WO2014202251A1 - Verfahren zum betrieb eines umfelderfassungssystems eines fahrzeugs - Google Patents

Verfahren zum betrieb eines umfelderfassungssystems eines fahrzeugs Download PDF

Info

Publication number
WO2014202251A1
WO2014202251A1 PCT/EP2014/057025 EP2014057025W WO2014202251A1 WO 2014202251 A1 WO2014202251 A1 WO 2014202251A1 EP 2014057025 W EP2014057025 W EP 2014057025W WO 2014202251 A1 WO2014202251 A1 WO 2014202251A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
echo signals
received echo
determined
Prior art date
Application number
PCT/EP2014/057025
Other languages
English (en)
French (fr)
Inventor
Dirk Schmid
Marcus Schneider
Michael Schumann
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP14716556.7A priority Critical patent/EP3011360A1/de
Priority to CN201480035226.3A priority patent/CN105474039B/zh
Priority to US14/900,340 priority patent/US10120073B2/en
Publication of WO2014202251A1 publication Critical patent/WO2014202251A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S15/582Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse-modulated waves and based upon the Doppler effect resulting from movement of targets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S15/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S15/586Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • G01S7/527Extracting wanted echo signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • G01S7/527Extracting wanted echo signals
    • G01S7/5276Extracting wanted echo signals using analogue techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/522Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
    • G01S13/524Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/536Discriminating between fixed and moving objects or between objects moving at different speeds using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S17/26Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein the transmitted pulses use a frequency-modulated or phase-modulated carrier wave, e.g. for pulse compression of received signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/34Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9314Parking operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2015/932Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles for parking operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection

