WO2014194816A1 - 一种测试复合型疲劳裂纹扩展速率的装置 - Google Patents

一种测试复合型疲劳裂纹扩展速率的装置 Download PDF

Info

Publication number
WO2014194816A1
WO2014194816A1 PCT/CN2014/079122 CN2014079122W WO2014194816A1 WO 2014194816 A1 WO2014194816 A1 WO 2014194816A1 CN 2014079122 W CN2014079122 W CN 2014079122W WO 2014194816 A1 WO2014194816 A1 WO 2014194816A1
Authority
WO
WIPO (PCT)
Prior art keywords
flange
clamp
sample
fatigue crack
loading
Prior art date
Application number
PCT/CN2014/079122
Other languages
English (en)
French (fr)
Inventor
陈学东
聂德福
范志超
吴乔国
Original Assignee
合肥通用机械研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥通用机械研究院 filed Critical 合肥通用机械研究院
Priority to US15/036,031 priority Critical patent/US9841364B2/en
Publication of WO2014194816A1 publication Critical patent/WO2014194816A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • G01N3/34Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces generated by mechanical means, e.g. hammer blows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0062Crack or flaws
    • G01N2203/0064Initiation of crack
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0062Crack or flaws
    • G01N2203/0066Propagation of crack
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0073Fatigue

