WO2014190825A1 - 自泵送流体动压型机械密封 - Google Patents

自泵送流体动压型机械密封 Download PDF

Info

Publication number
WO2014190825A1
WO2014190825A1 PCT/CN2014/075791 CN2014075791W WO2014190825A1 WO 2014190825 A1 WO2014190825 A1 WO 2014190825A1 CN 2014075791 W CN2014075791 W CN 2014075791W WO 2014190825 A1 WO2014190825 A1 WO 2014190825A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
ring
fluid
self
sealing
Prior art date
Application number
PCT/CN2014/075791
Other languages
English (en)
French (fr)
Inventor
孙见君
胡琼
周敏
涂桥安
马晨波
于波
Original Assignee
南京林业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京林业大学 filed Critical 南京林业大学
Priority to US14/894,487 priority Critical patent/US20160097457A1/en
Publication of WO2014190825A1 publication Critical patent/WO2014190825A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • F16J15/3408Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
    • F16J15/3412Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • F16J15/3408Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
    • F16J15/3412Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities
    • F16J15/342Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities with means for feeding fluid directly to the face
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/002Sealings comprising at least two sealings in succession

Definitions

  • the invention belongs to the field of sealing technology, and particularly relates to a self-pumping mechanical seal having a fluid dynamic pressure effect, which is suitable for sealing of a rotating shaft of a rotating machine such as various compressors, a centrifugal pump and a reactor agitator.
  • the double-column fluid-type groove self-lubricating non-contact mechanical seals effectively alleviate this contradiction.
  • the seal uses a row of spiral grooves to pump the seal fluid downstream, and another row of spiral grooves pumps the seal fluid upstream and pump pressure through the two rows of spiral grooves.
  • the difference is balanced with the pressure difference between the inner and outer sides of the sealing end face, thereby achieving zero leakage of the spiral groove end face seal.
  • the structure of this type of seal is complicated, the installation space is large, and it is only suitable for the case where the fluid pressure difference on both sides of the seal end face is not large.
  • the object of the present invention is to provide a self-pumping mechanical seal with a fluid dynamic pressure effect suitable for a wide range of fluid pressure difference on both sides of a sealing end face, so as to solve the problem that the existing single-row spiral groove mechanical seal has a small opening force and a large leak rate.
  • the anti-particle interference ability is poor, the sealing end surface structure of the double-row spiral groove mechanical seal is complicated, and the installation space is large, and the working elasticity and the zero leakage effect under the same conditions are obtained under the same conditions.
  • the utility model relates to a self-pumping fluid dynamic pressure type mechanical seal, which is arranged between the casing 2 of the rotating machine and the shaft 10 or the sleeve 8, and is used for the movable ring 3, the moving ring for the O-ring 12, the stationary ring 11, and the static ring.
  • the 0-ring 5, the spring 7, the stationary ring seat 14 and the like; the end face of the moving ring 3 engaged with the stationary ring 11 is divided into a groove area and a sealing dam 37, the groove area is distributed in the outer part of the end surface, and the sealing dam 37 is distributed on the end surface.
  • the inner portion; the groove region is provided with three or more sets of rear-bend type fluid groove 39, and the sealing surface between the rear-bend fluid groove 39 constitutes a sealing port;
  • the outlet of the rear-bend type fluid groove 39 is located at the outer diameter of the sealing surface of the moving ring 3, and the inlet 31 of the rear-bend fluid groove 39 passes through the opening 3 of the moving ring 3 or the stationary ring 11 and the sealing cavity 1 Connected
  • the groove walls on both sides of the back-bend type fluid groove 39 have a working surface 34 on one side and a non-working surface 35 on the other side.
  • the medium in the back-bend fluid groove 39 rotates when the moving ring 3 rotates.
  • the working surface 34 of the back-bend type fluid groove 39 is accelerated into a high-speed fluid, and flows under the centrifugal force to the outer diameter side of the moving ring 3 along the non-working surface 35, and is pumped into the sealed chamber 1 and is bent in the back-bend type.
  • a low pressure zone is formed at the inlet 31 of the fluid groove 39, and the medium in the sealing cavity 1 flows into the back-bend type fluid groove 39 through the moving ring 3 or the hole 30 communicating with the sealing cavity 1 on the stationary ring 11 under the pressure difference.
  • the working surface 34 of the back-bend type fluid groove 39 is accelerated to a high-speed fluid, and the flow cross-sectional area of the back-bend type fluid groove 39 is gradually increased during the process of pumping the rear-bend type fluid groove 39. Large, the flow rate is reduced, and the pressure is increased to form the opening force of the separation moving ring 3 and the stationary ring 11.
  • the groove wall profiles on both sides of the back-bend type fluid groove 39 are spiral lines.
  • the spiral lines of the groove wall profiles on both sides of the back-bend type fluid groove 39 have the same helix angle.
  • the spiral angles of the spiral lines of the groove wall profiles on both sides of the back-bend type fluid groove 39 are not equal, and the helix angle of the working face 34 is smaller than the helix angle of the non-working face 35.
  • the tunnel 30 is on the moving ring 3, and the cross section of the joint of the tunnel 30 and the outer circular surface of the moving ring 3 is a wedge-shaped opening 38, and the moving ring rotates in a direction and a wedge-shaped opening.
  • the direction in which the width is reduced is the same; or the tunnel 30 is on the stationary ring 11.
  • a circular ring groove 46 is formed on the stationary ring sealing surface opposite to the inlet 31 of the rear-bend fluid type groove 39, and the circular ring groove 46 communicates with the sealing chamber 1 through the opening 30 in the stationary ring 11.
  • the inlet 31 of the back-bend type fluid groove 39 communicates with a circular ring groove 36 provided on the sealing surface of the moving ring 3, and the circular ring groove 36 passes through the hole 30 and The sealed chamber 1 is in communication.
  • the circular ring groove 36 has the function of collecting self-lubricating, self-rinsing medium and preventing unevenness of the pumping medium, and fluid supplementation at the inlet 31 of the back-bend type fluid groove 39 does not occur in time.
  • the tunnel 30 is on the stationary ring 11 and the outlet of the tunnel 30 is at The stationary ring sealing surface is opposite to the circular ring groove 36.
  • the backward curved fluid type groove 39 includes two portions of a groove groove 32 and a flat groove 33, the groove groove 32 is at a large radius portion of the moving ring end surface, and the flat groove 33 is at the end surface of the moving ring Small radius.
  • the passage 30 is on the movable ring 3, and the bore 30 is parallel to the axis of the movable ring 3.
  • the above self-pumping fluid dynamic pressure type mechanical seal, the orifice 30 is an axial radial combination orifice.
  • the axially-radial combination channel may be a multi-section combination channel (each segment extending axially or radially extending), a channel inclined at an angle to the axis (greater than 0 °, less than 90 °) or other type of axial direction.
  • the radial combination channel can be connected to the sealed chamber 1 as long as the hole can connect the inlet of the back-bend type fluid groove 39.
