WO2014198884A1 - Determination of inertial navigation parameters for a carrier - Google Patents

Determination of inertial navigation parameters for a carrier Download PDF

Info

Publication number
WO2014198884A1
WO2014198884A1 PCT/EP2014/062358 EP2014062358W WO2014198884A1 WO 2014198884 A1 WO2014198884 A1 WO 2014198884A1 EP 2014062358 W EP2014062358 W EP 2014062358W WO 2014198884 A1 WO2014198884 A1 WO 2014198884A1
Authority
WO
WIPO (PCT)
Prior art keywords
navigation
carrier
parameters
sets
information
Prior art date
Application number
PCT/EP2014/062358
Other languages
French (fr)
Inventor
Arnaud PINTURAUD
Original Assignee
Sagem Defense Securite
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagem Defense Securite filed Critical Sagem Defense Securite
Publication of WO2014198884A1 publication Critical patent/WO2014198884A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments

Definitions

  • the invention relates to inertial navigation in a carrier. More specifically, it relates to a method and an inertial navigation system configured to implement the method for determining inertial navigation parameters of a carrier.
  • the carrier is for example a surface vessel, which communicates navigation parameters to an aircraft.
  • An inertial navigation system mounted on a carrier comprises in known manner accelerometers - generally three - each measuring the acceleration of the carrier along an axis, and gyrometers - generally three - each measuring the angular velocity of the carrier around an axis.
  • the resolution of the differential system implements integration steps of the inertial measurements.
  • Inertial measurements have errors that, if not corrected, are reflected in the navigation settings. In addition, these errors tend to accumulate over time. This is called inertial drift.
  • the carrier position coordinates estimated from inertial measurements can be very far from reality after a certain integration time.
  • Hybridization it is known to use a hybridization between the estimated state and auxiliary data for the determination of inertial navigation parameters of the carrier. To do this, all or part of the estimated state is compared with auxiliary data from an auxiliary source to the inertial navigation system. Hybridization thus makes it possible to estimate inertial errors and to recalibrate the navigation parameters, which reduces the inertial drift and improves the performance of the system.
  • auxiliary systems such as GNSS (Global Navigation Satellite System for satellite navigation system), baro-altimeters, lochs ...
  • the document EPI 801539 thus describes the use of a Kalman filter bank that hybridises information from the satellite navigation system with that from the inertial unit.
  • One of the filter bank filters referred to as the main filter, uses all GNSS measurements consisting of pseudo-measurements and quality information.
  • the other filters called secondary filters, use only a part of the available GNSS measurements. If a failure occurs at a satellite measurement, it will not be seen by the secondary filter not receiving this measurement: this secondary filter will remain unpolluted.
  • the document EPI 801539 This document provides to integrate advantageously only one virtual platform, and implement a satellite failure detection to select the Kalman filter whose output (correction vector in the following) will be applied (as a stabilization vector) to a virtual platform and to the inertial measurements that result from it.
  • an optimal navigation hybridized by a Kalman filter allows a priori to limit the level of the inertial errors, subject to the quality and availability of the auxiliary data, the inertial navigation parameters necessarily undergo discontinuities at each update of the vector. state of the Kalman filter, and when looping back with the navigation parameters.
  • IP pure inertia navigation
  • An intermediate solution is to use an IP navigation over a time horizon sufficiently short to keep a satisfactory level of performance, with a periodic reset by copying the states of an optimal reference navigation maintained in parallel. This makes it possible to recover a high level of performance, but periodically introduces a discrete discontinuity likely to cause the fault of a method implementing said navigation.
  • the object of the invention is to provide navigation parameters for which the influence of the inertial drift is limited, and which are free of discontinuities, so that that these navigation parameters can be transmitted to a vehicle that does not tolerate these discontinuities, for example an aircraft that uses these navigation parameters, particularly in the context of the intermediate solution presented above.
  • a method for determining navigation parameters of a carrier of an inertial navigation system comprising a set of sensors for acquiring measurements relating to the navigation of said carrier and comprising computer processing means, wherein the computer processing means of said inertial navigation system:
  • each weighting coefficient being zero at the time of registration of the set of information from which is determined set of parameters to which the weighting coefficient applies.
  • weighting coefficients vary according to a sinusoidal law
  • the nullity of a weighting coefficient coincides with the time of registration of the set of navigation information from which the state vector to which said weighting coefficient is applied is determined;
  • At least three sets of parameters are determined from at least three sets of navigation information, said at least three sets of information being each set updated at different registration times by means of reference information communicated to the bearer;
  • an inertial navigation system for a carrier comprising:
  • a set of sensors adapted to acquire measurements relating to the navigation of the carrier
  • FIG. 1 is a diagram illustrating the operation of an inertial navigation system in the context of the invention
  • FIGS. 2 and 3 are graphs illustrating examples of variations of the values of the weighting coefficients applied to the state vectors derived from the state representations, respectively in the cases with two and three state vectors;
  • FIG. 1 On which is represented an inertial navigation system for a carrier, for example a surface vessel which communicates navigation parameters to an aircraft.
  • the inertial navigation system comprises a set of sensors 2 adapted to acquire measurements relating to the navigation of the carrier, as well as computer processing means 3 adapted to handle these measurements.
  • the computer processing means 3 are typically one or more computers or computers equipped with processors, and are configured to implement the determination of navigation parameters of the carrier of the inertial navigation system 1 described below.
  • These computer processing means 3 are configured to acquire navigation measurements relating to the navigation of said carrier from the set of sensors 2, and to determine at least two sets of parameters V; each representative of the carrier's navigation from said navigation measurements and at least two sets of navigation information, said at least two sets of navigation information being each updated at different registration times by means of REF reference information communicated to the bearer.
  • the sets of navigation information correspond to representations of current states RE; representative each of the carrier's navigation.
  • the reference information is then constituted by state variables of a reference representation REF communicated to the bearer, and the update of a set of navigation information at a time of registration then corresponds to a reset to a reset time of the current state representation REi constituting said set of navigation information, by copying the state variables of the reference state representation REF.
  • a set of parameters here consists of a state vector Vi whose components form said parameters.
  • the computer processing means 3 illustrated in FIG. 1 have at least two current state representations representative each of the carrier's navigation, which can for example be maintained in state modules 4 of said computer processing means.
  • these state modules 4 being typically software modules.
  • the state vectors Vi, V 2 , V 3 determined from the current state representations RE; maintained by these state modules 4 are then each respectively weighted by a weighting coefficient ai, a 2 , a 3 before being added together at an adder 5.
  • PN navigation parameters of the carrier then correspond to this weighted sum of the vectors V; determined from current state representations.
  • n state vectors derived from n state representations n being a non-zero natural integer:
  • the current state representations REi are reset periodically by copying state variables of a reference state representation REF.
  • a reference state representation REF is maintained by a system outside the inertial navigation system, and transmitted thereto to reset its navigation parameters which necessarily undergo an inertial drift, as mentioned above.
  • a reference state representation REF is maintained at a computer system fed with external data by means of communications.
  • the instants of resetting each of the current state representations REi are different. These instants of registration are preferably chosen sufficiently spaced in time to avoid the discontinuities generated by the resets interfering with each other, and are ideally interposed regularly between them.
  • weighting coefficients 3 ⁇ 4 applied to the state vectors vary periodically, each weighting coefficient 3 ⁇ 4 being zero at the moment of registration of the current state representation E; from which is derived the state vector V; to which said weighting coefficient 3 ⁇ 4 applies.
  • the laws of variation of the weighting coefficients 3 ⁇ 4 can be any periodic laws, but the sum of the weighting coefficients must at all times to be constant, in order not to distort the amplitude of the state variables which constitute the navigation parameters and which result from the weighted sum of the state vectors Vi. However, a filter downstream of the summation could be provided to correct this amplitude.
  • the laws of variation are defined by the choice of a reset period, whose period of said laws must be an integer multiple, and by the number of state vectors V to be summed.
  • the weighting coefficients 3 ⁇ 4 vary according to a continuous law in order to limit the harmonics. Even more preferentially, the weighting coefficients 3 ⁇ 4 vary according to a sinusoidal law. The use of a law of sinusoidal variation makes it possible to limit the harmonic pollution.
  • the choice of the reset period makes it possible to concentrate the harmonics in a frequency zone that is not detrimental to the availability of the navigation parameters for the inertial navigation system. Typically, the reset period is a few hours.
  • the null times of the weighting coefficients are distributed regularly over time, so that, in the case of sinusoidal variation, the weighting coefficients 3 ⁇ 4 follow sinusoidal laws shifted from one another by 2 ⁇ ⁇ / ⁇ , n being the number of state vectors to be summed, and therefore the number of weighting coefficients 3 ⁇ 4.
  • FIGS. 2 and 3 illustrate examples of variations of the values of the weighting coefficients applied to the state vectors derived from the current state representations, respectively in the cases with two and three state vectors.
  • FIG. 2 thus shows the variations as a function of time of two coefficients of variation ai (in dash) and a 2 (in solid lines), the variations of which are respectively defined by the following formulas (without taking into account the 'an overall time offset):
  • FIG. 3 presents the variations as a function of time of three coefficients of variation ai (in dash), a 2 (in dashed lines) and a 3 (in solid lines), the variations of which are respectively defined by the following formulas :
  • FIG. 4 shows curves illustrating the evolution of the standard deviations of the navigation parameters obtained according to several configurations, revealing the inertial drifts generated by these. It should be noted that in the different configurations, the state representations are reinitialized with the same period, the initialization times being shifted between the current state representations of the same configuration.
  • the dashed bottom curve 10 represents the change in the standard deviation of the state variables of the reference state representation REF.
  • the thick line curve 11 represents the evolution of the standard deviation of the carrier's navigation parameters derived from a single state vector derived from a single state representation. It can be seen that, at the moment of reinitialization by copying of the state variables of the reference state representation REF, hence the junction of the curves 10 and 11, a strong discontinuity appears.
  • Dotted curve 12 represents the evolution of the standard deviation of the carrier's navigation parameters derived from two state vectors derived from two current state representations as described above. It can be seen that the amplitude of the inertial drift has been substantially reduced with respect to the configuration of the curve 11, and that there is no discontinuity in the navigation parameters.
  • the other curves represented by fine lines correspond to configurations with three current state representations, as described above, and six current state representations. As can be seen, these curves can hardly be distinguished from each other, so that it can be concluded that it is not advantageous to provide more than three common state representations from which determined the navigation parameters of the wearer. Indeed, each current state representation increases the necessary computing power. However, while the configuration with two state representations allows steady state to obtain a ripple rate of about 20 to 30% around a stable average value, the configuration with three state representations allows to reach a ripple level of less than 5% around this same average value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)

