WO2014195528A1 - Process for eliminating microalgae by means of ultrafiltration - Google Patents

Process for eliminating microalgae by means of ultrafiltration Download PDF

Info

Publication number
WO2014195528A1
WO2014195528A1 PCT/ES2013/070362 ES2013070362W WO2014195528A1 WO 2014195528 A1 WO2014195528 A1 WO 2014195528A1 ES 2013070362 W ES2013070362 W ES 2013070362W WO 2014195528 A1 WO2014195528 A1 WO 2014195528A1
Authority
WO
WIPO (PCT)
Prior art keywords
microalgae
water
ultrafiltration
concentration
active carbon
Prior art date
Application number
PCT/ES2013/070362
Other languages
Spanish (es)
French (fr)
Inventor
Ricardo SANDÍN RODRÍGUEZ
Beatriz CORZO GARCÍA
Enrique FERRERO POLO
Jorge Juan MALFEITO SÁNCHEZ
Original Assignee
Acciona Agua, S. A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acciona Agua, S. A. filed Critical Acciona Agua, S. A.
Priority to PCT/ES2013/070362 priority Critical patent/WO2014195528A1/en
Priority to ES201490073A priority patent/ES2524386B1/en
Publication of WO2014195528A1 publication Critical patent/WO2014195528A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/26Treatment of water, waste water, or sewage by extraction
    • C02F1/265Desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/22Eliminating or preventing deposits, scale removal, scale prevention

Definitions

  • the present invention relates to a method for reducing fouling in ultrafiltration membranes during algal bloom episodes in desalination processes. Therefore, the invention could be framed in the field of desalination procedures, in particular desalination procedures with reverse osmosis membranes where ultrafiltration membranes are used as pretreatment.
  • Algae blooms are produced by the presence of microscopic algae (phytoplankton) and macroscopic algae (macroalgae). These cause problems in the operation of the plant and result in a higher consumption of chemical reagents, an increase in fouling of the membranes and in extreme cases even a stop in the reverse osmosis plant. (Carón et al., Water Research, 44 (2010), 385-416).
  • Ultrafiltration is able to completely eliminate algae because the pore size is considerably smaller than the size of the algae.
  • transmembrane pressure TMP
  • This fact has been widely described in articles (Kwon et al., Desalination, 179 (2005), 203-214 and Drews et al., Desalination, 200 (2006), 186-188.)
  • EPS extracellular polymeric substances
  • the algae produce extracellular polymeric substances (EPS), which have a decisive role in reducing permeability with the consequent increase in pressure to keep the flow constant.
  • EPS are a set of high molecular weight compounds (polysaccharides, proteins, glycoproteins and glycolipids), where polysaccharides are generally present in greater concentration.
  • the EPS can be attached to the surface of the cell (microalgae) or excreted into the medium.
  • the role of EPS in fouling ultrafiltration membranes is widely known. Through this phenomenon of superficial fouling of the membranes a layer called biofilm is generated, where higher concentrations of polysaccharides than of proteins have been found (F.
  • the biofilm mainly comprises EPS and bacteria.
  • the filter cake is also formed, which is a cake comprising the solids deposited on the surface of the membrane.
  • ultrafiltration cakes of seawater include microalgae, EPS and solids that may be suspended in the water, usually sands and silicates. These filter cakes are removed by backwashing. Not so with biofilm, which is a much harder layer to remove with backwash.
  • the TMP can be considerably increased by the effect of the biofilm that forms on the ultrafiltration membrane, even resulting in the shutdown of the plant. Therefore, from time to time chemical washes are carried out with sodium hypochlorite or caustic soda.
  • CA active carbon
  • the present invention relates to a method for the removal of microalgae from water in episodes of algal bloom in ultrafiltration membranes.
  • the invention establishes a robust process that allows the operation of water treatment plants comprising ultrafiltration, such as a reverse osmosis plant, during algal bloom episodes, avoiding the consequences associated with a possible unscheduled shutdown due to the blooms of algae;
  • a first aspect of the present invention relates to a process for the removal of microalgae from water comprising the steps of: a) adding active carbon to water comprising microalgae; and b) filtration of the water of step (a) with an ultrafiltration membrane; where said procedure is characterized in that the concentration of microalgae to be eliminated is greater than 500 microalgae / ml of water.
  • a first aspect of the present invention relates to a process for the removal of microalgae from water comprising the steps of: a) adding active carbon to water comprising microalgae; and b) filtration of the water of step (a) with an ultrafiltration membrane; where said procedure is characterized in that the concentration of microalgae to be eliminated is greater than 500 microalgae / ml of water.
  • the process of the invention is directed to the elimination of microalgae under algal bloom conditions.
  • Algae bloom means a rapid increase or accumulation of the algae population in an aquatic system. Algae bloom can occur in both freshwater ecosystems and marine systems.