Definitions

  • the invention belongs to the technical field of material testing and relates to a device for testing a composite fatigue crack growth rate. Background technique
  • Fatigue damage is one of the main failure modes of mechanical parts and engineering components, and most of them are brittle failure forms, which are easy to cause large economic property losses. Therefore, the problem of fatigue damage has been widely concerned for a long time.
  • some methods for describing fatigue damage have been formed based on different concepts.
  • the fatigue crack growth rate description method based on the damage tolerance concept has achieved good results in the fatigue life evaluation of crack-containing members.
  • the fatigue crack growth rate is not only an important parameter to characterize the material's resistance to fatigue crack growth, but also an important extension of the design concept of fatigue strength total life based on elastoplastic mechanics. With the continuous development and improvement of fracture mechanics, this method has been widely used in fatigue design and analysis.
  • the fatigue damage is mostly complex due to the complicated structure and the enabling conditions. Therefore, it is of great theoretical significance and engineering value to study the damage caused by the composite fatigue crack propagation.
  • the fatigue crack can be divided into three types: the type I (the crack is subjected to the vertical normal stress), the ⁇ type (the crack receiving surface shear stress), and the m type (the crack bearing surface shear stress).
  • the type I the crack is subjected to the vertical normal stress
  • the ⁇ type the crack receiving surface shear stress
  • the m type the crack bearing surface shear stress
  • the object of the present invention is to provide a device for testing a composite fatigue crack growth rate.
  • the device can better measure the expansion rate of various types of composite fatigue cracks, realize a crack propagation test under a composite fatigue load, and study complex intersections.
  • the fatigue crack propagation law of materials under variable stress field provides reference and basis for accurate prediction of critical mechanical parts and engineering components under complex service conditions.
  • the technical solution adopted by the present invention is: a device for testing a composite fatigue crack growth rate, comprising a plate-shaped sample, the device comprising the following components: a first clamp mechanism for passing a second clamp mechanism applies tensile, shearing, and torsional effects to the sample;
  • a second clamp mechanism for clamping the sample and cooperating with the first clamp mechanism to generate a composite fatigue crack of the sample
  • a fatigue crack gauge for measuring and recording the composite fatigue crack length produced on the specimen.
  • the first clamp mechanism comprises two first clamps, one end of the first clamp is arranged as a cylindrical long rod, and the other end is arranged to facilitate a U-clip connected to the clamp in the second clamp mechanism.
  • Holding portion; the long rod and the U-shaped clamping portion are integrally formed.
  • the second clamp mechanism comprises a first flange clamp and a second flange clamp, wherein the first flange clamp and the second flange clamp are composed of a flange and a flange neck. And forming a flange and a flange neck of the same flange type clamp integrally formed;
  • the flange and the flange neck are fan-shaped, and the flange protrudes on the outer side of the flange neck
  • a plurality of loading holes penetrating the disk body are evenly distributed along the circumferential direction of the flange;
  • the center of the fan-shaped flange neck is provided with a clamping surface for facilitating installation of the sample, the clamping surface is perpendicular
  • the flange neck of the first flange type clamp and the flange neck of the second flange type clamp respectively clamp and fix the sample from two sides of the sample, and are insulated and connected a component extends through the sample into the flange neck and fastens the sample at the clamping surface; an insulating spacer is disposed between the clamping surface and the side of the sample;
  • the flange of a flange clamp and the flange of the second flange clamp are coplanar, and the flange of the first flange clamp and the flange of the second flange clamp have the same
  • the u-shaped clamping portion of the first clamp is fixed to the loading hole on the flange by a connecting member, and the U-shaped clamping portion on the two first clamps respectively and the first flange-type clamp
  • the flange of the blue disc is connected to the flange of the second flange clamp; the center of the loading hole on the flange of the first flange clamp connected to the U-shaped clamping portion and the flange of the second flange clamp
  • the center of the loading holes together constitute a loading line, the loading line passing through the center of the flange;
  • the loading line is coplanar with the pre-fatigue crack surface produced on the sample when the first first jig is stretched against the sample.
  • the plate-shaped sample has a rectangular shape
  • the sample is provided with a machined notch extending from the edge of the sample toward the inside of the sample along the width direction of the sample, and the machined notch is disposed at a middle portion of the sample along one side in the longitudinal direction thereof, and the closed end of the machined notch located inside the sample is in a peak shape, and the peak line of the peak-shaped closed end of the machined notch is shared with the prefabricated fatigue crack surface
  • the two sides of the machined notch are symmetrically disposed with a fixing hole through which the insulating connecting member passes, and the center line of the hole of the fixing hole is perpendicular to the prefabricated fatigue crack surface.
  • the corresponding central angle of the flange of the first flange type clamp and the flange of the second flange type clamp is 90 degrees.
  • the loading holes on each flange are evenly set to 5 to 9, and the number of loading holes on the two flanges is the same.
  • the connecting member is a fastening bolt, and a screw of the bolt passes through the U-shaped clamping portion.
  • the loading hole connects the first jig and the flange together, and the bolt screw protrudes from the end outside the U-shaped clamping portion to fasten the nut.
  • the insulating connecting member is an insulating bolt, and a threaded hole corresponding to the insulating bolt is disposed on a clamping surface of the flange neck.
  • the fatigue crack measuring instrument is a DC potential fatigue crack measuring instrument, and two voltage probes of the DC potential fatigue crack measuring instrument are respectively connected to two sides of the open end of the machined notch; the DC potential fatigue The two current probes of the crack measuring instrument are respectively connected at the intersection of the center line of the hole of the fixing hole and the two end faces of the sample along the longitudinal direction of the sample.
  • the second clamp mechanism when the invention is in operation, the second clamp mechanism is used to clamp the fixed sample, and then the first clamp mechanism is connected to the second clamp mechanism, and the first clamp mechanism is combined with the ordinary tension type or the tension type + twist type
  • the fatigue testing machine is connected, and then the fatigue crack measuring instrument is connected to the sample, and the first clamping mechanism and the second clamping mechanism are driven by the ordinary drawing type or the tension/torsion type fatigue testing machine to apply the stretching and shearing to the sample.
  • the cutting and torsion effects can fully meet the requirements of the fatigue test of the type I, ⁇ , m and composite fatigue crack growth rates, laying the foundation for the accurate prediction of the fatigue life of critical mechanical parts and engineering components under complex conditions. .
  • the long rod and the u-shaped clamping portion of the first jig in the invention are integrally formed, which overcomes the disadvantage that the conventional split type screw connection jig cannot effectively transmit the fatigue torque; meanwhile, the u-shaped clamping portion of the first jig passes
  • the bolt and nut fastening method is fixedly connected with the loading hole on the flange. When the lateral sliding does not occur during the test, the tensile load is transmitted more smoothly and smoothly.
  • the second clamp mechanism of the present invention comprises a first flange type clamp and a second flange type clamp, wherein the first flange type clamp and the second flange type clamp are respectively clamped from both sides of the sample.
  • the sample is fixed, and at the same time, since the fixing holes of the sample are symmetrically disposed on both sides of the machined notch, the second clamp mechanism of the present invention leaves the entire test portion of the sample when the sample is clamped, thereby facilitating fatigue Crack length test and extended path observation were carried out during the test.
  • the sample in the present invention can not only achieve stretching, shearing, Torsion test, and can achieve two or three joint tests of stretching, shearing and torsion at the same time, that is, the sample in the invention can satisfy the fatigue crack growth test of type I, ⁇ , III and composite at the same time. Therefore, the sample in the present invention is also referred to as a CTST tensile torsion sample; the unique structure of the CTST tensile torsion sample in the present invention retains the effective crack fatigue extension length of the CT sample in a compact tensile specimen. In addition to the large advantages, it is also easy to prefabricate the type I fatigue crack.
