to maintain the contact property. There is. In addition, it is suitable if the sum total of the flatness of the surface which contacts the cooling plate 20 in the heating cooker 10 and the flatness of the surface which contacts the heating cooker 10 in the cooling plate 20 is 0.1 mm or less. By doing so, the thickness of the intervening layer 33 can theoretically be reduced to 0.1 mm, and by doing so, the thermal resistance is small and the cooling can be performed at high speed.
  • region of the intervening layer 33 is 10% or more and 90% or less of the area of the contact surface with the support plate 12 of the heating cooker 10 in the cooling plate 20. This is because if the amount is less than 10%, the contact area becomes too small and the cooling rate becomes slow. On the other hand, if it exceeds 90%, it is difficult to attach uniformly.
  • an attachment method of the intervening layer 33 if it can fix, For example, it can attach favorably by adhesive means, such as an adhesive agent, a double-sided tape, and adhesive resin. When these adhesion means are selected, those that are thin, have low thermal resistance, and high thermal conductivity are more desirable. In the case of an intervening layer having a certain thickness such as a thin plate, it may be mechanically fixed by screwing or the like.
  • a counterbore hole having a flat bottom surface and a depth of 5 mm was formed by machining.
  • the bottom surface of the counterbore hole is located 1 mm away from the cooking surface 11 a of the cooking plate 11, and exists at a position that is offset by 33% of the thickness of the cooking plate 11 from the center in the thickness direction of the cooking plate 11 to the cooking surface 11 a side. Will do.
  • the flat portion of the temperature measuring element portion of the resistance temperature detector was brought into contact with the bottom surface of the counterbore hole.
  • thermocouple instead of a resistance temperature detector as a temperature sensor, a sheath protective tube type thermocouple with an outer diameter of 3 mm and a tip of R1.5 mm is prepared, and the tip of this protective tube is 1 mm from the cooking surface, respectively.
  • Five types of cooking plates having counterbored holes that contact the bottom surface at positions 2 mm, 3 mm, 4 mm, and 5 mm apart were prepared, and thermocouples were attached to each. Except this, the cooking devices for Samples 6 to 10 were produced in the same manner as Sample 1 above.
  • a cooling plate 20 that can reciprocate in the vertical direction is provided at the bottom of the cooking device for each sample.
  • the cooling plate 20 was a plate in which a phosphorous deoxidized copper pipe having an outer diameter of 6 mm and an inner diameter of 4 mm was fixed with a screw on one side of a base made of an aluminum alloy plate having a width of 600 mm, a length of 450 mm, and a thickness of 10 mm. Joints for supplying and discharging the refrigerant were attached to both ends of the phosphorous deoxidized copper pipe. Further, the cooling plate 20 was formed with a through-hole for inserting the heater power supply wiring, the temperature sensor lead wire, and the rod-shaped leg portion of the heating cooker.
  • the control temperature and cooking of the cooking plate are compared with those of samples 6 to 10 regardless of the installation location (depth) of the sensor.
  • the actual temperature deviation of the surface was overwhelmingly small. This is because the resistance thermometer has a smaller heat capacity than a sheathed thermocouple, and there is no inclusion for heat insulation such as oxide powder such as MgO, so the response to heat transfer from the heater is faster. In addition, it is considered that there is no heat dissipating part such as a metal tube, so that highly accurate measurement is possible.
  • Example 2 Heat cookers for samples 11 to 14 were prepared in the same manner as in Example 1 except that counterbore holes of various shapes were provided in the cooking plate and the temperature sensor used in Example 1 was attached to the bottom surface in various states. . Specifically, in the heating cooker of sample 11, a cylindrical counterbore having an inner diameter of 3.2 mm and a depth of 3 mm was formed, and the tip of the thermocouple was attached to the bottom surface in a point contact state. Sample 12 has a cylindrical counterbore hole with an inner diameter of 2 mm and a depth of 3 mm in the cooking device of sample 12, and a flat portion of 0.7 mm in length and 1.2 mm in width of the temperature measuring element portion of the resistance temperature detector is faced on the bottom surface. Mounted in contact.
  • a rectangular parallelepiped-shaped counterbore of 3 mm in length, 5 mm in width, and 3 mm in depth is formed, and a 1.2 mm vertical by 1.7 mm horizontal plane of the temperature measuring element portion of the resistance thermometer is formed on the bottom surface thereof.
  • the part was attached in surface contact.
  • a rectangular parallelepiped-shaped counterbore with a length of 1.5 mm, a width of 3 mm, and a depth of 3 mm is formed, and the temperature measuring element portion of the resistance temperature detector is 0.7 mm long by 1.2 mm wide.
  • the flat part of was attached in a surface contact state.
  • the recovery time when a low-temperature food is placed on the cooking surface 11a of the cooking plate 11 is measured. Thermal responsiveness was evaluated. This recovery time is a time until the temperature once lowered by placing the low temperature food is restored to 250 ° C. and stabilized by the control system including the temperature sensor and the heater in the control loop. The results are shown in Table 2 below.
  • Example 4 The heating cookers of Samples 11 and 12 used in Example 3 were prepared again, and the heater 13 was fed with power to 250 ° C. and held at that temperature. And the temperature of the cooking surface is measured with a contact-type thermometer immediately after the temperature is raised to 250 ° C. and 30 minutes after the temperature is raised to 250 ° C., and the difference between the maximum value and the minimum value among the 30 points in the surface is calculated. The temperature distribution (soaking range) was determined by calculation.
  • the intermediate portion of the lead wires connected to the temperature control device from the electrode pad portion of the resistance temperature detector is on the side opposite to the surface facing the heater in the support plate. It fixed with the adhesive agent in the state contact
  • the length of the lead wire abutted against the support plate is 80 mm, and the surface of the cooling plate that comes into contact with the support plate is counterbored so that the cable does not interfere when the cooling plate abuts against the support plate. did.
  • the temperature was raised to 250 ° C. in the same manner as described above, and the temperature distribution (soaking range) immediately after the temperature increase and 30 minutes after the temperature increase was obtained. The results are shown in Table 4 below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Baking, Grill, Roasting (AREA)

Abstract

Provided is a cooking device equipped with a temperature sensor capable of measuring the actual temperature with high accuracy. This cooking device (10) uses an integrated heater (13) to heat food (F) placed on a cooking surface (11a). A temperature-measurement resistor (16) is attached, as a temperature sensor for controlling the heater (13), to a cooking plate (11) provided with the cooking surface (11a). The temperature-measurement resistor (16) is provided with a temperature-measurement element having a flat surface. It is preferable that the flat surface of the temperature-measurement element be in contact with a flat bottom surface of a counterbore hole provided in a surface of the cooking plate (11), said surface being at a side opposite to the cooking surface (11a). It is more preferable that a cap occluding an open section be provided to the counterbore hole.

