WO2014201828A1 - 空调*** - Google Patents

空调*** Download PDF

Info

Publication number
WO2014201828A1
WO2014201828A1 PCT/CN2013/089908 CN2013089908W WO2014201828A1 WO 2014201828 A1 WO2014201828 A1 WO 2014201828A1 CN 2013089908 W CN2013089908 W CN 2013089908W WO 2014201828 A1 WO2014201828 A1 WO 2014201828A1
Authority
WO
WIPO (PCT)
Prior art keywords
distribution
conditioning system
heat exchanger
pipe
air conditioning
Prior art date
Application number
PCT/CN2013/089908
Other languages
English (en)
French (fr)
Inventor
包本勇
张仕强
代文杰
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2014201828A1 publication Critical patent/WO2014201828A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the invention relates to the field of air conditioning, and in particular to an air conditioning system. Background technique
  • the air conditioner especially the outdoor heat exchanger of the multi-connected air conditioner, is divided into liquid droplets by liquid separation capillary.
  • the use of the liquid-collecting capillary can ensure the liquid separation effect and increase the heat exchange capacity of the outdoor heat exchanger, but at the same time, the system resistance is increased, and the local resistance loss of the pipeline is increased.
  • the resistance of the liquid-collecting capillary causes the refrigerant condensed on the high-pressure side to not flow away quickly, and the refrigerant gradually "stacks" on the high-pressure side, and the temperature of the heat exchanger tube does not rise synchronously with the increase of the high-pressure pressure. , seriously affecting the defrosting progress of the outdoor heat exchanger. Especially for low temperature and ultra low temperature heating, this effect is more significant due to the lower ambient temperature.
  • the new fan unit low-temperature heating
  • the low-pressure side absorbs less heat during the defrosting process
  • the liquid-collecting capillary has a greater influence on the defrosting than the ordinary unit.
  • the refrigerant is more likely to accumulate in the lower part of the heat exchanger, and the defrosting is not clean, and water is formed.
  • the first type under the condition that the existing system structure is unchanged, the defrosting effect is improved by increasing the frequency of the compressor during the defrosting process, changing the throttle opening degree of the internal and external machines, and opening the liquid bypass.
  • this method can speed up the defrosting speed to a certain extent, it does not fundamentally solve the resistance effect caused by the capillary during the defrosting process, so the improvement of the defrosting effect is very limited;
  • the heat storage device is used in the defrosting process or the electric heating is turned on.
  • This method is mainly based on increasing the energy input on the low pressure side during the defrosting process, increasing the heat of condensation on the high pressure side, thereby increasing the defrosting speed.
  • this method needs to change the system structure, and the control is more complicated.
  • the cost of equipment such as the heat storage device is increased significantly. Summary of the invention
  • the technical problem to be solved by the present invention is to provide an air conditioning system, which has a short defrosting time and a good defrosting effect, and has a small change to the original system and simple control.
  • the cost increase is small.
  • an air conditioning system includes: a compressor, a four-way wide, an outdoor heat exchanger, a first liquid separator, a throttle device, and an indoor heat exchanger, the compressor,
  • the four-way wide, the outdoor heat exchanger, the first liquid separator, the throttling device and the indoor heat exchanger are connected by a pipeline to form a refrigerant circulation a main circuit,
  • the first liquid separator has a first distribution head and a plurality of first distribution tubes; and further comprising a bypass branch, the bypass branch is disposed in parallel with the first liquid separator, and
  • the bypass branch is provided with a wide control of conduction during defrosting.
  • the first liquid separator is disposed between the outdoor heat exchanger and the throttling device, and the first ends of the plurality of first distribution pipes are respectively associated with the outdoor heat exchanger
  • the plurality of interfaces are connected to each other, and the second end of the first distribution tube is connected to the first end of the first distribution head, and the second end of the first distribution head is connected to the throttle device.
  • the bypass branch includes a second liquid separator
  • the second liquid separator has a second dispensing head and a plurality of second dispensing tubes, and the first ends of the plurality of second dispensing tubes are respectively And a first end of the first distribution pipe is connected to the interface of the outdoor heat exchanger, and a second end of the plurality of second distribution pipes is connected to the first end of the second distribution head, A second end of the second dispensing head is coupled to a conduit from the first dispenser to the compressor suction port via a connecting tube.
