WO2014198994A1 - Method for the rapid analysis of cell activity - Google Patents

Method for the rapid analysis of cell activity Download PDF

Info

Publication number
WO2014198994A1
WO2014198994A1 PCT/ES2014/070492 ES2014070492W WO2014198994A1 WO 2014198994 A1 WO2014198994 A1 WO 2014198994A1 ES 2014070492 W ES2014070492 W ES 2014070492W WO 2014198994 A1 WO2014198994 A1 WO 2014198994A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
microspheres
cell
activity
growth
Prior art date
Application number
PCT/ES2014/070492
Other languages
Spanish (es)
French (fr)
Inventor
Ángel CEBOLLA RAMIREZ
Alba MUÑOZ SUANO
Original Assignee
Biomedal, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biomedal, S.L. filed Critical Biomedal, S.L.
Publication of WO2014198994A1 publication Critical patent/WO2014198994A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses

Definitions

  • the sector of the technique to which this invention can be applied preferably comprises the research and development sector in biomedicine and biotechnology, in which the analysis of the specific characteristics of different cell types is common. Its use can be extended to the clinical diagnosis sector, the innovative therapies sector and in another field that is different from the environmental and ecological impact sector.
  • this invention can be applied to processes of analysis of a multitude of cellular variables, whether viability, specific expression, production of molecules of interest or descriptive characteristics, whether for basic research purposes, biotechnological advances, clinical applications in a wide range or industrial purposes.
  • the object of this patent is based on cellular characterization processes.
  • the cellular characterization allows the description and identification of different cell types within a heterogeneous population or deviations in an initially homogeneous population, in addition to the identification of mutants, highly secretory or producing clones, hydrolytic capacities, important for biotechnological developments as well as for the improvement of industrial processes.
  • the main problem associated with the identification of the phenotypic characteristics of microorganisms or cell populations is the time required for their determination. In most cases, this determination is subject to a specific growth of said cells under different test conditions.
  • Another clear example of this delay in phenotypic cell analysis is the identification of producing cells, such as hybridomas, eukaryotic cells producing monoclonal antibodies, in which the standard time from fusion to the identification of positive clones is between 2 and 4 weeks, depending on the rate of duplication of the cells (Milstein, C. Bioessays. 1999; 21: 966-73).
  • microencapsulation in agarose or polymeric hydrogels of cells within microspheres preferably between 30 and 1000 microns it is possible to compartmentalize individualized cells and perform growth studies or other cellular activities using nutrients or reagents in low quantity.
  • a flow cytometer is needed.
  • this instrument is usually expensive, far exceeding 50,000 euros and needing very advanced training for its use.
  • the cytometers that can be used for the analysis of microspheres of 30 to 200 microns, such as the COPAS of Biometric Union cost more than 200,000 euros.
  • This technology has the advantage of individually analyzing cell growth, reducing the number of divisions necessary to make visible phenotypic differences between one cell and another. Although it is also true that it has many disadvantages.
  • encapsulations are performed with agarose, which needs a high temperature in order to be used, subjecting the cells to temperatures above 40 ° C.
  • the procedure for the synthesis of the microspheres is by emulsion with an oil, which may necessitate different subsequent steps for the removal of the oil with the consequent cellular suffering and Inability to use the system for cells more sensitive to temperature or stress.
  • a problem added to the system is the variability in the size of the capsules produced, since using the emulsions it is very difficult to control the size of the capsule and, therefore, the amount of cells that can accommodate it.
  • the results are obtained through flow cytometry, a technique that, although very precise and consistent, has the problem of the maximum size that can be analyzed. Taking into account the aforementioned about the little control over capsule size when produced by emulsion, a previous step is required to the filtering analysis, which can lead to an error in the analysis by discarding a population of capsules by their size.
  • Flow cytometry is also a complex technique that requires high investment and specific training for laboratory operators.
  • the generation of monodisperse microspheres can be done with different technologies. For example with ultrasonic nozzles, or in a preferred case, with fluid focusing technology (Flow Focusing).
  • Flow Focusing is a microfluidic manipulation technology for the generation of spheres or monodisperse drops, based on the production of capillary microbeads that are "focused" towards a hole (US6,464,886).
  • This technology allows to design and produce microparticles with selected size, structure and composition.
  • This technology has developed its own instrument (Cellena ®) that allows encapsulation by FlowFocusing of cells maintaining its viability through the use of an ionic gel polymer such as alginate, widely reported as biocompatible in other fields of research and development such as cell therapy.
  • the present invention describes a method of rapid cell characterization by microencapsulation of cells characterized in that the determination of cell populations, as well as the different products secreted or synthesized by said populations are detected and identified in the capsules themselves or spheres by means of microscopic detection systems, which do not need additional training of personnel for their management and also require less time for analysis, than cytometric techniques.
  • an advantage of the methods described in this invention is the reduction of the total time necessary for a cellular determination, whether it is the determination of the proliferative, secretory or catalytic capacity, among others, of the cells object of the analysis, without resorting to Instrumentation of high economic cost, such as a flow cytometer, or to personnel with specific training for it.
  • Another advantage is that microscopic detection can encapsulate more than one cell per capsule, since the detection technician himself identifies each cell individually, while cytometry has to encapsulate a single cell or microorganism per capsule since said apparatus is not able to differentiate between a large colony or two or three small colonies, identifying each event exclusively as a single cell or a single microorganism, even if the capsule contains more than one.
  • the present invention relates to equipment and methods for performing rapid and microscopic scale cell analysis generating hydrogel microspheres containing the cells and which are subsequently examined by microscopy and image analysis. These analyzes are carried out as an alternative to applications usually performed in liquid cultures or in solid media that need a much larger critical mass of cells to be studied at a macroscopic level, with considerable time and reagent savings.
  • the method tries to determine certain cellular characteristics such as the ability to grow under certain conditions or for the production of specific metabolites such as enzymes, marker proteins, exopolysaccharides, bioplastics, amino acids, antibodies, etc.
  • the characteristic to be studied will correspond to the proliferative capacity of the cells under certain conditions.
  • it refers to the determination of the ability to secrete specific proteins such as antibody fragments, enzymes, etc.
  • the described method refers to the determination of the intracellular catalytic capacity of cells.
  • the invention therefore comprises a method for cellular characterization by means of a microencapsulation system of cells with a hydrogel, a process of treating the microspheres to incubate them once aliquoted with different nutritive and / or reactive substances, and an analysis procedure. programmed through an image analyzer taken from a microscope, optical and / or fluorescent.
  • the microencapsulation process or step consists in the generation of microspheres from a cell suspension to which a compound that gels into a biocompatible polymer is added when the microspheres reach a change in the conditions of the medium. .
  • This gelation of the sphere produces the entrapment of cells in spheres of a micrometric size with the cells or microorganisms, embedded inside.
  • the procedure by which this encapsulation is carried out can be by ionic gelation, emulsion or any other procedure compatible with cell life.
  • the polymer used must also be biocompatible and with the diffusion of biomolecules or metabolites (nucleic acids, nucleotides, oligonucleotides, proteins, amino acids, peptides, carbohydrates, antibiotics, peptides, fatty acids, secondary metabolites) out and into the microsphere.
  • the preferred polymer for this invention is alginate but its composition can be modified to adapt it to the specific conditions required by the different cells to be encapsulated, either by using a combination of polymers or by adding nutrients or growth factors to matrix. This polymer is mixed with the cells under study.
  • the method of generating droplets from the suspension with the cells prior to gelation is performed by applying the jet focusing technology or Flow Focusing®.
  • the next step after microencapsulation is an incubation period, in which the cells are allowed to stabilize and activate biochemically enough to perform the function to be studied.
  • the ability to form microcolonies inside the microspheres would be studied as a test to determine cell growth.
  • certain compounds that affect cell growth and / or the synthesis of certain cellular products such as peptides, enzymes, antibodies, etc., etc. may be added before incubation.
  • the next step of this invention corresponds to the analysis of the microspheres and the microcolonies by means of an image analyzer taken from a microscope. This analysis is done specifically by obtaining photos through a camera associated with a conventional microscope. These images will be analyzed by a specific instrument that will perform the analysis of the microspheres, cells or microcolonies present in the sample by determining the number, color, fluorescence or diameter of the cells or microcolonies.
  • the cells to be encapsulated would be microorganisms in order to identify microorganisms that have a certain phenotype. These microspheres would be incubated in a battery of different conditions to determine the characteristics of the microorganism under study. Once the incubation period was over, the microspheres would be analyzed by capturing a series of images through the microscope to determine the size of the microcolonies. The difference in the diameter of the microcolony formed within the microsphere gives us an idea of the effect that the different conditions tested on the microencapsulated microorganism have on growth. In a preferred aspect of this invention, the analysis of the size and number of Microcolonies in each scanning condition would be done automatically, using the automatic image analyzer.
  • Another application of the invention is the study of non-cultivable microorganisms.
  • the fastest growing microorganisms usually dominate the culture plates with rich media when they are isolated from the environment, not letting the slow-growing ones grow.
  • the fast-growing microorganisms that exceed the limits of the sphere can be washed, and leave the longest time for the slow-growing microorganism to continue growing.
  • compounds typical of their usual environment or the creation of a 3D environment that provides them with specific requirements can be added to the microsphere by modifying the crosslinkable polymer composition and microscopic analysis of the resulting microcolonies allows the study of said microorganisms. Also by controlled modification of the encapsulation environment, such as temperature, extracts from normal habitat, it is possible to determine the specific requirements without which microbial growth cannot be carried out.
  • the identification of microbial activities is carried out, one of these specific activities, but not exclusive, is the identification of enzymatic activity as the activity hydrolytic
  • studies can be carried out on viable cell consortia without whose components no growth occurs.
  • This can be applied to non-cultivable microorganisms by classical methods as well as to eukaryotic tumor cells that need accessory cells for growth.
  • combinatorial and controlled encapsulation of different cell types allows analyzing the conditions in which growth occurs and who are the mandatory participants of the consortium for proliferation to occur.
  • the ease of analysis by identifying microcolonies through images from microscopy facilitates the achievement of results in a short period of time.
  • the use of the method to detect genetic signaling or exchanges between cells of different origin, which give rise to an activity detectable by means of fluorescent or colorimetric signals, can also be part of the invention.
  • the identification of secretory cells is performed.
  • the cells are hybridoma producing antibodies, and the selection thereof is made by modifying the encapsulation matrix so that it is able to specifically retain the monoclonal antibodies under study.
  • the identification of the positive clones will be done after the microspheres have been labeled with an antibody marker, this marker can be a secondary antibody conjugated with a fluorophore, or any other equivalent marker. After incubation with this fluorescent marker, only microspheres containing hybridomas producing antigen-specific antibodies fixed on the microcapsule matrix will retain antibodies in its matrix and will be specifically labeled by the fluorescent marker used for staining.
  • These positive microspheres will be easily identifiable by fluorescence microscopy and the selected clones will be easily isolated by means of a microinjection needle.
  • cell in the present invention refers to the smallest structural unit of an organism that is capable of functioning independently or to a single-celled organism, which is composed of one or more nuclei, cytoplasm and various organelles, surrounded by a cell membrane. semipermeable or a cell wall.
  • the cell can be eukaryotic, prokaryotic, animal, plant or archeobacteria.
  • the cells can be primary or from cell lines.
  • microencapsulation is the process of coating molecules, solid particles, or liquid globules with materials of different nature to give rise to particles of micrometer size, that is between one and a thousand microns.
  • microencapsulation refers to the process of coating cells for microsphere formation.
  • FF jet focused or Flow Focusing
  • microencapsulation technology selected for microencapsulation in the context of this invention.
  • the preference for this technology is fundamentally based on the fact that they achieve particles below 200 microns and up to a maximum of 1000 microns, being a gentle technique and with less known effects on cell viability, exerting less influence on the vital conditions of the encapsulated cell and providing objectivity to encapsulation.
  • microspheres in the present invention refers to spherical particles of homogeneous and semipermeable size that contain within one or more of a cell.
  • microcolony in the context of this invention refers to the result of the proliferation of a cell inside a microsphere, thus maintaining a size smaller than 200 microns and therefore being invisible to the naked human eye. It generally adopts a spherical and opaque conformation in the translucent context of the microsphere, which makes it easily distinguishable using a microscope with phase contrast.
  • compound refers to that substance to be analyzed to determine its effect on the microencapsulated cell. Fundamentally, its effect on the proliferation of the microencapsulated cell will be analyzed, although its effect on its secretion or enzymatic activity can also be analyzed.
  • the microencapsulation procedure can be by ultrasound, drip, emulsions, or jet focusing.
  • the preferred method for cell microencapsulation in the context of this invention is jet focusing technology or Flow Focusing (FF, US 6,464,886).
  • the preferred material for this encapsulation process is ionically crosslinkable polymers.
  • Materials used for this invention include, but are not limited to, natural alginate and polysaccharides such as chitopectin, gellan gum, xanthan gum, hyaluronic acid, heparin, pectin and carrageenan.
  • ionically crosslinkable polyanions for use in the practice of the present invention include but are not limited to, polyacrylic acid and polymethacrylic acid.
  • the ionically crosslinkable polycations such as polyethyleneimine and polylysine are also suitable for the present invention.
  • alginate (the alginate referred to here corresponds to alginic acid salts) will be used as an ionically crosslinkable polymer, at a concentration range between 0.5% and 5% w / v.
  • the alginate is provided in a concentration range between 1.5% and 2% w / v.
  • the ionically crosslinkable polymer crosslinking process is carried out by adding the encapsulation mixture of multivalent cations, such as calcium, zinc, barium, strontium, aluminum, iron, manganese, nickel, cobalt, copper, cadmium, lead, or mixtures of any 2 or more thereof.
  • the encapsulation mixture of multivalent cations such as calcium, zinc, barium, strontium, aluminum, iron, manganese, nickel, cobalt, copper, cadmium, lead, or mixtures of any 2 or more thereof.
  • calcium is used as a crosslinker of the ionically crosslinkable polymer of the encapsulation mixture.
  • this alginate can be prepared in water, or in a specific medium for the growth of the cells to be encapsulated.
  • the encapsulation medium can be derivatized with any complement that is necessary for the survival of a certain cell type.
  • the alginate can be derivatized to contain substrates or compounds that react specifically with molecules or enzymes from the encapsulated cell.
  • the encapsulation mixture consists of an ionically crosslinkable polymer (alginate being preferred for this invention) and the specific cells we want to encapsulate.
  • the proportion of cells used for the encapsulation mixture will determine the amount of cells present in a microcapsule. In one aspect of the present invention, dilutions of the cells with alginate will be made with the aim of finding 1 cell per microcapsule; In another aspect of the present invention, the objective will be to have between 2 and 3 cells per capsule and in another aspect other than the present invention the objective will be to encapsulate the maximum number of cells per microcapsule.
  • the microspheres can be collected by various methodologies.
  • the microspheres can be centrifuged and washed thoroughly with water before transferring them to the specific culture medium for the encapsulated cell type or in a second aspect of this invention, the cells can be filtered through a 70um filter.
  • the preferred embodiment of this invention is the filtering of the microspheres, since in addition, by means of this filtering, any satellite or irregularity that may have occurred during the encapsulation process is eliminated.
  • the fundamental objective is the incubation of the microspheres in a specific medium to ensure the functionality of the microencapsulated cells to be studied.
  • this medium may contain a certain compound under study, this compound is a mutagen such as hydroxylamine or acridine orange, or an inhibitor of cell proliferation such as antibiotics, anticancer, or an activator such as substrate of an activity, a growth factor, a hormone or a specific marker among others.
  • the different incubation conditions will be performed with microspheres from a single encapsulation.
  • the calculation of the number of microspheres required for the different conditions necessary for performing a complete analysis is essential for an optimal development of the present invention. This calculation is performed statistically but can be optimized by empirical results depending on the composition of the encapsulation matrix and the size of the cells to be encapsulated, as well as the necessary concentration thereof.