Description

加熱調理器Cooker
  本発明は、食材を載せて加熱する加熱調理器に関し、特に様々なメニューを提供する商業施設において必要とされる絶対温度精度や繰り返し再現性に優れた加熱調理器に関する。 The present invention relates to a cooking device that heats food by placing it on it, and more particularly to a cooking device that is excellent in absolute temperature accuracy and repeatability required in commercial facilities that provide various menus.
  食に関する嗜好や消費者へのサービス形態等が多様化する中、飲食物の提供が行われる商業施設では調理師や開発担当者により新たなレシピの開発が盛んに進められており、これに呼応して食材を調理面に載せて加熱調理する加熱調理器にも、熱効率を高めたものや調理面の均熱性を高めたものなど、多種多様なものが提供されている。 In response to the diversification of food preferences and consumer services, new recipes are being actively developed by cooks and developers at commercial facilities where food and beverages are provided. In addition, a wide variety of cookers that heat and cook food by placing ingredients on the cooking surface are provided, such as those with improved thermal efficiency and those with improved heat uniformity on the cooking surface.
  例えば特許文献1では、クッキングプレートと、このクッキングプレートの裏面に設けられた平面ヒーターと、この平面ヒーターを下側から保持する保持板とからなる電気調理器が開示されている。この電気調理器は、保持板の中央部に温度センサの取付穴を設け、そこを挿通させた温度センサをクッキングプレートの調理面と反対側に取り付けている。かかる構成により均一な温度分布と、素早い温度上昇と、優れた熱応答性とを有し、更に使い勝手が良く且つ清掃性に優れた調理器の提供が可能になると記載されている。 For example, Patent Document 1 discloses an electric cooker including a cooking plate, a flat heater provided on the back surface of the cooking plate, and a holding plate that holds the flat heater from below. In this electric cooker, a temperature sensor mounting hole is provided in the central portion of the holding plate, and the temperature sensor inserted therethrough is mounted on the opposite side of the cooking surface of the cooking plate. It is described that such a configuration makes it possible to provide a cooking device that has a uniform temperature distribution, a quick temperature rise, and excellent thermal response, and is easy to use and excellent in cleanability.
特開平7-226288号公報JP 7-226288 A
  しかし、上記した特許文献1の構成では、温度センサが取付けられている測温部位近傍の保持板に貫通穴が設けられているので、当該測温部位は外気との熱交換が生じやすく、発熱体やクッキングプレートの実際の温度より低く検知してしまうことがあった。その結果、制御温度よりも実際の温度が高くなって食材を焦がす等の不具合が生じることがあった。 However, in the configuration of Patent Document 1 described above, since the through hole is provided in the holding plate in the vicinity of the temperature measurement part to which the temperature sensor is attached, the temperature measurement part is likely to exchange heat with the outside air and generate heat. Sometimes it was detected below the actual temperature of the body or cooking plate. As a result, the actual temperature may be higher than the control temperature, causing problems such as scorching the food.
  また、温度センサに一般的に使用される熱電対は、2本の異種金属線の端部同士を接続して得られる2つの電気接点の温度差から生じる熱起電力を検知して温度を測定するものであるが、この電気接点の絶縁保護のためにMgO等の粉末を充填した金属シース管が広く用いられている。この金属シース管は一定の熱容量を有する上、金属シース管からの放熱が生じることから、実際の温度よりも低く検知してしまうことがあった。 Thermocouples commonly used for temperature sensors measure the temperature by detecting the thermoelectromotive force generated by the temperature difference between two electrical contacts obtained by connecting the ends of two dissimilar metal wires. However, a metal sheath tube filled with powder such as MgO is widely used for insulation protection of the electrical contact. Since this metal sheath tube has a certain heat capacity and heat is radiated from the metal sheath tube, it may be detected at a temperature lower than the actual temperature.
  更に、図1に示すように、金属シース管1の先端をクッキングプレート2に点接触する構造の場合、僅かな空隙や取り付けに際して用いる接着剤等の介在物の厚みが検知温度に影響を及ぼすので、複数の機器を用いて同時に調理する場合、上記した金属シース管1の取り付け状態の僅かなばらつきにより機器の設定温度を同じにしても食材Fの焼き上がりに差がつくことがあった。すなわち、同一機種で同じ設定温度で調理しているにもかかわらず、実際の温度にばらつきが生じることがあり、そのため機器ごとに設定温度を変更したり調理時間で調整したりすることが必要であった。 Furthermore, as shown in FIG. 1, in the case of a structure in which the tip of the metal sheath tube 1 is in point contact with the cooking plate 2, a slight gap or the thickness of an inclusion such as an adhesive used for attachment affects the detection temperature. When cooking using a plurality of devices at the same time, the baking of the food F may be different even if the set temperature of the devices is the same due to slight variations in the state of attachment of the metal sheath tube 1 described above. In other words, even though the same model is cooking at the same set temperature, the actual temperature may vary, so it is necessary to change the set temperature for each device or adjust the cooking time. there were.
  本発明は、このような従来の加熱調理器が有する問題に鑑みてなされたものであり、設定温度と実際の温度との乖離が小さい加熱調理器を提供することを目的とする。 This invention is made in view of the problem which such a conventional cooking-by-heating machine has, and it aims at providing the cooking-by-heating machine with a small gap between setting temperature and actual temperature.
  上記目的を達成するため、本発明が提供する加熱調理器は、組み込まれているヒーターを用いて調理面に載せた食材を加熱する加熱調理器であって、前記調理面を備えた調理プレートに、前記ヒーターを制御するための温度センサーとして測温抵抗体が取り付けられていることを特徴としている。 In order to achieve the above object, a heating cooker provided by the present invention is a heating cooker that heats food placed on a cooking surface using a built-in heater, the cooking plate provided with the cooking surface. A resistance temperature detector is attached as a temperature sensor for controlling the heater.
  本発明によれば、設定温度と実際の温度との乖離を極めて小さくできるので、調理プレートに載せた食材を過不足なく加熱調理でき、よってばらつきのない安定した加熱調理が可能となる。 に よ According to the present invention, the difference between the set temperature and the actual temperature can be made extremely small, so that the food placed on the cooking plate can be cooked without excess or deficiency, and thus stable cooking without variations is possible.
従来の加熱調理器を示す縦断面図である。It is a longitudinal cross-sectional view which shows the conventional heating cooker. 本発明の加熱調理器の一具体例を示す模式的な縦断面図である。It is a typical longitudinal section showing an example of a cooking-by-heating machine of the present invention. 図2の加熱調理器の機械的結合方法の一具体例を示す模式的な縦断面図である。It is a typical longitudinal cross-sectional view which shows one specific example of the mechanical coupling | bonding method of the heating cooker of FIG. 図2の加熱調理器の調理プレートを水平面及び垂直面でそれぞれ切断した横断面図及び縦断面図であり、測温抵抗体の取付け構造の具体例が示されている。It is the cross-sectional view and longitudinal cross-sectional view which cut | disconnected the cooking plate of the heating cooker of FIG. 2 in the horizontal surface and the vertical surface, respectively, and the specific example of the attachment structure of a resistance temperature sensor is shown. 図2の加熱調理器の調理プレートを水平面及び垂直面でそれぞれ切断した横断面図及び縦断面図であり、測温抵抗体の取付け構造の他の具体例が示されている。It is the cross-sectional view and longitudinal cross-sectional view which cut | disconnected the cooking plate of the heating cooker of FIG. 2 in the horizontal surface and the vertical surface, respectively, and the other specific example of the attachment structure of a resistance temperature detector is shown. 図2の加熱調理器の調理プレートを垂直面で切断した縦断面図であり、測温抵抗体の取付け構造の更に他の具体例が示されている。It is the longitudinal cross-sectional view which cut | disconnected the cooking plate of the heating cooker of FIG. 2 by the vertical surface, and the other specific example of the attachment structure of a resistance temperature sensor is shown. 本発明の加熱調理器の他の具体例を示す模式的な断面図である。It is typical sectional drawing which shows the other specific example of the heating cooker of this invention. 図7に示す冷却プレートの具体例を示す模式的な縦断面図である。It is a typical longitudinal cross-sectional view which shows the specific example of the cooling plate shown in FIG. 本発明の加熱調理器の更に他の具体例を示す模式的な縦断面図である。It is a typical longitudinal section showing other examples of the cooking-by-heating machine of the present invention. 図7の加熱調理器の代替例を示す模式的な縦断面図である。It is a typical longitudinal cross-sectional view which shows the alternative example of the heating cooker of FIG. 図10の冷却プレートの駆動部を示す模式的な縦断面図である。It is a typical longitudinal cross-sectional view which shows the drive part of the cooling plate of FIG. 図7の加熱調理器の更に別の代替例を示す模式的な縦断面図である。It is a typical longitudinal cross-sectional view which shows another alternative example of the heating cooker of FIG.
  最初に本発明の実施形態を列記して説明する。本発明の加熱調理器は、組み込まれているヒーターを用いて調理面に載せた食材を加熱する加熱調理器であって、前記調理面を備えた調理プレートに、前記ヒーターを制御するための温度センサとして測温抵抗体が取り付けられている。これにより、設定温度と実際の温度との乖離を極めて少なくできるので、調理プレートに載せた食材を過不足なく加熱調理でき、よってばらつきのない安定した加熱調理が可能となる。 First, embodiments of the present invention will be listed and described. The heating cooker of the present invention is a heating cooker for heating ingredients placed on a cooking surface using a built-in heater, and a temperature for controlling the heater on a cooking plate provided with the cooking surface. A resistance temperature detector is attached as a sensor. Accordingly, the difference between the set temperature and the actual temperature can be extremely reduced, so that the food placed on the cooking plate can be cooked without excess and deficiency, and thus stable cooking without variation is possible.
  上記本発明の加熱調理器においては、前記測温抵抗体は平面部を有する測温素子部を備え、前記調理プレートの前記調理面とは反対側の面に設けられたザグリ穴の平坦な底面に前記測温素子部の前記平面部が当接していることが好ましい。このように面同士を当接させることにより、広い伝熱面積を安定的に確保することが可能になり、機器ごとのばらつきの少ない加熱調理器を提供することができる。また、前記ザグリ穴はその開口部分がキャップで塞がれているのが好ましく、当該キャップは、前記測温素子部において前記ザグリ穴の底面に当接している前記平面部とは異なる面に当接しているのが好ましい。これによりザグリ穴からの放熱による局所的な温度低下を抑えることが可能になり、より高い精度で温度制御を行うことが可能になる。更に、前記測温抵抗体にはリード線の一端部が接続しており、前記リード線において前記一端部から離間した一部分が前記調理プレートの前記調理面とは反対側の面に当接又は近接しているのが好ましい。これにより、リード線を介した放熱を防止することができ、より高い精度で温度制御を行うことが可能になる。 In the heating cooker according to the present invention, the resistance temperature detector includes a temperature measuring element portion having a flat portion, and a flat bottom surface of a counterbore hole provided on a surface opposite to the cooking surface of the cooking plate. It is preferable that the flat surface portion of the temperature measuring element portion is in contact with. By bringing the surfaces into contact with each other in this manner, it is possible to stably ensure a wide heat transfer area, and it is possible to provide a cooking device with little variation for each device. Further, the counterbore hole is preferably closed at its opening by a cap, and the cap touches a surface different from the flat surface portion in contact with the bottom surface of the counterbore hole in the temperature measuring element portion. It is preferable to touch. As a result, it is possible to suppress a local temperature decrease due to heat radiation from the counterbored hole, and it is possible to perform temperature control with higher accuracy. Furthermore, one end portion of a lead wire is connected to the resistance temperature detector, and a part of the lead wire that is separated from the one end portion is in contact with or close to the surface opposite to the cooking surface of the cooking plate. It is preferable. Thereby, heat dissipation through the lead wire can be prevented, and temperature control can be performed with higher accuracy.
  次に、本発明の一具体例の加熱調理器について、図2を参照しながら説明する。この図2の加熱調理器10は、上面に食材Fを載せる平坦な調理面11aを備えた平面視形状が略矩形の調理プレート11と、この調理プレート11と略同じサイズを有し、調理プレート11を下から支持する支持プレート12と、これら調理プレート11と支持プレート12との間に挟持された薄板形状のヒーター13とから構成される。この加熱調理器10は、限定するものではないが、1又は複数本の脚部30によって床面から支持されている。 Next, a cooking device according to a specific example of the present invention will be described with reference to FIG. The cooking device 10 in FIG. 2 includes a cooking plate 11 having a flat cooking surface 11a on which the food F is placed on a top surface and a substantially rectangular shape in plan view, and substantially the same size as the cooking plate 11. It comprises a support plate 12 that supports 11 from below, and a thin plate-shaped heater 13 that is sandwiched between the cooking plate 11 and the support plate 12. Although this heating cooker 10 is not limited, it is supported from the floor surface by the 1 or several leg part 30. FIG.
  これら調理プレート11や支持プレート12の材質にはセラミックス又はセラミックスを含む複合体を用いることが好ましい。この理由は、これらセラミックス材は機械加工精度に優れることから調理面11aの平坦性を良好に保つことができるからである。また、剛性(ヤング率)に優れ、板厚を薄くしても変形しない等の特徴があり、従来の分厚い鉄系材料に比較して部材の熱容量を小さくでき、よって昇降温速度を速めることも可能になる。 に は It is preferable to use ceramics or a composite containing ceramics for the material of the cooking plate 11 and the support plate 12. This is because these ceramic materials are excellent in machining accuracy, so that the flatness of the cooking surface 11a can be kept good. In addition, it has excellent rigidity (Young's modulus) and does not deform even if the plate thickness is reduced, so the heat capacity of the member can be reduced compared to conventional thick iron-based materials, and thus the heating and cooling speed can be increased. It becomes possible.
  特に、セラミックス材の中でも比較的熱伝導率の高い材質を選定することで、熱容量を増やすことなく調理面11aにおいて良好な温度均一性を実現することができる。このような熱伝導率の高いセラミックス材としては、炭化珪素、窒化アルミニウム、又はそれを含む複合材料(例えばSi-SiC、Al-SiC)を挙げることができる。調理プレート11や支持プレート12の材料には金属を使用してもよい。金属は汎用的でコストパフォーマンスに長ける上、一般に熱伝導率が高いので、調理面11aにおいて高い均熱性が得られる。例えば銅やアルミニウムなどの熱伝導率の特に高い材質を選定することにより、調理面11aにおいて極めて高い均熱性が得られる。 In particular, by selecting a material having a relatively high thermal conductivity among the ceramic materials, it is possible to achieve good temperature uniformity on the cooking surface 11a without increasing the heat capacity. As such a ceramic material having high thermal conductivity, silicon carbide, aluminum nitride, or a composite material containing the same (eg, Si—SiC, Al—SiC) can be given. A metal may be used for the material of the cooking plate 11 and the support plate 12. Metals are versatile and cost-effective, and generally have high thermal conductivity, so that high soaking properties can be obtained on the cooking surface 11a. For example, by selecting a material having a particularly high thermal conductivity such as copper or aluminum, extremely high heat uniformity can be obtained on the cooking surface 11a.
  従来、調理温度によっては調理面の平坦性の維持のため分厚い部材が用いられていたが、例えば支持プレート12に剛性に優れるセラミックスプレートを選定することにより、調理プレート11には薄い金属を使用することが可能になる。このように、調理器で主に調理するメニューの内容や調理器において重要視する特性に応じて調理プレート11や支持プレート12の材質を適宜選定することができる。 Conventionally, thick members have been used to maintain the flatness of the cooking surface depending on the cooking temperature, but a thin metal is used for the cooking plate 11 by selecting, for example, a ceramic plate having excellent rigidity as the support plate 12. It becomes possible. Thus, the material of the cooking plate 11 and the support plate 12 can be appropriately selected according to the contents of the menu mainly cooked by the cooking device and the characteristics regarded as important in the cooking device.
  調理プレート11と支持プレート12の材料の組み合わせでは、前述したように、少なくともどちらかが窒化アルミニウム、炭化珪素、又はこれを含む複合体などの剛性の高い材料であることが好ましい。もし両方が共にアルミニウムなどの比較的剛性の低い材料からなる場合は、ヒートサイクルにより変形が発生し易くなり、後述する冷却プレートや薄板形状のヒーター13との密着性が変化してしまう。その結果、調理面11aの平坦性が損なわれたり均熱性が低下したりするので好ましくない。 In the combination of the materials for the cooking plate 11 and the support plate 12, as described above, at least one of them is preferably a highly rigid material such as aluminum nitride, silicon carbide, or a composite containing the same. If both are made of a material having relatively low rigidity such as aluminum, deformation is likely to occur due to the heat cycle, and the adhesiveness to a cooling plate or a thin plate-shaped heater 13 described later changes. As a result, the flatness of the cooking surface 11a is impaired or the soaking property is lowered, which is not preferable.
  上記のように、調理プレート11と支持プレート12の材質が互いに異なる場合や、後述するように冷却プレートを支持プレート12の下面に当接するような場合、更には加熱状態にある調理面11aの上に低温の食材を載せた場合は、調理プレート11と支持プレート12との間に温度差が生じ、その結果、熱膨張量に差が生じる。これによる悪影響を抑えるため、調理プレート11と支持プレート12とは互いに機械的に結合しておくことが好ましい。具体的な結合方法としては、ネジ止めやバネによる固定を挙げることができるが、安定性という面ではネジ止めが好ましい。 As described above, when the materials of the cooking plate 11 and the support plate 12 are different from each other, or when the cooling plate is brought into contact with the lower surface of the support plate 12 as will be described later, the cooking plate 11 is further heated. When a low-temperature food is placed on the plate, a temperature difference occurs between the cooking plate 11 and the support plate 12, and as a result, a difference in thermal expansion occurs. In order to suppress adverse effects due to this, it is preferable that the cooking plate 11 and the support plate 12 are mechanically coupled to each other. Specific examples of the coupling method include screwing and fixing with a spring, but screwing is preferable in terms of stability.
  例えばネジ止めの場合は、図3に示すように調理プレート11の裏面にネジ穴を設けると共に、支持プレート12において該ネジ穴に対応する位置に貫通孔を設ける。そして支持プレート12の下側からボルト14を挿通させて調理プレート11のネジ穴に螺合させることで調理プレート11と支持プレート12とを互いに機械的に結合することができる。このような機械的な結合では、調理プレート11および支持プレート12がそれぞれの温度に応じて自在に熱膨張や熱収縮できるように、機械的結合部分にベアリングなどの摺動手段を介在させるのが好ましい。例えば、上記ボルト14による結合では、ボルト14の頭部14aの座面に溝を形成し、この溝内に設けたベアリングボール15を介して座面と支持プレート12の下面とを係合させればよい。 For example, in the case of screwing, a screw hole is provided on the back surface of the cooking plate 11 as shown in FIG. 3, and a through hole is provided in the support plate 12 at a position corresponding to the screw hole. The cooking plate 11 and the support plate 12 can be mechanically coupled to each other by inserting the bolts 14 from below the support plate 12 and screwing them into the screw holes of the cooking plate 11. In such mechanical coupling, sliding means such as a bearing is interposed in the mechanical coupling portion so that the cooking plate 11 and the support plate 12 can freely expand and contract according to their respective temperatures. preferable. For example, in the coupling by the bolt 14, a groove is formed in the seating surface of the head 14 a of the bolt 14, and the seating surface and the lower surface of the support plate 12 can be engaged via the bearing ball 15 provided in the groove. That's fine.