Definitions

  • the invention relates to a method for operating an environment detection system of a vehicle
  • Vehicle which has at least one transmitting / receiving unit which emits signals and receives echo signals of the transmitted signal.
  • the invention also relates to a computer program and an environment detection system, which are set up to carry out the method.
  • Ultrasonic-based measuring systems are used to measure a distance to an object located in front of a sensor system.
  • the sensors used are usually based on a pulse / echo method. In this mode, the sensor sends a
  • Ultrasonic pulse which is called echo signal.
  • the distance between the sensor and the object is calculated by the measured echo time and the
  • EP 1 248 119 A1 discloses a method of detecting signals in systems subject to an unknown Doppler frequency shift affecting modulated coherent signals used, for example, for range finding purposes.
  • a coherence demodulator processes the received signal to reconstruct a time-delayed copy of the modulated waveform.
  • the modulated waveform and its time-delayed copy are processed in a correlator to produce the Distance between the system and an obstacle to determine. With a relative movement between the system and the obstacle, the value of the
  • the Doppler frequency ⁇ 0 o is calculated from a rate of change of a correlation function which is repeatedly calculated for successive short processing intervals.
  • EP 1 248 119 A1 relates to systems which operate in the microwave range.
  • DE 195 33 126 A1 shows a Doppler sensor for detecting the movement of an object in a defined distance range, wherein a signal source is provided which generates a microwave signal to which a suitable code signal, for example a chirp signal is mixed and emitted. The reflected and received signal from an object signal is supplied to a correlator to connect it with the
  • Delay element to correlate delayed code signal.
  • the transmitting / receiving unit emits a frequency-modulated signal and the transmitting / receiving unit and / or one or more further transmitting / receiving units
  • Echo signals of the emitted frequency-modulated signal receive that the received echo signals are assigned to reflection sources and, based on the received echo signals, information about the speed of the reflection source relative to the transmitting / receiving unit is determined.
  • the emitted frequency-modulated signal has at least a first section with increasing frequencies and a second section with falling frequencies or a first section with falling frequencies and a second section with rising frequencies.
  • a phase velocity generally changes in the transmission signal and in the echo signal.
  • the rising frequency section is also referred to in the invention as a chirp-up, and the falling frequency section as a chirp-down.
  • chirp is a signal whose frequency changes over time. In a chirp-up the frequency increases in time, while it decreases in a chirp-down.
  • a time shift of the received echo signals for the first section is opposite to the time shift for the second section. From the time shift, the information about the speed of the reflection source relative to the transmitting / receiving unit can be determined.
  • the presence or movement of an object in the detection range of the transmitting / receiving unit is determined, which may for example lead to the emission of warnings to the occupants of the vehicle, to activate accident avoidance systems and / or to activate accident damage reduction system ,
  • the measures listed in the dependent claims advantageous refinements and improvements of the independent claim method are possible.
  • the emitted frequency-modulated signal has a pulse duration of 0.6 ms to 3 ms. Particularly advantageous is a transmission of a frequency-modulated signal with a pulse duration between 1 ms to 2 ms. Such pulse lengths can achieve a very good signal-to-noise ratio.
  • a pulse a time-limited signal is referred to within the scope of the invention. In contrast to this are FMCW (Frequency Modulated Continuous Wave) methods. Time-limited pulses (FM pulse, frequency-modulated pulse) are preferred because the sensor is shortly after
  • the signal emitted may also have three sections, such as chirp-up, chirp-down, chirp-up or chirp-down, chirp-up, chirp-down or four sections, for example chirp-up, chirp-down, chirp-up , Chirp-down or chirp-down, chirp-up, chirp-down, chirp-up or even more sections.
  • the emitted frequency-modulated signal has a linear or logarithmic chirp-up followed by a linear or logarithmic chirp-down or a linear or logarithmic chirp-down followed by a linear or logarithmic chirp-up.
  • the linear chirp is not only technically easy to implement, it is also characterized by other easily measurable properties, such as a rising constant, which can be referred to in the context of the invention as a slope of the chirp, and defined corner frequencies. The steepness and the corner frequencies can be varied from pulse to pulse.
  • the received echo signals pass through at least a first FIR filter device with a first FIR signal, and a first time of best match of the received echo signals to the first FIR signal is determined.
  • the first FIR signal is configured to filter out the echo signal of the first portion of the transmitted frequency modulated signal.
  • the received echo signals preferably pass through at least one second FIR filter device with a second FIR signal, and a second point of best match of the received echo signals to the second FIR signal is determined.
  • the second FIR signal corresponds to the second section of the transmitted frequency-modulated signal and is suitable for detecting the corresponding echo signal.
  • the information about the speed of the reflection source relative to the transmitting / receiving unit is particularly preferably determined by means of a linear approach.
  • the determined time difference becomes one
  • Whether a received echo signal is attributable to a reflection source depends on the quality of the echo signal, which generally has useful signal components and interference signal components. To determine the useful signal components are in accordance with a preferred
  • Embodiment of the invention from the received echo signals phase information and / or amplitude information determined.
  • an echo signal evaluation is performed by a filter logic connected downstream of the transceiver units.
  • an amplitude information in the form of a cross-correlation function x CO rr (t) and a phase information in the form of a cross-correlation coefficient R (t) can be provided for an evaluation of the signal quality.
  • the amplitude information Xc 0r (t) represents a quantity that depends on the amplitude of the received signal.
  • the phase information R (t) provides information about the quality of the phase of the received signal, ideally independent of the amplitude. Since both variables provide meaningful information about the detected objects, according to a preferred embodiment, both the phase information and the amplitude information are determined from the received echo signals and used in the determination of the useful signal components.
  • the amplitude information Xc 0r r (t) is preferably determined by calculating a convolution of a received or a processed received signal e (t) with an expected signal s (t), for example after The correlation function is calculated by convolving the received signal or the preprocessed received signal with an expected signal.
  • the expected signal s (t) is an excitation function adapted to a transfer function of the converter, which in particular has signal distortion due to properties the transceiver unit considered.
  • the calculation can be done for example in so-called matched filter.
  • phase information that is the
  • R ⁇ t) 2 x corr ⁇ tf l ⁇ s
  • e (t) is the received signal
  • s (t) the expected signal
  • Xc 0r r (t) the convolution of the received signal e (t) with the expected signal s (t)
  • 2 the squares of the standards of the individual signals.
  • the amplitude information is shortened.
  • the phase information, that is, the cross-correlation coefficient R (t) is determined from R (t) 2 by root extraction.
  • a computer program is also proposed according to which one of the methods described herein is performed when the computer program is executed on a programmable computer device.
  • the computer program can be, for example, a module for implementing a driver assistance system or a subsystem thereof in a vehicle or an application for driver assistance functions that can be executed, for example, on a smartphone or a tablet PC.
  • the computer program can be on a machine-readable
  • Storage medium can be stored, such as on a permanent or
  • Storage medium such as a memory card or a USB stick.
  • the computer program may be provided for download on a computing device such as a server, for example, via a data network such as the Internet or a communication link such as a telephone line or a wireless link.
  • an environment detection system of a vehicle comprises at least one transmission / reception unit which is set up,
  • the emitted frequency modulated signal having at least a first portion with increasing frequencies and a second portion with decreasing frequencies or a first portion with falling frequencies and having a second portion with increasing frequencies, and a filter device which is coupled to the at least one transmitting / receiving unit, so that received echo signals can pass through the filter device, wherein the filter device is adapted to assign the received echo signals reflection sources and set up is to determine based on the received echo signals information about the speed of the reflection source relative to the transmitting / receiving unit.
  • the invention is used in such environment sensing systems that use sensors based on a pulse / echo method. This applies in particular
  • Ultrasound systems but also radar systems and lidar systems.
  • sensors are used which can both emit pulses and can receive pulses, so-called transceiver units.
  • transceiver units can also be provided to use the sensors according to the invention only as a receiving unit or only as a transmitting unit.
  • the invention can be used in ultrasound-based systems, which are not able to simultaneously receive the echo response during the transmission process, since the membrane amplitude during transmission by several orders of magnitude higher than a reflected signal could produce as an echo on the membrane , The imposed during the transmission of the membrane vibration is affected only slightly by the incoming sound.
  • a frequency modulated continuous wave (FMCW) method which is customary in radar technology is not applicable here since the transmission and reception paths in the case of ultrasound systems are performed on the same mechanical oscillatory system, while they are separated in radar systems.
  • the invention can be used in particular in sensors which are provided for example in the front and / or rear bumper of a motor vehicle for the purpose of parking assistance and / or collision avoidance.
  • sensors according to the invention can be installed in an ultrasound system, which is a group of
  • Ultrasonic sensors comprises, wherein at least one, preferably all ultrasonic sensors have the inventive features.
  • the ultrasound system can be set up, for example, to detect a sub-environment of the motor vehicle.
  • ultrasound sensors in the front region for detecting a front-end vehicle environment and / or ultrasound sensors in the side region for detecting a side region of the Vehicle and / or ultrasonic sensors in the rear area for detecting a rear environment of the vehicle may be assigned to such an ultrasound system.
  • this four to six ultrasonic sensors are installed in a bumper, with only a maximum of four ultrasonic sensors are mounted with approximately the same direction of view.
  • ultrasonic sensors are also positioned in the front bumper so that they have their detection range to the left and to the right.
  • ultrasound sensors can also be positioned in the rear bumper in such a way that they detect an area to the left and right of the motor vehicle.
  • the ultrasound system furthermore has a control device assigned to the respective group and a
  • the surroundings detection system allows a quick and accurate statement about objects in and near the drive tube of a vehicle, wherein the drive tube usually designates the area swept by the vehicle in the future.
  • a precise localization accuracy in a detection range of the sensors can be designated as well as a detection probability, that is to say a number of detections of an obstacle in a specific time interval.
  • the surroundings detection system preferably comprises at least one FIR filter device which is set up to determine at least two times of best match of the received echo signal to two FIR signals. It can also be provided that the
  • Filter device comprises two FIR filter devices, which are each adapted to determine times of best match of the received echo signal to a first and a second FIR signal.
  • the system can be combined with other systems to determine the
  • a motor vehicle comprises at least one such surroundings detection system.
  • the method and the device according to the invention make it possible to quickly and reliably determine the relative speed of an object in the detection range of the sensors, without requiring multiple time detection of the object distance and a change in object distance calculated therefrom. Compared to purely distance - based methods, it can be seen that a more exact determination of the
  • the warning of the occupants of the vehicle can also be carried out very quickly, for example as part of blind spot monitoring, such as a so-called side view assistant.
  • Another application is the support of airbag sensors to trigger an airbag. Here can be very high
  • the invention further provides an additional measure, namely the time difference between two strictly defined echo signal components, so that from this another
  • FIG. 1 shows an environment detection system 2, which comprises a transmitting / receiving unit 4, which is set up to transmit and receive frequency-modulated signals.
  • the surroundings detection system 2 comprises a pre-filter 6, which is set up, for example, to filter out useful signal components from the received echo signals and
  • the prefilter 6 receives the signals of the transmitting / receiving unit 4.
  • received signals are processed, for example amplified, digitized, sampled, filtered by low, high or bandpass filters and
  • the signals in the pre-filter 6 are decoded.
  • the surround detection system 2 also includes a first FIR filter device 8 and a second FIR filter device 10, which are set to best times
  • Such FIR (Finite Impulse Response) filter devices may also be referred to as finite impulse response filters and are preferably implemented digitally and operated by a computer program.
  • the FIR filter devices 8, 10 are matched filters.
  • the first FIR filter device 8 decodes a rising frequency section, also referred to as a so-called up ramp, and the second FIR filter device 10 designates a falling frequency section, also referred to as a down ramp. If an echo is detected, the transit time is determined by searching for the maximum of the respective filter output and the two measured times of the outputs of the two FIR filter devices 8, 10 are offset from one another. The calculation yields the relative velocity.
  • the surroundings detection system 2 comprises a device 12 for determining a speed of a reflection source.
  • Reflection source speed receives the data or readings from the FIR filter devices 8, 10 and further processes them.
  • the device 12 for determining the speed of the reflection source sets the data to a further processing
  • Control system 14 ready, for example, a higher-level control system such as an ADAS system (Advanced Driving Assistance System) or a sibling
  • the device 12 for determining the speed of a reflection source provides the determined data on a bus system, for example on a CAN bus.
  • Figure 2 shows a schematic representation of a situation with a
  • the object 24 is also referred to as a reflection source within the scope of the invention.
  • a transmitting unit 20 transmits a frequency-modulated signal 26.
  • the frequency-modulated signal 26 is reflected by the object 24.
  • a receiving unit 22 receives a receiving unit 22, which does not necessarily coincide with the transmitting unit 20, but quite the same
  • the emitted frequency-modulated signal 26 comprises a first section 30 of increasing frequency, that is to say with a chirp-up.
  • Frequency modulated signal 26 also includes a second section 32 having a decreasing frequency, that is with a chirp-down.
  • the received echo signal 28 at time t1 comprises a first section 34 which corresponds to the first section 30 of the transmitted frequency-modulated signal 26 and a second section 36 which corresponds to the second section 32 of the transmitted frequency-modulated signal 26.
  • the transmission unit 20 transmits the frequency-modulated signal 26 at a time t2.
  • the frequency-modulated signal 26 is reflected by the object 24, the object 24 now being at the time of reflection
  • Relative speed 38 relative to the transmitting unit 20 and the receiving unit 22 has.
  • the receiving unit 22 receives the echo signal 28 which has been reflected by the moving object 24. Due to the relative movement of the object 24 relative to the transmitting unit 20 or receiving unit 22, which are generally a transmitting / receiving unit, the received echo signal 28 is compressed relative to the transmitted signal 26, ie raised in its frequency as a whole, or stretched, ie in its frequency as a whole, so that the receiving unit 22 receives a Doppler-shifted echo signal 28 'with the first section 34' and the second section 36 '.
  • Figure 3 shows two diagrams D ⁇ D 2 for explaining a signal shift.
  • the first diagram Di shows a frequency characteristic 40 of a section of a transmitted signal, which may correspond to the first section 30 of the signal shown in FIG. 2, for example.
  • the frequency response is in this embodiment of a
  • Pulse duration T of the section to be assigned Pulse duration T of the section to be assigned.
  • Frequency-modulated signals which are suitable for implementing the method according to the invention can have a frequency characteristic shown in FIG. 3 in the first or in the second section. But you can just as well have a different frequency response, for example, a linear declining or a polynomial, in particular quadratic polynomial, exponential or logarithmic course.
  • a frequency profile 42 of a portion of the received echo signal corresponding to the transmitted signal wherein it is shown that the frequency response of the echo signal is now higher overall than the frequency characteristic 40 of the portion of the transmitted signal.
  • the frequency profile 42 of the received echo signal can be, for example, with reference to FIG. 2 described section 34 of the received echo signal at moving object 24.
  • the second diagram D 2 shows the frequency curve 40 of the transmitted signal and the frequency curve 42 of the received echo signal, wherein these are shifted by a time At relative to one another in such a way that they coincide in as many functional values as possible.
  • FIG. 4 shows the occurrence of the temporal signal shift as a consequence of
  • FIG. 4 shows a frequency characteristic 44 of a transmitted signal which has a first section 48 with rising frequencies and a second section 50 with falling frequencies.
  • FIG. 4 also shows a frequency characteristic 46 of a received echo signal, which likewise has a first section 48 with rising frequencies and a second section 50 with falling frequencies.
  • an FIR filter signal 52 is shown with a temporal filter window ⁇ and a frequency filter window between a lower cutoff frequency 56 and an upper cutoff frequency 58.
  • the first FIR filter signal 52 is a linear signal which is responsive to the signal of the frequency response 44 in the first section 48 of FIG matched signal is tuned.
  • a second FIR filter signal 54 is shown with a temporal filter window T 2 and a frequency filter window between the lower and upper
  • Cutoff frequency 56, 58 The second FIR filter signal 54 is a linear signal which is tuned to the second portion 50 of the frequency response 44 of the transmitted signal.
  • FIG. 4 also shows a total filter response amplitude 60 on the transmitted signal and a total filter response amplitude 62 on the received echo signal. As described with reference to FIG. 2, the frequency response 44 of the transmitted signal agrees with the
  • a bottom time difference 64 can be determined, namely as a difference between a first time 66 best tuning the first FIR filter signal 52 with the frequency curve 44 of
  • Basic time difference 64 of, for example, 1 ms, if the time interval between the chirp-up pulse and the chirp-down pulse has been 1 ms.
  • a time difference 70 can be determined as a difference between a first time 72 of best match of the first FIR filter signal 52 with the frequency response 46 of the echo signal and a second time 74 best
  • the filter for the chirp-up determines the first best match time 72 a little earlier, while the chirp down filter determines the second best match time 74 a little later so that the time difference 70 is greater than the basic time difference is 64.
  • FIG. 5 shows further method steps for determining the relative speed of the surroundings detection system with respect to the object.
  • a first step S1 the echo signal 28 is received, as described with reference to FIG.
  • a second step S2 the received echo signal 28 is filtered with the FIR filter signal 52 and from this a first FIR signal is filtered.
  • Filter response amplitude 76 won.
  • the received signal 28 is filtered by means of a second FIR filter and a second FIR filter response amplitude 78 is determined. From the first FIR filter response amplitude 76 and the second FIR filter response amplitude 78, the total filter response amplitudes 60, 62 which are illustrated in FIG. 4 are determined in a step S4 by superposing the first and second FIR filter response amplitudes 76, 78.
  • the total filter response amplitudes 60, 62 which are illustrated in FIG. 4 are determined in a step S4 by superposing the first and second FIR filter response amplitudes 76, 78.
  • step S5 the information obtained is also further
  • the conversion factor is for example 1/20 [km / h / ⁇ ].
  • the conversion factor depends on the bandwidth of the chirp used and on the shape of the chirp. For logarithmic chirps, a linear dependence is measured between v re i and the
  • Doppler shift evoked frequency offset df to the bandwidth DF of the chirp determined with the pulse duration used the conversion factor. If df «DF, then only small time shifts are measured and the conversion factor is high.
  • FIG. 6 shows two diagrams with exemplary FIR filter response amplitudes for moving and static objects.
  • a first FIR filter response amplitude 82 to a static object has a first maximum 86 and thereby defines a first time ti.
  • a second FIR filter response amplitude 84 on the static object has a second maximum 88 at a second time t 2 . From the times ti and t 2 can be the
  • the lower diagram shown in FIG. 6 has a first FIR filter response amplitude 90 for a received echo signal for a moving object with a first maximum 94 at a time t 3 .
  • the second FIR filter response amplitude 92 has a second maximum 96 at a time t 4 . From the first time t 3 and the second time t 4 , the time difference 70 results by forming the difference, with the aid of which the relative speed of the moving object to the surroundings detection system can be determined.
  • FIG. 7 shows an example of the temporal frequency profile of a received signal.
  • the frequency response has a first portion 34 of increasing frequency and a second portion 36 of decreasing frequency.
  • the illustrated implementation includes a chirp-up with a pulse duration of 1 ms, a first corner frequency 102 of 45 kHz and a second corner frequency 104 of 54 kHz, followed by a chirp-down of 1 ms from 54 kHz to 45 kHz.
  • a first slope 98 can be assigned to the chirp-up and the second section 36 to the chirp-down a second slope 100, which is also referred to as a slope.
  • ultrasonic transducers having resonant frequencies in the range of 40 to 60 kHz are preferred, for example, as shown, an ultrasound transducer having a resonant frequency of 48 kHz.
  • the chirp is preferably formed with corner frequencies 102, 104 in the range of 5% to 30%, preferably 5% to 10% below and above the resonant frequency of the ultrasonic transducer.
  • corner frequencies 102, 104 are, for example, 2.5 to 10 kHz, preferably 2.5 to 5 kHz, below and above the resonance frequency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betrieb eines Umfelderfassungssystems (2) eines Fahrzeugs mit zumindest einer Sende-/Empfangseinheit (4), wobei die Sende- /Empfangseinheit (4) ein frequenzmoduliertes Signal (26) aussendet und die Sende- /Empfangseinheit (4) und/oder eine oder mehrere weitere Sende-/Empfangseinheiten (4) Echosignale (28) des ausgesendeten frequenzmodulierten Signals (26) empfangen. Dabei ist vorgesehen, dass die empfangenen Echosignale Reflexionsquellen (24) zugeordnet werden und anhand der empfangenen Echosignale (28) eine Information über die Geschwindigkeit (38) der Reflexionsquelle (24) relativ zur Sende-/Empfangseinheit (4) ermittelt wird. Die Erfindung betrifft außerdem ein Computerprogramm und ein Umfelderfassungssystem (2), welche insbesondere dazu eingerichtet sind, das erfindungsgemäße Verfahren durchzuführen.