  • concentration of algae from which an algal bloom is considered to exist is not defined precisely in the art. Algae bloom is considered to exist when their concentration is greater than hundreds of algae per milliliter. In the context of the invention, it is considered that there is an algal bloom when the concentration is greater than 500 microalgae / ml of water.
  • microalgae means microscopic algae, which are single-cell and photosynthetic microorganisms.
  • the microalgae have a diameter that ranges between 1 ⁇ and 2 mm.
  • An ultrafiltration membrane is a semipermeable membrane with a pore size between 0.01 ⁇ and 0.1 ⁇ .
  • Ultrafiltration is a type of filtration in which hydrostatic pressure forces a liquid against a semipermeable membrane. Suspended solids and high molecular weight solutes are retained, while water and low molecular weight solutes cross the membrane.
  • Ultrafiltration membranes can be pressurized or submerged. Preferably, the ultrafiltration membrane is pressurized.
  • Pressurized ultrafiltration membranes are hollow fiber membranes that require a supply pump that forces water to pass through the membrane.
  • submerged ultrafiltration membranes are hollow fiber membranes contained in a reservoir with the water to be treated where ultrafiltration is carried out by suction.
  • the method as described above further comprises a step (c) of backwashing to remove the filter cake.
  • Counterwashing means the process by which the direction of filtration is reversed in a filter medium in order to achieve the elimination of solids deposited in the filtration membrane and that generate the increase in TMP.
  • a filter cake is a cake formed by solids deposited on the surface of the membrane and that exerts a resistance to the filtration process, not due to the membrane itself.
  • the cake is a hybrid cake comprising microalgae, EPS and solids that could be suspended in water and activated carbon.
  • the active carbon is powdered active carbon. Active carbon powder means active carbon with a particle size between 1 and 150 ⁇ .
  • the concentration of the active carbon in step (a) is 5 mg / 1 g / l, preferably it is 15 mg / 500 mg / l, more preferably it is 25 mg / l 250 mg / l and even more preferably 50 mg / l 150 mg / l.
  • the ultrafiltration membrane has a nominal molecular weight of cut from 5000 to 300000, preferably from 25000 to 200000 and more preferably from 50,000 to 150,000.
  • Nominal molecular weight of cut is the minimum molecular step (in kilodaltons) that ultrafiltration membranes can retain. It is defined as the ability of a membrane to retain 90% of a globular macromolecule of a certain molecular weight.
  • the concentration of microalgae is 5000 microalgae / ml to 10000000 microalgae / ml, preferably it is 10000 microalgae / ml to 7500000 microalgae / ml, more preferably it is 100000 microalgae / ml to 6000000 microalgae / ml and even more preferably is from 250,000 microalgae / ml to 50,000 microalgae / ml.
  • the microalgae have a diameter of 1 m to 500 ⁇ , preferably 2 ⁇ to 100 ⁇ .
  • the filtration flow of step (b) is 20 l / m 2 h at 75 l / m 2 h, preferably 35 l / m 2 h at 60 l / m 2 h.
  • the backwash flow of step (c) is 80 l / m 2 h at 180 l / m 2 h, preferably 100 l / m 2 h at 150 l / m 2 h .
  • the water comprising the microalgae is selected from brackish water and seawater, preferably the water is seawater.
  • Brackish water means water that has more dissolved salts than fresh water but less than seawater. Brackish water is considered to be water that comprises between 0.5 and 30 grams of salt per liter. Marine water (or seawater) means the water that makes up the oceans and seas of the Earth. The concentration of salts is on average 35 grams per liter.
  • the water comprising the microalgae does not comprise macroalgae.
  • macroalgae a multicellular algae is understood and therefore it is distinguished from microalgae in its size. Normally, the macroalgae that the water might contain will have been previously separated in a filtration prior to ultrafiltration.
  • Fig. 1 Variation of the ultrafiltration transmembrane pressure of example 1 a when the concentration of active carbon is 0 mg / l.
  • TMP Transmembrane pressure in mbar; T: time in hours.
  • Fig. 2 Variation of the ultrafiltration transmembrane pressure of Example 1 b when the concentration of active carbon is 25 mg / l.
  • TMP Transmembrane pressure in mbar; T: time in hours.
  • Fig. 3 Variation of the ultrafiltration transmembrane pressure of example 1 c when the concentration of active carbon is 50 mg / l.
  • TMP Transmembrane pressure in mbar; T: time in hours.
  • a bloom of algae was simulated using microalgae of the genus Scenedesmus as a model to evaluate the effect produced in ultrafiltration membranes.
  • Microalgae These microalgae have been chosen as a model because of their size. The diameter of the microalgae ranges between 1 ⁇ and 2 mm. The microalgae used in the example have a diameter of 10 ⁇ , so it is a good representative model of microalgae, especially those of smaller size.
  • a pilot plant was designed that operates automatically and records the TMP values every 10 seconds. To assess the fouling produced by algae without and with AC, the following conditions were set: Filtration time or backwash frequency: 90 minutes;
  • the following table shows some of the data obtained.
  • the graphs of Figures 1, 2 and 3 collect all the TMP readings obtained in the experiments (every 10 seconds).
  • Table 1 TMP variation over time.
  • Figures 1 to 3 show all the TMP values recorded in the experiments.
  • the periodic vertical lines (every 1, 5 h) show the backwash.