  • the medium will be distributed in conical tubes with a capacity 10 times greater than the volume of medium to be added (50 ml tubes for 5 ml_ of culture).
  • the microspheres will be distributed homogeneously among all conditions.
  • the microspheres will be resuspended in a given volume of culture medium specific for the cell type to be studied. Equal volumes of capsules will be distributed in each condition.
  • the incubation time will be determined empirically for each type of cell phone.
  • the minimum incubation time will be that necessary to identify microcolonies of approximately one third of the total volume of the microsphere in the control condition of the analysis, under optimal growth conditions without any conditions in the environment. This method supposes a considerable reduction of the incubation time, in the case of microbiological cultures they would pass from 16-24h for the observation of colonies in Petri dishes at 4-8h. In the case of eukaryotic cells, time would pass from several weeks to several days.
  • the object of study is the formation of viable consortia that facilitate the proliferation of a specific cell type.
  • This specific cell type can be traditionally noncultivable microorganisms or tumor cells, existing in both cases. Examples of cells that are not able to grow in vitro due to the lack of environmental factors essential for their growth, some growth factor or inefficient coupling of cell biochemistry to the nutrients provided in the environment.
  • the cells are encapsulated under controlled conditions in the presence of other cells that are in their original environment in which if they grow, for example, in the case of soil microorganisms, controlled consortia of species that normally cohabit , some of them belonging to the category of non-cultivable.
  • tumors in which it is very difficult to expand the cells in vitro for subsequent characterization.
  • the encapsulation of cells adjacent to the tumor in the same capsule could give the environment necessary to mimic the tumor microenvironment on a small scale and allow the expansion of the tumor cell under study.
  • the ultimate goal may be the identification of secretory clones within a heterogeneous cell population; in that specific case, the encapsulation matrix will be made in a way that is able to specifically retain the secreted product and facilitate its subsequent identification.
  • the capsules will be incubated for a certain time that allows the production of the secreted product, either a compound or molecule or a specific enzymatic activity of the cell type studied. This time will vary from 24 to 96 h depending on the secreted molecule or enzymatic activity object of the study.
  • a preferred form of the invention is to make an alginate copolymer that allows the binding of a ligand in the microsphere networks to which the secreted protein must bind.
  • Secretion identification would be performed using a specific ligand against the secreted protein. After washing to remove excess secreted protein not bound to the ligand, the labeled ligand would be retained against the secreted protein and the microsphere would be detected. suitable for the accumulation of marker in the sphere with more specific protein retained.
  • the last step of the selected analysis method is an analysis of images obtained from the microspheres under a microscope with phase or fluorescence contrast.
  • the microspheres that have been incubated for a certain time are preferably transferred, but not exclusively, to a slide, where they will be examined by microscopy to determine the size of the microcolonies in the condition Analysis control
  • the preferred microscope for this invention is an optical microscope with a 4x objective, although a 2.5x or a 10x can also be used.
  • the microscope is inverted, although non-inverted and magnifiers can be used.
  • the microscope can be fluorescent and thus allow the detection of cellular activities associated with a fluorescent product whose concentration generated will be proportional to the cellular activity.
  • fluorescent products can be fluorescent proteins such as GFP, YFP, DsRED, etc. or compounds that are substrates of enzymatic reactions coupled to methyl umbelliferone, such as 4-Methylumbelliferyl-p-D-galactopyranoside or 4- Methylumbelliferyl a-D-glucopyranoside.
  • photos of the microspheres will be taken after incubation, taking photos to preferably have between 100 and 1000 microcolonies.
  • the photos will be taken using a camera connected directly to the microscope.
  • the analysis of the microcolonies will be carried out preferably by determining a series of parameters.
  • Number of microspheres first, an identification and counting of the microspheres present in the preparation will be carried out. Through the microsphere count an internal control of microsphere distribution between the different conditions will be carried out. The number of microspheres present in the different conditions must be equivalent to give the results valid. A heterogeneous distribution of capsules between different conditions can lead to a bias in the number of microcolonies that does not correspond to reality. A percentage of variation of less than 20% between microsphere counts in different conditions is desirable.
  • the count of the microcolonies will be similar among all the conditions of the analysis.
  • the colon count will be lower, since the number of clones that will lead to a microcolony tends to be 0. In extreme cases the number of microcolonies will be 0. Size of the microcolonies: the second parameter to analyze is the size of the microcolonies. As in the count we can find two possibilities:
  • the count of the microcolonies will be similar between all the conditions of the analysis. However, the size of the microcolonies will be significantly reduced. At least a reduction in the diameter of 2 times the size of the microcolonies in the optimal culture condition will be identified, b. If the culture conditions do not have the effect described in point one of this list, but completely block cell proliferation, the colon count will be lower, since the number of clones that will lead to a microcolony tends to be 0. In extreme cases the size of microcolonies will be 0.
  • the identification of some isolated microcolony within the population will occur.
  • the general diameter of the microcolonies will be undetectable; however, the above-mentioned clones, which have mutations, may have a size similar to that observed in the control condition. In this case, we must relate the size of the microcolonies with the number of them and with the total number of capsules in the sample.
  • the preferred representation of the data in the methodology of this invention would be the normal distribution of the sizes obtained in each of the conditions including the control.
  • Another way of representing the data would be the representation of the average diameters of the microcolonies present in each condition.
  • the analysis of the standard error of the mean, as well as the average values of the maximum and minimum sizes, and the coefficients of variation of the microcolonies in each condition, provide fundamental information for obtaining objective results.
  • the growth of hardly cultivable cells will also be analyzed by microscopy. By analyzing the photos taken, the optimal conditions for the culture of said cell types will be decided.
  • the culture of these cells by this procedure opens new avenues for their characterization since they can be incubated using extracts from the usual environment of the cells by requiring less amount of medium, increasing the chances of achieving more cell divisions. In the case of tumor cells, encapsulating them with their cellular microenvironment can generate more effective divisions, making it more feasible to make studies of sensitivity to antitumor compounds in cell types where it is currently not possible.
  • a specific method for the present invention of interest in the identification of cells by the production of a specific metabolite in this case the images of these capsules are not going to be analyzed looking for the formation of microcolonies, but rather looking for positivity against the specific marking of the secreted product or the desired enzymatic activity.
  • the marking will preferably be fluorescent due to its greater sensitivity, thus reducing the time needed to accumulate a sufficiently visible signal in each capsule.
  • the hydrogel will have to be based on copolymers that allow ligand binding.
  • Some of the possible ligands to derivatize the monomers that form the copolymer can be biotin and thus bind streptavidin polypeptide, NTA or NDE and thus bind polyhistidine-bound proteins, DEAE to bind proteins bound to choline-binding domains, glutathione that would allow protein binding. linked to GST, etc. It is possible, for example, to obtain copolymer tsar DEAE dextran with alginate and bind specifically GFP linked to LYTAG. Likewise, an antigen of interest can be attached to the copolymer ligands and select encapsulated hybridomas that secrete antibodies that bind to said antigen.
  • Antibody bound to the copolymer antigen could be detected with specific antibodies against the immunoglobulin heavy chain, conjugated to fluorophores such as FITC, phycoerythrin, rhodamine, or any commercially available fluorophore.
  • the positive cells can be isolated by micropipettes using the microscope or by screening the microspheres by isolating them from the rest and expanding them in the optimal conditions for each cell type.
  • FIG. 1 Example of monodisperse capsules produced by jet focusing technology or Flow Focusing, used in this invention.
  • Figure 3 Example of the detection of enzymatic activity of encapsulated microorganisms.
  • Figure 4. Scheme of the procedure described in this invention.
  • Figure 5. Identification of secretory clones of the 1xZ domain of protein A.
  • the microspheres containing bacteria capable of producing the recombinant protein are labeled with the fluorescent antibody in red.
  • Figure.6. Comparison of counting capacity and identification of clones encapsulated in microspheres by flow cytometry and optical microscopy. The figure shows that by means of the flow cytometry technique a single clone is identified within the microsphere, when it is appreciated that there are two, while by microscopy all independent colonies present in each microsphere are clearly identified.
  • the first object of the present invention relates to a method of cellular characterization comprising the following steps:
  • the process of the invention is characterized in that the substance capable of producing hydrogels is a polymeric substance selected from any of the following: alginate, agarose, chitosan, chitopectin, gellan gum, xanthan gum, hyaluronic acid, heparin, pectin, carrageenan, polyacrylic acid, polymethacrylic acid, polyethyleneimine and polylysine.
  • the substance capable of producing hydrogels is alginate.
  • microencapsulator produces the microspheres by any of the following methods: ultrasound, drip, emulsion, or jet focusing.
  • the microencapsulator produces the microspheres by the jet focusing technique.
  • microspheres are 50 to 500 microns in size.
  • cells are selected from any of the following: eukaryotic, prokaryotic, animal, plant or archeobacterium.
  • this is characterized in that the cells present in their genome genetic modifications that give rise to mutant or hybrid organisms. Said genetic modifications are obtained by means of genetic engineering techniques, commonly known to those skilled in the present technical field. Such mutant or hybrid organisms may show an increase or inhibition of the expression of a gene, protein, etc., both homologous and heterologous.
  • this is characterized in that at steps a) or c) at least one compound capable of being detected by microscopy is added when reacting with the cells and / or products secreted by them within the microspheres
  • this is characterized in that the compound capable of being detected by microscopy is selected from any of the following: dye, chromogen and / or fluorophore.
  • dye any of the following: dye, chromogen and / or fluorophore.
  • this is characterized in that the compound capable of modifying the metabolism of the cell is selected from any of the following: mutagen, proliferation inhibitor or activator, growth factors and / or enzymatic substrates .
  • the cellular characterization is directed to the analysis of the viability and / or cell growth.
  • this is characterized in that cell viability is analyzed by cellular consortia capable of facilitating the growth of a specific cell type.
  • the specific cell types are preferably non-cultivable cells or tumor cells.
  • this is characterized in that the cellular characterization is directed to the identification of cells that have an activity selected from any of the following: secretory, hydrolytic or catalytic.
  • this is characterized in that the secretory activity results in the secretion of molecules that are selected from any of the following: peptides, enzymes, antibodies and / or antibody fragments.
  • this is characterized in that the identification of the cells with secretory activity and / or of the secreted molecules is performed by detecting the binding of said cells and / or molecules to the compound capable of being detected by microscopy as described above throughout this document.
  • this is characterized in that for the identification of the catalytic or hydrolytic activity, a substrate subject to the cellular activity sought is previously added in step b). In another preferred embodiment of the process of the invention, this is characterized in that the substrate reacts with the compound capable of being detected by microscopy as previously described herein.
  • this is characterized in that the microscope is optical or fluorescent.
  • this is characterized in that the image analyzer is automatic.
  • the image analyzer identifies the microspheres and detects the activity and / or condition of the cells and / or secreted products.
  • This example describes how to screen cells that have undergone a genetic change that can be selectable within the microsphere. It starts from a growing cell culture. Previously, the necessary solutions for encapsulation have been prepared. The 1.5% alginate has been prepared, this alginate can be prepared in water or in specific medium for cell growth. The alginate is sterilized by filtration through a pore size of 20um. The 3% calcium chloride in water has also been prepared, which is also sterilized by filtration. An inoculum of between 0.5 and 1x10 cells / ml_ of alginate is made. The mixture is gently stirred by inversion to ensure a homogeneous distribution of the cells in the alginate without producing bubbles in the mixture.
  • the encapsulation is carried out, using a 200um nebulizer that produces particles between 100 and 120 ⁇ in diameter.
  • a 200um nebulizer that produces particles between 100 and 120 ⁇ in diameter.
  • an air flow at a pressure of 60mBar is required.
  • the encapsulation is carried out at a flow of 3mL / h. The particles fall into a 3% calcium chloride bath while stirring.
  • E. coli resistant to rifampin are identified that result from a timely mutation.
  • the microcolonies are analyzed by microscopy and the clones that have had a differential growth with respect to the rest in the presence of 10 mg / L of rifampin are identified, either by an increased or decreased growth.
  • microcapsule with the clone of interest is selected and passed to a well of a 96 plate with optimal culture medium for the encapsulated microorganism. Allowing it to grow the necessary time, the microcolony will be released from the microcapsule and will lead to a conventional axenic liquid culture, which can be expanded for subsequent characterization, DNA extraction or phenotypic analysis.
  • Example 2 Identification of secretory clones. Selection of hybridomas.
  • Encapsulated cells are hybridomas produced after a fusion of splenocytes from a mouse immunized against the green fluorescent protein (GFP) with myeloid cells. Some of these hybridomas produce an antibody specific for the antigen of interest. The identification and selection of these hybridomas is a slow process that takes between 2 and 4 weeks. The application of the present invention would reduce the time necessary until the identification of producing clones to 2-3 days.
  • GFP green fluorescent protein
  • the encapsulation matrix has to be derivatized with a compound that allows antigen retention in the alginate matrix.
  • DEAE dextran is used, which retains the peptide antigen bound to LYTAG.
  • DEAE dextran alginate and a solution of a GFP fusion would be added to -in the C-terminal end to the choline binding domain and also to DEAE, LYTAG (Biomedal SL) .
  • the microspheres will carry alginate as a gelling agent and DEAE-Dextran that would bind the GFP antigen through the LYTAG that has affinity for DEAE.
  • the hybridomas to be encapsulated would be added and encapsulation would proceed.
  • a 200 um nebulizer would be used that gives a microcapsule size between 100 and 120um.
  • the dilution of the cells will be that which allows the encapsulation of 1 cell per capsule.
  • microcapsules After subsequent washing and filtering, the microcapsules would now be maintained in the hybridoma selection medium (Medium HAT) and 24 well plates would be dispensed. The cells are incubated under these conditions for a period of 3-5 days depending on the recovery rate of the cells. After this time, these microcapsules would be incubated with a secondary anti-mouse Ig antibody (or the corresponding producer) fluorescently labeled with rhodamine. Microcapsules containing hybridomas producing specific antibodies will have the same retained in the microcapsule matrix by specific recognition with the GFP antigen fixed therein.
  • Hybrida selection medium Medium HAT
  • the labeled clones will be selected by fluorescence microscopy for red emission and with microinjection tools they will be transferred to an independent plate where their hybridoma selection and culture will occur.
  • the higher intensity of the red color emitted could also allow the selection of the best secretors.
  • Example 3 Identification of enzymatic activity.
  • cells with a specific enzymatic activity are identified within a mixed population of cells.
  • the encapsulation matrix has to be derivatized, the mixture being carried out in the presence of the substrate subject to the enzymatic activity sought.
  • the enzymatic activity that is sought is glutenase activity
  • the substrate that is added to the encapsulation matrix is gliadin, one of the component proteins of gluten.
  • the cells are encapsulated in this matrix and incubated in the optimal culture medium for the corresponding cell type.
  • staining is performed with a specific fluorescently labeled antigliadin antibody.
  • Example 4 Identification of secretory clones (recombinant proteins).
  • This example describes how to perform a screening of cells that have undergone a genetic change and that can be selected within the microsphere
  • transformed bacteria that are capable of producing a specific recombinant protein will be selected, in this case, with the antibody binding z-domain of protein A.
  • This protein A is useful in biotechnology for its ability to bind antibodies
  • Staphylococcus aureus protein A (GenBank: AAB05743.1) has been used.
  • GenBank: AAB05743.1 GenBank: AAB05743.1
  • the solutions necessary for encapsulation are prepared, specifically, 1.5% alginate is dissolved in water and sterilized by filtration through a pore size of 20um.
  • a solution of 3% calcium chloride in water is prepared, which is also sterilized by filtration.
  • a concentration of 0.5x10 6 cells / mL of alginate is encapsulated.
  • the encapsulated cells After obtaining the encapsulated cells, they are subjected to a mild osmotic shock to break up the cell membranes and so that the diffusion of the proteins and antibodies in and out of the cells occurs.
  • the encapsulated cells are subsequently incubated with rabbit secondary antibodies labeled with a fluorophore that emits in green. Those capsules with green fluorescence have inside a bacterial colony secreting the protein A of interest ( Figure 5).