Description

Beschreibung Titel
Verfahren zum Betrieb eines Umfelderfassungssystems eines Fahrzeugs Stand der Technik Die Erfindung betrifft ein Verfahren zum Betrieb eines Umfelderfassungssystems eines
Fahrzeugs, welche zumindest eine Sende-/Empfangseinheit aufweist, die Signale aussendet und Echosignale des ausgesendeten Signals empfängt.
Die Erfindung betrifft außerdem ein Computerprogramm und ein Umfelderfassungssystem, welche zur Ausführung des Verfahrens eingerichtet sind.
Ultraschallbasierte Messsysteme werden eingesetzt, um eine Distanz zu einem vor einem Sensorsystem befindlichen Objekt zu vermessen. Die eingesetzten Sensoren basieren dabei zumeist auf einem Puls/Echo-Verfahren. In diesem Betrieb sendet der Sensor einen
Ultraschallpuls aus und misst eine durch ein Objekt hervorgerufene Reflexion des
Ultraschallpulses, das als Echosignal bezeichnet wird. Der Abstand zwischen dem Sensor und dem Objekt errechnet sich über die gemessene Echolaufzeit und der
Schallgeschwindigkeit. Neben dem Abstand des Objekts zum Sensor ist ferner die
Relativgeschwindigkeit des Objekts zum Sensorsystem für die Umfelderfassung von
Interesse. Aufgrund des Doppler-Effekts kommt es zu einer Frequenzverschiebung der
Echofrequenz gegenüber der Sendefrequenz. Die Relativgeschwindigkeit des Objekts zum Sensorsystem lässt sich in Systemen, welche auf dem Puls/Echo-Verfahren basieren, durch die Frequenzverschiebung ermitteln. EP 1 248 119 A1 zeigt ein Verfahren zur Detektion von Signalen bei Systemen, die einer unbekannten Dopplerfrequenzverschiebung ausgesetzt sind, welche modulierte kohärente Signale beeinträchtigt, die beispielsweise zu Entfernungsmesszwecken verwendet werden. In der Empfangsfilterstrecke verarbeitet ein Kohärenzdemodulator das empfangene Signal, um eine zeitverzögerte Kopie der modulierten Wellenform zu rekonstruieren. Die modulierte Wellenform und ihre zeitverzögerte Kopie werden in einem Korrelator verarbeitet, um den Abstand zwischen dem System und einem Hindernis zu bestimmen. Bei einer relativen Bewegung zwischen dem System und dem Hindernis wird der Wert der
Frequenzverschiebung bestimmt aus
ωο0 =— ωο
Die Dopplerfrequenz ω0ο wird aus einer Veränderungsrate einer Korrelationsfunktion berechnet, welche wiederholt für aufeinanderfolgende kurze Verarbeitungsintervalle berechnet wird. EP 1 248 119 A1 betrifft Systeme, welche im Mikrowellenbereich arbeiten. DE 195 33 126 A1 zeigt einen Dopplersensor zur Bewegungserfassung eines Objekts in einem definierten Entfernungsbereich, wobei eine Signalquelle vorgesehen ist, die ein Mikrowellensignal erzeugt, auf welches ein geeignetes Codesignal, beispielsweise ein Chirp- Signal aufgemischt wird und ausgesendet wird. Das von einem Objekt reflektierte und empfangene Signal wird einem Korrelator zugeführt, um es mit dem durch ein
Verzögerungselement verzögerten Codesignal zu korrelieren.
Offenbarung der Erfindung
Bei einem erfindungsgemäßen Verfahren zum Betrieb eines Umfelderfassungssystems eines Fahrzeugs mit zumindest einer Sende-/Empfangseinheit ist vorgesehen, dass die Sende-/Empfangseinheit ein frequenzmoduliertes Signal aussendet und die Sende- /Empfangseinheit und/oder eine oder mehrere weitere Sende-/Empfangseinheiten
Echosignale des ausgesendeten frequenzmodulierten Signals empfangen, dass die empfangenen Echosignale Reflexionsquellen zugeordnet werden und anhand der empfangenen Echosignale eine Information über die Geschwindigkeit der Reflexionsquelle relativ zur Sende-/Empfangseinheit ermittelt wird. Das ausgesendete frequenzmodulierte Signal weist dabei zumindest einen ersten Abschnitt mit ansteigenden Frequenzen und einen zweiten Abschnitt mit abfallenden Frequenzen oder einen ersten Abschnitt mit abfallenden Frequenzen und einen zweiten Abschnitt mit ansteigenden Frequenzen auf.
Anstelle von Sendesignalen mit fester Frequenz werden erfindungsgemäß Sendesignale mit sich verändernder Frequenz gewählt, beispielsweise frequenzmodulierte Signale mit linearer, logarithmischer oder quadratischer Modulierung. Bei frequenzmodulierten Signalen ändert sich im Allgemeinen eine Phasengeschwindigkeit im Sendesignal und im Echosignal.
Der Abschnitt mit ansteigenden Frequenzen wird im Rahmen der Erfindung auch als ein Chirp-Up bezeichnet und der Abschnitt mit abfallenden Frequenzen als ein Chirp-Down. Als Chirp wird im Rahmen der Erfindung ein Signal bezeichnet, dessen Frequenz sich zeitlich ändert. Bei einem Chirp-Up nimmt die Frequenz zeitlich zu, während sie bei einem Chirp- Down abnimmt. Mit den Maßnahmen der Erfindung erfolgt eine zeitliche Verschiebung der empfangenen Echosignale für den ersten Abschnitt entgegengesetzt zu der zeitlichen Verschiebung für den zweiten Abschnitt. Aus der zeitlichen Verschiebung lässt sich die Information über die Geschwindigkeit der Reflexionsquelle relativ zur Sende- /Empfangseinheit bestimmen.
Anhand der aus den Echosignalen gewonnenen Information wird beispielsweise das Vorhandensein oder eine Bewegung eines Objekts im Erfassungsbereich der Sende- /Empfangseinheit ermittelt, was beispielsweise zur Aussendung von Warnungen an die Insassen des Fahrzeugs, zur Aktivierung von Unfallvermeidungssystemen und/oder zur Aktivierung von Unfallschadensverringerungssystem führen kann. Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im unabhängigen Anspruch angegebenen Verfahrens möglich.
Nach einer bevorzugten Ausführungsform weist das ausgesendete frequenzmodulierte Signal eine Pulsdauer von 0,6 ms bis 3 ms auf. Besonders vorteilhaft ist eine Aussendung eines frequenzmodulierten Signals mit einer Pulsdauer zwischen 1 ms bis 2 ms. Durch derartige Pulslängen lässt sich ein sehr gutes Signal-/Rauschverhältnis erreichen. Als Puls wird im Rahmen der Erfindung ein zeitlich begrenztes Signal bezeichnet. Im Unterschied dazu stehen FMCW-Verfahren (frequency modulated continuous wave). Zeitlich begrenzte Pulse (FM-Puls, frequency modulated pulse) sind bevorzugt, da der Sensor kurz nach
Absenden des Pulses auf demselben Signalpfad wieder bereit für den Echoempfang ist.
Gemäß weiteren Ausführungsformen werden mehr als zwei Abschnitte mit zu detektierenden Frequenzen versendet, beispielsweise zur Validierung von Messergebnissen, die anhand jeweils zweier Abschnitte aus den mehreren Abschnitten gewonnen werden können. Das ausgesendete Signal kann daher beispielsweise auch drei Abschnitte aufweisen, wie Chirp- Up, Chirp-Down, Chirp-Up oder Chirp-Down, Chirp-Up, Chirp-Down oder vier Abschnitte, beispielsweise Chirp-Up, Chirp-Down, Chirp-Up, Chirp-Down oder Chirp-Down, Chirp-Up, Chirp-Down, Chirp-Up oder noch mehr Abschnitte.
Besonders bevorzugt ist, wenn das ausgesendete frequenzmodulierte Signal einen linearen oder logarithmischen Chirp-Up gefolgt von einem linearen oder logarithmischen Chirp-Down aufweist oder einen linearen oder logarithmischen Chirp-Down gefolgt von einem linearen oder logarithmischen Chirp-Up. Der lineare Chirp ist nicht nur technisch einfach umsetzbar, er zeichnet sich außerdem durch weitere leicht messbare Eigenschaften aus, wie etwa eine Anstiegskonstante, welche im Rahmen der Erfindung auch als Steilheit des Chirps bezeichnet werden kann, und definierte Eckfrequenzen. Die Steilheit und die Eckfrequenzen können von Puls zu Puls variiert sein. Nach einer bevorzugten Ausführungsform durchlaufen die empfangenen Echosignale zumindest eine erste FIR-Filtervorrichtung mit einem ersten FIR-Signal, und es wird ein erster Zeitpunkt bester Übereinstimmung der empfangenen Echosignale zu dem ersten FIR- Signal ermittelt. Das erste FIR-Signal ist dazu eingerichtet, das Echosignal des ersten Abschnitts des ausgesendeten frequenzmodulierten Signals herauszufiltern.
Weiterhin bevorzugt durchlaufen die empfangenen Echosignale zumindest eine zweite FIR- Filtervorrichtung mit einem zweiten FIR-Signal, und es wird ein zweiter Zeitpunkt bester Übereinstimmung der empfangenen Echosignale zu dem zweiten FIR-Signal ermittelt. Das zweite FIR-Signal entspricht dem zweiten Abschnitt des ausgesendeten frequenzmodulierten Signals und ist zur Detektion des entsprechenden Echosignals geeignet.
Aus den ermittelten ersten und zweiten Zeitpunkten wird gemäß einer bevorzugten
Ausführungsform eine Zeitdifferenz ermittelt und aus der ermittelten Zeitdifferenz die
Information über die Geschwindigkeit der Reflexionsquelle relativ zur Sende- /Empfangseinheit. Besonders bevorzugt wird aus der ermittelten Zeitdifferenz die Information über die Geschwindigkeit der Reflexionsquelle relativ zur Sende-/Empfangseinheit mittels eines linearen Ansatzes ermittelt. Hierbei wird von der ermittelten Zeitdifferenz eine
Grundzeitdifferenz zwischen dem ersten und zweiten Abschnitt abgezogen, die sich aus dem ausgesendeten frequenzmodulierten Signal selbst ergibt, nämlich aus dem zeitlichen Versatz des zweiten Abschnitts des ausgesendeten frequenzmodulierten Signals zum ersten Abschnitt des ausgesendeten frequenzmodulierten Signals. Die Relativgeschwindigkeit ergibt sich damit gemäß einer bevorzugten Ausführungsform anhand der Formel vrei = (Zeitdifferenz - Grundzeitdifferenz) x Umwandlungsfaktor.