Abstract

The invention relates to a process for eliminating microalgae from water, characterised in that the concentration of microalgae is greater than 500 microalgae/ml, comprising the steps of: a) adding activated carbon to the water containing the microalgae; and b) filtering the water from step (a) using an ultrafiltration membrane.

Description

PROCEDIMIENTO PARA LA ELIMINACIÓN DE MICROALGAS POR  PROCEDURE FOR THE ELIMINATION OF MICROALGAS BY
ULTRAFILTRACIÓN  ULTRAFILTRATION
La presente invención se refiere a un procedimiento para reducir el ensuciamiento en membranas de ultrafiltración durante episodios de bloom de algas en procesos de desalación. Por tanto, la invención se podría encuadrar en el campo de los procedimientos de desalinización, en particular procedimientos de desalinización con membranas de osmosis inversa donde las membranas de ultrafiltración se emplean como pretratamiento. The present invention relates to a method for reducing fouling in ultrafiltration membranes during algal bloom episodes in desalination processes. Therefore, the invention could be framed in the field of desalination procedures, in particular desalination procedures with reverse osmosis membranes where ultrafiltration membranes are used as pretreatment.
ESTADO DE LA TÉCNICA STATE OF THE TECHNIQUE
Durante los últimos años, algunas tecnologías emergentes han estado focalizadas en el tratamiento del bloom de algas. Los blooms de algas se producen por la presencia de algas microscópicas (fitoplacton) y algas macroscópicas (macroalgas). Estas causan problemas en la operación de la planta y tienen como resultado un mayor consumo de reactivos químicos, un incremento del ensuciamiento de las membranas y en casos extremos incluso una parada en la planta de osmosis inversa. (Carón et al., Water Research, 44 (2010), 385-416). In recent years, some emerging technologies have been focused on the treatment of algal bloom. Algae blooms are produced by the presence of microscopic algae (phytoplankton) and macroscopic algae (macroalgae). These cause problems in the operation of the plant and result in a higher consumption of chemical reagents, an increase in fouling of the membranes and in extreme cases even a stop in the reverse osmosis plant. (Carón et al., Water Research, 44 (2010), 385-416).
La ultrafiltración (UF) es capaz de eliminar totalmente las algas debido a que el tamaño de poro es considerablemente inferior al tamaño de las algas. Sin embargo, la presión transmembrana (TMP, del inglés Transmembrane Pressure) puede incrementarse en gran medida debido a la presencia de algas. Este hecho ha sido ampliamente descrito en artículos (Kwon et al., Desalination, 179 (2005), 203-214 y Drews et al., Desalination, 200 (2006), 186-188.) Ultrafiltration (UF) is able to completely eliminate algae because the pore size is considerably smaller than the size of the algae. However, transmembrane pressure (TMP) can be greatly increased due to the presence of algae. This fact has been widely described in articles (Kwon et al., Desalination, 179 (2005), 203-214 and Drews et al., Desalination, 200 (2006), 186-188.)
Además las algas producen substancias poliméricas extracelulares (EPS, del inglés Extracellular Polymeric Substance) que tienen un papel determinante en el descenso de la permeabilidad con el consecuente incremento de la presión para mantener el flujo constante. Las EPS son un conjunto de compuestos de alto peso molecular (polisacáridos, proteínas, glicoproteínas y glicolípidos), donde generalmente los polisacáridos están presentes en mayor concentración. Las EPS pueden quedar adheridas a la superficie de la célula (microalga) o bien ser excretadas al medio. Es ampliamente conocido el papel de las EPS en el ensuciamiento de membranas de ultrafiltración. Mediante este fenómeno de ensuciamiento superficial de las membranas se genera una capa denominada biofilm, donde se han encontrado concentraciones mayores de polisacáridos que de proteínas (F. Ahimou et al., Applied and Environmental Microbiology, 73 (2007), 2905-2910). El biofilm comprende principalmente EPS y bacterias. En la ultrafiltración también se forma la torta filtración, que es una torta que comprende los sólidos depositados en la superficie de la membrana. Normalmente las tortas de filtración en ultrafiltración de agua marina comprenden microalgas, EPS y los sólidos que pudiera haber en suspensión en el agua, por lo general arenas y silicatos. Estas tortas de filtración se eliminan mediante contralavados. No es así con el biofilm, que es una capa mucho más difícil de eliminar con contralavados. Tras sucesivos ciclos de ultrafiltración-contralavado, la TMP puede aumentar considerablemente por el efecto del biofilm que se forma en la membrana de ultrafiltración, teniendo incluso como consecuencia la parada de la planta. Por eso, de vez en cuando se efectúan lavados químicos con hipoclorito de sodio o sosa cáustica. In addition, the algae produce extracellular polymeric substances (EPS), which have a decisive role in reducing permeability with the consequent increase in pressure to keep the flow constant. EPS are a set of high molecular weight compounds (polysaccharides, proteins, glycoproteins and glycolipids), where polysaccharides are generally present in greater concentration. The EPS can be attached to the surface of the cell (microalgae) or excreted into the medium. The role of EPS in fouling ultrafiltration membranes is widely known. Through this phenomenon of superficial fouling of the membranes a layer called biofilm is generated, where higher concentrations of polysaccharides than of proteins have been found (F. Ahimou et al., Applied and Environmental Microbiology, 73 (2007), 2905-2910). The biofilm mainly comprises EPS and bacteria. In ultrafiltration, the filter cake is also formed, which is a cake comprising the solids deposited on the surface of the membrane. Normally, ultrafiltration cakes of seawater include microalgae, EPS and solids that may be suspended in the water, usually sands and silicates. These filter cakes are removed by backwashing. Not so with biofilm, which is a much harder layer to remove with backwash. After successive ultrafiltration-backwashing cycles, the TMP can be considerably increased by the effect of the biofilm that forms on the ultrafiltration membrane, even resulting in the shutdown of the plant. Therefore, from time to time chemical washes are carried out with sodium hypochlorite or caustic soda.
El uso de carbón activo (CA) en tratamiento de agua se ha dirigido habitualmente a la eliminación de distintos tipos de materia orgánica disuelta (Tomaszeska et al., Water Research, 36 (2002), 4137-4143); a la eliminación de microcistinas (Campiñas et al., Separation and Purificaron Technology, 71 (2010), 1 14-120) y a la eliminación de ácidos húmicos (Li et al., Desalination, 170 (2004), 59-67). Sin embargo no se ha estudiado el uso de CA para disminuir el ensuciamiento producido por las algas en las membranas de ultrafiltración. DESCRIPCIÓN DE LA INVENCIÓN The use of active carbon (CA) in water treatment has usually been directed to the elimination of different types of dissolved organic matter (Tomaszeska et al., Water Research, 36 (2002), 4137-4143); to the elimination of microcystins (Campiñas et al., Separation and Purified Technology, 71 (2010), 1 14-120) and to the elimination of humic acids (Li et al., Desalination, 170 (2004), 59-67). However, the use of CA to reduce fouling caused by algae in ultrafiltration membranes has not been studied. DESCRIPTION OF THE INVENTION