  • the inner diameter of the second distribution tube is greater than the inner diameter of the first distribution tube.
  • the second dispensing tube has an inner diameter of 5 mm to 7 mm.
  • the second distribution tube is disposed corresponding to the first distribution tube.
  • the second distribution tube is a copper tube.
  • the second end of the second dispensing head is connected to the pipeline from the first dispenser to the throttling device via the connecting pipe, and the control is wide On the connecting tube.
  • the air conditioning system further includes a vapor-liquid separator disposed between the four-way wide and the compressor suction port;
  • the connecting pipe includes a first connecting pipe and a second connection a second end of the second dispensing head is connected to the first ends of the first connecting tube and the second connecting tube, and the second end of the first connecting tube is separated from the first dispensing Connected to the pipeline between the throttling devices, the second end of the second connecting pipe is connected with a pipe from the four-way wide to the vapor-liquid separator, and the control includes The first control width disposed on the first connecting pipe and the second control width disposed on the second connecting pipe are wide.
  • the air conditioning system is a fresh air conditioning system.
  • the air conditioning system provided by the invention adopts the above structure, and when the normal cooling and heating cycle are running, the control is wide open, the bypass branch does not have any effect, and when entering the defrosting, the wide conduction is controlled, The bypass branch is opened, so that the liquid refrigerant condensed by the outdoor heat exchanger during the defrosting process bypasses the liquid separation capillary of the liquid separator, thereby reducing the resistance of the system pipeline during the defrosting process, accelerating the circulation speed of the refrigerant, and shortening the speed.
  • the time required for the defrosting process increases the defrosting effect.
  • the experimental verification results show that the defrosting time of the air conditioning system of the present invention can be shortened by about 25%, which is lower than that of the ordinary air conditioning unit.
  • the defrosting time is shortened by more than 30% under mild ultra-low temperature heating conditions.
  • FIG. 1a and 1b are system diagrams of an air conditioning system in one embodiment of the present invention, wherein the arrow direction in Fig. la is the flow direction of the refrigerant during heating; the direction of the arrow in Fig. 1b is the flow direction of the refrigerant during defrosting;
  • FIG. 2 is a system diagram of an air conditioning system in another embodiment of the present invention.
  • FIG. 1a and FIG. 1b are system diagrams of an air conditioning system according to an embodiment of the present invention.
  • the air conditioning system is a general air conditioning system, and includes: a compressor 1, a four-way wide 2, an outdoor heat exchanger 3, and a first The liquid separator 4, the throttling device 13, the indoor heat exchanger 14 and the vapor-liquid separator 15 are connected by a pipe to form a main circuit for refrigerant circulation, and the first liquid separator 4 in this embodiment is disposed in the Between the outdoor heat exchanger 3 and the throttling device 13, a first end of the plurality of first distribution pipes 42 is respectively connected to a plurality of interfaces of the outdoor heat exchanger 3, and the plurality of first distribution pipes 42 The second end is connected to the first end of the first dispensing head 41, and the second end of the first dispensing head 41 is connected to the throttling device 13.
  • the first dispenser 4 can also be placed at other locations in the main circuit, which is common knowledge to those skilled in the art.
  • the throttling device 13 is preferably electronically expanded.
  • the first dispensing tube 42 is preferably a capillary tube.
  • the vapor-liquid separator 15 may be disposed on the compressor 1 or separately from the compressor 1.
  • the air conditioning system in this embodiment further includes a bypass branch 6 that is disposed in parallel with the first liquid separator 4, and is provided with defrosting on the bypass branch 6
  • the control is 10 wide. When the normal cooling and heating cycle are running, the control width is 10 disconnected, and the bypass branch 6 does not have any effect. When entering the defrosting, the control is wide 10 conduction, and the bypass branch 6 is opened to make the defrosting process Most of the liquid refrigerant condensed by the outdoor heat exchanger 3 bypasses the liquid separation capillary of the liquid separator, thereby reducing the resistance of the system pipeline during the defrosting process, accelerating the circulation speed of the refrigerant, and shortening the time required for the defrosting process. , improve the defrosting effect. Moreover, the defrosting method is used to make small changes to the original system, and the control is simple. The system cost increase is also small.