Ob ein empfangenes Echosignal einer Reflexionsquelle zuordenbar ist, hängt von der Qualität des Echosignals ab, welches im allgemeinen Nutzsignalanteile und Störsignalanteile aufweist. Zur Bestimmung der Nutzsignalanteile werden gemäß einer bevorzugten
Ausführungsform der Erfindung aus den empfangenen Echosignalen Phaseninformationen und/oder Amplitudeninformationen bestimmt. Bevorzugt erfolgt eine Echosignalbewertung durch eine den Sendeempfangseinheiten nachgeschaltete Filterlogik. Die
Echosignalbewertung ist maßgeblich bei der Bestimmung der Nutzsignalanteile im
Echosignal. Nach geeigneter Filterstrecke können beispielsweise eine Amplitudeninformation in Form einer Kreuzkorrelationsfunktion xCOrr(t) und eine Phaseninformation in Form eines Kreuzkorrelationskoeffizienten R(t) für eine Auswertung der Signalqualität bereitgestellt werden. Die Amplitudeninformation Xc0r(t) stellt eine Größe dar, welche von der Amplitude des empfangenen Signals abhängt. Die Phaseninformation R(t) gibt Aufschluss über die Qualität der Phase der empfangenen Signals, idealerweise unabhängig von der Amplitude. Da beide Größen sinnvolle Informationen über die detektierten Objekte liefern, werden gemäß einer bevorzugten Ausführungsform aus den empfangenen Echosignalen sowohl die Phaseninformation als auch die Amplitudeninformation bestimmt und bei der Bestimmung der Nutzsignalanteile verwendet.
Aus den empfangenen Echosignalen wird die Amplitudeninformation Xc0rr(t) bevorzugt durch Berechnung einer Faltung eines empfangenen bzw. eines verarbeiteten empfangenen Signals e(t) mit einem erwarteten Signal s(t) ermittelt, beispielsweise nach
Figure imgf000006_0001
Die Korrelationsfunktion wird über eine Faltung des empfangenen Signals oder des vorverarbeiteten empfangenen Signals mit einem erwarteten Signal berechnet.
Das erwartete Signal s(t) ist eine an eine Übertragungsfunktion des Wandlers angepasste Anregungsfunktion, welche insbesondere eine Signalverzerrung aufgrund von Eigenschaften der Sendeempfangseinheit berücksichtigt. Die Berechnung kann beispielsweise in sogenannten angepassten Filter erfolgen.
Aus den empfangenen Echosignalen wird eine Phaseninformation, das heißt der
Kreuzkorrelationskoeffizient R(t) bevorzugt über
R{t)2 = xcorr {tf l { s
Figure imgf000007_0001
ermittelt, wobei e(t) das empfangene Signal ist, s (t) das erwartete Signal, Xc0rr(t) die Faltung des empfangenen Signals e(t) mit dem erwarteten Signal s(t), und ||s(t)||2 und ||e(t)||2 die Quadrate der Normen der Einzelsignale. Vorteilhaft kürzen sich die Amplitudeninformation heraus. Die Phaseninformation, das heißt der Kreuzkorrelationskoeffizient R(t) wird aus R(t)2 durch Wurzelziehung ermittelt. Erfindungsgemäß wird weiterhin ein Computerprogramm vorgeschlagen, gemäß dem eines der hierin beschriebenen Verfahren durchgeführt wird, wenn das Computerprogramm auf einer programmierbaren Computereinrichtung ausgeführt wird. Bei dem Computerprogramm kann es sich beispielsweise um ein Modul zur Implementierung eines Fahrassistenzsystems oder eines Subsystems hiervon in einem Fahrzeug handeln oder um eine Applikation für Fahrassistenzfunktionen, die beispielsweise auf einem Smartphone oder einem Tablet-PC ausführbar sind. Das Computerprogramm kann auf einem maschinenlesbaren
Speichermedium gespeichert werden, etwa auf einem permanenten oder
wiederbeschreibbaren Speichermedium oder in Zuordnung zu einer Computereinrichtung oder auf einer entfernbaren CD-Rom oder DVD oder auf einem tragbaren mobilen
Speichermedium wie etwa einer Speicherkarte oder einem USB-Stick. Zusätzlich oder alternativ kann das Computerprogramm auf einer Computereinrichtung wie etwa einem Server zum Herunterladen bereitgestellt werden, zum Beispiel über ein Datennetzwerk wie etwas das Internet oder eine Kommunikationsverbindung wie etwa eine Telefonleitung oder eine drahtlose Verbindung.
Nach einem weiteren Aspekt der Erfindung umfasst ein Umfelderfassungssystem eines Fahrzeugs zumindest eine Sende-/Empfangseinheit, welche eingerichtet ist,
frequenzmodulierte Signale auszusenden und zu empfangen, wobei die ausgesendeten frequenzmodulierten Signal zumindest einen ersten Abschnitt mit ansteigenden Frequenzen und einen zweiten Abschnitt mit abfallenden Frequenzen oder einen ersten Abschnitt mit abfallenden Frequenzen und einen zweiten Abschnitt mit ansteigenden Frequenzen aufweisen, und eine Filtervorrichtung, welche an die zumindest eine Sende- /Empfangseinheit gekoppelt ist, so dass empfangene Echosignale die Filtervorrichtung durchlaufen können, wobei die Filtervorrichtung dazu eingerichtet ist, die empfangenen Echosignale Reflexionsquellen zuzuordnen und eingerichtet ist, anhand der empfangenen Echosignale eine Information über die Geschwindigkeit der Reflexionsquelle relativ zur Sende-/Empfangseinheit zu ermitteln.
Die Erfindung wird bei solchen Umfelderfassungssystemen eingesetzt, die Sensoren basierend auf einem Puls/Echo-Verfahren verwenden. Dies betrifft insbesondere
Ultraschallsysteme, aber auch Radarsysteme und Lidarsysteme. Typischerweise werden dabei Sensoren eingesetzt, welche sowohl Pulse emittieren können, als auch Pulse empfangen können, sogenannte Sende-/Empfangseinheiten. Es kann aber auch vorgesehen sein, die erfindungsgemäßen Sensoren nur als Empfangseinheit oder nur als Sendeeinheit einzusetzen.
Besonders vorteilhaft ist die Erfindung einsetzbar bei ultraschallbasierten Systemen, welche nicht in der Lage sind, während des Sendevorgangs gleichzeitig auch die Echoantwort zu empfangen, da die Membranamplitude während des Sendens um etliche Größenordnungen höher ist, als ein reflektiertes Signal als Echo auf der Membran erzeugen könnte. Die während des Sendevorgangs der Membran aufgezwungene Schwingung wird durch den eingehenden Schall nur unwesentlich beeinträchtigt. Ein in der Radartechnik übliches FMCW-Verfahren (frequency modulated continuous wave) ist hier nicht anwendbar, da der Sende- und der Empfangspfad bei Ultraschallsystemen auf demselben mechanischen schwingfähigen System ausgeführt wird, während er bei Radarsystemen getrennt ist.
Die Erfindung kann insbesondere bei Sensoren eingesetzt werden, welche beispielsweise im vorderen und/oder hinteren Stoßfänger eines Kraftfahrzeugs zum Zwecke der Parkassistenz und/oder Kollisionsvermeidung vorgesehen sind. Insbesondere können erfindungsgemäße Sensoren in einem Ultraschallsystem verbaut sein, welches eine Gruppe von
Ultraschallsensoren umfasst, wobei zumindest einer, bevorzugt alle Ultraschallsensoren die erfindungsgemäßen Merkmale aufweisen. Das Ultraschallsystem kann beispielsweise dazu eingerichtet sein, eine Teilumgebung des Kraftfahrzeugs zu erfassen. Beispielsweise können Ultraschallsensoren im Frontbereich zur Erfassung einer vorderseitigen Fahrzeugumgebung und/oder Ultraschallsensoren im Seitenbereich zur Erfassung eines Seitenbereichs des Fahrzeugs und/oder Ultraschallsensoren im Heckbereich zur Erfassung einer rückwärtigen Umgebung des Fahrzeugs jeweils einem derartigen Ultraschallsystem zugeordnet sein. Typischerweise werden hierbei vier bis sechs Ultraschallsensoren in einem Stoßfänger verbaut, wobei nur maximal vier Ultraschallsensoren mit ungefähr derselben Blickrichtung montiert sind. Um insbesondere auch den Bereich neben dem Fahrzeug zu erfassen, werden im vorderen Stoßfänger außerdem Ultraschallsensoren so positioniert, dass sie nach links und nach rechts ihren Erfassungsbereich haben. Zusätzlich oder alternativ können auch im hinteren Stoßfänger Ultraschallsensoren derart positioniert sein, dass diese einen Bereich links und rechts neben dem Kraftfahrzeug erfassen. Das Ultraschallsystem weist darüber hinaus auch eine der jeweiligen Gruppe zugeordnete Steuereinrichtung und eine
Signalverarbeitungseinrichtung auf. Um den Seitenbereich des Fahrzeugs zu erfassen, können sowohl seitlich im vorderen und hinteren Stoßfänger verbaute Ultraschallsensoren verwendet werden, als auch solche Ultraschallsensoren, die in einem Seitenspiegel oder in einem Türabschnitt verbaut sind.
Das erfindungsgemäße Umfelderfassungssystem ermöglicht eine schnelle und treffsichere Aussage über Objekte im und nahe des Fahrtschlauchs eines Fahrzeugs, wobei der Fahrschlauch üblicherweise die vom Fahrzeug zukünftig überstrichene Fläche bezeichnet. Mit treffsicher kann sowohl eine Lokalisiergenauigkeit in einem Erfassungsbereich der Sensoren (FOV, Field of View) bezeichnet sein als auch eine Detektionswahrscheinlichkeit, das heißt eine Anzahl an Detektionen eines Hindernisses in einem bestimmten Zeitintervall.
Bevorzugt umfasst das Umfelderfassungssystem zumindest eine FIR-Filtervorrichtung, die eingerichtet ist, zumindest zwei Zeitpunkte bester Übereinstimmung des empfangenen Echosignals zu zwei FIR-Signalen zu ermitteln. Es kann auch vorgesehen sein, dass die