  また、上記したようなボルトによる機械的結合では、ボルトの先端部が調理面11aに露出することがないように、調理プレート11の裏面側に設けるネジ穴等は止まり加工とし、貫通させないようにする。ネジ穴等の結合手段が調理プレート11を貫通して調理面11aから露出していると、当該部位から油分や水分が入り込んでヒーター13を破損させるおそれがあるので好ましくない。 Further, in the mechanical coupling using the bolts as described above, the screw holes provided on the back surface side of the cooking plate 11 are fixed so as not to be penetrated so that the tip of the bolt is not exposed to the cooking surface 11a. To do. If a coupling means such as a screw hole penetrates the cooking plate 11 and is exposed from the cooking surface 11a, it is not preferable because oil or moisture may enter from the part and damage the heater 13.
  調理プレート11には、ヒーター13の温度制御のための温度センサとして、測温抵抗体16が設けられている。測温抵抗体16は、絶縁性のセラミックス基体と、その表面の平面部に蒸着等の手段により形成され且つ所定の抵抗値に調整された白金抵抗体とからなる測温素子部16aを有している。白金抵抗体はその端部に電極パッド部を有しており、ここにリード線16bの一端部がボンディング等の手段で接続している。かかる構成により測温素子部16aを小型化することができ、よってこれを取り付ける調理プレート11を薄く形成することができる。また、測温素子部16aの熱容量を小さくできるので、温度に対する応答性(熱応答性)を高めることができる。なお、上記した電極パッド部を含む白金抵抗体は絶縁膜で覆われているのが好ましい。 The salmon cooking plate 11 is provided with a resistance temperature detector 16 as a temperature sensor for controlling the temperature of the heater 13. The resistance temperature detector 16 has a resistance temperature detector 16a composed of an insulating ceramic substrate and a platinum resistor formed on a flat surface of the surface by means of vapor deposition or the like and adjusted to a predetermined resistance value. ing. The platinum resistor has an electrode pad at its end, and one end of the lead wire 16b is connected thereto by means such as bonding. With this configuration, the temperature measuring element portion 16a can be reduced in size, and thus the cooking plate 11 to which the temperature measuring element portion 16a is attached can be formed thin. Moreover, since the heat capacity of the temperature measuring element portion 16a can be reduced, the responsiveness (thermal responsiveness) to temperature can be enhanced. In addition, it is preferable that the platinum resistor including the electrode pad portion described above is covered with an insulating film.
  測温抵抗体16は、調理プレート11の調理面11aとは反対側の面に機械加工等により形成されたザグリ穴の内部に設けるのが好ましい。このザグリ穴はその底面若しくは側面、又はこれら両方に平面部を有することが好ましい。このようにすることで、測温素子部16aの平面部と当該ザグリ穴の平面部とを面同士当接させることができるので、測温素子部16aと調理プレート11との間の伝熱面積を広くとることができ、優れた熱応答性が得られる。 It is preferable that the temperature measuring resistor 16 is provided inside a counterbore hole formed by machining or the like on the surface of the cooking plate 11 opposite to the cooking surface 11a. The counterbore hole preferably has a flat portion on the bottom surface, the side surface, or both. By doing in this way, since the plane part of the temperature measuring element part 16a and the plane part of the counterbore hole can be made to contact each other, the heat transfer area between the temperature measuring element part 16a and the cooking plate 11 Can be taken widely, and excellent thermal response can be obtained.
  例えば図4(a)に示すように測温素子部16aの長手方向先端部を奥にして測温素子部16aの全体が納まる程度の大きさを有する円筒形状のザグリ穴11bを調理プレート11の裏面側に形成し、その底面を平坦に仕上げることで、ザグリ穴11bの底面と測温素子部16aの該長手方向先端部に形成されている平面部とを面同士当接させることができる。ザグリ穴の形状は円筒形状に代えて図4(b)に示すように測温素子部16aの形状に略一致する直方体形状のザグリ穴111bを調理プレート11の裏面側に形成してもよい。この場合は、ザグリ穴111bの開口部の大きさを円筒形状の場合に比べて小さくできるので、当該開口部からの測温素子部16aの放熱を減らすことができる。 For example, as shown in FIG. 4A, a cylindrical counterbore hole 11b having a size enough to accommodate the entire temperature measuring element portion 16a with the longitudinal end portion of the temperature measuring element portion 16a in the back is formed in the cooking plate 11. By forming on the back surface side and finishing the bottom surface flat, the bottom surface of the counterbore hole 11b and the flat surface portion formed at the distal end in the longitudinal direction of the temperature measuring element portion 16a can be brought into contact with each other. The shape of the counterbore hole may be formed on the back side of the cooking plate 11 instead of the cylindrical shape, as shown in FIG. 4B, which is a rectangular parallelepiped hole substantially matching the shape of the temperature measuring element portion 16 a. In this case, since the size of the opening portion of the counterbore hole 111b can be made smaller than that of the cylindrical shape, the heat radiation of the temperature measuring element portion 16a from the opening portion can be reduced.
  なお、上記のように測温素子部16aの形状に略一致する直方体形状のザグリ穴111bを形成することにより、図4(c)に示すようにザグリ穴111bの底面に加えて内壁にも測温素子部16aを当接させることができるのでより広い伝熱面積が得られる。また、図4(d)に示すように測温素子部16aの長手方向を調理プレート11の調理面11aに平行にした状態で測温素子部16aの全体が納まる程度の大きさを有する直方体形状の底の浅いザグリ穴211bを調理プレート11の裏面側に形成し、そのザグリ穴211bの底面と測温素子部16aの側面部とを面同士当接させてもよい。 In addition, by forming the rectangular parallelepiped counterbore hole 111b that substantially matches the shape of the temperature measuring element portion 16a as described above, the inner wall is also measured in addition to the bottom face of the counterbore hole 111b as shown in FIG. Since the temperature element portion 16a can be brought into contact, a wider heat transfer area can be obtained. Moreover, as shown in FIG.4 (d), the rectangular parallelepiped shape which has the magnitude | size which the whole temperature measuring element part 16a fits in the state which made the longitudinal direction of the temperature measuring element part 16a parallel to the cooking surface 11a of the cooking plate 11 The bottom face of the counterbore 211b may be formed on the back side of the cooking plate 11, and the bottom face of the counterbore hole 211b may be brought into contact with the side face of the temperature measuring element portion 16a.
  上記のようにザグリ穴の底面と測温素子部16aとを面同士当接させる場合は、調理プレート11の厚み方向の中央から上下に調理プレート11の厚みの30%までの範囲内に当該当接面が存在していることが好ましい。なお、かかる当接面の位置は、機械加工で測温素子の形状に合わせてザグリ穴を加工することによって調整することが可能である。 As described above, when the bottom surface of the counterbore hole and the temperature measuring element portion 16a are brought into contact with each other, the contact is within the range of up to 30% of the thickness of the cooking plate 11 from the center in the thickness direction of the cooking plate 11 up and down. It is preferable that a contact surface exists. The position of the contact surface can be adjusted by machining a counterbore hole in accordance with the shape of the temperature measuring element by machining.
  ヒーター13による調理プレート11の温度制御は設定された調理温度に維持するだけでなく、例えば調理面11aに低温の食材を載せた時に低下する調理プレート11の調理面11aの温度を検知して、それに基いてヒーター13を加熱させるような非定常的な制御が求められる。この際、測温素子部16aの当接面の位置が、調理プレート11の厚み方向の中央から調理プレート11の厚みの30%を超えて上側(すなわち、調理面11a側)に存在していると、測温素子部16aが調理面11aに近づき過ぎることになるため、食材を載せたときの熱応答性は良好になるものの、測温素子部16aとヒーター13との距離が遠ざかるため、ヒーター13が過熱状態になりやすく、よって食材の理想的な調理温度を超えて食材が焦げる等の不具合が生じることがある。また、ザグリ穴の底部において調理プレート11の肉厚が薄くなり過ぎるため、機械的強度上の問題が生じるおそれがある。 The temperature control of the cooking plate 11 by the heater 13 not only maintains the set cooking temperature, but also detects the temperature of the cooking surface 11a of the cooking plate 11 that decreases when, for example, a low-temperature food is placed on the cooking surface 11a, Based on this, unsteady control is required to heat the heater 13. Under the present circumstances, the position of the contact surface of the temperature measuring element part 16a exists in the upper side (namely, cooking surface 11a side) exceeding 30% of the thickness of the cooking plate 11 from the center of the thickness direction of the cooking plate 11. Since the temperature measuring element portion 16a is too close to the cooking surface 11a, the thermal responsiveness when food is placed is improved, but the distance between the temperature measuring element portion 16a and the heater 13 is increased. 13 tends to be in an overheated state, and thus may cause problems such as the food being burned exceeding the ideal cooking temperature of the food. Moreover, since the thickness of the cooking plate 11 becomes too thin in the bottom part of the counterbore hole, there exists a possibility that the problem on mechanical strength may arise.
  一方、測温素子部16aの上記当接面の位置が、調理プレート11の厚み方向の中央から調理プレート11の厚みの30%を超えて下側(すなわち、調理プレート11の裏面側)に存在していると、測温素子部16aが調理面11aから離れすぎるため、例えば調理面11aに低温の食材を載せた時に低下した調理プレート11の温度の検知が遅くなる。その結果、熱応答性が低下して食材の加熱調理に必要な熱量をタイムリーに供給することが困難になり、所望の調理時間内に十分な調理ができなくなって、焼け不足等の不具合が生じるおそれがある。 On the other hand, the position of the contact surface of the temperature measuring element portion 16a exists on the lower side (that is, the back side of the cooking plate 11) from the center in the thickness direction of the cooking plate 11 to more than 30% of the thickness of the cooking plate 11. If it does, since the temperature measuring element part 16a will be separated too much from the cooking surface 11a, the detection of the temperature of the cooking plate 11 which fell, for example when a low temperature foodstuff was mounted on the cooking surface 11a will become slow. As a result, it becomes difficult to supply the amount of heat necessary for cooking the food in a timely manner due to a decrease in heat responsiveness, and sufficient cooking cannot be performed within the desired cooking time, causing problems such as insufficient baking. May occur.
  上記した測温抵抗体16の取り付けには接着剤を用いて接着することが好ましい。接着剤には、シリコーン樹脂やエポキシ等の有機系樹脂を主成分としたものや、セラミックス等の無機材料からなる粒子とバインダ成分とを組み合わせたものを利用することができる。特にシリコーン樹脂を主成分とした接着剤は、調理器の加熱調理時の温度帯に耐える耐熱性を有する上、弾力性を有することから測温素子部16aと調理プレート11との僅かな熱膨張量差を吸収することができるので好ましい。 取 り 付 け It is preferable to attach the temperature measuring resistor 16 using an adhesive. As the adhesive, a material mainly composed of an organic resin such as silicone resin or epoxy, or a combination of particles made of an inorganic material such as ceramics and a binder component can be used. In particular, the adhesive mainly composed of a silicone resin has heat resistance that can withstand a temperature range during cooking by a cooker, and also has elasticity, so that a slight thermal expansion between the temperature measuring element portion 16a and the cooking plate 11 occurs. This is preferable because a difference in amount can be absorbed.
  上記した接着剤は一般的に熱伝導率が低い。そのため、調理プレート11から測温素子部16aへの伝熱に際し、接着剤が熱抵抗となり得る。この問題を抑えるため、測温素子部16aを収納しているザグリ穴の開口部を塞ぐように、ザグリ穴にキャップで蓋をするのが好ましい。このキャップは、測温素子部16aにおいてザグリ穴内の底面や壁面と当接していない面に当接させるのがより好ましい。 The above-mentioned adhesive generally has a low thermal conductivity. Therefore, the adhesive can become a thermal resistance when transferring heat from the cooking plate 11 to the temperature measuring element portion 16a. In order to suppress this problem, it is preferable to cover the counterbore hole with a cap so as to close the opening of the counterbore hole housing the temperature measuring element portion 16a. More preferably, the cap is brought into contact with a surface of the temperature measuring element portion 16a that is not in contact with the bottom surface or the wall surface in the counterbore hole.
  例えば図4(a)に示すような円筒形状のザグリ穴の場合は、図5(a)に示すように、ザグリ穴の開口部を塞ぐ基部と、その両端部からそれぞれ突出する2枚の突出片とでキャップ17を構成し、これら2枚の突出片の間で測温素子部16aをその長手方向に沿って形成されている両側の側面から挟持するのが好ましい。あるいは、図4(d)に示すような測温素子部16aの長手方向を水平にして収納する直方体形状のザグリ穴の場合は、図5(b)に示すように、ザグリ穴の開口部に嵌合する大きさの矩形板状部材でキャップ117を構成し、その一方の面を測温素子部16aにおいてザグリ穴の底面に当接している面とは反対側の面に当接させればよい。 For example, in the case of a cylindrical counterbore hole as shown in FIG. 4 (a), as shown in FIG. 5 (a), a base part that closes the opening part of the counterbore hole, and two protrusions that protrude from both ends thereof, respectively. It is preferable that the cap 17 is constituted by a piece, and the temperature measuring element portion 16a is sandwiched between the two protruding pieces from both side surfaces formed along the longitudinal direction. Alternatively, in the case of a rectangular parallelepiped counterbore hole that is stored with the longitudinal direction of the temperature measuring element portion 16a as shown in FIG. 4 (d) being horizontal, as shown in FIG. If the cap 117 is constituted by a rectangular plate-like member having a size to be fitted and one surface thereof is brought into contact with the surface opposite to the surface in contact with the bottom surface of the counterbored hole in the temperature measuring element portion 16a. Good.
  キャップ17、117の材質は、測温素子部16aとの良好な伝熱性を考慮して熱伝導率の高い材質を選定することが好ましい。例えば、コスト及び汎用性をも考慮して、銅、アルミ、ニッケルを使用することが好ましい。あるいは、調理プレート11と同一の材質を選択してもよい。この場合は、熱膨張係数差による調理プレート11や測温素子部16aへの熱応力による変形等の問題をなくすことができる。なお、コストを重視して調理プレート11の材質と熱膨張係数に差がある汎用的な金属を選定する場合は、その熱膨張量差を考慮して余裕を見込んだサイズ設計を行うことで上記した熱応力の問題を解消することができる。 It is preferable to select a material having high thermal conductivity as the material for the heel caps 17 and 117 in consideration of good heat transfer with the temperature measuring element portion 16a. For example, it is preferable to use copper, aluminum, or nickel in consideration of cost and versatility. Alternatively, the same material as the cooking plate 11 may be selected. In this case, problems such as deformation due to thermal stress on the cooking plate 11 and the temperature measuring element 16a due to the difference in thermal expansion coefficient can be eliminated. In addition, when the general purpose metal which has a difference in the material and the coefficient of thermal expansion of the cooking plate 11 is selected with emphasis on cost, the above-mentioned size design is performed by taking into account the difference in the amount of thermal expansion. The problem of thermal stress that has occurred can be solved.
  測温抵抗体16には前述したようにリード線16bの一端部が接続しており、このリード線16bを伝って測温抵抗体16の熱が僅かに逃げるため、測温抵抗体16で検知する温度と実際温度に乖離が生じる恐れがある。この問題を抑えるため、リード線16bにおいて上記一端部から離間した一部分を調理プレート11の調理面11aとは反対側の裏面に当接又は近接させることが好ましい。これにより測温抵抗体16の熱がリード線16bから逃げるのを阻止でき、熱容量の小さな測温素子部16aであっても高い精度で温度を検知することができる。かかるリード線16bの一部分の当接又は近接は、図6(a)又は(b)の縦断面図に示すように、接着剤18を用いて固定すればよい。なお、上記したリード線16bの一部分の当接又は近接に際しては、可能な限りその当接面積を大きく又は近接させる長さを長くとることが好ましい。 As described above, one end of the lead wire 16b is connected to the resistance temperature detector 16, and the heat of the resistance temperature detector 16 escapes slightly through the lead wire 16b. There may be a discrepancy between the actual temperature and the actual temperature. In order to suppress this problem, it is preferable that a part of the lead wire 16b spaced from the one end is brought into contact with or close to the back surface of the cooking plate 11 opposite to the cooking surface 11a. Thereby, it is possible to prevent the heat of the resistance thermometer 16 from escaping from the lead wire 16b, and the temperature can be detected with high accuracy even in the temperature measuring element portion 16a having a small heat capacity. Such contact or proximity of a portion of the lead wire 16b may be fixed using an adhesive 18, as shown in the longitudinal sectional view of FIG. 6 (a) or (b). When the part of the lead wire 16b contacts or approaches, it is preferable to make the contact area as large or as long as possible.
  薄板形状のヒーター13は、導体に電気を流したときに発生するジュール熱で加熱を行う抵抗発熱体の回路からなり、例えばステンレスやニッケル-クロム合金からなる金属箔をエッチングすることで渦巻状の回路パターンを有する発熱体回路が得られる。この発熱体回路は、面内で相対的に密度が変化するような回路パターンにすることができる。例えば、調理する食材の種類や調理プレート11の周縁部からの外壁への放熱等の設置環境を考慮して回路パターンの特定の領域を密にすることで、その領域の発熱密度を高くでき、結果的に調理面11aでの均熱性を向上させることができる。 The thin plate-shaped heater 13 is a circuit of a resistance heating element that is heated by Joule heat generated when electricity is passed through a conductor. For example, a metal foil made of stainless steel or nickel-chromium alloy is etched to form a spiral shape. A heating element circuit having a circuit pattern is obtained. The heating element circuit can have a circuit pattern in which the density changes relatively in the plane. For example, by densifying a specific area of the circuit pattern in consideration of the type of ingredients to be cooked and the installation environment such as heat radiation from the peripheral edge of the cooking plate 11 to the outer wall, the heat generation density of that area can be increased, As a result, the heat uniformity on the cooking surface 11a can be improved.
  このような局所的に異なる発熱密度の設計は、上記のように一つの発熱体回路内で設計することができるが、面内に複数の発熱体回路を設けてもよい。例えば、内周側と外周側に別々に発熱体回路を設けたり、右半分と左半分に別々に発熱体回路を設けたり、周方向に中心角θで分割した領域ごとに発熱体回路を設けてもよい。この場合、分割した領域毎に上記の温度センサーを設けることにより個別に温度制御を行うことができる。また、複数の発熱体回路を単層ではなく複数層に亘って設けてもよい。例えば制御を目的とした発熱体の層とは厚み方向において異なる位置に、設定温度の変更時にのみ電力を供給する発熱体の層を設けることができる。この場合、二つの発熱体層の間には互いの電気的な絶縁を目的とした絶縁シートを介在させる必要がある。 設計 Such locally different heat generation density designs can be designed in one heating element circuit as described above, but a plurality of heating element circuits may be provided in a plane. For example, separate heating element circuits are provided on the inner and outer peripheral sides, separate heating element circuits are provided on the right and left halves, and heating element circuits are provided for each region divided by the central angle θ in the circumferential direction. May be. In this case, temperature control can be performed individually by providing the temperature sensor for each divided area. A plurality of heating element circuits may be provided over a plurality of layers instead of a single layer. For example, a heating element layer that supplies power only when the set temperature is changed can be provided at a position different from the heating element layer for control purposes in the thickness direction. In this case, it is necessary to interpose an insulating sheet for the purpose of electrical insulation between the two heating element layers.