  • the invention clamps and fixes the sample between the first flange type fixture and the second flange type fixture through the insulating bolt, and the arrangement of the insulating bolt and the insulating gasket blocks the two flange type fixtures and
  • Figure 1 is a schematic view of the structure of the present invention.
  • FIG. 2 is a schematic structural view of a first jig.
  • Fig. 3 is a schematic view showing the structure of a bolt and nut connecting the U-shaped clamping portion of the first jig and the loading hole on the flange.
  • Figure 4 is a schematic view showing the structure of the first flange type jig.
  • Figure 5 is a schematic view showing the structure of the second flange type jig.
  • FIGS. 6 and 7 are schematic views showing the structure of the first flange type clamp and the second flange type clamp when they are fitted to each other.
  • Figure 8 is a schematic view showing the structure of a sample.
  • Fig. 9 is a structural schematic view showing the connection of a DC potential fatigue crack measuring instrument and a sample.
  • Fig. 10 is a schematic view showing the structure of the first jig for pre-fabricating type I fatigue cracks of the sample.
  • the apparatus for testing the composite fatigue crack growth rate includes the following components:
  • first clamps 10 one end of the first clamp 10 is arranged as a cylindrical long rod 11, and the other end is arranged to facilitate a U-shaped clamping portion 12 connected to the clamp in the second clamp mechanism;
  • the rod 11 and the U-shaped clamping portion 12 are integrally formed.
  • the U-shaped clamping portion 12 has two ear plates which are adjacent to each other and arranged in parallel, and a gap between the two ear plates for accommodating the flange 21 is provided, and two ear plates are provided.
  • a process hole through which the fastening bolt 60 passes is correspondingly disposed.
  • the first flange type clamp 20A and the second flange type clamp 20B, the first flange type clamp 20A and the second flange type clamp 20B are each composed of a flange 21 and a flange neck 22, and constitute the same one
  • the flange 21 of the flange clamp and the flange neck 22 are integrally formed; the flange 21 and the flange neck 22 are both fan-shaped, and the flange 21 protrudes at the curved edge outside the flange neck 22.
  • a plurality of loading holes 23 penetrating the disk body are evenly distributed along the circumferential direction of the flange 21, as shown in Figs. 4, 5, and 6.
  • a clamping surface 24 for mounting the sample 30 is disposed at a center of the scalloped flange 22, the clamping surface 24 is perpendicular to the disk surface of the flange 21, and the clamping surface 24 is provided with a threaded hole.
  • the flange neck 22 of the first flange type clamp 20A and the flange neck 22 of the second flange type clamp 20B clamp the sample 30 from the two sides of the sample 30, respectively, and the insulating bolt 50 passes through the sample 30 and projects into a threaded hole in the clamping surface 24 to secure the sample 30 between the two clamping faces 24, as shown in Figure 7, the clamping face 24
  • An insulating spacer is disposed between the side surface of the sample 30; the flange 21 of the first flanged clamp 20A in the clamped state and the flange 21 of the second flanged clamp 20B are coplanar, and The flange 21 of the first flanged clamp 20A and the flange 21 of the second flanged clamp 20B
  • the flange 21 of the first flanged clamp 20A and the flange 21 of the second flanged clamp 20B are coplanar, that is, the disk faces of the two flanges 21 on the same side are coincident or coplanar with each other.
  • the corresponding central angles of the flange 21 of the first flange type clamp 20A and the flange 21 of the second flange type clamp 20B are both 90 degrees, and each flange The loading holes 23 on the 21 are uniformly arranged in five.
  • the loading hole A1 and the loading hole A2 correspond to each other and the connecting line of the two, that is, the loading line passes through the center of the circle;
  • the loading hole B1 and the loading hole B2 correspond to each other and the connecting line of the two, that is, the loading line passes through the center of the circle;
  • the loading hole C1 and the loading hole C2 correspond to each other and the connecting line of the two is the loading line passing through the center of the circle;
  • the loading hole D1 and the loading hole D2 correspond to each other and the connecting line of the two is the loading line passing through the center;
  • the loading hole E1 and the loading hole E2 corresponds to each other and the connection between the two, that is, the loading line, passes through the center of the circle.
  • the plate-shaped sample 30 has a rectangular shape, and the sample 30 is provided with a machined notch 31 extending from the edge of the sample 30 toward the inside of the sample 30 along the width direction of the sample 30,
  • the machined notch 31 is disposed in a middle portion of the sample 30 along one side in the longitudinal direction thereof, and the closed end 33 of the machined notch 31 located inside the sample 30 has a peak shape, and the machined notch 31 has a peak.
  • the peak line of the closed end 33 is coplanar with the prefabricated fatigue crack surface; the two sides of the machined notch 31 are symmetrically disposed with a fixing hole 32 through which the insulating connecting member passes, and the center of the hole of the fixing hole 32 is connected Vertical to the prefabricated fatigue crack surface.
  • the fatigue crack measuring instrument 40 is a DC potential type fatigue crack measuring instrument, and two voltage probes 41 of the DC potential type fatigue crack measuring instrument are respectively connected to both sides of the open end of the machined notch 31.
  • the two current probes 42 of the DC potential fatigue crack measuring instrument are respectively connected at the intersection of the center line of the hole of the fixing hole 32 and the two end faces of the sample 30 along the longitudinal direction of the sample.
  • the current probes 42 i.e., the current source wires, are respectively connected to the center line of the holes of the four fixing holes 32 of the sample and the intersection of the two end faces of the sample 30 along the longitudinal direction of the sample. .
  • the loading line formed by the connection of the loading hole A1 and the loading hole A2 and the pre-fabricated fatigue crack surface generated on the sample 30 when the two first jigs 10 are stretched by the sample 30 are separately applied. surface.
  • the loading line obtained by the connection of the changed two loading holes still needs to pass through the center of the two flanges 21 while changing the two loading holes.
  • the resulting load line is coplanar with the pre-formed fatigue crack surface produced on the sample 30 when the two first jigs 10 are stretched against the sample 30, i.e., the axial tensile load is applied alone.
  • the test method is as follows:
  • the two first jigs 10 that is, the integral U-shaped jig and the sample 30, that is, the symmetrical of the machined notch 31 of the CTST tensile shear sample, are directly passed through the fastening bolt 60 and the nut 61.
  • the two fixed fixing holes 32 are connected, and the fatigue testing machine applies an axial tensile load prefabricated fatigue crack to the sample 30 through the first jig 10 to obtain a prefabricated fatigue crack surface.
  • the CTST tensile shear specimen is removed from the first clamp 10, that is, the integral U-shaped clamp, and the CTST tensile shear specimen is fixedly connected to the first flange clamp 20A through the insulating bolt 50.
  • the insulating surface is interposed between the clamping surface 24 and the CTST tensile shear specimen, and then the flange 21 of the first flange clamp 20A is placed.
  • the loading holes and the loading holes on the flange 21 of the second flanged clamp 20B are respectively connected to the U-shaped clamping portions of the two first clamps 10, that is, the integral U-shaped clamp, and then according to the structure shown in FIG. Connect the DC potential crack tester 40 and the CTST pull-shear sample, set the corresponding test frequency, waveform, load type and ratio to perform the required composite fatigue crack growth test, and axially stretch through different pairs of load holes. Type II, ⁇ type loading is achieved, and type I loading is achieved by axial torsion.
  • the DC potential crack tester is turned on to record the potential value of the CTST tensile shear sample under each fatigue cycle in real time, and the test is suspended every certain week, using cellulose acetate film and acetone. Surface re-formation (depending on the crack growth rate, the replica can be measured every 10 4 to 10 5 weeks in the near threshold section, and every 10 3 to 10 4 weeks in the Paris section. Once the type is used, the frequency of the complex type needs to be higher in the high-speed expansion section), and the calibration test is carried out.
  • ⁇ . , a, V. And V are the initial crack length, the crack length, the initial voltage value, and the measured voltage value, and ⁇ ⁇ ⁇ , ⁇ 3 , and ⁇ 4 are the fitting coefficients.
  • the crack length-fatigue cycle curve is calculated by regression, and then the fatigue crack growth rate is obtained by differential analysis.
  • the composite stress intensity factor range is obtained by combining the finite element numerical calculation, and the composite fatigue crack growth rate curve is finally obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种测试复合型疲劳裂纹扩展速率的装置,包括板状的试样(30),用于通过第二夹具机构对所述试样(30)施加拉伸、剪切、扭转作用的第一夹具机构;所述第二夹具机构用于夹持所述试样(30),并与第一夹具机构相配合使试样(30)产生复合型疲劳裂纹;还包括用于测量并记录所述试样上产生的复合型疲劳裂纹长度的疲劳裂纹测量仪(40)。本装置通过普通拉压型或拉压和扭转型疲劳试验机驱动第一夹具机构和第二夹具机构对所述试样(30)施加拉伸、剪切、扭转作用,从而可完全满足I型、II型、III型及复合型疲劳裂纹扩展速率试验测试的要求,为实现关键机械零件和工程构件在复杂使役条件下的疲劳寿命精确预测奠定了基础。