Abstract

The invention relates to a method for determining navigation parameters for a carrier of an inertial navigation system, wherein computer processing means (3) of said inertial navigation system (1):- determine at least two sets of parameters (Vi) each representative of the navigation of said carrier from navigation measurements and at least two sets of information, said at least two sets of information each being updated at different calibration moments using reference information (REF) communicated to the carrier, - determining the navigation parameters (PN) of the carrier by adding said at least two sets of parameters (Vi) with weight coefficients (αi) that vary periodically, each weight coefficient (αi) being zero at the calibration moment of the set of information using which the set of parameters (Vi) to which said weight coefficient (αi) applies is determined.

Description

DETERMINATION DE PARAMETRES DE NAVIGATION INERTIELLE D'UN  DETERMINATION OF INERTIAL NAVIGATION PARAMETERS OF A
PORTEUR  CARRIER
DOMAINE TECHNIQUE GENERAL ET CONTEXTE DE L'INVENTION GENERAL TECHNICAL FIELD AND CONTEXT OF THE INVENTION
L'invention concerne la navigation inertielle dans un porteur. Plus précisément, elle concerne un procédé et un système de navigation inertielle configuré pour mettre en œuvre le procédé, de détermination de paramètres de navigation inertielle d'un porteur. Le porteur est par exemple un navire de surface, qui communique des paramètres de navigation à un aéronef.  The invention relates to inertial navigation in a carrier. More specifically, it relates to a method and an inertial navigation system configured to implement the method for determining inertial navigation parameters of a carrier. The carrier is for example a surface vessel, which communicates navigation parameters to an aircraft.
Un système de navigation inertielle embarqué sur un porteur, tel qu'une centrale inertielle, comprend de manière connue des accéléromètres - généralement trois - mesurant chacun l'accélération du porteur selon un axe, et des gyromètres - généralement trois - mesurant chacun la vitesse angulaire du porteur autour d'un axe.  An inertial navigation system mounted on a carrier, such as an inertial unit, comprises in known manner accelerometers - generally three - each measuring the acceleration of the carrier along an axis, and gyrometers - generally three - each measuring the angular velocity of the carrier around an axis.
A partir de ces mesures inertielles, on estime, par résolution d'un système différentiel donné par une représentation d'état connue de l'état de la technique, un état comprenant les paramètres de navigation du porteur : coordonnées de vitesse et de position dans un repère prédéterminé, et orientation et vitesse angulaire par rapport à une référence.  From these inertial measurements, it is estimated, by resolution of a differential system given by a known state representation of the state of the art, a state comprising the carrier's navigation parameters: coordinates of speed and position in a predetermined mark, and orientation and angular velocity with respect to a reference.
La résolution du système différentiel met en oeuvre des étapes d'intégration des mesures inertielles. Les mesures inertielles comportent des erreurs qui, si elles ne sont pas corrigées, se retrouvent dans les paramètres de navigation. De plus, ces erreurs tendent à s'accumuler au cours du temps. On parle alors de dérive inertielle. En particulier, les coordonnées de position du porteur estimées à partir de mesures inertielles peuvent être très éloignées de la réalité après un certain temps d'intégration.  The resolution of the differential system implements integration steps of the inertial measurements. Inertial measurements have errors that, if not corrected, are reflected in the navigation settings. In addition, these errors tend to accumulate over time. This is called inertial drift. In particular, the carrier position coordinates estimated from inertial measurements can be very far from reality after a certain integration time.
Il est connu d'utiliser une hybridation entre l'état estimé et des données auxiliaires pour la détermination de paramètres de navigation inertielle du porteur. On compare pour ce faire tout ou partie de l'état estimé avec des données auxiliaires provenant d'une source auxiliaire au système de navigation inertielle. L'hybridation permet ainsi d'estimer les erreurs inertielles et de recaler les paramètres de navigation, ce qui diminue la dérive inertielle et améliore la performance du système.  It is known to use a hybridization between the estimated state and auxiliary data for the determination of inertial navigation parameters of the carrier. To do this, all or part of the estimated state is compared with auxiliary data from an auxiliary source to the inertial navigation system. Hybridization thus makes it possible to estimate inertial errors and to recalibrate the navigation parameters, which reduces the inertial drift and improves the performance of the system.
La comparaison et le recalage sont connus de l'homme du métier, et réalisables par exemple à l'aide d'un filtre de Kalman. Les données auxiliaires peuvent être obtenues par des systèmes auxiliaires tels que des dispositifs GNSS (acronyme de l'anglais Global Navigation Satellite System pour système de navigation par satellites), des baro-altimètres, des lochs... The comparison and registration are known to those skilled in the art, and can be performed for example using a Kalman filter. Auxiliary data can be obtained by auxiliary systems such as GNSS (Global Navigation Satellite System for satellite navigation system), baro-altimeters, lochs ...
Le document EPI 801539 décrit ainsi l'utilisation d'un banc de filtres de Kalman qui réalisent l'hybridation entre les informations issues du système de navigation par satellite et celles issues de la centrale inertielle. Un des filtres du banc de filtres, désigné par le terme de filtre principal, utilise toutes les mesures GNSS constituées de pseudo-mesures et d'informations sur la qualité de celles-ci. Les autres filtres, dit secondaires, du banc de filtres ne font usage que d'une partie seulement des mesures GNSS disponibles. Si une panne survient au niveau d'une mesure satellite, celle-ci ne sera pas vue par le filtre secondaire ne recevant pas cette mesure : ce filtre secondaire restera donc non pollué. Le document EPI 801539 Ce document prévoit de n'intégrer avantageusement qu'une seule plateforme virtuelle, et de mettre en œuvre une détection de panne satellite afin de sélectionner le filtre de Kalman dont la sortie (vecteur de correction dans ce qui suit) sera appliquée (en tant que vecteur de stabilisation) à une plateforme virtuelle et aux mesures inertielles qui en sont issues.  The document EPI 801539 thus describes the use of a Kalman filter bank that hybridises information from the satellite navigation system with that from the inertial unit. One of the filter bank filters, referred to as the main filter, uses all GNSS measurements consisting of pseudo-measurements and quality information. The other filters, called secondary filters, use only a part of the available GNSS measurements. If a failure occurs at a satellite measurement, it will not be seen by the secondary filter not receiving this measurement: this secondary filter will remain unpolluted. The document EPI 801539 This document provides to integrate advantageously only one virtual platform, and implement a satellite failure detection to select the Kalman filter whose output (correction vector in the following) will be applied (as a stabilization vector) to a virtual platform and to the inertial measurements that result from it.