  • the utility model relates to a self-pumping fluid dynamic pressure type mechanical seal, which has the following advantages:
  • the self-pumping fluid dynamic pressure type mechanical seal of the invention has the function of automatically removing solid particles, and can avoid the abrasive wear of the sealing dam.
  • the high-pressure side fluid is directly injected into the sealing surface, eliminating the solid friction at the moment of starting between the sealing surfaces, and at the moment of starting, the fluid film can be quickly formed and the two sealing surfaces are separated, so the sealing is also Applicable as a rotating machinery type shaft seal for frequent opening and closing.
  • the high-pressure isolation fluid comes from the sealed medium, eliminating the high-pressure isolation fluid delivery system, reducing the operating cost of the pump and increasing the economic efficiency.
  • Fig. 1 is a schematic cross-sectional view showing the shaft section of a self-pumping fluid dynamic mechanical seal in which a back-bend type fluid groove communicates with a sealed cavity through an axial bore on the moving ring.
  • Fig. 2 is a schematic view showing the end face of the moving ring of the rear curved fluid type groove.
  • FIG. 3 is a schematic cross-sectional structural view of a self-pumping fluid dynamic pressure type mechanical seal in which a back-bend type fluid groove passes through a circular ring groove on a moving ring and an axial radial combination hole on the moving ring communicates with the sealed cavity.
  • Fig. 4 is a schematic view showing the end face of the moving ring of the back-bend type fluid groove and the circular ring groove.
  • Fig. 5 is a cross-sectional view taken along line A-A of Fig. 3;
  • Fig. 6 is a schematic cross-sectional structural view of a self-pumping fluid dynamic pressure type mechanical seal in which a back-bend type fluid groove passes through a circular ring groove on a stationary ring and an axial radial combination hole on a stationary ring and a sealed cavity.
  • Fig. 7 is a schematic view showing the end face of a moving ring with a rear-bend type fluid groove and no axial or non-axial radial combination holes.
  • Figure 8 is a schematic view of a static ring with a circular ring groove and an axial radial combination hole.
  • Fig. 9 is a schematic cross-sectional structural view of a self-pumping fluid dynamic pressure type mechanical seal in which a back-bend type fluid groove passes through a circular ring groove on a moving ring and an axial radial combination hole on a stationary ring communicates with a sealed cavity.
  • Figure 10 is a schematic view of the end face of a moving ring with a rear-bend type fluid groove and a circular ring groove, and no axial or axial radial combination.
  • Figure 11 is a schematic view of a static ring in which an axial radial combined orifice is opened.
  • R2 the outer radius of the sealing end surface that is adhered to each other between the moving ring and the stationary ring;
  • FIG. 1 and 2 depict a self-pumping fluid dynamic pressure type mechanical seal which is disposed between the casing 2 of the rotating machine and the shaft 10 or the sleeve 8, and the movable ring 3 and the moving ring are formed by the O-ring 12 , static ring 11, static ring with 0 ring 5, spring 7, static ring seat 14 and so on.
  • the 0-ring 4 is placed between the casing and the stationary ring seat.
  • the sleeve 8 is fixed to the shaft 10 by means of a set screw 9.
  • the movable ring 3 is fixed to the sleeve 8 by a set screw 13, and an O-ring 12 for the moving ring is disposed between the movable ring 3 and the sleeve 8.
  • the stationary ring 11 is disposed on the stationary ring seat 14, and an O-ring 5 for the stationary ring is disposed between the stationary ring and the inner hole of the stationary ring seat.
  • One end of the anti-rotation pin 6 is on the stationary ring seat, and the other end projects into the guiding groove which is axially opened on the stationary ring, and the anti-rotation pin 6 can prevent the static ring from rotating while being able to axially block the stationary ring. Movement plays a guiding role.
  • the spring 7 is disposed between the stationary ring and the stationary ring seat. When the spring is in the normal state, the static ring is urged to move in the axial direction so that the stationary ring and the moving ring are in close contact.
  • the end face of the movable ring 3 that cooperates with the stationary ring 11 is divided into a groove portion and a sealing dam 37.
  • the groove portion is distributed at the outer portion of the end surface, and the sealing dam 37 is distributed at the inner portion of the end surface; the groove region is provided with 12 sets of rear-bend fluid type grooves 39.
  • the sealing surface between the rear curved fluid groove 39 constitutes a sealing jaw 15;
  • the rear-bend type fluid groove 39 includes two portions of a groove 32 and a flat groove 33.
  • the groove 32 is at a large radius of the end surface of the moving ring, and the flat groove 33 is at a small radius of the end surface of the moving ring;
  • the outlet of the rear-bend fluid type groove 39 is located at the outer diameter of the moving ring sealing surface, the inlet 31 is located at the middle of the sealing surface of the moving ring 3, and the inlet 31 of the rear-bend fluid type groove 39 passes through the moving ring 3.
  • the axial channel 30 is in communication with the sealing cavity 1; the groove walls on both sides of the back-bend fluid groove 39, one side being the working surface 34 and the other side being the non-working surface 35; the back-bend type fluid groove 39
  • the medium in the medium is accelerated by the working surface 34 of the back-bend type fluid groove 39 into a high-speed fluid when the moving ring 3 rotates, and flows to the outer diameter side of the moving ring 3 along the non-working surface 35 by the centrifugal force and is pumped to
  • a low pressure zone is formed in the sealed chamber 1 and at the inlet 31 of the back-bend type fluid groove 39.
  • the medium in the sealed chamber 1 flows through the axial bore 30 of the moving ring 3 communicating with the sealed chamber 1 under the pressure difference.
  • the back-bend type fluid groove 39 a primary self-pumping cycle is formed; this time the self-pumping cycle process, on the one hand, achieves self-lubrication of the mechanical seal; on the other hand, the fluid continuously flows between the sealing faces Circulating, taking away the frictional heat between the sealing surfaces in time to achieve a seal Self-flushing; and the effect of centrifugal force increases the power of the fluid flowing to the outside of the sealing surface of the moving ring 3, reducing the leakage rate of the fluid flowing to the inside of the sealing surface of the moving ring 3; in particular, the centrifugal force acts to enter the back-bend type fluid groove
  • the sealed fluid containing solid particles in 39 can separate the solid particles from the matrix, wherein the dense solid particles obtain a large centrifugal force, are pumped out and sent to the sealed chamber 1 without entering the sealed dam 37 region. , avoids abrasive wear between the sealing faces.
  • the working surface 34 of the back-bend type fluid groove 39 is accelerated to a high-speed fluid, and the flow cross-sectional area of the back-bend type fluid groove 39 is gradually increased during the process of pumping the rear-bend type fluid groove 39. Large, the flow rate is reduced, and the pressure is increased to form the opening force of the separation moving ring 3 and the stationary ring 11.
  • the groove wall profiles on both sides of the back-bend type fluid groove 39 are spiral lines.
  • the spiral lines of the groove wall profiles on both sides of the back-bend type fluid groove 39 have the same helix angle f.
  • spiral lines of the groove wall profiles on both sides of the back-bend type fluid groove 39 are tangent to the round holes of the inlet 31.