  調理プレート11や支持プレート12の材質が導電性の場合は、薄板形状ヒーター13の抵抗発熱体との電気的絶縁を目的とした絶縁シートを介在させる必要がる。この絶縁シート及び上記した複数の発熱体回路の間に設ける絶縁シートは可能な限り高熱伝導率のものを使用することが望ましい。絶縁シートの熱伝導率が高ければ、抵抗発熱体の回路パターンや調理プレート11の構造、設置環境などによって生じる調理面11a上の温度ばらつきを小さくでき、均熱性の高い加熱調理器を実現することができる。 If the material of the cooking plate 11 or the support plate 12 is conductive, it is necessary to interpose an insulating sheet for electrical insulation from the resistance heating element of the thin plate heater 13. It is desirable that the insulating sheet provided between the insulating sheet and the plurality of heating element circuits has a high thermal conductivity as much as possible. If the insulating sheet has a high thermal conductivity, the temperature variation on the cooking surface 11a caused by the circuit pattern of the resistance heating element, the structure of the cooking plate 11, the installation environment, etc. can be reduced, and a cooking device with high heat uniformity can be realized. Can do.
  絶縁シートの熱伝導率が低いものを選択する場合は、その厚みは絶縁性が確保される範囲で極力薄い方が好ましい。この理由は、熱抵抗となるシートの厚みが薄ければその影響を少なくできるため、速やかな熱伝達が期待できるからである。また、絶縁シートは調理プレート11や支持プレート12に比べて柔軟であるのが好ましい。絶縁シートが柔軟でない場合は、絶縁シートと調理プレート11との間、又は絶縁シートと支持プレート12との間に調理プレート11や支持プレート12に比べて柔軟で平面方向の熱伝導率が高い高熱伝導シート(例えばアルミシート:100~250W/m・K、銅シート:400W/m・K、グラファイトシート:200~1700W/m・K)を配置しても良い。 選 択 When an insulating sheet having a low thermal conductivity is selected, it is preferable that its thickness is as thin as possible within a range in which insulation is ensured. This is because if the thickness of the sheet serving as the thermal resistance is thin, the influence can be reduced, and prompt heat transfer can be expected. The insulating sheet is preferably flexible as compared with the cooking plate 11 and the support plate 12. When the insulating sheet is not flexible, it is flexible between the insulating sheet and the cooking plate 11, or between the insulating sheet and the support plate 12, and is more flexible than the cooking plate 11 or the support plate 12 and has high thermal conductivity in the planar direction. Conductive sheets (for example, aluminum sheet: 100 to 250 W / m · K, copper sheet: 400 W / m · K, graphite sheet: 200 to 1700 W / m · K) may be disposed.
  上記したように、絶縁シートは調理プレート11や支持プレート12に比べて柔軟であるのが好ましい。これは、ヒーター13の上下面と調理プレート11や支持プレート12との間は、上記したヒーター13の抵抗発熱体による加熱時や後述する冷却プレートによる冷却時に効率よく伝熱させるため、空隙が生じないようにすることが重要であるからである。すなわち、ここに空隙が生じると、ヒーター13による加熱時に当該空隙が膨張し、抵抗発熱体の層の剥離や絶縁破壊の原因となる上、抵抗発熱体の周りに伝熱媒体がない状態となり、異常発熱の原因にもなる。これに対して絶縁シートが柔軟であれば、それぞれの平面度などにより生じる僅かな空隙を埋めることができ、局所的な熱抵抗を低減させて調理プレート11及び支持プレート12が有する熱伝導率や熱容量の効果を最大限に引き出すことができ、よって均熱性が高く且つ設置環境などの外乱に対して安定性のある加熱調理器にすることができる。 し た As described above, it is preferable that the insulating sheet is more flexible than the cooking plate 11 and the support plate 12. This is because an air gap is generated between the upper and lower surfaces of the heater 13 and the cooking plate 11 or the support plate 12 in order to efficiently transfer heat when the heater 13 is heated by the resistance heating element or by a cooling plate described later. This is because it is important to avoid it. That is, when a gap is generated here, the gap expands when heated by the heater 13, which causes peeling of the layer of the resistance heating element and dielectric breakdown, and there is no heat transfer medium around the resistance heating element, It may also cause abnormal heat generation. On the other hand, if the insulating sheet is flexible, it is possible to fill a small gap caused by each flatness, etc., and reduce the local thermal resistance to reduce the thermal conductivity of the cooking plate 11 and the support plate 12. The effect of the heat capacity can be maximized, so that the cooking device can have a high temperature uniformity and be stable against disturbances such as the installation environment.
  絶縁シートの材質には更にシリコーン樹脂、フッ素樹脂、ポリイミド樹脂、セラミックス繊維シート、マイカなどから選択してもよい。シリコーン樹脂はその柔軟性を活かして前述したヒーター13の特性の向上に寄与することができ、フッ素樹脂やポリイミド樹脂、セラミックス繊維シート、マイカなどは200℃を超える温度域であっても用いることが出来る。特にマイカは500℃を越える温度域であっても用いることができる上、電気絶縁性に優れることから高温域で用いるのに好適である。 The material for the insulating sheet may be further selected from silicone resin, fluorine resin, polyimide resin, ceramic fiber sheet, mica, and the like. Silicone resin can contribute to improvement of the characteristics of the heater 13 described above by making use of its flexibility, and fluorine resin, polyimide resin, ceramic fiber sheet, mica, etc. can be used even in a temperature range exceeding 200 ° C. I can do it. In particular, mica can be used even in a temperature range exceeding 500 ° C. and is excellent in electrical insulation, so that it is suitable for use in a high temperature range.
  マイカと発熱体は熱圧着により一体化させることが出来る。一体化することにより、全面に亘って密着性が増し、界面の局所的な熱抵抗を下げることができ、支持プレート12が有する熱伝導率や熱容量の効果を最大限に引き出すことが可能となる。更に、一体化によって抵抗発熱体が膨張収縮を繰り返しても平面方向における絶縁シートの位置ずれが生じにくくなり、信頼性の高い加熱調理器を製造することが出来る。 Mica and heating element can be integrated by thermocompression bonding. By integrating, the adhesion can be increased over the entire surface, the local thermal resistance of the interface can be lowered, and the effect of the thermal conductivity and heat capacity of the support plate 12 can be maximized. . Further, even if the resistance heating element repeatedly expands and contracts due to the integration, the insulating sheet is less likely to be displaced in the plane direction, and a highly reliable cooking device can be manufactured.
  また、抵抗発熱体において、回路パターンの隣接する導電線同士の間の空隙が伝熱抵抗の原因に成り得るため、この空隙を充填することが望ましい。この場合、上述したような柔軟な絶縁シートで充填してもよいが、回路パターンの導電線やそのピッチが密になればなるほど、絶縁シートによる充填は困難になる。この場合は、絶縁シートと抵抗発熱体との間、及び隣接する導電線同士の間の空隙を接着性材料で充填するのが好ましい。この接着性材料には、熱可塑樹脂やポリイミドなどの熱硬化性樹脂を含有したフィルム、ワニスなどが有効である。これらを絶縁シートと抵抗発熱体との間に配置して最適な温度、圧力条件で熱圧着することで、良好な熱接触を維持したヒーター13を製造することが出来る。 In addition, in the resistance heating element, a gap between adjacent conductive wires of the circuit pattern can cause heat transfer resistance, so it is desirable to fill this gap. In this case, it may be filled with a flexible insulating sheet as described above. However, as the conductive lines of the circuit pattern and their pitches become denser, filling with the insulating sheet becomes more difficult. In this case, it is preferable to fill the space between the insulating sheet and the resistance heating element and between the adjacent conductive wires with an adhesive material. As this adhesive material, a film containing a thermosetting resin such as a thermoplastic resin or polyimide, a varnish, or the like is effective. By arranging these between the insulating sheet and the resistance heating element and thermocompression bonding under optimum temperature and pressure conditions, the heater 13 maintaining good thermal contact can be manufactured.
  また、例えばエッチング加工でヒーター13の回路パターンを作製する際、隣接する両導電線の間の空隙を埋めるように、当該抵抗発熱体の回路から電気的に絶縁した金属箔層を同時に形成してもよい。この金属箔層は、抵抗発熱体と同じ素材、同じ肉厚で形成されるので、前述した絶縁シートよりも熱伝導率を高くすることができる。よって、調理プレート11と支持プレート12とで挟持されたヒーター13の層における伝熱抵抗をより小さくすることができる。また、前述したように調理プレート11と支持プレート12とを機械的結合する際、ねじ止め部の周辺に金属箔層を設けておくことで、ヒーター13が設けられている層の厚みを均一化し、ねじ止め時のネジの軸方向の力によるプレートの変形を防止することにも寄与する。 For example, when the circuit pattern of the heater 13 is formed by etching, for example, a metal foil layer that is electrically insulated from the circuit of the resistance heating element is formed at the same time so as to fill a gap between the adjacent conductive wires. Also good. Since this metal foil layer is formed of the same material and the same thickness as the resistance heating element, the thermal conductivity can be made higher than that of the insulating sheet described above. Therefore, the heat transfer resistance in the layer of the heater 13 sandwiched between the cooking plate 11 and the support plate 12 can be further reduced. Further, as described above, when the cooking plate 11 and the support plate 12 are mechanically coupled, by providing a metal foil layer around the screwing portion, the thickness of the layer provided with the heater 13 is made uniform. It also contributes to preventing the deformation of the plate due to the axial force of the screw during screwing.
  支持プレート12の下部には、図7に示すように、冷却プレート20を備えてもよい。この冷却プレート20は、例えば調理プレート11の平面視形状と略同一の平面視形状を有する金属製の板状部材で構成されており、その内部若しくは表面部に冷媒を流通させる流路が形成されている。この冷媒流路は、例えば図8(a)に示すように、金属製の板状部材21において支持プレート12に当接する当接面21aとは反対側の面に金属製のパイプ22を配置し、このパイプを覆うように押さえ板23を設けて該押さえ板と板状部材とをネジなどの機械的結合手段24により機械的に結合することで形成することができる(以下、パイプ式と称する)。 As shown in FIG. 7, a cooling plate 20 may be provided at the bottom of the heel support plate 12. The cooling plate 20 is made of, for example, a metal plate-like member having a plan view shape substantially the same as the plan view shape of the cooking plate 11, and a flow path through which a coolant is circulated is formed inside or on the surface portion. ing. For example, as shown in FIG. 8A, the refrigerant flow path has a metal pipe 22 disposed on a surface opposite to the contact surface 21a that contacts the support plate 12 in the metal plate-shaped member 21. The press plate 23 can be provided so as to cover the pipe, and the press plate and the plate-like member can be mechanically coupled by a mechanical coupling means 24 such as a screw (hereinafter referred to as a pipe type). ).
  あるいは、図8(b)~(d)に示すように、金属製の略同形状の2枚の板状部材25a、25bを用意し、その一方又は両方の片面に機械加工で流路となる溝26を形成し、この流路形成面を覆うように2枚を重ね合わせ、これらを例えばロウ付けなどの結合手段で一体化することで形成することができる(以下、ロウ付け方式と称する)。ロウ付け方式は冷媒が直接板状部材に接するため、パイプ方式に比べて熱交換の効率が高く、高速に冷却するのに好適である。なお、図8(b)~(c)には、重ね合わせる2枚の板状部材25a、25bの内の一方にのみ流路となる溝26を加工する場合が示されており、図8(d)には、両方の板状部材25a、25bに流路となる溝26を加工する場合が示されている。 Alternatively, as shown in FIGS. 8B to 8D, two plate- like members 25a and 25b having substantially the same shape made of metal are prepared, and a flow path is formed by machining on one or both surfaces thereof. It is possible to form the groove 26 by overlapping the two sheets so as to cover the flow path forming surface and integrating them with a coupling means such as brazing (hereinafter referred to as a brazing method). . The brazing method has a higher heat exchange efficiency than the pipe method because the refrigerant directly contacts the plate-like member, and is suitable for cooling at a high speed. FIGS. 8B to 8C show a case where the groove 26 serving as a flow path is processed only in one of the two plate- like members 25a and 25b to be overlapped. FIG. 4d shows a case where the groove 26 serving as a flow path is processed in both the plate- like members 25a and 25b.
  冷媒流路にパイプを用いる場合は、上記したパイプ式の他、図8(e)に示すように、金属製の板状部材27において支持プレート12に当接する当接面27aとは反対側の面にリング状や渦巻き状のザグリ溝28を設け、この中に例えば渦巻き状に成形したCuパイプ29を設置してもよい。このCuパイプ29は、金属製の板状部材との良好な熱伝達を確保するため、コーキング材、シーラント、接着剤などによりCuパイプの外表面とリング状ザグリ加工面とを接着固定するのが好ましい。 When a pipe is used for the refrigerant flow path, in addition to the pipe type described above, as shown in FIG. 8 (e), the metal plate-like member 27 is on the opposite side to the contact surface 27a that contacts the support plate 12. A ring-shaped or spiral-shaped counterbore groove 28 may be provided on the surface, and, for example, a Cu pipe 29 formed in a spiral shape may be installed therein. In order to ensure good heat transfer with the metal plate-like member, the Cu pipe 29 is bonded and fixed between the outer surface of the Cu pipe and the ring-shaped counterbore processed surface with a caulking material, sealant, adhesive, or the like. preferable.
  Cuパイプ29の終端の開口部には、例えばステンレス製の継ぎ手(図示せず)を取り付けて、ここから水などの冷媒を流通させることで冷却プレートの温度を一定に保つことが出来る。なお、図9に示すように、薄板形状のヒーター213を上下から挟み込む調理プレート211及び支持プレート212において、支持プレート212内に冷媒流路226を形成してもよい。この流路付き支持プレート212は、上記した冷媒流路を備えた冷却プレート20の作製の際に行ったロウ付け方式で作製することができる。 A stainless steel joint (not shown), for example, is attached to the opening at the end of the copper pipe 29, and a coolant such as water can be circulated from here to keep the temperature of the cooling plate constant. As shown in FIG. 9, the coolant channel 226 may be formed in the support plate 212 in the cooking plate 211 and the support plate 212 that sandwich the thin plate-shaped heater 213 from above and below. The support plate 212 with the flow path can be manufactured by the brazing method performed when the cooling plate 20 including the refrigerant flow path described above is manufactured.
  上記した冷却プレート20や流路付き支持プレート212の材質は、熱伝導性の良い銅、アルミニウム、ニッケル、マグネシウム、チタン、及びこれらのいずれかを主成分とするステンレスなどの合金からなる群から選択することが好ましい。これらの中では、特にアルミニウムが、優れた熱伝導率を有していることに加えて、比重が小さくて機器の軽量化が可能になるのでより好適である。なお、冷却プレート20には必要に応じて耐食性や耐酸化性の高いNiめっきなどの表面処理を施してもよい。また、冷却プレート20には、前述した抵抗発熱体への給電配線や温度センサを挿通するための貫通孔や切り欠きを設けてもよい。 The material of the cooling plate 20 and the support plate 212 with the flow path is selected from the group consisting of copper, aluminum, nickel, magnesium, titanium having good thermal conductivity, and an alloy such as stainless steel mainly containing any of these. It is preferable to do. Among these, in particular, aluminum is more preferable because it has excellent thermal conductivity and has a small specific gravity and can reduce the weight of the device. Note that the cooling plate 20 may be subjected to a surface treatment such as Ni plating with high corrosion resistance and oxidation resistance as necessary. Further, the cooling plate 20 may be provided with a through hole or a notch for inserting the above-described power supply wiring to the resistance heating element and the temperature sensor.
  冷却プレート20は、図10(a)~(b)に示すように、上下方向に往復動自在となるように構成してもよい。このように冷却プレート20を往復動自在にすることで、図10(a)に示すように冷却プレート20を加熱調理器10から離間させたり、図10(b)に示すように冷却プレート20を加熱調理器10に当接させたりすることができ、より効率的に加熱及び冷却を行うことができる。冷却プレート20の往復動は手動でもよいが、エアシリンダやモータ駆動などを用いた昇降機構を用いて自動的に往復動するのが好ましい。 As shown in FIGS. 10A and 10B, the cooling plate 20 may be configured to be reciprocally movable in the vertical direction. By making the cooling plate 20 reciprocating in this way, the cooling plate 20 can be separated from the heating cooker 10 as shown in FIG. 10A, or the cooling plate 20 can be moved as shown in FIG. It can be brought into contact with the heating cooker 10, and heating and cooling can be performed more efficiently. The reciprocating movement of the cooling plate 20 may be manual, but it is preferable to automatically reciprocate using an elevating mechanism using an air cylinder or a motor drive.
  例えば図11に示すように昇降機構31を用いて冷却プレート20を往復動させる場合は、加熱調理器10の設置環境や許容される重量や寸法などの制約の下、なるべく加熱調理器10への接触推力が大きいのが好ましい。これにより、冷却プレート20と加熱調理器10との当接面に生じる伝熱抵抗を小さくすることができ、所要冷却時間を短縮することができる。更に、局所的な伝熱抵抗を排除することで面内温度分布を向上することが可能になる。具体的には、エアシリンダなどの昇降機構31の推力が、冷却プレート20の重量以上であることが望ましい。エアシリンダの昇降機構31に加えて、冷却プレート20が加熱調理器10に当接した直後に、これらの当接面同士の間を真空吸着により吸着して密着性を高めてもよい。これにより、より速やかに冷却することができる。 For example, as shown in FIG. 11, when the cooling plate 20 is reciprocated using the lifting mechanism 31, the heating cooker 10 can be connected to the cooking device 10 as much as possible under the restrictions such as the installation environment of the cooking device 10 and the allowable weight and size. It is preferable that the contact thrust is large. Thereby, the heat transfer resistance which arises in the contact surface of the cooling plate 20 and the heating cooker 10 can be made small, and required cooling time can be shortened. Furthermore, it is possible to improve the in-plane temperature distribution by eliminating local heat transfer resistance. Specifically, it is desirable that the thrust of the lifting mechanism 31 such as an air cylinder be equal to or greater than the weight of the cooling plate 20. In addition to the air cylinder lifting mechanism 31, immediately after the cooling plate 20 abuts on the heating cooker 10, the abutting surfaces may be adsorbed by vacuum adsorption to improve the adhesion. Thereby, it can cool more rapidly.
  冷却プレート20を往復動させる場合は、冷却プレート20の材質に銅を使用するのが好ましい。この理由は、銅は熱容量が大きいため、当接/分離する構造に於いては被冷却物から奪う熱量が大きく、高速に冷却するのに好適であるからである。なお、銅は比重が高く重量が大きくなるので、重量制限がある場合やハンドリングの観点から好ましくないケースがある。このような場合はアルミニウムを用いればよい。 さ せ る When the cooling plate 20 is reciprocated, it is preferable to use copper as the material of the cooling plate 20. The reason for this is that copper has a large heat capacity, and therefore the amount of heat taken away from the object to be cooled is large in the contact / separation structure, which is suitable for cooling at high speed. Since copper has a high specific gravity and a large weight, there are cases where there are weight restrictions and cases that are not preferable from the viewpoint of handling. In such a case, aluminum may be used.
  更に、図12に示すように冷却プレート20を加熱調理器10の下面から離間させた位置に固定し、加熱調理器10の下面に当接する位置と冷却プレート20の上面に当接する位置との間で板状の冷却ブロック32を往復動させてもよい。これにより、加熱調理器10をより急速に冷却することが可能になる。すなわち、流路のない冷却ブロック32を加熱調理器10と冷却プレート20との間で頻繁に往復動させることで冷却ブロック32の温度を低温状態に維持することができ、よって加熱調理器10と冷却ブロック32との温度差を十分に大きくとることができるので、より急速に冷却することができる。なお、このような冷却方法を間接冷却方式と称する。 Further, as shown in FIG. 12, the cooling plate 20 is fixed at a position spaced from the lower surface of the heating cooker 10, and the position between the position contacting the lower surface of the heating cooker 10 and the position contacting the upper surface of the cooling plate 20. The plate-like cooling block 32 may be reciprocated. Thereby, it becomes possible to cool the heating cooker 10 more rapidly. In other words, the temperature of the cooling block 32 can be maintained at a low temperature by frequently reciprocating the cooling block 32 having no flow path between the heating cooker 10 and the cooling plate 20. Since the temperature difference from the cooling block 32 can be made sufficiently large, cooling can be performed more rapidly. Such a cooling method is referred to as an indirect cooling method.
  冷却ブロック32の材料やサイズには上記した冷却プレート20と同様のものを使用することができるが、具体的な冷却ブロック32のサイズは調理器に与えられたスペースやコストを考慮して適宜選定される。なお、加熱調理器10と冷却プレート20との間を往復動させる冷却ブロック32に冷媒流路を設けないことにより、冷却ブロック32の当接の際、当接面の全面に亘って均等に伝熱を行うことが可能になり、よって冷却時に調理面11aにおいて温度分布が付きにくくなるという効果も期待できる。 The material and size of the cooling block 32 can be the same as those of the cooling plate 20 described above, but the specific size of the cooling block 32 is appropriately selected in consideration of the space and cost given to the cooker. Is done. In addition, by not providing the refrigerant flow path in the cooling block 32 that reciprocates between the heating cooker 10 and the cooling plate 20, when the cooling block 32 abuts, the entire surface of the abutting surface is evenly transmitted. It is possible to heat, and therefore, it is possible to expect an effect that the temperature distribution on the cooking surface 11a is difficult to be attached during cooling.
