WO2014189027A1 - Shake correction device, lens barrel, and imaging device - Google Patents

Shake correction device, lens barrel, and imaging device Download PDF

Info

Publication number
WO2014189027A1
WO2014189027A1 PCT/JP2014/063288 JP2014063288W WO2014189027A1 WO 2014189027 A1 WO2014189027 A1 WO 2014189027A1 JP 2014063288 W JP2014063288 W JP 2014063288W WO 2014189027 A1 WO2014189027 A1 WO 2014189027A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
center
blur correction
along
moving member
Prior art date
Application number
PCT/JP2014/063288
Other languages
French (fr)
Japanese (ja)
Inventor
田中 稔久
建太 中村
篠原 隆之
泰登 川島
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013106975A external-priority patent/JP2014228624A/en
Priority claimed from JP2013106972A external-priority patent/JP2014228622A/en
Priority claimed from JP2013106977A external-priority patent/JP2014228625A/en
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2014189027A1 publication Critical patent/WO2014189027A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0015Movement of one or more optical elements for control of motion blur by displacing one or more optical elements normal to the optical axis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils

Definitions

  • the present invention relates to a shake correction device, a lens barrel, and a photographing device.
  • a blur correction device that suppresses blurring of a captured image due to camera shake or the like.
  • a shake correction apparatus that moves a correction lens in a plane perpendicular to the optical axis in accordance with camera shake.
  • rotational torque may be generated when the movable member is moved depending on the arrangement of the mechanism for moving the movable member, the position of the center of gravity of the movable member, and the like. This rotational torque may adversely affect the position control accuracy of the movable member that holds the correction lens.
  • a first object of the present invention is to provide a shake correction device having excellent control performance, a lens barrel including the shake correction device, and a photographing device.
  • a second object of the present invention is to provide a shake correction apparatus that can suitably perform calibration, a lens barrel including the shake correction apparatus, and a photographing apparatus.
  • a shake correction apparatus (100) includes: A blur correction member (L3) that is movable relative to the fixed member (140) and corrects the blur of the image formed by the optical system (L1, L2, L3) is provided, and the center of gravity is the blur correction.
  • a moving member (130) located away from the center of the member (L3);
  • the moving member (130) has an intersection of the first axis and the second axis that is more than the center of the shake correction member (L3).
  • the elastic force of the first elastic member (145-1) disposed at the position closest to the center of gravity of the moving member is different from the elastic force of the other elastic members.
  • a shake correction apparatus (100) includes: A blur correction member (L3) that is movable relative to the fixed members (140, 240) and corrects blur of an image formed by the optical system (L1, L2, L3) is provided, and the center of gravity is A moving member (130, 230) at a position away from the center of the blur correction member (L3); On the plane intersecting with the optical axis of the optical system (L1, L2, L3), the moving member (130, 230) is placed closer to the moving member (130, 230) than the center of the shake correcting member (L3).
  • Drive members (152, 154) that generate and move a drive force along the first axis (A2, A3) and the second axis (A2, A3) that intersect at a position close to the center of gravity (G).
  • the moving member (130, 230) is moved in the first direction by the driving member (152, 154)
  • the first abutting portion (131A, 133A, 243C) and a second contact portion (131B, 133B, 243D) that can contact the fixing member (140, 240) when moved in the direction opposite to the first direction.
  • the blur correction device (100) includes: A blur correction member (L3) that is movable relative to the fixed member (140) and corrects the blur of the image formed by the optical system (L1, L2, L3) is provided, and the center of gravity is the blur correction.
  • a moving member (130) located away from the center of the member (L3);
  • Second detection means (124) for detecting a position of the moving member (130) along a fourth axis intersecting the third axis on the plane;
  • the intersection of the first axis and the second axis is closer to the center of gravity of the moving member (130) than the center of the blur correction member (L3), and the third axis And the fourth axis are located closer to the intersection of the first axis and the second axis than the center of the blur correction member (L3).
  • FIG. 1 is a schematic block diagram of a camera according to an embodiment of the present invention.
  • FIG. 2 is a front perspective view of the shake correction apparatus shown in FIG. 3 is a rear perspective view of the shake correction apparatus shown in FIG.
  • FIG. 4 is an assembly diagram of the shake correction apparatus shown in FIGS. 2 and 3.
  • FIG. 5 is a control block diagram showing an example of the control of the shake correction operation in the camera shown in FIG.
  • FIG. 6 is a front view showing an example of a main part of the shake correction apparatus shown in FIGS.
  • FIG. 7 shows an example of the arrangement of the elastic members in the shake correction apparatus shown in FIG.
  • FIG. 8A shows frequency response characteristics of the shake correction apparatus according to the first embodiment.
  • FIG. 8B shows operating characteristics of the shake correction apparatus according to the first embodiment.
  • FIG. 8A shows frequency response characteristics of the shake correction apparatus according to the first embodiment.
  • FIG. 8B shows operating characteristics of the shake correction apparatus according to the first embodiment.
  • FIG. 8A shows frequency response characteristics of
  • FIG. 9A shows frequency response characteristics of a comparative example of the first embodiment.
  • FIG. 9B shows operating characteristics of a comparative example of the first embodiment.
  • FIG. 10A shows frequency response characteristics of the shake correction apparatus according to the second embodiment.
  • FIG. 10B shows operation characteristics of the shake correction apparatus according to the second embodiment.
  • FIG. 11A shows frequency response characteristics of a comparative example of the second embodiment.
  • FIG. 11B shows operating characteristics of a comparative example of the second embodiment.
  • FIG. 12 is a front view showing an example of a main part according to another embodiment of the shake correction apparatus shown in FIGS.
  • FIG. 13 is a flowchart for explaining an example of the calibration operation of the shake correction apparatus shown in FIG.
  • FIG. 14 shows an example of the operation of the shake correction apparatus shown in FIG. FIG.
  • FIG. 15 shows the relationship between the movement distance along the movement axis of the movable part shown in FIG. 12 and the movement distance along the detection axis.
  • FIG. 16 shows another example of the operation of the shake correction apparatus shown in FIG.
  • FIG. 17 is a front view showing another example of the main part of the shake correction apparatus shown in FIGS.
  • FIG. 18 shows an example of a conventional blur correction apparatus.
  • FIG. 19 shows an example of the operation of the conventional blur correction apparatus shown in FIG.
  • FIG. 20A shows a detection unit according to another embodiment of the shake correction apparatus shown in FIGS.
  • FIG. 20B shows the relationship between the movable part of the shake correction apparatus of the embodiment shown in FIG. 20A and the drive shaft of the drive part.
  • FIG. 20A shows a detection unit according to another embodiment of the shake correction apparatus shown in FIGS.
  • FIG. 20B shows the relationship between the movable part of the shake correction apparatus of the embodiment shown in FIG. 20A and the drive shaft of the drive part.
  • FIG. 20C shows the positional relationship of the fixed portion and the relationship with the drive shaft of the drive portion in the embodiment shown in FIG. 20A.
  • FIG. 21 shows an example in which the movable part shown in FIG. 20 is moved along the X axis.
  • FIG. 22 shows an example in which the movable part shown in FIG. 20 is moved along the Y axis.
  • FIG. 23 shows the positional relationship between the angular velocity sensor of the camera and the shake correction apparatus.
  • FIG. 24 shows the relationship between the detection axis of the angular velocity sensor and the detection axis of the detection unit shown in FIG.
  • FIG. 25 shows a comparative example of FIG.
  • FIG. 26 is a graph showing the relationship between the KK factor and the steady deviation related to the moving amount of the movable part.
  • FIG. 27 is a graph showing the relationship between the KK factor and the distance between the center of gravity of the movable part and the origin of the VCM drive axis with respect to the inclination angle of the
  • a camera 1 is a so-called compact digital camera, in which a camera body 1a and a lens barrel 2 are integrated.
  • a compact digital camera will be described as an example, but the present invention is not limited to this.
  • a single-lens reflex digital camera in which a lens and a camera body are configured separately may be used.
  • a mirrorless type camera that omits the mirror mechanism may be used.
  • the present invention can be applied not only to a compact digital camera and a single-lens reflex digital camera but also to an optical apparatus such as a video camera, a binocular, a microscope, a telescope, and a mobile phone.
  • the lens barrel 2 includes an imaging optical system configured by arranging a first lens group L1, a second lens group L2, and a third lens group (blur correction lens group) L3 in order from the subject side.
  • the image pickup device 3 represented by a CCD or a CMOS is provided behind the third lens unit L3 (on the image plane side).
  • the first lens unit L1 is provided on the most object side in the imaging optical system, and is driven to be movable in the direction along the optical axis L by the drive mechanism 6 so that zooming is possible.
  • the second lens group L2 is driven by the drive mechanism 8 so as to be movable in the direction along the optical axis L, and focusing is possible.
  • the third lens group (blur correction lens group) L3 constitutes a part of the blur correction apparatus 100.
  • the shake correction lens group L3 can be moved in a plane intersecting the optical axis L by the shake correction apparatus 100 that receives a signal from the CPU 14, and the first lens group L1, the second lens group L2, and the third lens group. (Blur correction lens group)
  • the image blur caused by the movement of the camera in the optical image formed on the imaging surface of the image sensor 3 by L3 is reduced.
  • the diaphragm mechanism 4 is driven by the drive mechanism 10 so as to control the exposure of the camera.
  • the imaging element 3 generates an electrical image output signal based on the light of the subject image formed on the imaging surface by the imaging optical system.
  • the image output signal is A / D converted or noise-processed by the signal processing circuit 16 and input to the CPU 14.
  • the lens barrel 2 incorporates an angular velocity sensor 12 such as a gyro sensor.
  • the angular velocity sensor 12 detects an angular velocity caused by camera shake or the like generated in the camera 1 and outputs it to the CPU 14.
  • a detection signal from the AF sensor 18 is also output to the CPU 14, and the drive mechanism 8 is controlled based on the detection signal to realize an autofocus (AF) mechanism.
  • the angular velocity sensor 12 may be provided in the camera body 1a.
  • the CPU 14 is connected to a storage medium 20, a nonvolatile memory 22, various operation buttons 24, and the like.
  • the storage medium 20 is a memory that receives an output signal from the CPU 14 and stores or reads a photographed image.
  • the storage medium 20 is a detachable card memory.
  • removable memory such as an SD card, but there is no particular limitation.
  • the non-volatile memory 22 stores adjustment value information such as a gain value of the gyro sensor and a calibration value of the Hall element, and is configured by a semiconductor memory built in the camera together with the CPU 14.
  • adjustment value information such as a gain value of the gyro sensor and a calibration value of the Hall element
  • Examples of the various operation buttons 24 include a release switch. When the release switch is half-pressed or fully pressed, the signal is input to the CPU 14.
  • an axis parallel to the optical axis L is referred to as a Z axis.
  • the shake correction apparatus 100 includes a movable part 130 and a fixed part 140.
  • the fixing unit 140 includes a shutter unit 110 and a position detection unit 120, which are fixed to the fixing unit 140 with screws 150.
  • the shutter unit 110 is configured to control the exposure of the camera, and may be configured independent of the fixed unit 140.
  • the position detector 120 includes a first Hall element 122 and a second Hall element 124, and detects the position of the movable part 130.
  • the first Hall element 122 has a detection axis on the X axis perpendicular to the optical axis L
  • the second Hall element 124 has a detection axis on the Y axis perpendicular to the optical axis L.
  • the first Hall element 122 and the second Hall element 124 detect the magnetic field of the first magnet 132 and the second magnet 134 provided in the movable part 130 to detect the position of the movable part 130.
  • the movable part 130 includes a first magnet 132, a second magnet 134, and a shake correction lens group L3.
  • the blur correction lens group L3 will be described as one blur correction lens L3 in order to facilitate understanding of the present embodiment.
  • the movable part 130 is attached to the fixed part 140 at three locations by three tension coil springs 145.
  • the tension coil spring 145 is attached between the fixed part side spring attaching part 146 shown in FIG. 3 and the movable part side spring attaching part 136 shown in FIG.
  • the tension coil spring 145 urges the movable portion 130 in a direction approaching the fixed portion 140 so as to return the lens center O of the shake correction lens L3 to the optical axis L side on a plane intersecting the optical axis L. A force is applied to the movable part 130.
  • the movable portion 130 slides through the three ceramic balls 148 shown in FIG. 4 so that the movable portion 130 is on a plane intersecting the optical axis L (for example, a plane including the X axis and the Y axis, orthogonal to the optical axis L). Surface) is moved relative to the fixed portion 140.
  • the numbers of the tension coil spring 145 and the ceramic balls 148 can be appropriately changed according to the shapes of the movable portion 130 and the fixed portion 140.
  • the movable part 130 is driven by the driving force generated by the interaction between the first magnet 132 and the second magnet 134 provided in the movable part 130 and the first drive coil 142 and the second drive coil 144 provided in the fixed part 140. It moves on a plane intersecting the optical axis L.
  • the first magnet 132 and the first drive coil 142 constitute a first VCM 152
  • the second magnet 134 and the second drive coil 144 constitute a second VCM 154.
  • VCM is an abbreviation for voice coil motor.
  • FIG. 5 shows an example of the shake correction operation by the shake correction apparatus 100 shown in FIGS.
  • the shake correction apparatus 100 further includes a target position generation unit 162, a subtracter 164, a feedforward controller 166, a feedback controller 168, and an adder 170.
  • These configurations may be provided, for example, in the CPU 14 of the camera body 1a shown in FIG. 1 or in the lens CPU (not shown) of the lens barrel 2.
  • the target position generation unit 162 integrates the shake angular velocity signals ⁇ p and ⁇ y to convert them to the shake angles ⁇ p and ⁇ y (rad), and projects the shake angles ⁇ p and ⁇ y on a plane intersecting the optical axis to obtain the movable part target position.
  • Signals relating to xt and yt (mm) are generated.
  • the signals related to the movable part target positions xt and yt are signals related to the target position of the movable part 130 for canceling the shake based on the shake angular velocity signals ⁇ p and ⁇ y.
  • Coil driving currents Ix ′ and Iy′A for driving the coils 142 and 144 using the movable part target positions xt and yt and the movable part position coordinates x and y (mm) from the Hall elements 122 and 124 are used. Is generated.
  • signals related to the movable part target positions xt and yt are input to the adder 170 via the feedforward controller 166.
  • signals relating to the movable part target positions xt, yt and signals relating to the movable part position coordinates x, y are input to the adder 170 via the subtractor 164 and the feedback controller 168.
  • the adder 170 generates coil drive currents Ix ′ and Iy ′ using these input signals and outputs them to the first VCM 152 (first drive coil 142) and the second VCM 154 (second drive coil 144). .
  • the electromagnetic drive force along the X ′ axis and the Y ′ axis acts on the movable portion 130.
  • the movable unit 130 is moved toward the target position on a plane intersecting the optical axis L by an electromagnetic driving force along the X ′ axis and the Y ′ axis.
  • Each of the Hall elements 122 and 124 shown in FIG. 5 detects a position coordinate along the X axis or Y axis of the movable part 130 and outputs it to the feedback controller 168 as shown in FIG.
  • the angular velocity sensor 12 and the shake correction device 100 repeat the above control to perform the shake correction.
  • the mutually perpendicular axes on the XY plane perpendicular to the optical axis L are defined as the A1 axis and the A3 axis.