Abstract

The invention relates to a method for the rapid determination of cell activities or states such as the synthesis of biomolecules, viability and cell growth on a microscopic level. The invention therefore relates to a specific methodology for detecting and measuring cells which are contained in hydrogel microspheres subjected to the experimental conditions of interest and are analysed using an image processor coupled to a microscope. The invention also relates to a kit comprising a microencapsulator producing monodisperse microspheres, an optical or fluorescence microscope, and an image analyser which allows the identification of the microspheres containing the cells as well as identifying the characteristics of interest thereof.

Description

METHOD FOR A RAPID ANALYSIS OF THE CELLULAR ACTIVITY  METHOD FOR A RAPID ANALYSIS OF THE CELLULAR ACTIVITY
SECTOR DE LA TÉCNICA SECTOR OF THE TECHNIQUE
El sector de la técnica al que puede aplicarse esta invención comprende preferentemente el sector de la investigación y desarrollo en biomedicina y biotecnología, en la que es habitual el análisis de las características especificas de distintos tipos celulares. Su uso puede extenderse al sector del diagnóstico clínico, al sector de terapias innovadoras y en otro ámbito diferencial al sector medioambiental y de impacto ecológico. En general, esta invención puede aplicarse a procesos de análisis de multitud de variables celulares, ya sea viabilidad, expresión específica, producción de moléculas de interés o características descriptivas, ya sea con fines de investigación básica, avances biotecnológicos, aplicaciones clínicas en un amplio abanico o fines industriales. The sector of the technique to which this invention can be applied preferably comprises the research and development sector in biomedicine and biotechnology, in which the analysis of the specific characteristics of different cell types is common. Its use can be extended to the clinical diagnosis sector, the innovative therapies sector and in another field that is different from the environmental and ecological impact sector. In general, this invention can be applied to processes of analysis of a multitude of cellular variables, whether viability, specific expression, production of molecules of interest or descriptive characteristics, whether for basic research purposes, biotechnological advances, clinical applications in a wide range or industrial purposes.
ESTADO DEL ARTE STATE OF ART
El objeto de esta patente está basado en procesos de caracterización celular. La caracterización celular permite la descripción e identificación de tipos celulares distintos dentro de una población heterogénea o desviaciones en una población inicialmente homogénea, además de la identificación de mutantes, de clones altamente secretores o productores, capacidades hidrolíticas, importantes para los desarrollos biotecnológicos así como para la mejora de procesos industriales. The object of this patent is based on cellular characterization processes. The cellular characterization allows the description and identification of different cell types within a heterogeneous population or deviations in an initially homogeneous population, in addition to the identification of mutants, highly secretory or producing clones, hydrolytic capacities, important for biotechnological developments as well as for the improvement of industrial processes.
La realización de estos estudios a menudo se hace por un lado aislando clones creciendo en medios de cultivo semisólidos diluyendo para obtener clones aislados que crecen hasta llegar a un nivel visualizable macroscópicamente (colonias). Cuando ya se dispone de los clones aislados, se pueden incubar en medios líquidos hasta que la densidad celular permita realizar una prueba bioquímica o biológica que permite obtener los resultados que se buscan. La rapidez, el número de ensayos realizables y el coste de reactivos a menudo son factores importantes que aprecian los técnicos en la materia. Performing these studies is often done on the one hand by isolating clones growing in semi-solid culture media diluting to obtain isolated clones that grow up to a macroscopically visible level (colonies). When the isolated clones are already available, they can be incubated in liquid media until the cell density allows a biochemical or biological test to be obtained that allows the desired results to be obtained. The speed, the number of tests that can be performed and the cost of reagents are often important factors that are appreciated by those skilled in the art.
El principal problema asociado con la identificación de las características fenotípicas de los microorganismos o poblaciones celulares es el tiempo necesario para su determinación. En la mayoría de los casos, esta determinación está supeditada a un crecimiento específico de dichas células en distintas condiciones de ensayo. The main problem associated with the identification of the phenotypic characteristics of microorganisms or cell populations is the time required for their determination. In most cases, this determination is subject to a specific growth of said cells under different test conditions.
Un ejemplo de esta problemática es el de la identificación de mutantes en levaduras en el que, utilizando técnicas convencionales, tardamos unos 4 días en la identificación de clones portadores de la mutación. Este retraso es debido al tiempo que hay que dejar crecer las levaduras hasta la obtención de colonias visibles en placa (Ito K, et al. RNA. 1998;4(8):958-72).  An example of this problem is the identification of mutants in yeasts in which, using conventional techniques, it takes about 4 days to identify clones carrying the mutation. This delay is due to the time that yeasts should be allowed to grow until obtaining colonies visible on plaque (Ito K, et al. RNA. 1998; 4 (8): 958-72).
Otro ejemplo claro de este retraso en el análisis fenotípico de células es la identificación de células productoras, como es el caso de los hibridomas, células eucariotas productoras de anticuerpos monoclonales, en los que el tiempo estándar desde la fusión hasta la identificación de clones positivos es de entre 2 y 4 semanas, dependiendo de la velocidad de duplicación de las células (Milstein, C. Bioessays. 1999;21 :966-73). Another clear example of this delay in phenotypic cell analysis is the identification of producing cells, such as hybridomas, eukaryotic cells producing monoclonal antibodies, in which the standard time from fusion to the identification of positive clones is between 2 and 4 weeks, depending on the rate of duplication of the cells (Milstein, C. Bioessays. 1999; 21: 966-73).
Este mismo problema es el que obtenemos si queremos realizar estudios mutacionales en líneas celulares tumorales. Se necesitan entre 2 y 4 semanas para la obtención de clones con la mutación introducida, puesto que las colonias tienen que crecer desde una única célula hasta que se obtiene una masa crítica suficiente tanto para su detección como para su utilización en los análisis fenotípicos que normalmente implican la muerte de las células analizadas, por lo que es necesario esperar hasta la expansión de las colonias (Yasuda, T. et al. J Exp Clin Cáncer Res. 2009;25;28:26). This same problem is what we get if we want to carry out mutational studies in tumor cell lines. It takes between 2 and 4 weeks to obtain clones with the introduced mutation, since the colonies have to grow from a single cell until a critical mass is obtained both for its detection and for use in phenotypic analyzes that normally they involve the death of the analyzed cells, so it is necessary to wait until the colonies expand (Yasuda, T. et al. J Exp Clin Cancer Res. 2009; 25; 28: 26).
Para superar estos inconvenientes, se han utilizado diferentes metodologías, destacando entre ellas la encapsulación o microencapsulación celular. Dicha técnica y su aplicación en clínica está descrita en la bibliografía desde 1960s (Chang, T. M. Science. 1964; 146: 524-525; Chang, T. M. and S. Prakash. Methods Mol Biol. 1997; 63: 343-358; Chang, T. M. Blood Purif. 2000; 18: 91 - 96). To overcome these inconveniences, different methodologies have been used, including cell encapsulation or microencapsulation. Bliss technique and its clinical application has been described in the literature since 1960s (Chang, TM Science. 1964; 146: 524-525; Chang, TM and S. Prakash. Methods Mol Biol. 1997; 63: 343-358; Chang, TM Blood Purif. 2000; 18: 91-96).
Mediante la microencapsulación en hidrogeles de agarosa o de naturaleza polimérica de células dentro de microesferas, preferentemente de entre 30 a 1000 mieras se puede conseguir compartimentalizar células individualizadas y realizar estudios de crecimiento o de otras actividades celulares usando nutrientes o reactivos en baja cantidad. Para analizar un alto número de microesferas en cortos periodos de tiempo, se necesita un citómetro de flujo. Sin embargo, este instrumento suele ser costoso superando con mucho los 50.000 euros y necesitando un entrenamiento muy avanzado para su uso. Especialmente los citómetros que pueden usarse para el análisis de microesferas de 30 a 200 mieras, como el COPAS de Unión Biométrica, tienen un coste superior a los 200,000 euros. By microencapsulation in agarose or polymeric hydrogels of cells within microspheres, preferably between 30 and 1000 microns it is possible to compartmentalize individualized cells and perform growth studies or other cellular activities using nutrients or reagents in low quantity. To analyze a high number of microspheres in short periods of time, a flow cytometer is needed. However, this instrument is usually expensive, far exceeding 50,000 euros and needing very advanced training for its use. Especially the cytometers that can be used for the analysis of microspheres of 30 to 200 microns, such as the COPAS of Biometric Union, cost more than 200,000 euros.
El concepto más extendido de la técnica de encapsulación para el análisis individualizado de células es el de ensayo de crecimiento por microgotas en gel o GMD (gel microdrop) (EP041 1038A1 ), que se caracteriza por el encapsulamiento de las células en gotas de agarosa y se analiza el crecimiento de las mismas dentro de las microesferas en determinados condiciones (Akselband, Y., et al. J Microbiol Methods; 2005, 62(2): 181 -197).  The most widespread concept of the encapsulation technique for the individualized analysis of cells is that of growth test by microdroplets in gel or GMD (EP041 1038A1), which is characterized by the encapsulation of cells in drops of agarose and their growth within microspheres is analyzed under certain conditions (Akselband, Y., et al. J Microbiol Methods; 2005, 62 (2): 181-197).
Esta tecnología presenta la ventaja de analizar individualmente el crecimiento celular, reduciendo el número de divisiones necesarias para hacer visibles diferencias fenotípicas entre una célula y otra. Aunque también es cierto que presenta bastantes desventajas. En primer lugar, las encapsulaciones se realizan con agarosa, la cual necesita una temperatura elevada para poder ser utilizada, sometiendo a las células a temperaturas superiores a los 40°C. Además, el procedimiento para la síntesis de las microesferas es por emulsión con un aceite, lo que puede hacer necesarios distintos pasos posteriores para la eliminación del aceite con el consiguiente sufrimiento celular y la imposibilidad de uso del sistema para células más sensibles a la temperatura o al estrés. Un problema añadido al sistema es la variabilidad en el tamaño de las cápsulas producidas, ya que mediante las emulsiones es muy difícil controlar el tamaño de la cápsula y, por tanto, la cantidad de células que pueden alojar en la misma. La obtención de resultados se realiza a través de citometría de flujo, una técnica que, aunque es muy precisa y consistente, tiene el problema del tamaño máximo que puede analizar. Teniendo en cuenta lo mencionado anteriormente sobre el poco control que hay sobre el tamaño de cápsulas cuando se producen por emulsión, se requiere un paso previo al análisis de filtrado, lo que puede inducir un error en el análisis al descartar una población de cápsulas por su tamaño. La citometría de flujo, es además, una técnica compleja que requiere de una alta inversión y de una capacitación específica de los operarios del laboratorio. This technology has the advantage of individually analyzing cell growth, reducing the number of divisions necessary to make visible phenotypic differences between one cell and another. Although it is also true that it has many disadvantages. First, encapsulations are performed with agarose, which needs a high temperature in order to be used, subjecting the cells to temperatures above 40 ° C. In addition, the procedure for the synthesis of the microspheres is by emulsion with an oil, which may necessitate different subsequent steps for the removal of the oil with the consequent cellular suffering and Inability to use the system for cells more sensitive to temperature or stress. A problem added to the system is the variability in the size of the capsules produced, since using the emulsions it is very difficult to control the size of the capsule and, therefore, the amount of cells that can accommodate it. The results are obtained through flow cytometry, a technique that, although very precise and consistent, has the problem of the maximum size that can be analyzed. Taking into account the aforementioned about the little control over capsule size when produced by emulsion, a previous step is required to the filtering analysis, which can lead to an error in the analysis by discarding a population of capsules by their size. Flow cytometry is also a complex technique that requires high investment and specific training for laboratory operators.
La generación de microesferas monodispersas puede hacerse con distintas tecnologías. Por ejemplo con toberas con ultrasonidos, o en un caso preferente, con tecnología de enfocamiento de fluidos (Flow Focusing). Esta última es una tecnología de manipulación de microfluidos para la generación de esferas o gotas monodispersas, basada en la producción de microchorros capilares que son "enfocados" hacia un orificio (US6,464,886). Esta tecnología permite diseñar y producir micropartículas con tamaño, estructura y composición seleccionabas. Esta tecnología ha desarrollado su propio instrumento (Cellena ®) que permite la encapsulación mediante FlowFocusing de células manteniendo su viabilidad mediante la utilización de un polímero de gelificación iónica como el alginato, ampliamente reportado como biocompatible en otros campos de investigación y desarrollo como la terapia celular (US4352883). Esta técnica de encapsulación proporciona un control muy elevado del tamaño de partículas a producir, se lleva a cabo a temperatura ambiente, en solución acuosa sin aceites y además sin someter a las células a fuerzas vibracionales o electroestáticas para su producción. La aplicación de esta tecnología al estudio de microorganismos ha sido documentada para la detección de mutantes en levadura (Gomez-Herreros, F., et al. Nucleic Acids Res; 2012, 40(14): 6508-6519), acoplada al análisis del crecimiento dentro de las microesferas a un citómetro de flujo específico para partículas grandes. Sin embargo, como hemos mencionado antes, esta instrumentación es costosa y compleja de manejar por técnicos de laboratorio de los sistemas de salud, lo que dificulta su implementación para el análisis rutinario de este y cualquiera de los otros análisis mencionados. The generation of monodisperse microspheres can be done with different technologies. For example with ultrasonic nozzles, or in a preferred case, with fluid focusing technology (Flow Focusing). The latter is a microfluidic manipulation technology for the generation of spheres or monodisperse drops, based on the production of capillary microbeads that are "focused" towards a hole (US6,464,886). This technology allows to design and produce microparticles with selected size, structure and composition. This technology has developed its own instrument (Cellena ®) that allows encapsulation by FlowFocusing of cells maintaining its viability through the use of an ionic gel polymer such as alginate, widely reported as biocompatible in other fields of research and development such as cell therapy. (US4352883). This encapsulation technique provides very high control of the size of particles to be produced, is carried out at room temperature, in an aqueous solution without oils and also without subjecting the cells to vibrational or electrostatic forces for their production. The application of this technology to the study of microorganisms has been documented for the detection of mutants in yeast (Gomez-Herreros, F., et al. Nucleic Acids Res; 2012, 40 (14): 6508-6519), coupled with the analysis of growth within the microspheres to a specific flow cytometer for large particles. However, as we have mentioned before, this instrumentation is expensive and complex to handle by laboratory technicians of health systems, which makes it difficult to implement it for the routine analysis of this and any of the other analyzes mentioned.
Para superar los problemas descritos en el estado de la técnica para la caracterización celular, la presente invención describe un método de caracterización celular rápido mediante la microencapsulación de células caracterizado porque la determinación de las poblaciones celulares, así como los diferentes productos secretados o sintetizados por dichas poblaciones son detectados e identificados en las propias cápsulas o esferas mediante sistemas de detección microscópicos, que no necesitan de una capacitación adicional del personal para su manejo y además requieren menos tiempo de análisis, que las técnicas citométricas. Por lo tanto, una ventaja de los métodos descritos en esta invención es la reducción del tiempo total necesario para una determinación celular, ya sea determinación de la capacidad proliferativa, secretora o catalítica, entre otras, de las células objetos del análisis, sin recurrir a instrumentación de alto coste económico, como un citómetro de flujo, ni a personal con una formación específica para ello. Otras ventajas adicionales del uso de microscopía para la caracterización de poblaciones celulares o de los productos secretados por dichas poblaciones y que se secretan al interior de las microesferas respecto al uso de la citometría de flujo, además de las mencionadas previamente, es que las muestras que se analizan mediante citometría son tratadas con diferentes compuestos necesarios para la detección del producto o célula en el citómetro, por lo que una vez pasada la muestra por el citómetro, ésta se tiene que desechar, mientras que mediante las técnicas microscópicas, las muestras se pueden volver a cultivar y reutilizar, con el único requisito de tener dichos productos en placas de cultivos estériles y cerradas al exterior. Otra de las ventajas es que mediante la detección microscópica se pueden encapsular más de una célula por cápsula, puesto que el propio técnico encargado de la detección identifica individualmente cada una de las células, mientras que mediante citometría se tiene que encapsular una única célula o microorganismo por cápsula ya que dicho aparato no es capaz de diferenciar entre una colonia grande o dos o tres colonias pequeñas, identificando exclusivamente cada evento como una única célula o un único microorganismo, aunque la cápsula contenga más de una. To overcome the problems described in the state of the art for cell characterization, the present invention describes a method of rapid cell characterization by microencapsulation of cells characterized in that the determination of cell populations, as well as the different products secreted or synthesized by said populations are detected and identified in the capsules themselves or spheres by means of microscopic detection systems, which do not need additional training of personnel for their management and also require less time for analysis, than cytometric techniques. Therefore, an advantage of the methods described in this invention is the reduction of the total time necessary for a cellular determination, whether it is the determination of the proliferative, secretory or catalytic capacity, among others, of the cells object of the analysis, without resorting to Instrumentation of high economic cost, such as a flow cytometer, or to personnel with specific training for it. Other additional advantages of the use of microscopy for the characterization of cell populations or of the products secreted by said populations and that are secreted within the microspheres with respect to the use of flow cytometry, in addition to those previously mentioned, is that the samples that are analyzed by cytometry are treated with different compounds necessary for the detection of the product or cell in the cytometer, so once the sample is passed through the cytometer, it must be discarded, while through microscopic techniques, the samples can be recultivate and reuse, with the sole requirement of having such products in sterile culture plates and closed to the outside. Another advantage is that microscopic detection can encapsulate more than one cell per capsule, since the detection technician himself identifies each cell individually, while cytometry has to encapsulate a single cell or microorganism per capsule since said apparatus is not able to differentiate between a large colony or two or three small colonies, identifying each event exclusively as a single cell or a single microorganism, even if the capsule contains more than one.
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