La presente invención se refiere a un procedimiento para la eliminación de microalgas del agua en episodios de bloom de algas en membranas de ultrafiltración. The present invention relates to a method for the removal of microalgae from water in episodes of algal bloom in ultrafiltration membranes.
Las ventajas de la presente invención son: The advantages of the present invention are:
- permite disminuir o eliminar el efecto del ensuciamiento producido por los blooms de algas; - allows to reduce or eliminate the effect of fouling caused by algae blooms;
- impide el aumento de la TMP debido al ensuciamiento;  - prevents the increase in TMP due to fouling;
- facilita el procedimiento de limpieza de las membranas de ultrafiltración, incluso haciendo innecesaria la limpieza con lavados químicos;  - facilitates the cleaning procedure of ultrafiltration membranes, even making cleaning with chemical washes unnecessary;
- la invención establece un proceso robusto que permite la operación de plantas de tratamiento de aguas que comprendan ultrafiltración, como una planta de osmosis inversa, durante episodios de bloom de algas, evitando las consecuencias asociadas a una posible parada no programada debida a los blooms de algas;  - The invention establishes a robust process that allows the operation of water treatment plants comprising ultrafiltration, such as a reverse osmosis plant, during algal bloom episodes, avoiding the consequences associated with a possible unscheduled shutdown due to the blooms of algae;
- asegura el buen funcionamiento de las membranas de ultrafiltración, protegiendo las membranas de osmosis inversa posteriores, si las hubiera.  - ensures the proper functioning of ultrafiltration membranes, protecting the membranes of posterior reverse osmosis, if any.
Por tanto, un primer aspecto de la presente invención se refiere a un procedimiento para la eliminación de microalgas del agua que comprende las etapas de: a) adición de carbón activo al agua que comprende las microalgas; y b) filtración del agua de la etapa (a) con una membrana de ultrafiltración; donde dicho procedimiento está caracterizado porque la concentración de microalgas a eliminar es mayor a 500 microalgas/ml de agua. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN Therefore, a first aspect of the present invention relates to a process for the removal of microalgae from water comprising the steps of: a) adding active carbon to water comprising microalgae; and b) filtration of the water of step (a) with an ultrafiltration membrane; where said procedure is characterized in that the concentration of microalgae to be eliminated is greater than 500 microalgae / ml of water. DETAILED DESCRIPTION OF THE INVENTION
Un primer aspecto de la presente invención se refiere a un procedimiento para la eliminación de microalgas del agua que comprende las etapas de: a) adición de carbón activo al agua que comprende las microalgas; y b) filtración del agua de la etapa (a) con una membrana de ultrafiltración; donde dicho procedimiento está caracterizado porque la concentración de microalgas a eliminar es mayor a 500 microalgas/ml de agua. A first aspect of the present invention relates to a process for the removal of microalgae from water comprising the steps of: a) adding active carbon to water comprising microalgae; and b) filtration of the water of step (a) with an ultrafiltration membrane; where said procedure is characterized in that the concentration of microalgae to be eliminated is greater than 500 microalgae / ml of water.
El procedimiento de la invención está dirigido a la eliminación de microalgas en condiciones de bloom de algas. Por bloom de algas se entiende un incremento rápido o acumulación de la población de algas en un sistema acuático. Los bloom de algas pueden ocurrir tanto en ecosistemas de agua dulce como en sistemas marinos. La concentración de algas a partir de la cual se considera que existe un bloom de algas no está definida de manera precisa en la técnica. Se considera que existe un bloom de algas cuando la concentración de éstas es superior a cientos de algas por mililitro. En el contexto de la invención, se considera que hay un bloom de algas cuando la concentración es mayor a 500 microalgas/ml de agua. The process of the invention is directed to the elimination of microalgae under algal bloom conditions. Algae bloom means a rapid increase or accumulation of the algae population in an aquatic system. Algae bloom can occur in both freshwater ecosystems and marine systems. The concentration of algae from which an algal bloom is considered to exist is not defined precisely in the art. Algae bloom is considered to exist when their concentration is greater than hundreds of algae per milliliter. In the context of the invention, it is considered that there is an algal bloom when the concentration is greater than 500 microalgae / ml of water.
Por el término microalga se entiende algas microscópicas, que son microorganismos unicelulares y fotosintéticos. Las microalgas tienen un diámetro que oscila entre 1 μιη y 2 mm. Una membrana de ultrafiltración es una membrana semipermeable con un tamaño de poro comprendido entre 0,01 μιη y 0,1 μιη. La ultrafiltración es un tipo de filtración en la cual la presión hidrostática fuerza a un líquido contra una membrana semipermeable. Los sólidos suspendidos y los solutos de alto peso molecular son retenidos, mientras que el agua y los solutos de bajo peso molecular atraviesan la membrana. Las membranas de ultrafiltración pueden ser presurizadas o sumergidas. Preferiblemente, la membrana de ultrafiltración es presurizada. The term microalgae means microscopic algae, which are single-cell and photosynthetic microorganisms. The microalgae have a diameter that ranges between 1 μιη and 2 mm. An ultrafiltration membrane is a semipermeable membrane with a pore size between 0.01 μιη and 0.1 μιη. Ultrafiltration is a type of filtration in which hydrostatic pressure forces a liquid against a semipermeable membrane. Suspended solids and high molecular weight solutes are retained, while water and low molecular weight solutes cross the membrane. Ultrafiltration membranes can be pressurized or submerged. Preferably, the ultrafiltration membrane is pressurized.
Las membranas de ultrafiltración presurizada son membranas de fibra hueca que precisan de una bomba de aporte que fuerza el paso del agua a través de la membrana. Por otro lado, las membranas de ultrafiltración sumergida son membranas de fibra hueca contenidas en un depósito con el agua a tratar donde la ultrafiltración se realiza por succión. Pressurized ultrafiltration membranes are hollow fiber membranes that require a supply pump that forces water to pass through the membrane. On the other hand, submerged ultrafiltration membranes are hollow fiber membranes contained in a reservoir with the water to be treated where ultrafiltration is carried out by suction.