Si une navigation optimale hybridée par un filtre de Kalman permet a priori de borner le niveau des erreurs inertielles, sous réserve de la qualité et de la disponibilité des données auxiliaires, les paramètres de navigation inertielle subissent nécessairement des discontinuités à chaque mise à jour du vecteur d'état du filtre de Kalman, et lors du rebouclage avec les paramètres de navigation.  If an optimal navigation hybridized by a Kalman filter allows a priori to limit the level of the inertial errors, subject to the quality and availability of the auxiliary data, the inertial navigation parameters necessarily undergo discontinuities at each update of the vector. state of the Kalman filter, and when looping back with the navigation parameters.
A l'opposé, une navigation dite inertie pure (abrégée en IP) permet de fournir des paramètres de navigation inertielle exempts de discontinuité, mais au détriment d'une augmentation de la dérive inertielle.  In contrast, a so-called pure inertia navigation (abbreviated as IP) can provide inertial navigation parameters free of discontinuity, but at the expense of an increase in inertial drift.
Une solution intermédiaire consiste à utiliser une navigation IP sur un horizon temporel suffisamment court pour garder un niveau de performance satisfaisant, avec une réinitialisation périodique par recopie des états d'une navigation optimale de référence entretenue en parallèle. Cela permet de recouvrer un haut niveau de performance, mais introduit périodiquement une discontinuité ponctuelle susceptible de provoquer la mise en défaut d'un procédé mettant en oeuvre ladite navigation.  An intermediate solution is to use an IP navigation over a time horizon sufficiently short to keep a satisfactory level of performance, with a periodic reset by copying the states of an optimal reference navigation maintained in parallel. This makes it possible to recover a high level of performance, but periodically introduces a discrete discontinuity likely to cause the fault of a method implementing said navigation.
PRESENTATION DE L'INVENTION PRESENTATION OF THE INVENTION
L'invention a pour objet de fournir des paramètres de navigation pour lesquels l'influence de la dérive inertielle est limitée, et qui soient exempts de discontinuités, de sorte que ces paramètres de navigation puissent être transmis à un véhicule ne tolérant pas ces discontinuités, par exemple un aéronef qui utilise ces paramètres de navigation, notamment dans le cadre de la solution intermédiaire présentée ci-dessus. The object of the invention is to provide navigation parameters for which the influence of the inertial drift is limited, and which are free of discontinuities, so that that these navigation parameters can be transmitted to a vehicle that does not tolerate these discontinuities, for example an aircraft that uses these navigation parameters, particularly in the context of the intermediate solution presented above.
A cet effet, il est proposé un procédé de détermination de paramètres de navigation d'un porteur d'un système de navigation inertielle, ledit système de navigation inertielle comprenant un ensemble de capteurs pour acquérir des mesures relatives à la navigation dudit porteur et comprenant des moyens informatiques de traitement, dans lequel les moyens informatiques de traitement informatique dudit système de navigation inertielle:  For this purpose, there is provided a method for determining navigation parameters of a carrier of an inertial navigation system, said inertial navigation system comprising a set of sensors for acquiring measurements relating to the navigation of said carrier and comprising computer processing means, wherein the computer processing means of said inertial navigation system:
- acquièrent des mesures de navigation relatives à la navigation dudit porteur issues dudit ensemble de capteurs,  acquire navigation measurements relating to the navigation of said carrier from said set of sensors,
- déterminent au moins deux ensembles de paramètres représentatifs chacun de la navigation dudit porteur à partir desdites mesures de navigation et d'au moins deux ensembles d'informations, lesdits au moins deux ensembles d'information étant chacun mis à jour à des instants de recalage différents au moyen d'informations de référence communiquées au porteur,  determine at least two sets of parameters each representative of the navigation of said carrier from said navigation measurements and at least two sets of information, said at least two sets of information being each updated at registration times different by means of reference information communicated to the holder,
- déterminent les paramètres de navigation du porteur en sommant lesdits au moins deux ensembles de paramètres avec des coefficients de pondération variant périodiquement, chaque coefficient de pondération étant nul à l'instant de recalage de l'ensemble d'informations à partir duquel est déterminé l'ensemble de paramètres auquel ledit coefficient de pondération s'applique.  determine the carrier's navigation parameters by summing said at least two sets of parameters with periodically varying weighting coefficients, each weighting coefficient being zero at the time of registration of the set of information from which is determined set of parameters to which the weighting coefficient applies.
Le procédé est avantageusement complété par les différentes caractéristiques suivantes prises seules ou selon leurs différentes combinaisons possibles :  The process is advantageously completed by the following different characteristics taken alone or according to their different possible combinations:
- la somme des coefficients de pondération est constante;  - the sum of the weighting coefficients is constant;
- la somme des coefficients de pondération est égale à 1;  - the sum of the weighting coefficients is equal to 1;
- les coefficients de pondération varient selon une loi continue; - the weighting coefficients vary according to a continuous law;
- les coefficients de pondération varient selon une loi sinusoïdale;  the weighting coefficients vary according to a sinusoidal law;
- la nullité d'un coefficient de pondération coïncide avec l'instant de recalage de l'ensemble d'informations de navigation à partir duquel est déterminé le vecteur d'état auquel ledit coefficient de pondération s'applique;  the nullity of a weighting coefficient coincides with the time of registration of the set of navigation information from which the state vector to which said weighting coefficient is applied is determined;
- au moins trois ensembles de paramètres sont déterminés à partir d'au moins trois ensembles d'informations de navigation, lesdits au moins trois ensembles d'information étant chacun mis à jour à des instants de recalage différents au moyen d'informations de référence communiquées au porteur; at least three sets of parameters are determined from at least three sets of navigation information, said at least three sets of information being each set updated at different registration times by means of reference information communicated to the bearer;
Il est également proposé un produit programme d'ordinateur comprenant des instructions de code de programme pour l'exécution du procédé décrit ci-dessus, lorsque ledit programme est exécuté par des moyens informatiques de traitement.  There is also provided a computer program product comprising program code instructions for performing the method described above, when said program is executed by computer processing means.
Il est également proposé un système de navigation inertielle pour un porteur, comprenant:  It is also proposed an inertial navigation system for a carrier, comprising:
- un ensemble de capteurs adaptés pour acquérir des mesures relatives à la navigation du porteur,  a set of sensors adapted to acquire measurements relating to the navigation of the carrier,