  • FIG. 3 to FIG. 5 are another self-pumping fluid dynamic pressure type mechanical seal, which is different from the first embodiment in that the inlet 31 of the rear-bend fluid type groove 39 and the movable ring 3 are sealed in the embodiment.
  • the circular ring groove 36 in the middle of the face is in communication.
  • the circular ring groove 36 is provided with six axial radial combination holes 30 communicating with the sealing cavity 1; the axial radial combination holes 30 on the moving ring 3 are The cross section of the outer circular surface of the moving ring 3 has a wedge-shaped opening 38; the circular annular groove 36 has a self-lubricating, self-rinsing medium and prevents unevenness of the pumping medium and the inlet 31 of the rear-bend fluid type groove 39 The fluid supplement does not appear cavitation in time.
  • a self-pumping fluid dynamic pressure type mechanical seal is disposed between the casing 2 of the rotating machine and the sleeve 8, and the moving ring 3 and the moving ring are formed by an O-ring 12 and static.
  • the ring 11, the static ring is composed of an O-ring 5, a spring 7, a stationary ring seat 14, and the like.
  • the 0-ring 4 is placed between the casing and the stationary ring seat.
  • the sleeve 8 is fixed to the shaft 10 by means of a set screw 9.
  • the moving ring 3 is fixed to the sleeve 8 by a set screw 13, and an O-ring 12 for the moving ring is disposed between the moving ring 3 and the sleeve 8.
  • the static ring 11 is disposed on the stationary ring seat 14, and an O-ring 5 for the stationary ring is disposed between the stationary ring and the inner hole of the stationary ring seat.
  • One end of the anti-rotation pin 6 is on the stationary ring seat, and the other end projects into the guiding groove which is axially opened on the stationary ring, and the anti-rotation pin 6 can prevent the static ring from rotating while being able to axially block the stationary ring. Movement plays a guiding role.
  • the spring 7 is disposed between the stationary ring and the stationary ring seat. When the spring is in a normal state, the static ring is urged to move in the axial direction so that the stationary ring and the moving ring are in close contact.
  • the end face of the movable ring 3 that cooperates with the stationary ring 11 is divided into a groove portion and a sealing dam 37.
  • the groove portion is distributed at the outer portion of the end surface, and the sealing dam 37 is distributed at the inner portion of the end surface; the groove region is provided with 12 sets of rear-bend fluid type grooves 39.
  • the sealing surface between the rear curved fluid groove 39 constitutes a sealing jaw 15;
  • the rear-bend type fluid groove 39 includes two portions of a groove 32 and a flat groove 33.
  • the groove 32 is at a large radius of the end surface of the moving ring, and the flat groove 33 is at a small radius of the end surface of the moving ring;
  • the outlet of the rear-bend type fluid groove 39 is located at the outer diameter of the moving ring sealing surface, and the inlet 31 of the rear-bend fluid groove 39 passes through the circular ring groove 46 on the stationary ring 11, 6 axial radial directions.
  • the combination tunnel 30 is in communication with the seal chamber 1; the circular ring groove 46 is on the stationary ring seal face and is axially opposed to the inlet 31 of the back bend type fluid groove 39.
  • the groove walls on both sides of the back-bend type fluid groove 39 have a working surface 34 on one side and a non-working surface 35 on the other side.
  • the medium in the back-bend fluid groove 39 rotates when the moving ring 3 rotates.
  • the working surface 34 of the back-bend type fluid groove 39 is accelerated into a high-speed fluid, and flows under the centrifugal force to the outer diameter side of the moving ring 3 along the non-working surface 35 to be pumped to the seal.
  • a low pressure zone is formed in the cavity 1 and at the inlet 31 of the back bend type fluid groove 39.
  • the medium in the sealed cavity 1 passes through the axial radial combination hole 30 on the stationary ring 11 under the pressure difference, and the circular ring groove 46 flows into the back-bend type fluid groove 39 to form a primary self-pumping cycle.
  • the circular annular groove 46 has the function of collecting self-lubricating, self-rinsing medium, and preventing unevenness of the pumping medium, and fluid supplementation at the inlet 31 of the back-bend fluid type groove 39 does not occur in time.
  • the self-pumping cycle process realizes the self-lubrication of the mechanical seal; on the other hand, the continuous circulation of the fluid between the sealing faces, the frictional heat between the sealing faces is taken away in time to achieve the sealing The self-flushing; and the centrifugal force increases the power of the fluid flowing to the outside of the sealing surface of the moving ring 3, and reduces the leakage rate of the fluid flowing to the inside of the sealing surface of the moving ring 3; in particular, the centrifugal force acts to enter the back-bend type
  • the sealed fluid containing solid particles in the tank 39 is capable of separating the solid particles from the matrix, wherein the dense solid particles obtain a large centrifugal force, are pumped out and sent to the sealed chamber 1 without entering the sealing dam 37. Zone, avoids abrasive wear between the sealing faces.
  • the working surface 34 of the back-bend type fluid groove 39 is accelerated to a high-speed fluid, and the flow cross-sectional area of the back-bend type fluid groove 39 is gradually increased during the process of pumping the rear-bend type fluid groove 39. Large, the flow rate is reduced, and the pressure is increased to form the opening force of the separation moving ring 3 and the stationary ring 11.
  • the groove wall profiles on both sides of the back-bend type fluid groove 39 are spiral lines.
  • the spiral lines of the groove wall profiles on both sides of the back-bend type fluid groove 39 have the same helix angle f.
  • spiral lines of the groove wall profiles on both sides of the back-bend type fluid groove 39 are tangent to the round holes of the inlet 31.
  • 9-11 is another self-pumping fluid dynamic pressure type mechanical seal, which is mainly different from the third embodiment in that: a circular ring groove 36 is provided on the end face of the moving ring, and no circular shape is formed on the end face of the stationary ring. Ring groove.
  • the inlet 31 of the back-bend type fluid groove 39 of the present embodiment is in communication with the circular ring groove 36, and the circular ring groove 36 and the outlet of the six axial radial combination holes 30 provided on the stationary ring are on the shaft.
  • the inlet 31 of the rear-bend type fluid groove 39 communicates with the seal chamber 1 through a circular ring groove 36 on the moving ring and an axial radial combination port 30 on the stationary ring.
  • the medium in the back-bend type fluid groove 39 is accelerated by the working surface 34 of the back-bend type fluid groove 39 into a high-speed fluid when the moving ring 3 rotates, and moves toward the moving ring along the non-working surface 35 under the action of centrifugal force.
  • the outer diameter side flows and is pumped into the sealed chamber 1, and a low pressure region is formed at the inlet 31 of the back-bend type fluid groove 39, and the medium in the sealed chamber 1 passes through the axial direction on the stationary ring 11 under the pressure difference.
  • the radial combination tunnel 30 and the circular ring groove 36 on the stationary ring flow into the back-bend type fluid groove 39 to form a primary self-pumping cycle.
  • the circular ring groove 36 has the function of collecting self-lubricating, self-rinsing medium, and preventing unevenness of the pumping medium, and fluid supplementation at the inlet 31 of the back-bend type fluid groove 39 does not occur in time.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Sealing (AREA)