  上記した冷却プレート20の冷媒流路に流す冷媒には、水の他にエアやフッ素系冷媒等、所望の温度範囲を得るために適宜選定することができる。調理器具の設置される例えば厨房等を考慮すれば、最も汎用的に利用できる冷媒は水である。この他、コンプレッサー等で連続的に送風したり、フッ素系冷媒等の不凍液を低温仕様のチラー等で温調することにより様々な冷却能力や零下を含む温度帯を選定できる。 冷媒 The refrigerant flowing through the refrigerant flow path of the cooling plate 20 can be appropriately selected in order to obtain a desired temperature range such as air or a fluorine-based refrigerant in addition to water. Considering, for example, a kitchen where cooking utensils are installed, water is the most widely used refrigerant. In addition, it is possible to select a temperature range including various cooling capacities and subzero temperatures by continuously blowing air with a compressor or by adjusting the temperature of an antifreeze such as a fluorine-based refrigerant with a low-temperature chiller or the like.
  冷却プレート20において加熱調理器10と当節する面には、図8(a)~(e)に示すように、厚み方向に変形可能なクッション性に富んだ介在層33を設けてもよい。介在層33は冷却プレート20において加熱調理器10の支持プレート12に当接する面に配置してもよいし、加熱調理器10の支持プレート12において冷却プレート20に当接する面に配置してもよいし、或いはその両面に配置してもよいが、冷却プレート20において加熱調理器10の支持プレート12に当接する面に設けるのが好ましい。これは、支持プレート12において冷却プレート20と当接する面では、常に一定の熱負荷が加わるので、熱履歴による介在層33の損耗が生じやすくなるからであり、また、ヒーターの使用温度によっては、連続的な耐熱性の観点から介在層33の材質やその取付方法が限定されてしまうためである。 As shown in FIGS. 8A to 8E, an intervening layer 33 having a cushioning property that can be deformed in the thickness direction may be provided on the surface of the cooling plate 20 that contacts the heating cooker 10. The intervening layer 33 may be disposed on the surface of the cooling plate 20 that contacts the support plate 12 of the heating cooker 10 or may be disposed on the surface of the support plate 12 of the heating cooker 10 that contacts the cooling plate 20. However, it may be arranged on both surfaces thereof, but it is preferable to provide the cooling plate 20 on the surface that contacts the support plate 12 of the heating cooker 10. This is because a constant thermal load is always applied to the surface of the support plate 12 that is in contact with the cooling plate 20, so that the wear of the intervening layer 33 is likely to occur due to the thermal history, and depending on the operating temperature of the heater, This is because the material of the interposition layer 33 and its mounting method are limited from the viewpoint of continuous heat resistance.
  介在層33は、発泡金属あるいは金属メッシュ、グラファイトシート、フッ素樹脂、ポリイミド、シリコーン樹脂等の耐熱性を有する材料が好ましい。また、例えばカーボンなどの熱伝導フィラーを含有した樹脂を用いてもよい。これにより、熱抵抗が小さくなり高速に冷却するには好適である。このように、介在層33は熱伝導率が高いことが望ましい。特に熱伝導率は1W/m・K以上であることが好ましい。この理由は、1W/m・K未満であれば、熱抵抗が大きくなり冷却速度が遅くなってしまうからである。 The eaves interposition layer 33 is preferably a heat-resistant material such as foam metal or metal mesh, graphite sheet, fluororesin, polyimide, silicone resin. Further, for example, a resin containing a heat conductive filler such as carbon may be used. Thereby, thermal resistance becomes small and it is suitable for cooling at high speed. Thus, it is desirable that the intervening layer 33 has a high thermal conductivity. In particular, the thermal conductivity is preferably 1 W / m · K or more. This is because if it is less than 1 W / m · K, the thermal resistance increases and the cooling rate becomes slow.
  更に、介在層33は柔軟性を有していることが好ましい。柔軟性がなければ、冷却プレート20を支持プレート12に当接させた際、各当接面の平面度などを充分に吸収することができず、局所的に空隙が残ることで冷却時の温度ばらつきを抑えることが出来なくなる。以上を考慮すると、熱伝導率が高く、加熱調理器10および冷却プレート20の当接面において、熱膨張や機械加工によって発生する凹凸、突起、傷、ばり、かえり、異物などの平坦でない表面状態を吸収することができる柔軟性の高い材質としてシリコーン樹脂が最も好ましい。 Furthermore, it is preferable that the intervening layer 33 has flexibility. Without flexibility, when the cooling plate 20 is brought into contact with the support plate 12, the flatness of each contact surface cannot be sufficiently absorbed, and gaps remain locally so that the temperature during cooling can be reduced. Variations cannot be suppressed. Considering the above, the heat conductivity is high, and uneven surfaces, protrusions, scratches, flashes, burr, foreign matters, etc. generated by thermal expansion or machining on the contact surfaces of the cooking device 10 and the cooling plate 20 are not flat. Silicone resin is the most preferable as a highly flexible material that can absorb water.
  介在層33の厚みは加熱調理器10の支持プレート12において冷却プレート20に当接する面の平面度と、冷却プレート20において加熱調理器10の支持プレート12に当接する面の平面度との和よりも厚いことが好ましく、且つ0.1mm~3mmの範囲内であれば尚良い。0.1mmを下回ると、加熱調理器10において冷却プレート20と当接する面の平面度および冷却プレート20において加熱調理器10と当接する面の平面度の総和を0.1mm未満にしなければ局所的な空隙を生じさせることになり好ましくない上、このようにシビアな管理が必要であることは、機械加工精度やコストの観点から量産に向いておらず、また、介在層33そのものが薄すぎてハンドリングが困難になるなど、安定して製造することに支障をきたす。一方、3mmを越えると冷却時の伝熱抵抗が増え過ぎ、冷却速度が遅くなる上、ユニットをコンパクトにする上で障害となり得る。 The thickness of the intervening layer 33 is based on the sum of the flatness of the surface of the support plate 12 of the heating cooker 10 that contacts the cooling plate 20 and the flatness of the surface of the cooling plate 20 that contacts the support plate 12 of the heating cooker 10. It is also preferable that the thickness is within a range of 0.1 mm to 3 mm. If less than 0.1 mm, the sum of the flatness of the surface in contact with the cooling plate 20 in the heating cooker 10 and the flatness of the surface in contact with the heating cooker 10 in the cooling plate 20 is not locally less than 0.1 mm. This is not preferable because it causes a large gap, and such severe management is not suitable for mass production from the viewpoint of machining accuracy and cost, and the intervening layer 33 itself is too thin. This makes it difficult to handle and makes it difficult to manufacture stably. On the other hand, if it exceeds 3 mm, the heat transfer resistance at the time of cooling increases excessively, the cooling rate becomes slow, and it may become an obstacle to making the unit compact.
  加熱調理器10の支持プレート12において冷却プレート20と当接する面の平面度と、冷却プレート20において加熱調理器10の支持プレート12と当接する面の平面度は各々0.5mm以下にすることが好ましい。0.5mmを越えると介在層33との接触性の維持が困難なことと、接触性を維持するために介在層33を厚くすることがかえって伝熱抵抗を増大させ、冷却速度が遅くなる恐れがある。尚、加熱調理器10において冷却プレート20と当接する面の平面度と、冷却プレート20において加熱調理器10に当接する面の平面度の総和が0.1mm以下であれば好適である。このようにすることにより、介在層33の厚みは理論上0.1mmまで薄くすることができ、そうすることで熱抵抗が小さく高速で冷却できるようになる。 The flatness of the surface in contact with the cooling plate 20 in the support plate 12 of the heating cooker 10 and the flatness of the surface in contact with the support plate 12 of the heating cooker 10 in the cooling plate 20 should each be 0.5 mm or less. preferable. If the thickness exceeds 0.5 mm, it is difficult to maintain the contact property with the intervening layer 33, and the thickness of the intervening layer 33 may be increased in order to maintain the contact property. There is. In addition, it is suitable if the sum total of the flatness of the surface which contacts the cooling plate 20 in the heating cooker 10 and the flatness of the surface which contacts the heating cooker 10 in the cooling plate 20 is 0.1 mm or less. By doing so, the thickness of the intervening layer 33 can theoretically be reduced to 0.1 mm, and by doing so, the thermal resistance is small and the cooling can be performed at high speed.
  更に、介在層33の配置領域は冷却プレート20において加熱調理器10の支持プレート12との当接面の面積の10%以上90%以下であることが好ましい。これは10%未満であれば当接面積が小さくなりすぎて冷却速度が遅くなり、一方、90%を超えると均質に取り付けることが困難になるからである。介在層33の取付方法としては、固定できれば特に制約はないが、例えば接着剤、両面テープ、粘着性樹脂などの接着手段により良好に取り付けることができる。これら接着手段を選ぶ場合は、薄くて熱抵抗が小さく且つ熱伝導率が高いものがより望ましい。また、薄板状などのある程度厚みを有する介在層の場合は、ねじ止めなどにより機械的に固定しても構わない。 Furthermore, it is preferable that the arrangement | positioning area | region of the intervening layer 33 is 10% or more and 90% or less of the area of the contact surface with the support plate 12 of the heating cooker 10 in the cooling plate 20. This is because if the amount is less than 10%, the contact area becomes too small and the cooling rate becomes slow. On the other hand, if it exceeds 90%, it is difficult to attach uniformly. Although there is no restriction | limiting in particular as an attachment method of the intervening layer 33 if it can fix, For example, it can attach favorably by adhesive means, such as an adhesive agent, a double-sided tape, and adhesive resin. When these adhesion means are selected, those that are thin, have low thermal resistance, and high thermal conductivity are more desirable. In the case of an intervening layer having a certain thickness such as a thin plate, it may be mechanically fixed by screwing or the like.
  冷却プレート20と加熱調理器10の支持プレート12との間で先述した冷却ブロック32を往復動させる場合は、当該冷却ブロック32において冷却プレート20に当接する面や加熱調理器10の支持プレート12に当接する面にも介在層を配置してもよい。これにより、冷却ブロック32と冷却プレート20もしくは加熱調理器10との間の伝熱がより均一に行われるため、冷却時の過渡的な温度分布を軽減するという効果が得られる。 When the above-described cooling block 32 is reciprocated between the cooling plate 20 and the support plate 12 of the heating cooker 10, the surface that contacts the cooling plate 20 in the cooling block 32 or the support plate 12 of the heating cooker 10 is used. An intervening layer may also be disposed on the abutting surface. Thereby, since the heat transfer between the cooling block 32 and the cooling plate 20 or the heating cooker 10 is performed more uniformly, an effect of reducing a transient temperature distribution during cooling can be obtained.
  以上、本発明の加熱調理器について具体例を挙げて説明したが、本発明は係る具体例に限定されるものではなく、本発明の主旨から逸脱しない範囲内で種々の変形例や代替例を考えることができる。すなわち、本発明の技術的範囲は、特許請求の範囲及びその均等物に及ぶものである。 As mentioned above, although the specific example was given and demonstrated about the heating cooker of this invention, this invention is not limited to the specific example which concerns, Various modifications and alternative examples are within the range which does not deviate from the main point of this invention. Can think. That is, the technical scope of the present invention extends to the claims and their equivalents.
  [実施例1]
  本発明に係る実施例として、図2に示すような加熱調理器10を製作した。調理プレート11としてSi-SiC製の板状部材を横600mm×縦450mm×厚さ6mmに加工し、その調理面11aとは反対側の裏面に支持プレート12との結合用のM3メネジ穴を設けた。一方、支持プレート12としてアルミニウム製の板状部材を横600mm×縦450mm×厚さ6mmに加工し、更に上記調理プレート11のM3メネジ穴に対応する位置にM3ネジ用の貫通穴を設けた。
[Example 1]
As an example according to the present invention, a cooking device 10 as shown in FIG. 2 was manufactured. A plate member made of Si—SiC is processed as a cooking plate 11 into a width of 600 mm × length of 450 mm × thickness of 6 mm, and an M3 female screw hole for coupling to the support plate 12 is provided on the back surface opposite to the cooking surface 11a. It was. On the other hand, a plate member made of aluminum was processed as the support plate 12 into a width of 600 mm × length of 450 mm × thickness of 6 mm, and a through hole for an M3 screw was provided at a position corresponding to the M3 female screw hole of the cooking plate 11.
  調理プレート11の上記M3メネジを設けた裏面に、更に温度センサとしての測温抵抗体を取り付けるため、平坦な底面を有する深さ5mmのザグリ穴を機械加工で形成した。この場合、ザグリ穴の底面は、調理プレート11の調理面11aから1mm離間した位置となり、調理プレート11の厚み方向の中央から調理面11a側に調理プレート11の厚みの33%偏った位置に存在することになる。このザグリ穴の底面に測温抵抗体の測温素子部の平面部を当接させた。なお、測温素子部は、1.2mm×1.7mm×0.7mmの絶縁セラミック基体に白金抵抗体でパターニングを施し、その表面を絶縁皮膜で被覆処理したものを用いた。測温抵抗体をザグリ穴に取り付ける際、シリコーン樹脂を主成分とした接着剤で接着固定した。 In order to attach a resistance temperature detector as a temperature sensor on the back surface of the cooking plate 11 provided with the M3 female screw, a counterbore hole having a flat bottom surface and a depth of 5 mm was formed by machining. In this case, the bottom surface of the counterbore hole is located 1 mm away from the cooking surface 11 a of the cooking plate 11, and exists at a position that is offset by 33% of the thickness of the cooking plate 11 from the center in the thickness direction of the cooking plate 11 to the cooking surface 11 a side. Will do. The flat portion of the temperature measuring element portion of the resistance temperature detector was brought into contact with the bottom surface of the counterbore hole. The temperature measuring element used was a 1.2 mm × 1.7 mm × 0.7 mm insulating ceramic substrate that was patterned with a platinum resistor and the surface was coated with an insulating film. When the resistance temperature detector was attached to the counterbore, it was bonded and fixed with an adhesive mainly composed of silicone resin.
  このようにして作製した調理プレート11及び支持プレート12を重ね合わせ、それらの間に、ヒーター13としてポリイミドで絶縁被覆されたSUS箔の抵抗発熱体回路を挟み込んだ。なお、熱膨張量差から生じる各プレートの変形防止のため、図3に示すようなベアリング機構を備えたM3ネジを用いて調理プレート11と支持プレート12とを機械的に結合した。また、抵抗発熱体の終端部には給電ケーブルを取り付けておいた。このようにして試料1の加熱調理器を作製した。更に、ザグリ穴の底面の位置が、調理プレート11の調理面11aからそれぞれ2mm(中央から上に17%)、3mm(中央)、4mm(中央から下に17%)、及び5mm(中央から下に33%)離間した以外は上記と同様にして試料2~5の加熱調理器を作製した。なお、上記の各括弧内には、それぞれ当接面が調理プレート11の厚み方向の中央から偏っている方向及びその調理プレート11の厚みに対する割合が示されている。 調理 The cooking plate 11 and the support plate 12 produced in this way were overlapped, and a resistance heating element circuit of SUS foil covered with polyimide as a heater 13 was sandwiched between them. In addition, in order to prevent deformation of each plate resulting from the difference in thermal expansion, the cooking plate 11 and the support plate 12 were mechanically coupled using M3 screws provided with a bearing mechanism as shown in FIG. In addition, a power supply cable was attached to the terminal end of the resistance heating element. In this way, a heating cooker of Sample 1 was produced. Furthermore, the positions of the bottom surfaces of the counterbore holes are 2 mm (17% from the center upward), 3 mm (center), 4 mm (17% from the center downward), and 5 mm (down from the center) from the cooking surface 11a of the cooking plate 11, respectively. The cookers for Samples 2 to 5 were made in the same manner as above except that they were separated by 33%. In each parenthesis, the direction in which the contact surface is offset from the center in the thickness direction of the cooking plate 11 and the ratio to the thickness of the cooking plate 11 are shown.
  また、比較のため、温度センサとして測温抵抗体に代えて外径3mm、先端部のR1.5mmのシース保護管タイプの熱電対を用意し、この保護管の先端が調理面からそれぞれ1mm、2mm、3mm、4mm、及び5mm離間する位置で底面に当接するザグリ穴をあけた5種類の調理プレートを用意してそれぞれに熱電対を取り付けた。これ以外は上記試料1と同様にして試料6~10の加熱調理器を作製した。 For comparison, instead of a resistance temperature detector as a temperature sensor, a sheath protective tube type thermocouple with an outer diameter of 3 mm and a tip of R1.5 mm is prepared, and the tip of this protective tube is 1 mm from the cooking surface, respectively. Five types of cooking plates having counterbored holes that contact the bottom surface at positions 2 mm, 3 mm, 4 mm, and 5 mm apart were prepared, and thermocouples were attached to each. Except this, the cooking devices for Samples 6 to 10 were produced in the same manner as Sample 1 above.
  各試料の加熱調理器の下部に、上下方向に往復動自在な冷却プレート20を設けた。この冷却プレート20は、横600mm×縦450mm×厚さ10mmのアルミニウム合金板からなる基体の片面に、外径6mm、内径4mmのリン脱酸銅パイプをネジで固定したものを用いた。このリン脱酸銅パイプの両端には冷媒を供給・排出するための継ぎ手を取り付けた。また、冷却プレート20にはヒーターの給電配線、温度センサのリード線、および加熱調理器のロッド状脚部を挿通させるための貫通孔を形成した。 冷却 A cooling plate 20 that can reciprocate in the vertical direction is provided at the bottom of the cooking device for each sample. The cooling plate 20 was a plate in which a phosphorous deoxidized copper pipe having an outer diameter of 6 mm and an inner diameter of 4 mm was fixed with a screw on one side of a base made of an aluminum alloy plate having a width of 600 mm, a length of 450 mm, and a thickness of 10 mm. Joints for supplying and discharging the refrigerant were attached to both ends of the phosphorous deoxidized copper pipe. Further, the cooling plate 20 was formed with a through-hole for inserting the heater power supply wiring, the temperature sensor lead wire, and the rod-shaped leg portion of the heating cooker.
  これら加熱調理器及び冷却プレートを収容する側壁の厚さ1.5mm、底面の厚さ3mmのステンレス製の容器を作製し、その底部に上記給電配線、温度センサのリード線、およびロッド状脚部を挿通させる開口部を設けた。なお、支持プレート12の下面と冷却プレート20の上面とは当接させずに、10mm離間させた。 A stainless steel container having a side wall thickness of 1.5 mm and a bottom surface thickness of 3 mm for housing the heating cooker and the cooling plate is manufactured, and the power supply wiring, the temperature sensor lead wire, and the rod-shaped leg portion are formed at the bottom thereof. The opening part which penetrates was provided. Note that the lower surface of the support plate 12 and the upper surface of the cooling plate 20 were not in contact with each other and were separated by 10 mm.
  そして、各加熱調理器のヒーター13に給電して常温から250℃まで昇温させた後、その温度で1時間保持させた。この1時間の定常状態が経過した時点での調理プレート11の調理面11aの温度を接触式温度計を用いて計測し、調理面11a内の30ヶ所の温度平均値(℃)、及びその制御温度(250℃)との差を算出した。その結果を下記表1に示す。 Then, power was supplied to the heater 13 of each cooking device to raise the temperature from room temperature to 250 ° C., and the temperature was maintained for 1 hour. The temperature of the cooking surface 11a of the cooking plate 11 at the time when the steady state for 1 hour has passed is measured using a contact-type thermometer, and the temperature average value (° C.) at 30 locations in the cooking surface 11a and its control. The difference from the temperature (250 ° C.) was calculated. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
  上記表1に示すように、試料1~5の加熱調理器では、調理面の実際の温度の設定温度からの乖離は-1.3~+1.2℃と良好な結果が得られた。これに対して試料6~10の加熱調理器では、調理面の実際の温度が257.3~269.3℃となり、設定温度からの乖離が+7.3~+19.3℃と大きくなった。 表 As shown in Table 1 above, in the cooking devices of Samples 1 to 5, good results were obtained with the deviation of the actual cooking surface temperature from the set temperature of -1.3 to + 1.2 ° C. On the other hand, in the heating cookers of Samples 6 to 10, the actual temperature of the cooking surface was 257.3 to 269.3 ° C, and the deviation from the set temperature was +7.3 to + 19.3 ° C.