En una realización del primer aspecto de la presente invención, el procedimiento tal y como se ha descrito anteriormente además comprende una etapa (c) de contralavado para eliminar la torta de filtración. In an embodiment of the first aspect of the present invention, the method as described above further comprises a step (c) of backwashing to remove the filter cake.
Por contralavado se entiende el proceso por el cual se invierte el sentido de la filtración en un medio filtrante con el fin de conseguir la eliminación de los sólidos depositados en la membrana de filtración y que generan el aumento de la TMP. Counterwashing means the process by which the direction of filtration is reversed in a filter medium in order to achieve the elimination of solids deposited in the filtration membrane and that generate the increase in TMP.
Una torta de filtración es una torta formada por los sólidos depositados en la superficie de la membrana y que ejerce una resistencia al proceso de la filtración, no debida a la propia membrana. En el contexto de la invención, la torta es una torta híbrida que comprende las microalgas, EPS y sólidos que pudieran estar suspendidos en el agua y carbón activo. En otra realización del primer aspecto de la presente invención, el carbón activo es carbón activo en polvo. Por carbón activo en polvo se entiende carbón activo con un tamaño de partícula comprendido entre 1 y 150 μιη. A filter cake is a cake formed by solids deposited on the surface of the membrane and that exerts a resistance to the filtration process, not due to the membrane itself. In the context of the invention, the cake is a hybrid cake comprising microalgae, EPS and solids that could be suspended in water and activated carbon. In another embodiment of the first aspect of the present invention, the active carbon is powdered active carbon. Active carbon powder means active carbon with a particle size between 1 and 150 μιη.
En otra realización del primer aspecto de la presente invención, la concentración del carbón activo en la etapa (a) es de 5 mg/l a 1 g/l, preferiblemente es de 15 mg/l a 500 mg/l, más preferiblemente es de 25 mg/l a 250 mg/l y aún más preferiblemente de 50 mg/l a 150 mg/l. In another embodiment of the first aspect of the present invention, the concentration of the active carbon in step (a) is 5 mg / 1 g / l, preferably it is 15 mg / 500 mg / l, more preferably it is 25 mg / l 250 mg / l and even more preferably 50 mg / l 150 mg / l.
En otra realización del primer aspecto de la presente invención, la membrana de ultrafiltración tiene un peso molecular nominal de corte de 5000 a 300000, preferiblemente de 25000 a 200000 y más preferiblemente de 50000 a 150000. In another embodiment of the first aspect of the present invention, the ultrafiltration membrane has a nominal molecular weight of cut from 5000 to 300000, preferably from 25000 to 200000 and more preferably from 50,000 to 150,000.
Por peso molecular nominal de corte (NMWC, del inglés Nominal Molecular Weight Cut-off) se entiende el paso molecular mínimo (en kilodaltons) que las membranas de ultrafiltración pueden retener. Se define como la capacidad de una membrana para retener el 90% de una macromolécula globular de un determinado peso molecular. Nominal molecular weight of cut (NMWC) is the minimum molecular step (in kilodaltons) that ultrafiltration membranes can retain. It is defined as the ability of a membrane to retain 90% of a globular macromolecule of a certain molecular weight.
En otra realización del primer aspecto de la presente invención, la concentración de microalgas es de 5000 microalgas/ml a 10000000 microalgas/ml, preferiblemente es de 10000 microalgas/ml a 7500000 microalgas/ml, más preferiblemente es de 100000 microalgas/ml a 6000000 microalgas/ml y aún más preferiblemente es de 250000 microalgas/ml a 5000000 microalgas/ml. In another embodiment of the first aspect of the present invention, the concentration of microalgae is 5000 microalgae / ml to 10000000 microalgae / ml, preferably it is 10000 microalgae / ml to 7500000 microalgae / ml, more preferably it is 100000 microalgae / ml to 6000000 microalgae / ml and even more preferably is from 250,000 microalgae / ml to 50,000 microalgae / ml.
En otra realización del primer aspecto de la presente invención, las microalgas tienen un diámetro de 1 m a 500 μιη, preferiblemente de 2 μιη a 100 μιη. In another embodiment of the first aspect of the present invention, the microalgae have a diameter of 1 m to 500 μιη, preferably 2 μιη to 100 μιη.
En otra realización del primer aspecto de la presente invención, el flujo de la filtración de la etapa (b) es de 20 l/m2h a 75 l/m2h, preferiblemente de 35 l/m2h a 60 l/m2h. En otra realización del primer aspecto de la presente invención, el flujo del contralavado de la etapa (c) es de 80 l/m2h a 180 l/m2h, preferiblemente de 100 l/m2h a 150 l/m2h. In another embodiment of the first aspect of the present invention, the filtration flow of step (b) is 20 l / m 2 h at 75 l / m 2 h, preferably 35 l / m 2 h at 60 l / m 2 h. In another embodiment of the first aspect of the present invention, the backwash flow of step (c) is 80 l / m 2 h at 180 l / m 2 h, preferably 100 l / m 2 h at 150 l / m 2 h .
En otra realización del primer aspecto de la presente invención, el agua que comprende las microalgas se selecciona de agua salobre y agua marina, preferiblemente el agua es agua marina. In another embodiment of the first aspect of the present invention, the water comprising the microalgae is selected from brackish water and seawater, preferably the water is seawater.
Por agua salobre se entiende aquella agua que tiene más sales disueltas que el agua dulce pero menos que el agua marina. Se considera agua salobre el agua que comprende entre 0,5 y 30 gramos de sal por litro. Por agua marina (o agua del mar) se entiende el agua que compone los océanos y los mares de la Tierra. La concentración de sales es como media 35 gramos por litro. Brackish water means water that has more dissolved salts than fresh water but less than seawater. Brackish water is considered to be water that comprises between 0.5 and 30 grams of salt per liter. Marine water (or seawater) means the water that makes up the oceans and seas of the Earth. The concentration of salts is on average 35 grams per liter.
En otra realización del primer aspecto de la presente invención, el agua que comprende las microalgas no comprende macroalgas. In another embodiment of the first aspect of the present invention, the water comprising the microalgae does not comprise macroalgae.