  • the A1 axis and the A3 axis pass through the optical axis L in a plane perpendicular to the optical axis L and are perpendicular to each other.
  • the A1 axis and the A3 axis bisect the angle at which the X axis and the Y axis intersect in the optical axis L.
  • the A2 axis passes through the driving origin M of the movable unit 130, is parallel to the A1 axis, and is perpendicular to the A3 axis.
  • the detection unit 120 includes a first Hall element 122 and a second Hall element 124, and detects the position coordinates of the movable unit 130 along the X axis and the Y axis shown in FIG. That is, the first Hall element 122 detects the position of the first magnet 132 provided in the movable portion 130 shown in FIG. 4 in the X-axis direction, and the second Hall element 124 is the position of the second magnet 134 in the Y-axis direction. Is detected.
  • the X axis and the Y axis are perpendicular to each other through the optical axis L, but may intersect at an angle other than vertical without passing through the optical axis L.
  • the movable portion 130 has an asymmetric shape with respect to the A1 axis. 2 and 4, the shutter unit 110 is incorporated in the blur correction device 100 from the viewpoint of downsizing the blur correction device 100 and the like. Occupied by the shutter unit 110. For this reason, as shown in FIG. 6, the movable portion 130 is configured such that the length along the A1 axis and the A2 axis is longer than the length along the A3 axis. It is arranged in the upper half area.
  • the movable part center of gravity G of the movable part 130 is not on the lens center O but on the upper side of the lens center O along the A2 axis.
  • the shape of the movable portion 130 may be a symmetric shape along the A1 axis, an asymmetric shape along the A2 axis, or a symmetric shape. Further, the shape of the movable portion 130 may be a symmetric shape along the A3 axis, or may be an asymmetric shape.
  • the movable part 130 is moved toward the target position on the plane intersecting the optical axis L along the X ′ axis and the Y ′ axis. That is, the movable unit 130 is movable along the X ′ axis by an electromagnetic driving force along the X ′ axis by the first VCM 152 including the first drive coil 142 and the first magnet 132 shown in FIG. 4. In addition, the movable part 130 is movable along the Y ′ axis by an electromagnetic driving force along the Y ′ axis by the second VCM 154 including the second drive coil 144 and the second magnet 134. When the movable unit 130 is located at the driving origin M, which is the driving center thereof, the lens center O passes through the optical axis L.
  • the X ′ axis and the Y ′ axis intersect at an angle other than vertical, and the driving origin M of the movable part 130 at which the X ′ axis and the Y ′ axis intersect is at the movable part center of gravity G.
  • the influence of the rotation component which has a bad influence when moving the movable part 130 is removed, and the translation component effective for the movement of the movable part 130 can be made to act efficiently.
  • the driving origin M does not have to coincide with the movable portion gravity center G. For example, when the drive origin M is present at a position closer to the movable part center of gravity G than the lens center O, the influence of the rotation component when moving the movable part 130 can be suppressed.
  • the spring constant K1 of the first spring 145-1 disposed at the position closest to the movable portion center of gravity G is changed to the spring of the second spring 145-2. Since the constant K2 and the spring constant K3 of the third spring 145-3 are different from each other, the influence of the rotational component when the movable part 130 is moved is further reduced. This will be described below.
  • the movable portion 130 includes a first spring mounting portion 136-1, a second spring mounting portion 136-2, and a third spring mounting portion 136-3.
  • the first spring mounting portion 136-1 is provided inside the outer periphery of the movable portion 130.
  • the first spring mounting portion 136-1 is provided, for example, in a hole 133 formed in the movable portion 130, and protrudes toward the movable portion gravity center G.
  • the first spring 145-1 is attached to the first spring attachment portion 136-1.
  • the second spring mounting portion 136-2 and the third spring mounting portion 136-3 are provided on the outer peripheral side of the movable portion 130.
  • the second spring mounting portion 136-2 and the third spring mounting portion 136-3 protrude in the direction away from the movable portion gravity center G on the outer peripheral side of the movable portion 130.
  • the second spring 145-2 and the third spring 145-3 are attached to the second spring attachment portion 136-2 and the third spring attachment portion 136-3, respectively.
  • the first spring 145-1 is disposed on the opposite side of the second spring 145-2 and the third spring 145-3 across the A2 axis, and the second spring 145-2 is The third spring 145-3 is disposed on the opposite side of the A3 axis.
  • the first spring 145-1 is disposed at a position closest to the movable part gravity center G, and the distance from the movable part gravity center G to the first spring 145-1 is D1.
  • the second spring 145-2 is disposed at a position farther from the movable portion gravity center G than the first spring 145-1, and the distance from the movable portion gravity center G to the second spring 145-2 is D2.
  • the component along the A2 axis of D2 is defined as D2_A2
  • the component along the A3 axis of D2 is defined as D2_A3.
  • the third spring 145-3 is disposed at a position farther from the center of gravity G of the movable part than the first spring 145-1 and the second spring 145-2, and from the center of gravity G of the movable part to the third spring 145-3.
  • the distance is D3.
  • the component along the A2 axis of D3 is D3_A2
  • the component along the A3 axis of D3 is D3_A3.
  • m is the mass of the movable part 130 (including the shake correction lens L3, the first magnet 132, the second magnet 134, etc.), and J is the inertia around the center of gravity of the movable part 130.
  • kxy is a combined spring coefficient in the translational direction of the first spring 145-1 to the third spring 145-3
  • k ⁇ is a combined spring in the rotational direction of the first spring 145-1 to the third spring 145-3. It is a coefficient.
  • the rotational natural frequency f ⁇ is larger than the translational natural frequency fxy.
  • the spring constant K1 of the first spring 145-1 arranged closest to the center of gravity G of the movable part is set to the spring constant K2 of the second spring 145-2 and the third constant.
  • the spring constant is set larger than the spring constant K3 of the spring 145-3.
  • 8A and 8B show the control performance of the shake correction apparatus 100 of the present embodiment configured as described above.
  • 9A and 9B show the control performance of the comparative example in which the spring constant K1, the spring constant K2, and the spring constant K3 are configured to be equal.
  • the rotational natural frequency f ⁇ of the movable part is larger than the translational natural frequency fxy, but unlike the shake correction apparatus 100 according to the present embodiment, the spring constant K1, the spring constant K2, and the spring The constant K3 is configured to be equal.
  • 8A and 9A are Bode diagrams showing the gain / phase of the output with respect to the input. The input is the acceleration acting by the electromagnetic driving force that drives the movable part, and the output is the position of the center of gravity of the movable part.
  • the movable unit 130 quickly converges to the target position, and the control performance thereof is a comparative example of the first embodiment shown in FIG. 9B. Compared to.
  • the first spring 145-1 to the third spring 145-3 are configured to satisfy the following Expression 4 and Expression 5. In this case, no moment is generated around the center of gravity of the movable part 130 when the movable part 130 is translated.
  • the shake correction device As described above, in the shake correction device according to the present embodiment, only the attachment position of the elastic member attached between the movable part and the fixed part and the elastic force thereof are adjusted, which adversely affects the movement of the movable part. The influence of the rotation component can be suppressed. As a result, in the shake correction apparatus of this embodiment, the convergence of the movable part to the target position, the control stability, and the like are improved.
  • the target position coordinates along the detection axes X and Y of the first Hall element 122 and the second Hall element 124 are converted into target movement amounts along the drive axes X ′ and Y ′ of the movable unit 130. Since the movable part 130 is moved, it is possible to suitably control the shake correction device.
  • the second embodiment is the same as the first embodiment described above except for the following, and the description of the overlapping parts is omitted.
  • the shake correction apparatus 100 according to the second embodiment is the same as the shake correction apparatus 100 according to the first embodiment except that the rotational natural frequency f ⁇ is smaller than the translational natural frequency fxy, so that overlapping description is provided. Omitted.
  • K1 is set smaller than the spring constant K2 of the second spring 145-2 and the spring constant K3 of the third spring 145-3.
  • FIG. 10A and 10B show the control performance of the shake correction apparatus 100 of the present embodiment configured as described above. Moreover, the control performance of the comparative example which comprised the spring constant K1, the spring constant K2, and the spring constant K3 equally is shown to FIG. 11A and FIG. 11B.
  • the rotational natural frequency f ⁇ of the movable part 130 is smaller than the translational natural frequency fxy, but unlike the shake correction apparatus 100 according to the present embodiment, the spring constant K1 and the spring constant K2 The spring constant K3 is configured to be equal.
  • FIG. 10A and FIG. 11A are Bode diagrams showing the gain and phase of the output with respect to the input. The input is the acceleration acting by the electromagnetic driving force that drives the movable part, and the output is the position of the center of gravity of the movable part.
  • the movable part 130 quickly converges to the target position, and the control performance thereof is a comparative example of the second embodiment shown in FIG. 11B. Compared to.
  • the third embodiment is the same as the first embodiment or the second embodiment described above except for the following, and the description of the overlapping parts is omitted.
  • the X axis is the detection axis of the first Hall element 122 shown in FIG. 4, and the Y axis is the detection axis of the second Hall element 124.
  • the first Hall element 122 detects the position of the first magnet 132 provided in the movable portion 130 shown in FIG. 4 in the X-axis direction
  • the second Hall element 124 detects the position of the second magnet 134 in the Y-axis direction.
  • the detection unit 120 including the first Hall element 122 and the second Hall element 124 detects the position coordinates of the movable unit 130 along the X axis and the Y axis.
  • the X axis and the Y axis are perpendicular to each other through the optical axis L, but may intersect at an angle other than vertical without passing through the optical axis L.
  • the X ′ axis is a drive axis of the first VCM 152 including the first drive coil 142 and the first magnet 132 shown in FIG. 4, and the Y ′ axis is the second drive coil 144 and the second magnet 134. It is a drive shaft of the 2nd VCM154 consisting of.
  • the movable unit 130 is moved toward the target position on the plane intersecting the optical axis L by the electromagnetic driving force along the X ′ axis by the first VCM 152 and the electromagnetic driving force along the Y ′ axis by the second VCM 154.
  • the X ′ axis and the Y ′ axis intersect with each other at an angle other than vertical
  • the driving origin M at which the X ′ axis and the Y ′ axis intersect with each other is the movable part gravity center G rather than the lens center O. It exists in the position near.
  • the lens center O passes through the optical axis L.
  • the mutually perpendicular axes on the XY plane perpendicular to the optical axis L are referred to as A1 axis and A3 axis.
  • the A1 axis and the A3 axis pass through the optical axis L in a plane perpendicular to the optical axis L and are perpendicular to each other.
  • the A1 axis and the A3 axis bisect the angle at which the X axis and the Y axis intersect in the optical axis L.
  • the A2 axis passes through the driving origin M and is parallel to the A1 axis.
  • the A2 axis and the A3 axis are perpendicular to each other, and the intersection of the A2 axis and the A3 axis is located closer to the movable part gravity center G than the lens center O.
  • the fixing part 140 has a first stopper part 141A and a second stopper part 141B on both sides along the A2 axis.
  • 141 A of 1st stopper parts can contact
  • the second stopper portion 141B can be in contact with the second contact portion 131B of the movable portion 130, and is provided on a protruding portion that protrudes toward the second contact portion 131B inside the fixed portion 140.
  • the first stopper portion 141A and the second stopper portion 141B define a movable range of the movable portion 130 in the A2 axis direction.
  • the configuration of the shutter unit 110 and the like is occupied in the lower half region of the fixed unit 140.
  • the first stopper portion 141A and the second stopper portion 141B are disposed in an approximately upper half region of the fixed portion 140. Therefore, the A2 axis on which the first stopper portion 141A and the second stopper portion 141B are arranged may not be parallel to the A1 axis, but may be arranged on the inner side of the fixed portion 140 so as not to intersect the A1 axis. preferable.
  • the first stopper portion 141A and the second stopper portion 141B can be disposed in the upper half region of the fixed portion 140.
  • the fixing portion 140 has a locking element 143 that protrudes along the optical axis L toward the movable portion 130 above the A1 axis along the A3 axis.
  • the locking element 143 is inserted into the through-hole 133 of the movable part 130 and contacts the third stopper part 143A that can contact the third contact part 133A of the movable part 130 and the fourth contact part 133B. And a fourth stopper portion 143B that can be contacted.
  • the third stopper portion 143A and the fourth stopper portion 143B of the locking element 143 define the movable range of the movable portion 130 in the A3 axial direction.
  • the movable portion 130 has an asymmetric shape with respect to the A1 axis. 2 and 4, the shutter unit 110 is incorporated in the blur correction device 100 from the viewpoint of downsizing the blur correction device 100 and the like. Occupied by the shutter unit 110.
  • the movable part 130 is configured such that the length along the A1 axis and the A2 axis is longer than the length along the A3 axis. It is arranged in the upper half area.
  • the movable portion gravity center G of the movable portion 130 is not on the lens center O but on the upper side of the lens center O along the A2 axis.
  • the shape of the movable part 130 may be a symmetric shape along the A1 axis, or may be an asymmetric shape along the A2 axis.
  • the first contact portion 131A and the second contact portion 131B are provided on the outer peripheral surface of the movable portion 130. 131 A of 1st contact parts and 131 A of 2nd contact parts are provided so that the movable part gravity center G may be pinched
  • the first contact portion 131A and the second contact portion 131B are provided so as to be positioned on both sides of the movable portion 130 along the A2 axis when the movable portion 130 is positioned at the driving origin M.
  • the first contact portion 131A can contact the first stopper portion 141A when the movable portion 130 moves along the A2 axis to the first stopper portion 141A side (the left side in the drawing) of the fixed portion 140.
  • the two abutting portions 131B can abut on the second stopper portion 141B when the movable portion 130 moves to the second stopper portion 141B side (right side in the drawing) of the fixed portion 140 along the A2 axis.
  • the through-hole 133 is formed in the movable part 130 inside the outer periphery.
  • the through-hole 133 is provided with a spring mounting portion 136 that protrudes toward the lens center O along the A3 axis, and the spring mounting portion 136 holds the tension coil spring 145 as shown in FIG.
  • the lens center O side of the spring mounting portion 136 constitutes a third contact portion 133A.
  • a fourth contact portion 133B is provided at a position of the through hole 133 facing the third contact portion 133A.
  • the third contact portion 133A and the fourth contact portion 133B are provided on both sides of the through hole 133 along the A3 axis when the movable portion 130 is located at the drive origin M.
  • the third abutting portion 133A can abut on the third stopper portion 143A when the movable portion 130 moves downward along the A3 axis, and the fourth abutting portion 133B is configured such that the movable portion 130 is A3. When it moves upward along the axis, it can come into contact with the fourth stopper portion 143B.
  • the sensitivity adjustment of the position detection unit 120 is performed, for example, after the camera 1 shown in FIG. In the present embodiment, as shown in FIG. 12, by applying a driving force along the A2 axis to the movable unit 130, the movable unit 130 is moved along the A2 axis, and sensitivity adjustment of the position detection unit 120 is performed. Do.
  • the X ′ axis that is the drive axis of the first VCM 152 and the Y ′ axis that is the drive axis of the second VCM 154 are inclined at an angle ⁇ with respect to the A2 axis and intersect on the A2 axis. Therefore, for example, as shown in FIG. 14, when the movable part 130 is moved to the first stopper part 141A side along the A2 axis, the driving force Fx ′ of the first VCM 152 and the driving force Fy ′ of the second VCM 154 are combined. The combined driving force FA2 is applied to the movable part 130.