  一般に、調理プレートはその表面や外周部から熱放散することから、これらの部分では制御温度に対して低くなる傾向にある。これを補うため、温度センサを調理プレートのより調理面近くに設置することが考えられる。しかしながら、上記した実施例の様に設定温度の変更時の昇温速度を速めるために調理プレートの厚みを薄くすると、調理プレートに設けられるザグリ穴の深さが限られることから、シース熱電対ではその大半が調理プレートの裏面からはみ出た状態で設置されてしまう。その結果、はみ出たシースからの熱放散により測温素子部は実際の温度より低く検出してしまい、ヒーターが過熱状態になって制御温度よりも調理プレート表面温度が高くなったと考えられる。更に、シース熱電対では測温素子部(異種金属接点)の電気的絶縁性を確保するため、シースと測温素子部の間にMgO等の酸化物粉末が充填されており、この充填材が更に熱伝達を阻害し、制御温度と調理プレートの調理面の実際の温度との乖離が顕著になったものと考えられる。 Generally, the cooking plate dissipates heat from its surface or outer periphery, so these portions tend to be lower than the control temperature. In order to compensate for this, it is conceivable to install the temperature sensor closer to the cooking surface of the cooking plate. However, if the thickness of the cooking plate is reduced in order to increase the rate of temperature rise when changing the set temperature as in the above-described embodiment, the depth of the counterbore provided in the cooking plate is limited. Most of them are installed outside the cooking plate. As a result, it is considered that the temperature measuring element portion detects a temperature lower than the actual temperature due to heat dissipation from the protruding sheath, and the heater is overheated and the cooking plate surface temperature is higher than the control temperature. Furthermore, in the sheath thermocouple, oxide powder such as MgO is filled between the sheath and the temperature measuring element portion in order to ensure electrical insulation of the temperature measuring element portion (dissimilar metal contact). Further, it is considered that the heat transfer is hindered, and the difference between the control temperature and the actual temperature of the cooking surface of the cooking plate becomes remarkable.
  これに対して、温度センサに測温抵抗体を用いた試料1~5の調理プレートでは、センサの設置場所(深さ)を問わず、試料6~10に比べて制御温度と調理プレートの調理面の実際の温度の乖離幅が圧倒的に小さかった。これは、測温抵抗体がシース熱電対と比較して熱容量が小さく、また、MgO等の酸化物粉末といった断熱となる介在物がないことから、ヒーターからの授熱に対する応答性が早くなったこと、更に金属管の様な放熱部品がないので高精度の測定が可能になったことによるものと考えられる。なお、試料1~10の加熱調理器を用いて各々複数回に亘って実際に肉材を調理したところ、試料1~5ではいずれも所定の時間内に焼け不足(生焼け)や焼き過ぎ(焦げ)等の不具合が生じることなく且つ再現性よく調理できたが、試料6~10では所定の時間内において生焼けや焦げが生じた。 On the other hand, in the cooking plates of samples 1 to 5 using a resistance temperature detector as the temperature sensor, the control temperature and cooking of the cooking plate are compared with those of samples 6 to 10 regardless of the installation location (depth) of the sensor. The actual temperature deviation of the surface was overwhelmingly small. This is because the resistance thermometer has a smaller heat capacity than a sheathed thermocouple, and there is no inclusion for heat insulation such as oxide powder such as MgO, so the response to heat transfer from the heater is faster. In addition, it is considered that there is no heat dissipating part such as a metal tube, so that highly accurate measurement is possible. In addition, when the meat materials were actually cooked several times using the heating cookers of Samples 1 to 10, all of Samples 1 to 5 were insufficiently burned (overburned) or overheated (burned) within a predetermined time. ) And the like were able to be cooked with good reproducibility, but samples 6 to 10 were burnt or burnt within a predetermined time.
  [実施例2]
  調理プレートに様々な形状のザグリ穴を設け、その底面に実施例1で使用した温度センサーを様々な状態で取り付けた以外は実施例1と同様にして試料11~14の加熱調理器を作製した。具体的には、試料11の加熱調理器では内径3.2mm、深さ3mmの円筒形状のザグリ穴を形成し、その底面に熱電対の先端部を点接触状態で取り付けた。試料12の加熱調理器では内径2mm、深さ3mmの円筒形状のザグリ穴を形成し、その底面に測温抵抗体の測温素子部の縦0.7mm×横1.2mmの平面部分を面接触状態で取り付けた。試料13の加熱調理器では縦3mm、横5mm、深さ3mmの直方体形状のザグリ穴を形成し、その底面に測温抵抗体の測温素子部の縦1.2mm×横1.7mmの平面部分を面接触状態で取り付けた。試料14の加熱調理器では縦1.5mm、横3mm、深さ3mmの直方体形状のザグリ穴を形成し、その底面に測温抵抗体の測温素子部の縦0.7mm×横1.2mmの平面部分を面接触状態で取り付けた。
[Example 2]
Heat cookers for samples 11 to 14 were prepared in the same manner as in Example 1 except that counterbore holes of various shapes were provided in the cooking plate and the temperature sensor used in Example 1 was attached to the bottom surface in various states. . Specifically, in the heating cooker of sample 11, a cylindrical counterbore having an inner diameter of 3.2 mm and a depth of 3 mm was formed, and the tip of the thermocouple was attached to the bottom surface in a point contact state. Sample 12 has a cylindrical counterbore hole with an inner diameter of 2 mm and a depth of 3 mm in the cooking device of sample 12, and a flat portion of 0.7 mm in length and 1.2 mm in width of the temperature measuring element portion of the resistance temperature detector is faced on the bottom surface. Mounted in contact. In the cooking device of sample 13, a rectangular parallelepiped-shaped counterbore of 3 mm in length, 5 mm in width, and 3 mm in depth is formed, and a 1.2 mm vertical by 1.7 mm horizontal plane of the temperature measuring element portion of the resistance thermometer is formed on the bottom surface thereof. The part was attached in surface contact. In the sample 14 heating cooker, a rectangular parallelepiped-shaped counterbore with a length of 1.5 mm, a width of 3 mm, and a depth of 3 mm is formed, and the temperature measuring element portion of the resistance temperature detector is 0.7 mm long by 1.2 mm wide. The flat part of was attached in a surface contact state.
  これらの加熱調理器の各々に対して、ヒーター13に給電して常温から250℃まで昇温させた後、調理プレート11の調理面11aに低温の食材を載せた場合のリカバ時間を測定して熱応答性について評価した。このリカバ時間は、低温の食材を載せて一旦低下した温度が温度センサ及びヒーターを制御ループ内に含む制御系によって再び250℃に復帰して安定するまでの時間である。その結果を下記表2に示す。 For each of these heating cookers, after supplying power to the heater 13 and raising the temperature from room temperature to 250 ° C., the recovery time when a low-temperature food is placed on the cooking surface 11a of the cooking plate 11 is measured. Thermal responsiveness was evaluated. This recovery time is a time until the temperature once lowered by placing the low temperature food is restored to 250 ° C. and stabilized by the control system including the temperature sensor and the heater in the control loop. The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
  上記表2から分かるように、試料11では、食材を載せてから設定温度である250℃で安定するまでに187秒掛かった。これは、シース熱電対の先端が調理プレートのザグリ穴の底面に点接触していたため、伝熱面積が不足して調理プレートの温度変化を良好に検知することができず、よって温度センサの熱応答性が損なわれたと考えられる。 分 か る As can be seen from Table 2 above, it took 187 seconds for Sample 11 to stabilize at the set temperature of 250 ° C. after the food was placed. This is because the tip of the sheath thermocouple is in point contact with the bottom surface of the counterbore hole of the cooking plate, so that the heat transfer area is insufficient and the temperature change of the cooking plate cannot be detected well. It is thought that responsiveness was impaired.
  一方、試料12~14では調理プレートのザグリ穴の底面に測温抵抗体の測温素子部の平面部が当接していたため、リカバ時間を25~37秒と、試料11に比べて格段に熱応答性に優れた結果となった。このように目標設定温度に素早く安定させることができた理由は、調理プレートと温度センサとの伝熱面積を大きくすることができ、その結果、食材を載せて低下した調理プレートの温度を素早く検知してヒーターの給電量が増やされ、更にこれによるヒーターからの加熱による調理プレートの昇温に対しても素早く検知が行われたことによるもの考えられる。このように熱応答性に優れた調理プレートを用いることで、不必要な加熱時間を短縮することができるので、栄養価やうまみ成分が食材から抜けにくくなり、食材を美味しく調理することが可能になる。 On the other hand, in Samples 12 to 14, the flat surface portion of the temperature measuring element portion of the resistance temperature detector was in contact with the bottom surface of the counterbore hole of the cooking plate. Therefore, the recovery time was 25 to 37 seconds, which was much higher than that of Sample 11. The result was excellent in responsiveness. The reason why the target set temperature can be stabilized quickly is that the heat transfer area between the cooking plate and the temperature sensor can be increased, and as a result, the temperature of the cooking plate that has dropped due to the food is quickly detected. It is considered that the amount of power supplied to the heater is increased, and that the temperature of the cooking plate due to the heating from the heater is detected quickly. By using a cooking plate with excellent heat responsiveness in this way, unnecessary heating time can be shortened, making it difficult for nutritional value and umami ingredients to escape from the ingredients, making it possible to cook the ingredients deliciously. Become.
  [実施例3]
  実施例2で用いた試料11~14の加熱調理器を再度用意し、試料11を除く各調理プレートに対してザグリ穴の開口部をキャップで塞いだ。キャップの材質には熱伝導性に優れるCuを使用し、測温素子部においてザグリ穴の底面に当接している面とは異なる面に当接できる形状に加工した。キャップの表面はNiめっきを施し、接着を用いて固定した。なお、調理プレートとキャップの熱膨張係数差を考慮して、各キャップのサイズはザグリ穴の寸法よりも僅かに小さくなるように作製した。これら試料11~14の加熱調理器を、実施例2と同じ方法で評価した。その結果を下記表3に示す。
[Example 3]
The cookers for Samples 11 to 14 used in Example 2 were prepared again, and the openings of the counterbore holes were closed with caps for each cooking plate except Sample 11. The cap material was made of Cu having excellent thermal conductivity, and the cap was processed into a shape capable of contacting a surface different from the surface contacting the bottom surface of the counterbore hole in the temperature measuring element portion. The surface of the cap was Ni-plated and fixed using adhesion. In consideration of the difference in thermal expansion coefficient between the cooking plate and the cap, the size of each cap was made to be slightly smaller than the size of the counterbore hole. The heating cookers of these samples 11 to 14 were evaluated by the same method as in Example 2. The results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
  試料12~14について上記表3と表2を比較して分かるように、測温素子部に当接させたキャップを用いてザグリ穴の開口部を塞いだ上記表3の場合、当該キャップがない表2の場合に比べてリカバ時間が12~13秒短縮した。このようにリカバ時間を短縮できた理由としては、一般に接着剤は熱伝導率が低いため、この接着材が断熱材となって測温素子部への良好な伝熱を阻止していたが、この接着材が熱伝導率の高いキャップに置き換えられたことにより、調理プレートの温度変化を素早く測温素子部に伝達できるようになったことによるものと考えられる。 As can be seen by comparing Tables 3 and 2 with respect to Samples 12 to 14, in the case of Table 3 in which the opening of the counterbore hole is closed using a cap that is in contact with the temperature measuring element portion, there is no such cap. Compared with the case of Table 2, the recovery time was shortened by 12 to 13 seconds. As a reason that the recovery time could be shortened in this way, since the adhesive generally has low thermal conductivity, this adhesive became a heat insulating material and prevented good heat transfer to the temperature measuring element part. It is considered that this adhesive material was replaced with a cap having high thermal conductivity, so that the temperature change of the cooking plate can be quickly transmitted to the temperature measuring element portion.
  [実施例4]
  実施例3で用いた試料11及び12の加熱調理器を再度用意し、ヒーター13に給電して250℃まで昇温させてその温度で保持した。そして、250℃に昇温した直後及び250℃に昇温してから30分後の調理面の温度を接触式温度計で計測し、面内30点のうちの最大値と最小値の差を算出して温度分布(均熱レンジ)を求めた。
[Example 4]
The heating cookers of Samples 11 and 12 used in Example 3 were prepared again, and the heater 13 was fed with power to 250 ° C. and held at that temperature. And the temperature of the cooking surface is measured with a contact-type thermometer immediately after the temperature is raised to 250 ° C. and 30 minutes after the temperature is raised to 250 ° C., and the difference between the maximum value and the minimum value among the 30 points in the surface is calculated. The temperature distribution (soaking range) was determined by calculation.
  次に、試料12だけに対して、測温抵抗体の電極パッド部から温度制御装置に接続されているリード線のうちの中間部分を支持プレートにおいてヒーターに対向している面とは反対側の面に当接させた状態で接着剤で固定した。なお、支持プレートに当接させたリード線の長さは80mmとし、冷却プレートの支持プレートと接触する面には、ザグリ加工を施して冷却プレートが支持プレートに当接する時にケーブルが干渉しない様にした。そして、上記と同様にして250℃まで昇温させて昇温直後及び昇温30分後の温度分布(均熱レンジ)を求めた。それらの結果を下記表4に示す。 Next, with respect to only the sample 12, the intermediate portion of the lead wires connected to the temperature control device from the electrode pad portion of the resistance temperature detector is on the side opposite to the surface facing the heater in the support plate. It fixed with the adhesive agent in the state contact | abutted to the surface. The length of the lead wire abutted against the support plate is 80 mm, and the surface of the cooling plate that comes into contact with the support plate is counterbored so that the cable does not interfere when the cooling plate abuts against the support plate. did. Then, the temperature was raised to 250 ° C. in the same manner as described above, and the temperature distribution (soaking range) immediately after the temperature increase and 30 minutes after the temperature increase was obtained. The results are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
  上記表4から分かるように、試料11では昇温直後の調理プレートの調理面の温度分布は19.8℃となり、その分布傾向は中心部が高温になり、外周部と温度センサを取り付けている部位が低温になる傾向にあった。外周部が中心部と比較して低温になる理由は、外周部は側面を有していることもあって中心部より放熱要素となる表面積が大きいことが理由として考えられる。また、温度センサ取付部位が局所的に低温になっている理由については、前述の通りシース保護管からの放熱が原因と考えられる。また、250℃に到達してから30分経過した後の温度分布は10.3℃となり、昇温直後に比べてやや均熱性が向上したが、分布傾向は昇温直後と同様であった。 As can be seen from Table 4 above, in Sample 11, the temperature distribution on the cooking surface of the cooking plate immediately after the temperature rise is 19.8 ° C., the distribution tendency is high in the center, and the outer periphery and the temperature sensor are attached. The part tended to be cold. The reason why the temperature of the outer peripheral portion is lower than that of the central portion is considered to be that the outer peripheral portion has a side surface and has a larger surface area as a heat dissipation element than the central portion. The reason why the temperature sensor mounting site is locally low is considered to be due to heat dissipation from the sheath protective tube as described above. In addition, the temperature distribution after 30 minutes after reaching 250 ° C. was 10.3 ° C., and the temperature uniformity was slightly improved as compared to immediately after the temperature increase, but the distribution tendency was the same as that immediately after the temperature increase.
  一方、試料12では、測温抵抗体のリード線を支持プレートに当接や近接させなくても昇温直後で5.5℃、昇温30分後で3.2℃という良好な温度分布が得られた。何れも温度分布の傾向はシース熱電対を用いた上記試料11の場合と同様であったが、温度センサ設置部位の局所的な温度低下は僅かに認められた程度であった。これは、測温抵抗体の熱容量がシース熱電対に比べて小さく、またシース保護管の様な大きな放熱面積を有していないことによるものと考えられる。 On the other hand, the sample 12 has a good temperature distribution of 5.5 ° C. immediately after the temperature rise and 3.2 ° C. after 30 minutes of the temperature rise, without bringing the lead wire of the RTD into contact with or close to the support plate. Obtained. In all cases, the tendency of the temperature distribution was the same as in the case of the sample 11 using the sheath thermocouple, but the local temperature drop at the temperature sensor installation site was only slightly recognized. This is considered to be because the heat resistance of the resistance temperature detector is smaller than that of the sheath thermocouple and does not have a large heat radiation area like the sheath protective tube.
  更に、試料12において測温抵抗体のリード線を支持プレートに当接させた場合、温度分布は250℃の昇温直後で2.3℃、昇温30分後で1.9℃と極めて優れた均熱性が得られた。外周部が中心部に比べて低温となる温度分布傾向はみられたが、温度センサ設置部位の局所的な温度低下は認められなかった。これは、リード線の中間部分を熱容量が大きく且つ全体的に測温抵抗体よりも高温の支持プレートに接触させることにより、熱容量の小さな測温素子部の熱がリード線を介して伝熱しようとするドライビングフォースが働かなかったことによるものと考えられる。 Furthermore, when the lead wire of the resistance temperature detector is brought into contact with the support plate in the sample 12, the temperature distribution is 2.3 ° C immediately after the temperature rise of 250 ° C and 1.9 ° C after the temperature rise of 30 minutes. Soaking was obtained. Although there was a temperature distribution tendency in which the outer peripheral portion was lower in temperature than the central portion, no local temperature drop was observed at the temperature sensor installation site. This is because the heat of the temperature measuring element portion having a small heat capacity is transferred through the lead wire by bringing the intermediate portion of the lead wire into contact with the support plate having a large heat capacity and generally higher temperature than the resistance temperature detector. This is probably because the driving force did not work.
  なお、調理プレートに設置した測温抵抗体のリード線を当接や近接させる部位を調理プレートそのものに代えたり、ヒーターに代えたりして同様の実験を行ったところ、何れも表4と同等の結果が得られた。このように高い均熱性を有する加熱調理器では、調理プレート面内で何処に食材を載せて調理するか迷うことがなくなり、局所的な焦げや焼き不足等の不具合が生じることのない、安定した加熱調理が可能になる。 In addition, when the part which makes the lead wire of the resistance temperature sensor installed in the cooking plate contact or approach was replaced with the cooking plate itself or with a heater, the same experiment was performed. Results were obtained. In such a heating cooker having high temperature uniformity, there is no hesitation about where to put foods on the cooking plate surface, and there is no inconvenience such as local charring or lack of baking, stable Heat cooking is possible.
  F        食材
  10      加熱調理器
  11      調理プレート
  11a    調理面
  11b、111b、211b      ザグリ穴
  12      支持プレート
  13      ヒーター
  14      ボルト
  14a    ボルト頭部
  15      ベアリングボール
  16      測温抵抗体
  16a    測温素子部
  16b    リード線
  17、117      キャップ
  18      接着剤
  20      冷却プレート
  21      板状部材
  21a    当接面
  22      パイプ
  23      押さえ板
  24      機械的結合手段
  25a、25b      板状部材
  26      溝
  27      板状部材
  27a    当接面
  28      ザグリ溝
  29      Cuパイプ
  30      脚部
  31      昇降機構
  32      冷却ブロック
  33      介在層
  211    調理プレート
  212    支持プレート
  213    ヒーター
  226    冷媒流路
F Ingredients 10 Heating cooker 11 Cooking plate 11a Cooking surface 11b, 111b, 211b Counterbore hole 12 Support plate 13 Heater 14 Bolt 14a Bolt head 15 Bearing ball 16 Resistance temperature detector 16a Temperature measuring element 16b Lead wire 17, 117 Cap DESCRIPTION OF SYMBOLS 18 Adhesive 20 Cooling plate 21 Plate-shaped member 21a Contact surface 22 Pipe 23 Holding plate 24 Mechanical coupling means 25a, 25b Plate-shaped member 26 Groove 27 Plate-shaped member 27a Contact surface 28 Counterbored groove 29 Cu pipe 30 Leg 31 Lifting mechanism 32 Cooling block 33 Intervening layer 211 Cooking plate 212 Support plate 213 Heater 226 Cooling Flow paths