Filtervorrichtung zwei FIR-Filtervorrichtungen umfasst, welche jeweils dazu eingerichtet sind, Zeitpunkte bester Übereinstimmung des empfangenen Echosignals zu einem ersten bzw. zu einem zweiten FIR-Signal zu ermitteln. Das System ist kombinierbar mit weiteren Systemen zur Ermittlung der
Frequenzverschiebung, beispielsweise mit Systemen, welche eine Spektralanalyse und eine Detektion der Verschiebung des Sendespektrums vorsehen, mit Systemen, welche eine Analyse der Phasengeschwindigkeit durch eine Hilbert-Transformation vorsehen, mit Systemen, welche eine Periodendaueranalyse im Zeitbereich ausführen, und mit Systemen, welche eine Spektralanalyse durch eine Filterbank von spektralversetzten angepassten Filtern verwenden und eine anschließende Interpolation durchführen. Die ermittelten Informationen über Abstände und Relativgeschwindigkeiten können anhand der weiteren Systeme validiert werden. Nach einem weiteren Aspekt der Erfindung umfasst ein Kraftfahrzeug zumindest ein derartiges Umfelderfassungssystem.
Vorteile der Erfindung Das erfindungsgemäße Verfahren und die Vorrichtung ermöglichen ein schnelles und zuverlässiges Ermitteln der Relativgeschwindigkeit eines Objekts im Erfassungsbereich der Sensoren, ohne dass eine mehrfache zeitliche Erfassung des Objektsabstands und eine hieraus berechnete Änderung des Objektabstands notwendig ist. Im Vergleich zu rein abstandsbasierten Verfahren zeigt sich, dass eine exaktere Ermittlung der
Relativgeschwindigkeit möglich ist.
Dadurch dass sehr schnell zwischen sich nähernden und sich entfernenden Objekten unterschieden werden kann, kann auch die Warnung der Insassen des Fahrzeugs sehr schnell erfolgen, beispielsweise im Rahmen einer Totwinkelüberwachung, wie etwa einem sogenannten Side View Assistant. Ein weiterer Anwendungsfall ist die Unterstützung von Airbagsensoren zur Auslösung eines Airbags. Hier können sehr hohe
Relativgeschwindigkeiten, beispielsweise über 30 km/h, auftreten, so dass oft nur wenige Echos des Objektes gemessen werden können. Mit den erfindungsgemäßen Maßnahmen können die Schwierigkeiten der Auswertung der Relativgeschwindigkeit auf Basis der Ortsableitung überwunden werden.
Die Erfindung stellt weiterhin eine zusätzliche Messgröße bereit, nämlich die Zeitdifferenz zwischen zwei streng definierten Echosignalanteilen, so dass hieraus eine weitere
Messmöglichkeit zur Trennung von Störern und realen Objekten bereitgestellt wird.
Kurze Beschreibung der Zeichnungen
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert. eine schematische Darstellung eines Umfelderfassungssystems eines Fahrzeugs mit einer Sende-/Empfangseinheit, eine schematische Darstellung eines Szenarios mit einem
Umfelderfassungssystem und einem Objekt,
Diagramme zur Erläuterung einer Signalverschiebung, ein weiteres Diagramm zur Erläuterung der Signalverschiebung,
Verfahrensschritte zur Ermittlung der Relativgeschwindigkeit eines
Umfelderfassungssystems zu einem Objekt,
Diagramme mit beispielhaften FIR-Filterantwortamplituden für bewegte und statische Objekte und ein Diagramm mit einem beispielhaften Frequenzverlauf eines Chirp-Up gefolgt von einem Chirp-Down.
Figur 1 zeigt ein Umfelderfassungssystem 2, welches eine Sende-/Empfangseinheit 4 umfasst, die eingerichtet ist, frequenzmodulierte Signale auszusenden und zu empfangen. Das Umfelderfassungssystem 2 umfasst einen Vorfilter 6, welcher beispielsweise dazu eingerichtet ist, aus den empfangenen Echosignalen Nutzsignalanteile herauszufiltern und
Störsignalanteile zu unterdrücken. Der Vorfilter 6 empfängt die Signale der Sende- /Empfangseinheit 4. Im Vorfilter 6 werden empfangene Signale aufgearbeitet, beispielsweise verstärkt, digitalisiert, gesampelt, durch Tief-, Hoch- oder Bandpässe gefiltert und
beispielsweise Signaltransformationen unterworfen, wie etwa einer Hilbert-Transformation. Falls eine Signalcodierung der Signale vorgesehen ist, werden die Signale im Vorfilter 6 dekodiert.
Das Umfelderfassungssystem 2 umfasst außerdem eine erste FIR-Filtervorrichtung 8 und eine zweite FIR-Filtervorrichtung 10, die eingerichtet sind, Zeitpunkte bester
Übereinstimmung von empfangenen Echosignalen zu FIR-Signalen zu ermitteln. Das vom Vorfilter 6 abgehende Signal wird den beiden FIR-Filtervorrichtungen 8, 10 zugeführt.
Derartige FIR-Filtervorrichtungen (FIR, Finite Impulse Response) können auch als Filter mit endlicher Impulsantwort bezeichnet werden und sind bevorzugt digital umgesetzt und mittels eines Computerprogramms betrieben. Bevorzugt sind die FIR-Filtervorrichtungen 8, 10 signalangepasste Filter. Die erste FIR-Filtervorrichtung 8 dekodiert einen Abschnitt mit einer ansteigenden Frequenz, auch als eine sogenannte up-Rampe bezeichnet, und die zweite FIR-Filtervorrichtung 10 einen Abschnitt mit einer abfallenden Frequenz, auch als eine down- Rampe bezeichnet. Wird ein Echo detektiert, dann wird die Laufzeit dadurch bestimmt, dass nach dem Maximum des jeweiligen Filterausgangs gesucht wird und die zwei gemessenen Zeiten der Ausgänge der zwei FIR-Filtervorrichtungen 8, 10 miteinander verrechnet werden. Aus der Berechnung ergibt sich die Relativgeschwindigkeit.
Das Umfelderfassungssystem 2 umfasst hierzu eine Einrichtung 12 zur Ermittlung einer Geschwindigkeit einer Reflexionsquelle. Die Einrichtung 12 zur Ermittlung der
Geschwindigkeit der Reflexionsquelle empfängt die Daten oder Messwerte der FIR- Filtervorrichtungen 8, 10 und verarbeitet diese weiter. Die Einrichtung 12 zur Ermittlung der Geschwindigkeit der Reflexionsquelle stellt die Daten einem weiterverarbeitenden
Steuersystem 14 bereit, beispielsweise einem übergeordneten Steuersystem wie etwa einem ADAS-System (Advanced Driving Assistance System) oder einem nebengeordneten
Steuersystem. Beispielsweise kann vorgesehen sein, dass die Einrichtung 12 zur Ermittlung der Geschwindigkeit einer Reflexionsquelle die ermittelten Daten auf einem Bus-System bereitstellt, etwa auf einem CAN-Bus.
Figur 2 zeigt eine schematische Darstellung einer Situation mit einem
Umfelderfassungssystem 2 und einem Objekt 24, welches sich in einem Erfassungsbereich des Umfelderfassungssystems 2 befindet. Das Objekt 24 wird im Rahmen der Erfindung auch als Reflexionsquelle bezeichnet. Zu einem Zeitpunkt tO sendet eine Sendeeinheit 20 ein frequenzmoduliertes Signal 26 aus. Das frequenzmodulierte Signal 26 wird von dem Objekt 24 reflektiert. Zu einem Zeitpunkt t1 empfängt eine Empfangseinheit 22, welche nicht notwendigerweise mit der Sendeeinheit 20 zusammenfallen muss, aber durchaus dieselbe
Einheit sein kann, ein Echosignal 28, welches von dem Objekt 24 reflektiert wurde.
Das ausgesendete frequenzmodulierte Signal 26 umfasst einen ersten Abschnitt 30 mit aufsteigender Frequenz, das heißt mit einem Chirp-Up. Das ausgesendete
frequenzmodulierte Signal 26 umfasst außerdem einen zweiten Abschnitt 32 mit einer abfallenden Frequenz, das heißt mit einem Chirp-Down. Das empfangene Echosignal 28 zum Zeitpunkt t1 umfasst einen ersten Abschnitt 34, welcher dem ersten Abschnitt 30 des ausgesendeten frequenzmodulierten Signals 26 entspricht und einen zweiten Abschnitt 36, welcher dem zweiten Abschnitt 32 des ausgesendeten frequenzmodulierten Signals 26 entspricht.
In einer zweiten beispielhaften Situation sendet die Sendeeinheit 20 das frequenzmodulierte Signal 26 zu einem Zeitpunkt t2 aus. Das frequenzmodulierte Signal 26 wird von dem Objekt 24 reflektiert, wobei das Objekt 24 nun zu dem Zeitpunkt der Reflexion eine
Relativgeschwindigkeit 38 gegenüber der Sendeeinheit 20 bzw. der Empfangseinheit 22 aufweist. Zu einem Zeitpunkt t3 empfängt die Empfangseinheit 22 das Echosignal 28, welches von dem bewegten Objekt 24 reflektiert wurde. Aufgrund der relativen Bewegung des Objekts 24 gegenüber der Sendeeinheit 20 bzw. Empfangseinheit 22, welche im allgemeinen eine Sende-/Empfangseinheit sind, wird das empfange Echosignal 28 gegenüber dem ausgesendeten Signal 26 gestaucht, d. h. in seiner Frequenz als Ganzes angehoben, oder gestreckt, d. h. in seiner Frequenz als Ganzes herabgesetzt, so dass die Empfangseinheit 22 ein Doppler-verschobenes Echosignal 28' mit erstem Abschnitt 34' und zweitem Abschnitt 36' empfängt. Figur 3 zeigt zwei Diagramme D^ D2 zur Erläuterung einer Signalverschiebung. Das erste Diagramm Di zeigt einen Frequenzverlauf 40 eines Abschnittes eines ausgesendeten Signals, welches beispielsweise dem ersten Abschnitt 30 des in Figur 2 dargestellten Signals entsprechen kann. Der Frequenzverlauf ist in diesem Ausführungsbeispiel von einem
Zeitpunkt t0 bis zu einem Zeitpunkt ^linear ansteigend, das heißt stetig und mit einer konstanten Steigung. Dem in Figur 3 dargestellten Frequenzverlauf 40 kann eine