Description

一种测试复合型疲劳裂紋扩展速率的装置
技术领域
本发明属于材料测试技术领域, 涉及一种测试复合型疲劳裂纹扩展速 率的装置。 背景技术
疲劳破坏是机械零部件和工程构件的主要失效模式之一, 且多为脆性 破坏形式, 易造成较大的经济财产损失, 因此长期以来疲劳破坏问题一直 受到人们的广泛关注。 通过大量的试验研究和实际工程应用, 基于不同的 理念已经形成了一些疲劳破坏的描述方法。 其中, 基于损伤容限理念形成 的疲劳裂纹扩展速率描述方法, 在含裂纹构件的疲劳寿命评价中取得了较 好的效果。 疲劳裂纹扩展速率不仅是表征材料抵抗疲劳裂纹扩展的重要参 数, 也是对基于弹塑性力学的疲劳强度总寿命设计理念的重要拓展。 随着 断裂力学的不断发展与完善, 该方法在疲劳设计与分析中得到了越来越广 泛的应用。 对于实际机械零部件和工程构件而言, 由于结构和使役条件复 杂, 疲劳破坏大多为复合型, 因此, 研究复合型疲劳裂纹扩展导致的破坏 具有十分重要的理论意义和工程价值。
根据疲劳裂纹与受力情况可将疲劳裂纹分为 I型 (裂纹承受垂直正应力 作用)、 Π型 (裂纹承受面内剪应力作用)、 m型 (裂纹承受面外剪应力作 用) 三种。 目前已经开展了许多关于疲劳裂纹扩展速率的试验研究, 但大 多集中在采用标准夹具和试样测试裂纹在 I型疲劳载荷作用下的扩展速率, 而关于 Π型、 m型及复合型疲劳裂纹扩展速率的研究较少, 试验数据较为 匮乏。 当今商用疲劳试验机仍以轴向拉压型为主, 即使采用轴向拉压 +扭转 型试验机, 对于标准夹具和试样通常也只能开展 I型、 m型和 i-m型复合 型疲劳裂纹扩展试验。 而掌握裂纹在各种类型疲劳载荷作用下的扩展速率, 将有利于实现对机械零件和工程构件在复杂应力场下的疲劳寿命进行精确 预测。 发明内容
本发明的目的是提供一种测试复合型疲劳裂纹扩展速率的装置, 本装 置能够较好地测量各类复合型疲劳裂纹的扩展速率, 实现复合型疲劳载荷 作用下的裂纹扩展试验, 研究复杂交变应力场作用下材料的疲劳裂纹扩展 规律, 进而为关键机械零件和工程构件在复杂使役条件下的疲劳寿命精确 预测提供参考和依据。
为实现上述发明目的, 本发明所采用的技术方案是: 一种测试复合型 疲劳裂纹扩展速率的装置, 包括板状的试样, 本装置包括如下组成部分: 第一夹具机构, 用于通过第二夹具机构对所述试样施加拉伸、 剪切、 扭转作用;
第二夹具机构, 用于夹持所述试样, 并与第一夹具机构相配合使试样 产生复合型疲劳裂纹;
疲劳裂纹测量仪, 用于测量并记录所述试样上产生的复合型疲劳裂纹 长度。
同时, 本发明还可以通过以下技术措施得以进一歩实现:
优选的, 所述第一夹具机构包括两个第一夹具, 所述第一夹具的一端 设置为呈圆柱状的长杆, 另一端设置为便于与第二夹具机构中的夹具相连 的 U型夹持部; 所述长杆和 U型夹持部整体成型。
优选的, 所述第二夹具机构包括第一法兰式夹具和第二法兰式夹具, 所述第一法兰式夹具和第二法兰式夹具均由法兰盘和法兰颈构成, 且构成 同一个法兰式夹具的法兰盘和法兰颈整体成型;
所述法兰盘和法兰颈均呈扇形, 且法兰盘的突出在法兰颈外侧的弧形 边缘处沿法兰盘的周向均匀地分布有若干个贯穿盘体的加载孔; 所述扇形法兰颈的圆心处设置有便于所述试样安装的夹持面, 所述夹 持面垂直于法兰盘的盘面, 所述第一法兰式夹具的法兰颈和第二法兰式夹 具的法兰颈分别从试样的两个侧面将所述试样夹持固定, 且绝缘连接部件 穿过试样伸入法兰颈并将所述试样紧固在夹持面处; 所述夹持面与所述试 样的侧面之间设置有绝缘垫片; 处于夹持状态的第一法兰式夹具的法兰盘 和第二法兰式夹具的法兰盘共面, 且第一法兰式夹具的法兰盘和第二法兰 式夹具的法兰盘半径相同且共圆心;
所述第一夹具的 u型夹持部通过连接部件与所述法兰盘上的加载孔固 接, 且两个第一夹具上的 U型夹持部分别与第一法兰式夹具的法兰盘和第 二法兰式夹具的法兰盘相连; 与 U型夹持部相连的第一法兰式夹具的法兰 盘上的加载孔中心和第二法兰式夹具的法兰盘上的加载孔中心共同构成加 载线, 所述加载线穿过法兰盘的圆心;
所述加载线与两个第一夹具对试样进行拉伸作用时在试样上产生的预 制疲劳裂纹面共面。
优选的, 所述板状的试样呈长方形, 所述试样上设置有一个自试样的 边缘处沿试样的宽度方向向试样内部延伸的机加工缺口, 所述机加工缺口 设置在试样的沿其长度方向一侧的中部, 且所述机加工缺口的位于试样内 部的封闭端呈尖峰状, 所述机加工缺口的尖峰状封闭端的峰线与所述预制 疲劳裂纹面共面; 所述机加工缺口的两侧对称设置有供绝缘连接部件穿过 的固定孔, 所述固定孔的孔中心连线垂直于所述预制疲劳裂纹面。
进一歩的, 所述第一法兰式夹具的法兰盘和第二法兰式夹具的法兰盘 的所对应的圆心角均为 90度。
进一歩的, 每个法兰盘上的加载孔均布设为 5〜9个, 且两个法兰盘上 的加载孔的数量相同。
优选的, 所述连接部件为紧固螺栓, 螺栓的螺杆穿过所述 U型夹持部 和加载孔将第一夹具和法兰盘连接在一起, 螺栓螺杆伸出在 U型夹持部外 侧的端部紧固有螺母。
优选的, 所述绝缘连接部件为绝缘螺栓, 所述法兰颈的夹持面上设有 与所述绝缘螺栓相对应的螺纹孔。
优选的, 所述疲劳裂纹测量仪为直流电位式疲劳裂纹测量仪, 直流电 位式疲劳裂纹测量仪的两个电压探头与所述机加工缺口的开口端的两侧分 别相连; 所述直流电位式疲劳裂纹测量仪的两个电流探头分别连接在所述 固定孔的孔中心连线和试样的沿试样长度方向的两个端面的相交处。
本发明的有益效果在于:
1 )、 本发明在工作时, 由第二夹具机构夹持固定试样, 然后将第一夹 具机构与第二夹具机构相连, 并使第一夹具机构与普通拉压型或拉压 +扭转 型疲劳试验机相连, 然后使疲劳裂纹测量仪与试样相连, 通过普通拉压型 或拉压 +扭转型疲劳试验机驱动第一夹具机构和第二夹具机构对所述试样 施加拉伸、 剪切、 扭转作用, 从而可完全满足 I型、 Π型、 m型及复合型 疲劳裂纹扩展速率试验测试的要求, 为实现关键机械零件和工程构件在复 杂使役条件下的疲劳寿命精确预测奠定了基础。
2)、 本发明中的第一夹具的长杆和 u型夹持部整体成型, 克服了传统 的分体式螺纹连接夹具无法有效传递疲劳扭矩的缺点; 同时第一夹具的 u 型夹持部通过螺栓螺母紧固的方式与法兰盘上的加载孔固定连接, 在保证 试验过程中不发生侧向滑动的同时, 使拉扭疲劳载荷传递得更加平稳顺畅。
3 )、本发明中的第二夹具机构包括第一法兰式夹具和第二法兰式夹具, 所述第一法兰式夹具和第二法兰式夹具分别从试样的两侧夹持固定试样, 同时由于试样的固定孔对称设置在机加工缺口的两侧, 因此本发明中的第 二夹具机构在夹持固定试样时留出了试样的整个测试部分, 从而便于疲劳 试验过程中进行裂纹长度测试与扩展路径观察。
4)、 在试验过程中, 本发明中的试样不但能够单独实现拉伸、 剪切、 扭转试验, 而且能够同时实现拉伸、 剪切、 扭转中的两种或三种共同试验, 也即本发明中的试样可以同时满足 I型、 Π型、 III型及复合型疲劳裂纹扩 展试验,因此本发明中的试样也被称为 CTST拉剪扭试样;本发明中的 CTST 拉剪扭试样的独特结构除保留了紧凑拉伸试样即 CT试样的有效裂纹疲劳 扩展长度大的优点外, 还易于预制 I型疲劳裂纹。
5 )、 本发明通过绝缘螺栓将试样夹持固定在第一法兰式夹具和第二法 兰式夹具之间, 所述绝缘螺栓和绝缘垫片的设置阻隔了两法兰式夹具和
CTST拉剪扭试样之间的电流导通,降低了疲劳试验测试过程中监测电压信 号的信噪比。 附图说明
图 1是本发明的结构示意图。
图 2是第一夹具的结构示意图。、
图 3是连接第一夹具的 U型夹持部与法兰盘上的加载孔的螺栓螺母的 结构示意图。
图 4是第一法兰式夹具的结构示意图。
图 5是第二法兰式夹具的结构示意图。
图 6、7是第一法兰式夹具和第二法兰式夹具彼此配合时的结构示意图。 图 8是试样的结构示意图。
图 9是直流电位式疲劳裂纹测量仪和试样相连接的结构示意图。
图 10是第一夹具对试样预制 I型疲劳裂纹时的结构示意图。
附图标记说明
10—第一夹具 11一长杆 12— U型夹持部