La presente invención se refiere a un equipo y métodos para la realización de análisis celulares rápidos y en escala microscópica generando microesferas de hidrogel que contienen las células y que son posteriormente examinadas mediante microscopía y análisis de imagen. Estos análisis son realizados como alternativa a aplicaciones habitualmente realizadas en cultivos líquidos o en medios sólidos que necesitan una masa crítica de células mucho mayor para estudiarse a nivel macroscópico, con el considerable ahorro de tiempo y de reactivos. The present invention relates to equipment and methods for performing rapid and microscopic scale cell analysis generating hydrogel microspheres containing the cells and which are subsequently examined by microscopy and image analysis. These analyzes are carried out as an alternative to applications usually performed in liquid cultures or in solid media that need a much larger critical mass of cells to be studied at a macroscopic level, with considerable time and reagent savings.
Preferentemente, el método trata de determinar ciertas características celulares como la capacidad para crecer en determinadas condiciones o para producción de metabolitos específicos como enzimas, proteínas marcadoras, exopolisacáridos, bioplásticos, aminoácidos, anticuerpos, etc. En una realización específica de esta invención, la característica a estudiar corresponderá con la capacidad proliferativa de las células en determinadas condiciones. En otra realización preferente de la presente invención, se refiere a la determinación de la capacidad para secretar proteínas específicas como fragmentos de anticuerpos, enzimas, etc. En otra realización de la presente invención, el método descrito se refiere a la determinación de la capacidad catalítica intracelular de células. Existen otras muchas aplicaciones de la presente invención como identificación de consorcios celulares que permitan realizar una función determinada que dé como consecuencia una actividad celular detectable. Preferably, the method tries to determine certain cellular characteristics such as the ability to grow under certain conditions or for the production of specific metabolites such as enzymes, marker proteins, exopolysaccharides, bioplastics, amino acids, antibodies, etc. In a specific embodiment of this invention, the characteristic to be studied will correspond to the proliferative capacity of the cells under certain conditions. In another preferred embodiment of the present invention, it refers to the determination of the ability to secrete specific proteins such as antibody fragments, enzymes, etc. In another embodiment of the present invention, the described method refers to the determination of the intracellular catalytic capacity of cells. There are many other applications of the present invention as identification of cellular consortia that allow perform a specific function that results in a detectable cellular activity.
La invención comprende por lo tanto, un método para la caracterización celular mediante un sistema de microencapsulación de células con un hidrogel, un proceso de tratamiento de las microesferas para incubarlas una vez alicuotadas con distintas sustancias nutritivas y/o reactivas, y un procedimiento de análisis programado a través de un analizador de imágenes tomadas desde un microscopio, óptico y/o fluorescente. The invention therefore comprises a method for cellular characterization by means of a microencapsulation system of cells with a hydrogel, a process of treating the microspheres to incubate them once aliquoted with different nutritive and / or reactive substances, and an analysis procedure. programmed through an image analyzer taken from a microscope, optical and / or fluorescent.
En el contexto de esta invención el procedimiento o etapa de microencapsulación consiste en la generación de microesferas a partir de una suspensión celular a la que se le adiciona un compuesto que acaba gelificando formando un polímero biocompatible cuando las microesferas alcanzan un cambio de las condiciones del medio. Esta gelificación de la esfera produce el atrapamiento de células en esferas de un tamaño micrométrico con las células o microorganismos, embebidas en su interior. El procedimiento por el cual se lleva a cabo esta encapsulación puede ser por gelificación iónica, emulsión o cualquier otro procedimiento compatible con la vida celular. El polímero utilizado ha de ser también biocompatible y con la difusión de biomoléculas o metabolitos (ácidos nucleicos, nucleótidos, oligonucleótidos, proteínas, aminoácidos, péptidos, glúcidos, antibióticos, péptidos, ácidos grasos, metabolitos secundarios) hacia fuera y dentro de la microesfera. El polímero preferido para esta invención es el alginato pero se puede modificar su composición para adaptarlo a las condiciones específicas requeridas por las distintas células a encapsular, ya sea mediante la utilización de una combinación de polímeros o mediante la adición de nutrientes o factores de crecimiento a la matriz. Este polímero se mezcla con las células objetos del estudio. En una realización específica de la presente invención, el procedimiento de generación de gotas a partir de la suspensión con las células previa a la gelificación se realiza aplicando la tecnología de enfocado de chorro o Flow Focusing®. El siguiente paso tras la microencapsulación es un periodo de incubación, en el que se permite a las células estabilizarse y activarse bioquímicamente lo suficiente como para realizar la función a estudiar. En una realización preferente de la invención se estudiaría la capacidad para formar microcolonias en el interior de las microesferas como prueba para determinar crecimiento celular. Dependiendo de la característica a determinar, se podrá añadir antes de la incubación determinados compuestos que afectasen al crecimiento celular y/o la síntesis de determinados productos celulares, tales como péptidos, enzimas, anticuerpos, etc, etc. In the context of this invention, the microencapsulation process or step consists in the generation of microspheres from a cell suspension to which a compound that gels into a biocompatible polymer is added when the microspheres reach a change in the conditions of the medium. . This gelation of the sphere produces the entrapment of cells in spheres of a micrometric size with the cells or microorganisms, embedded inside. The procedure by which this encapsulation is carried out can be by ionic gelation, emulsion or any other procedure compatible with cell life. The polymer used must also be biocompatible and with the diffusion of biomolecules or metabolites (nucleic acids, nucleotides, oligonucleotides, proteins, amino acids, peptides, carbohydrates, antibiotics, peptides, fatty acids, secondary metabolites) out and into the microsphere. The preferred polymer for this invention is alginate but its composition can be modified to adapt it to the specific conditions required by the different cells to be encapsulated, either by using a combination of polymers or by adding nutrients or growth factors to matrix. This polymer is mixed with the cells under study. In a specific embodiment of the present invention, the method of generating droplets from the suspension with the cells prior to gelation is performed by applying the jet focusing technology or Flow Focusing®. The next step after microencapsulation is an incubation period, in which the cells are allowed to stabilize and activate biochemically enough to perform the function to be studied. In a preferred embodiment of the invention, the ability to form microcolonies inside the microspheres would be studied as a test to determine cell growth. Depending on the characteristic to be determined, certain compounds that affect cell growth and / or the synthesis of certain cellular products, such as peptides, enzymes, antibodies, etc., etc. may be added before incubation.
El siguiente paso de esta invención corresponde con el análisis de las microesferas y de las microcolonias mediante un analizador de imágenes tomadas desde un microscopio. Este análisis se hace de forma específica mediante la obtención de fotos a través de una cámara asociada a un microscopio convencional. Estas imágenes serán analizadas por un instrumento específico que realizará el análisis de las microesferas, de las células o de las microcolonias presentes en la muestra mediante la determinación del número, color, florescencia o diámetro de las células o microcolonias. The next step of this invention corresponds to the analysis of the microspheres and the microcolonies by means of an image analyzer taken from a microscope. This analysis is done specifically by obtaining photos through a camera associated with a conventional microscope. These images will be analyzed by a specific instrument that will perform the analysis of the microspheres, cells or microcolonies present in the sample by determining the number, color, fluorescence or diameter of the cells or microcolonies.
En un aspecto específico de esta invención las células a encapsular serían microorganismos con el objeto de identificar microorganismos que tengan un determinado fenotipo. Estas microesferas se incubarían en una batería de condiciones diferentes para determinar las características del microorganismo objeto del estudio. Una vez concluido el periodo de incubación, las microesferas se analizarían mediante la captura de una serie de imágenes a través del microscopio para la determinación del tamaño de las microcolonias. La diferencia en el diámetro de la microcolonia formada dentro de la microesfera nos da una ¡dea del efecto que en el crecimiento tienen las diferentes condiciones testadas en el microorganismo microencapsulado. En un aspecto preferencial de esta invención, el análisis del tamaño y número de microcolonias en cada condición del barrido se haría de forma automática, mediante el analizador de imágenes automático. In a specific aspect of this invention the cells to be encapsulated would be microorganisms in order to identify microorganisms that have a certain phenotype. These microspheres would be incubated in a battery of different conditions to determine the characteristics of the microorganism under study. Once the incubation period was over, the microspheres would be analyzed by capturing a series of images through the microscope to determine the size of the microcolonies. The difference in the diameter of the microcolony formed within the microsphere gives us an idea of the effect that the different conditions tested on the microencapsulated microorganism have on growth. In a preferred aspect of this invention, the analysis of the size and number of Microcolonies in each scanning condition would be done automatically, using the automatic image analyzer.
Mediante la aplicación de esta secuencia de procedimientos, el tiempo necesario para obtener resultados se ve reducido en una bacteria de crecimiento rápido como E. coli, de 24 a 8h aproximadamente. Es un sistema abierto que permite la adaptación total del sistema a los estudios que se estén realizando, variando tanto los microorganismos encapsulados como las condiciones a las que se someten, ya sean estas, medios de cultivos diferenciados, distintas condiciones de pH, temperatura, aireación o presencia de nutrientes esenciales y/o cualquier otra condición. By applying this sequence of procedures, the time required to obtain results is reduced in a fast-growing bacterium such as E. coli, from approximately 24 to 8 hours. It is an open system that allows the total adaptation of the system to the studies that are being carried out, varying both the encapsulated microorganisms and the conditions to which they are subjected, whether these are, differentiated culture media, different conditions of pH, temperature, aeration or presence of essential nutrients and / or any other condition.
Otra aplicación más de la invención es el estudio de microorganismos no cultivables. Los microorganismos que crecen más rápidos suelen dominar las placas de cultivo con medios ricos cuando se aislan del medioambiente, no dejando crecer a los de lento crecimiento. Mediante la microencapsulación celular en microesferas se pueden lavar los microrganismos de crecimiento rápido que superen los límites de la esfera, y dejar el más tiempo para que se siga creciendo el microorganismo de crecimiento lento. En determinados casos hay microorganismos que necesitan además de unos requerimientos específicos para su crecimiento. En estos casos, se puede añadir a la microesfera compuestos típicos de su ambiente habitual o la creación de un entorno 3D que les proporcione los requisitos específicos mediante modificación de la composición del polímero entrecruzable y el análisis mediante microscopía de las microcolonias resultantes permite el estudio de dichos microorganismos. También mediante la modificación controlada del entorno de encapsulación, como es la temperatura, extractos del hábitat normal, se puede determinar cuáles son los requisitos específicos sin los cuales no se puede llevar a cabo el crecimiento microbiano. Another application of the invention is the study of non-cultivable microorganisms. The fastest growing microorganisms usually dominate the culture plates with rich media when they are isolated from the environment, not letting the slow-growing ones grow. By means of the microencapsulation cell in microspheres the fast-growing microorganisms that exceed the limits of the sphere can be washed, and leave the longest time for the slow-growing microorganism to continue growing. In certain cases there are microorganisms that need in addition to specific requirements for their growth. In these cases, compounds typical of their usual environment or the creation of a 3D environment that provides them with specific requirements can be added to the microsphere by modifying the crosslinkable polymer composition and microscopic analysis of the resulting microcolonies allows the study of said microorganisms. Also by controlled modification of the encapsulation environment, such as temperature, extracts from normal habitat, it is possible to determine the specific requirements without which microbial growth cannot be carried out.
En otro aspecto más de la invención, se lleva a cabo la identificación de actividades microbianas, una de estas actividades específica, pero no excluyente, es la identificación de actividad enzimática como la actividad hidrolítica. Mediante la adición del sustrato objeto de la actividad hidrolítica y la utilización de mareaje específico fluorescente, se pueden identificar clones con dicha actividad e incluso se puede diferenciar la capacidad hidrolítica entre los distintos clones, permitiendo seleccionar aquel con características óptimas. In yet another aspect of the invention, the identification of microbial activities is carried out, one of these specific activities, but not exclusive, is the identification of enzymatic activity as the activity hydrolytic By adding the substrate subject to the hydrolytic activity and the use of specific fluorescent marking, clones with said activity can be identified and even the hydrolytic capacity can be differentiated between the different clones, allowing to select the one with optimal characteristics.
En otro aspecto diferencial de la invención, se pueden realizar estudios sobre consorcios celulares viables sin cuyos componentes no se produce crecimiento. Esto puede aplicarse tanto a microorganismos no cultivables por métodos clásicos como a células eucariotas tumorales que necesitan de células accesorias para su crecimiento. En ambos casos, la encapsulación combinatoria y controlada de distintos tipos celulares permite analizar las condiciones en las que se dan crecimiento y quiénes son los participantes obligatorios del consorcio para que se produzca la proliferación. La facilidad del análisis mediante la identificación de microcolonias a través de imágenes procedentes de microscopía facilita la consecución de resultados en un corto periodo de tiempo. También puede formar parte de la invención el uso del procedimiento para detectar señalización o intercambios genéticos entre células de distinto origen, que den lugar a una actividad detectable por medio de señales fluorescentes o colorimétricas. In another differential aspect of the invention, studies can be carried out on viable cell consortia without whose components no growth occurs. This can be applied to non-cultivable microorganisms by classical methods as well as to eukaryotic tumor cells that need accessory cells for growth. In both cases, combinatorial and controlled encapsulation of different cell types allows analyzing the conditions in which growth occurs and who are the mandatory participants of the consortium for proliferation to occur. The ease of analysis by identifying microcolonies through images from microscopy facilitates the achievement of results in a short period of time. The use of the method to detect genetic signaling or exchanges between cells of different origin, which give rise to an activity detectable by means of fluorescent or colorimetric signals, can also be part of the invention.
En otro aspecto específico de la invención se realiza la identificación de células secretoras. In another specific aspect of the invention the identification of secretory cells is performed.
En un aspecto más específico las células son hibridomas productores de anticuerpos, y la selección de las mismas se realiza mediante la modificación de la matriz de encapsulación para que sea capaz de retener de forma específica los anticuerpos monoclonales objeto del estudio. La identificación de los clones positivos se realizará previo mareaje de las microesferas con un marcador de anticuerpos, este marcador puedes ser un anticuerpo secundario conjugado con un fluoróforo, o cualquier otro marcador equivalente. Tras la incubación con este marcador fluorescente, solo las microesferas que contengan hibridomas productores de anticuerpos específicos para el antígeno fijado en la matriz de la microcápsula retendrá anticuerpos en su matriz y será marcada de forma específica por el marcador fluorescente utilizado para la tinción. Estas microesferas positivas serán fácilmente identificables por microscopía de fluorescencia y los clones seleccionados serán aislados de forma sencilla mediante una aguja de microinyección. In a more specific aspect the cells are hybridoma producing antibodies, and the selection thereof is made by modifying the encapsulation matrix so that it is able to specifically retain the monoclonal antibodies under study. The identification of the positive clones will be done after the microspheres have been labeled with an antibody marker, this marker can be a secondary antibody conjugated with a fluorophore, or any other equivalent marker. After incubation with this fluorescent marker, only microspheres containing hybridomas producing antigen-specific antibodies fixed on the microcapsule matrix will retain antibodies in its matrix and will be specifically labeled by the fluorescent marker used for staining. These positive microspheres will be easily identifiable by fluorescence microscopy and the selected clones will be easily isolated by means of a microinjection needle.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
Definiciones Definitions
El término "célula" en la presente invención hace referencia a la unidad estructural más pequeña de un organismo que es capaz de funcionar independientemente o a un organismo unicelular, que está compuesta de uno o más núcleos, citoplasma y varios orgánulos, rodeada por una membrana celular semipermeable o una pared celular. La célula puede ser eucariota, procariota, animal, planta o archeobacteria. Las células pueden ser primarias o procedentes de líneas celulares.  The term "cell" in the present invention refers to the smallest structural unit of an organism that is capable of functioning independently or to a single-celled organism, which is composed of one or more nuclei, cytoplasm and various organelles, surrounded by a cell membrane. semipermeable or a cell wall. The cell can be eukaryotic, prokaryotic, animal, plant or archeobacteria. The cells can be primary or from cell lines.
El término "microencapsulación" es el proceso de recubrimiento de moléculas, partículas sólidas, o glóbulos líquidos con materiales de distinta naturaleza para dar lugar a partículas de tamaño micrométrico, es decir entre una y mil mieras. En el contexto de esta invención, el término "microencapsulación" hace referencia al proceso de recubrimiento de células para la formación de microesferas. The term "microencapsulation" is the process of coating molecules, solid particles, or liquid globules with materials of different nature to give rise to particles of micrometer size, that is between one and a thousand microns. In the context of this invention, the term "microencapsulation" refers to the process of coating cells for microsphere formation.
El término "enfocado de chorro o Flow Focusing", a partir de ahora referida en el documento como FF, es la tecnología de encapsulación seleccionada para la microencapsulación en el contexto de esta invención. La preferencia por esta tecnología se basa fundamentalmente en que consiguen partículas por debajo de 200 mieras y hasta un máximo de 1000 mieras, siendo una técnica suave y con menos efectos conocidos sobre la viabilidad celular, ejerciendo menos influencia sobre las condiciones vitales de la célula encapsulada y aportando objetividad a la encapsulación. El término "microesferas" en la presente invención hace referencia a partículas esferoides de tamaño homogéneo y semipermeable que contienen en su interior una o más de una célula. The term "jet focused or Flow Focusing", hereafter referred to in the document as FF, is the encapsulation technology selected for microencapsulation in the context of this invention. The preference for this technology is fundamentally based on the fact that they achieve particles below 200 microns and up to a maximum of 1000 microns, being a gentle technique and with less known effects on cell viability, exerting less influence on the vital conditions of the encapsulated cell and providing objectivity to encapsulation. The term "microspheres" in the present invention refers to spherical particles of homogeneous and semipermeable size that contain within one or more of a cell.