- des moyens informatiques de traitement adaptés pour traiter ces mesures et configurés pour déterminer la navigation dudit porteur au moyen du procédé décrit ci-dessus.  computer processing means adapted to process these measurements and configured to determine the navigation of said carrier by means of the method described above.
PRESENTATION DES FIGURES PRESENTATION OF FIGURES
D'autres caractéristiques, buts et avantages de l'invention ressortiront de la description qui suit, qui est purement illustrative et non limitative, et qui doit être lue en regard des dessins annexés sur lesquels:  Other features, objects and advantages of the invention will emerge from the description which follows, which is purely illustrative and nonlimiting, and which should be read with reference to the appended drawings in which:
- la figure 1 est un schéma illustrant le fonctionnement d'un système de navigation inertielle dans le cadre de l'invention;  FIG. 1 is a diagram illustrating the operation of an inertial navigation system in the context of the invention;
- les figures 2 et 3 sont des graphiques illustrant des exemples de variations des valeurs des coefficients de pondération appliqués aux vecteurs d'état dérivés des représentations d'état, respectivement dans les cas à deux et trois vecteurs d'état;  FIGS. 2 and 3 are graphs illustrating examples of variations of the values of the weighting coefficients applied to the state vectors derived from the state representations, respectively in the cases with two and three state vectors;
- la figure 4 est un graphique présentant des courbes illustrant des exemples de mise en oeuvre de l'invention en comparaison avec l'état de la technique. DESCRIPTION DETAILLEE  - Figure 4 is a graph showing curves illustrating examples of implementation of the invention in comparison with the state of the art. DETAILED DESCRIPTION
Il est fait référence au schéma de la figure 1 , sur lequel est représenté un système de navigation inertielle pour un porteur, par exemple un navire de surface qui communique des paramètres de navigation à un aéronef. Le système de navigation inertielle comprend un ensemble de capteurs 2 adaptés pour acquérir des mesures relatives à la navigation du porteur, ainsi que des moyens informatiques de traitement 3 adaptés pour traiter ces mesures. Les moyens informatiques de traitement 3 sont typiquement un ou plusieurs ordinateurs ou calculateurs munis de processeurs, et sont configurés pour mettre en oeuvre la détermination de paramètres de navigation du porteur du système de navigation inertielle 1 décrite ci-après. Reference is made to the diagram of FIG. 1, on which is represented an inertial navigation system for a carrier, for example a surface vessel which communicates navigation parameters to an aircraft. The inertial navigation system comprises a set of sensors 2 adapted to acquire measurements relating to the navigation of the carrier, as well as computer processing means 3 adapted to handle these measurements. The computer processing means 3 are typically one or more computers or computers equipped with processors, and are configured to implement the determination of navigation parameters of the carrier of the inertial navigation system 1 described below.
Ces moyens informatiques de traitement 3 sont configurés pour acquérir des mesures de navigation relatives à la navigation dudit porteur issues de l'ensemble de capteurs 2, et pour déterminer au moins deux ensembles de paramètres V; représentatifs chacun de la navigation du porteur à partir desdites mesures de navigation et d'au moins deux ensembles d'informations de navigation, lesdits au moins deux ensembles d'information de navigation étant chacun mis à jour à des instants de recalage différents au moyen d'informations de référence REF communiquées au porteur.  These computer processing means 3 are configured to acquire navigation measurements relating to the navigation of said carrier from the set of sensors 2, and to determine at least two sets of parameters V; each representative of the carrier's navigation from said navigation measurements and at least two sets of navigation information, said at least two sets of navigation information being each updated at different registration times by means of REF reference information communicated to the bearer.
La description qui suit fait référence à des modes de réalisations de l'invention dans lesquels les ensembles d'informations de navigation correspondent à des représentations d'états courantes RE; représentatives chacune de la navigation du porteur. Les informations de référence sont alors constituées par des variables d'état d'une représentation de référence REF communiquées au porteur, et la mise à jour d'un ensemble d'informations de navigation à un instant de recalage correspond alors à une réinitialisation à un instant de réinitialisation de la représentation d'état courante REi constituant ledit ensemble d'information de navigation, par recopie des variables d'état de la représentation d'état de référence REF. De même, un ensemble de paramètres est ici constitué par un vecteur d'état Vi, dont les composantes forment lesdits paramètres.  The following description refers to embodiments of the invention in which the sets of navigation information correspond to representations of current states RE; representative each of the carrier's navigation. The reference information is then constituted by state variables of a reference representation REF communicated to the bearer, and the update of a set of navigation information at a time of registration then corresponds to a reset to a reset time of the current state representation REi constituting said set of navigation information, by copying the state variables of the reference state representation REF. Similarly, a set of parameters here consists of a state vector Vi whose components form said parameters.
Ainsi, les moyens informatiques de traitement 3 illustrés par la figure 1 disposent d'au moins deux représentations d'état courantes représentatives chacune de la navigation du porteur, qui peuvent par exemple être entretenues dans des modules d'état 4 desdits moyens informatiques de traitement, ces modules d'état 4 étant typiquement des modules logiciels. Dans le système de la figure 1, il y a trois modules d'état 4 référencés respectivement 4i, 42 et 43, qui entretiennent chacun une représentation d'état courante REi, RE2, RE3. A partir des mesures de navigation et de ces représentations d'état constituant les ensembles d'informations, des vecteurs d'état Vi, V2, V3 constituant les ensembles de paramètres sont déterminés par les moyens informatiques de traitement 3 du système de navigation inertielle 1. Thus, the computer processing means 3 illustrated in FIG. 1 have at least two current state representations representative each of the carrier's navigation, which can for example be maintained in state modules 4 of said computer processing means. these state modules 4 being typically software modules. In the system of FIG. 1, there are three state modules 4 respectively referenced 4i, 4 2 and 4 3 , which each maintain a current state representation RE 1 , RE 2 , RE 3 . From the navigation measurements and these state representations constituting the information sets, state vectors Vi, V 2 , V 3 constituting the sets of parameters are determined by the computer processing means 3 of the navigation system. inertial 1.
Les vecteurs d'état Vi, V2, V3 déterminés à partir des représentations d'état courantes RE; entretenues par ces modules d'état 4 sont ensuite chacun respectivement pondéré par un coefficient de pondération ai, a2, a3 avant d'être additionnés ensemble au niveau d'un additionneur 5. The state vectors Vi, V 2 , V 3 determined from the current state representations RE; maintained by these state modules 4 are then each respectively weighted by a weighting coefficient ai, a 2 , a 3 before being added together at an adder 5.