Abstract

一种自泵送流体动压型机械密封,由动环(3)、静环(11)等组成,其动环密封面上开设三组以上的后弯型流体型槽(39),出口位于动环密封面外径处,进口(31)通过动环(3)或静环(11)上的孔道(30)与密封腔(1)连通。在动环(3)旋转时,流体型槽(39)中的介质被加速成高速流体,在离心力作用下,向动环(3)外径侧流动而泵送至密封腔内,并在后弯型流体型槽(39)的进口(31)处形成低压区,密封腔(1)内的介质在压差作用下通过所述孔道(30)流进后弯型流体型槽(39)中,形成新的自泵送循环。高速流体在被泵出过程中,随着后弯型流体型槽流通截面积的逐渐增大,流速降低,压力增大,形成分离动环和静环的开启力。该密封具有良好的自润滑、自冲洗、抗固体颗粒干扰能力和优越的密封性能。

Description

自泵送流体动压型机械密封
技术领域
本发明属于密封技术领域,特别涉及一种具有流体动压效应的自泵送机械密封,适用 于各种压缩机、 离心泵、 反应釜搅拌器等旋转机械的旋转轴的密封。
背景技术
目前, 广泛应用于石油、化工、化纤、造纸、 电力和冶金行业的离心式压缩机、风机、 离心泵等设备上的非接触式机械端面密封,是在动环密封面上开设型槽,利用流体动力学 原理形成流体动力楔, 产生端面开启力, 达到减小密封端面的磨损目的的, 如美国 US4212475 公开的一种具有单列螺旋槽的流体动静压结合型非接触式机械密封、 中国 ZL00239203. 8公开的单列流体型槽上游泵送机械密封和 ZL201020106087. 8公开的离心机 干气密封。这些专利, 无论是干气密封, 还是上游泵送机械密封, 它们形成流体动压的介 质都是泵入槽内的, 在型槽根部产生端面开启力、分离动环与静环、减小密封端面摩擦的 同时, 也增大了动环和静环间的泄漏率, 特别是泵送介质如果含有颗粒, 还会破坏密封坝 端面, 加速密封失效。 为此, 有些公知技术进行了改进, 如美国专利 US 5201531公开的 一种流体动压型双列螺旋槽端面密封装置、 中国专利 ZL96108614. 9公开的双环带螺旋槽 端面密封以及 ZL00239202. X公开的双列流体型槽自润滑非接触式机械密封等都有效地调 和了这一矛盾。 在给定的旋向下, 这种密封装置利用一列螺旋槽将密封流体向下游泵送, 另一列螺旋槽则将密封流体向上游泵送,并通过这两列螺旋槽所产生的泵汲压差与密封端 面内外两侧流体压差相平衡, 从而实现螺旋槽端面密封的零泄漏。但是, 这类密封的结构 比较复杂, 安装空间大, 而且仅适用于密封端面两侧流体压差不大的工况。
发明内容
本发明的目的是提出一种适用于密封端面两侧流体压力差范围宽泛的具有流体动压 效应的自泵送机械密封, 以解决现有的单列螺旋槽机械密封端面开启力小、泄漏率大, 抗 颗粒干扰能力差, 双列螺旋槽机械密封的密封端面结构复杂、安装空间大的问题, 获得在 相同的条件下比上述的密封具有更大的工作弹性, 以及零泄漏的效果。
本发明的技术方案是:
一种自泵送流体动压型机械密封, 设置于旋转机械的机壳 2和轴 10或轴套 8之间, 由动环 3、 动环用 0形圈 12、 静环 11、 静环用 0形圈 5、 弹簧 7、 静环座 14等组成; 与 静环 11配合的动环 3端面分为槽区和密封坝 37,槽区分布在端面的外侧部分,密封坝 37 分布在端面的内侧部分; 槽区开设 3组以上的后弯型流体型槽 39, 后弯型流体型槽 39之 间的密封面构成密封堰; 所述后弯型流体型槽 39的出口位于动环 3密封面的外径处,所述后弯型流体型槽 39 的进口 31通过动环 3或者静环 11上的孔道 30与密封腔 1连通;
所述后弯型流体型槽 39的两侧槽壁, 一侧为工作面 34, 另一侧为非工作面 35; 所述后弯型流体型槽 39中的介质,在动环 3旋转时,被后弯型流体型槽 39的工作面 34加速成高速流体, 在离心力作用下, 沿非工作面 35向动环 3外径侧流动而泵送至密封 腔 1内,并在后弯型流体型槽 39的进口 31处形成低压区,密封腔 1内的介质在压差作用 下通过动环 3或者静环 11上与密封腔 1连通的孔道 30流进后弯型流体型槽 39中, 形成 一次次自泵送循环; 这一次次的自泵送循环过程, 一方面, 实现了机械密封的自润滑; 另 一方面, 流体在密封面之间的不断循环, 把密封面之间的摩擦热及时带走, 实现了密封的 自冲洗; 而离心力的作用, 增加了流体流向动环 3密封面外侧的动力, 降低了流体流向动 环 3密封面内侧的泄漏率; 特别是, 离心力的作用, 使得进入后弯型流体型槽 39中的含 有固体颗粒的被密封流体,能够产生固体颗粒与基质分离,其中密度大的固体颗粒获得较 大的离心力, 随流体被泵出重新送至密封腔 1中, 不进入密封坝 37区, 避免了密封面之 间的磨粒磨损;
所述被后弯型流体型槽 39工作面 34加速成高速的流体, 在被泵出后弯型流体型槽 39的过程中, 随着后弯型流体型槽 39的流通截面积的逐渐增大, 流速降低, 压力增大, 形成分离动环 3和静环 11的开启力。
上述的自泵送流体动压型机械密封, 所述后弯型流体型槽 39的两侧槽壁型线均为螺 旋线。 所述后弯型流体型槽 39的两侧槽壁型线的螺旋线具有相同的螺旋角。 或者, 所述 后弯型流体型槽 39的两侧槽壁型线的螺旋线的螺旋角不等,工作面 34的螺旋角小于非工 作面 35的螺旋角。
上述的自泵送流体动压型机械密封, 所述后弯型流体型槽 39的两侧槽壁型线的螺旋 线与进口 31圆孔相切。
上述的自泵送流体动压型机械密封,所述孔道 30在动环 3上,孔道 30与动环 3外圆 面的连接处的横截面为楔状开口 38, 动环转动的方向与楔状开口宽度减小的方向相同; 或者孔道 30在静环 11上。 最好, 在静环密封面上设置有与后弯型流体型槽 39的进口 31 相对的圆形环槽 46, 圆形环槽 46通过静环 11上的孔道 30与密封腔 1相通。
上述的自泵送流体动压型机械密封, 后弯型流体型槽 39 的进口 31与设置在动环 3 密封面上的圆形环槽 36连通, 所述圆形环槽 36通过孔道 30与密封腔 1连通。 所述圆形 环槽 36具有收集自润滑、自冲洗介质和防止泵送介质不均匀以及后弯型流体型槽 39进口 31处的流体补充不及时出现空化的作用。 优选, 孔道 30在静环 11上, 孔道 30的出口在 静环密封面上并与圆形环槽 36相对。