  • the bypass branch 6 comprises a second liquid separator 5 having a second dispensing head 51 and a plurality of second dispensing tubes 52, the first of the plurality of second dispensing tubes 52 The ends are respectively connected to the first end of the first distribution pipe 42 at the interface of the outdoor heat exchanger 3, the second end of the second distribution pipe 52 and the second end of the second distribution head 51 Connected at one end, the second end of the second dispensing head 51 is connected via a connecting tube 9 to a line from the first dispenser 4 to the throttling device 13.
  • the maximum resistance during the defrosting process of the air conditioning system comes from the first distribution pipe 42, so that the second distribution pipe 52 can be minimized by connecting the second distribution pipe 52 on one side of the first distribution pipe 42.
  • the resistance of the system piping during the frost process shortens the defrosting time and provides a defrosting effect.
  • the inner diameter of the second distribution pipe 52 is preferably larger than the inner diameter of the first distribution pipe 42.
  • the second distribution tube 52 has an inner diameter of 5 mm to 7 mm.
  • the second distribution pipe 52 is disposed corresponding to the first distribution pipe 42.
  • the second distribution tube 52 is preferably a copper tube.
  • control width 10 is in the closed state, and the bypass branch 6 does not play any role.
  • the working mode of the air conditioning system is the same as that of the conventional air conditioner in the prior art, and will not be described here.
  • the opening control width is 10
  • the high-temperature gas refrigerant discharged from the compressor 1 passes through the four-way wide 2, and is changed by the outdoor.
  • the heat exchanger 3 is condensed, most of the liquid refrigerant passes through the bypass branch 6 composed of the second distribution pipe 52, the second distribution head 51 and the control width, and a small portion of the refrigerant passes through the first distribution pipe 42 and the first distribution head. 41.
  • the two refrigerants merge, they enter the indoor heat exchanger 14 through the throttling device 13 to evaporate, then flow into the vapor-liquid separator 15 and finally enter the compressor 1.
  • the air conditioning system in this embodiment is a brand new air conditioning system.
  • the new fan unit is heated at a low temperature, Both the indoor unit and the outdoor unit are in a low temperature environment.
  • the low pressure side absorbs less heat, and the liquid separation capillary has a greater influence on the defrosting than the ordinary unit.
  • a second end of the second distribution head 51 is connected to the first ends of the first connecting tube 16 and the second connecting tube 17, and the second end of the first connecting tube 16 is separated from the second end a pipe connection between the first liquid separator 4 and the throttling device 13, a second end of the second connecting pipe 17 and a distance from the four-way wide 2 to the vapor-liquid separator 15
  • the pipe connection includes a first control width 18 disposed on the first connecting pipe 16 and a second control width 19 disposed on the second connecting pipe 17.
  • the first control width 18 and the second control width 19 are preferably electromagnetic wide.
  • the first control wide 18 and the second control wide 19 are opened, and the high-temperature gas refrigerant discharged from the compressor 1 passes through the four-way wide 2, and is exchanged outdoors.
  • the heat exchanger 3 is condensed, most of the liquid refrigerant flows directly into the vapor-liquid separator 15 from the second distribution pipe 52, the second distribution head 51 and the second connection pipe 17, and the rest is cold.
  • the medium is throttled by the first connecting pipe 16 through the throttling device 13, then evaporated by the indoor heat exchanger 14 and then flows into the vapor-liquid separator 15, and the merged refrigerant enters the compressor 1.
  • the air conditioning system in the embodiment further reduces the refrigerant flow resistance during the defrosting process, further accelerates the circulation speed of the refrigerant, shortens the time required for the defrosting, and solves the defrosting of the fresh air conditioning unit. problem.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调***,包括压缩机(1)、四通阀(2)、室外换热器(3)、第一分液器(4)、节流装置(13)和室内换热器(14),压缩机(1)、四通阀(2)、室外换热器(3)、第一分液器(4)、节流装置(13)和室内换热器(14)通过管道连接形成供制冷剂循环的主回路,第一分液器(4)具有第一分配头(41)和若干第一分配管(42);还包括旁通支路(6),旁通支路(6)与第一分液器(4)并联设置,并且在旁通支路(6)上设置在化霜时导通的控制阀(10)。空调***进入化霜时,控制阀(10)导通,旁通支路(6)打开,使化霜过程中室外换热器(3)冷凝后的大部分液态冷媒绕过第一分液器(4)的毛细管,从而减小了化霜过程中***管路阻力,加快了冷媒循环速度,缩短化霜所需时间,提高了化霜效果。