Por macroalgas se entiende un alga multicelular y por lo tanto se distingue de las microalgas en su tamaño. Normalmente, la macroalgas que pudiera contener el agua se habrán separado anteriormente en una filtración previa a la ultrafiltración. By macroalgae a multicellular algae is understood and therefore it is distinguished from microalgae in its size. Normally, the macroalgae that the water might contain will have been previously separated in a filtration prior to ultrafiltration.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y figuras se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. DESCRIPCIÓN DE LAS FIGURAS Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following examples and figures are provided by way of illustration, and are not intended to be limiting of the present invention. DESCRIPTION OF THE FIGURES
Fig. 1 . Variación de la presión transmembrana de la ultrafiltración del ejemplo 1 a cuando la concentración de carbón activo es 0 mg/l. TMP: Presión transmembrana en mbar; T: tiempo en horas. Fig. 1. Variation of the ultrafiltration transmembrane pressure of example 1 a when the concentration of active carbon is 0 mg / l. TMP: Transmembrane pressure in mbar; T: time in hours.
Fig. 2. Variación de la presión transmembrana de la ultrafiltración del ejemplo 1 b cuando la concentración de carbón activo es 25 mg/l. TMP: Presión transmembrana en mbar; T: tiempo en horas. Fig. 2. Variation of the ultrafiltration transmembrane pressure of Example 1 b when the concentration of active carbon is 25 mg / l. TMP: Transmembrane pressure in mbar; T: time in hours.
Fig. 3. Variación de la presión transmembrana de la ultrafiltración del ejemplo 1 c cuando la concentración de carbón activo es 50 mg/l. TMP: Presión transmembrana en mbar; T: tiempo en horas. Fig. 3. Variation of the ultrafiltration transmembrane pressure of example 1 c when the concentration of active carbon is 50 mg / l. TMP: Transmembrane pressure in mbar; T: time in hours.
EJEMPLOS EXAMPLES
A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores, que pone de manifiesto el efecto del carbón activo en la ultrafiltración. The invention will now be illustrated by tests carried out by the inventors, which shows the effect of activated carbon on ultrafiltration.
Ejemplo 1. Ultrafiltración con 5,72x108 microalgas/l Example 1. Ultrafiltration with 5.72x10 8 microalgae / l
Se simuló un bloom de algas empleando microalgas del género Scenedesmus como modelo para evaluar el efecto producido en las membranas de ultrafiltración. Las microalgas Estas microalgas se han escogido como modelo por su tamaño. El diámetro de las microalgas oscila entre 1 μιη y los 2 mm. Las microalgas empleadas en el ejemplo tienen un diámetro de 10 μιη, por lo que es un buen modelo representativo de las microalgas, especialmente de las de menor tamaño. Para evaluar el impacto producido por el ensuciamiento de esta microalga en las membranas de ultrafiltración se diseñó una planta piloto que opera de modo automático y registra los valores de TMP cada 10 segundos. Para evaluar el ensuciamiento producido por las algas sin y con CA, se fijaron las siguientes condiciones: Tiempo de filtración o frecuencia de contralavado: 90 minutos; A bloom of algae was simulated using microalgae of the genus Scenedesmus as a model to evaluate the effect produced in ultrafiltration membranes. Microalgae These microalgae have been chosen as a model because of their size. The diameter of the microalgae ranges between 1 μιη and 2 mm. The microalgae used in the example have a diameter of 10 μιη, so it is a good representative model of microalgae, especially those of smaller size. To evaluate the impact produced by the fouling of this microalgae in the ultrafiltration membranes, a pilot plant was designed that operates automatically and records the TMP values every 10 seconds. To assess the fouling produced by algae without and with AC, the following conditions were set: Filtration time or backwash frequency: 90 minutes;
Duración del contralavado: 30 segundos; Duration of the backwash: 30 seconds;
Concentración de microalgas Scenedesmus 5,72x108 microalgas/l; Scenedesmus microalgae concentration 5.72x10 8 microalgae / l;
Flujo: 50 l/m2h. Flow: 50 l / m 2 h.
Se llevaron a cabo tres experimentos: Three experiments were carried out:
1 a. Sin añadir carbón activo 1 a. Without adding active carbon
1 b. Adición de 25 mg/l de carbón activo.  1 B. Addition of 25 mg / l of activated carbon.
1 c. Adición de 50 mg/l de carbón activo.  1 C. Addition of 50 mg / l of activated carbon.
La siguiente tabla muestra algunos de los datos obtenidos. Las gráficas de las figuras 1 , 2 y 3 recogen todas las lecturas de TMP obtenidas en los experimentos (cada 10 segundos). The following table shows some of the data obtained. The graphs of Figures 1, 2 and 3 collect all the TMP readings obtained in the experiments (every 10 seconds).
Tabla 1 . Variación de TMP con el tiempo. Table 1 . TMP variation over time.
Tiempo 1a 1 b 1c Time 1a 1 b 1c
(hh:mm:ss) (hh: mm: ss)
0:00:00 240 250 250  0:00:00 240 250 250
1 :0000 320 260 260  1: 0000 320 260 260
2:00:00 320 270 260  2:00:00 320 270 260
3:00:00 340 270 260  3:00:00 340 270 260
4:00:00 360 280 250  4:00:00 360 280 250
5:00:00 370 280 250  5:00:00 370 280 250
6:00:00 380 290 240  6:00:00 380 290 240
7:00:00 380 290 240  7:00:00 380 290 240
8:00:00 410 310 250  8:00:00 410 310 250
9:00:00 410 300 230  9:00:00 410 300 230
10:00:00 420 310 230  10:00:00 420 310 230
1 1 :00:00 430 310 240 12:00:00 430 320 230 1 1: 00: 00 430 310 240 12:00:00 430 320 230
13:00:00 440 320 230  13:00:00 440 320 230
14:00:00 460 330 230  14:00:00 460 330 230
15:00:00 470 350 240  15:00:00 470 350 240
16:00:00 490 370 240  16:00:00 490 370 240
17:00:00 490 370 240  17:00:00 490 370 240
18:00:00 500 380 250  18:00:00 500 380 250
19:00:00 - 390 250  19:00:00 - 390 250
Como se puede observar en la tabla, la adición de carbón activo disminuye considerablemente la TMP, incluso a concentraciones tan bajas como 25 mg/l. Además se puede ver que el efecto del carbón activo es dependiente de laAs can be seen in the table, the addition of active carbon significantly decreases the TMP, even at concentrations as low as 25 mg / l. It can also be seen that the effect of active carbon is dependent on the
5 concentración. En este caso modelo, aguas que comprenden una concentración de 5,72x108 microalgas/l de Scenedesmus, una concentración de carbón activo de 50 mg/l consigue que la TMP se mantenga estable durante al menos casi 20 horas. Obviamente en otras aguas comprendiendo otras especies de microalgas y otras concentraciones de microalgas esta i o concentración óptima de carbón activo puede variar. 5 concentration In this model case, waters comprising a concentration of 5.72x10 8 microalgae / l of Scenedesmus, a concentration of active carbon of 50 mg / l ensures that the TMP remains stable for at least almost 20 hours. Obviously in other waters comprising other species of microalgae and other concentrations of microalgae this optimum concentration of active carbon may vary.
En las figuras 1 a 3 se representan la totalidad de valores de TMP registrados en los experimentos. Las líneas verticales periódicas (cada 1 ,5 h) muestran los contralavados. Figures 1 to 3 show all the TMP values recorded in the experiments. The periodic vertical lines (every 1, 5 h) show the backwash.