20A—第一法兰式夹具 20B—第二法兰式夹具 21—法兰盘 22—法兰颈 23—加载孔 24—夹持面 30—试样
31—机加工缺口 32—固定孔 33—封闭端 40—疲劳裂纹测量仪 41一电压探头 42—电流探头
50—绝缘螺栓 60—紧固螺栓 61—螺母 具体实施方式
下面结合附图对本实用新型的工作过程做进一歩说明。
如图 1〜10所示, 本测试复合型疲劳裂纹扩展速率的装置包括如下组 成部分:
两个第一夹具 10, 所述第一夹具 10的一端设置为呈圆柱状的长杆 11, 另一端设置为便于与第二夹具机构中的夹具相连的 U型夹持部 12; 所述长 杆 11和 U型夹持部 12整体成型。 如图 2所示, 所述 U型夹持部 12有两 个彼此相邻且平行设置的耳板构成, 两个耳板之间设置有便于容纳法兰盘 21的间隙, 且两个耳板上对应设置有供紧固螺栓 60穿过的工艺孔。
第一法兰式夹具 20A和第二法兰式夹具 20B,所述第一法兰式夹具 20A 和第二法兰式夹具 20B均由法兰盘 21和法兰颈 22构成, 且构成同一个法 兰式夹具的法兰盘 21和法兰颈 22整体成型; 所述法兰盘 21和法兰颈 22 均呈扇形, 且法兰盘 21的突出在法兰颈 22外侧的弧形边缘处沿法兰盘 21 的周向均匀地分布有若干个贯穿盘体的加载孔 23, 如图 4、 5、 6所示。
所述扇形法兰颈 22的圆心处设置有便于所述试样 30安装的夹持面 24, 所述夹持面 24垂直于法兰盘 21的盘面, 且夹持面 24上设有螺纹孔; 所述 第一法兰式夹具 20A的法兰颈 22和第二法兰式夹具 20B的法兰颈 22分别 从试样 30的两个侧面将所述试样 30夹持固定,且绝缘螺栓 50穿过试样 30 并伸入到夹持面 24上的螺纹孔中以将所述试样 30紧固在两个夹持面 24之 间, 如图 7所示, 所述夹持面 24与所述试样 30的侧面之间设置有绝缘垫 片; 处于夹持状态的第一法兰式夹具 20A的法兰盘 21 和第二法兰式夹具 20B的法兰盘 21共面, 且第一法兰式夹具 20A的法兰盘 21和第二法兰式 夹具 20B的法兰盘 21半径相同且共圆心, 如图 6所示, 为简洁起见, 图 6 中并未画出试样 30。
所述第一法兰式夹具 20A的法兰盘 21和第二法兰式夹具 20B的法兰 盘 21共面, 即两个法兰盘 21的处于同一侧的盘面彼此重合或共面。
如图 6所示,所述第一法兰式夹具 20A的法兰盘 21和第二法兰式夹具 20B的法兰盘 21的所对应的圆心角均为 90度, 且每个法兰盘 21上的加载 孔 23均布设为 5个。
如图 6所示, 加载孔 A1与加载孔 A2彼此对应且二者的连线即加载线 穿过圆心; 加载孔 B1与加载孔 B2彼此对应且二者的连线即加载线穿过圆 心; 加载孔 C1与加载孔 C2彼此对应且二者的连线即加载线穿过圆心; 加 载孔 D1与加载孔 D2彼此对应且二者的连线即加载线穿过圆心;加载孔 E1 与加载孔 E2彼此对应且二者的连线即加载线穿过圆心。
如图 8所示, 所述板状的试样 30呈长方形, 试样 30上设置有一个自 试样 30的边缘处沿试样 30的宽度方向向试样 30内部延伸的机加工缺口 31, 所述机加工缺口 31设置在试样 30的沿其长度方向一侧的中部, 且所述机 加工缺口 31的位于试样 30内部的封闭端 33呈尖峰状,所述机加工缺口 31 的尖峰状封闭端 33的峰线与所述预制疲劳裂纹面共面;所述机加工缺口 31 的两侧对称设置有供绝缘连接部件穿过的固定孔 32,所述固定孔 32的孔中 心连线垂直于所述预制疲劳裂纹面。
如图 9所示, 所述疲劳裂纹测量仪 40为直流电位式疲劳裂纹测量仪, 直流电位式疲劳裂纹测量仪的两个电压探头 41与所述机加工缺口 31的开 口端的两侧部分别相连; 所述直流电位式疲劳裂纹测量仪的两个电流探头 42分别连接在所述固定孔 32的孔中心连线和试样 30的沿试样长度方向的 两个端面的相交处。
下面结合图 1、 10对本发明的试验过程做详细说明。
试验时的结构如图 1所示, 以试样 30为中心, 首先通过四个绝缘螺栓
50将试样 30固定连接到第一法兰式夹具 20A和第二法兰式夹具 20B的夹 持面 24之间;然后将一个紧固螺栓 60的螺杆依次穿过 U型夹持部 12的耳 板上的工艺孔和第一法兰式夹具 20A的法兰盘 21上加载孔 A1 , 在螺杆的 伸出端拧上螺母 61, 使第一夹具 10和第一法兰式夹具 20A的法兰盘 21固 定连接, 再使用另一个紧固螺栓 60的螺杆依次穿过 U型夹持部 12的耳板 上的工艺孔和第二法兰式夹具 20A的法兰盘 21上加载孔 A2, 在螺杆的伸 出端拧上螺母 61, 使第一夹具 10和第二法兰式夹具 20A的法兰盘 21固定 连接; 再将两个第一夹具 10分别连接到疲劳试验机上, 最后连接直流电位 式裂纹测量仪 40与 CTST拉剪扭试样 30, 电压探头 41即电压测试端导线 分别接在机加工缺口 31 的开口端附近, 电流探头 42即电流源导线分别接 在试样的四个固定孔 32的孔中心连线和试样 30的沿试样长度方向的两个 端面的相交处。
所述加载孔 A1和加载孔 A2相连构成的加载线与两个第一夹具 10对 试样 30进行拉伸作用时即单独施加轴向拉伸载荷在试样 30上产生的预制 疲劳裂纹面共面。
当改变加载孔以重新对试样 30施加作用时, 改变后的两个加载孔的连 线所得到的加载线仍然需要穿过两个法兰盘 21的圆心, 同时改变后的两个 加载孔的连线所得到的加载线与两个第一夹具 10对试样 30进行拉伸作用 时即单独施加轴向拉伸载荷在试样 30上产生的预制疲劳裂纹面共面。
试验方法按如下歩骤进行:
1、 如图 10所示, 直接通过紧固螺栓 60和螺母 61使两个第一夹具 10 即一体式 U型夹具与试样 30即 CTST拉剪扭试样的机加工缺口 31两侧的 对称分布的两个固定孔 32相连, 疲劳试验机通过第一夹具 10向试样 30施 加轴向拉伸载荷预制疲劳裂纹, 得到预制疲劳裂纹面。 为减少预制疲劳裂 纹所用时间, 先采用较高的载荷产生疲劳裂纹, 之后分级降载, 每级下降 率不得大于 20%, 预制疲劳裂纹最后一级的最大力值不得超过开始记录试 验数据时的最大力值。 2、预制完疲劳裂纹后,从第一夹具 10即一体式 U型夹具上卸下 CTST 拉剪扭试样, 通过绝缘螺栓 50将 CTST拉剪扭试样固定连接在第一法兰式 夹具 20A和第二法兰式夹具 20B的夹持面 24之间, 夹持面 24与 CTST拉 剪扭试样之间垫有绝缘垫片,再使第一法兰式夹具 20A的法兰盘 21上的加 载孔和第二法兰式夹具 20B 的法兰盘 21 上的加载孔分别与两个第一夹具 10即一体式 U型夹具的 U型夹持部相连,之后按照图 9所示的结构连接直 流电位式裂纹测量仪 40与 CTST拉剪扭试样,设定相应的试验频率、波形、 载荷类型与比例进行所需的复合型疲劳裂纹扩展试验, 通过不同加载孔对 的轴向拉伸实现 II型、 ΠΙ型加载, 通过轴向扭转实现 I型加载。
3、 复合型疲劳裂纹扩展试验开始前开启直流电位式裂纹测量仪实时记 录每个疲劳周次下 CTST拉剪扭试样的电位值, 每隔一定周次暂停试验, 采用醋酸纤维素薄膜和丙酮进行表面复型(具体周次视裂纹扩展速率而定, 近门槛值区段内可每 104〜105周次测量复型一次, Paris区段内可每 103〜104 周次测量复型一次,高速扩展区段内需要复型的频率更高),开展标定试验。
4、完成试验后,比较标定试验结果与直流电位式裂纹测量仪记录数据, 分析不同疲劳周次下裂纹长度和测量电压之间的关系, 采用如下关系式表 a la0 = P0 + Px{V IV0) + P2{V IV0)2 + P {V IV
( 1 )
式中, Ω。、 a、 V。、 V分别为初始裂纹长度、 裂纹长度、 初始电压值、 测量电压值, Ρ Ρτ、 Ρ3、 Ρ4是拟合系数。 通过回归计算出裂纹长度 -疲劳 周次曲线, 进而微分得到疲劳裂纹扩展速率, 再结合有限元数值计算得到 复合型应力强度因子范围, 最终获得复合型疲劳裂纹扩展速率曲线。