Les paramètres de navigation PN du porteur correspondent alors à cette somme pondérée des vecteurs V; déterminés à partir des représentations d'état courantes. Ainsi, dans le cas de n vecteurs d'état dérivés de n représentations d'état, n étant un entier naturel non nul :  The PN navigation parameters of the carrier then correspond to this weighted sum of the vectors V; determined from current state representations. Thus, in the case of n state vectors derived from n state representations, n being a non-zero natural integer:
n
Figure imgf000008_0001
not
Figure imgf000008_0001
Les représentations d'état courantes REi sont réinitialisées périodiquement par recopie de variables d'état d'une représentation d'état de référence REF. Typiquement, une telle représentation d'état de référence REF est entretenue par un système extérieur au système de navigation inertielle, et transmise à celle-ci pour recaler ses paramètres de navigation qui subissent nécessairement une dérive inertielle, comme évoqué plus haut. Par exemple, une représentation d'état de référence REF est entretenue au niveau d'un système informatique alimenté en données extérieures par des moyens de communications.  The current state representations REi are reset periodically by copying state variables of a reference state representation REF. Typically, such a reference state representation REF is maintained by a system outside the inertial navigation system, and transmitted thereto to reset its navigation parameters which necessarily undergo an inertial drift, as mentioned above. For example, a reference state representation REF is maintained at a computer system fed with external data by means of communications.
Comme indiqué plus haut, la réinitialisation d'une représentation d'état courante REi implique une discontinuité de celle-ci, susceptible d'engendrer des problèmes pour l'exploitation des paramètres de navigation engendrés par le vecteur d'état V; dérivé de ladite représentation d'état courante REi.  As indicated above, the reinitialization of a current state representation REi implies a discontinuity of it, likely to cause problems for the exploitation of the navigation parameters generated by the state vector V; derived from said current state representation REi.
Afin d'éviter des discontinuités pour l'ensemble des vecteurs d'état à partir desquels sont déterminés les paramètres de navigation, les instants de recalage de chacune des représentations d'état courantes REi sont différents. Ces instants de recalage sont de préférence choisis suffisamment espacés dans le temps pour ne pas que les discontinuités engendrées par les réinitialisations n'interfèrent entre elles , et sont idéalement intercalés régulièrement entre eux.  In order to avoid discontinuities for the set of state vectors from which the navigation parameters are determined, the instants of resetting each of the current state representations REi are different. These instants of registration are preferably chosen sufficiently spaced in time to avoid the discontinuities generated by the resets interfering with each other, and are ideally interposed regularly between them.
Les coefficients de pondération ¾ appliqués aux vecteurs d'état varient périodiquement, chaque coefficient de pondération ¾ étant nul à l'instant de recalage de la représentation d'état courante E; de laquelle est dérivé le vecteur d'état V; auquel ledit coefficient de pondération ¾ s'applique.  The weighting coefficients ¾ applied to the state vectors vary periodically, each weighting coefficient ¾ being zero at the moment of registration of the current state representation E; from which is derived the state vector V; to which said weighting coefficient ¾ applies.
Les lois de variation des coefficients de pondération ¾ peuvent être des lois périodiques quelconques, mais la somme des coefficients de pondération doit à tout instant être constante, afin de ne pas distordre l'amplitude des variables d'état qui constituent les paramètres de navigation et qui résultent de la somme pondérée des vecteurs d'état Vi. On pourrait cependant prévoir un filtre en aval de la sommation afin de corriger cette amplitude. The laws of variation of the weighting coefficients ¾ can be any periodic laws, but the sum of the weighting coefficients must at all times to be constant, in order not to distort the amplitude of the state variables which constitute the navigation parameters and which result from the weighted sum of the state vectors Vi. However, a filter downstream of the summation could be provided to correct this amplitude.
Les lois de variation sont définies par le choix d'une période de réinitialisation, dont la période desdites lois doit être un multiple entier, et par le nombre de vecteurs d'état V à sommer.  The laws of variation are defined by the choice of a reset period, whose period of said laws must be an integer multiple, and by the number of state vectors V to be summed.
L'utilisation d'une loi de variation quelconque est susceptible de faire apparaître un nombre important d'harmoniques. De préférence, les coefficients de pondération ¾ varient selon une loi continue afin de limiter les harmoniques. Encore préférentiellement, les coefficients de pondération ¾ varient selon une loi sinusoïdale. L'utilisation d'une loi de variation sinusoïdale permet de limiter la pollution harmonique. De même, le choix de la période de réinitialisation permet de concentrer les harmoniques dans une zone de fréquences qui ne soit pas préjudiciable à la disponibilité des paramètres de navigation pour le système de navigation inertielle. Typiquement, la période de réinitialisation est de quelques heures.  The use of any law of variation is likely to reveal a large number of harmonics. Preferably, the weighting coefficients ¾ vary according to a continuous law in order to limit the harmonics. Even more preferentially, the weighting coefficients ¾ vary according to a sinusoidal law. The use of a law of sinusoidal variation makes it possible to limit the harmonic pollution. Likewise, the choice of the reset period makes it possible to concentrate the harmonics in a frequency zone that is not detrimental to the availability of the navigation parameters for the inertial navigation system. Typically, the reset period is a few hours.
De préférence, les instants nuls des coefficients de pondération sont répartis régulièrement dans le temps, de sorte que dans le cas de variation sinusoïdales, les coefficients de pondération ¾ suivent des lois sinusoïdales décalées les unes des autres de 2χπ/η, n étant le nombre de vecteurs d'état à sommer, et donc le nombre de coefficients de pondération ¾. Preferably, the null times of the weighting coefficients are distributed regularly over time, so that, in the case of sinusoidal variation, the weighting coefficients ¾ follow sinusoidal laws shifted from one another by 2 χ π / η, n being the number of state vectors to be summed, and therefore the number of weighting coefficients ¾.
Les figures 2 et 3 illustrent des exemples de variations des valeurs des coefficients de pondération appliqués aux vecteurs d'état dérivés des représentations d'état courantes, respectivement dans les cas à deux et trois vecteurs d'état.  FIGS. 2 and 3 illustrate examples of variations of the values of the weighting coefficients applied to the state vectors derived from the current state representations, respectively in the cases with two and three state vectors.