上述的自泵送流体动压型机械密封, 后弯型流体型槽 39包括坡槽 32和平槽 33两个 部分, 坡槽 32处于动环端面的大半径部位, 平槽 33处于动环端面的小半径部位。 当后弯 型流体型槽 39的坡槽 32面与端面的夹角 t为 0或 Rp=R2时, 则为等深型槽; 当 Rp=Ro 时, 则为单一的坡槽 32。 通过改变后弯型流体型槽 39的数量和参数, 能满足不同被密封 介质的密封要求。
上述的自泵送流体动压型机械密封,孔道 30在动环 3上,孔道 30与动环 3的轴线平 行。
上述的自泵送流体动压型机械密封, 孔道 30为轴向径向组合孔道。 轴向径向组合孔 道可以是多段组合孔道 (每段分别沿轴向延伸或者沿径向延伸)、 一段与轴向倾斜一定角 度(大于 0 ° 、 小于 90 ° )的孔道或者其它类型的轴向径向组合孔道, 只要该孔道能够把 后弯型流体型槽 39的进口与密封腔 1连通即可。
本发明的有益效果:
本发明所述的一种自泵送流体动压型机械密封, 具有以下几个优点:
①具有优越的密封性能, 适用于输送各种易燃、 易爆、 有毒等工艺流体的离心泵、 离 心压缩机、 搅拌设备及其他旋转机械类轴封, 可实现被密封流体的微观无泄漏。
②动环旋转时,不同质量粒子产生不同的离心力,使得本发明的自泵送流体动压型机 械密封具有自动清除固体颗粒功能, 能避免密封坝的磨粒磨损。
③使用范围宽, 既可用作液体密封, 又可用作气体密封。
④独特的自润滑、 自冷却冲洗功能, 保证了机械密封工作的稳定性和耐久性。
⑤在静止状态下高压侧流体直接注入密封面之间,消除了密封面之间启动瞬间的固体 摩擦,并在启动瞬间又能迅速形成流体膜并把两密封面分离开来,故该密封亦适用作为频 繁开停的旋转机械类轴封。
⑥高压隔离流体来自被密封介质,省去了高压隔离流体的输送***, 降低了机泵的运 行费用, 相应提高了经济效益。
附图说明
图 1 为后弯型流体型槽通过动环上的轴向孔道与密封腔连通的自泵送流体动压型机 械密封的轴截面结构示意图。
图 2为开设后弯型流体型槽的动环端面示意图。
图 3为后弯型流体型槽通过动环上的圆形环槽、动环上的轴向径向组合孔道与密封腔 连通的自泵送流体动压型机械密封的轴截面结构示意图。 图 4开设后弯型流体型槽和圆形环槽的动环端面示意图。
图 5为图 3的 A-A剖视图。
图 6为后弯型流体型槽通过静环上的圆形环槽、静环上的轴向径向组合孔道与密封腔 连通的自泵送流体动压型机械密封的轴截面结构示意图。
图 7为开设后弯型流体型槽、 无轴向或无轴向径向组合孔道的动环端面示意图。 图 8为开设圆形环槽、 轴向径向组合孔道的静环示意图。
图 9为后弯型流体型槽通过动环上的圆形环槽、静环上的轴向径向组合孔道与密封腔 连通的自泵送流体动压型机械密封的轴截面结构示意图。
图 10为开设后弯型流体型槽和圆形环槽、 无轴向或无轴向径向组合孔道的动环端面 示意图。
图 11为开设轴向径向组合孔道的静环示意图。
其中,
R1 动环和静环之间相互贴合的密封端面的内半径;
R2—动环和静环之间相互贴合的密封端面的外半径;
Rp 型槽台阶半径
Ro 型槽进口孔位置半径
Rk—型槽进口孔半径
R3—型槽进口环槽内半径
R4—型槽进口环槽外半径
G—流体型槽的泵汲方向;
f一螺旋角;
h—平槽深;
t一坡槽面与端面的夹角;
动环的旋向;
1一密封腔; 2 机壳; 3 动环; 30—轴向孔道或轴向径向组合孔道; 31 进口; 32— 坡槽; 33 平槽; 34—工作面; 35—非工作面; 36 (动环上的) 圆形环槽; 46 (静环 上的) 圆形环槽; 37—密封坝; 38—楔状开口; 39—后弯型流体型槽; 4 0形圈; 5—静 环用 0形圈; 6—防转销; 7 弹簧; 8 轴套; 9, 13—紧定螺钉; 10—轴; 11 静环; 12— 动环用 0形圈; 14一静环座; 15—密封堰。
具体实施方式
下面结合附图和实施例详细说明本发明的实施方式。 实施例 1
图 1和图 2描述了一种自泵送流体动压型机械密封,其设置于旋转机械的机壳 2和轴 10或轴套 8之间, 由动环 3、 动环用 0形圈 12、 静环 11、 静环用 0形圈 5、 弹簧 7、 静环 座 14等组成。 0形圈 4设置在机壳与静环座之间。轴套 8通过紧定螺钉 9固定在轴 10上。 动环 3通过紧定螺钉 13固定在轴套 8上, 动环 3与轴套 8之间设置有动环用 0形圈 12。 静环 11设置在静环座 14上, 静环与静环座内孔之间设置有静环用 0形圈 5。 防转销 6的 一端在静环座上,另一端伸入到在静环上沿轴向所开的导向槽中, 防转销 6能够防止静环 转动, 同时又能够对静环的轴向移动起到导向作用。弹簧 7设置在静环与静环座之间, 弹 簧在常态时推动静环沿轴向移动而使得静环与动环之间紧密接触。
与静环 11配合的动环 3端面分为槽区和密封坝 37, 槽区分布在端面的外侧部分, 密 封坝 37分布在端面的内侧部分; 槽区开设 12组后弯型流体型槽 39, 后弯型流体型槽 39 之间的密封面构成密封堰 15;
所述后弯型流体型槽 39包括坡槽 32和平槽 33两个部分,坡槽 32处于动环端面的大 半径部位, 平槽 33处于动环端面的小半径部位;
所述后弯型流体型槽 39的出口位于动环密封面的外径处,进口 31位于动环 3密封面 的中部,所述后弯型流体型槽 39的进口 31通过动环 3上的轴向孔道 30与密封腔 1连通; 所述后弯型流体型槽 39的两侧槽壁, 一侧为工作面 34, 另一侧为非工作面 35; 所述后弯型流体型槽 39中的介质,在动环 3旋转时,被后弯型流体型槽 39的工作面 34加速成高速流体, 在离心力作用下, 沿非工作面 35向动环 3外径侧流动而泵送至密封 腔 1内,并在后弯型流体型槽 39的进口 31处形成低压区,密封腔 1内的介质在压差作用 下通过动环 3上与密封腔 1连通的轴向孔道 30流进后弯型流体型槽 39中,形成一次次自 泵送循环; 这一次次的自泵送循环过程, 一方面, 实现了机械密封的自润滑; 另一方面, 流体在密封面之间的不断循环, 把密封面之间的摩擦热及时带走, 实现了密封的自冲洗; 而离心力的作用,增加了流体流向动环 3密封面外侧的动力, 降低了流体流向动环 3密封 面内侧的泄漏率; 特别是, 离心力的作用, 使得进入后弯型流体型槽 39中的含有固体颗 粒的被密封流体,能够产生固体颗粒与基质分离,其中密度大的固体颗粒获得较大的离心 力, 随流体被泵出重新送至密封腔 1中, 不进入密封坝 37区, 避免了密封面之间的磨粒 磨损。