Claims

权利要求
1、 一种测试复合型疲劳裂纹扩展速率的装置, 包括板状的试样 (30), 其特征在于本装置包括如下组成部分:
第一夹具机构, 用于通过第二夹具机构对所述试样(30)施加拉伸、 剪 切、 扭转作用;
第二夹具机构, 用于夹持所述试样 (30), 并与第一夹具机构相配合使 试样 (30) 产生复合型疲劳裂纹;
疲劳裂纹测量仪 (40), 用于测量并记录所述试样 (30) 上产生的复合 型疲劳裂纹长度。
2、 根据权利要求 1所述的测试复合型疲劳裂纹扩展速率的装置, 其特 征在于: 所述第一夹具机构包括两个第一夹具 (10), 所述第一夹具 (10) 的一端设置为呈圆柱状的长杆 (11 ), 另一端设置为便于与第二夹具机构中 的夹具相连的 U型夹持部 (12 ); 所述长杆 (11 ) 和 U型夹持部 (12) 整体 成型。
3、 根据权利要求 2所述的测试复合型疲劳裂纹扩展速率的装置, 其特 征在于: 所述第二夹具机构包括第一法兰式夹具 (20A) 和第二法兰式夹具
(20B ) , 所述第一法兰式夹具 (20A) 和第二法兰式夹具 (20B ) 均由法兰 盘 (21 ) 和法兰颈 (22) 构成, 且构成同一个法兰式夹具的法兰盘 (21 ) 和 法兰颈 (22) 整体成型;
所述法兰盘 (21 ) 和法兰颈 (22) 均呈扇形, 且法兰盘 (21 ) 的突出在 法兰颈 (22) 外侧的弧形边缘处沿法兰盘(21 ) 的周向均匀地分布有若干个 贯穿盘体的加载孔 (23 );
所述扇形法兰颈(22) 的圆心处设置有便于所述试样(30)安装的夹持 面 (24), 所述夹持面 (24) 垂直于法兰盘 (21) 的盘面, 所述第一法兰式 夹具 (20A) 的法兰颈 (22) 和第二法兰式夹具 (20B) 的法兰颈 (22) 分 别从试样 (30) 的两个侧面将所述试样 (30)夹持固定, 且绝缘连接部件穿 过试样(30)伸入法兰颈(22)并将所述试样(30)紧固在夹持面(24)处, 所述夹持面 (24) 与所述试样 (30) 的侧面之间设置有绝缘垫片; 处于夹持 状态的第一法兰式夹具 (20A) 的法兰盘 (21) 和第二法兰式夹具 (20B) 的法兰盘 (21) 共面, 且第一法兰式夹具 (20A) 的法兰盘 (21) 和第二法 兰式夹具 (20B) 的法兰盘 (21) 半径相同且共圆心;
所述第一夹具(10)的 U型夹持部(12 )通过连接部件与所述法兰盘( 21 ) 上的加载孔(23) 固接, 且两个第一夹具 (10)上的 U型夹持部(12)分别 与第一法兰式夹具 (20A) 的法兰盘 (21) 和第二法兰式夹具 (20B) 的法 兰盘 (21) 相连; 与 U型夹持部 (12) 相连的第一法兰式夹具 (20A) 的法 兰盘(21)上的加载孔(23) 中心和第二法兰式夹具 (20B) 的法兰盘(21) 上的加载孔 (23) 中心共同构成加载线, 所述加载线穿过法兰盘的圆心; 所述加载线与两个第一夹具 (10)对试样(30)进行拉伸作用时在试样
(30) 上产生的预制疲劳裂纹面共面。
4、 根据权利要求 3所述的测试复合型疲劳裂纹扩展速率的装置, 其特 征在于: 所述板状的试样 (30) 呈长方形, 所述试样 (30) 上设置有一个自 试样 (30) 的边缘处沿试样 (30) 的宽度方向向试样 (30) 内部延伸的机加 工缺口 (31), 所述机加工缺口 (31) 设置在试样 (30) 的沿其长度方向一 侧的中部, 且所述机加工缺口 (31) 的位于试样(30) 内部的封闭端呈尖峰 状, 所述机加工缺口 (31) 的尖峰状封闭端的峰线与所述预制疲劳裂纹面共 面; 所述机加工缺口 (31) 的两侧对称设置有供绝缘连接部件穿过的固定孔 (32), 所述固定孔 (32) 的孔中心连线垂直于所述预制疲劳裂纹面。 5、 根据权利要求 3所述的测试复合型疲劳裂纹扩展速率的装置, 其特 征在于:所述第一法兰式夹具(20A)的法兰盘(21 )和第二法兰式夹具(20B ) 的法兰盘 (21 ) 的所对应的圆心角均为 90度。 6、 根据权利要求 3所述的测试复合型疲劳裂纹扩展速率的装置, 其特 征在于: 每个法兰盘 (21 ) 上的加载孔 (23 ) 均布设为 5〜9个, 且两个法 兰盘 (21 ) 上的加载孔 (23 ) 的数量相同。
7、 根据权利要求 3所述的测试复合型疲劳裂纹扩展速率的装置, 其特 征在于: 所述连接部件为紧固螺栓 (60), 螺栓 (60) 的螺杆穿过所述 U型 夹持部 (12) 和加载孔 (23 )将第一夹具 (10) 和法兰盘连接在一起, 螺栓 (60) 的螺杆伸出在 U型夹持部 (12) 外侧的端部紧固有螺母 (61 )。
8、 根据权利要求 4所述的测试复合型疲劳裂纹扩展速率的装置, 其特 征在于: 所述绝缘连接部件为绝缘螺栓 (50), 所述法兰颈 (22) 的夹持面
(24) 上设有与所述绝缘螺栓 (50) 相对应的螺纹孔。
9、 根据权利要求 4所述的测试复合型疲劳裂纹扩展速率的装置, 其特 征在于: 所述疲劳裂纹测量仪(40) 为直流电位式疲劳裂纹测量仪, 直流电 位式疲劳裂纹测量仪的两个电压探头与所述机加工缺口 (31 ) 的开口端的两 侧分别相连;所述直流电位式疲劳裂纹测量仪的两个电流探头分别连接在所 述固定孔 (32) 的孔中心连线和试样(30) 的沿试样长度方向的两个端面的 相交处。
PCT/CN2014/079122 2013-06-07 2014-06-04 一种测试复合型疲劳裂纹扩展速率的装置 WO2014194816A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/036,031 US9841364B2 (en) 2013-06-07 2014-06-04 Device for testing mixed-mode fatigue crack growth rate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310227160.5A CN104237007B (zh) 2013-06-07 2013-06-07 一种测试复合型疲劳裂纹扩展速率的装置
CN201310227160.5 2013-06-07

Publications (1)

Publication Number Publication Date
WO2014194816A1 true WO2014194816A1 (zh) 2014-12-11

Family

ID=52007563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079122 WO2014194816A1 (zh) 2013-06-07 2014-06-04 一种测试复合型疲劳裂纹扩展速率的装置

Country Status (3)

Country Link
US (1) US9841364B2 (zh)
CN (1) CN104237007B (zh)
WO (1) WO2014194816A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107345874A (zh) * 2017-09-04 2017-11-14 桂林电子科技大学 一种断裂破坏试验装置及方法
CN109163989A (zh) * 2018-08-20 2019-01-08 中国飞机强度研究所 动态复合加载试验装置、***及方法
CN110208125A (zh) * 2019-06-19 2019-09-06 中国科学院金属研究所 一种高温高压水微动疲劳正压力施加装置及其使用方法
CN111579358A (zh) * 2019-02-18 2020-08-25 中国航发商用航空发动机有限责任公司 用于测试陶瓷基复合材料断裂强度的工装夹具
CN112362456A (zh) * 2020-11-24 2021-02-12 中国石油天然气集团有限公司 一种紧凑拉伸试样的连接结构及基于其的工作方法
CN112539997A (zh) * 2020-12-15 2021-03-23 扬州大学 一种玄武岩纤维增强沥青砂浆原位拉伸断裂试验方法
CN114018733A (zh) * 2021-11-10 2022-02-08 中国核动力研究设计院 一种基于柔度原理的高温疲劳裂纹扩展试验方法及装置
CN114689451A (zh) * 2022-03-25 2022-07-01 武汉理工大学 一种加筋板低周疲劳裂纹萌生的试验测量装置和方法
CN115201027A (zh) * 2022-08-17 2022-10-18 哈尔滨工业大学 基于多轴疲劳试验机的板条试件弯剪耦合试验装置及方法