El término "microcolonia" en el contexto de esta invención hace referencia al resultado de la proliferación de una célula en el interior de una microesfera, manteniendo por tanto un tamaño inferior a 200 mieras y siendo por tanto invisible al ojo humano desnudo. Generalmente adopta una conformación esférica y opaca en el contexto translúcido de la microesfera, lo que la hace fácilmente distinguible usando un microscopio con contraste de fase.  The term "microcolony" in the context of this invention refers to the result of the proliferation of a cell inside a microsphere, thus maintaining a size smaller than 200 microns and therefore being invisible to the naked human eye. It generally adopts a spherical and opaque conformation in the translucent context of the microsphere, which makes it easily distinguishable using a microscope with phase contrast.
El término "compuesto" tal y como se emplea en la presente invención, se refiere a aquella sustancia que se va a analizar para determinar su efecto sobre la célula microencapsulada. Fundamentalmente se va a analizar su efecto en la proliferación de la célula microencapsulada, aunque también se puede analizar su efecto sobre la secreción o actividad enzimática de la misma. The term "compound" as used in the present invention refers to that substance to be analyzed to determine its effect on the microencapsulated cell. Fundamentally, its effect on the proliferation of the microencapsulated cell will be analyzed, although its effect on its secretion or enzymatic activity can also be analyzed.
Microencapsulación Microencapsulation
El procedimiento de microencapsulación puede ser por ultrasonido, por goteo, por emulsiones, o por enfocamiento de chorros. El método preferido para la microencapsulación de células en el contexto de esta invención es la tecnología de enfocado de chorro o Flow Focusing (FF, US 6,464,886). El material preferido para este procedimiento de encapsulación son los polímeros iónicamente entrecruzables. The microencapsulation procedure can be by ultrasound, drip, emulsions, or jet focusing. The preferred method for cell microencapsulation in the context of this invention is jet focusing technology or Flow Focusing (FF, US 6,464,886). The preferred material for this encapsulation process is ionically crosslinkable polymers.
Entre los materiales utilizados para esta invención se incluyen, pero no están limitados a, alginato y polisacáridos naturales tales como quitopectina, goma gelan, goma de xantano, ácido hialurónico, heparina, pectina y carragenano. Entre los ejemplos de polianiones iónicamente entrecruzables para su uso en la práctica de la presente invención se incluyen pero no están limitados a, ácido poliacrílico y ácido polimetacrílico. Los policationes iónicamente entrecruzables tales como la polietilenimina y polilisina también son adecuados para la presente invención. Materials used for this invention include, but are not limited to, natural alginate and polysaccharides such as chitopectin, gellan gum, xanthan gum, hyaluronic acid, heparin, pectin and carrageenan. Examples of ionically crosslinkable polyanions for use in the practice of the present invention include but are not limited to, polyacrylic acid and polymethacrylic acid. The ionically crosslinkable polycations such as polyethyleneimine and polylysine are also suitable for the present invention.
En una realización preferida de la presente invención se utilizará alginato (el alginato referido aquí corresponde a sales de ácido algínico) como polímero iónicamente entrecruzable, a un intervalo de concentración entre el 0,5% y 5% p/v. Preferiblemente el alginato se proporciona en un intervalo de concentración entre el 1 ,5% y 2% p/v. In a preferred embodiment of the present invention, alginate (the alginate referred to here corresponds to alginic acid salts) will be used as an ionically crosslinkable polymer, at a concentration range between 0.5% and 5% w / v. Preferably the alginate is provided in a concentration range between 1.5% and 2% w / v.
El procedimiento de entrecruzamiento del polímero iónicamente entrecruzable se lleva a cabo mediante la adición de la mezcla de encapsulacion de cationes multivalentes, tales como calcio, cinc, bario, estroncio, aluminio, hierro, manganeso, níquel, cobalto, cobre, cadmio, plomo, o mezclas de 2 o más cualesquiera de los mismos. En una realización preferida de la presente invención se utiliza calcio como entrecruzador del polímero entrecruzable iónicamente de la mezcla de encapsulacion. The ionically crosslinkable polymer crosslinking process is carried out by adding the encapsulation mixture of multivalent cations, such as calcium, zinc, barium, strontium, aluminum, iron, manganese, nickel, cobalt, copper, cadmium, lead, or mixtures of any 2 or more thereof. In a preferred embodiment of the present invention calcium is used as a crosslinker of the ionically crosslinkable polymer of the encapsulation mixture.
Para la presente invención, este alginato se puede preparar en agua, o en medio específico para el crecimiento de las células que se van a encapsular. Igualmente, el medio de encapsulacion se puede derivatizar con cualquier complemento que sea necesario para la supervivencia de un determinado tipo celular. En otro aspecto de la invención, el alginato puede ser derivatizado para contener sustratos o compuestos que reaccionen de forma específica con moléculas o enzimas procedentes de la célula encapsulada. For the present invention, this alginate can be prepared in water, or in a specific medium for the growth of the cells to be encapsulated. Likewise, the encapsulation medium can be derivatized with any complement that is necessary for the survival of a certain cell type. In another aspect of the invention, the alginate can be derivatized to contain substrates or compounds that react specifically with molecules or enzymes from the encapsulated cell.
Para la producción de cápsulas mediante la tecnología FF es necesario la preparación de la mezcla de encapsulacion, tal y como hemos descrito anteriormente en la presente invención. La mezcla de encapsulacion consta de un polímero entrecruzable iónicamente (siendo el preferido para está invención el alginato) y de las células específicas que queremos encapsular. La proporción de células utilizadas para la mezcla de encapsulación determinará la cantidad de células presentes en una microcápsula. En un aspecto de la presente invención, las diluciones de las células con el alginato se harán con el objetivo de encontrar 1 célula por microcápsula; en otro aspecto de la presente invención, el objetivo será tener entre 2 y 3 células por cápsula y en otro aspecto distinto de la presente invención el objetivo será encapsular el máximo número de células por microcápsula. For the production of capsules by means of FF technology it is necessary to prepare the encapsulation mixture, as we have described previously in the present invention. The encapsulation mixture consists of an ionically crosslinkable polymer (alginate being preferred for this invention) and the specific cells we want to encapsulate. The proportion of cells used for the encapsulation mixture will determine the amount of cells present in a microcapsule. In one aspect of the present invention, dilutions of the cells with alginate will be made with the aim of finding 1 cell per microcapsule; In another aspect of the present invention, the objective will be to have between 2 and 3 cells per capsule and in another aspect other than the present invention the objective will be to encapsulate the maximum number of cells per microcapsule.
En el contexto de la presente invención, una vez concluida la encapsulación, las microesferas se pueden recoger mediante diversas metodologías. Las microesferas pueden ser centrifugadas y lavadas abundantemente con agua antes de transferirlas al medio de cultivo específico para el tipo celular encapsulado o en un segundo aspecto de esta invención, las células pueden ser filtradas mediante un filtro de 70um. La realización preferida de esta invención es el filtrado de las microesferas, puesto que además mediante este filtrado se elimina cualquier satélite o irregularidad que haya podido suceder durante el procedimiento de encapsulación. In the context of the present invention, once the encapsulation is completed, the microspheres can be collected by various methodologies. The microspheres can be centrifuged and washed thoroughly with water before transferring them to the specific culture medium for the encapsulated cell type or in a second aspect of this invention, the cells can be filtered through a 70um filter. The preferred embodiment of this invention is the filtering of the microspheres, since in addition, by means of this filtering, any satellite or irregularity that may have occurred during the encapsulation process is eliminated.
Incubaciones Incubations
En un primer método específico de la presente invención, el objetivo fundamental, una vez concluido el procedimiento de encapsulación, es la incubación de las microesferas en un medio específico para asegurar la funcionalidad de las células microencapsuladas a estudiar. En una realización preferida de la presente invención este medio puede contener un compuesto determinado objeto de estudio, este compuesto es un mutágeno como la hidroxilamina o la naranja de acridina, o un inhibidor de la proliferación celular como antibióticos, anticanceroso, o un activador como un sustrato de una actividad, un factor de crecimiento, una hormona o un marcador específico entre otros. Las distintas condiciones de incubación se realizarán con microesferas procedentes de una única encapsulación. El cálculo del número de microesferas requeridas para las distintas condiciones necesarias para la realización de un análisis completo es fundamental para un desarrollo óptimo de la presente invención. Este cálculo se realiza de forma estadística pero puede ser optimizada por los resultados empíricos dependiendo de la composición de la matriz de encapsulación y del tamaño de las células a encapsular, así como de la concentración necesaria de las mismas. In a first specific method of the present invention, the fundamental objective, once the encapsulation procedure is concluded, is the incubation of the microspheres in a specific medium to ensure the functionality of the microencapsulated cells to be studied. In a preferred embodiment of the present invention this medium may contain a certain compound under study, this compound is a mutagen such as hydroxylamine or acridine orange, or an inhibitor of cell proliferation such as antibiotics, anticancer, or an activator such as substrate of an activity, a growth factor, a hormone or a specific marker among others. The different incubation conditions will be performed with microspheres from a single encapsulation. The calculation of the number of microspheres required for the different conditions necessary for performing a complete analysis is essential for an optimal development of the present invention. This calculation is performed statistically but can be optimized by empirical results depending on the composition of the encapsulation matrix and the size of the cells to be encapsulated, as well as the necessary concentration thereof.
En una realización preferida de esta invención, pero no excluyente de cualquier otro modo de dispensación e incubación, el medio se repartirá en tubos cónicos con una capacidad 10 veces mayor que el volumen de medio que se le va a añadir (tubos de 50 ml_ para 5 ml_ de cultivo). Las microesferas se repartirán de forma homogénea entre todas las condiciones. En una realización preferida de esta invención, las microesferas se resuspenderán en un volumen determinado de medio de cultivo específico para el tipo celular a estudiar. Se repartirán volúmenes ¡guales de cápsulas en cada condición. In a preferred embodiment of this invention, but not excluding in any other way of dispensing and incubation, the medium will be distributed in conical tubes with a capacity 10 times greater than the volume of medium to be added (50 ml tubes for 5 ml_ of culture). The microspheres will be distributed homogeneously among all conditions. In a preferred embodiment of this invention, the microspheres will be resuspended in a given volume of culture medium specific for the cell type to be studied. Equal volumes of capsules will be distributed in each condition.
El tiempo de incubación se determinará empíricamente para cada tipo de celular. El tiempo mínimo de incubación será aquel necesano para identificar microcolonias de aproximadamente un tercio del volumen total de la microesfera en la condición control del análisis, en condiciones de crecimiento óptimas sin ningún condicionante en el medio. Este método supone una reducción considerable del tiempo de incubación, en el caso de cultivos microbiológicos pasarían de 16-24h para la observación de colonias en placas de Petri a 4-8h. En el caso de células eucariotas el tiempo pasaría de varias semanas a varios días. The incubation time will be determined empirically for each type of cell phone. The minimum incubation time will be that necessary to identify microcolonies of approximately one third of the total volume of the microsphere in the control condition of the analysis, under optimal growth conditions without any conditions in the environment. This method supposes a considerable reduction of the incubation time, in the case of microbiological cultures they would pass from 16-24h for the observation of colonies in Petri dishes at 4-8h. In the case of eukaryotic cells, time would pass from several weeks to several days.
En una aplicación novedosa de la invención, el objeto de estudio es la formación de consorcios viables que faciliten la proliferación de un tipo celular específico. Este tipo celular específico pueden ser microorganismos tradicionalmente no cultivables o células tumorales, existiendo en ambos casos ejemplos de células que no son capaces de crecer in vitro debido a la carencia de factores ambientales imprescindibles para su crecimiento, algún factor de crecimiento o ineficaz acoplamiento de la bioquímica celular a los nutrientes aportados en el medio. En este aspecto de la invención, las células se encapsulan en condiciones controladas en presencia de otras células que se encuentra en su ambiente original en las cuales si crecen, por ejemplo, en el caso de microorganismos del suelo, consorcios controlados de especies que normalmente cohabitan, perteneciendo alguna de ellas a la categoría de no cultivable. En otra realización de este aspecto de la invención, existen tumores en los que es muy difícil expandir in vitro las células para su posterior caracterización. La encapsulación de células adyacentes al tumor en la misma cápsula podría dar el medio ambiente necesario para imitar a pequeña escala el microambiente tumoral y permitir la expansión de la célula tumoral en estudio. In a novel application of the invention, the object of study is the formation of viable consortia that facilitate the proliferation of a specific cell type. This specific cell type can be traditionally noncultivable microorganisms or tumor cells, existing in both cases. Examples of cells that are not able to grow in vitro due to the lack of environmental factors essential for their growth, some growth factor or inefficient coupling of cell biochemistry to the nutrients provided in the environment. In this aspect of the invention, the cells are encapsulated under controlled conditions in the presence of other cells that are in their original environment in which if they grow, for example, in the case of soil microorganisms, controlled consortia of species that normally cohabit , some of them belonging to the category of non-cultivable. In another embodiment of this aspect of the invention, there are tumors in which it is very difficult to expand the cells in vitro for subsequent characterization. The encapsulation of cells adjacent to the tumor in the same capsule could give the environment necessary to mimic the tumor microenvironment on a small scale and allow the expansion of the tumor cell under study.
En un tercer método específico de la invención, el objetivo final puede ser la identificación de clones secretores dentro de una población celular heterogénea; en ese caso específico, la matriz de encapsulación se realizará de forma que sea capaz de retener de forma específica el producto secretado y de facilitar su posterior identificación. En este aspecto de la invención, las cápsulas se incubarán durante un tiempo determinado que permita la producción del producto secretado, ya sea un compuesto o molécula o una actividad enzimática específica del tipo celular estudiado. Este tiempo variará de 24 a 96 h dependiendo de la molécula secretada o actividad enzimática objeto del estudio. In a third specific method of the invention, the ultimate goal may be the identification of secretory clones within a heterogeneous cell population; in that specific case, the encapsulation matrix will be made in a way that is able to specifically retain the secreted product and facilitate its subsequent identification. In this aspect of the invention, the capsules will be incubated for a certain time that allows the production of the secreted product, either a compound or molecule or a specific enzymatic activity of the cell type studied. This time will vary from 24 to 96 h depending on the secreted molecule or enzymatic activity object of the study.
Una forma preferente de la invención es hacer un copolímero de alginato que permite la unión de un ligando en las redes de la microesfera al que la proteína secretada se debe unir. La identificación de la secreción se realizaría usando un ligando específico frente a la proteína secretada. Tras unos lavados para quitar el exceso de proteína secretada no unida al ligando, se retendría el ligando marcado frente a la proteína secretada y se detectaría la microesfera adecuada por la acumulación de marcador en la esfera con más proteína específica retenida. A preferred form of the invention is to make an alginate copolymer that allows the binding of a ligand in the microsphere networks to which the secreted protein must bind. Secretion identification would be performed using a specific ligand against the secreted protein. After washing to remove excess secreted protein not bound to the ligand, the labeled ligand would be retained against the secreted protein and the microsphere would be detected. suitable for the accumulation of marker in the sphere with more specific protein retained.
Análisis Analysis
En la presente invención el último paso del método de análisis seleccionado es un análisis de imágenes obtenidas de las microesferas al microscopio con contraste de fase o de fluorescencia. En una aplicación preferente de esta invención, las microesferas que han sido incubadas durante un tiempo determinado, se transfieren, preferiblemente pero no de forma excluyente, a un portaobjetos, donde van a ser examinadas por microscopía para determinar el tamaño de las microcolonias en la condición control del análisis. El microscopio preferido para esta invención es un microscopio óptico con un objetivo 4x, aunque también puede ser utilizado uno 2,5x o un 10x. En una realización preferida de esta invención, el microscopio es invertido, aunque pueden utilizarse no invertidos y lupas. En otro aspecto de esta invención el microscopio puede ser de fluorescencia y así permitir la detección de actividades celulares asociadas a un producto fluorescente cuya concentración generada será proporcional a la actividad celular. Ejemplos de estos productos fluorescentes pueden ser proteínas fluorescentes como la GFP, YFP, DsRED, etc o bien compuestos sustratos de reacciones enzimáticas acoplados a metil umbeliferona, tales como 4-Methylumbelliferyl-p-D-galactopyranoside o 4- Methylumbelliferyl a-D-glucopyranoside.  In the present invention, the last step of the selected analysis method is an analysis of images obtained from the microspheres under a microscope with phase or fluorescence contrast. In a preferred application of this invention, the microspheres that have been incubated for a certain time, are preferably transferred, but not exclusively, to a slide, where they will be examined by microscopy to determine the size of the microcolonies in the condition Analysis control The preferred microscope for this invention is an optical microscope with a 4x objective, although a 2.5x or a 10x can also be used. In a preferred embodiment of this invention, the microscope is inverted, although non-inverted and magnifiers can be used. In another aspect of this invention the microscope can be fluorescent and thus allow the detection of cellular activities associated with a fluorescent product whose concentration generated will be proportional to the cellular activity. Examples of these fluorescent products can be fluorescent proteins such as GFP, YFP, DsRED, etc. or compounds that are substrates of enzymatic reactions coupled to methyl umbelliferone, such as 4-Methylumbelliferyl-p-D-galactopyranoside or 4- Methylumbelliferyl a-D-glucopyranoside.
Para el análisis de las microcolonias, se realizarán fotos de las microesferas después de la incubación, realizándose fotos para tener preferentemente entre 100 y 1000 microcolonias. Las fotos se harán mediante una cámara conectada directamente al microscopio. For the analysis of the microcolonies, photos of the microspheres will be taken after incubation, taking photos to preferably have between 100 and 1000 microcolonies. The photos will be taken using a camera connected directly to the microscope.