Description

空调***
技术领域
本发明涉及空调领域, 特别是涉及一种空调***。 背景技术
为了保证分液均匀和提高整个换热器的换热效果, 空调器尤其是多联式空调器的室外 换热器各分路上均釆用分液毛细管进行分液。 使用分液毛细管虽然能够保证分液效果, 提 高室外换热器换热量, 但同时也带来***阻力增加, 增大管路的局部阻力损失。 在制热化 霜过程中, 分液毛细管的阻力使得高压侧冷凝下来的冷媒不能快速流走, 冷媒逐渐 "堆积" 在高压侧, 换热器管温没有随高压压力的升高而同步升高, 严重影响室外换热器的化霜进 度。 尤其对于低温和超低温制热, 由于外界环境温度更低, 这种影响更加显著。
另外, 针对全新风机组低温制热, 因室内外机均处在低温环境中, 化霜过程中低压侧 吸热更少, 分液毛细管对化霜的影响程度比普通机组大。 且由于化霜过程中, 低温的霜水 从上往下流, 更容易导致换热器下部积冷媒, 化霜不净, 出现结水等现象。
目前提高空调机组制热化霜的方法主要有以下两种:
第一种、 在既有***结构不变的情况下, 通过提高化霜过程中压缩机频率、 更改内外 机节流阔开度、 以及开启液旁通等手段来提高化霜效果。 这种方法虽然在一定程度上能够 加快化霜速度, 但没有从根本上解决化霜过程中毛细管带来的阻力影响, 因此对化霜效果 的提升非常有限;
第二种、 化霜过程中使用蓄热装置或开启电加热, 这种方法主要是基于化霜过程中增 加低压侧的能量输入, 提高高压侧冷凝热, 进而提升化霜速度。 但这种方法一方面需要改 变***结构, 控制更加复杂, 另一方面增加蓄热装置等设备成本增加显著。 发明内容
针对上述现有技术现状, 本发明所要解决的技术问题在于, 提供一种空调***, 该空 调***的制热化霜方式化霜时间短、 化霜效果好, 而且对原***改变小、 控制简单、 成本 增力口小。
为了解决上述技术问题, 本发明所提供的一种空调***, 包括: 压缩机、 四通阔、 室 外换热器、 第一分液器、 节流装置和室内换热器, 所述压缩机、 所述四通阔、 所述室外换 热器、 所述第一分液器、 所述节流装置和所述室内换热器通过管道连接形成供制冷剂循环 的主回路, 所述第一分液器具有第一分配头和若干第一分配管; 而且, 还包括旁通支路, 该旁通支路与所述第一分液器并联设置, 且在所述旁通支路上设置有化霜时导通的控制 阔。
在其中一个实施例中, 所述第一分液器设置于所述室外换热器与所述节流装置之间, 若干所述第一分配管的第一端分别与所述室外换热器的若干接口相连, 若干所述第一分配 管的第二端与所述第一分配头的第一端相连, 所述第一分配头的第二端与所述节流装置相 连。
在其中一个实施例中, 所述旁通支路包括第二分液器, 该第二分液器具有第二分配头 和若干第二分配管, 若干所述第二分配管的第一端分别与所述第一分配管的第一端并接在 所述室外换热器的接口上, 若干所述第二分配管的第二端与所述第二分配头的第一端相 连, 所述第二分配头的第二端经连接管与从所述第一分液器至所述压缩机吸气口之间的管 路连接。
在其中一个实施例中, 所述第二分配管的内径大于所述第一分配管的内径。
在其中一个实施例中, 所述第二分配管的内径为 5mm ~ 7mm。
在其中一个实施例中, 所述第二分配管与所述第一分配管——对应设置。
在其中一个实施例中, 所述第二分配管为铜管。
在其中一个实施例中, 所述第二分配头的第二端经所述连接管与从所述第一分液器至 所述节流装置之间的管路连接, 所述控制阔设置在所述连接管上。