Ces exemples montrent des modes de réalisation qui, bien que préférentiels, ne sont pas limitatifs. Dans ceux-ci, la somme des coefficients de pondération ¾ est égale à 1 , de sorte que la somme pondérée des vecteurs d'état présente directement une amplitude correspondant aux variables d'état constituant les paramètres de navigation, afin de pouvoir directement les exploiter. Les coefficients de pondération suivent une loi de variation sinusoïdale.  These examples show embodiments which, although preferential, are not limiting. In these, the sum of the weighting coefficients ¾ is equal to 1, so that the weighted sum of the state vectors directly presents an amplitude corresponding to the state variables constituting the navigation parameters, in order to directly exploit them. . The weighting coefficients follow a law of sinusoidal variation.
L'exemple de la figure 2 présente ainsi les variations en fonction du temps de deux coefficients de variation ai (en tiret) et a2 (en trait plein), dont les variations sont respectivement définies par les formules suivantes (sans prise en compte d'un décalage temporel global):
Figure imgf000010_0001
The example of FIG. 2 thus shows the variations as a function of time of two coefficients of variation ai (in dash) and a 2 (in solid lines), the variations of which are respectively defined by the following formulas (without taking into account the 'an overall time offset):
Figure imgf000010_0001
avec T la période correspondant à la durée entre deux annulations consécutives d'un coefficient de pondération. On constate que la somme de ai et de a2 est constante et égale à 1. with T the period corresponding to the duration between two consecutive cancellations of a weighting coefficient. We find that the sum of ai and a 2 is constant and equal to 1.
L'exemple de la figure 3 présente les variations en fonction du temps de trois coefficients de variation ai (en tiret), a2 (en pointillés) et a3 (en trait plein), dont les variations sont respectivement définies par les formules suivantes: The example of FIG. 3 presents the variations as a function of time of three coefficients of variation ai (in dash), a 2 (in dashed lines) and a 3 (in solid lines), the variations of which are respectively defined by the following formulas :
Figure imgf000010_0002
Figure imgf000010_0002
avec T la période correspondant à la durée entre deux annulations consécutives d'un coefficient de pondération. On constate que la somme de ai, a2 et a3 est constante et égale à 1. with T the period corresponding to the duration between two consecutive cancellations of a weighting coefficient. We find that the sum of ai, a 2 and a 3 is constant and equal to 1.
On peut établir sur ce modèle une généralisation à n coefficients de pondération, suivant la formule général
Figure imgf000010_0003
We can establish on this model a generalization with n weighting coefficients, according to the general formula
Figure imgf000010_0003
La figure 4 montre des courbes illustrant l'évolution des écarts-types des paramètres de navigation obtenus selon plusieurs configurations, révélant les dérives inertielles engendrées par celles-ci. Il est à noter que dans les différentes configurations, les représentations d'état sont réinitialisées avec une même période, les instants d'initialisation étant décalés entre les représentations d'état courantes d'une même configuration.  FIG. 4 shows curves illustrating the evolution of the standard deviations of the navigation parameters obtained according to several configurations, revealing the inertial drifts generated by these. It should be noted that in the different configurations, the state representations are reinitialized with the same period, the initialization times being shifted between the current state representations of the same configuration.
La courbe 10 du bas, en tirets, représente l'évolution de l'écart-type des variables d'état de la représentation d'état de référence REF. La courbe en trait épais 11 représente l'évolution de l'écart-type des paramètres de navigation du porteur issus d'un seul vecteur d'état dérivé d'une unique représentation d'état. On constate qu'à l'instant to de réinitialisation par recopie des variables d'état de la représentation d'état de référence REF, d'où la jonction des courbes 10 et 1 1 , une forte discontinuité apparaît. La courbe 12 en pointillés représente l'évolution de l'écart-type des paramètres de navigation du porteur issus de deux vecteurs d'état dérivés de deux représentations d'état courantes comme décrit plus haut. On constate que l'amplitude de la dérive inertielle a été sensiblement diminuée par rapport à la configuration de la courbe 11 , et qu'il n'y a pas de discontinuité dans les paramètres de navigation. The dashed bottom curve 10 represents the change in the standard deviation of the state variables of the reference state representation REF. The thick line curve 11 represents the evolution of the standard deviation of the carrier's navigation parameters derived from a single state vector derived from a single state representation. It can be seen that, at the moment of reinitialization by copying of the state variables of the reference state representation REF, hence the junction of the curves 10 and 11, a strong discontinuity appears. Dotted curve 12 represents the evolution of the standard deviation of the carrier's navigation parameters derived from two state vectors derived from two current state representations as described above. It can be seen that the amplitude of the inertial drift has been substantially reduced with respect to the configuration of the curve 11, and that there is no discontinuity in the navigation parameters.
Les autres courbes représentées par des traits fins correspondent à des configurations à trois représentations d'état courantes, comme décrit plus haut, et à six représentations d'état courantes. Ainsi qu'il peut être constaté, ces courbes peuvent difficilement être distinguées les unes des autres, de sorte qu'il peut en être conclu qu'il n'est pas avantageux de prévoir plus de trois représentations d'état courantes à partir desquelles sont déterminés les paramètres de navigation du porteur. En effet, chaque représentation d'état courante augmente la puissance de calcul nécessaire. Cependant, tandis que la configuration à deux représentations d'état permet en régime permanent d'obtenir un taux d'ondulation de l'ordre de 20 à 30% autour d'une valeur moyenne stable, la configuration à trois représentations d'état permet d'atteindre un niveau d'ondulation inférieur à 5% autour de cette même valeur moyenne.  The other curves represented by fine lines correspond to configurations with three current state representations, as described above, and six current state representations. As can be seen, these curves can hardly be distinguished from each other, so that it can be concluded that it is not advantageous to provide more than three common state representations from which determined the navigation parameters of the wearer. Indeed, each current state representation increases the necessary computing power. However, while the configuration with two state representations allows steady state to obtain a ripple rate of about 20 to 30% around a stable average value, the configuration with three state representations allows to reach a ripple level of less than 5% around this same average value.
Bien entendu, l'invention n'est pas limitée à l'exemple de réalisation décrit et représenté aux figures annexées. Des modifications restent possibles, notamment du point de vue de la réalisation concrète des caractéristiques techniques, ou par substitution d'équivalents techniques, sans sortir pour autant du domaine de protection de l'invention.  Of course, the invention is not limited to the embodiment described and shown in the accompanying figures. Modifications are possible, particularly from the point of view of the concrete realization of the technical characteristics, or by substitution of technical equivalents, without departing from the scope of the invention.