Impulsdauer T des Abschnittes zugeordnet werden. Frequenzmodulierte Signale, welche sich zur Umsetzung des erfindungsgemäßen Verfahrens eignen, können im ersten oder im zweiten Abschnitt einen in Figur 3 dargestellten Frequenzverlauf aufweisen. Sie können aber ebenso gut einen anderen Frequenzverlauf haben, beispielsweise einen linear abfallenden oder einen polynomiellen, insbesondere quadratisch polynomiellen, exponentiellen oder logarithmischen Verlauf. Weiterhin dargestellt in Figur 3 ist ein Frequenzverlauf 42 eines Abschnitts des dem ausgesendeten Signals entsprechenden empfangenen Echosignals, wobei sich zeigt, dass der Frequenzverlauf des Echosignals nun insgesamt höher liegt als der Frequenzverlauf 40 des Abschnitts des ausgesendeten Signals. Der Frequenzverlauf 42 des empfangenen Echosignals kann beispielsweise dem mit Bezug zu Figur 2 beschriebenen Abschnitt 34 des empfangenen Echosignals bei bewegtem Objekt 24 entsprechen.
Das zweite Diagramm D2 zeigt den Frequenzverlauf 40 des ausgesendeten Signals und den Frequenzverlauf 42 des empfangenen Echosignals, wobei diese um eine Zeit At so gegenübereinander verschoben sind, dass sie in möglichst vielen Funktionswerten übereinstimmen. Der Zeitpunkt, an dem die beiden Frequenzverläufe 40, 42
aufeinanderfallen, d. h. in möglichst vielen Funktionswerten übereinstimmen, wird im
Rahmen der Erfindung auch als Zeitpunkt bester Übereinstimmung bezeichnet.
Figur 4 zeigt das Entstehen der zeitlichen Signalverschiebung als Folge der
Frequenzverschiebung anhand eines Chirp-Up-Chirp-Down-Signals. Figur 4 zeigt einen Frequenzverlauf 44 eines ausgesendeten Signals, welches einen ersten Abschnitt 48 mit ansteigenden Frequenzen und einen zweiten Abschnitt 50 mit abfallenden Frequenzen aufweist. In Figur 4 ist außerdem ein Frequenzverlauf 46 eine empfangenen Echosignals dargestellt, welches ebenfalls einen ersten Abschnitt 48 mit ansteigenden Frequenzen und einen zweiten Abschnitt 50 mit abfallenden Frequenzen aufweist.
Weiterhin ist ein FIR-Filtersignal 52 dargestellt mit einem zeitlichen Filterfenster ΤΊ und einem Frequenzfilterfenster zwischen einer unteren Grenzfrequenz 56 und einer oberen Grenzfrequenz 58. Das erste FIR-Filtersignal 52 ist ein lineares Signal, welches auf das Signal des Frequenzverlaufs 44 im ersten Abschnitt 48 des ausgesendeten Signals abgestimmt ist. Weiterhin ist ein zweites FIR-Filtersignal 54 dargestellt mit einem zeitlichen Filterfenster T2 und einem Frequenzfilterfenster zwischen der unteren und oberen
Grenzfrequenz 56, 58. Das zweite FIR-Filtersignal 54 ist ein lineares Signal, welches auf den zweiten Abschnitt 50 des Frequenzverlaufs 44 des ausgesendeten Signals abgestimmt ist.
Figur 4 zeigt außerdem eine Gesamtfilterantwortamplitude 60 auf das ausgesendete Signal sowie eine Gesamtfilterantwortamplitude 62 auf das empfangene Echosignal. Wie mit Bezug zu Figur 2 beschrieben, stimmt der Frequenzverlauf 44 des ausgesendeten Signals mit dem
Frequenzverlauf eines an einem nicht bewegten Objekt reflektierten Signals überein, wenn zudem auch die Umfelderfassungseinrichtung nicht bewegt ist, d. h. wenn es zu keiner Dopplerverschiebung kommt. Aus der Gesamtfilterantwortamplitude 60 auf den Frequenzverlauf 44 des ausgesendeten Signals, bzw. des am nicht bewegten Objekt reflektierten Signals, ist eine Grundzeitdifferenz 64 ermittelbar, nämlich als eine Differenz zwischen einem ersten Zeitpunkt 66 bester Einstimmung des ersten FIR-Filtersignals 52 mit dem Frequenzverlauf 44 des
ausgesendeten Signals und einem zweiten Zeitpunkt 68 bester Übereinstimmung des zweiten FIR-Filtersignals 54 mit dem Frequenzverlauf 44 des ausgesendeten Signals. Ohne Dopplerverschiebung ergeben sich beispielsweise zwei Signalverläufe mit einer
Grundzeitdifferenz 64 von beispielsweise 1 ms, falls der zeitliche Abstand zwischen dem Chirp-Up-Puls und dem Chirp-Down-Puls 1 ms betragen hat.
Im Falle einer Doppler-Verschiebung erfolgt, wie dargestellt, eine Anhebung des
Frequenzverlaufs. Aus der Gesamtfilterantwortamplitude 62 auf den Frequenzverlauf 46 des empfangenen Echosignals ist eine Zeitdifferenz 70 ermittelbar als eine Differenz zwischen einem ersten Zeitpunkt 72 bester Übereinstimmung des ersten FIR-Filtersignals 52 mit dem Frequenzverlauf 46 des Echosignals und einem zweiten Zeitpunkt 74 bester
Übereinstimmung des zweiten FIR-Filtersignals 54 mit dem Frequenzverlauf 46 des
Echosignals. Aufgrund der Anhebung des Frequenzverlaufs ermittelt der Filter für den Chirp- Up den ersten Zeitpunkt 72 bester Übereinstimmung (sogenanntes matching) etwas früher während der Filter für den Chirp-Down den zweiten Zeitpunkt 74 bester Übereinstimmung etwas später ermittelt, so dass die Zeitdifferenz 70 größer als die Grundzeitdifferenz 64 ist.
Figur 5 zeigt weitere Verfahrensschritte zur Ermittlung der Relativgeschwindigkeit des Umfelderfassungssystems zu dem Objekt. In einem ersten Schritt S1 wird das Echosignal 28 empfangen, wie mit Bezug zu Figur 2 beschrieben. In einem zweiten Schritt S2 wird das empfangene Echosignal 28 mit dem FIR-Filtersignal 52 gefiltert und hieraus eine erste FIR-
Filterantwortamplitude 76 gewonnen. In einem Schritt S3 wird das empfangene Signal 28 mittels eines zweiten FIR-Filters gefiltert und eine zweite FIR-Filterantwortamplitude 78 ermittelt. Aus der ersten FIR-Filterantwortamplitude 76 und der zweiten FIR- Filterantwortamplitude 78 werden in einem Schritt S4 durch Überlagerung der ersten und zweiten FIR-Filterantwortamplituden 76, 78 die Gesamtfilterantwortamplituden 60, 62 ermittelt, welche in Figur 4 dargestellt sind. In einem weiteren Schritt S5 werden die
Zeitdifferenz und die Grundzeitdifferenz ermittelt und in die Relativgeschwindigkeit umgerechnet. Dies erfolgt nach vrei = (Zeitdifferenz - Grundzeitdifferenz) x Umwandlungsfaktor. Im Schritt S5 werden die ermittelten Informationen außerdem weiteren
Fahrassistenzsystemen bereitgestellt. Der Umwandlungsfaktor ist beispielsweise 1/20 [km/h / με]. Der Umwandlungsfaktor hängt von der Bandbreite des verwendeten Chirps und von der Form des Chirps ab. Für logarithmische Chirps ist eine lineare Abhängigkeit zwischen vrei und der gemessen
Zeitverschiebung gegeben. Für lineare Chirps mit geringer Bandbreite ca. <10 kHz ist die Abhängigkeit in erster Näherung ebenso linear. Für andere Modulierungsarten können sich prinzipiell andere Zusammenhänge ergeben. Das Verhältnis des durch die
Dopplerverschiebung hervorgerufenen Frequenzversatzes df zur Bandbreite DF des Chirps bestimmt mit der verwendeten Pulsdauer den Umrechnungsfaktor. Ist df « DF, dann werden nur geringe zeitliche Verschiebungen gemessen und der Umwandlungsfaktor ist hoch.
Figur 6 zeigt zwei Diagramme mit beispielhaften FIR-Filterantwortamplituden für bewegte und statische Objekte. Eine erste FIR-Filterantwortamplitude 82 auf ein statisches Objekt weist ein erstes Maximum 86 auf und definiert hierdurch einen ersten Zeitpunkt ti. Eine zweite FIR-Filterantwortamplitude 84 auf das statische Objekt weist ein zweites Maximum 88 zu einem zweiten Zeitpunkt t2 auf. Aus den Zeitpunkten ti und t2 lässt sich die
Grundzeitdifferenz 64 ermitteln, welche, wie oben beschrieben, in die Berechnung der Relativgeschwindigkeit einfließt. Das in Figur 6 dargestellte untere Diagramm weist eine erste FIR-Filterantwortamplitude 90 auf ein empfangenes Echosignal bei bewegtem Objekt mit einem ersten Maximum 94 zu einem Zeitpunkt t3 auf. Die zweite FIR- Filterantwortamplitude 92 weist ein zweites Maximum 96 zu einem Zeitpunkt t4 auf. Aus dem ersten Zeitpunkt t3 und dem zweiten Zeitpunkt t4 ergibt sich durch Differenzbildung die Zeitdifferenz 70, anhand welcher die Relativgeschwindigkeit des bewegten Objekts zum Umfelderfassungssystem ermittelt werden kann. Die Differenz zwischen der Zeitdifferenz und der Grundzeitdifferenz, oder auch das Verhältnis der Zeitdifferenz zur
Grundzeitdifferenz, kann als ein direktes Maß für die zugrundeliegende Doppier-
Geschwindigkeit verwendet werden.
Figur 7 zeigt beispielhaft den zeitlichen Frequenzverlauf eines empfangenen Signals. Der Frequenzverlauf weist einen ersten Abschnitt 34 mit ansteigender Frequenz und einen zweiten Abschnitt 36 mit abfallender Frequenz auf. Die dargestellte Implementierung umfasst einen Chirp-Up mit einer Impulsdauer von 1 ms, einer ersten Eckfrequenz 102 von 45 Khz und einer zweiten Eckfrequenz 104 von 54 kHz, gefolgt von einem Chirp-Down mit 1 ms von 54 kHz nach 45 kHz. Im ersten Abschnitt 34 ist dem Chirp-Up eine erste Steigung 98 zuordenbar und dem zweiten Abschnitt 36 dem Chirp-Down eine zweite Steigung 100, die auch als Steilheit bezeichnet wird. Im Falle eines Ultraschallsystems sind Ultraschallwandler mit Resonanzfrequenzen im Bereich von 40 bis 60 kHz bevorzugt, beispielsweise, wie dargestellt, ein Ultraschallwandler mit einer Resonanzfrequenz von 48 kHz. Der Chirp wird bevorzugt mit Eckfrequenzen 102, 104 im Bereich von 5% bis 30%, bevorzugt 5% bis 10% unterhalb und oberhalb der Resonanzfrequenz des Ultraschallwandlers ausgebildet. Bei einer Resonanzfrequenz von 48 kHz liegen bevorzugte Bereiche beispielsweise 2,5 bis 10 kHz, bevorzugt 2,5 bis 5 kHz unterhalb und oberhalb der Resonanzfrequenz.
Die Erfindung ist nicht auf die hier beschriebenen Ausführungsbeispiele und die darin hervorgehobenen Aspekte beschränkt. Vielmehr ist innerhalb des durch die Ansprüche angegebenen Bereichs eine Vielzahl von Abhandlungen möglich, die im Rahmen fachmännischen Handelns liegen.