Si el objetivo del procedimiento es un estudio de la capacidad proliferativa de las células en distintas condiciones de cultivo, el análisis de las microcolonias se realizará preferentemente mediante la determinación de una serie de parámetros. Número de microesferas: en primer lugar se realizará una identificación y conteo de las microesferas presentes en la preparación. Mediante el conteo de microesferas se llevará a cabo un control interno de reparto de microesferas entre las distintas condiciones. El número de microesferas presentes en las distintas condiciones ha de ser equivalente para dar los resultados por válidos. Una distribución heterogénea de cápsulas entre las distintas condiciones puede dar lugar a un sesgo en el número de microcolonias que no corresponde con la realidad. Es conveniente un porcentaje de variación inferior al 20% entre los conteos de las microesferas en las distintas condiciones. If the objective of the procedure is a study of the proliferative capacity of the cells in different culture conditions, the analysis of the microcolonies will be carried out preferably by determining a series of parameters. Number of microspheres: first, an identification and counting of the microspheres present in the preparation will be carried out. Through the microsphere count an internal control of microsphere distribution between the different conditions will be carried out. The number of microspheres present in the different conditions must be equivalent to give the results valid. A heterogeneous distribution of capsules between different conditions can lead to a bias in the number of microcolonies that does not correspond to reality. A percentage of variation of less than 20% between microsphere counts in different conditions is desirable.
Número de microcolonias: durante la identificación y conteo de las microcolonias presentes en las microesferas se pueden dar varios casos dependiendo del efecto que las condiciones de cultivo tenga sobre el microorganismo encapsulado: Number of microcolonies: during the identification and counting of the microcolonies present in the microspheres, several cases may occur depending on the effect that the culture conditions have on the encapsulated microorganism:
a. Si las condiciones del cultivo no impiden su crecimiento, pero lo retrasan ya sea por la composición del medio, por la presencia de algún inhibidor, por el pH o la temperatura o aireación del cultivo, o cualquier otra causa que permita algo de proliferación aunque retardada, el conteo de las microcolonias será semejante entre todas las condiciones del análisis.  to. If the conditions of the crop do not impede its growth, but retard it either by the composition of the medium, by the presence of any inhibitor, by the pH or temperature or aeration of the crop, or any other cause that allows some proliferation although delayed , the count of the microcolonies will be similar among all the conditions of the analysis.
b. Si las condiciones del cultivo no tiene el efecto descrito en el punto uno de la presente lista, sino que bloquea totalmente la proliferación celular, el conteo de las colonias será inferior, puesto que el número de clones que dará lugar a una microcolonia tiende a ser 0. En casos extremos el número de microcolonias será 0. Tamaño de las microcolonias: el segundo parámetro a analizar es el tamaño de las microcolonias. Al igual que en el conteo podemos encontrar dos posibilidades:  b. If the culture conditions do not have the effect described in point one of this list, but completely block cell proliferation, the colon count will be lower, since the number of clones that will lead to a microcolony tends to be 0. In extreme cases the number of microcolonies will be 0. Size of the microcolonies: the second parameter to analyze is the size of the microcolonies. As in the count we can find two possibilities:
a. Si las condiciones del cultivo no impiden su crecimiento, pero lo retrasan ya sea por la composición del medio, por la presencia de algún inhibidor, por el pH o la temperatura o aireación del cultivo, o cualquier otra causa que permita algo de proliferación aunque retardada, el conteo de las microcolonias será semejante entre todas las condiciones del análisis. Sin embargo, el tamaño de las microcolonias será significativamente reducido. Al menos se identificará una reducción en el diámetro de 2 veces el tamaño de las microcolonias en la condición óptima de cultivo, b. Si las condiciones del cultivo no tiene el efecto descrito en el punto uno de la presente lista, sino que bloquea totalmente la proliferación celular, el conteo de las colonias será inferior, puesto que el número de clones que dará lugar a una microcolonia tiende a ser 0. En casos extremos el tamaño de microcolonias será 0. En casos de heterogéneidad dentro de la población o en el caso de mutantes, se producirá la identificación de alguna microcolonia aislada dentro de la población. En este caso, el diámetro general de las microcolonias será indetectable; sin embargo, los clones mencionados con anterioridad, que presenten mutaciones, pueden llegar a presentar un tamaño similar al observado en la condición control. En este caso, hay que relacionar el tamaño de las microcolonias con el número de las mismas y con el número total de cápsulas en la muestra. to. If the conditions of the crop do not impede its growth, but delay it either by the composition of the medium, by the presence of some inhibitor, by the pH or the temperature or aeration of the culture, or any other cause that allows some proliferation although delayed, the count of the microcolonies will be similar between all the conditions of the analysis. However, the size of the microcolonies will be significantly reduced. At least a reduction in the diameter of 2 times the size of the microcolonies in the optimal culture condition will be identified, b. If the culture conditions do not have the effect described in point one of this list, but completely block cell proliferation, the colon count will be lower, since the number of clones that will lead to a microcolony tends to be 0. In extreme cases the size of microcolonies will be 0. In cases of heterogeneity within the population or in the case of mutants, the identification of some isolated microcolony within the population will occur. In this case, the general diameter of the microcolonies will be undetectable; however, the above-mentioned clones, which have mutations, may have a size similar to that observed in the control condition. In this case, we must relate the size of the microcolonies with the number of them and with the total number of capsules in the sample.
La representación preferida de los datos en la metodología de esta invención, pero no excluyente de cualquier otra, sería la distribución normal de los tamaños obtenidos en cada una de las condiciones incluyendo al control. Otra forma de representar los datos sería la representación de los diámetros medios de las microcolonias presentes en cada condición. The preferred representation of the data in the methodology of this invention, but not exclusive of any other, would be the normal distribution of the sizes obtained in each of the conditions including the control. Another way of representing the data would be the representation of the average diameters of the microcolonies present in each condition.
El análisis del error estándar de la media, así como los valores promedio de los tamaños máximos y mínimos, y los coeficientes de variación de las microcolonias en cada condición, proporcionan información fundamental para la obtención de resultados objetivos. Para otra aplicación preferente de la presente invención, el crecimiento de células difícilmente cultivables se analizará también por microscopía. Mediante el análisis de las fotos realizadas, se decidirán las condiciones óptimas para el cultivo de dichos tipos celulares. El cultivo de estas células mediante este procedimiento abre nuevas vías a la caracterización de las mismas ya que pueden incubarse usando extractos del ambiente habitual de las células al requerir menos cantidad de medio, aumentando las probabilidades de conseguir más divisiones celulares. En caso de células tumorales, encapsularlas con su microambiente celular puede generar más divisiones efectivas, haciendo más viable hacer estudios de sensibilidad a compuestos antitumorales en tipos celulares donde actualmente no se puede. The analysis of the standard error of the mean, as well as the average values of the maximum and minimum sizes, and the coefficients of variation of the microcolonies in each condition, provide fundamental information for obtaining objective results. For another preferred application of the present invention, the growth of hardly cultivable cells will also be analyzed by microscopy. By analyzing the photos taken, the optimal conditions for the culture of said cell types will be decided. The culture of these cells by this procedure opens new avenues for their characterization since they can be incubated using extracts from the usual environment of the cells by requiring less amount of medium, increasing the chances of achieving more cell divisions. In the case of tumor cells, encapsulating them with their cellular microenvironment can generate more effective divisions, making it more feasible to make studies of sensitivity to antitumor compounds in cell types where it is currently not possible.
Un posible, pero no excluyente, uso de estas células ya proliferantes es la adición de compuestos para ver la sensibilidad de los tumores a distintos compuestos. En este caso, el análisis de la cinética de proliferación de estas microesferas se realizará tal y cómo se ha descrito para el primer método de esta invención. A possible, but not exclusive, use of these already proliferating cells is the addition of compounds to see the sensitivity of tumors to different compounds. In this case, the analysis of the proliferation kinetics of these microspheres will be carried out as described for the first method of this invention.
Un método específico para la presente invención de interés en la identificación de células por la producción de un metabolito específico. En este caso las imágenes de estas cápsulas no se van a analizar buscando la formación de microcolonias, sino buscando la positividad frente al mareaje específico del producto secretado o de la actividad enzimática deseada. El mareaje será preferentemente fluorescente debido a su mayor sensibilidad, reduciendo así el tiempo necesano para acumular una señal suficientemente visible en cada cápsula. Para detectar una proteína secretada el hidrogel tendrá que estar basado en copolímeros que permitan la unión de ligandos. Algunos de los ligandos posibles para derivatizar los monómeros que forman el copolímero pueden ser biotina y así unir polipéptidosa estreptavidina, NTA o NDE y así unir proteínas unidas a polihistidinas, DEAE para unir proteínas unidas a dominios de unión a colina, glutatión que permitiría unir proteínas unidas a GST, etc. Se puede por ejemplo conseguir copolime zar DEAE dextrano con alginato y unir específicamente GFP unida a LYTAG. Igualmente se puede unir un antígeno de interés a los ligandos del copolímero y seleccionar hibridomas encapsulados que secreten anticuerpos que se unan a dicho antígeno. El anticuerpo unido al antígeno del copolímero podría detectarse con anticuerpos específicos frente a la cadena pesada de la inmunoglobulina, conjugados a fluoróforos como FITC, ficoeritrina, rodamina, o cualquier fluoróforo que esté disponible comercialmente. Las células positivas podrán ser aisladas por micropipetas usando el microscopio o por un cribado de las microesferas aislándolas del resto y expandiéndolas en las condiciones óptimas para cada tipo celular. A specific method for the present invention of interest in the identification of cells by the production of a specific metabolite. In this case the images of these capsules are not going to be analyzed looking for the formation of microcolonies, but rather looking for positivity against the specific marking of the secreted product or the desired enzymatic activity. The marking will preferably be fluorescent due to its greater sensitivity, thus reducing the time needed to accumulate a sufficiently visible signal in each capsule. To detect a secreted protein, the hydrogel will have to be based on copolymers that allow ligand binding. Some of the possible ligands to derivatize the monomers that form the copolymer can be biotin and thus bind streptavidin polypeptide, NTA or NDE and thus bind polyhistidine-bound proteins, DEAE to bind proteins bound to choline-binding domains, glutathione that would allow protein binding. linked to GST, etc. It is possible, for example, to obtain copolymer tsar DEAE dextran with alginate and bind specifically GFP linked to LYTAG. Likewise, an antigen of interest can be attached to the copolymer ligands and select encapsulated hybridomas that secrete antibodies that bind to said antigen. Antibody bound to the copolymer antigen could be detected with specific antibodies against the immunoglobulin heavy chain, conjugated to fluorophores such as FITC, phycoerythrin, rhodamine, or any commercially available fluorophore. The positive cells can be isolated by micropipettes using the microscope or by screening the microspheres by isolating them from the rest and expanding them in the optimal conditions for each cell type.
DESCRIPCIÓN DE LAS FIGURAS DESCRIPTION OF THE FIGURES
Figura.1. Ejemplo de cápsulas monodispersas producidas mediante la tecnología de enfocado de chorro o Flow Focusing, empleada en esta invención. Figure 1. Example of monodisperse capsules produced by jet focusing technology or Flow Focusing, used in this invention.
Figura.2. Ejemplo del crecimiento microbiano a lo largo del tiempo y la formación de microcolonias.  Figure 2. Example of microbial growth over time and the formation of microcolonies.
Figura.3 Ejemplo de la detección de actividad enzimática de microorganismos encapsulados.  Figure 3 Example of the detection of enzymatic activity of encapsulated microorganisms.
Figura.4. Esquema del procedimiento descrito en esta invención. A) Encapsulación, B) incubación, C) toma de imágenes, D) análisis de imágenes. Figura.5. Identificación de clones secretores del dominio 1xZ de la proteína A. Las microesferas que contienen bacterias capaces de producir la proteína recombinante se marcan con el anticuerpo fluorescente en rojo. Ejemplo 4. Figura.6. Comparación de la capacidad de contaje e identificación de clones encapsulados en microesferas mediante citometría de flujo y microscopía óptica. La figura pone de manifiesto que mediante la técnica de la citometría de flujo se identifica un único clon dentro de la microesfera, cuando se aprecia que hay dos, mientras que mediante microscopía se identifican claramente todas las colonias independientes presentes en cada microesfera. Así el primer objeto de la presente invención se refiere a un procedimiento de caracterización celular que comprende las siguientes etapas: Figure 4. Scheme of the procedure described in this invention. A) Encapsulation, B) incubation, C) imaging, D) image analysis. Figure 5. Identification of secretory clones of the 1xZ domain of protein A. The microspheres containing bacteria capable of producing the recombinant protein are labeled with the fluorescent antibody in red. Example 4. Figure.6. Comparison of counting capacity and identification of clones encapsulated in microspheres by flow cytometry and optical microscopy. The figure shows that by means of the flow cytometry technique a single clone is identified within the microsphere, when it is appreciated that there are two, while by microscopy all independent colonies present in each microsphere are clearly identified. Thus the first object of the present invention relates to a method of cellular characterization comprising the following steps:
a) Contactar una suspensión de células con una sustancia capaz de producir hidrogeles;  a) Contact a cell suspension with a substance capable of producing hydrogels;
b) Añadir la mezcla obtenida en la etapa anterior a un microencapsulador para producir microesferas de tamaño entre 30 y 1000 mieras gelificadas que contengan en su interior las células;  b) Add the mixture obtained in the previous stage to a microencapsulator to produce microspheres of size between 30 and 1000 gelled microns containing the cells inside;
c) Incubar las microesferas obtenidas en la etapa anterior con un medio que permita su crecimiento y opcionalmente, adicionar a dicho medio al menos un compuesto capaz de modificar el metabolismo de las células; d) Analizar las células y/o las sustancias secretadas por éstas en las microesferas mediante microscopía acoplada a un analizador de imágenes, programado para que identifique el contorno de las microesferas y detecte la actividad o estado de las células atrapadas.  c) Incubate the microspheres obtained in the previous stage with a medium that allows their growth and, optionally, add to said medium at least one compound capable of modifying the metabolism of the cells; d) Analyze the cells and / or substances secreted by them in the microspheres by microscopy coupled to an image analyzer, programmed to identify the contour of the microspheres and detect the activity or state of the trapped cells.
En una realización preferida, el procedimiento de la invención se caracteriza por que la sustancia capaz de producir hidrogeles es una sustancia polimérica seleccionada de entre cualquiera de las siguientes: alginato, agarosa, quitosano, quitopectina, goma gelan, goma de xantano, ácido hialurónico, heparina, pectina, carragenano, ácido poliacrílico, ácido polimetacrílico, polietilenimina y polilisina. En otra realización más preferida aún, la sustancia capaz de producir hidrogeles es el alginato. In a preferred embodiment, the process of the invention is characterized in that the substance capable of producing hydrogels is a polymeric substance selected from any of the following: alginate, agarose, chitosan, chitopectin, gellan gum, xanthan gum, hyaluronic acid, heparin, pectin, carrageenan, polyacrylic acid, polymethacrylic acid, polyethyleneimine and polylysine. In yet another more preferred embodiment, the substance capable of producing hydrogels is alginate.
En otra realización preferida del procedimiento de la invención, este se caracteriza por que el microencapsulador produce las microesferas mediante cualquiera de los siguientes métodos: ultrasonido, goteo, emulsión, o enfocamiento de chorro. En otra realización más preferida aún, el microencapsulador produce las microesferas mediante la técnica de enfocamiento de chorro. In another preferred embodiment of the process of the invention, this is characterized in that the microencapsulator produces the microspheres by any of the following methods: ultrasound, drip, emulsion, or jet focusing. In yet another more preferred embodiment, the microencapsulator produces the microspheres by the jet focusing technique.
En otra realización preferida del procedimiento de la invención, este se caracteriza por que las microesferas tienen un tamaño de 50 a 500 mieras. En otra realización preferida del procedimiento de la invención, este se caracteriza por que las células se seleccionan de entre cualquiera de las siguientes: eucariota, procariota, animal, planta o archeobacteria. In another preferred embodiment of the process of the invention, this is characterized in that the microspheres are 50 to 500 microns in size. In another preferred embodiment of the process of the invention, this is characterized in that the cells are selected from any of the following: eukaryotic, prokaryotic, animal, plant or archeobacterium.
En otra realización preferida del procedimiento de la invención, este se caracteriza por que las células presentan en su genoma modificaciones genéticas que dan lugar a organismos mutantes o híbridos. Dichas modificaciones genéticas se obtienen mediante técnicas de ingeniería genética, comúnmente conocidas por los expertos en el presente campo técnico. Dichos organismos mutantes o híbridos pueden mostrar un incremento o inhibición de la expresión de un gen, proteína, etc, tanto homólogo como heterólogo. In another preferred embodiment of the process of the invention, this is characterized in that the cells present in their genome genetic modifications that give rise to mutant or hybrid organisms. Said genetic modifications are obtained by means of genetic engineering techniques, commonly known to those skilled in the present technical field. Such mutant or hybrid organisms may show an increase or inhibition of the expression of a gene, protein, etc., both homologous and heterologous.
En otra realización preferida del procedimiento de la invención, este se caracteriza por que en las etapas a) o c) se adiciona al menos un compuesto capaz de ser detectado mediante microscopía al reaccionar con las células y/o productos secretados por éstas en el interior de las microesferas. In another preferred embodiment of the process of the invention, this is characterized in that at steps a) or c) at least one compound capable of being detected by microscopy is added when reacting with the cells and / or products secreted by them within the microspheres
En otra realización preferida del procedimiento de la invención, este se caracteriza por que el compuesto capaz de ser detectado mediante microscopía se selecciona de entre cualquiera de los siguientes: colorante, cromógeno y/o fluoróforo. Este tipo de compuestos son ampliamente conocidos por el experto en la materia, en el presente campo técnico. In another preferred embodiment of the process of the invention, this is characterized in that the compound capable of being detected by microscopy is selected from any of the following: dye, chromogen and / or fluorophore. These types of compounds are widely known to those skilled in the art, in the present technical field.