在其中一个实施例中, 所述的空调***还包括设置于所述四通阔与所述压缩机吸气口 之间的汽液分离器; 所述连接管包括第一连接管和第二连接管, 所述第二分配头的第二端 与所述第一连接管和所述第二连接管的第一端相连, 所述第一连接管的第二端与从所述第 一分液器至所述节流装置之间的管路连接, 所述第二连接管的第二端与从所述四通阔至所 述汽液分离器之间的管路连接, 所述控制阔包括设置于所述第一连接管上的第一控制阔和 设置于所述第二连接管上的第二控制阔。
在其中一个实施例中, 所述空调***为全新风空调***。
本发明所提供的空调***由于釆用了上述结构, 当正常制冷、 制热循环运行时, 控制 阔断开, 旁通支路不起任何作用, 而当进入化霜时, 控制阔导通, 旁通支路打开, 使化霜 过程中室外换热器冷凝下来的液态冷媒绕过分液器的分液毛细管, 从而减小了化霜过程中 ***管路阻力, 加快了冷媒循环速度, 缩短了化霜过程所需时间, 提高化霜效果。 实验验 证结果显示, 本发明的空调***较普通空调机组除霜工况下化霜时间能缩短 25%左右, 低 温和超低温制热工况下化霜时间缩短超过 30%。
而且, 釆用该化霜方式, 对原来的***改动小, 控制也简单, 对空调***成本增加也 较小。 附图说明
图 la、 lb为本发明其中一个实施例中的空调***的***图, 其中, 图 la中的箭头方 向为制热时冷媒的流向; 图 lb中的箭头方向为化霜时冷媒的流向;
图 2为本发明另一个实施例中的空调***的***图。
以上各图中, 1、 压缩机; 2、 四通阔; 3、 室外换热器; 4、 第一分液器; 41、 第一分 配头; 42、 第一分配管; 5、 第二分液器; 51、 第二分配头; 52、 第二分配管; 6、 旁通支 路; 9、 连接管; 10、 控制阔; 13、 节流装置; 14、 室内换热器; 15、 汽液分离器; 16、 第一连接管; 17、 第二连接管; 18、 第一控制阔; 19、 第二控制阔。 具体实施方式
下面参考附图并结合实施例对本发明进行详细说明。 需要说明的是, 在不冲突的情况 下, 以下各实施例及实施例中的特征可以相互组合。
图 la及图 lb所示为本发明其中一个实施例中的空调***的***图, 该空调***为普 通空调***, 包括: 由压缩机 1、 四通阔 2、 室外换热器 3、 第一分液器 4、 节流装置 13、 室内换热器 14和汽液分离器 15通过管道连接形成的供制冷剂循环的主回路, 本实施例中 的所述第一分液器 4设置于所述室外换热器 3与所述节流装置 13之间, 若干所述第一分 配管 42的第一端分别与所述室外换热器 3的若干接口相连, 若干所述第一分配管 42的第 二端与所述第一分配头 41的第一端相连,所述第一分配头 41的第二端与所述节流装置 13 相连。 当然, 第一分液器 4还可以设置在主回路的其它位置, 这对于本领域技术人员来说 是公知常识。 所述节流装置 13优选为电子膨胀阔。 所述第一分配管 42优选为毛细管。 所 述汽液分离器 15可设置在压缩机 1上, 也可以与压缩机 1分别独立设置。
本实施例中的空调***还包括旁通支路 6, 该旁通支路 6与所述第一分液器 4并联设 置,且在所述旁通支路 6上设置有化霜时导通的控制阔 10。 当正常制冷、制热循环运行时, 控制阔 10断开, 旁通支路 6不起任何作用, 而当进入化霜时, 控制阔 10导通, 旁通支路 6打开, 使化霜过程中室外换热器 3冷凝下来的液态冷媒的大部分绕过分液器的分液毛细 管, 从而减小了化霜过程中***管路阻力, 加快了冷媒循环速度, 缩短了化霜过程所需时 间, 提高化霜效果。 而且, 釆用该化霜方式, 对原来的***改动小, 控制也简单, 对空调 ***成本增加也较小。