Claims

Ansprüche 1. Verfahren zum Betrieb eines Umfelderfassungssystems (2) eines Fahrzeugs mit zumindest einer Sende-/Empfangseinheit, wobei die Sende-/Empfangseinheit (4) ein frequenzmoduliertes Signal (26) aussendet und die Sende-/Empfangseinheit (4) und/oder eine oder mehrere weitere Sende-/Empfangseinheiten (4) Echosignale (28) des
ausgesendeten frequenzmodulierten Signals (26) empfangen, dadurch gekennzeichnet, dass das ausgesendete frequenzmodulierte Signal (26) zumindest einen ersten Abschnitt (30, 48) mit ansteigenden Frequenzen und einen zweiten Abschnitt (32, 50) mit abfallenden Frequenzen aufweist oder zumindest einen ersten Abschnitt (30, 48) mit abfallenden
Frequenzen und einen zweiten Abschnitt (32, 50) mit ansteigenden Frequenzen und dass die empfangenen Echosignale (28) Reflexionsquellen (24) zugeordnet werden und anhand der empfangenen Echosignale (28) eine Information über die Geschwindigkeit (38) der Reflexionsquelle (24) relativ zur Sende-/Empfangseinheit (4) ermittelt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das ausgesendete frequenzmodulierte Signal (26) eine Pulsdauer von 0,6 ms bis 3 ms aufweist.
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das ausgesendete frequenzmodulierte Signal (26) einen linearen oder logarithmischen Chirp-Up gefolgt von einem linearen oder logarithmischen Chirp-Down aufweist oder einen linearen oder logarithmischen Chirp-Down gefolgt von einem linearen oder logarithmischen Chirp-Up.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die empfangenen Echosignale (28) zumindest eine erste FIR-Filtervorrichtung (8) mit einem ersten FIR-Signal (52) durchlaufen und ein erster Zeitpunkt (66) bester Übereinstimmung der empfangenen Echosignale (28) zu dem ersten FIR-Signal (52) ermittelt wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die empfangenen
Echosignale (28) zumindest eine zweite FIR-Filtervorrichtung (10) mit einem zweiten FIR- Signal (54) durchlaufen und ein zweiter Zeitpunkt (68) bester Übereinstimmung der empfangenen Echosignale (28) zu dem zweiten FIR-Signal (54) ermittelt wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass aus den ermittelten ersten und zweiten Zeitpunkten (66, 68) eine Zeitdifferenz (70) ermittelt wird und aus der ermittelten Zeitdifferenz (70) die Information über die Geschwindigkeit (38) der Reflexionsquelle (24) relativ zur Sende-/Empfangseinheit (4) mittels eines linearen Ansatzes ermittelt wird.
7. Computerprogramm zur Durchführung eines der Verfahren nach einem der Ansprüche 1 bis 6, wenn das Computerprogramm auf einer programmierbaren Computereinrichtung ausgeführt wird.
8. Umfelderfassungssystem (2) eines Fahrzeugs mit zumindest einer Sende- /Empfangseinheit (4), welche eingerichtet ist, frequenzmodulierte Signale (26) auszusenden und zu empfangen, wobei die ausgesendeten frequenzmodulierten Signale (26) zumindest einen ersten Abschnitt (30, 48) mit ansteigenden Frequenzen und einen zweiten Abschnitt (32, 50) mit abfallenden Frequenzen aufweisen oder zumindest einen ersten Abschnitt (30, 48) mit abfallenden Frequenzen und einen zweiten Abschnitt (32, 50) mit ansteigenden Frequenzen, und mit einer Filtervorrichtung (6, 8, 10, 12), welche an die zumindest eine Sende-/Empfangseinheit (4) gekoppelt ist, so dass empfangene Echosignale (28) die Filtervorrichtung (6, 8, 10, 12) durchlaufen können, wobei die Filtervorrichtung (6, 8, 10, 12) dazu eingerichtet ist, die empfangenen Echosignale (28) Reflexionsquellen (24) zuzuordnen und eingerichtet ist, anhand der empfangenen Echosignale (28) eine Information über die Geschwindigkeit (38) der Reflexionsquelle relativ zur Sende-/Empfangseinheit (4) zu ermitteln.
9. Umfelderfassungssystem (2) nach Anspruch 8, wobei die Filtervorrichtung (6, 8, 10, 12) zumindest eine FIR-Filtervorrichtung (8, 10) umfasst.
10. Kraftfahrzeug mit einem Umfelderfassungssystem (2) nach einem der Ansprüche 8 oder 9.
PCT/EP2014/057025 2013-06-21 2014-04-08 Verfahren zum betrieb eines umfelderfassungssystems eines fahrzeugs WO2014202251A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14716556.7A EP3011360A1 (de) 2013-06-21 2014-04-08 Verfahren zum betrieb eines umfelderfassungssystems eines fahrzeugs
CN201480035226.3A CN105474039B (zh) 2013-06-21 2014-04-08 用于运行车辆的周围环境检测***的方法
US14/900,340 US10120073B2 (en) 2013-06-21 2014-04-08 Method for operating a surroundings-detection system of a vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013211846.5 2013-06-21
DE102013211846.5A DE102013211846A1 (de) 2013-06-21 2013-06-21 Verfahren zum Betrieb eines Umfelderfassungssystems eines Fahrzeugs

Publications (1)

Publication Number Publication Date
WO2014202251A1 true WO2014202251A1 (de) 2014-12-24

Family

ID=50478389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/057025 WO2014202251A1 (de) 2013-06-21 2014-04-08 Verfahren zum betrieb eines umfelderfassungssystems eines fahrzeugs

Country Status (5)

Country Link
US (1) US10120073B2 (de)
EP (1) EP3011360A1 (de)
CN (1) CN105474039B (de)
DE (1) DE102013211846A1 (de)
WO (1) WO2014202251A1 (de)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015013323B4 (de) * 2015-10-14 2022-11-17 Hensoldt Sensors Gmbh Verfahren zur Bestimmung der Geschwindigkeit eines Ziels mittels einer Radaranlage
DE102015013389B4 (de) * 2015-10-14 2022-11-24 Hensoldt Sensors Gmbh Verfahren zur Detektion eines schnellen Ziels mittels einer Radaranlage
US20170177929A1 (en) * 2015-12-21 2017-06-22 Intel Corporation Crowd gesture recognition
US10444350B2 (en) * 2016-07-26 2019-10-15 Semiconductor Components Industries, Llc Obstacle monitoring using motion-compensated distance
US11226403B2 (en) * 2017-07-12 2022-01-18 GM Global Technology Operations LLC Chip-scale coherent lidar with integrated high power laser diode
US10663568B2 (en) 2017-07-19 2020-05-26 Semiconductor Components Industries, Llc Composite acoustic bursts for multi-channel sensing
DE102017118883A1 (de) 2017-08-18 2019-02-21 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben einer Ultraschallsensorvorrichtung für ein Kraftfahrzeug mit Anpassung eines zeitlichen Verlaufs einer Amplitude bei frequenzmodulierten Anregungssignalen
US10097287B1 (en) * 2017-09-07 2018-10-09 Nxp B.V. RF radar device BIST using secondary modulation
JP7009896B2 (ja) * 2017-10-03 2022-02-10 株式会社Soken 物体検知装置
WO2019079323A1 (en) * 2017-10-17 2019-04-25 California Institute Of Technology UNDERGROUND IMAGING OF DIELECTRIC STRUCTURES AND EMPTYES BY NARROW-BAND ELECTROMAGNETIC RESONANT DIFFUSION
US11435477B2 (en) 2018-03-28 2022-09-06 Nec Corporation Distance measurement based on difference of two beat signals generated from same reference light
JP6962270B2 (ja) * 2018-05-14 2021-11-05 株式会社Soken 物体検知装置
DE102018212061A1 (de) * 2018-07-19 2020-01-23 Robert Bosch Gmbh Verfahren zum Betreiben eines Ultraschallsensors, Ultraschallsensor und Fortbewegungsmittel
DE102018124056B4 (de) 2018-09-28 2022-11-03 Valeo Schalter Und Sensoren Gmbh Verfahren zum Bestimmen eines Abstands eines Objekts in einem Ausschwingbereich des Ultraschallsensors, elektronische Recheneinrichtung sowie Ultraschallsensor
DE102018124050A1 (de) 2018-09-28 2020-04-02 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben eines Ultraschallsensors für ein Fahrzeug mit Berücksichtigung eines Frequenzunterschieds zwischen einem Rohsignal und einem Referenzsignal, Recheneinrichtung sowie Ultraschallsensorvorrichtung
JP7127465B2 (ja) * 2018-10-03 2022-08-30 株式会社Soken 物体検知装置
WO2020086903A1 (en) * 2018-10-24 2020-04-30 Red Leader Technologies, Inc. Lidar system and method of operation
EP3871008A4 (de) 2018-10-24 2022-06-15 Red Leader Technologies, Inc. Lidar-system und betriebsverfahren
JP7119927B2 (ja) * 2018-11-09 2022-08-17 株式会社Soken 物体検知装置
DE102018222320A1 (de) * 2018-12-19 2020-06-25 Robert Bosch Gmbh Objekterkennungsvorrichtung für Fahrzeuge und Verfahren zur Erkennung eines Objektes für Fahrzeuge
US11885874B2 (en) * 2018-12-19 2024-01-30 Semiconductor Components Industries, Llc Acoustic distance measuring circuit and method for low frequency modulated (LFM) chirp signals
US10976350B2 (en) * 2019-04-29 2021-04-13 Rohde & Schwarz Gmbh & Co. Kg Measurement method and measurement apparatus
DE102019114201A1 (de) 2019-05-28 2020-12-03 Valeo Schalter Und Sensoren Gmbh Verfahren zum Bestimmen einer Geschwindigkeit eines Objekts mittels eines Ultraschallsensors durch Einteilung eines Sensorsignals in Teilsignale, Recheneinrichtung sowie Ultraschallsensorvorrichtung
US11175402B2 (en) * 2019-11-25 2021-11-16 Texas Instruments Incorporated Time-varying template for improved short-distance performance in coded ultrasonic ranging
DE102020102851A1 (de) 2020-02-05 2021-08-05 Dspace Digital Signal Processing And Control Engineering Gmbh Prüfvorrichtung zum Test eines mit Ultraschallwellen arbeitenden Abstandssensors
CN112269182B (zh) * 2020-09-24 2022-08-12 北京一径科技有限公司 目标雷达信号的确定方法和装置、存储介质、电子装置
US11360217B2 (en) 2020-10-13 2022-06-14 Red Leader Technologies, Inc. Lidar system and method of operation
US11762095B2 (en) 2022-02-01 2023-09-19 Red Leader Technologies, Inc. Lidar system and method of operation
DE102022120315A1 (de) 2022-08-11 2024-02-22 Brose Fahrzeugteile Se & Co. Kommanditgesellschaft, Bamberg Antriebsanordnung für eine Klappenanordnung eines Kraftfahrzeugs
US11982740B2 (en) 2022-08-23 2024-05-14 Semiconductor Components Industries, Llc Motion-compensated distance sensing with concurrent up-chirp down-chirp waveforms
US11899106B1 (en) * 2022-10-05 2024-02-13 Semiconductor Components Industries, Llc Dual-channel acoustic distance measurement circuit and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5657022A (en) * 1992-11-17 1997-08-12 The United States Of America As Represented By The Secretary Of The Air Force Unambiguous range-doppler processing method and system
EP1231481A2 (de) * 2001-02-10 2002-08-14 Valeo Schalter und Sensoren GmbH Verfahren zum Betrieb eines Ultraschall-Multisensor-Arrays