Claims

REIVINDICACIONES
1 . - Procedimiento para la eliminación de microalgas del agua que comprende las etapas de: one . - Procedure for the removal of microalgae from the water that includes the steps of:
a) adición de carbón activo al agua que comprende las microalgas; y a) addition of active carbon to the water comprising the microalgae; Y
b) filtración del agua de la etapa (a) con una membrana de ultrafiltración; donde dicho procedimiento está caracterizado porque la concentración de microalgas a eliminar es mayor a 500 microalgas/ml de agua. b) filtration of the water of step (a) with an ultrafiltration membrane; where said procedure is characterized in that the concentration of microalgae to be eliminated is greater than 500 microalgae / ml of water.
2. - Procedimiento según la reivindicación anterior que además comprende una etapa (c) de contralavado para eliminar la torta de filtración. 2. - Method according to the preceding claim which further comprises a step (c) of backwashing to remove the filter cake.
3. - Procedimiento según cualquiera de las reivindicaciones anteriores, donde el carbón activo es carbón activo en polvo. 3. - Method according to any of the preceding claims, wherein the active carbon is powdered active carbon.
4. - Procedimiento según cualquiera de las reivindicaciones anteriores, donde la concentración del carbón activo en la etapa (a) es de 5 mg/l a 1 g/l. 4. - Method according to any of the preceding claims, wherein the concentration of active carbon in step (a) is from 5 mg / l to 1 g / l.
5. - Procedimiento según la reivindicación anterior, donde la concentración del carbón activo en la etapa (a) es de15 mg/l a 500 mg/l. 5. - Method according to the preceding claim, wherein the concentration of active carbon in step (a) is 15 mg / l to 500 mg / l.
6. - Procedimiento según la reivindicación anterior, donde la concentración del carbón activo en la etapa (a) es de 25 mg/l a 250 mg/l 6. - Method according to the preceding claim, wherein the concentration of active carbon in step (a) is 25 mg / l to 250 mg / l
7. - Procedimiento según cualquiera de las reivindicaciones anteriores, donde la membrana de ultrafiltración tiene un peso molecular nominal de corte de 5000 a 300000. 7. - Method according to any of the preceding claims, wherein the ultrafiltration membrane has a nominal molecular weight of cut of 5000 to 300000.
8. - Procedimiento según la reivindicación anterior, donde la membrana de ultrafiltración tiene un peso molecular nominal de corte de 25000 a 200000. 8. - Method according to the preceding claim, wherein the ultrafiltration membrane has a nominal molecular weight of cut of 25000 to 200000.
9. - Procedimiento según cualquiera de las reivindicaciones anteriores, donde la concentración de microalgas es de 5000 microalgas/ml a 10000000 microalgas/ml. 9. - Method according to any of the preceding claims, wherein the concentration of microalgae is 5000 microalgae / ml to 10000000 microalgae / ml.
10. - Procedimiento según cualquiera de las reivindicaciones anteriores, donde la concentración de microalgas es de 10000 microalgas/ml a 7500000 microalgas/ml. 10. - Method according to any of the preceding claims, wherein the concentration of microalgae is 10000 microalgae / ml to 7500000 microalgae / ml.
1 1 . - Procedimiento según cualquiera de las reivindicaciones anteriores, donde las microalgas tienen un diámetro de 1 μιη a 500 μιη. eleven . - Method according to any of the preceding claims, wherein the microalgae have a diameter of 1 μιη to 500 μιη.
12. - Procedimiento según cualquiera de las reivindicaciones anteriores donde el flujo de la filtración de la etapa (b) es de 20 l/m2h a 75 l/m2h. 12. - Method according to any of the preceding claims wherein the filtration flow of step (b) is 20 l / m 2 h at 75 l / m 2 h.
13. - Procedimiento según la reivindicación anterior, donde el flujo de la filtración de la etapa (b) es de 35 l/m2h a 60 l/m2h. 13. - Method according to the preceding claim, wherein the filtration flow of step (b) is 35 l / m 2 h at 60 l / m 2 h.
14. - Procedimiento según cualquiera de las reivindicaciones 2 a 13, donde el flujo del contralavado de la etapa (c) es de 80 l/m2h a 180 l/m2h. 14. - Method according to any of claims 2 to 13, wherein the backwash flow of stage (c) is 80 l / m 2 h at 180 l / m 2 h.
15. - Procedimiento según la reivindicación anterior, donde el flujo del contralavado de la etapa (c) es de 100 l/m2h a 150 l/m2h. 15. - Method according to the preceding claim, wherein the backwash flow of step (c) is 100 l / m 2 h at 150 l / m 2 h.
16. - Procedimiento según cualquiera de las reivindicaciones anteriores, donde el agua que comprende las microalgas se selecciona de agua salobre y agua marina. 16. - Method according to any of the preceding claims, wherein the water comprising the microalgae is selected from brackish water and seawater.
17. - Procedimiento según la reivindicación anterior, donde el agua que comprende las microalgas es agua marina. 17. - Method according to the preceding claim, wherein the water comprising the microalgae is seawater.
18. - Procedimiento según cualquiera de las reivindicaciones anteriores, donde el agua que comprende las microalgas no comprende macroalgas. 18. - Method according to any of the preceding claims, wherein the water comprising the microalgae does not comprise macroalgae.
PCT/ES2013/070362 2013-06-05 2013-06-05 Process for eliminating microalgae by means of ultrafiltration WO2014195528A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/ES2013/070362 WO2014195528A1 (en) 2013-06-05 2013-06-05 Process for eliminating microalgae by means of ultrafiltration
ES201490073A ES2524386B1 (en) 2013-06-05 2013-06-05 Procedure for the removal of microalgae by ultrafiltration and adsorbents.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2013/070362 WO2014195528A1 (en) 2013-06-05 2013-06-05 Process for eliminating microalgae by means of ultrafiltration

Publications (1)

Publication Number Publication Date
WO2014195528A1 true WO2014195528A1 (en) 2014-12-11

Family

ID=49301521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070362 WO2014195528A1 (en) 2013-06-05 2013-06-05 Process for eliminating microalgae by means of ultrafiltration

Country Status (2)