  • the driving force Fx ′ by the first VCM 152 includes a driving force component along the A2 axis and a driving force component along the A3 axis. Therefore, the second VCM 154 is driven so as to cancel the driving force component along the A3 axis of the driving force Fx ′. That is, the driving force along the A3 axis of the first VCM 152 is canceled by the driving force component along the A3 axis of the driving force Fy ′ by the second VCM 154.
  • the driving force FA2 along the A2 axis can be applied to the movable portion 130, and the movable portion 130 can be moved along the A2 axis.
  • step S04 the memory 22 shown in FIG. 1 detects the position coordinate signal D1 detected by the first Hall element 122 and the second Hall element 124 when the movable part 130 is brought into contact with the first stopper part 141A. The obtained position coordinate signal D2 is stored.
  • step S06 shown in FIG. 13 the movable part 130 is moved to the second stopper part 141B side along the A2 axis, and the second contact part 131B of the movable part 130 is brought into contact with the second stopper part 141B.
  • step S08 the memory 22 shown in FIG. 1 detects the position coordinate signal D3 detected by the first Hall element 122 and the second Hall element 124 when the movable part 130 is brought into contact with the second stopper part 141B.
  • the obtained position coordinate signal D4 is stored.
  • step S10 the detection unit 120 is calibrated (sensitivity adjustment). That is, the CPU 14 shown in FIG. 1 adjusts the sensitivity of the first Hall element 122 using the position coordinate signals D1 and D3 of the first Hall element 122 stored in the memory 22. Further, the CPU 14 adjusts the sensitivity of the second Hall element 124 by using the position coordinate signals D2 and D4 of the second Hall element 124. As described above, by adjusting the sensitivity of the detection unit 120, the position of the movable unit 130 can be accurately detected.
  • the X axis that is the detection axis of the first Hall element 122 and the Y axis that is the detection axis of the second Hall element 124 are inclined by ⁇ degrees with respect to the A2 axis. Yes. For this reason, when the movable unit 130 moves the distance A from S1 to S2 along the A2 axis, the distance on the X axis is the distance A / cos ⁇ from P1 to P2, and the distance on the Y axis is A distance A / cos ⁇ from P3 to P4. Therefore, in this embodiment, the sensor sensitivity is adjusted using the movement distance A / cos ⁇ on the X axis or the Y axis.
  • the movable portion 130 is moved along the A2 axis by applying a driving force along the A2 axis, and the movable portion 130 is brought into contact with the fixed portion 140.
  • the first contact portion 131A and the second contact portion 131B of the movable portion 130 that are in contact with the fixed portion 140 are provided on both sides of the movable portion 130 along the A2 axis.
  • 131 A of 1st contact parts and the 2nd contact part 131B can be made to contact
  • the sensitivity adjustment of the position detection sensor that detects the position coordinates along the B1 axis and the B2 axis by moving the movable unit 330 along the B1 axis and the B2 axis is performed. I was going.
  • the contact portions are not formed on both sides of the movable portion 330 along the B1 axis and the B2 axis. For this reason, conventionally, for example, as shown in FIG. 19, when the movable part 330 is moved downward and brought into contact with the fixed part 340, there is a problem that the movable part 330 rotates.
  • the A2 axis intersects the X axis and the Y axis. For this reason, in this embodiment, the sensitivity adjustment of the first Hall element 122 and the second Hall element 124 can be performed only by moving the movable portion 130 along the A2 axis.
  • the driving origin M of the movable part 130 is brought close to the movable part gravity center G of the movable part 130. For this reason, in the present embodiment, it is possible to suppress the influence of the rotation component that has an adverse effect when the movable unit 130 is moved. More preferably, the driving origin M coincides with the movable portion gravity center G, and at this time, the influence of the rotation component can be completely removed. For this reason, in this embodiment, the movable part 130 can be suitably moved to the contact position with the fixed part 140, and more suitable sensitivity adjustment can be provided. Furthermore, in this embodiment, the convergence of the movable part 130 to the target position, the control stability of the movable part 130, and the like are improved, and the control performance of the shake correction apparatus 100 is improved.
  • the shake angular velocity signals ⁇ p and ⁇ y detected by the shake detection unit 12 and the movable unit position coordinates x and y detected by the first Hall element 122 and the second Hall element 124 are obtained. Since the movable part 130 is controlled by using it, the movable part 130 can be converged to an accurate target position.
  • the target position coordinates along the detection axes X and Y of the first Hall element 122 and the second Hall element 124 are converted into target movement amounts along the drive axes X ′ and Y ′ of the movable unit 130. Since the movable part 130 is moved, it is possible to suitably control the shake correction device.
  • the movable unit 130 is moved along the A2 axis to adjust the sensitivity of the detection unit 120.
  • the movable unit 130 is moved along the A3 axis. Sensitivity adjustment of the detection unit 120 can be performed.
  • the movable portion 130 is moved along the A3 axis by applying a driving force along the A3 axis to the movable portion 130, and the movable portion 130 is brought into contact with the fixed portion 140.
  • the third contact portion 133A and the fourth contact portion 133B of the movable portion 130 to be in contact with the fixed portion 140 are provided on both sides of the movable portion 130 along the A3 axis, the third contact portion 133A.
  • the 4th contact part 133B can be made to contact
  • the sensitivity adjustment of the detection unit 120 can be suitably performed.
  • the sensitivity adjustment of the detection unit 120 performed by moving the movable unit 130 along the A3 axis may be performed instead of the sensitivity adjustment performed by moving the movable unit 130 along the A2 axis. Further, both sensitivity adjustment performed by moving the movable unit 130 along the A2 axis and sensitivity adjustment performed by moving the movable unit 130 along the A3 axis may be performed. It is possible to correct the driving origin M of the movable unit 130 by moving the movable unit 130 along the A2 axis and the A3 axis to perform sensitivity adjustment.
  • the fourth embodiment is the same as the first to third embodiments described above except for the following, and a description of the overlapping portions is omitted.
  • FIG. 17 shows a shake correction apparatus 200 according to the second embodiment.
  • the shake correction apparatus 200 according to the fourth embodiment is the same as the shake correction apparatus 100 according to the first to third embodiments except for a part of the configuration of the movable portion 230 and the fixed portion 240.
  • the first stopper portion 141A and the second stopper portion 141B of the fixed portion 140 provided along the A2 axis of the third embodiment shown in FIG. 12 and the like, and the first contact portion 131A of the movable portion 130 are provided.
  • the second contact portion 131B is omitted.
  • the fixing portion 240 has a locking element 243 that protrudes toward the movable portion 230 along the optical axis L on the upper side of the A1 axis along the A3 axis.
  • the locking element 243 is inserted into the hole 233 of the movable portion 230, and includes a first stopper portion 243A, a second stopper portion 243B, a third stopper portion 243C, and a fourth stopper portion 243D.
  • the first stopper portion 243A and the second stopper portion 243B define the movable range in the A1 axis direction of the movable portion 230, and the third stopper portion 243C and the fourth stopper portion 243D are in the A3 axis direction of the movable portion 130. It defines the movable range.
  • the third stopper portion 243C and the fourth stopper portion 243D are provided on both sides along the A3 axis of the locking element 243.
  • the hole 233 is formed in the movable part 230 inside the outer periphery.
  • a first contact part 233A, a second contact part 233B, a third contact part 233C, and a fourth contact part 233D are provided on the inner periphery of the hole 233.
  • the first contact portion 233A can contact the first stopper portion 243A
  • the second contact portion 233B can contact the second stopper portion 243B
  • the third contact portion 233C can be the third stopper portion 243C.
  • the fourth contact portion 233D can contact the fourth stopper portion 243D.
  • the first contact portion 233A to the fourth contact portion 233D and the first stopper portion 243A to the fourth stopper portion 243D are provided so as to be in surface contact. Further, the third contact portion 233C and the fourth contact portion 233D are provided on both sides of the through hole 233 along the A3 axis when the movable portion 230 is located at the driving origin M.
  • the calibration of the shake correction apparatus 200 in the present embodiment is performed by moving the movable unit 230 along the A3 axis. That is, the movable part 230 is moved by applying a driving force along the A3 axis to the movable part 230, and the movable part 230 is brought into contact with the fixed part 240.
  • the third contact portion 233C and the fourth contact portion 233D of the movable portion 230 to be in contact with the fixed portion 240 are provided on both sides of the movable portion 230 along the A3 axis, the third contact portion 233C.
  • the fourth contact portion 233D can be preferably brought into contact with the fixed portion 240.
  • the shake correction apparatus 200 of the present embodiment has a first stopper portion 141A, a second stopper portion 141B, a first contact portion 131A, and a second contact portion. This is a simple configuration in which the contact portion 131B is omitted.
  • the fifth embodiment is the same as the first to fourth embodiments described above except for the following, and a description of the overlapping portions is omitted.
  • the position detection unit 120 is attached to the fixing unit 140.
  • the movable unit 130 is disposed between the position detection unit 120 and the fixed unit 140, and is movable relative to the fixed unit 130 on a plane that intersects the optical axis L.
  • the mutually perpendicular axes on the XY plane perpendicular to the optical axis L are defined as A1 axis and A2 axis.
  • the A1 and A2 axes pass through the optical axis L in a plane perpendicular to the optical axis L and are perpendicular to each other.
  • the A2 axis bisects the angle at which the X axis and the Y axis intersect.
  • the A3 axis and the A4 axis are perpendicular to each other, and bisect the angle at which the A1 axis and the A2 axis intersect at the optical axis L.
  • the detection unit 120 includes a first Hall element 122 and a second Hall element 124, and detects the position coordinates of the movable unit 130 along the X axis and the Y axis. That is, the first Hall element 122 detects the position of the first magnet 132 provided in the movable portion 130 shown in FIG. 20B in the X-axis direction, and the second Hall element 124 is the position of the second magnet 134 in the Y-axis direction. Is detected.
  • the intersection of the X axis and the Y axis is set as a detection axis origin N.
  • the movable part 130 has an asymmetric shape with respect to the A1 axis. 2 and 4, the shutter unit 110 is incorporated in the blur correction device 100 from the viewpoint of downsizing the blur correction device 100 and the like. Occupied by the shutter unit 110.
  • the movable portion 130 is configured such that the length along the A1 axis is longer than the length along the A2 axis, and is arranged in an approximately upper half region of the fixed portion 140.
  • the shape of the movable part 130 may be a symmetric shape along the A1 axis, or may be an asymmetric shape along the A2 axis.
  • the movable unit 130 includes a shake correction lens L3, a first magnet 132, and a second magnet 134.
  • the first magnet 132 is disposed so as to pass through the X axis and the X ′ axis, and is preferably disposed such that the center thereof passes through the X axis and the X ′ axis.
  • the second magnet 134 is disposed so as to pass through the Y axis and the Y ′ axis, and is preferably disposed so that the center thereof passes through the Y axis and the Y ′ axis.
  • the detection axis origin N of the detection axis X of the first Hall element 122 and the detection axis Y of the second Hall element 124 shown in FIG. It arrange
  • the movable portion center of gravity G of the movable portion 130 is determined by the movable portion 130 and the shake correction lens L3 disposed on the movable portion 130, the first magnet 132, the second magnet 134, and the like. Is not on the lens center O but above the lens center O along the A2 axis.
  • the movable part 130 is moved toward the target position on a plane intersecting the optical axis L. That is, the first magnet 132 of the movable part 130 and the first drive coil 142 of the fixed part 140 shown in FIG. 20C constitute a first VCM 152, and the electromagnetic drive force Fx ′ along the X ′ axis is applied to the movable part 130. Can act.
  • the second magnet 134 of the movable part 130 and the second drive coil 144 of the fixed part 140 constitute a second VCM 154, and an electromagnetic driving force Fy ′ along the Y ′ axis is applied to the movable part 130. Can do.
  • the movable part 130 is moved toward the target position on a plane intersecting the optical axis L by the electromagnetic driving forces Fx ′ and Fy ′.
  • the intersection of the X ′ axis and the Y ′ axis is the drive axis origin M, and the movable portion 130 is located at the drive axis origin M, which is the drive center, the lens center O of the image sensor 3 is the optical axis. Pass through L.
  • the fixing unit 140 includes a first drive coil 142 and a second drive coil 144. That is, the first drive is performed so that the X ′ axis, which is the drive axis of the first VCM 152 composed of the first drive coil 142 and the first magnet 132 shown in FIG. 20B, passes closer to the movable part gravity center G than the lens center O.
  • the coil 142 is disposed on the fixing unit 140.
  • the first drive coil 142 is disposed such that the VCM drive axis X ′ is inclined with respect to the A3 axis by the drive axis tilt angle ⁇ (deg).
  • the second drive coil 144 is fixed so that the Y ′ axis, which is the drive axis of the second VCM 154 composed of the second drive coil 144 and the second magnet 134, passes closer to the movable portion center of gravity G than the lens center O. It arranges in part 140. That is, the second drive coil 144 is arranged such that the VCM drive axis Y ′ is inclined with respect to the A4 axis by the drive axis tilt angle ⁇ (deg). Note that the inclination angle of the X ′ axis with respect to the A3 axis and the inclination angle of the Y ′ axis with respect to the A4 axis may be different. Further, the arrangement positions of the coils 142 and 144 with respect to the fixed portion 140 may be changed so that the X ′ axis and the Y ′ axis pass closer to the movable portion gravity center G than the lens center O.
  • the drive axis origin M that is the intersection of the drive axis X ′ and the drive axis Y ′ is the lens center O. Exists closer to the center of gravity G of the movable part.
  • the drive shaft origin M coincides with the movable part center of gravity G.
  • the drive axis X 'and the drive axis Y' intersect at an angle ⁇ 0 other than a right angle, and in the present embodiment, ⁇ 0 is an obtuse angle (for example, 91 degrees to 120 degrees).
  • the VCM drive axes X ′ and Y ′ are tilted at a detection axis tilt angle ⁇ with respect to the Hall element detection axes X and Y. Therefore, for example, as shown in FIG. 21, when the movable unit 130 is moved in the X-axis direction, the driving force Fx ′ of the first VCM 152 and the driving force Fy ′ of the second VCM 154 are applied to the movable unit 130. This is because the driving force Fx ′ by the first VCM 152 includes a driving force component Fx′x along the X axis and a driving force component Fx′y along the Y axis.
  • the second VCM 154 is driven so as to cancel the driving force component Fx′y along the Y axis of the driving force Fx ′. That is, the driving force Fx′y along the Y axis of the first VCM 152 is canceled by the driving force component Fy′y along the Y axis of the driving force Fy ′ by the second VCM 154. In this manner, by driving the first VCM 152 and the second VCM 154, the movable unit 130 can be moved along the X axis. In the above case, since the driving force Fy′x also acts with the action of the driving force Fy ′, Fx′x and Fy′x act on the movable portion 130. As shown in FIG.
  • the driving force Fx ′ by the first VCM 152 is expressed by the following formula 7, and the driving force Fy ′ by the second VCM 154 is expressed by the formula 8. Therefore, by driving the first VCM 152 and the second VCM 154 using the vector conversions shown in Equation 7 and Equation 8, the consistency between the Hall element detection axes X and Y and the VCM drive axes X ′ and Y ′ is maintained. .