所述被后弯型流体型槽 39工作面 34加速成高速的流体, 在被泵出后弯型流体型槽 39的过程中, 随着后弯型流体型槽 39的流通截面积的逐渐增大, 流速降低, 压力增大, 形成分离动环 3和静环 11的开启力。 所述后弯型流体型槽 39的两侧槽壁型线均为螺旋线。
所述后弯型流体型槽 39的两侧槽壁型线的螺旋线具有相同的螺旋角 f。
所述后弯型流体型槽 39的两侧槽壁型线的螺旋线与进口 31圆孔相切。
实施例 2
图 3至图 5为另一种自泵送流体动压型机械密封,与实施例 1的不同之处在于本实施 例所述后弯型流体型槽 39的进口 31与设置在动环 3密封面中部的圆形环槽 36连通, 所 述圆形环槽 36设置有 6个与密封腔 1连通的轴向径向组合孔道 30;所述动环 3上的轴向 径向组合孔道 30与动环 3外圆面的连接处的横截面呈楔状开口 38; 所述圆形环槽 36具 有收集自润滑、自冲洗介质和防止泵送介质不均匀以及后弯型流体型槽 39进口 31处的流 体补充不及时出现空化的作用。
其余结构及实施方式与实施例 1相同。
实施例 3
参见图 6-8所示的一种自泵送流体动压型机械密封,其设置于旋转机械的机壳 2和轴 套 8之间, 由动环 3、 动环用 0形圈 12、 静环 11、 静环用 0形圈 5、 弹簧 7、 静环座 14 等组成。 0形圈 4设置在机壳与静环座之间。 轴套 8通过紧定螺钉 9固定在轴 10上。 动 环 3通过紧定螺钉 13固定在轴套 8上, 动环 3与轴套 8之间设置有动环用 0形圈 12。静 环 11设置在静环座 14上, 静环与静环座内孔之间设置有静环用 0形圈 5。 防转销 6的一 端在静环座上,另一端伸入到在静环上沿轴向所开的导向槽中, 防转销 6能够防止静环转 动, 同时又能够对静环的轴向移动起到导向作用。弹簧 7设置在静环与静环座之间, 弹簧 在常态时推动静环沿轴向移动而使得静环与动环之间紧密接触。
与静环 11配合的动环 3端面分为槽区和密封坝 37, 槽区分布在端面的外侧部分, 密 封坝 37分布在端面的内侧部分; 槽区开设 12组后弯型流体型槽 39, 后弯型流体型槽 39 之间的密封面构成密封堰 15;
所述后弯型流体型槽 39包括坡槽 32和平槽 33两个部分,坡槽 32处于动环端面的大 半径部位, 平槽 33处于动环端面的小半径部位;
所述后弯型流体型槽 39 的出口位于动环密封面的外径处, 所述后弯型流体型槽 39 的进口 31通过静环 11上圆形环槽 46、 6个轴向径向组合孔道 30与密封腔 1连通; 圆形 环槽 46在静环密封面上, 并与后弯型流体型槽 39的进口 31在轴向相对。
所述后弯型流体型槽 39的两侧槽壁, 一侧为工作面 34, 另一侧为非工作面 35; 所述后弯型流体型槽 39中的介质,在动环 3旋转时,被后弯型流体型槽 39的工作面 34加速成高速流体, 在离心力作用下, 沿非工作面 35向动环 3外径侧流动而泵送至密封 腔 1内,并在后弯型流体型槽 39的进口 31处形成低压区,密封腔 1内的介质在压差作用 下通过静环 11上的轴向径向组合孔道 30、 圆形环槽 46流进后弯型流体型槽 39中, 形成 一次次自泵送循环。 所述圆形环槽 46具有收集自润滑、 自冲洗介质和防止泵送介质不均 匀以及后弯型流体型槽 39进口 31处的流体补充不及时出现空化的作用。这一次次的自泵 送循环过程, 一方面, 实现了机械密封的自润滑; 另一方面, 流体在密封面之间的不断循 环, 把密封面之间的摩擦热及时带走, 实现了密封的自冲洗; 而离心力的作用, 增加了流 体流向动环 3密封面外侧的动力, 降低了流体流向动环 3密封面内侧的泄漏率; 特别是, 离心力的作用, 使得进入后弯型流体型槽 39中的含有固体颗粒的被密封流体, 能够产生 固体颗粒与基质分离,其中密度大的固体颗粒获得较大的离心力, 随流体被泵出重新送至 密封腔 1中, 不进入密封坝 37区, 避免了密封面之间的磨粒磨损。
所述被后弯型流体型槽 39工作面 34加速成高速的流体, 在被泵出后弯型流体型槽 39的过程中, 随着后弯型流体型槽 39的流通截面积的逐渐增大, 流速降低, 压力增大, 形成分离动环 3和静环 11的开启力。
所述后弯型流体型槽 39的两侧槽壁型线均为螺旋线。
所述后弯型流体型槽 39的两侧槽壁型线的螺旋线具有相同的螺旋角 f。
所述后弯型流体型槽 39的两侧槽壁型线的螺旋线与进口 31圆孔相切。
实施例 4
图 9-11为另一种自泵送流体动压型机械密封, 与实施例 3的主要不同之处在于: 在 动环端面上设置有圆形环槽 36, 在静环端面上无圆形环槽。 本实施例所述后弯型流体型 槽 39的进口 31与圆形环槽 36连通,所述圆形环槽 36与设置在静环上的 6个轴向径向组 合孔道 30的出口在轴向相对。 所述后弯型流体型槽 39的进口 31通过动环上的圆形环槽 36、 静环上的轴向径向组合孔道 30与密封腔 1连通。 所述后弯型流体型槽 39中的介质, 在动环 3旋转时, 被后弯型流体型槽 39的工作面 34加速成高速流体, 在离心力作用下, 沿非工作面 35向动环 3外径侧流动而泵送至密封腔 1内,并在后弯型流体型槽 39的进口 31处形成低压区,密封腔 1内的介质在压差作用下通过静环 11上的轴向径向组合孔道 30、 静环上的圆形环槽 36流进后弯型流体型槽 39中,形成一次次自泵送循环。所述圆形环槽 36具有收集自润滑、 自冲洗介质和防止泵送介质不均匀以及后弯型流体型槽 39进口 31 处的流体补充不及时出现空化的作用。
其余结构与实施例 3相同。