Claims (4)

  1.   組み込まれているヒーターを用いて調理面に載せた食材を加熱する加熱調理器であって、前記調理面を備えた調理プレートに、前記ヒーターを制御するための温度センサとして測温抵抗体が取り付けられている加熱調理器。 A heating cooker for heating ingredients placed on a cooking surface using a built-in heater, wherein a resistance temperature detector is attached to a cooking plate having the cooking surface as a temperature sensor for controlling the heater Cooking cooker that has been.
  2.   前記測温抵抗体は平面部を有する測温素子部を備え、前記調理プレートの前記調理面とは反対側の面に設けられたザグリ穴の平坦な底面に前記測温素子部の前記平面部が当接している、請求項1に記載の加熱調理機器。 The resistance temperature detector includes a temperature measuring element portion having a flat surface portion, and the flat surface portion of the temperature measuring element portion is formed on a flat bottom surface of a counterbore hole provided on a surface opposite to the cooking surface of the cooking plate. The cooking device according to claim 1, wherein the abutment is in contact.
  3.   前記ザグリ穴はその開口部分がキャップで塞がれており、前記キャップは、前記測温素子部において前記ザグリ穴の底面に当接している前記平面部とは異なる面に当接している、請求項2に記載の加熱調理機器。 The counterbore hole is closed at its opening with a cap, and the cap is in contact with a surface different from the flat surface portion in contact with the bottom surface of the counterbore hole in the temperature measuring element portion. Item 3. The cooking device according to Item 2.
  4.   前記測温抵抗体にはリード線の一端部が接続しており、前記リード線の前記一端部から離間した一部分が前記調理プレートの前記調理面とは反対側の面に当接又は近接している、請求項1~請求項3のいずれか1項に記載の加熱調理機器。 One end of a lead wire is connected to the resistance temperature detector, and a part of the lead wire spaced from the one end is in contact with or close to the surface of the cooking plate opposite to the cooking surface. The cooking device according to any one of claims 1 to 3, wherein:
PCT/JP2014/050101 2013-06-17 2014-01-08 Cooking device WO2014203543A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013127055A JP2015000262A (en) 2013-06-17 2013-06-17 Heating cooker
JP2013-127055 2013-06-17
JP2013131791A JP6060828B2 (en) 2013-06-24 2013-06-24 Heating and cooling cooker
JP2013-131791 2013-06-24
JP2013-159994 2013-07-31
JP2013159994A JP2015029627A (en) 2013-07-31 2013-07-31 Cooking plate and cooking device equipped with the same
JP2013167931A JP2015036044A (en) 2013-08-12 2013-08-12 Cooker
JP2013-167931 2013-08-12