  • the first VCM 152 and the second VCM 154 are “ ⁇ Fy It is necessary to generate a negative driving force (driving force in the direction opposite to the target movement direction) indicated by “sin ⁇ ” and “ ⁇ Fx ′ sin ⁇ ”.
  • the detection axis origin N of the detection axis X of the first Hall element 122 and the detection axis Y of the second Hall element 124 is movable from the lens center O as shown in FIGS.
  • the first magnet 132 and the second magnet 134 are arranged so as to be present at a position close to the partial center of gravity G. That is, the first magnet 132 and the second magnet 134 are arranged so that the detection axis origin N is located closer to the drive axis origin M than the lens center O.
  • the X axis is close to the X ′ axis
  • the Y axis is close to the Y ′ axis
  • the detection axis tilt angle ⁇ becomes small.
  • the tilt angle of the X axis with respect to the X ′ axis may be different from the tilt angle of the Y axis with respect to the Y ′ axis.
  • the arrangement positions of the Hall elements 122 and 124 may be changed so that the detection axis origin N passes through a position closer to the drive axis origin M than the lens center O.
  • the detection axis inclination angle ⁇ is configured to be small. Therefore, the excess driving force “ ⁇ Fy opposite to the target movement direction shown in the above-described Equations 9 and 10 is used. “sin ⁇ ” and “ ⁇ Fx′sin ⁇ ” are small. Therefore, in this embodiment, the driving force along the detection axis can be efficiently applied to the movable part, and the movable part can be efficiently moved to the target position.
  • the detection axis inclination angle ⁇ is preferably 0 degrees.
  • the angular velocity sensor 12 disposed in the camera body 1a includes a first angular velocity sensor 12-1 and a second angular velocity sensor 12-2.
  • the first angular velocity sensor 12-1 and the second angular velocity sensor 12-2 and the shake correction device 100 arranged in the lens barrel 2 are arranged at a distance R along the Z axis.
  • each of the first angular velocity sensor 12-1 and the second angular velocity sensor 12-2 detects blur angular velocity signals ⁇ p, ⁇ y in the pitch direction and the yaw direction.
  • the first angular velocity sensor 12-1 and the second angular velocity sensor 12-2 shown in FIG. 23 are arranged so that the pitch axis B1 is orthogonal to the detection axis Y and the yaw axis B2 is orthogonal to the detection axis X. It is. Therefore, in this embodiment, the movable part target positions xt and yt for canceling out the shake based on the shake angular velocity signals ⁇ p and ⁇ y are expressed by the following formulas 11 and 12. Note that the shake angles ⁇ p and ⁇ y (rad) are obtained by integrating the shake angular velocity signals ⁇ p and ⁇ y.
  • FIG. 25 shows a comparative example of this embodiment.
  • the angular velocity sensor is arranged so that the pitch axis B1 'and the yaw axis B2' are perpendicular to each other, as in the prior art.
  • the pitch axis B1 'and the yaw axis B2' are not orthogonal to the X axis or the Y axis, and the B1 'axis, the Y axis, the B2' axis, and the X axis intersect at an angle P 'degree.
  • the movable part target positions xt and yt for canceling the shake based on the shake angular velocity signals ⁇ p and ⁇ y are as follows: It is expressed by Equation 13 and Equation 14.
  • Equation 15 The transfer function with the acceleration ax of the movable part 130 in the X-axis direction as an input and the displacement XSensor in the X-axis direction detected by the Hall element as an output is shown in Equation 15.
  • m represents the mass (kg) of the movable part 130
  • JGZ represents the moment of inertia (kg ⁇ mm2) around the Z-axis passing through the center of gravity G of the movable part
  • ⁇ m and ⁇ j are respectively translational directions (X-axis direction).
  • represents the displacement of the center of gravity of the driving force Fx (distance between the drive shaft origin M and the movable portion gravity center G) (mm)
  • B represents the displacement of the center of gravity of the Hall element 122 (mm).
  • the first term represents the transfer function in the translation direction
  • the second term represents the transfer function in the rotation direction.
  • This transfer function represents the transfer function from the movable part to the Hall element in the control block diagram of FIG. 5, and does not include the controller part and the VCM part.
  • Equation 16 “m ⁇ B / JGZ” is an important parameter in discussing the control performance of the shake correction apparatus according to the present invention. This is defined as a KK factor and expressed in Equation 16.
  • Equation 18 when the value of the KK factor is ⁇ 1 or less, the transfer function becomes negative over the entire frequency band. Therefore, in this case, the feedback becomes positive feedback, and control becomes impossible.
  • the polarity of the KK factor is determined by the relationship between the direction of the center of gravity deviation ⁇ of the driving force Fx and the direction of the center of gravity deviation B of the Hall element position. That is, as shown in FIG. 20, when the X-axis and the X′-axis are shifted in the same direction with respect to the movable portion center of gravity G, the value of the KK factor becomes positive, and the transfer function related to the blur correction unit 100 is Become stable.
  • the drive axis origin M is located closer to the movable part center of gravity G than the lens center O
  • the detection axis origin N is closer to the drive axis origin M than the lens center O.
  • the detection unit 120, the movable unit 130, and the fixed unit 140 are configured so that the drive shaft origin M and the detection shaft origin N are shifted in the same direction with respect to the movable part center of gravity G.
  • the X-axis is close to the X′-axis and the Y-axis is close to the Y′-axis
  • the center-of-gravity deviation ⁇ of the driving force Fx and the center-of-gravity deviation B of the Hall element 122 Satisfies the relationship shown in Equation 19 below.
  • FIG. 26 shows the relationship of the steady deviation related to the moving amount of the movable part in the step response according to the value of the KK factor.
  • the deviation is small and the control performance is excellent in the region where the value of the KK factor is close to 0, and the deviation is large and the control performance is inferior in the range where the KK factor is negative.
  • the KK factor is set within a range in which the KK factor is positive and the deviation value falls within D1.
  • the deviation D1 is a value of 70% of the maximum peak D2 of the deviation.
  • the drive shaft inclination angle ⁇ is set so that the drive shaft origin M is closer to the movable portion center of gravity G than the lens center O and / or the value of the KK factor is 0 or more and KK1 or less. adjust.
  • FIG. 27 shows the relationship between the distance ⁇ and the KK factor with respect to the drive shaft tilt angle ⁇ .
  • the horizontal axis is the drive shaft tilt angle ⁇ (deg)
  • the left vertical axis is the distance ⁇ (mm)
  • the right vertical axis is the KK factor
  • the distance ⁇ is displayed as a black square plot. Is displayed as a black diamond plot.
  • the distance ⁇ and the KK factor change when the drive shaft tilt angle ⁇ is in the range of ⁇ to + ⁇ .
  • the distance ⁇ becomes 0 when the drive shaft inclination angle ⁇ is ⁇ 1.
  • the drive shaft origin M coincides with the movable portion gravity center G.
  • the drive shaft origin M exists at a position close to the movable portion gravity center G with respect to the lens center O.
  • the KK factor is 0 or more when the drive shaft tilt angle ⁇ is ⁇ 1 or less, and is KK1 or less when the drive shaft tilt angle ⁇ is ⁇ 4 or more. That is, the KK factor is 0 or more and KK1 or less in the range R2 ( ⁇ 4 ⁇ ⁇ ⁇ ⁇ 1).
  • the drive shaft inclination angle ⁇ within a range R3 ( ⁇ 3 ⁇ ⁇ ⁇ ⁇ 1) that satisfies the condition of the range R1 and satisfies the condition of the range R2. This is because by adjusting the drive shaft inclination angle ⁇ within the range R3, it is possible to suppress the rotation component when moving the movable part and perform stable control.
  • the distance ⁇ between the drive shaft origin M and the movable portion gravity center G approaches 0 and the KK factor is positive (at this time, as is clear from Equation 10,
  • the drive shaft inclination angle ⁇ is adjusted to ⁇ 1 so that the value of the KK factor also approaches 0.
  • the drive shaft inclination angle ⁇ it is possible to more suitably suppress the rotation component and perform stable control.
  • the drive axis origin M which is the intersection of the X ′ axis that is the drive axis of the first VCM 152 and the Y ′ axis that is the drive axis of the second VCM 154, is defined on the blur correction optical member L3.
  • the movable part 130 is disposed closer to the movable part center of gravity G than the lens center O. For this reason, since the drive shaft origin M of the movable part 130 can be brought close to the movable part center of gravity G of the movable part 130, the influence of the rotational component that adversely affects the movement of the movable part 130 is suppressed, and the movable part 130 is suppressed.
  • the translational component effective for the movement of can be made to act efficiently.
  • the drive shaft origin M coincides with the movable portion gravity center G, and at this time, the influence of the rotation component can be completely removed. Therefore, in the present embodiment, the convergence of the movable unit 130 to the target position, the control stability of the movable unit 130, and the like can be improved, and the control performance of the shake correction apparatus 100 can be improved.
  • the first magnet 132 and the second magnet 134 are arranged so that the detection axis origin N is closer to the drive axis origin M than the lens center O, and the X axis is X It is close to the 'axis and the Y axis is close to the Y' axis. Therefore, in this embodiment, the driving force along the detection axis can be efficiently applied to the movable part, and the movable part can be efficiently moved to the target position.
  • the first Hall element 122 is disposed at a position including the intersection of the X axis and the X ′ axis
  • the second Hall element 124 is aligned with the Y axis and the Y ′. It is arranged at a position including the intersection with the axis.
  • the center of the first Hall element 122 is disposed at the intersection of the X axis and the X ′ axis
  • the center of the second Hall element 124 is disposed at the intersection of the Y axis and the Y ′ axis.
  • the drive shaft origin M exists between the movable part gravity center G and the lens center O.
  • the value of the KK factor relating to the transfer function of the shake correction apparatus becomes a positive value. Therefore, stable control can be performed in the shake correction apparatus according to the present invention.
  • the shake angular velocity signals ⁇ p and ⁇ y detected by the shake detection unit 12 and the movable unit position coordinates x and y detected by the first Hall element 122 and the second Hall element 124 are obtained. Since the movable part 130 is controlled by using it, the movable part 130 can be converged to an accurate target position.
  • the target position coordinates along the detection axes X and Y of the first Hall element 122 and the second Hall element 124 are converted into target movement amounts along the drive axes X ′ and Y ′ of the movable unit 130. Since the movable part 130 is moved, it is possible to suitably control the shake correction device.
  • the optical system moving type blur correction device is of a type that drives the blur correction lens L3 shown in FIG. 1, but in the present invention, the type of image sensor movement in which the image sensor 3 shown in FIG. 1 moves is used.
  • the present invention can also be applied to a mold blur correction device.
  • two VCMs are applied as means for driving the movable part.
  • the present invention is not limited to this.
  • two or more VCMs may be used.
  • other actuators such as a piezoelectric actuator may be used.
  • two Hall elements are applied as means for detecting the position of the movable part.
  • the present invention is not limited to this, and two or more Hall elements may be used.
  • Other position detection means may be used.

Abstract

In a shake correction device, a first drive member and the second drive member are provided such that the intersection of a first axis and a second axis is in a position closer to the center of gravity of a moving member than the center of a shake correction member. Elastic force of a first elastic member, which is positioned in a position closest to the center of gravity of the moving member out of a plurality of elastic members, is different from the elastic force of the other elastic members. The moving member has a first contact part that can contact a fixed member when moved in a first direction by a drive member and a second contact part that can contact the fixed member when moved in a direction opposite to the first direction. The intersection of a third axis and a fourth axis is in a position closer to the intersection of the first axis and the second axis than the center of the shake correction member.

Description

ブレ補正装置、レンズ鏡筒および撮影装置Blur correction device, lens barrel and photographing device
 本発明は、ブレ補正装置、レンズ鏡筒および撮影装置に関する。 The present invention relates to a shake correction device, a lens barrel, and a photographing device.
 手振れなどによる撮像画像のブレを抑制するブレ補正装置としては、種々のものが知られている。たとえば、特許文献1に示すように、カメラのブレに合わせて、光軸に垂直な平面内で補正レンズを移動させるブレ補正装置が知られている。 Various devices are known as a blur correction device that suppresses blurring of a captured image due to camera shake or the like. For example, as shown in Patent Document 1, there is known a shake correction apparatus that moves a correction lens in a plane perpendicular to the optical axis in accordance with camera shake.
 このような光学式のブレ補正装置においては、可動部材を移動させるための機構の配置や、可動部材の重心の位置などによって、可動部材を移動させる際に回転トルクが発生する場合があった。この回転トルクは、補正レンズを保持する可動部材の位置制御精度に悪影響を与えるおそれがある。 In such an optical shake correction apparatus, rotational torque may be generated when the movable member is moved depending on the arrangement of the mechanism for moving the movable member, the position of the center of gravity of the movable member, and the like. This rotational torque may adversely affect the position control accuracy of the movable member that holds the correction lens.
特開2009-169359JP2009-169359
 本発明の第1の目的は、制御性能に優れるブレ補正装置、そのブレ補正装置を備えるレンズ鏡筒および撮影装置を提供することである。本発明の第2の目的は、好適に校正を行うことができるブレ補正装置、そのブレ補正装置を備えるレンズ鏡筒および撮影装置を提供することである。 A first object of the present invention is to provide a shake correction device having excellent control performance, a lens barrel including the shake correction device, and a photographing device. A second object of the present invention is to provide a shake correction apparatus that can suitably perform calibration, a lens barrel including the shake correction apparatus, and a photographing apparatus.
 上記第1の目的を達成するために、本発明の第1の観点に係るブレ補正装置(100)は、
 固定部材(140)に対して相対的に移動可能であり、光学系(L1,L2,L3)により結像される像のブレを補正するブレ補正部材を(L3)備え、重心が前記ブレ補正部材(L3)の中心から離れた位置にある移動部材(130)と、
 前記光学系(L1,L2,L3)の光軸(L)と交差する平面上において、前記移動部材(130)を第1軸に沿って移動させる第1駆動部(152)と、
 前記平面上において、前記移動部材(130)を第1軸に交差する第2軸に沿って移動させる第2駆動部(154)と、
 前記移動部材(130)を前記固定部材(140)に対して相対的に移動可能に支持する複数の弾性部材(145)と、を有し、
 前記第1駆動部材(152)および前記第2駆動部材(154)は、前記第1軸と前記第2軸との交点が、前記ブレ補正部材(L3)の中心よりも前記移動部材(130)の重心に近い位置となるように設けられ、
 前記複数の弾性部材(145)のうち、前記移動部材の重心に最も近い位置に配置されている第1弾性部材(145-1)の弾性力は、他の弾性部材の弾性力と異なることを特徴とする。
In order to achieve the first object, a shake correction apparatus (100) according to a first aspect of the present invention includes:
A blur correction member (L3) that is movable relative to the fixed member (140) and corrects the blur of the image formed by the optical system (L1, L2, L3) is provided, and the center of gravity is the blur correction. A moving member (130) located away from the center of the member (L3);
A first drive unit (152) for moving the moving member (130) along a first axis on a plane intersecting the optical axis (L) of the optical system (L1, L2, L3);
A second driving unit (154) for moving the moving member (130) along a second axis intersecting the first axis on the plane;
A plurality of elastic members (145) supporting the moving member (130) so as to be movable relative to the fixed member (140);
In the first drive member (152) and the second drive member (154), the moving member (130) has an intersection of the first axis and the second axis that is more than the center of the shake correction member (L3). It is provided to be close to the center of gravity of
Among the plurality of elastic members (145), the elastic force of the first elastic member (145-1) disposed at the position closest to the center of gravity of the moving member is different from the elastic force of the other elastic members. Features.