Claims

1、 自泵送流体动压型机械密封, 设置于旋转机械的机壳(2)和轴 (10)或轴套 (8) 之间, 由动环 (3)、 动环用 0形圈 (12)、 静环 (11 )、 静环用 0形圈 (5)、 弹簧 (7)、 静 环座 (14) 等组成, 其特征是:
与静环(11 )配合的动环(3)端面分为槽区和密封坝(37), 槽区分布在端面的外侧 部分, 密封坝(37)分布在端面的内侧部分; 槽区开设 3组以上的后弯型流体型槽(39), 后弯型流体型槽 (39) 之间的密封面构成密封堰;
所述后弯型流体型槽 ( 39)的出口位于动环密封面的外径处,所述后弯型流体型槽 ( 39) 的进口 (31 ) 通过动环 (3) 或者静环 (11 ) 上的孔道 (30) 与密封腔 (1 ) 连通;
所述后弯型流体型槽(39)的两侧槽壁,一侧为工作面(34),另一侧为非工作面(35); 所述后弯型流体型槽(39) 中的介质, 在动环旋转时, 被后弯型流体型槽(39) 的工 作面 (34) 加速成高速流体, 在离心力作用下, 沿非工作面 (35) 向动环 (3) 外径侧流 动而泵送至密封腔 (1 ) 内, 并在后弯型流体型槽 (39) 的进口 (31 ) 处形成低压区, 密 封腔 (1 ) 内的介质在压差作用下通过动环 (3) 或者静环 (11 ) 上与密封腔 (1 ) 连通的 孔道 (30) 流进后弯型流体型槽 (39) 中, 形成一次次自泵送循环;
所述被后弯型流体型槽(39)工作面(34)加速成高速的流体, 在被泵出后弯型流体 型槽 (39) 的过程中, 随着后弯型流体型槽 (39) 的流通截面积的逐渐增大, 流速降低, 压力增大, 形成分离动环 (3) 和静环 (11 ) 的开启力。
2、 如权利要求 1所述的自泵送流体动压型机械密封, 其特征是: 所述后弯型流体型 槽 (39) 的两侧槽壁型线均为螺旋线。
3、 如权利要求 2所述的自泵送流体动压型机械密封, 其特征是: 所述后弯型流体型 槽 (39) 的两侧槽壁型线的螺旋线具有相同的螺旋角。
4、 如权利要求 2所述的自泵送流体动压型机械密封, 其特征是: 所述后弯型流体型 槽(39)的两侧槽壁型线的螺旋线的螺旋角不等,工作面(34)的螺旋角小于非工作面(35) 的螺旋角。
5、 如权利要求 2所述的自泵送流体动压型机械密封, 其特征是: 所述后弯型流体型 槽 (39) 的两侧槽壁型线的螺旋线与进口 (31 ) 圆孔相切。
6、 如权利要求 1所述的自泵送流体动压型机械密封, 其特征是: 孔道 (30) 在动环 ( 3) 上, 孔道 (30) 与动环 (3) 外圆面的连接处的横截面为楔状开口 (38), 动环转动 的方向与楔状开口宽度减小的方向相同。
7、 如权利要求 1所述的自泵送流体动压型机械密封, 其特征是: 孔道 (30) 在静环 ( 11 ) 上。
8、 如权利要求 7所述的自泵送流体动压型机械密封, 其特征是: 在静环密封面上设 置有与后弯型流体型槽 (39) 的进口 (31 ) 相对的圆形环槽 (46), 圆形环槽 (46) 通过 静环 (11 ) 上的孔道 (30) 与密封腔 (1 ) 相通。
9、 如权利要求 1所述的自泵送流体动压型机械密封, 其特征是: 所述后弯型流体型 槽 (39) 的进口 (31 ) 与设置在动环 (3) 密封面上的圆形环槽 (36) 连通, 所述圆形环 槽 (36) 通过孔道 (30) 与密封腔 (1 ) 连通。
10、 如权利要求 9所述的自泵送流体动压型机械密封, 其特征是: 孔道(30)在静环
( 11 ) 上, 孔道 (30) 的出口在静环密封面上并与圆形环槽 (36) 相对。
12、如权利要求 1所述的自泵送流体动压型机械密封, 其特征是: 所述后弯型流体型 槽(39)包括坡槽(32)和平槽(33)两个部分, 坡槽(32)处于动环端面的大半径部位, 平槽 (33) 处于动环端面的小半径部位。
13、 如权利要求 1所述的自泵送流体动压型机械密封, 其特征是: 孔道(30)在动环 ( 3) 上, 孔道 (30) 与动环 (3) 的轴线平行。
14、 如权利要求 1所述的自泵送流体动压型机械密封, 其特征是: 孔道(30)为轴向 径向组合孔道。
PCT/CN2014/075791 2013-05-28 2014-04-21 自泵送流体动压型机械密封 WO2014190825A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/894,487 US20160097457A1 (en) 2013-05-28 2014-04-21 Self-pumping hydrodynamic mechanical seal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310201473.3 2013-05-28
CN201310201473.3A CN103267132B (zh) 2013-05-28 2013-05-28 自泵送流体动压型机械密封

Publications (1)

Publication Number Publication Date
WO2014190825A1 true WO2014190825A1 (zh) 2014-12-04

Family

ID=49010776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075791 WO2014190825A1 (zh) 2013-05-28 2014-04-21 自泵送流体动压型机械密封

Country Status (3)