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10989640B2 (en) 2015-03-24 2021-04-27 Bell Helicopter Textron Inc. Method for defining threshold stress curves utilized in fatigue and damage tolerance analysis
EP3073245B1 (en) * 2015-03-24 2018-09-12 Bell Helicopter Textron Inc. System and method for determining direct damage tolerance allowables
US10732085B2 (en) 2015-03-24 2020-08-04 Bell Helicopter Textron Inc. Notch treatment methods for flaw simulation
CN104931407B (zh) * 2015-06-10 2017-10-27 合肥通用机械研究院 一种多轴盐雾腐蚀疲劳裂纹扩展测试***
CN105352800B (zh) * 2015-11-13 2018-01-02 武汉钢铁有限公司 钢箱梁疲劳裂纹扩展速率测试方法
CN105403450B (zh) * 2015-12-15 2018-12-21 桂林电子科技大学 一种复合型断裂试验加载装置
CN105403453B (zh) * 2015-12-15 2019-05-07 桂林电子科技大学 一种三维复合型断裂试验夹具
CN106896140B (zh) * 2015-12-17 2023-10-13 中国科学院金属研究所 一种低温疲劳裂纹扩展速率试验装置及其使用方法
CN105486583B (zh) * 2016-01-25 2018-04-10 重庆交通大学 土体二维断裂试验方法及试验装置
CN106769424B (zh) * 2016-12-12 2019-04-09 北京航空航天大学 一种用于边缘/中心缺口复合材料层合板压缩性能测试的防失稳通用夹具
CN107014682A (zh) * 2017-04-05 2017-08-04 中国矿业大学(北京) 一种适用于三维复合型裂纹扩展测试的加载装置及方法
CN107389454B (zh) * 2017-09-04 2023-06-16 桂林电子科技大学 一种适用于多种形状尺寸试件的复合断裂试验装置
DE102017121405A1 (de) * 2017-09-14 2019-03-14 Technische Hochschule Mittelhessen Vorrichtung und Verfahren zur Untersuchung des Bruchverhaltens
CN108287038B (zh) * 2017-10-19 2020-09-22 北京理工大学 残余应力梯度分布定值试块
CN107941611A (zh) * 2017-10-27 2018-04-20 西安石油大学 一种确定i/iii复合型疲劳裂纹扩展速率的方法
CN107764671A (zh) * 2017-12-04 2018-03-06 广州特种承压设备检测研究院 塑料管材寿命评测装置
CN109030248B (zh) * 2018-07-10 2020-02-18 西南交通大学 I-ii复合型裂纹疲劳扩展速率试验装置及试验方法
CN108956333A (zh) * 2018-08-08 2018-12-07 西南交通大学 动态拉剪加载试验装置及动态拉剪试验***
CN109708958A (zh) * 2019-03-01 2019-05-03 湖南工业职业技术学院 一种柔性剪切-反剪切试验夹具及其剪切试验方法
CN109916686A (zh) * 2019-04-04 2019-06-21 上海交通大学 一种金属板材的各向异性断裂强度的测试试样
CN110320102B (zh) * 2019-06-19 2022-03-18 太原理工大学 任意角度下复合拉/压剪的测试装置及使用方法
CN110441134A (zh) * 2019-08-15 2019-11-12 攀钢集团攀枝花钢铁研究院有限公司 十字点焊工件拉伸性能检测的装夹工装及检测方法
CN110346221A (zh) * 2019-08-20 2019-10-18 山东建筑大学 一种模拟混合料复合开裂模式的试验装置及方法
CN111122318B (zh) * 2019-12-18 2022-07-19 西北工业大学 一种实现多种复合型裂纹扩展的试验装置及使用方法
CN115791382A (zh) * 2019-12-20 2023-03-14 太原科技大学 一种热模拟扭转实验夹具及使用方法
CN110954405A (zh) * 2019-12-26 2020-04-03 哈尔滨工业大学 一种带刻度式可连续变换角度的混合型裂纹试验装置
CN111693371A (zh) * 2020-07-06 2020-09-22 上海大学绍兴研究院 一种陶瓷基复合材料拉伸性能测试的测试工装
CN112213189A (zh) * 2020-09-28 2021-01-12 河南航天精工制造有限公司 一种复合拉剪试验装置
CN112461755B (zh) * 2020-11-20 2022-11-25 中国直升机设计研究所 一种拉伸剪切强度试验装置
CN112763312A (zh) * 2020-12-29 2021-05-07 中国航空工业集团公司西安飞机设计研究所 一种拉剪复合状态的螺栓疲劳试验夹具及方法
CN112881160B (zh) * 2021-01-12 2023-01-17 中国商用飞机有限责任公司北京民用飞机技术研究中心 一种金属宽板疲劳试验用的夹具
CN112945658B (zh) * 2021-01-22 2023-06-13 河北工程大学 一种可实现裂隙尖端无限锐化的技术方法
CN112945769B (zh) * 2021-02-03 2024-03-29 西安交通大学 一种焊接接头低周疲劳裂纹扩展性能薄弱微区的评价方法
CN112985997B (zh) * 2021-02-10 2022-09-23 中国人民解放军陆军装甲兵学院 一种锥壳样件复合载荷疲劳试验装置
CN114397175B (zh) * 2021-12-16 2024-02-20 中国原子能科学研究院 一种放射性样品的装样装置
CN115019913A (zh) * 2022-05-12 2022-09-06 中国航发四川燃气涡轮研究院 一种双性能粉末盘疲劳裂纹扩展寿命计算方法
CN115266319B (zh) * 2022-08-17 2024-07-09 哈尔滨工业大学 基于多轴疲劳试验机的板条状试验件拉剪耦合试验装置
CN116738780B (zh) * 2023-05-29 2024-01-26 天津大学 考虑裂纹偏折的紧凑拉伸试样疲劳裂纹扩展长度及速率计算方法
CN117491128A (zh) * 2023-10-24 2024-02-02 天津大学 一种适用于多种试样的i&ii复合疲劳断裂试验装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4198870A (en) * 1978-11-09 1980-04-22 Terra Tek, Inc. Constant point of load application fracture specimen loading machine
JPH0194239A (ja) * 1987-10-07 1989-04-12 Sumitomo Heavy Ind Ltd 硬脆材料の試験における試験片のチャッキング方法
CN1924546A (zh) * 2006-09-04 2007-03-07 北京工业大学 一种十字型点焊试样多向疲劳加载夹具装置
CN1987407A (zh) * 2006-09-04 2007-06-27 北京工业大学 X型点焊试样多向疲劳加载夹持装置
CN102095680A (zh) * 2010-12-30 2011-06-15 中交第一公路勘察设计研究院有限公司 一种用于测试路面层间剪切疲劳试件的夹具及其测试方法
CN102156069A (zh) * 2011-03-30 2011-08-17 复旦大学 一种双相材料界面混合断裂测试用夹具
CN203178137U (zh) * 2013-04-03 2013-09-04 杭州电子科技大学 人工心瓣热解炭及其复合材料断裂韧性测试装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4574642A (en) * 1984-11-23 1986-03-11 The Firestone Tire & Rubber Company Apparatus for automated crack growth rate measurement
CN2639875Y (zh) * 2003-09-02 2004-09-08 华中科技大学 一种用于微小样品的六轴力学性能测量装置
US6860156B1 (en) * 2004-05-24 2005-03-01 The United States Of America As Represented By The Secretary Of The Navy Combined in-plane shear and multi-axial tension or compression testing apparatus
US7204160B1 (en) * 2004-05-24 2007-04-17 The United States Of America As Represented By The Secretary Of The Navy Biaxial and shear testing apparatus with force controls
US8006544B2 (en) * 2007-01-12 2011-08-30 Vextec Corporation Apparatus and methods for testing performance of a material for use in a jet engine
US8082802B1 (en) * 2009-04-28 2011-12-27 The United States Of America As Represented By The Secretary Of The Navy Compact and stand-alone combined multi-axial and shear test apparatus
KR101200250B1 (ko) * 2011-03-25 2012-11-09 한국전기연구원 액츄에이터 자중에 대한 하중 보상이 가능한 피로시험기
CN102262016B (zh) * 2011-04-29 2013-04-24 吉林大学 跨尺度微纳米级原位复合载荷力学性能测试平台
CN102564870B (zh) * 2011-12-19 2014-12-10 中南大学 裂纹扩展试验方法及装置
CN202649026U (zh) * 2012-06-19 2013-01-02 昆明理工大学 一种万向断裂试验装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4198870A (en) * 1978-11-09 1980-04-22 Terra Tek, Inc. Constant point of load application fracture specimen loading machine
JPH0194239A (ja) * 1987-10-07 1989-04-12 Sumitomo Heavy Ind Ltd 硬脆材料の試験における試験片のチャッキング方法
CN1924546A (zh) * 2006-09-04 2007-03-07 北京工业大学 一种十字型点焊试样多向疲劳加载夹具装置
CN1987407A (zh) * 2006-09-04 2007-06-27 北京工业大学 X型点焊试样多向疲劳加载夹持装置
CN102095680A (zh) * 2010-12-30 2011-06-15 中交第一公路勘察设计研究院有限公司 一种用于测试路面层间剪切疲劳试件的夹具及其测试方法
CN102156069A (zh) * 2011-03-30 2011-08-17 复旦大学 一种双相材料界面混合断裂测试用夹具
CN203178137U (zh) * 2013-04-03 2013-09-04 杭州电子科技大学 人工心瓣热解炭及其复合材料断裂韧性测试装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107345874B (zh) * 2017-09-04 2023-06-23 桂林电子科技大学 一种断裂破坏试验装置及方法
CN107345874A (zh) * 2017-09-04 2017-11-14 桂林电子科技大学 一种断裂破坏试验装置及方法
CN109163989A (zh) * 2018-08-20 2019-01-08 中国飞机强度研究所 动态复合加载试验装置、***及方法
CN109163989B (zh) * 2018-08-20 2021-08-17 中国飞机强度研究所 动态复合加载试验装置、***及方法
CN111579358A (zh) * 2019-02-18 2020-08-25 中国航发商用航空发动机有限责任公司 用于测试陶瓷基复合材料断裂强度的工装夹具
CN110208125A (zh) * 2019-06-19 2019-09-06 中国科学院金属研究所 一种高温高压水微动疲劳正压力施加装置及其使用方法
CN110208125B (zh) * 2019-06-19 2023-12-08 中国科学院金属研究所 一种高温高压水微动疲劳正压力施加装置及其使用方法
CN112362456A (zh) * 2020-11-24 2021-02-12 中国石油天然气集团有限公司 一种紧凑拉伸试样的连接结构及基于其的工作方法
CN112362456B (zh) * 2020-11-24 2024-05-28 中国石油天然气集团有限公司 一种紧凑拉伸试样的连接结构及基于其的工作方法
CN112539997B (zh) * 2020-12-15 2024-02-20 扬州大学 一种玄武岩纤维增强沥青砂浆原位拉伸断裂试验方法
CN112539997A (zh) * 2020-12-15 2021-03-23 扬州大学 一种玄武岩纤维增强沥青砂浆原位拉伸断裂试验方法
CN114018733A (zh) * 2021-11-10 2022-02-08 中国核动力研究设计院 一种基于柔度原理的高温疲劳裂纹扩展试验方法及装置
CN114018733B (zh) * 2021-11-10 2024-05-14 中国核动力研究设计院 一种基于柔度原理的高温疲劳裂纹扩展试验方法及装置
CN114689451A (zh) * 2022-03-25 2022-07-01 武汉理工大学 一种加筋板低周疲劳裂纹萌生的试验测量装置和方法
CN114689451B (zh) * 2022-03-25 2024-06-07 武汉理工大学 一种加筋板低周疲劳裂纹萌生的试验测量装置和方法
CN115201027A (zh) * 2022-08-17 2022-10-18 哈尔滨工业大学 基于多轴疲劳试验机的板条试件弯剪耦合试验装置及方法