Country Link
ES (1) ES2524386B1 (en)
WO (1) WO2014195528A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111635073A (en) * 2020-06-02 2020-09-08 江苏海洋大学 Method for efficiently purifying laver processing wastewater based on economic microalgae culture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010120992A1 (en) * 2009-04-17 2010-10-21 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For An On Behalf Of Arizona State University Method of separation of algal biomass from aqueous or marine culture
CN102515432A (en) * 2011-12-14 2012-06-27 北京工业大学 Method for removing microcystin and odor substances in high-algae source water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010120992A1 (en) * 2009-04-17 2010-10-21 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For An On Behalf Of Arizona State University Method of separation of algal biomass from aqueous or marine culture
CN102515432A (en) * 2011-12-14 2012-06-27 北京工业大学 Method for removing microcystin and odor substances in high-algae source water

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
CAMPINAS ET AL., SEPARATION AND PURIFICATION TECHNOLOGY, vol. 71, 2010, pages 114 - 120
CARON ET AL., WATER RESEARCH, vol. 44, 2010, pages 385 - 416
CASTAING J B ET AL: "Investigating submerged ultrafiltration (UF) and microfiltration (MF) membranes for seawater pre-treatment dedicated to total removal of undesirable micro-algae", DESALINATION, ELSEVIER, AMSTERDAM, NL, vol. 253, no. 1-3, 1 April 2010 (2010-04-01), pages 71 - 77, XP026892812, ISSN: 0011-9164, [retrieved on 20100205], DOI: 10.1016/J.DESAL.2009.11.031 *
DATABASE WPI Week 201301, Derwent World Patents Index; AN 2012-J73906, XP002720669 *
DREWS ET AL., DESALINATION, vol. 200, 2006, pages 186 - 188
F. AHIMOU ET AL., APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 73, 2007, pages 2905 - 2910
FRAPPART M ET AL: "Influence of hydrodynamics in tangential and dynamic ultrafiltration systems for microalgae separation", DESALINATION, ELSEVIER, AMSTERDAM, NL, vol. 265, no. 1-3, 15 January 2011 (2011-01-15), pages 279 - 283, XP027493510, ISSN: 0011-9164, [retrieved on 20101113], DOI: 10.1016/J.DESAL.2010.07.061 *
KWON ET AL., DESALINATION, vol. 179, 2005, pages 203 - 214
LI ET AL., DESALINATION, vol. 170, 2004, pages 59 - 67
LI-JUN YU ET AL: "Effects of Pressure and Pretreatment by Permanganate/PAC/Coagulant on Algae-Rich Water Treatment with UF (Ultrafiltration) Membrane Process", BIOINFORMATICS AND BIOMEDICAL ENGINEERING , 2009. ICBBE 2009. 3RD INTERNATIONAL CONFERENCE ON, IEEE, PISCATAWAY, NJ, USA, 11 June 2009 (2009-06-11), pages 1 - 4, XP031488540, ISBN: 978-1-4244-2901-1 *
TOMASZESKA ET AL., WATER RESEARCH, vol. 36, 2002, pages 4137 - 4143
YAN ZHANG ET AL: "Effect of PAC addition on immersed ultrafiltration for the treatment of algal-rich water", JOURNAL OF HAZARDOUS MATERIALS, ELSEVIER, AMSTERDAM, NL, vol. 186, no. 2, 6 December 2010 (2010-12-06), pages 1415 - 1424, XP028363409, ISSN: 0304-3894, [retrieved on 20101214], DOI: 10.1016/J.JHAZMAT.2010.12.015 *
YAN ZHANG ET AL: "The treatment of algal-rich water by PAC/UF process", ENVIRONMENTAL SCIENCE AND INFORMATION APPLICATION TECHNOLOGY (ESIAT), 2010 INTERNATIONAL CONFERENCE ON, IEEE, PISCATAWAY, NJ, USA, 17 July 2010 (2010-07-17), pages 552 - 556, XP031751403, ISBN: 978-1-4244-7387-8 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111635073A (en) * 2020-06-02 2020-09-08 江苏海洋大学 Method for efficiently purifying laver processing wastewater based on economic microalgae culture

Also Published As

Publication number Publication date
ES2524386R1 (en) 2015-02-04
ES2524386A2 (en) 2014-12-05
ES2524386B1 (en) 2015-11-19
ES2524386A8 (en) 2015-02-16

Similar Documents

Publication Publication Date Title
US20070246424A1 (en) Process For Producing Ship Ballast Water, Ship Ballast Water Producing Apparatus And Use Thereof
JP5804228B1 (en) Water treatment method
US20090242484A1 (en) Environmentally friendly hybrid microbiological control technologies for cooling towers
JP2006272136A (en) Membrane separation method and membrane separation device
CN103328079B (en) The washing methods of membrane module, method of making water and fresh water generator
EP1894612B1 (en) Method for purifying water by means of a membrane filtration unit
KR101270906B1 (en) Fluidizable carrier with biofilm formation-inhibiting microorganisms immobilized therein and membrane water treatment apparatus using the same
JP2006239530A (en) Manufacturing method and manufacturing apparatus of ballast water for ship
ES2524386B1 (en) Procedure for the removal of microalgae by ultrafiltration and adsorbents.
JP4804176B2 (en) Seawater filtration
US9758393B2 (en) Fresh water generation system
JP6164366B2 (en) Adsorption member
JPWO2014007262A1 (en) Fresh water production apparatus and fresh water production method
Cordier et al. Ultrafiltration for environmental safety in shellfish production: A case of bloom emergence
WO2012057176A1 (en) Water-treatment method and desalinization method
JP2006000729A (en) Ship ballast water production method and apparatus
JP3838689B2 (en) Water treatment system
JP2007137260A (en) Ballast water tank structure, ballast water manufacturing device, and manufacturing method of ballast water
CN1938229A (en) Process for producing ship ballast water, ship ballast water producing apparatus and use thereof
JP2006000728A (en) Method for preparing ballast water and apparatus for preparing ballast water to be loaded onto vessel
Gul et al. Fouling and Chemical Cleaning of Microfiltration Membranes: A Mini-Review. Polymers 2021, 13, 846
CN203582598U (en) Low-pressure nanofiltration defluorination drinking water purifying system
Laksono et al. Impact of algae type and cell condition on fouling and cleanability of capillary ultrafiltration membranes
JP2006167533A (en) Method for condensing sea water
JP2000334275A (en) Pretreatment of cellulose acetate film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: P201490073

Country of ref document: ES

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13771547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13771547

Country of ref document: EP

Kind code of ref document: A1