Country Link
US (1) US20160097457A1 (zh)
CN (1) CN103267132B (zh)
WO (1) WO2014190825A1 (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103267132B (zh) * 2013-05-28 2015-08-05 南京林业大学 自泵送流体动压型机械密封
CN103836196B (zh) * 2014-01-26 2016-04-13 清华大学 一种转速自适应智能型流体动压式机械密封装置
CN104235381A (zh) * 2014-08-29 2014-12-24 江苏大学 一种带有储液槽的动静压结合机械密封结构
CN104235372A (zh) * 2014-08-29 2014-12-24 江苏大学 一种改善液膜空化特性的动压槽机械密封结构
CN105156687A (zh) * 2015-09-25 2015-12-16 兰州理工大学 一种干气密封装置
CN105465371A (zh) * 2015-12-30 2016-04-06 南京林业大学 双向旋转自泵送流体动压型机械密封
US11391376B2 (en) 2016-08-15 2022-07-19 Eagle Industry Co., Ltd. Sliding component
TWI640704B (zh) * 2017-06-06 2018-11-11 祥景精機股份有限公司 具有反曲點溝槽之非接觸式氣體軸封
CN107314112B (zh) * 2017-07-24 2023-07-21 浙江工业大学 一种仿磨盘纹理的机械密封端面结构
WO2019139107A1 (ja) 2018-01-12 2019-07-18 イーグル工業株式会社 摺動部品
US11320052B2 (en) * 2018-02-01 2022-05-03 Eagle Industry Co., Ltd. Sliding components
CN112334690B (zh) 2018-08-01 2023-02-28 伊格尔工业股份有限公司 滑动组件
US11821462B2 (en) 2018-08-24 2023-11-21 Eagle Industry Co., Ltd. Sliding member
CN108916234B (zh) * 2018-08-31 2023-10-03 珠海格力节能环保制冷技术研究中心有限公司 轴承组件及具有其的压缩机
US11209086B2 (en) * 2018-10-29 2021-12-28 Raytheon Technologies Corporation Wet-face/dry-face seal and methods of operation
US11815184B2 (en) 2018-11-30 2023-11-14 Eagle Industry Co., Ltd. Sliding component
EP3901497A4 (en) 2018-12-21 2022-09-14 Eagle Industry Co., Ltd. SLIDING ELEMENT
EP3922877B1 (en) 2019-02-04 2023-12-06 Eagle Industry Co., Ltd. Sliding component and method for manufacturing sliding component
US11852241B2 (en) 2019-02-04 2023-12-26 Eagle Industry Co., Ltd. Sliding component
WO2020162025A1 (ja) * 2019-02-04 2020-08-13 イーグル工業株式会社 摺動部品
KR102639196B1 (ko) 2019-02-14 2024-02-21 이구루코교 가부시기가이샤 슬라이딩 부품
CN113454353B (zh) 2019-02-21 2023-05-02 伊格尔工业股份有限公司 滑动部件
CN109826960B (zh) * 2019-03-05 2024-03-26 浙江工业大学 一种轴向多层流道叠加回流泵送机械密封结构
CN109838562B (zh) * 2019-03-05 2024-03-26 浙江工业大学 一种轴向多层流道叠加强化泵送机械密封结构
WO2021004376A1 (zh) * 2019-07-07 2021-01-14 南京林业大学 一种用于熔盐堆核主泵的组合型非接触式双端面密封
CN114127430A (zh) 2019-07-26 2022-03-01 伊格尔工业股份有限公司 滑动部件
CN111454454B (zh) * 2019-12-23 2021-11-02 浙江精功新材料技术有限公司 一种有机氯硅烷饱和酸水解装置及工艺
CN111794998B (zh) * 2020-06-28 2021-09-14 台州海百纳船舶设备股份有限公司 一种便于安装集装密封积木块结构泵
US11933303B2 (en) 2020-07-06 2024-03-19 Eagle Industry Co., Ltd. Sliding component
JPWO2022009767A1 (zh) 2020-07-06 2022-01-13
US12012915B2 (en) 2021-02-09 2024-06-18 Honda Motor Co., Ltd. Pump cover attachment system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0470409A1 (en) * 1990-07-18 1992-02-12 Ebara Corporation Noncontacting face seal
CN2432391Y (zh) * 2000-06-13 2001-05-30 石油大学(华东) 单列流体动压槽上游泵送机械密封
WO2010137521A1 (ja) * 2009-05-25 2010-12-02 イーグル工業株式会社 シール装置
CN102322526A (zh) * 2004-11-09 2012-01-18 伊格尔工业股份有限公司 机械密封装置
CN103267132A (zh) * 2013-05-28 2013-08-28 南京林业大学 自泵送流体动压型机械密封
CN203335870U (zh) * 2013-05-28 2013-12-11 南京林业大学 自泵送流体动压型机械密封

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3675935A (en) * 1970-07-13 1972-07-11 Nasa Spiral groove seal
US3782737A (en) * 1970-07-13 1974-01-01 Nasa Spiral groove seal
US3804424A (en) * 1972-04-24 1974-04-16 Crane Packing Co Gap seal with thermal and pressure distortion compensation
US4212475A (en) * 1979-01-15 1980-07-15 Crane Packing Co. Self aligning spiral groove face seal
US5722665A (en) * 1992-02-26 1998-03-03 Durametallic Corporation Spiral groove face seal
US5201531A (en) * 1992-04-02 1993-04-13 John Crane Inc. Face seal with double spiral grooves
US5441283A (en) * 1993-08-03 1995-08-15 John Crane Inc. Non-contacting mechanical face seal
AU685502B2 (en) * 1993-09-01 1998-01-22 Durametallic Corporation Face seal with angled and annular grooves
EP0792426B1 (en) * 1994-11-16 2000-06-14 Dresser-Rand Company A shaft seal
US5558341A (en) * 1995-01-11 1996-09-24 Stein Seal Company Seal for sealing an incompressible fluid between a relatively stationary seal and a movable member
US6142478A (en) * 1998-02-06 2000-11-07 John Crane Inc. Gas lubricated slow speed seal
CN2442034Y (zh) * 2000-06-13 2001-08-08 石油大学(华东) 双列流体动压槽自润滑非接触式机械密封
US6494460B2 (en) * 2000-12-26 2002-12-17 Karl E. Uth Rotary barrier face seal
CN201696617U (zh) * 2010-06-29 2011-01-05 杨惠霞 可双向旋转的气体润滑非接触式机械密封装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0470409A1 (en) * 1990-07-18 1992-02-12 Ebara Corporation Noncontacting face seal
CN2432391Y (zh) * 2000-06-13 2001-05-30 石油大学(华东) 单列流体动压槽上游泵送机械密封
CN102322526A (zh) * 2004-11-09 2012-01-18 伊格尔工业股份有限公司 机械密封装置
WO2010137521A1 (ja) * 2009-05-25 2010-12-02 イーグル工業株式会社 シール装置
CN103267132A (zh) * 2013-05-28 2013-08-28 南京林业大学 自泵送流体动压型机械密封
CN203335870U (zh) * 2013-05-28 2013-12-11 南京林业大学 自泵送流体动压型机械密封

Also Published As

Publication number Publication date
CN103267132A (zh) 2013-08-28
CN103267132B (zh) 2015-08-05
US20160097457A1 (en) 2016-04-07

Similar Documents

Publication Publication Date Title
WO2014190825A1 (zh) 自泵送流体动压型机械密封
US10054230B2 (en) Mechanical seal
EP2940353B1 (en) Sliding component
US10323636B2 (en) Gear pump with end plates or bearings having spiral grooves
CN105465371A (zh) 双向旋转自泵送流体动压型机械密封
US10100802B2 (en) Two piece impeller centrifugal pump
CN106439023B (zh) 一种余弦曲线型机械密封端面结构
CN203822685U (zh) 一种近零内泄漏的氟塑料磁力泵
CN203335870U (zh) 自泵送流体动压型机械密封
CN201277197Y (zh) 油气混输泵中的双重机械密封装置
RU2695171C1 (ru) Двойное механическое уплотнение, его стационарное скользящее кольцо и корпус насоса в центробежном насосе
CN203822654U (zh) 一种近零内泄漏的不锈钢磁力泵
CN105987006B (zh) 一种耐腐蚀抗干磨的磁力中开泵
WO2015046343A1 (ja) 摺動部品
CN101408192B (zh) 油气混输泵中的双重机械密封装置
CN203214392U (zh) 双阻隔集装式机械密封
CN210318503U (zh) 一种机械密封装置
CN214578856U (zh) 一种机械密封结构
CN108708976A (zh) 零泄漏非接触式机械密封结构
CN108869384A (zh) 一种具有圆柱型导流叶片的离心泵径向密封环
CN202280841U (zh) 双列反向交叉流体动压槽机械密封
US11085457B2 (en) Thrust bearing system and method for operating the same
CN202348682U (zh) 慢转速耐腐蚀耐磨离心泵
CN107366748B (zh) 一种vw机械密封端面结构
WO2020037643A1 (zh) 新型叶轮离心水泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14803933

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14894487

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14803933

Country of ref document: EP

Kind code of ref document: A1