Claims

Revendications claims
1. Procédé de détermination de paramètres de navigation d'un porteur d'un système de navigation inertielle (1 ), ledit système de navigation inertielle (1) comprenant un ensemble de capteurs (2) pour acquérir des mesures relatives à la navigation dudit porteur et comprenant des moyens informatiques de traitement (3), caractérisé en ce que les moyens informatiques de traitement (3) dudit système de navigation inertielle (1): 1. Method for determining navigation parameters of a carrier of an inertial navigation system (1), said inertial navigation system (1) comprising a set of sensors (2) for acquiring measurements relating to the navigation of said carrier and comprising computer processing means (3), characterized in that the computer processing means (3) of said inertial navigation system (1):
- acquièrent des mesures de navigation relatives à la navigation dudit porteur issues dudit ensemble de capteurs (2),  acquire navigation measurements relating to the navigation of said carrier from said set of sensors (2),
- déterminent au moins deux ensembles de paramètres (¼) représentatifs chacun de la navigation dudit porteur à partir desdites mesures de navigation et d'au moins deux ensembles d'informations, lesdits au moins deux ensembles d'information étant chacun mis à jour à des instants de recalage différents au moyen d'informations de référence (REF) communiquées au porteur, determine at least two sets of parameters (¼) representative each of the navigation of said carrier from said navigation measurements and at least two sets of information, said at least two sets of information being each updated to different registration times by means of reference information (REF) communicated to the bearer,
- déterminent les paramètres de navigation (PN) du porteur en sommant lesdits au moins deux ensembles de paramètres (¼) avec des coefficients de pondération (¾) variant périodiquement, chaque coefficient de pondération (¾) étant nul à l'instant de recalage de l'ensemble d'informations au moyen duquel est déterminé l'ensemble de paramètres (Vi) auquel ledit coefficient de pondération (¾) s'applique. determine the carrier's navigation parameters (PN) by summing said at least two sets of parameters (¼) with periodically varying weighting coefficients (¾), each weighting coefficient (¾) being zero at the moment of registration of the the set of information by which the set of parameters (Vi) to which said weighting coefficient (¾) is applied is determined.
2. Procédé selon la revendication 1 , dans lequel la somme des coefficients de pondération (¾) est constante. 2. The method of claim 1, wherein the sum of the weighting coefficients (¾) is constant.
3. Procédé selon la revendication 2, dans lequel la somme des coefficients de pondération (¾) est égale à 1. 3. The method of claim 2, wherein the sum of the weighting coefficients (¾) is equal to 1.
4. Procédé selon l'une des revendications 1 à 3, dans lequel les coefficients de variation (¾) varient selon une loi continue. 4. Method according to one of claims 1 to 3, wherein the coefficients of variation (¾) vary according to a continuous law.
5. Procédé selon l'une des revendications 1 à 4, dans lequel les coefficients de pondération (¾) varient selon une loi sinusoïdale. 5. Method according to one of claims 1 to 4, wherein the weighting coefficients (¾) vary according to a sinusoidal law.
6. Procédé selon l'une des revendications 1 à 5, dans lequel la nullité d'un coefficient de pondération (¾) coïncide avec l'instant de recalage de l'ensemble d'information à partir duquel est déterminé l'ensemble de paramètres (¼) auquel ledit coefficient de pondération (¾) s'applique. 6. Method according to one of claims 1 to 5, wherein the nullity of a weighting coefficient (¾) coincides with the time of registration of the set of information from which is determined the set of parameters. (¼) at which said weighting coefficient (¾) applies.
7. Procédé selon l'une des revendications 1 à 6, dans lequel les moyens informatiques de traitement déterminent au moins trois ensembles de paramètres (Vi) représentatifs chacun de la navigation dudit porteur à partir desdites mesures de navigation et d'au moins trois ensembles d'informations, lesdits au moins trois ensembles d'information étant chacun mis à jour à des instants de recalage différents au moyen d'informations de référence (REF) communiquées au porteur, 7. Method according to one of claims 1 to 6, wherein the computer processing means determine at least three sets of parameters (Vi) each representative of the navigation of said carrier from said navigation measurements and at least three sets information, said at least three sets of information being each updated at different registration times by means of reference information (REF) communicated to the bearer,
8. Produit programme d'ordinateur comprenant des instructions de code de programme pour l'exécution du procédé selon l'une des revendications 1 à 7, lorsque ledit programme est exécuté par des moyens informatiques de traitement. A computer program product comprising program code instructions for executing the method according to one of claims 1 to 7, when said program is executed by computer processing means.
9. Système de navigation inertielle pour un porteur, comprenant: 9. Inertial navigation system for a carrier, comprising:
- un ensemble de capteurs (2) adaptés pour acquérir des mesures relatives à la navigation du porteur,  a set of sensors (2) adapted to acquire measurements relating to the navigation of the carrier,
- des moyens informatiques de traitement (3) adaptés pour traiter ces mesures, caractérisée en ce que les moyens informatiques de traitement sont configurés pour déterminer des paramètres de navigation dudit porteur au moyen du procédé selon l'une des revendications 1 à 7.  - Computer processing means (3) adapted to process these measurements, characterized in that the computer processing means are configured to determine navigation parameters of said carrier by means of the method according to one of claims 1 to 7.
PCT/EP2014/062358 2013-06-14 2014-06-13 Determination of inertial navigation parameters for a carrier WO2014198884A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1301379 2013-06-14
FR1301379A FR3007129B1 (en) 2013-06-14 2013-06-14 DETERMINATION OF INERTIAL NAVIGATION PARAMETERS OF A BEARER