En otra realización preferida del procedimiento de la invención, este se caracteriza por que el compuesto capaz de modificar el metabolismo de la célula se selecciona de entre cualquiera de los siguientes: mutágeno, inhibidor o activador de proliferación, factores de crecimiento y/o sustratos enzimáticos. Compuestos específicos incluidos en cualquiera de los grupos mencionados son ampliamente conocidos por el experto medio en la materia en el presente campo técnico. En otra realización preferida del procedimiento de la invención, este se caracteriza por que la caracterización celular va dirigida al análisis de la viabilidad y/o crecimiento celular. In another preferred embodiment of the process of the invention, this is characterized in that the compound capable of modifying the metabolism of the cell is selected from any of the following: mutagen, proliferation inhibitor or activator, growth factors and / or enzymatic substrates . Specific compounds included in any of the aforementioned groups are widely known to those skilled in the art in the present technical field. In another preferred embodiment of the method of the invention, this is characterized in that the cellular characterization is directed to the analysis of the viability and / or cell growth.
En otra realización preferida del procedimiento de la invención, este se caracteriza por que la viabilidad celular se analiza mediante consorcios celulares capaces de facilitar el crecimiento de un tipo celular específico. En otra realización más preferida, los tipos celulares específicos son preferentemente, células no cultivables o células tumorales. In another preferred embodiment of the method of the invention, this is characterized in that cell viability is analyzed by cellular consortia capable of facilitating the growth of a specific cell type. In another more preferred embodiment, the specific cell types are preferably non-cultivable cells or tumor cells.
En otra realización preferida del procedimiento de la invención, este se caracteriza por que la caracterización celular va dirigida a la identificación de células que presentan una actividad seleccionada de entre cualquiera de las siguientes: secretora, hidrolítica o catalítica. In another preferred embodiment of the process of the invention, this is characterized in that the cellular characterization is directed to the identification of cells that have an activity selected from any of the following: secretory, hydrolytic or catalytic.
En otra realización preferida del procedimiento de la invención, este se caracteriza por que la actividad secretora da lugar a la secreción de moléculas que se seleccionan de entre cualquiera de las siguientes: péptidos, enzimas, anticuerpos y/o fragmentos de anticuerpos. In another preferred embodiment of the process of the invention, this is characterized in that the secretory activity results in the secretion of molecules that are selected from any of the following: peptides, enzymes, antibodies and / or antibody fragments.
En otra realización preferida del procedimiento de la invención, este se caracteriza por que la identificación de las células con actividad secretora y/o de las moléculas secretadas se realiza mediante la detección de la unión de dichas células y/o moléculas al compuesto capaz de ser detectado mediante microscopía según se ha descrito anteriormente a lo largo del presente documento. In another preferred embodiment of the process of the invention, this is characterized in that the identification of the cells with secretory activity and / or of the secreted molecules is performed by detecting the binding of said cells and / or molecules to the compound capable of being detected by microscopy as described above throughout this document.
En otra realización preferida del procedimiento de la invención, este se caracteriza por que para la identificación de la actividad catalítica o hidrolítica se adiciona previamente en la etapa b) un sustrato objeto de la actividad celular buscada. En otra realización preferida del procedimiento de la invención, este se caracteriza por que el sustrato reacciona con el compuesto capaz de ser detectado mediante microscopía según se ha descrito previamente en el presente documento. In another preferred embodiment of the process of the invention, this is characterized in that for the identification of the catalytic or hydrolytic activity, a substrate subject to the cellular activity sought is previously added in step b). In another preferred embodiment of the process of the invention, this is characterized in that the substrate reacts with the compound capable of being detected by microscopy as previously described herein.
En otra realización preferida del procedimiento de la invención, este se caracteriza por que el microscopio es óptico o de fluorescencia. In another preferred embodiment of the process of the invention, this is characterized in that the microscope is optical or fluorescent.
En otra realización preferida del procedimiento de la invención, este se caracteriza por que el analizador de imágenes es automático. En otra realización más preferida, el analizador de imágenes identifica las microesferas y detecta la actividad y/o estado de las células y/o de los productos secretados. In another preferred embodiment of the process of the invention, this is characterized in that the image analyzer is automatic. In another more preferred embodiment, the image analyzer identifies the microspheres and detects the activity and / or condition of the cells and / or secreted products.
EJEMPLOS EXAMPLES
A continuación se ¡lustrará la invención mediante unos ensayos realizados por los inventores, que pone de manifiesto la efectividad del producto de la invención. Los siguientes ejemplos sirven para ¡lustrar la invención y no deben ser considerados como limitativos del alcance de la misma. The invention will now be illustrated by tests carried out by the inventors, which demonstrates the effectiveness of the product of the invention. The following examples serve to illustrate the invention and should not be considered as limiting its scope.
Ejemplo 1 : Selección de modificaciones genéticas Example 1: Selection of genetic modifications
En este ejemplo se describe como realizar un cribado de células que han sufrido un cambio genéticos que pueda ser seleccionable dentro de la microesfera. Se parte de un cultivo celular en crecimiento. Previamente se han preparado las soluciones necesarias para la encapsulación. Se ha preparado el alginato al 1 ,5%, este alginato se puede preparar en agua o en medio específico para el crecimiento de las células. El alginato se esteriliza por filtración a través de un tamaño de poro de 20um. Se ha preparado también el cloruro cálcico al 3% en agua, que también se esteriliza por filtración. Se realiza un inoculo de entre 0,5 y 1x10 células /ml_ de alginato. La mezcla se agita suavemente por inversión para garantizar una distribución homogénea de las células en el alginato sin producir burbujas en la mezcla. Se procede a la encapsulación, utilizando para ello un nebulizador de 200um que produce partículas entre 100 y 120 μηι de diámetro. Para la encapsulación por FF mediante este nebulizador y estas condiciones de alginato y células se necesita un flujo de aire a una presión de 60mBar. La encapsulación se lleva a cabo a un flujo de 3mL/h. Las partículas caen en un baño de cloruro cálcico al 3% en agitación. This example describes how to screen cells that have undergone a genetic change that can be selectable within the microsphere. It starts from a growing cell culture. Previously, the necessary solutions for encapsulation have been prepared. The 1.5% alginate has been prepared, this alginate can be prepared in water or in specific medium for cell growth. The alginate is sterilized by filtration through a pore size of 20um. The 3% calcium chloride in water has also been prepared, which is also sterilized by filtration. An inoculum of between 0.5 and 1x10 cells / ml_ of alginate is made. The mixture is gently stirred by inversion to ensure a homogeneous distribution of the cells in the alginate without producing bubbles in the mixture. The encapsulation is carried out, using a 200um nebulizer that produces particles between 100 and 120 μηι in diameter. For FF encapsulation using this nebulizer and these alginate and cell conditions, an air flow at a pressure of 60mBar is required. The encapsulation is carried out at a flow of 3mL / h. The particles fall into a 3% calcium chloride bath while stirring.
Se identifica E. coli resistentes a rifampicina que resultan de una mutación puntual. En este caso, nos interesa que en cada cápsula haya una sola célula para poder aislar un clon individual. E. coli resistant to rifampin are identified that result from a timely mutation. In this case, we are interested in having a single cell in each capsule to be able to isolate an individual clone.
En este ejemplo, tras la incubación, se analizan las microcolonias por microscopía y se identifican los clones que han tenido un crecimiento diferencial con respecto al resto en presencia de 10 mg/L de rifampicina, ya sea por un crecimiento incrementado o disminuido. In this example, after incubation, the microcolonies are analyzed by microscopy and the clones that have had a differential growth with respect to the rest in the presence of 10 mg / L of rifampin are identified, either by an increased or decreased growth.
Utilizando micropinzas y microagujas, se selecciona la microcápsula con el clon de interés y se pasa a un pocilio de una placa de 96 con medio de cultivo óptimo para el microorganismo encapsulado. Permitiéndole crecer el tiempo necesario, la microcolonia se liberará de la microcápsula y dará lugar a un cultivo líquido axénico convencional, que se podrá expandir para su posterior caracterización, extracción de DNA o análisis fenotípico. Using micropinzas and microneedles, the microcapsule with the clone of interest is selected and passed to a well of a 96 plate with optimal culture medium for the encapsulated microorganism. Allowing it to grow the necessary time, the microcolony will be released from the microcapsule and will lead to a conventional axenic liquid culture, which can be expanded for subsequent characterization, DNA extraction or phenotypic analysis.
Ejemplo 2: Identificación de clones secretores. Selección de hibridomas. Example 2: Identification of secretory clones. Selection of hybridomas.
En este ejemplo, se sugiere como seleccionar de forma rápida y usando poca cantidad de reactivos hibridomas que secreten anticuerpos específicos a un antígeno polipeptídico. Mediante la derivatización específica de al menos parte de la matriz de encapsulación es posible retener moléculas secretadas por las células encapsuladas y así identificar los clones secretores dentro de una mezcla de células heterogénea. In this example, it is suggested how to select quickly and using a small amount of hybridoma reagents that secrete specific antibodies to a polypeptide antigen. By specific derivatization of at least part of the encapsulation matrix it is possible to retain molecules secreted by the encapsulated cells and thus identify the secretory clones within a heterogeneous cell mixture.
Las células encapsuladas son hibridomas producidos tras una fusión de esplenocitos de un ratón inmunizado frente a la proteína verde fluorescente {Green fluorescent protein, GFP en sus siglas en inglés) con células mieloides. Algunos de estos hibridomas producen un anticuerpo específico para el antígeno de interés. La identificación y selección de estos hibridomas es un proceso lento que lleva entre 2 y 4 semanas. La aplicación de la presente invención reduciría el tiempo necesario hasta la identificación de clones productores a 2-3 días. Encapsulated cells are hybridomas produced after a fusion of splenocytes from a mouse immunized against the green fluorescent protein (GFP) with myeloid cells. Some of these hybridomas produce an antibody specific for the antigen of interest. The identification and selection of these hybridomas is a slow process that takes between 2 and 4 weeks. The application of the present invention would reduce the time necessary until the identification of producing clones to 2-3 days.
Para este aspecto específico, la matriz de encapsulación ha de ser derivatizada con un compuesto que permita la retención del antígeno en la matriz del alginato. En un ejemplo específico de esta aplicación, se utiliza DEAE dextrano, que retiene el antígeno peptídico unido a LYTAG. En el momento de la producción de la mezcla de encapsulación se le añadiría al alginato DEAE dextrano y una solución de una fusión del GFP a -en el extremo C-terminal al dominio de unión a colina y también a DEAE, LYTAG (Biomedal S. L.). De esta forma, las microesferas llevarán alginato como gelificante y DEAE-Dextrano que uniría el antígeno GFP a través del LYTAG que tiene afinidad por DEAE. Una vez preparado el polímero y filtrado, se le añadirían los hibridomas a encapsular y se procedería a la encapsulación. En este caso, se utilizaría un nebulizador de 200 um que da un tamaño de microcápsula entre 100 y 120um. La dilución de las células será aquella que permita la encapsulación de 1 célula por cápsula.  For this specific aspect, the encapsulation matrix has to be derivatized with a compound that allows antigen retention in the alginate matrix. In a specific example of this application, DEAE dextran is used, which retains the peptide antigen bound to LYTAG. At the time of the production of the encapsulation mixture, DEAE dextran alginate and a solution of a GFP fusion would be added to -in the C-terminal end to the choline binding domain and also to DEAE, LYTAG (Biomedal SL) . In this way, the microspheres will carry alginate as a gelling agent and DEAE-Dextran that would bind the GFP antigen through the LYTAG that has affinity for DEAE. Once the polymer was prepared and filtered, the hybridomas to be encapsulated would be added and encapsulation would proceed. In this case, a 200 um nebulizer would be used that gives a microcapsule size between 100 and 120um. The dilution of the cells will be that which allows the encapsulation of 1 cell per capsule.
Tras el posterior lavado y filtrado, las microcápsulas se mantendrían ahora en el medio de selección de hibridomas (HAT Médium) y se dispensarían en placas 24 pocilios. Las células se incuban en esas condiciones durante un período de 3-5 días dependiendo de la tasa de recuperación de las células. Después de este tiempo, se procedería a la incubación de estas microcápsulas con un anticuerpo secundario anti-lg de ratón (o del productor correspondiente) marcado fluorescentemente con rodamina. Las microcápsulas que contengan hibridomas productores de anticuerpos específicos tendrán el mismo retenido en la matriz de la microcápsula mediante un reconocimiento específico con el antígeno GFP fijado en la misma. Así, los clones marcados se seleccionarán mediante microscopía de fluorescencia para emisión de color rojo y con útiles de microinyección se pasarán a una placa independiente donde se producirá su selección y cultivo del hibridoma. La mayor intensidad de color rojo emitido podría permitirá seleccionar además a los mejores secretores. After subsequent washing and filtering, the microcapsules would now be maintained in the hybridoma selection medium (Medium HAT) and 24 well plates would be dispensed. The cells are incubated under these conditions for a period of 3-5 days depending on the recovery rate of the cells. After this time, these microcapsules would be incubated with a secondary anti-mouse Ig antibody (or the corresponding producer) fluorescently labeled with rhodamine. Microcapsules containing hybridomas producing specific antibodies will have the same retained in the microcapsule matrix by specific recognition with the GFP antigen fixed therein. Thus, the labeled clones will be selected by fluorescence microscopy for red emission and with microinjection tools they will be transferred to an independent plate where their hybridoma selection and culture will occur. The higher intensity of the red color emitted could also allow the selection of the best secretors.
Ejemplo 3: Identificación de actividad enzimática. Example 3: Identification of enzymatic activity.
En este ejemplo de aplicación de la invención se identifican células con una actividad enzimática específica dentro de una población mixta de células. En esta aplicación, la matriz de encapsulación ha de ser derivatizada realizándose la mezcla en presencia del sustrato objeto de la actividad enzimática buscada. En el caso que se presenta, la actividad enzimática que se busca es la actividad glutenasa, y el sustrato que se añade a la matriz de encapsulación es gliadina, una de las proteínas componentes del gluten. Las células se encapsulan en esta matriz y se incuban en el medio de cultivo óptimo para el tipo celular correspondiente. En el ejemplo que nos ocupa, se realiza una tinción con un anticuerpo específico antigliadina marcado fluorescentemente. En el tiempo 0 todas las microcápsulas estarán marcadas con igual intensidad, puesto que el sustrato todavía no ha sido degradado por las enzimas. A lo largo del tiempo, se ve una reducción en el mareaje fluorescente a medida que se va induciendo la actividad enzimática en aquellas células que la posean (Figura 3). La selección de las colonias positivas se realizaría con micropipetas o por útiles de microinyección. In this example of application of the invention, cells with a specific enzymatic activity are identified within a mixed population of cells. In this application, the encapsulation matrix has to be derivatized, the mixture being carried out in the presence of the substrate subject to the enzymatic activity sought. In the case presented, the enzymatic activity that is sought is glutenase activity, and the substrate that is added to the encapsulation matrix is gliadin, one of the component proteins of gluten. The cells are encapsulated in this matrix and incubated in the optimal culture medium for the corresponding cell type. In the example at hand, staining is performed with a specific fluorescently labeled antigliadin antibody. At time 0 all microcapsules will be marked with equal intensity, since the substrate has not yet been degraded by enzymes. Over time, a reduction in fluorescent tide is seen as enzyme activity is induced in those cells that possess it (Figure 3). The selection of positive colonies would be done with micropipettes or by microinjection tools.
Ejemplo 4: Identificación de clones secretores (proteínas recombinantes). Example 4: Identification of secretory clones (recombinant proteins).
En este ejemplo se describe como realizar un cribado de células que han sufrido un cambio genético y que pueden ser seleccionabas dentro de la microesfera. En este ejemplo, se van a seleccionar bacterias transformadas que son capaces de producir una proteína recom binante específica, en este caso, con el dominio z de unión a anticuerpos de la proteína A. Esta proteína A es de utilidad en biotecnología por su capacidad de unir anticuerpos. En el presente ejemplo se ha utilizado la proteína A de Staphylococcus aureus (GenBank: AAB05743.1 ). Para la obtención de los resultados mostrados en el presente ejemplo se parte de un cultivo celular en crecimiento. Se preparan las soluciones necesarias para la encapsulación, específicamente, el alginato al 1 ,5% se disuelve en agua y se esteriliza por filtración a través de un tamaño de poro de 20um. Por otro lado, se prepara una solución de cloruro cálcico al 3% en agua, que también se esteriliza por filtración. Se encapsula una concentración de 0,5x106 células/mL de alginato. This example describes how to perform a screening of cells that have undergone a genetic change and that can be selected within the microsphere In this example, transformed bacteria that are capable of producing a specific recombinant protein will be selected, in this case, with the antibody binding z-domain of protein A. This protein A is useful in biotechnology for its ability to bind antibodies In the present example, Staphylococcus aureus protein A (GenBank: AAB05743.1) has been used. To obtain the results shown in the present example, we start from a growing cell culture. The solutions necessary for encapsulation are prepared, specifically, 1.5% alginate is dissolved in water and sterilized by filtration through a pore size of 20um. On the other hand, a solution of 3% calcium chloride in water is prepared, which is also sterilized by filtration. A concentration of 0.5x10 6 cells / mL of alginate is encapsulated.
Tras la obtención de las células encapsuladas, éstas se someten a un choque osmótico leve para romper las membranas celulares y para que se produzca la difusión de las proteínas y los anticuerpos dentro y fuera de las células. After obtaining the encapsulated cells, they are subjected to a mild osmotic shock to break up the cell membranes and so that the diffusion of the proteins and antibodies in and out of the cells occurs.
Posteriormente se incuban las células encapsuladas con anticuerpos secundarios de conejo marcado con un fluoróforo que emite en verde. Aquellas capsulas con fluorescencia verde tienen en su interior una colonia bacteriana secretora de la proteína A de interés (Figura 5). The encapsulated cells are subsequently incubated with rabbit secondary antibodies labeled with a fluorophore that emits in green. Those capsules with green fluorescence have inside a bacterial colony secreting the protein A of interest (Figure 5).