优选地, 所述旁通支路 6包括第二分液器 5 , 该第二分液器 5具有第二分配头 51和若 干第二分配管 52,若干所述第二分配管 52的第一端分别与所述第一分配管 42的第一端并 接在所述室外换热器 3的接口上, 若干所述第二分配管 52的第二端与所述第二分配头 51 的第一端相连, 所述第二分配头 51的第二端经连接管 9与从所述第一分液器 4至所述节 流装置 13之间的管路连接。 通过理论结合实验数据分析发现, 空调***化霜过程中的最 大阻力来自于第一分配管 42处, 因此通过在第一分配管 42的一侧并联第二分配管 52可 以最大程度地减小化霜过程中***管路阻力, 从而缩短化霜时间, 提供化霜效果。
为了进一步减小化霜过程中***管路阻力, 所述第二分配管 52 的内径优选大于所述 第一分配管 42的内径。 进一步地, 所述第二分配管 52的内径为 5mm ~ 7mm。 优选地, 所 述第二分配管 52与所述第一分配管 42——对应设置。 所述第二分配管 52优选地为铜管。
如图 la所示, 机组正常运行过程中, 控制阔 10处于关闭状态, 旁通支路 6不起任何 作用, 空调***的工作方式与现有技术中的普通空调相同, 在此不再赘述。
如图 lb所示, 当机组制热运行进入化霜时, 四通阔 2换向成功后, 开启控制阔 10 , 从压缩机 1排气出来的高温气体冷媒通过四通阔 2, 经室外换热器 3冷凝后, 绝大部分液 体冷媒通过由第二分配管 52、 第二分配头 51和控制阔组成的旁通支路 6 , 极少部分冷媒 经第一分配管 42和第一分配头 41 , 两股冷媒汇合后经节流装置 13进入室内换热器 14蒸 发后, 流入汽液分离器 15 , 最终再进入压缩机 1。
图 2所示为本发明另一个实施例中的空调***的***图, 与实施例一不同的是, 本实 施例中的空调***为全新风空调***, 当全新风机组低温制热时, 因室内机和室外机均处 在低温环境中,化霜过程中低压侧吸热更少,分液毛细管对化霜的影响程度比普通机组大, 因此, 为了进一步地减小化霜过程中***管路阻力, 所述第二分配头 51 的第二端与所述 第一连接管 16和所述第二连接管 17的第一端相连, 所述第一连接管 16的第二端与从所 述第一分液器 4至所述节流装置 13之间的管路连接, 所述第二连接管 17的第二端与从所 述四通阔 2至所述汽液分离器 15之间的管路连接, 所述控制阔包括设置于所述第一连接 管 16上的第一控制阔 18和设置于所述第二连接管 17上的第二控制阔 19。 第一控制阔 18 和第二控制阔 19优选为电磁阔。
当***进入化霜运行时, 四通阔 2换向成功后, 开启第一控制阔 18和第二控制阔 19 , 从压缩机 1排气出来的高温气体冷媒通过四通阔 2, 经室外换热器 3冷凝后, 大部分液体 冷媒由第二分配管 52、 第二分配头 51和第二连接管 17直接流入汽液分离器 15 , 其余冷 媒由第一连接管 16经过节流装置 13节流, 然后通过室内换热器 14蒸发后流入汽液分离 器 15, 汇合后的冷媒再进入压缩机 1。 本实施例中的空调***与实施例相比, 更加减小 了化霜过程冷媒流动阻力, 更加加快了冷媒循环速度, 缩短了化霜所需时间, 解决了全新 风空调机组化霜不干净的问题。
以上所述实施例仅表达了本发明的几种实施方式, 其描述较为具体和详细, 但并不能 因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干变形和改进, 这些都属于本发明的保护范 围。