Publications (1)

Publication Number Publication Date
WO2014203543A1 true WO2014203543A1 (en) 2014-12-24

Family

ID=52104293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050101 WO2014203543A1 (en) 2013-06-17 2014-01-08 Cooking device

Country Status (1)

Country Link
WO (1) WO2014203543A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3411629A4 (en) * 2016-02-01 2019-04-17 Evo, Inc. Cooking system with multiple heating elements

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289949A (en) * 1996-04-26 1997-11-11 Sanyo Electric Co Ltd Griddle
JPH1071091A (en) * 1996-08-29 1998-03-17 Mitsubishi Rayon Co Ltd Plate with cooling and heating functions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289949A (en) * 1996-04-26 1997-11-11 Sanyo Electric Co Ltd Griddle
JPH1071091A (en) * 1996-08-29 1998-03-17 Mitsubishi Rayon Co Ltd Plate with cooling and heating functions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3411629A4 (en) * 2016-02-01 2019-04-17 Evo, Inc. Cooking system with multiple heating elements
US11589422B2 (en) 2016-02-01 2023-02-21 Evo America, Llc Cooking system with multiple heating elements

Similar Documents

Publication Publication Date Title
JP4953841B2 (en) Thermoelectric module
JP6323566B2 (en) Electronic component testing equipment
KR100407052B1 (en) Heating apparatus
JP2015152218A (en) fluid heating device
JP6593413B2 (en) Heater unit for wafer heating
JP6060889B2 (en) Heater unit for wafer heating
JP2008066295A (en) Heating element circuit pattern, susceptor mounting it, and semiconductor manufacturing device
JP2015039507A (en) Heating cooker
WO2014203543A1 (en) Cooking device
JP2015036044A (en) Cooker
JP4962118B2 (en) Cooker
JP6060828B2 (en) Heating and cooling cooker
JP6288480B2 (en) Heating / cooling module
WO2014203428A1 (en) Heating/cooling cooking device
JP5366038B2 (en) Heat flow sensor using thin film thermistor for heat flow sensor
JP6593414B2 (en) Heater unit for wafer heating
US10088369B2 (en) Arrangement of a temperature sensor with an electrically insulating covering
JP6760242B2 (en) Heater module
JP5338720B2 (en) Heater and equipment equipped with it
WO2014203426A1 (en) Heating cooker
JP2015029675A (en) Electric cooker
JP2019071351A (en) Heater unit for wafer heating
JP2017212154A (en) Heater unit
JP6260645B2 (en) Heater unit
CN219300822U (en) Impact-resistant quick temperature sensing panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14814281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14814281

Country of ref document: EP

Kind code of ref document: A1