Also Published As

Publication number Publication date
US9841364B2 (en) 2017-12-12
CN104237007B (zh) 2016-09-14
CN104237007A (zh) 2014-12-24
US20160349161A1 (en) 2016-12-01

Similar Documents

Publication Publication Date Title
WO2014194816A1 (zh) 一种测试复合型疲劳裂纹扩展速率的装置
CN108548716B (zh) 一种圆棒试件高温拉压疲劳试验夹具及试验方法
CN106226155B (zh) 一种复合材料薄板面内剪切试验夹具和试验方法
CN103674707A (zh) 一种进行岩石直接拉伸强度及变形测量的***及方法
CN112179553B (zh) 一种超声同步测量螺栓轴向力和剪切力的方法
CN108732035B (zh) 一种榫连接结构的高温微动疲劳寿命测试方法
CN112485113B (zh) 一种小尺寸样品的材料拉伸性能测试方法及装置
CN106908177B (zh) 一种测量各向异性材料平面应力的装置
CN102928287B (zh) 一种非金属材料抗拉伸性能测试用抗拉夹具
CN105910894A (zh) 一种可实现变轴加载的拉剪耦合试验夹具及试验机
CN105890979A (zh) 用于复合载荷材料力学性能测试的预紧式机械装夹机构
CN205719760U (zh) 用于复合载荷材料力学性能测试的预紧式机械装夹机构
CN107014705A (zh) 一种基于声音特征信息预测镁合金试样疲劳极限的方法及***
CN105021143A (zh) 一种抗高温管道壁厚在线监测探头
CN109520826A (zh) 一种不同长度复合材料压缩试样纵向对中定位的专用压缩夹具
CN106896025B (zh) 用于胶粘接头内部疲劳裂纹扩展试验测试***的测试方法
EP2679980B1 (en) System and method for testing a fillet bond
JP7345816B1 (ja) 歯科修復体接着構造の応力測定装置及び使用方法
WO2024114033A1 (zh) 复合材料螺栓受力与热作用后剩余强度的测试方法及装置
CN212181748U (zh) 一种双轴同步拉伸实验教学装置
CN116842778B (zh) 基于紧凑拉伸-剪切试样的疲劳裂纹扩展方向、长度及速率计算方法
CN106644237B (zh) 多功能螺栓紧固分析***集成式压-扭复合传感器测量装置
CN102221500A (zh) 一种用于复合材料层合厚板拉压性能测试的夹具
US7150200B1 (en) Miniature axisymmetric streamline tensile (MAST) specimen
CN112611635B (zh) 一种混凝土单轴拉伸试验夹具及试验方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15036031

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14807621

Country of ref document: EP

Kind code of ref document: A1