 上記第2の目的を達成するために、本発明の第2の観点に係るブレ補正装置(100)は、
 固定部材(140,240)に対して相対的に移動可能であり、光学系(L1,L2,L3)により結像される像のブレを補正するブレ補正部材を(L3)備え、重心が前記ブレ補正部材(L3)の中心から離れた位置にある移動部材(130,230)と、
 前記光学系(L1,L2,L3)の光軸と交差する平面上において、前記移動部材(130,230)を、前記ブレ補正部材(L3)の中心よりも前記移動部材(130,230)の重心(G)に近い位置で交差する第1軸(A2,A3)および第2軸(A2,A3)に沿った駆動力を発生させて移動させる駆動部材(152,154)と、を有し、
 前記移動部材(130,230)は、前記駆動部材(152,154)により第1方向に移動した場合に前記固定部材(140,240)に当接可能な第1当接部(131A,133A,243C)、および前記第1方向と反対方向に移動した場合に前記固定部材(140,240)に当接可能な第2当接部(131B,133B,243D)を有することを特徴とする。
In order to achieve the second object, a shake correction apparatus (100) according to a second aspect of the present invention includes:
A blur correction member (L3) that is movable relative to the fixed members (140, 240) and corrects blur of an image formed by the optical system (L1, L2, L3) is provided, and the center of gravity is A moving member (130, 230) at a position away from the center of the blur correction member (L3);
On the plane intersecting with the optical axis of the optical system (L1, L2, L3), the moving member (130, 230) is placed closer to the moving member (130, 230) than the center of the shake correcting member (L3). Drive members (152, 154) that generate and move a drive force along the first axis (A2, A3) and the second axis (A2, A3) that intersect at a position close to the center of gravity (G). ,
When the moving member (130, 230) is moved in the first direction by the driving member (152, 154), the first abutting portion (131A, 133A, 243C) and a second contact portion (131B, 133B, 243D) that can contact the fixing member (140, 240) when moved in the direction opposite to the first direction.
 上記第1の目的を達成するために、本発明の第3の観点に係るブレ補正装置(100)は、
 固定部材(140)に対して相対的に移動可能であり、光学系(L1,L2,L3)により結像される像のブレを補正するブレ補正部材を(L3)備え、重心が前記ブレ補正部材(L3)の中心から離れた位置にある移動部材(130)と、
 前記光学系(L1,L2,L3)の光軸(L)と交差する平面上において、前記移動部材(130)を第1軸に沿って移動させる第1駆動部(152)と、
 前記平面上において、前記移動部材(130)を第1軸に交差する第2軸に沿って移動させる第2駆動部(154)と、
 前記平面上において、第3軸に沿った前記移動部材(130)の位置を検出する第1検出手段(122)と、
 前記平面上において、前記第3軸に交差する第4軸に沿った前記移動部材(130)の位置を検出する第2検出手段(124)と、を有し、
 前記平面上において、前記第1軸と前記第2軸との交点が、前記ブレ補正部材(L3)の中心よりも前記移動部材(130)の重心に近い位置にあり、かつ、前記第3軸と前記第4軸との交点が、前記ブレ補正部材(L3)の中心よりも前記第1軸と前記第2軸との交点に近い位置にあることを特徴とする。
In order to achieve the first object, the blur correction device (100) according to the third aspect of the present invention includes:
A blur correction member (L3) that is movable relative to the fixed member (140) and corrects the blur of the image formed by the optical system (L1, L2, L3) is provided, and the center of gravity is the blur correction. A moving member (130) located away from the center of the member (L3);
A first drive unit (152) for moving the moving member (130) along a first axis on a plane intersecting the optical axis (L) of the optical system (L1, L2, L3);
A second driving unit (154) for moving the moving member (130) along a second axis intersecting the first axis on the plane;
First detecting means (122) for detecting a position of the moving member (130) along a third axis on the plane;
Second detection means (124) for detecting a position of the moving member (130) along a fourth axis intersecting the third axis on the plane;
On the plane, the intersection of the first axis and the second axis is closer to the center of gravity of the moving member (130) than the center of the blur correction member (L3), and the third axis And the fourth axis are located closer to the intersection of the first axis and the second axis than the center of the blur correction member (L3).
 なお、本発明をわかりやすく説明するために、実施形態を示す図面の符号に対応付けて説明したが、本発明は、これに限定されるものでない。後述の実施形態の構成を適宜改良してもよく、また、少なくとも一部を他の構成に代替させてもよい。更に、その配置について特に限定のない構成要件は、実施形態で開示した配置に限らず、その機能を達成できる位置に配置することができる。 In addition, in order to explain the present invention in an easy-to-understand manner, the description has been made in association with the reference numerals of the drawings showing the embodiments, but the present invention is not limited to this. The configuration of the embodiment described later may be improved as appropriate, or at least a part of the configuration may be replaced with another configuration. Further, the configuration requirements that are not particularly limited with respect to the arrangement are not limited to the arrangement disclosed in the embodiment, and can be arranged at a position where the function can be achieved.
図1は、本発明の一実施形態に係るカメラの概略ブロック図である。FIG. 1 is a schematic block diagram of a camera according to an embodiment of the present invention. 図2は、図1に示すブレ補正装置の正面斜視図である。FIG. 2 is a front perspective view of the shake correction apparatus shown in FIG. 図3は、図2に示すブレ補正装置の背面斜視図である。3 is a rear perspective view of the shake correction apparatus shown in FIG. 図4は、図2および図3に示すブレ補正装置の組立図である。FIG. 4 is an assembly diagram of the shake correction apparatus shown in FIGS. 2 and 3. 図5は、図1に示すカメラにおけるブレ補正動作の制御の一例を示す制御ブロック図である。FIG. 5 is a control block diagram showing an example of the control of the shake correction operation in the camera shown in FIG. 図6は、図2~図4に示すブレ補正装置の要部の一例を示す正面図である。FIG. 6 is a front view showing an example of a main part of the shake correction apparatus shown in FIGS. 図7は、図6に示すブレ補正装置における弾性部材の配置例を示す。FIG. 7 shows an example of the arrangement of the elastic members in the shake correction apparatus shown in FIG. 図8Aは第1実施形態に係るブレ補正装置の周波数応答特性を示す。FIG. 8A shows frequency response characteristics of the shake correction apparatus according to the first embodiment. 図8Bは第1実施形態に係るブレ補正装置の動作特性を示す。FIG. 8B shows operating characteristics of the shake correction apparatus according to the first embodiment. 図9Aは第1実施形態の比較例の周波数応答特性を示す。FIG. 9A shows frequency response characteristics of a comparative example of the first embodiment. 図9Bは第1実施形態の比較例の動作特性を示す。FIG. 9B shows operating characteristics of a comparative example of the first embodiment. 図10Aは第2実施形態に係るブレ補正装置の周波数応答特性を示す。FIG. 10A shows frequency response characteristics of the shake correction apparatus according to the second embodiment. 図10Bは第2実施形態に係るブレ補正装置の動作特性を示す。FIG. 10B shows operation characteristics of the shake correction apparatus according to the second embodiment. 図11Aは第2実施形態の比較例の周波数応答特性を示す。FIG. 11A shows frequency response characteristics of a comparative example of the second embodiment. 図11Bは第2実施形態の比較例の動作特性を示す。FIG. 11B shows operating characteristics of a comparative example of the second embodiment. 図12は、図2~図4に示すブレ補正装置の他の実施形態に係る要部の一例を示す正面図である。FIG. 12 is a front view showing an example of a main part according to another embodiment of the shake correction apparatus shown in FIGS. 図13は、図12に示すブレ補正装置の校正動作の一例を説明するフローチャートである。FIG. 13 is a flowchart for explaining an example of the calibration operation of the shake correction apparatus shown in FIG. 図14は、図12に示すブレ補正装置の動作の一例を示す。FIG. 14 shows an example of the operation of the shake correction apparatus shown in FIG. 図15は、図12に示す可動部の移動軸に沿った移動距離と検出軸に沿った移動距離との関係を示す。FIG. 15 shows the relationship between the movement distance along the movement axis of the movable part shown in FIG. 12 and the movement distance along the detection axis. 図16は、図12に示すブレ補正装置の動作の他の例を示す。FIG. 16 shows another example of the operation of the shake correction apparatus shown in FIG. 図17は、図2~図4に示すブレ補正装置の要部の他の例を示す正面図である。FIG. 17 is a front view showing another example of the main part of the shake correction apparatus shown in FIGS. 図18は、従来のブレ補正装置の一例を示す。FIG. 18 shows an example of a conventional blur correction apparatus. 図19は、図18に示す従来のブレ補正装置の動作の一例を示す。FIG. 19 shows an example of the operation of the conventional blur correction apparatus shown in FIG. 図20Aは、図2および図4に示すブレ補正装置の他の実施形態に係る検出部を示す。FIG. 20A shows a detection unit according to another embodiment of the shake correction apparatus shown in FIGS. 図20Bは図20Aに示す実施形態のブレ補正装置の可動部と駆動部の駆動軸との関係を示す。FIG. 20B shows the relationship between the movable part of the shake correction apparatus of the embodiment shown in FIG. 20A and the drive shaft of the drive part. 図20Cは図20Aに示す実施形態における固定部の位置関係および駆動部の駆動軸との関係を示す。FIG. 20C shows the positional relationship of the fixed portion and the relationship with the drive shaft of the drive portion in the embodiment shown in FIG. 20A. 図21は、図20に示す可動部をX軸に沿って移動させる例を示す。FIG. 21 shows an example in which the movable part shown in FIG. 20 is moved along the X axis. 図22は、図20に示す可動部をY軸に沿って移動させる例を示す。FIG. 22 shows an example in which the movable part shown in FIG. 20 is moved along the Y axis. 図23は、カメラの角速度センサとブレ補正装置との位置関係を示す。FIG. 23 shows the positional relationship between the angular velocity sensor of the camera and the shake correction apparatus. 図24は、角速度センサの検出軸と図20に示す検出部の検出軸との関係を示す。FIG. 24 shows the relationship between the detection axis of the angular velocity sensor and the detection axis of the detection unit shown in FIG. 図25は、図24の比較例を示す。FIG. 25 shows a comparative example of FIG. 図26は、KKファクタと可動部の移動量に係る定常偏差との関係を示すグラフである。FIG. 26 is a graph showing the relationship between the KK factor and the steady deviation related to the moving amount of the movable part. 図27は、VCMの駆動軸の傾き角度に対するKKファクタおよび可動部重心とVCM駆動軸原点との間の距離の関係を示すグラフである。FIG. 27 is a graph showing the relationship between the KK factor and the distance between the center of gravity of the movable part and the origin of the VCM drive axis with respect to the inclination angle of the VCM drive axis.
 第1実施形態
 図1に示すように、本発明の一実施形態に係るカメラ1は、いわゆるコンパクトデジタルカメラであり、カメラボディ1aとレンズ鏡筒2とが一体化してある。なお、以下の実施形態では、コンパクトデジタルカメラを例に説明するが、本発明はこれに限定されない。たとえば、レンズとカメラボディとが別個に構成される一眼レフデジタルカメラであっても良い。さらに、ミラー機構を省いたミラーレスタイプのカメラであっても良い。また、コンパクトデジタルカメラや一眼レフデジタルカメラに限らず、ビデオカメラ、双眼鏡、顕微鏡、望遠鏡、携帯電話などの光学機器にも適用できる。
First Embodiment As shown in FIG. 1, a camera 1 according to an embodiment of the present invention is a so-called compact digital camera, in which a camera body 1a and a lens barrel 2 are integrated. In the following embodiments, a compact digital camera will be described as an example, but the present invention is not limited to this. For example, a single-lens reflex digital camera in which a lens and a camera body are configured separately may be used. Furthermore, a mirrorless type camera that omits the mirror mechanism may be used. Further, the present invention can be applied not only to a compact digital camera and a single-lens reflex digital camera but also to an optical apparatus such as a video camera, a binocular, a microscope, a telescope, and a mobile phone.
 レンズ鏡筒2は、被写体側から順に、第1レンズ群L1、第2レンズ群L2、第3レンズ群(ブレ補正レンズ群)L3を配列して構成された撮像光学系を備えている。また、本実施形態のカメラ1では、第3レンズ群L3の背後(像面側)に、CCDやCMOSに代表される撮像素子3を具備してある。 The lens barrel 2 includes an imaging optical system configured by arranging a first lens group L1, a second lens group L2, and a third lens group (blur correction lens group) L3 in order from the subject side. In the camera 1 of the present embodiment, the image pickup device 3 represented by a CCD or a CMOS is provided behind the third lens unit L3 (on the image plane side).
 第1レンズ群L1は、撮像光学系のうち最も被写体側に設けられ、駆動機構6により光軸Lに沿った方向に移動自在に駆動され、ズーミングが可能になっている。第2レンズ群L2は、駆動機構8により光軸Lに沿った方向に移動自在に駆動され、フォーカシングが可能になっている。 The first lens unit L1 is provided on the most object side in the imaging optical system, and is driven to be movable in the direction along the optical axis L by the drive mechanism 6 so that zooming is possible. The second lens group L2 is driven by the drive mechanism 8 so as to be movable in the direction along the optical axis L, and focusing is possible.
 第3レンズ群(ブレ補正レンズ群)L3は、ブレ補正装置100の一部を構成する。ブレ補正レンズ群L3は、CPU14からの信号を受けたブレ補正装置100により、光軸Lと交差する面内で移動可能であり、第1レンズ群L1、第2レンズ群L2、第3レンズ群(ブレ補正レンズ群)L3により撮像素子3の撮像面に形成される光学像の、カメラの動きに起因する像ブレを低減する。 The third lens group (blur correction lens group) L3 constitutes a part of the blur correction apparatus 100. The shake correction lens group L3 can be moved in a plane intersecting the optical axis L by the shake correction apparatus 100 that receives a signal from the CPU 14, and the first lens group L1, the second lens group L2, and the third lens group. (Blur correction lens group) The image blur caused by the movement of the camera in the optical image formed on the imaging surface of the image sensor 3 by L3 is reduced.
 絞り機構4は、カメラの露光を制御するように駆動機構10により駆動される。撮像素子3は、撮像光学系が撮像面上に結像する被写体像の光に基づいて、電気的な画像出力信号を生成する。その画像出力信号は、信号処理回路16で、A/D変換やノイズ処理されてCPU14へ入力する。 The diaphragm mechanism 4 is driven by the drive mechanism 10 so as to control the exposure of the camera. The imaging element 3 generates an electrical image output signal based on the light of the subject image formed on the imaging surface by the imaging optical system. The image output signal is A / D converted or noise-processed by the signal processing circuit 16 and input to the CPU 14.