Publications (1)

Publication Number Publication Date
WO2014198884A1 true WO2014198884A1 (en) 2014-12-18

Family

ID=49322428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/062358 WO2014198884A1 (en) 2013-06-14 2014-06-13 Determination of inertial navigation parameters for a carrier

Country Status (2)

Country Link
FR (1) FR3007129B1 (en)
WO (1) WO2014198884A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105424040A (en) * 2016-01-15 2016-03-23 极翼机器人(上海)有限公司 Novel MEMS (micro-electromechanical systems) inertial sensor array redundancy configuration method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106153060A (en) * 2016-07-13 2016-11-23 上海斐讯数据通信技术有限公司 A kind of routing method and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1801539A1 (en) 2005-12-20 2007-06-27 Thales Closed loop hybridisation device with surveillance of measurement integrity
EP1862764A1 (en) * 2006-05-31 2007-12-05 Honeywell International Inc. High speed gyrocompass alignment via multiple kalman filter based hypothesis testing
FR2939900A1 (en) * 2008-12-17 2010-06-18 Sagem Defense Securite CLOSED LOOP HYBRIDIZATION DEVICE INTEGRATED BY CONSTRUCTION.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1801539A1 (en) 2005-12-20 2007-06-27 Thales Closed loop hybridisation device with surveillance of measurement integrity
EP1862764A1 (en) * 2006-05-31 2007-12-05 Honeywell International Inc. High speed gyrocompass alignment via multiple kalman filter based hypothesis testing
FR2939900A1 (en) * 2008-12-17 2010-06-18 Sagem Defense Securite CLOSED LOOP HYBRIDIZATION DEVICE INTEGRATED BY CONSTRUCTION.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105424040A (en) * 2016-01-15 2016-03-23 极翼机器人(上海)有限公司 Novel MEMS (micro-electromechanical systems) inertial sensor array redundancy configuration method
CN105424040B (en) * 2016-01-15 2019-09-13 极翼机器人(上海)有限公司 A kind of novel MEMS inertial sensor array redundant configurations method

Also Published As

Publication number Publication date
FR3007129B1 (en) 2015-06-19
FR3007129A1 (en) 2014-12-19

Similar Documents

Publication Publication Date Title
EP1801539B1 (en) Closed loop hybridisation device with surveillance of measurement integrity
EP2938965B1 (en) Method for comparing two inertial units integral with a same carrier
EP3213033A1 (en) Method of estimating a navigation state constrained in terms of observability
FR2899344A1 (en) Earth observation instrument`s line of sight rolling, pitch/yaw movement restituting method for e.g. satellite, involves calculating variations in line of sight by updating mapping model of images, and restituting movements of line of sight
FR3104856A1 (en) Method for determining the position and / or speed of a rotor of an electrical machine by processing signals from a position sensor
FR2939900A1 (en) CLOSED LOOP HYBRIDIZATION DEVICE INTEGRATED BY CONSTRUCTION.
WO2018037191A1 (en) Method and device for estimating force
WO2014198884A1 (en) Determination of inertial navigation parameters for a carrier
EP2460143B1 (en) Method for detecting shifts in line images obtained by a sensor that is airborne or moving in space
EP3385677B1 (en) A system and a method of analyzing and monitoring interfering movements of an inertial unit during a stage of static alignment
WO2021156560A1 (en) Method and device for optical detection
EP3403054B1 (en) Device and method for maintaining the attitude of a carrier using gyroscopes
WO2016189078A1 (en) Method for controlling the precession of a vibrating gyroscope
EP2375724B1 (en) stabilization of captured image
FR3003414A1 (en) METHOD OF CALIBRATING A POSITION SENSOR IN A SYNCHRONOUS ELECTRIC MACHINE
EP2388620B1 (en) Apparatus for discriminating the phase and the phase variation of a signal
EP0975126B1 (en) Method for estimating the frequency error in a QPSK demodulator
EP4002675B1 (en) Method and apparatus for estimating the position of a rotor of a synchronous electric machine
WO2023036825A1 (en) Device for measuring angular errors in the inclination of the true axis of rotation of a rotary element, and associated method
FR3001073A1 (en) MOVEMENT ESTIMATION OF AN IMAGE
FR3028941A1 (en) DEVICE AND METHOD FOR DETERMINING A GROSS COMPONENT OF A LATITUDE OR LONGITUDE POSITION OF A MOBILE DEVICE
WO2019220040A1 (en) Determining the pedalling cadence of a cyclist
EP2721421A1 (en) Device and method for measuring acceleration with digital demodulation
WO2010122136A1 (en) Method for determining inertial navigation parameters of a carrier and associated inertial navigation system
FR3084222A1 (en) METHOD FOR DETERMINING THE POSITION AND SPEED OF THE ROTOR OF A SYNCHRONOUS ELECTRIC MACHINE WITH A ROTOR REEL.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14730156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14730156

Country of ref document: EP

Kind code of ref document: A1