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866223A (en) * 1972-02-01 1975-02-11 Sperry Rand Corp Multiplicative signal processor for target detection systems with sequential doppler search
US4739860A (en) 1984-05-29 1988-04-26 Nissan Motor Co., Ltd. Ultrasonic rangefinder
CA2222637C (en) * 1990-07-13 1999-12-14 Zdenek Adler Monostatic radar system having a one-port impedance matching device
DE4213880A1 (de) * 1992-04-28 1993-11-04 Bosch Gmbh Robert System zur bidirektionalen datenuebertragung zwischen mehreren feststehenden einrichtungen und einem fahrzeug
GB9417600D0 (en) * 1994-09-01 1994-10-19 British Telecomm Navigation information system
DE19533126A1 (de) 1995-09-07 1997-03-13 Siemens Ag Dopplersensor
DE19860633A1 (de) * 1998-12-29 2000-07-06 Valeo Schalter & Sensoren Gmbh Verfahren zum Messen der Geschwindigkeit eines Fahrzeugs
DE19963006A1 (de) * 1999-12-24 2001-06-28 Bosch Gmbh Robert Verfahren und Vorrichtung zur Erfassung und Auswertung von Objekten im Umgebungsbereich eines Fahrzeuges
DE10005558A1 (de) * 2000-02-09 2001-08-23 Bosch Gmbh Robert Vorrichtung zur Datenübertragung im Kraftfahrzeug
DE10018553A1 (de) * 2000-04-14 2001-10-18 Bosch Gmbh Robert Verfahren zur Erfassung und Korrektur von Nichtlinearitäten in einem Mikrowellenradarsystem
DE60114561T2 (de) 2001-04-03 2006-08-10 Mitsubishi Denki K.K. Verfahren und Vorrichtung zur Detektion eines Zielsignals und Hindernisdetektionssystem
DE10332886B3 (de) * 2003-07-19 2004-12-30 Atlas Elektronik Gmbh Verfahren zum Bestimmen von Zieldaten mit einer Aktiv-Sonaranlage
US7151484B2 (en) * 2003-09-30 2006-12-19 Kabushiki Kaisha Toshiba Pulse compression processor
DE10350553A1 (de) * 2003-10-29 2005-06-02 Robert Bosch Gmbh Vorrichtung sowie Verfahren zum Erfassen, zum Detektieren und/oder zum Auswerten von mindestens einem Objekt
DE102004048191A1 (de) * 2004-09-30 2006-04-06 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erkennung einer bevorstehenden Kollision
JP4513662B2 (ja) * 2005-06-15 2010-07-28 株式会社デンソー 車載レーダ装置、車両制御システム
JP4635996B2 (ja) * 2006-09-26 2011-02-23 株式会社デンソー 超音波センサ
US8576664B2 (en) 2006-11-20 2013-11-05 Panasonic Corporation Moving object detection system
DE102008002232A1 (de) 2008-06-05 2009-12-10 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bestimmung von Entfernung und/oder Geschwindigkeit eines Objektes relativ zu einem Fahrzeug
US8320218B2 (en) * 2008-07-24 2012-11-27 Massa Products Corporation Hidden ultrasonic transducer with beam angle control for non-contact target detection systems
DE102009027842A1 (de) * 2009-07-20 2011-01-27 Robert Bosch Gmbh Ultraschall-Messvorrichtung und Verfahren zum Auswerten eines Ultraschallsignals
DE102010000967A1 (de) * 2010-01-18 2011-07-21 Robert Bosch GmbH, 70469 Ultraschallwandler zum Einsatz in einem fluiden Medium
JP5519381B2 (ja) * 2010-04-09 2014-06-11 トヨタ自動車株式会社 スペクトル測定装置
JP5510173B2 (ja) * 2010-08-11 2014-06-04 トヨタ自動車株式会社 車両制御装置
DE102010041424A1 (de) 2010-09-27 2012-03-29 Robert Bosch Gmbh Verfahren zum Erfassen eines Umfelds eines Fahrzeugs
DE102010042653A1 (de) 2010-10-20 2012-04-26 Robert Bosch Gmbh Verfahren und Vorrichtung zur Objekterfassung
US9052392B2 (en) * 2010-11-25 2015-06-09 Mitsubishi Electric Corporation Velocity measurement apparatus capable of accurately measuring velocity of moving object relative to ground surface
JP5626132B2 (ja) 2011-06-07 2014-11-19 株式会社日本自動車部品総合研究所 物体検出装置
DE102011079615A1 (de) * 2011-07-22 2013-01-24 Robert Bosch Gmbh FMCW-Radarsystem und Interferenzerkennungsverfahren für FMCW-Radarsysteme
DE102011079706A1 (de) 2011-07-25 2013-01-31 Robert Bosch Gmbh Verfahren zur Bestimmung der Größe und der Position von Objekten
DE102011079707A1 (de) 2011-07-25 2013-01-31 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erfassung von Objekten aus der Fahrzeugumgebung eines Fahrzeuges
DE102012209238A1 (de) * 2012-05-31 2013-12-05 Robert Bosch Gmbh Ultraschallsensor sowie Vorrichtung und Verfahren zur Messung eines Abstands zwischen einem Fahrzeug und einem Hindernis
DE102013212664A1 (de) * 2013-06-28 2014-12-31 Robert Bosch Gmbh Radarsensor und Verfahren zum Betrieb eines Radarsensors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5657022A (en) * 1992-11-17 1997-08-12 The United States Of America As Represented By The Secretary Of The Air Force Unambiguous range-doppler processing method and system
EP1231481A2 (de) * 2001-02-10 2002-08-14 Valeo Schalter und Sensoren GmbH Verfahren zum Betrieb eines Ultraschall-Multisensor-Arrays

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3011360A1 *

Also Published As

Publication number Publication date
CN105474039B (zh) 2018-10-09
EP3011360A1 (de) 2016-04-27
DE102013211846A1 (de) 2014-12-24
US10120073B2 (en) 2018-11-06
US20160154104A1 (en) 2016-06-02
CN105474039A (zh) 2016-04-06

Similar Documents

Publication Publication Date Title
EP3011360A1 (de) Verfahren zum betrieb eines umfelderfassungssystems eines fahrzeugs
EP2457110B1 (de) Ultraschall- messvorrichtung und verfahren zum auswerten eines ultraschallsignals
EP1562050B1 (de) Verfahren und Vorrichtung zur Anpassung eines Schwellwertes einer Detektionseinrichtung
EP3084470B1 (de) Verfahren zum detektieren von zielechos in einem empfangssignal eines ultraschallsensors eines kraftfahrzeugs, ultraschallsensoreinrichtung und kraftfahrzeug
DE102017123051B3 (de) Echokodierung und -Dekodierung von Ultraschallsignalen unter Verwendung von dreiwertigen Chirp-Signalen durch Vorzeichenermittlung der Frequenzänderung
EP2867695B1 (de) Verfahren zum betrieb eines umfelderfassungssystems eines fahrzeugs und umfelderfassungssystem
DE102019112469A1 (de) Auflösen von doppler-mehrdeutigkeiten in einem multi-input-multi-output-radar unter verwendung digitaler mehrfach-impulsfolgefrequenzen
DE102013218571A1 (de) Vorrichtung und Verfahren zur seitlichen Umfelderfassung eines Kraftfahrzeugs
WO2010115418A2 (de) Radarsystem mit anordnungen und verfahren zur entkopplung von sende- und empfangssignalen sowie unterdrückung von störeinstrahlungen
EP2073038A2 (de) Verfahren zur Klassifizierung von Abstandsdaten und korrespondierende Abstandsmessvorrichtung
DE102018120685A1 (de) Mehrfachauflösungs-dopplerverarbeitung
EP3596489A1 (de) Verfahren und radarvorrichtung zum ermitteln von radialer relativer beschleunigung mindestens eines zieles
DE102019111577A1 (de) Filterung zum behandeln des range-walk-effekts in range-doppler-abbildungen
DE102012202975A1 (de) Verfahren zur Umfelderkennung sowie Fahrassistenzsystem
DE102012212894A1 (de) Verfahren zum Betrieb eines Umfelderfassungssystems eines Fahrzeugs mit zumindest zwei Sende-/Empfangseinheiten und Umfelderfassungssystem
EP2192419A2 (de) Verfahren zur dynamischen Ermittlung des Rauschlevels
EP0814348A2 (de) Messverfahren für den Abstand zwischen einem Kraftfahrzeug und einem Objekt
DE10146095A1 (de) Verfahren zur Abstandsmessung
EP2322952B1 (de) Verfahren zum Detektieren eines Objektes, Fahrerassistenzeinrichtung und Fahrzeug mit einer Fahrerassistenzeinrichtung
EP3071989B1 (de) Verfahren und eine vorrichtung zur messung einer relativgeschwindigkeit mittels eines akustischen sensors
WO2015039805A1 (de) Verfahren zum betreiben eines ultraschallsensors eines kraftfahrzeugs beim aussenden eines sendesignals, ultraschallsensorvorrichtung und kraftfahrzeug
DE102009045677A1 (de) FMCW-Radarsensor für Kraftfahrzeuge
DE102018100567A1 (de) Verfahren zum Bestimmen einer Position eines Objekts mit Richtungsschätzung mittels eines Ultraschallsensors, Steuergerät, Ultraschallsensorvorrichtung sowie Fahrerassistenzsystem
WO2003083511A1 (de) Verfahren zur messung der relativgeschwindigkeit eines objekts__
EP2803061B1 (de) Verfahren zur abtastung der umgebung eines sich bewegenden fahrzeugs

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480035226.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14716556

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014716556

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14900340

Country of ref document: US