 レンズ鏡筒2には、ジャイロセンサなどの角速度センサ12が内蔵してあり、角速度センサ12は、カメラ1に生じる手ブレなどによる角速度を検出し、CPU14に出力する。CPU14には、AFセンサ18からの検出信号も出力され、その検出信号に基づき、駆動機構8を制御し、オートフォーカス(AF)機構を実現している。なお、角速度センサ12は、カメラボディ1aに備えられても良い。 The lens barrel 2 incorporates an angular velocity sensor 12 such as a gyro sensor. The angular velocity sensor 12 detects an angular velocity caused by camera shake or the like generated in the camera 1 and outputs it to the CPU 14. A detection signal from the AF sensor 18 is also output to the CPU 14, and the drive mechanism 8 is controlled based on the detection signal to realize an autofocus (AF) mechanism. The angular velocity sensor 12 may be provided in the camera body 1a.
 CPU14には、記憶媒体20、不揮発性メモリ22および各種操作ボタン24などが接続されている。記憶媒体20は、CPU14からの出力信号を受けて、撮影画像を記憶したり、読み出されたりするメモリであり、たとえば着脱自在なカード式メモリである。着脱自在なメモリとしては、SDカード等のさまざまなタイプがあるが、特に限定されるものではない。 The CPU 14 is connected to a storage medium 20, a nonvolatile memory 22, various operation buttons 24, and the like. The storage medium 20 is a memory that receives an output signal from the CPU 14 and stores or reads a photographed image. For example, the storage medium 20 is a detachable card memory. There are various types of removable memory such as an SD card, but there is no particular limitation.
 不揮発性メモリ22は、ジャイロセンサのゲイン値およびホール素子の校正値などの調整値情報が記憶してあり、CPU14と共にカメラの内部に内蔵してある半導体メモリなどで構成される。各種操作ボタン24としては、たとえばレリーズスイッチが例示され、レリーズスイッチを半押しまたは全押しすることで、その信号がCPU14に入力される。 The non-volatile memory 22 stores adjustment value information such as a gain value of the gyro sensor and a calibration value of the Hall element, and is configured by a semiconductor memory built in the camera together with the CPU 14. Examples of the various operation buttons 24 include a release switch. When the release switch is half-pressed or fully pressed, the signal is input to the CPU 14.
 図1に示すブレ補正装置100の構成を図2~図4を用いて説明する。なお、以下の説明では、光軸Lに平行な軸をZ軸とする。 The configuration of the shake correction apparatus 100 shown in FIG. 1 will be described with reference to FIGS. In the following description, an axis parallel to the optical axis L is referred to as a Z axis.
 ブレ補正装置100は、図4に示すように、可動部130および固定部140を備える。固定部140は、図2および図4に示すように、シャッター部110および位置検出部120を含み、これらは、ビス150にて固定部140に固定されている。シャッター部110は、カメラの露光を制御する構成であり、固定部140から独立した構成であってもよい。 As shown in FIG. 4, the shake correction apparatus 100 includes a movable part 130 and a fixed part 140. As shown in FIGS. 2 and 4, the fixing unit 140 includes a shutter unit 110 and a position detection unit 120, which are fixed to the fixing unit 140 with screws 150. The shutter unit 110 is configured to control the exposure of the camera, and may be configured independent of the fixed unit 140.
 位置検出部120には、第1ホール素子122および第2ホール素子124が備えられ、可動部130の位置を検出する。第1ホール素子122は光軸Lに垂直なX軸に検出軸を持ち、第2ホール素子124は光軸Lに垂直なY軸に検出軸を持つ。 The position detector 120 includes a first Hall element 122 and a second Hall element 124, and detects the position of the movable part 130. The first Hall element 122 has a detection axis on the X axis perpendicular to the optical axis L, and the second Hall element 124 has a detection axis on the Y axis perpendicular to the optical axis L.
 第1ホール素子122および第2ホール素子124は、可動部130に備えられる第1磁石132および第2磁石134の磁界を検出して、可動部130の位置を検出する。 The first Hall element 122 and the second Hall element 124 detect the magnetic field of the first magnet 132 and the second magnet 134 provided in the movable part 130 to detect the position of the movable part 130.
 可動部130は、第1磁石132、第2磁石134およびブレ補正レンズ群L3を備える。以下の説明では、本実施形態の理解を容易にするために、ブレ補正レンズ群L3を1枚のブレ補正レンズL3として説明する。 The movable part 130 includes a first magnet 132, a second magnet 134, and a shake correction lens group L3. In the following description, the blur correction lens group L3 will be described as one blur correction lens L3 in order to facilitate understanding of the present embodiment.
 可動部130は、3つの引張コイルばね145により、3箇所で固定部140に取り付けられている。引張コイルばね145は、図3に示す固定部側ばね取付部146と図4に示す可動部側ばね取付部136との間に取り付けられている。引張コイルばね145は、可動部130を固定部140に近づける方向に付勢しており、光軸Lに交差する平面上において、ブレ補正レンズL3のレンズ中心Oを光軸L側に復帰させるように可動部130に力を作用させている。 The movable part 130 is attached to the fixed part 140 at three locations by three tension coil springs 145. The tension coil spring 145 is attached between the fixed part side spring attaching part 146 shown in FIG. 3 and the movable part side spring attaching part 136 shown in FIG. The tension coil spring 145 urges the movable portion 130 in a direction approaching the fixed portion 140 so as to return the lens center O of the shake correction lens L3 to the optical axis L side on a plane intersecting the optical axis L. A force is applied to the movable part 130.
 可動部130は、図4に示す3個のセラミックボール148を介して摺動することで、光軸Lに交差する平面上(たとえば、X軸とY軸を含む面、光軸Lに直交する面)を固定部140に対して相対移動する。なお、引張コイルばね145およびセラミックボール148の数量は、可動部130および固定部140の形状等に合わせて、適宜変更可能である。 The movable portion 130 slides through the three ceramic balls 148 shown in FIG. 4 so that the movable portion 130 is on a plane intersecting the optical axis L (for example, a plane including the X axis and the Y axis, orthogonal to the optical axis L). Surface) is moved relative to the fixed portion 140. Note that the numbers of the tension coil spring 145 and the ceramic balls 148 can be appropriately changed according to the shapes of the movable portion 130 and the fixed portion 140.
 可動部130は、可動部130に備えられる第1磁石132および第2磁石134と、固定部140に備えられる第1駆動コイル142および第2駆動コイル144との相互作用によって発生する駆動力により、光軸Lに交差する平面上を移動する。第1磁石132と第1駆動コイル142とが第1VCM152を構成し、第2磁石134と第2駆動コイル144とが第2VCM154を構成している。なお、VCMとはボイスコイルモータの略称である。 The movable part 130 is driven by the driving force generated by the interaction between the first magnet 132 and the second magnet 134 provided in the movable part 130 and the first drive coil 142 and the second drive coil 144 provided in the fixed part 140. It moves on a plane intersecting the optical axis L. The first magnet 132 and the first drive coil 142 constitute a first VCM 152, and the second magnet 134 and the second drive coil 144 constitute a second VCM 154. VCM is an abbreviation for voice coil motor.
 図1~図4に示すブレ補正装置100によるブレ補正動作の一例を図5に示す。ブレ補正装置100は、図5に示すように、目標位置生成部162、減算器164、フィードフォワードコントローラ166、フィードバックコントローラ168および加算器170をさらに備える。これらの構成は、たとえば、図1に示すカメラボディ1aのCPU14が備えても良いし、レンズ鏡筒2のレンズCPU(不図示)が備えても良い。 FIG. 5 shows an example of the shake correction operation by the shake correction apparatus 100 shown in FIGS. As shown in FIG. 5, the shake correction apparatus 100 further includes a target position generation unit 162, a subtracter 164, a feedforward controller 166, a feedback controller 168, and an adder 170. These configurations may be provided, for example, in the CPU 14 of the camera body 1a shown in FIG. 1 or in the lens CPU (not shown) of the lens barrel 2.
 図1に示す角速度センサ12は、カメラ1に生じるピッチ方向およびヨー方向のブレ角速度信号ωp、ωy(rad/s)を検出し、目標位置生成部162に出力する。 1 detects the angular velocity signals ωp and ωy (rad / s) in the pitch direction and the yaw direction generated in the camera 1, and outputs them to the target position generation unit 162.
 目標位置生成部162は、ブレ角速度信号ωp、ωyを積分してブレ角度θp、θy(rad)に変換し、ブレ角度θp、θyを光軸に交差する平面に投影して、可動部目標位置xt、yt(mm)に関する信号を生成する。可動部目標位置xt、ytに関する信号は、ブレ角速度信号ωp、ωyに基づくブレを打ち消すための可動部130の目標位置に関する信号である。 The target position generation unit 162 integrates the shake angular velocity signals ωp and ωy to convert them to the shake angles θp and θy (rad), and projects the shake angles θp and θy on a plane intersecting the optical axis to obtain the movable part target position. Signals relating to xt and yt (mm) are generated. The signals related to the movable part target positions xt and yt are signals related to the target position of the movable part 130 for canceling the shake based on the shake angular velocity signals ωp and ωy.
 この可動部目標位置xt、ytとホール素子122,124からの可動部位置座標x、y(mm)とを利用して、コイル142,144を駆動するためのコイル駆動電流Ix’、Iy’Aが生成される。 Coil driving currents Ix ′ and Iy′A for driving the coils 142 and 144 using the movable part target positions xt and yt and the movable part position coordinates x and y (mm) from the Hall elements 122 and 124 are used. Is generated.
 具体的には、可動部目標位置xt、ytに関する信号が、フィードフォワードコントローラ166を介して、加算器170に入力される。また、可動部目標位置xt、ytに関する信号と可動部位置座標x、yに関する信号とが、減算器164およびフィードバックコントローラ168を介して、加算器170に入力される。加算器170は、入力されたこれらの信号を利用して、コイル駆動電流Ix’、Iy’を生成し、第1VCM152(第1駆動コイル142)および第2VCM154(第2駆動コイル144)に出力する。 Specifically, signals related to the movable part target positions xt and yt are input to the adder 170 via the feedforward controller 166. In addition, signals relating to the movable part target positions xt, yt and signals relating to the movable part position coordinates x, y are input to the adder 170 via the subtractor 164 and the feedback controller 168. The adder 170 generates coil drive currents Ix ′ and Iy ′ using these input signals and outputs them to the first VCM 152 (first drive coil 142) and the second VCM 154 (second drive coil 144). .
 第1VCM152および第2VCM154にコイル駆動電流Ix’、Iy’が入力されると、図6に示すように、可動部130にX’軸およびY’軸に沿った電磁駆動力が作用する。可動部130は、X’軸およびY’軸に沿った電磁駆動力により、光軸Lに交差する平面上で目標位置に向けて移動される。 When the coil drive currents Ix ′ and Iy ′ are input to the first VCM 152 and the second VCM 154, as shown in FIG. 6, the electromagnetic drive force along the X ′ axis and the Y ′ axis acts on the movable portion 130. The movable unit 130 is moved toward the target position on a plane intersecting the optical axis L by an electromagnetic driving force along the X ′ axis and the Y ′ axis.
 図5に示すホール素子122,124のそれぞれは、図6に示すように、可動部130のX軸またはY軸に沿った位置座標を検出して、フィードバックコントローラ168に出力する。ブレ補正動作中においては、角速度センサ12とブレ補正装置100とで上記の制御を繰り返し、ブレ補正を行う。 Each of the Hall elements 122 and 124 shown in FIG. 5 detects a position coordinate along the X axis or Y axis of the movable part 130 and outputs it to the feedback controller 168 as shown in FIG. During the shake correction operation, the angular velocity sensor 12 and the shake correction device 100 repeat the above control to perform the shake correction.
 次に、図6を用いて、本実施形態のブレ補正装置100を、より具体的に説明する。以下の説明では、光軸Lに垂直なX-Y平面上にある相互に垂直な軸をA1軸およびA3軸とする。A1軸とA3軸とは、光軸Lに垂直な平面において光軸Lを通り、相互に垂直である。A1軸およびA3軸は、X軸とY軸とが光軸Lにおいて交差する角度を二等分する。また、A2軸は、可動部130の駆動原点Mを通り且つA1軸に平行であり、A3軸と相互に垂直である。 Next, the blur correction device 100 of the present embodiment will be described more specifically with reference to FIG. In the following description, the mutually perpendicular axes on the XY plane perpendicular to the optical axis L are defined as the A1 axis and the A3 axis. The A1 axis and the A3 axis pass through the optical axis L in a plane perpendicular to the optical axis L and are perpendicular to each other. The A1 axis and the A3 axis bisect the angle at which the X axis and the Y axis intersect in the optical axis L. The A2 axis passes through the driving origin M of the movable unit 130, is parallel to the A1 axis, and is perpendicular to the A3 axis.
 検出部120は、図4に示すように、第1ホール素子122および第2ホール素子124を備え、図6に示すX軸およびY軸に沿った可動部130の位置座標を検出する。すなわち、第1ホール素子122は、図4に示す可動部130に備えられる第1磁石132のX軸方向の位置を検出し、第2ホール素子124は、第2磁石134のY軸方向の位置を検出する。なお、本実施形態では、X軸とY軸とは光軸Lを通り相互に垂直であるが、光軸Lを通らないで垂直以外の角度で交差しても良い。 As shown in FIG. 4, the detection unit 120 includes a first Hall element 122 and a second Hall element 124, and detects the position coordinates of the movable unit 130 along the X axis and the Y axis shown in FIG. That is, the first Hall element 122 detects the position of the first magnet 132 provided in the movable portion 130 shown in FIG. 4 in the X-axis direction, and the second Hall element 124 is the position of the second magnet 134 in the Y-axis direction. Is detected. In the present embodiment, the X axis and the Y axis are perpendicular to each other through the optical axis L, but may intersect at an angle other than vertical without passing through the optical axis L.
 本実施形態では、可動部130は、A1軸に対して非対称な形状である。なぜなら、図2および図4に示すように、ブレ補正装置100の小型化等の観点から、シャッター部110がブレ補正装置100に組み込まれており、固定部140の下側の約半分の領域がシャッター部110によって占領されている。このため、図6に示すように、可動部130は、A3軸に沿った長さよりも、A1軸およびA2軸に沿った長さの方が長くなるように構成してあり、固定部140の約上半分の領域に配置される。 In the present embodiment, the movable portion 130 has an asymmetric shape with respect to the A1 axis. 2 and 4, the shutter unit 110 is incorporated in the blur correction device 100 from the viewpoint of downsizing the blur correction device 100 and the like. Occupied by the shutter unit 110. For this reason, as shown in FIG. 6, the movable portion 130 is configured such that the length along the A1 axis and the A2 axis is longer than the length along the A3 axis. It is arranged in the upper half area.
 本実施形態では、可動部130の可動部重心Gは、レンズ中心Oではなく、A2軸に沿ったレンズ中心Oの上側に存在する。なお、可動部130の形状は、A1軸に沿って対称な形状であっても良く、A2軸に沿って非対称な形状であっても良く、対称な形状であっても良い。また、可動部130の形状は、A3軸に沿って対称な形状であっても良く、非対称な形状であっても良い。 In this embodiment, the movable part center of gravity G of the movable part 130 is not on the lens center O but on the upper side of the lens center O along the A2 axis. The shape of the movable portion 130 may be a symmetric shape along the A1 axis, an asymmetric shape along the A2 axis, or a symmetric shape. Further, the shape of the movable portion 130 may be a symmetric shape along the A3 axis, or may be an asymmetric shape.