Claims

权利要求
1、 一种空调***, 包括: 压缩机、 四通阔、 室外换热器、 第一分液器、 节流装置和 室内换热器, 所述压缩机、 所述四通阔、 所述室外换热器、 所述第一分液器、 所述节流装 置和所述室内换热器通过管道连接形成供制冷剂循环的主回路, 所述第一分液器具有第一 分配头和若干第一分配管; 其特征在于, 还包括旁通支路, 该旁通支路与所述第一分液器 并联设置, 且在所述旁通支路上设置有化霜时导通的控制阔。
2、根据权利要求 1所述的空调***, 其特征在于, 所述第一分液器设置于所述室外换 热器与所述节流装置之间, 若干所述第一分配管的第一端分别与所述室外换热器的若干接 口相连, 若干所述第一分配管的第二端与所述第一分配头的第一端相连, 所述第一分配头 的第二端与所述节流装置相连。
3、根据权利要求 2所述的空调***, 其特征在于, 所述旁通支路包括第二分液器, 该 第二分液器具有第二分配头和若干第二分配管, 若干所述第二分配管的第一端分别与所述 第一分配管的第一端并接在所述室外换热器的接口上, 若干所述第二分配管的第二端与所 述第二分配头的第一端相连, 所述第二分配头的第二端经连接管与从所述第一分液器至所 述压缩机吸气口之间的管路连接。
4、根据权利要求 3所述的空调***, 其特征在于, 所述第二分配管的内径大于所述第 一分配管的内径。
5、 根据权利要求 4所述的空调***, 其特征在于, 所述第二分配管的内径为 5mm ~ 7mm。
6、根据权利要求 3所述的空调***, 其特征在于, 所述第二分配管与所述第一分配管 一一对应设置。
7、 根据权利要求 3所述的空调***, 其特征在于, 所述第二分配管为铜管。
8、根据权利要求 3至 7中任意一项所述的空调***, 其特征在于, 所述第二分配头的 第二端经所述连接管与从所述第一分液器至所述节流装置之间的管路连接, 所述控制阔设 置在所述连接管上。
9、根据权利要求 3至 7中任意一项所述的空调***, 其特征在于, 还包括设置于所述 四通阔与所述压缩机吸气口之间的汽液分离器; 所述连接管包括第一连接管和第二连接 管, 所述第二分配头的第二端与所述第一连接管和所述第二连接管的第一端相连, 所述第 一连接管的第二端与从所述第一分液器至所述节流装置之间的管路连接, 所述第二连接管 的第二端与从所述四通阔至所述汽液分离器之间的管路连接, 所述控制阔包括设置于所述 第一连接管上的第一控制阔和设置于所述第二连接管上的第二控制阔。
10、根据权利要求 1所述的空调***, 其特征在于, 所述空调***为全新风空调***。
PCT/CN2013/089908 2013-06-19 2013-12-19 空调*** WO2014201828A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310245439.6A CN104236185B (zh) 2013-06-19 2013-06-19 空调***
CN201310245439.6 2013-06-19

Publications (1)

Publication Number Publication Date
WO2014201828A1 true WO2014201828A1 (zh) 2014-12-24

Family

ID=52103879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089908 WO2014201828A1 (zh) 2013-06-19 2013-12-19 空调***

Country Status (2)

Country Link
CN (1) CN104236185B (zh)
WO (1) WO2014201828A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111503925A (zh) * 2020-04-30 2020-08-07 中车青岛四方车辆研究所有限公司 一种空调及其除霜方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105509384B (zh) * 2015-12-17 2017-12-29 珠海格力电器股份有限公司 空调多联机***的除霜方法及空调多联机***
CN106196507A (zh) * 2016-08-19 2016-12-07 芜湖美智空调设备有限公司 空调器和空调器的控制方法
CN106642404B (zh) * 2016-10-21 2019-12-27 珠海格力电器股份有限公司 一种空调热泵***
CN108826724A (zh) * 2018-04-10 2018-11-16 珠海格力电器股份有限公司 制冷机组、制冷设备及制冷机组控制方法
CN112443996A (zh) * 2020-11-30 2021-03-05 青岛海信日立空调***有限公司 空调器
CN114264092A (zh) * 2022-01-04 2022-04-01 珠海格力电器股份有限公司 冷媒循环设备及***、控制方法、控制器和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004097306A1 (ja) * 2003-04-30 2004-11-11 Toshiba Carrier Corporation 空気調和装置の室外機
CN101592362A (zh) * 2008-05-26 2009-12-02 乐金电子(天津)电器有限公司 空调器
CN101871675A (zh) * 2009-04-24 2010-10-27 日立空调·家用电器株式会社 空气调节机
JP2010276313A (ja) * 2009-05-29 2010-12-09 Daikin Ind Ltd 空気調和機の室外機
JP2011174639A (ja) * 2010-02-24 2011-09-08 Hitachi Appliances Inc 空気調和機
CN102564194A (zh) * 2010-12-09 2012-07-11 日立电线株式会社 热泵热水器、蒸发器及内面带槽传热管
CN102840629A (zh) * 2011-06-20 2012-12-26 珠海格力电器股份有限公司 热泵空调***