Claims

REIVINDICACIONES
1 . Procedimiento de caracterización celular que comprende las siguientes etapas: one . Cell characterization procedure comprising the following stages:
a) Contactar una suspensión de células con una sustancia capaz de producir hidrogeles;  a) Contact a cell suspension with a substance capable of producing hydrogels;
b) Añadir la mezcla obtenida en la etapa anterior a un microencapsulador para producir microesferas de tamaño entre 30 y 1000 mieras gelificadas que contengan en su interior las células;  b) Add the mixture obtained in the previous stage to a microencapsulator to produce microspheres of size between 30 and 1000 gelled microns containing the cells inside;
c) Incubar las microesferas obtenidas en la etapa anterior con un medio que permita su crecimiento y opcionalmente, adicionar a dicho medio al menos un compuesto capaz de modificar el metabolismo de las células;  c) Incubate the microspheres obtained in the previous stage with a medium that allows their growth and, optionally, add to said medium at least one compound capable of modifying the metabolism of the cells;
d) Analizar las células y/o las sustancias secretadas por éstas en las microesferas mediante microscopía acoplada a un analizador de imágenes, programado para que identifique el contorno de las microesferas y detecte la actividad o estado de las células atrapadas.  d) Analyze the cells and / or substances secreted by them in the microspheres by microscopy coupled to an image analyzer, programmed to identify the contour of the microspheres and detect the activity or state of the trapped cells.
2. Procedimiento según la reivindicación 1 caracterizado por que la sustancia capaz de producir hidrogeles es una sustancia polimérica seleccionada de entre cualquiera de las siguientes: alginato, agarosa, quitosano, quitopectina, goma gelan, goma de xantano, ácido hialurónico, heparina, pectina, carragenano, ácido poliacrílico, ácido polimetacrílico, polietilenimina y polilisina. 2. Method according to claim 1 characterized in that the substance capable of producing hydrogels is a polymeric substance selected from any of the following: alginate, agarose, chitosan, chitopectin, gellan gum, xanthan gum, hyaluronic acid, heparin, pectin, carrageenan, polyacrylic acid, polymethacrylic acid, polyethyleneimine and polylysine.
3. Procedimiento según la cualquiera de las reivindicaciones 1 a 2 caracterizado por que la sustancia capaz de producir hidrogeles es el alginato. 3. Method according to any one of claims 1 to 2 characterized in that the substance capable of producing hydrogels is alginate.
4. Procedimiento según cualquiera de las reivindicaciones 1 a 3 caracterizado por que el microencapsulador produce las microesferas mediante cualquiera de los siguientes métodos: ultrasonido, goteo, emulsión, o enfocamiento de chorro. 4. Method according to any of claims 1 to 3 characterized in that the microencapsulator produces the microspheres by any of the following methods: ultrasound, drip, emulsion, or jet focusing.
5. Procedimiento según cualquiera de las reivindicaciones 1 a 4 caracterizado por que el microencapsulador produce las microesferas mediante la técnica de enfocamiento de chorro. 5. Method according to any of claims 1 to 4 characterized in that the microencapsulator produces the microspheres by means of the jet focusing technique.
6. Procedimiento según cualquiera de las reivindicaciones 1 a 5 caracterizado por que las microesferas tienen un tamaño de 50 a 500 mieras. Method according to any one of claims 1 to 5 characterized in that the microspheres have a size of 50 to 500 microns.
7. Procedimiento según cualquiera de las reivindicaciones 1 a 6 caracterizado por que las células se seleccionan de entre cualquiera de las siguientes: eucariota, procariota, animal, planta o archeobacteria.  7. Method according to any of claims 1 to 6 characterized in that the cells are selected from any of the following: eukaryotic, prokaryotic, animal, plant or archeobacteria.
8. Procedimiento según la reivindicación 7 caracterizado por que las células presentan modificaciones genéticas respecto a las células con fenotipo silvestre, dando lugar a mutantes o híbridos. 8. Method according to claim 7 characterized in that the cells have genetic modifications with respect to cells with wild phenotype, giving rise to mutants or hybrids.
9. Procedimiento según cualquiera de las reivindicaciones 1 a 8 caracterizado por que en las etapas a) o c) se adiciona al menos un compuesto capaz de ser detectado mediante microscopía al reaccionar con las células y/o productos secretados por éstas en el interior de las microesferas. 9. Method according to any one of claims 1 to 8 characterized in that at steps a) or c) at least one compound capable of being detected by microscopy is added when reacting with the cells and / or products secreted therefrom within the interiors of the microspheres
10. Procedimiento según la reivindicación 9 caracterizado por que el compuesto capaz de ser detectado mediante microscopía se selecciona de entre cualquiera de los siguientes: colorante, cromógeno y/o fluoróforo. 10. Method according to claim 9 characterized in that the compound capable of being detected by microscopy is selected from any of the following: dye, chromogen and / or fluorophore.
1 1 . Procedimiento según cualquiera de las reivindicaciones 1 a 10 caracterizado por que el compuesto capaz de modificar el metabolismo de la célula se selecciona de entre cualquiera de los siguientes: mutágeno, inhibidor o activador de proliferación, factores de crecimiento y/o sustratos enzimáticos. eleven . Method according to any of claims 1 to 10 characterized in that the compound capable of modifying the metabolism of the cell is selected from any of the following: mutagen, proliferation inhibitor or activator, growth factors and / or enzymatic substrates.
12. Procedimiento según cualquiera de las reivindicaciones 1 a 1 1 donde la caracterización celular va dirigida al análisis de la viabilidad y/o crecimiento celular. 12. Method according to any of claims 1 to 1 1 wherein the cell characterization is directed to the analysis of cell viability and / or growth.
13. Procedimiento según la reivindicación 12 donde la viabilidad celular se analiza mediante consorcios celulares capaces de facilitar el crecimiento de un tipo celular específico. 13. Method according to claim 12 wherein the cell viability is analyzed by cellular consortia capable of facilitating the growth of a specific cell type.
14. Procedimiento según la reivindicación 13 donde los tipos celulares específicos se seleccionan entre células no cultivables o células tumorales. 14. A method according to claim 13 wherein the specific cell types are selected from non-cultivable cells or tumor cells.
15. Procedimiento según cualquiera de las reivindicaciones 1 a 1 1 donde la caracterización celular va dirigida a la identificación de células que presentan una actividad seleccionada de entre cualquiera de las siguientes: secretora, hidrolítica o catalítica. 15. Method according to any of claims 1 to 1 1 wherein the cellular characterization is directed to the identification of cells that have an activity selected from any of the following: secretory, hydrolytic or catalytic.
16. Procedimiento según la reivindicación 15 caracterizado por que la actividad secretora da lugar a la secreción de moléculas que se seleccionan de entre cualquiera de las siguientes: péptidos, enzimas, anticuerpos y/o fragmentos de anticuerpos.  16. Method according to claim 15 characterized in that the secretory activity results in the secretion of molecules that are selected from any of the following: peptides, enzymes, antibodies and / or antibody fragments.
17. Procedimiento según cualquiera de las reivindicaciones 15 a 16 caracterizado por que la identificación de las células con actividad secretora y/o de las moléculas secretadas se realiza mediante la detección del compuesto capaz de ser detectado mediante microscopía. 17. Method according to any of claims 15 to 16 characterized in that the identification of the cells with secretory activity and / or of the secreted molecules is carried out by the detection of the compound capable of being detected by microscopy.
18. Procedimiento según la reivindicación 15 caracterizado por que para la identificación de la actividad catalítica o hidrolítica se adiciona previamente en la etapa b) un sustrato objeto de la actividad celular buscada. 18. Method according to claim 15, characterized in that, for the identification of the catalytic or hydrolytic activity, a substrate object of the cellular activity sought is previously added in step b).
19. Procedimiento según la reivindicación 18 caracterizado por que el sustrato reacciona con el compuesto capaz de ser detectado mediante microscopía. 19. Method according to claim 18 characterized in that the substrate reacts with the compound capable of being detected by microscopy.
20. Procedimiento según cualquiera de las reivindicaciones 1 a 19 caracterizado por que el microscopio es óptico o de fluorescencia. 20. Method according to any one of claims 1 to 19 characterized in that the microscope is optical or fluorescent.
21 . Procedimiento según cualquiera de las reivindicaciones 1 a 20 caracterizado por que el analizador de imágenes es automático. twenty-one . Method according to any of claims 1 to 20 characterized in that the image analyzer is automatic.
22. Procedimiento según la reivindicación 21 caracterizado por que el analizador de imágenes identifica las microesferas y detecta la actividad y/o estado de las células y/o de los productos secretados. 22. Method according to claim 21 characterized in that the image analyzer identifies the microspheres and detects the activity and / or condition of the cells and / or secreted products.
PCT/ES2014/070492 2013-06-13 2014-06-13 Method for the rapid analysis of cell activity WO2014198994A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201330533 2013-06-13
ES201330533 2013-06-13

Publications (1)

Publication Number Publication Date
WO2014198994A1 true WO2014198994A1 (en) 2014-12-18

Family

ID=51352520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070492 WO2014198994A1 (en) 2013-06-13 2014-06-13 Method for the rapid analysis of cell activity

Country Status (1)

Country Link
WO (1) WO2014198994A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4352883A (en) 1979-03-28 1982-10-05 Damon Corporation Encapsulation of biological material
US4643968A (en) * 1981-01-29 1987-02-17 Massachusetts Institute Of Technology Process for determining metabolism and growth of cells under various conditions
WO1989010566A1 (en) * 1988-04-22 1989-11-02 Massachusetts Institute Of Technology Process for forming and using microdroplets
US4916060A (en) * 1985-09-17 1990-04-10 Massachusetts Institute Of Technology Process for chemical measurement in small volume samples by fluorescent indicators
WO1999030832A1 (en) * 1997-12-17 1999-06-24 Universidad De Sevilla Stabilized capillary microjet and devices and methods for producing same
WO2012155110A1 (en) * 2011-05-11 2012-11-15 Massachusetts Institute Of Technology Microgels and microtissues for use in tissue engineering

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4352883A (en) 1979-03-28 1982-10-05 Damon Corporation Encapsulation of biological material
US4643968A (en) * 1981-01-29 1987-02-17 Massachusetts Institute Of Technology Process for determining metabolism and growth of cells under various conditions
US4916060A (en) * 1985-09-17 1990-04-10 Massachusetts Institute Of Technology Process for chemical measurement in small volume samples by fluorescent indicators
WO1989010566A1 (en) * 1988-04-22 1989-11-02 Massachusetts Institute Of Technology Process for forming and using microdroplets
EP0411038A1 (en) 1988-04-22 1991-02-06 Massachusetts Inst Technology Process for forming and using microdroplets.
US6464886B2 (en) 1996-05-13 2002-10-15 Universidad De Sevilla Device and method for creating spherical particles of uniform size
WO1999030832A1 (en) * 1997-12-17 1999-06-24 Universidad De Sevilla Stabilized capillary microjet and devices and methods for producing same
WO2012155110A1 (en) * 2011-05-11 2012-11-15 Massachusetts Institute Of Technology Microgels and microtissues for use in tissue engineering

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
AKSELBAND, Y. ET AL., J MICROBIOL METHODS, vol. 62, no. 2, 2005, pages 181 - 197
CHANG, T.M., BLOOD PURIF., vol. 18, 2000, pages 91 - 96
CHANG, T.M., SCIENCE, vol. 146, 1964, pages 524 - 525
CHANG, T.M.; S. PRAKASH., METHODS MOL.BIOL., vol. 63, 1997, pages 343 - 358
G B WILLIAMS ET AL: "Rapid microbial detection and enumeration using gel microdroplets and colorimetric or fluorescence indicator systems", JOURNAL OF CLINICAL MICROBIOLOGY, 1 May 1990 (1990-05-01), UNITED STATES, pages 1002 - 1008, XP055124571, Retrieved from the Internet <URL:http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=267854&tool=pmcentrez&rendertype=abstract> [retrieved on 20141104] *
GOMEZ-HERRERO, F. ET AL., NUCLEIC ACID RES, vol. 40, no. 14, 2012, pages 6508 - 6519
ITO K ET AL., RNA, vol. 4, no. 8, 1998, pages 958 - 72
MANOME AKIRA ET AL: "Application of gel microdroplet and flow cytometry techniques to selective enrichment of non-growing bacterial cells", FEMS MICROBIOLOGY LETTERS, WILEY-BLACKWELL PUBLISHING LTD, GB, vol. 197, no. 1, 1 January 2001 (2001-01-01), pages 29 - 33, XP002233815, ISSN: 0378-1097, DOI: 10.1016/S0378-1097(01)00079-9 *
MILSTEIN, C., BIOESSAYS., vol. 21, 1999, pages 966 - 73
SAHAR E ET AL: "FLOW CYTOMETRIC ANALYSIS OF ENTIRE MICROBIAL COLONIES", CYTOMETRY, ALAN LISS, NEW YORK, US, vol. 15, no. 3, 1 January 1994 (1994-01-01), pages 213 - 221, XP009010900, ISSN: 0196-4763, DOI: 10.1002/CYTO.990150306 *
YASUDA, T. ET AL., J. EXP CLIN CANCER RES., vol. 25, no. 26, 2009, pages 28

Similar Documents

Publication Publication Date Title
EP0411038B1 (en) Process for forming and using microdroplets
KR101446526B1 (en) Cell culture analyzing device based on microfluidic multi-well format
EP2356249B1 (en) Genetic analysis in microwells
US10577638B2 (en) Systems, devices, and methods for microbial detection and identification, and antimicrobial susceptibility testing
CN109072206A (en) The imaging to accessible genome that transposase mediates
Hsieh et al. The effect of primary cancer cell culture models on the results of drug chemosensitivity assays: the application of perfusion microbioreactor system as cell culture vessel
ES2439940T3 (en) Complex comprising a microcarrier that has a positive charge conjugated with a negatively charged brand, whose brand is a microsphere, whose microsphere is not coated with proteins, and uses thereof
JP4866162B2 (en) Evaluation method of anticancer effect
US10526575B2 (en) Cell suspension medium and cell suspension medium additive for the three dimensional growth of cells
AU2015263869A1 (en) Methods of microorganism immobilization
CN116157134A (en) Method and apparatus for patient-derived micro-organ spheres
Di Girolamo et al. Stable and selective permeable hydrogel microcapsules for high-throughput cell cultivation and enzymatic analysis
Niki et al. Granular bodies in root primary meristem cells of Zea mays L. var. Cuscoensis K.(Poaceae) that enter young vacuoles by invagination: a novel ribophagy mechanism
JP3363445B1 (en) Biopsy cell culture method and animal cell culture kit
KR101243631B1 (en) Microstructure for capturing and releasing microorganism
WO2014198994A1 (en) Method for the rapid analysis of cell activity
JP6942381B2 (en) Method for detecting cell proliferation using fluorescence in water-in-oil emulsion culture
US20100047850A1 (en) Method and device for rapid detection of microorganisms by changing the shape of micro-colonies in micro-channels
US20230257732A1 (en) Degradable hollow shell particles for high-throughput screening and sorting of cells
JP2023553838A (en) Organic microspheres used in personalized medicine and drug development
KR101798724B1 (en) Method for culturing taste cell and microfluidic device using thereof
JP2005261339A (en) Method for obtaining biological sample
Gordeev et al. 2D format for screening bacterial cells at the throughput of flow cytometry
US20080171381A1 (en) Method and device for the multiplex cells and tissues analysis
KR101944740B1 (en) Identification of specific cell from heterogeneous cell mixture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14750771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14750771

Country of ref document: EP

Kind code of ref document: A1