 可動部130は、X’軸およびY’軸に沿って、光軸Lに交差する平面上で目標位置に向けて移動される。すなわち、可動部130は、図4に示す第1駆動コイル142と第1磁石132とからなる第1VCM152によるX’軸に沿った電磁駆動力により、X’軸に沿って移動可能である。また、可動部130は、第2駆動コイル144と第2磁石134とからなる第2VCM154によるY’軸に沿った電磁駆動力によって、Y’軸に沿って移動可能である。可動部130が、その駆動中心である駆動原点Mに位置するとき、レンズ中心Oが光軸Lを通る。 The movable part 130 is moved toward the target position on the plane intersecting the optical axis L along the X ′ axis and the Y ′ axis. That is, the movable unit 130 is movable along the X ′ axis by an electromagnetic driving force along the X ′ axis by the first VCM 152 including the first drive coil 142 and the first magnet 132 shown in FIG. 4. In addition, the movable part 130 is movable along the Y ′ axis by an electromagnetic driving force along the Y ′ axis by the second VCM 154 including the second drive coil 144 and the second magnet 134. When the movable unit 130 is located at the driving origin M, which is the driving center thereof, the lens center O passes through the optical axis L.
 本実施形態では、X’軸とY’軸とは、垂直以外の角度で交差しており、X’軸とY’軸とが交差する可動部130の駆動原点Mは、可動部重心Gに一致している。このため、本実施形態では、可動部130を移動させる際に悪影響となる回転成分の影響が除去されており、可動部130の移動に有効な並進成分を効率よく作用させることができる。なお、駆動原点Mは、可動部重心Gに一致していなくてもよい。たとえば、駆動原点Mが、レンズ中心Oよりも可動部重心Gに近い位置に存在している場合には、可動部130を移動させる際の回転成分の影響を抑制することができる。 In the present embodiment, the X ′ axis and the Y ′ axis intersect at an angle other than vertical, and the driving origin M of the movable part 130 at which the X ′ axis and the Y ′ axis intersect is at the movable part center of gravity G. Match. For this reason, in this embodiment, the influence of the rotation component which has a bad influence when moving the movable part 130 is removed, and the translation component effective for the movement of the movable part 130 can be made to act efficiently. Note that the driving origin M does not have to coincide with the movable portion gravity center G. For example, when the drive origin M is present at a position closer to the movable part center of gravity G than the lens center O, the influence of the rotation component when moving the movable part 130 can be suppressed.
 さらに、本実施形態では、図6および図7に示すように、可動部重心Gから最も近い位置に配置してある第1バネ145-1のバネ定数K1を、第2バネ145-2のバネ定数K2および第3バネ145-3のバネ定数K3とは異ならせてあるので、可動部130を移動させる際の回転成分の影響がさらに低減されている。以下に説明する。 Further, in the present embodiment, as shown in FIGS. 6 and 7, the spring constant K1 of the first spring 145-1 disposed at the position closest to the movable portion center of gravity G is changed to the spring of the second spring 145-2. Since the constant K2 and the spring constant K3 of the third spring 145-3 are different from each other, the influence of the rotational component when the movable part 130 is moved is further reduced. This will be described below.
 図6に示すように、可動部130は、第1バネ取付部136-1、第2バネ取付部136-2、第3バネ取付部136-3を有する。第1バネ取付部136-1は、可動部130の外周よりも内側に設けられている。第1バネ取付部136-1は、たとえば、可動部130に形成される孔133内に設けられており、可動部重心Gに向いて突出している。第1バネ145-1は、第1バネ取付部136-1に取り付けられる。 As shown in FIG. 6, the movable portion 130 includes a first spring mounting portion 136-1, a second spring mounting portion 136-2, and a third spring mounting portion 136-3. The first spring mounting portion 136-1 is provided inside the outer periphery of the movable portion 130. The first spring mounting portion 136-1 is provided, for example, in a hole 133 formed in the movable portion 130, and protrudes toward the movable portion gravity center G. The first spring 145-1 is attached to the first spring attachment portion 136-1.
 第2バネ取付部136-2および第3バネ取付部136-3は、可動部130の外周側に設けられている。第2バネ取付部136-2および第3バネ取付部136-3は、可動部130の外周側で可動部重心Gから離れる方向に突出している。第2バネ145-2および第3バネ145-3は、第2バネ取付部136-2および第3バネ取付部136-3にそれぞれ取り付けられる。 The second spring mounting portion 136-2 and the third spring mounting portion 136-3 are provided on the outer peripheral side of the movable portion 130. The second spring mounting portion 136-2 and the third spring mounting portion 136-3 protrude in the direction away from the movable portion gravity center G on the outer peripheral side of the movable portion 130. The second spring 145-2 and the third spring 145-3 are attached to the second spring attachment portion 136-2 and the third spring attachment portion 136-3, respectively.
 図7に示すように、第1バネ145-1は、A2軸を挟んで第2バネ145-2および第3バネ145-3とは反対側に配置してあり、第2バネ145-2はA3軸を挟んで第3バネ145-3とは反対側に配置してある。 As shown in FIG. 7, the first spring 145-1 is disposed on the opposite side of the second spring 145-2 and the third spring 145-3 across the A2 axis, and the second spring 145-2 is The third spring 145-3 is disposed on the opposite side of the A3 axis.
 第1バネ145-1は、可動部重心Gから最も近い位置に配置してあり、可動部重心Gから第1バネ145-1までの距離はD1である。第2バネ145-2は、第1バネ145-1よりも可動部重心Gから離れた位置に配置してあり、可動部重心Gから第2バネ145-2までの距離はD2である。このとき、D2のA2軸に沿った成分をD2_A2とし、D2のA3軸に沿った成分をD2_A3とする。第3バネ145-3は、第1バネ145-1および第2バネ145-2よりも可動部重心Gから離れた位置に配置してあり、可動部重心Gから第3バネ145-3までの距離はD3である。ここで、D3のA2軸に沿った成分をD3_A2とし、D3のA3軸に沿った成分をD3_A3とする。 The first spring 145-1 is disposed at a position closest to the movable part gravity center G, and the distance from the movable part gravity center G to the first spring 145-1 is D1. The second spring 145-2 is disposed at a position farther from the movable portion gravity center G than the first spring 145-1, and the distance from the movable portion gravity center G to the second spring 145-2 is D2. At this time, the component along the A2 axis of D2 is defined as D2_A2, and the component along the A3 axis of D2 is defined as D2_A3. The third spring 145-3 is disposed at a position farther from the center of gravity G of the movable part than the first spring 145-1 and the second spring 145-2, and from the center of gravity G of the movable part to the third spring 145-3. The distance is D3. Here, the component along the A2 axis of D3 is D3_A2, and the component along the A3 axis of D3 is D3_A3.
 図6に示す可動部130の並進運動の固有振動数(並進固有振動数)fxyおよび可動部130の可動部重心Gまわりの回転運動の固有振動数(回転固有振動数)fθは、以下の数式1および数式2にて表される。すなわち、可動部130の並進固有振動数fxyおよび回転固有振動数fθは、可動部130と第1バネ145-1~第3バネ145-3の合成バネ定数により決まる。 The natural frequency (translation natural frequency) fxy of the translational motion of the movable portion 130 and the natural frequency (rotational natural frequency) fθ of the rotational motion around the movable portion center of gravity G of the movable portion 130 shown in FIG. 1 and Formula 2 That is, the translational natural frequency fxy and the rotational natural frequency fθ of the movable part 130 are determined by the combined spring constant of the movable part 130 and the first spring 145-1 to the third spring 145-3.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 なお、上記の数式1および数式2において、mは可動部130(ブレ補正レンズL3、第1磁石132、第2磁石134等を含む)の質量であり、Jは可動部130の重心まわりの慣性モーメントであり、kxyは第1バネ145-1~第3バネ145-3の並進方向の合成バネ係数であり、kθは第1バネ145-1~第3バネ145-3の回転方向の合成バネ係数である。 In the above formulas 1 and 2, m is the mass of the movable part 130 (including the shake correction lens L3, the first magnet 132, the second magnet 134, etc.), and J is the inertia around the center of gravity of the movable part 130. Moment, kxy is a combined spring coefficient in the translational direction of the first spring 145-1 to the third spring 145-3, and kθ is a combined spring in the rotational direction of the first spring 145-1 to the third spring 145-3. It is a coefficient.
 本実施形態では、並進固有振動数fxyよりも回転固有振動数fθが大きい場合の例を説明する。この場合には、以下の数式3に示すように、可動部重心Gの最も近くに配置される第1バネ145-1のバネ定数K1を、第2バネ145-2のバネ定数K2および第3バネ145-3のバネ定数K3よりも大きくする。 In the present embodiment, an example in which the rotational natural frequency fθ is larger than the translational natural frequency fxy will be described. In this case, as shown in Equation 3 below, the spring constant K1 of the first spring 145-1 arranged closest to the center of gravity G of the movable part is set to the spring constant K2 of the second spring 145-2 and the third constant. The spring constant is set larger than the spring constant K3 of the spring 145-3.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上記のように構成した本実施形態のブレ補正装置100の制御性能を図8Aおよび図8Bに示す。また、バネ定数K1とバネ定数K2とバネ定数K3とを等しく構成した比較例の制御性能を図9Aおよび図9Bに示す。第1実施形態の比較例では、可動部の回転固有振動数fθが並進固有振動数fxyよりも大きいが、本実施形態に係るブレ補正装置100とは異なり、バネ定数K1とバネ定数K2とバネ定数K3とを等しく構成してある。なお、図8Aおよび図9Aに示すのは、ボード線図であり、入力に対する出力のゲイン・位相を示す。入力は可動部を駆動する電磁駆動力によって作用する加速度であり、出力は可動部重心位置である。 8A and 8B show the control performance of the shake correction apparatus 100 of the present embodiment configured as described above. 9A and 9B show the control performance of the comparative example in which the spring constant K1, the spring constant K2, and the spring constant K3 are configured to be equal. In the comparative example of the first embodiment, the rotational natural frequency fθ of the movable part is larger than the translational natural frequency fxy, but unlike the shake correction apparatus 100 according to the present embodiment, the spring constant K1, the spring constant K2, and the spring The constant K3 is configured to be equal. 8A and 9A are Bode diagrams showing the gain / phase of the output with respect to the input. The input is the acceleration acting by the electromagnetic driving force that drives the movable part, and the output is the position of the center of gravity of the movable part.
 図9Aに示すように、第1実施形態の比較例では、周波数H2(Hz)において共振が発生している。これに対して、本実施形態に係るブレ補正装置100では、図8Aに示すように、周波数H1(Hz)における共振成分が大幅に低減されている。なぜなら、本実施形態では、バネ定数K1をバネ定数K2およびバネ定数K3よりも大きく構成することにより、比較例と比較して、並進固有振動数fxyと回転固有振動数fθとが近づいている。バネ定数K1をバネ定数K2およびバネ定数K3よりも大きく構成することによる並進固有振動数fxyの増加に対して、回転固有振動数fθの増加が小さいからである。その結果、本実施形態のブレ補正装置100では、図8Bに示すように、可動部130が目標位置に速やかに収束しており、その制御性能が、図9Bに示す第1実施形態の比較例に比較して、向上されている。 As shown in FIG. 9A, in the comparative example of the first embodiment, resonance occurs at a frequency H2 (Hz). On the other hand, in the shake correction apparatus 100 according to the present embodiment, as shown in FIG. 8A, the resonance component at the frequency H1 (Hz) is greatly reduced. This is because, in the present embodiment, the translational natural frequency fxy and the rotational natural frequency fθ are close to each other by configuring the spring constant K1 to be larger than the spring constant K2 and the spring constant K3. This is because the increase of the rotational natural frequency fθ is small with respect to the increase of the translational natural frequency fxy by configuring the spring constant K1 to be larger than the spring constant K2 and the spring constant K3. As a result, in the shake correction apparatus 100 of the present embodiment, as shown in FIG. 8B, the movable unit 130 quickly converges to the target position, and the control performance thereof is a comparative example of the first embodiment shown in FIG. 9B. Compared to.
 なお、より好適には、第1バネ145-1~第3バネ145-3は、以下の数式4および数式5を満たすように構成される。この場合には、可動部130を並進動作させる際に可動部130の重心まわりにモーメントが発生しない。 More preferably, the first spring 145-1 to the third spring 145-3 are configured to satisfy the following Expression 4 and Expression 5. In this case, no moment is generated around the center of gravity of the movable part 130 when the movable part 130 is translated.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 上記のように、本実施形態のブレ補正装置では、可動部と固定部の間に取り付けられる弾性部材の取り付け位置およびそれらの弾性力を調整するのみで、可動部を移動させる際に悪影響となる回転成分の影響を抑制することができる。その結果、本実施形態のブレ補正装置では、可動部の目標位置への収束性や制御安定性等が向上されている。 As described above, in the shake correction device according to the present embodiment, only the attachment position of the elastic member attached between the movable part and the fixed part and the elastic force thereof are adjusted, which adversely affects the movement of the movable part. The influence of the rotation component can be suppressed. As a result, in the shake correction apparatus of this embodiment, the convergence of the movable part to the target position, the control stability, and the like are improved.
 また、本実施形態では、図5に示すように、ブレ検出部12が検出するブレ角速度信号ωp、ωyと、第1ホール素子122,第2ホール素子124が検出する可動部位置座標x、yとを利用して可動部130の制御を行っているので、可動部130を正確な目標位置に収束させることができる。 In the present embodiment, as shown in FIG. 5, the shake angular velocity signals ωp and ωy detected by the shake detection unit 12, and the movable part position coordinates x and y detected by the first Hall element 122 and the second Hall element 124. Since the movable part 130 is controlled using the above, the movable part 130 can be converged to an accurate target position.
 本実施形態では、第1ホール素子122,第2ホール素子124の検出軸X,Yに沿った目標位置座標を、可動部130の駆動軸X’,Y’に沿った目標移動量に変換して、可動部130を移動させているので、ブレ補正装置の制御を好適に行うことができる。 In the present embodiment, the target position coordinates along the detection axes X and Y of the first Hall element 122 and the second Hall element 124 are converted into target movement amounts along the drive axes X ′ and Y ′ of the movable unit 130. Since the movable part 130 is moved, it is possible to suitably control the shake correction device.
 第2実施形態
 第2実施形態では、以下に示す以外は、上述した第1実施形態と同様であり、重複する部分の説明は省略する。この実施形態では、可動部130の並進固有振動数fxyよりも回転固有振動数fθが小さい場合の例を説明する。第2実施形態に係るブレ補正装置100は、並進固有振動数fxyよりも回転固有振動数fθが小さいこと以外は、第1実施形態に係るブレ補正装置100と同様であるので、重複する説明は省略する。
Second Embodiment The second embodiment is the same as the first embodiment described above except for the following, and the description of the overlapping parts is omitted. In this embodiment, an example in which the rotational natural frequency fθ is smaller than the translational natural frequency fxy of the movable part 130 will be described. The shake correction apparatus 100 according to the second embodiment is the same as the shake correction apparatus 100 according to the first embodiment except that the rotational natural frequency fθ is smaller than the translational natural frequency fxy, so that overlapping description is provided. Omitted.