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1000343A (en) * 1964-05-25 1965-08-04 Dual Jet Refrigeration Co Defrost means for refrigerated cabinets
JPH051866A (ja) * 1991-06-25 1993-01-08 Fuji Electric Co Ltd 冷凍機
CN2188184Y (zh) * 1994-04-25 1995-01-25 广东美的集团股份有限公司 一拖二分体空调器节流和化霜结构
FR2768497B1 (fr) * 1997-09-16 2000-01-14 Francois Galian Dispositif frigorifique en conditions de fonctionnement variables
CN2540610Y (zh) * 2002-04-24 2003-03-19 广东科龙电器股份有限公司 风冷冰箱
CN2886462Y (zh) * 2006-03-20 2007-04-04 徐州市万和冷暖设备有限公司 空调非均匀性化霜结构
JP2007292458A (ja) * 2007-08-08 2007-11-08 Mitsubishi Electric Corp 冷凍冷蔵庫の制御装置
CN201508077U (zh) * 2009-09-25 2010-06-16 广东美的电器股份有限公司 一种空调器
CN202660651U (zh) * 2012-07-05 2013-01-09 珠海格力电器股份有限公司 防结霜空调
CN203405042U (zh) * 2013-06-19 2014-01-22 珠海格力电器股份有限公司 空调***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004097306A1 (ja) * 2003-04-30 2004-11-11 Toshiba Carrier Corporation 空気調和装置の室外機
CN101592362A (zh) * 2008-05-26 2009-12-02 乐金电子(天津)电器有限公司 空调器
CN101871675A (zh) * 2009-04-24 2010-10-27 日立空调·家用电器株式会社 空气调节机
JP2010276313A (ja) * 2009-05-29 2010-12-09 Daikin Ind Ltd 空気調和機の室外機
JP2011174639A (ja) * 2010-02-24 2011-09-08 Hitachi Appliances Inc 空気調和機
CN102564194A (zh) * 2010-12-09 2012-07-11 日立电线株式会社 热泵热水器、蒸发器及内面带槽传热管
CN102840629A (zh) * 2011-06-20 2012-12-26 珠海格力电器股份有限公司 热泵空调***

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111503925A (zh) * 2020-04-30 2020-08-07 中车青岛四方车辆研究所有限公司 一种空调及其除霜方法
CN111503925B (zh) * 2020-04-30 2021-12-14 中车青岛四方车辆研究所有限公司 一种空调及其除霜方法

Also Published As

Publication number Publication date
CN104236185A (zh) 2014-12-24
CN104236185B (zh) 2017-04-12

Similar Documents

Publication Publication Date Title
WO2014201828A1 (zh) 空调***
CN104061705B (zh) 双级压缩空调***及其控制方法
WO2021169542A1 (zh) 连续制热的空调***
CN103807997B (zh) 空调***及其控制方法
CN100592007C (zh) 一种空气源热泵型空调器及其除霜方法
CN103759456B (zh) 一种空调或热泵的换热***及其除霜方法
WO2015161743A1 (zh) 带除霜功能的空调***
US9377225B2 (en) Outdoor heat exchanger and air conditioner comprising the same
CN106288562A (zh) 一种空气源热泵***的除霜控制装置及其方法
CN203068769U (zh) 空调***
CN104329824A (zh) 多联式空调***及其控制方法
CN106288564A (zh) 空调***
CN106225326B (zh) 热泵***、控制方法及空调器
CN206676353U (zh) 空调***
CN203964436U (zh) 双级压缩空调***
CN104833152A (zh) 一种防液击空调除霜***
CN104515319A (zh) 空调***
CN105485766A (zh) 空调***
CN201314725Y (zh) 一种热泵型房间空调器
WO2018176800A1 (zh) 空调器和空调器的运行方法
CN109442824B (zh) 一种空气源热泵定位除霜方法和除霜***
CN115235139B (zh) 一种三管制多联机空调***及控制方法、存储介质
CN203908147U (zh) 除霜装置以及热泵机
WO2023060882A1 (zh) 空调
WO2020057210A1 (zh) 一种热回收多联机冷暖切换装置、多联机及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13887021

Country of ref document: EP

Kind code of ref document: A1