 本実施形態では、並進固有振動数fxyよりも回転固有振動数fθが小さいので、以下の数式6に示すように、可動部重心Gの最も近くに配置される第1バネ145-1のバネ定数K1を、第2バネ145-2のバネ定数K2および第3バネ145-3のバネ定数K3よりも小さくする。 In the present embodiment, since the rotational natural frequency fθ is smaller than the translational natural frequency fxy, the spring constant of the first spring 145-1 disposed closest to the movable portion center of gravity G as shown in Equation 6 below. K1 is set smaller than the spring constant K2 of the second spring 145-2 and the spring constant K3 of the third spring 145-3.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 上記のように構成した本実施形態のブレ補正装置100の制御性能を図10Aおよび図10Bに示す。また、バネ定数K1とバネ定数K2とバネ定数K3とを等しく構成した比較例の制御性能を図11Aおよび図11Bに示す。第2実施形態の比較例では、可動部130の回転固有振動数fθが並進固有振動数fxyよりも小さいが、本実施形態に係るブレ補正装置100とは異なり、バネ定数K1とバネ定数K2とバネ定数K3とを等しく構成してある。なお、図10Aおよび図11Aに示すのは、ボード線図であり、入力に対する出力のゲイン・位相を示す。入力は可動部を駆動する電磁駆動力によって作用する加速度であり、出力は可動部重心位置である。 10A and 10B show the control performance of the shake correction apparatus 100 of the present embodiment configured as described above. Moreover, the control performance of the comparative example which comprised the spring constant K1, the spring constant K2, and the spring constant K3 equally is shown to FIG. 11A and FIG. 11B. In the comparative example of the second embodiment, the rotational natural frequency fθ of the movable part 130 is smaller than the translational natural frequency fxy, but unlike the shake correction apparatus 100 according to the present embodiment, the spring constant K1 and the spring constant K2 The spring constant K3 is configured to be equal. FIG. 10A and FIG. 11A are Bode diagrams showing the gain and phase of the output with respect to the input. The input is the acceleration acting by the electromagnetic driving force that drives the movable part, and the output is the position of the center of gravity of the movable part.
 図11Aに示すように、第2実施形態の比較例では、周波数H4(Hz)において共振が発生している。これに対して、本実施形態に係るブレ補正装置100では、図10Aに示すように、周波数H3(Hz)における共振成分が大幅に低減されている。なぜなら、本実施形態では、バネ定数K1をバネ定数K2およびバネ定数K3よりも小さく構成してあるので、比較例と比較して、並進固有振動数fxyと回転固有振動数fθとが近づいている。バネ定数K1をバネ定数K2およびバネ定数K3よりも小さく構成することによる回転固有振動数fθの低下に対して、並進固有振動数fxyの低下が大きいからである。その結果、本実施形態のブレ補正装置100では、図10Bに示すように、可動部130が目標位置に速やかに収束しており、その制御性能が、図11Bに示す第2実施形態の比較例に比較して、向上されている。 As shown in FIG. 11A, in the comparative example of the second embodiment, resonance occurs at a frequency H4 (Hz). On the other hand, in the shake correction apparatus 100 according to the present embodiment, as shown in FIG. 10A, the resonance component at the frequency H3 (Hz) is greatly reduced. This is because, in this embodiment, the spring constant K1 is configured to be smaller than the spring constant K2 and the spring constant K3, so that the translational natural frequency fxy and the rotational natural frequency fθ are closer than those in the comparative example. . This is because the reduction of the translational natural frequency fxy is larger than the reduction of the rotational natural frequency fθ by configuring the spring constant K1 smaller than the spring constant K2 and the spring constant K3. As a result, in the shake correction apparatus 100 of the present embodiment, as shown in FIG. 10B, the movable part 130 quickly converges to the target position, and the control performance thereof is a comparative example of the second embodiment shown in FIG. 11B. Compared to.
 第3実施形態
 第3実施形態では、以下に示す以外は、上述した第1実施形態または第2実施形態と同様であり、重複する部分の説明は省略する。
Third Embodiment The third embodiment is the same as the first embodiment or the second embodiment described above except for the following, and the description of the overlapping parts is omitted.
 本実施形態のブレ補正装置100を、より具体的に説明する。図12において、X軸は図4に示す第1ホール素子122の検出軸であり、Y軸は第2ホール素子124の検出軸である。第1ホール素子122は、図4に示す可動部130に備えられる第1磁石132のX軸方向の位置を検出し、第2ホール素子124は、第2磁石134のY軸方向の位置を検出する。すなわち、第1ホール素子122および第2ホール素子124を備える検出部120は、可動部130のX軸およびY軸に沿った位置座標を検出する。なお、本実施形態では、X軸とY軸とは光軸Lを通り相互に垂直であるが、光軸Lを通らないで垂直以外の角度で交差しても良い。 The blur correction apparatus 100 of the present embodiment will be described more specifically. In FIG. 12, the X axis is the detection axis of the first Hall element 122 shown in FIG. 4, and the Y axis is the detection axis of the second Hall element 124. The first Hall element 122 detects the position of the first magnet 132 provided in the movable portion 130 shown in FIG. 4 in the X-axis direction, and the second Hall element 124 detects the position of the second magnet 134 in the Y-axis direction. To do. That is, the detection unit 120 including the first Hall element 122 and the second Hall element 124 detects the position coordinates of the movable unit 130 along the X axis and the Y axis. In the present embodiment, the X axis and the Y axis are perpendicular to each other through the optical axis L, but may intersect at an angle other than vertical without passing through the optical axis L.
 また、図12において、X’軸は図4に示す第1駆動コイル142と第1磁石132とからなる第1VCM152の駆動軸であり、Y’軸は第2駆動コイル144と第2磁石134とからなる第2VCM154の駆動軸である。可動部130は、第1VCM152によるX’軸に沿った電磁駆動力および第2VCM154によるY’軸に沿った電磁駆動力により、光軸Lに交差する平面上で目標位置に向けて移動される。本実施形態では、X’軸とY’軸とは、垂直以外の角度で交差しており、X’軸とY’軸とが交差する駆動原点Mは、レンズ中心Oよりも可動部重心Gに近い位置に存在している。可動部130が、その駆動中心である駆動原点Mに位置するとき、レンズ中心Oが光軸Lを通る。 12, the X ′ axis is a drive axis of the first VCM 152 including the first drive coil 142 and the first magnet 132 shown in FIG. 4, and the Y ′ axis is the second drive coil 144 and the second magnet 134. It is a drive shaft of the 2nd VCM154 consisting of. The movable unit 130 is moved toward the target position on the plane intersecting the optical axis L by the electromagnetic driving force along the X ′ axis by the first VCM 152 and the electromagnetic driving force along the Y ′ axis by the second VCM 154. In the present embodiment, the X ′ axis and the Y ′ axis intersect with each other at an angle other than vertical, and the driving origin M at which the X ′ axis and the Y ′ axis intersect with each other is the movable part gravity center G rather than the lens center O. It exists in the position near. When the movable unit 130 is located at the driving origin M, which is the driving center thereof, the lens center O passes through the optical axis L.
 以下の説明では、光軸Lに垂直なX-Y平面上にある相互に垂直な軸をA1軸およびA3軸とする。A1軸とA3軸とは、光軸Lに垂直な平面において光軸Lを通り、相互に垂直である。A1軸およびA3軸は、X軸とY軸とが光軸Lにおいて交差する角度を二等分する。また、A2軸は、駆動原点Mを通りA1軸に平行である。A2軸とA3軸とは相互に垂直であり、A2軸とA3軸との交点はレンズ中心Oよりも可動部重心Gに近い位置に存在している。 In the following description, the mutually perpendicular axes on the XY plane perpendicular to the optical axis L are referred to as A1 axis and A3 axis. The A1 axis and the A3 axis pass through the optical axis L in a plane perpendicular to the optical axis L and are perpendicular to each other. The A1 axis and the A3 axis bisect the angle at which the X axis and the Y axis intersect in the optical axis L. The A2 axis passes through the driving origin M and is parallel to the A1 axis. The A2 axis and the A3 axis are perpendicular to each other, and the intersection of the A2 axis and the A3 axis is located closer to the movable part gravity center G than the lens center O.
 固定部140は、A2軸に沿って両側に、第1ストッパ部141Aおよび第2ストッパ部141Bを有する。第1ストッパ部141Aは、可動部130の第1当接部131Aに当接可能であり、本実施形態では、固定部140の内側で第1当接部131Aに向いて突出する突出部に設けられている。第2ストッパ部141Bは、可動部130の第2当接部131Bに当接可能であり、固定部140の内側で第2当接部131Bに向いて突出する突出部に設けられている。第1ストッパ部141Aおよび第2ストッパ部141Bは、可動部130のA2軸方向の可動範囲を規定している。 The fixing part 140 has a first stopper part 141A and a second stopper part 141B on both sides along the A2 axis. 141 A of 1st stopper parts can contact | abut to the 1st contact part 131A of the movable part 130, and are provided in the protrusion part which protrudes toward the 1st contact part 131A inside the fixing | fixed part 140 in this embodiment. It has been. The second stopper portion 141B can be in contact with the second contact portion 131B of the movable portion 130, and is provided on a protruding portion that protrudes toward the second contact portion 131B inside the fixed portion 140. The first stopper portion 141A and the second stopper portion 141B define a movable range of the movable portion 130 in the A2 axis direction.
 なお、本実施形態では、図2および図4に示すように、固定部140の約下半分の領域では、シャッター部110等の構成が占領している。このため、好適には、第1ストッパ部141Aおよび第2ストッパ部141Bは、固定部140の約上半分の領域に配置される。したがって、第1ストッパ部141Aおよび第2ストッパ部141Bが配置されるA2軸は、A1軸に平行でなくても良いが、固定部140の内側においてA1軸に交差しないように配置されることが好ましい。このように、A2軸を配置することにより、固定部140の約上半分の領域に、第1ストッパ部141Aおよび第2ストッパ部141Bを配置することができる。 In the present embodiment, as shown in FIGS. 2 and 4, the configuration of the shutter unit 110 and the like is occupied in the lower half region of the fixed unit 140. For this reason, preferably, the first stopper portion 141A and the second stopper portion 141B are disposed in an approximately upper half region of the fixed portion 140. Therefore, the A2 axis on which the first stopper portion 141A and the second stopper portion 141B are arranged may not be parallel to the A1 axis, but may be arranged on the inner side of the fixed portion 140 so as not to intersect the A1 axis. preferable. Thus, by arranging the A2 axis, the first stopper portion 141A and the second stopper portion 141B can be disposed in the upper half region of the fixed portion 140.
 固定部140は、A3軸に沿ってA1軸よりも上側に、光軸Lに沿って可動部130に向いて突出する係止要素143を有する。係止要素143は、可動部130の貫通孔133内に挿入してあり、可動部130の第3当接部133Aに当接可能な第3ストッパ部143Aと、第4当接部133Bに当接可能な第4ストッパ部143Bとを有する。係止要素143の第3ストッパ部143Aおよび第4ストッパ部143Bは、可動部130のA3軸方向の可動範囲を規定している。 The fixing portion 140 has a locking element 143 that protrudes along the optical axis L toward the movable portion 130 above the A1 axis along the A3 axis. The locking element 143 is inserted into the through-hole 133 of the movable part 130 and contacts the third stopper part 143A that can contact the third contact part 133A of the movable part 130 and the fourth contact part 133B. And a fourth stopper portion 143B that can be contacted. The third stopper portion 143A and the fourth stopper portion 143B of the locking element 143 define the movable range of the movable portion 130 in the A3 axial direction.
 本実施形態では、可動部130は、A1軸に対して非対称な形状である。なぜなら、図2および図4に示すように、ブレ補正装置100の小型化等の観点から、シャッター部110がブレ補正装置100に組み込まれており、固定部140の下側の約半分の領域がシャッター部110によって占領されている。このため、図12に示すように、可動部130は、A3軸に沿った長さよりも、A1軸およびA2軸に沿った長さの方が長くなるように構成してあり、固定部140の約上半分の領域に配置される。本実施形態では、可動部130の可動部重心Gは、レンズ中心Oではなく、A2軸に沿ったレンズ中心Oの上側に存在する。なお、可動部130の形状は、A1軸に沿って対称な形状であっても良く、A2軸に沿って非対称な形状であっても良い。 In the present embodiment, the movable portion 130 has an asymmetric shape with respect to the A1 axis. 2 and 4, the shutter unit 110 is incorporated in the blur correction device 100 from the viewpoint of downsizing the blur correction device 100 and the like. Occupied by the shutter unit 110. For this reason, as shown in FIG. 12, the movable part 130 is configured such that the length along the A1 axis and the A2 axis is longer than the length along the A3 axis. It is arranged in the upper half area. In the present embodiment, the movable portion gravity center G of the movable portion 130 is not on the lens center O but on the upper side of the lens center O along the A2 axis. In addition, the shape of the movable part 130 may be a symmetric shape along the A1 axis, or may be an asymmetric shape along the A2 axis.
 可動部130の外周面には、第1当接部131Aおよび第2当接部131Bが設けてある。第1当接部131Aおよび第2当接部131Bは、可動部重心Gを挟むように設けてある。第1当接部131Aおよび第2当接部131Bは、可動部130が駆動原点Mに位置するときに、A2軸に沿った可動部130の両側に位置するように設けられている。 The first contact portion 131A and the second contact portion 131B are provided on the outer peripheral surface of the movable portion 130. 131 A of 1st contact parts and 131 A of 2nd contact parts are provided so that the movable part gravity center G may be pinched | interposed. The first contact portion 131A and the second contact portion 131B are provided so as to be positioned on both sides of the movable portion 130 along the A2 axis when the movable portion 130 is positioned at the driving origin M.
 第1当接部131Aは、可動部130がA2軸に沿って固定部140の第1ストッパ部141A側(図示左側)に移動したときに、第1ストッパ部141Aに当接可能であり、第2当接部131Bは、可動部130がA2軸に沿って固定部140の第2ストッパ部141B側(図示右側)に移動したときに、第2ストッパ部141Bに当接可能である。 The first contact portion 131A can contact the first stopper portion 141A when the movable portion 130 moves along the A2 axis to the first stopper portion 141A side (the left side in the drawing) of the fixed portion 140. The two abutting portions 131B can abut on the second stopper portion 141B when the movable portion 130 moves to the second stopper portion 141B side (right side in the drawing) of the fixed portion 140 along the A2 axis.
 また、可動部130には、その外周よりも内側に貫通孔133が形成してある。貫通孔133には、A3軸に沿ってレンズ中心Oに向いて突出するバネ取付部136が設けられており、バネ取付部136は、図4に示すように、引張コイルばね145を保持する。 Moreover, the through-hole 133 is formed in the movable part 130 inside the outer periphery. The through-hole 133 is provided with a spring mounting portion 136 that protrudes toward the lens center O along the A3 axis, and the spring mounting portion 136 holds the tension coil spring 145 as shown in FIG.
 図12に示すように、バネ取付部136のレンズ中心O側は、第3当接部133Aを構成する。また、貫通孔133の第3当接部133Aに対向する位置には第4当接部133Bが設けられている。第3当接部133Aおよび第4当接部133Bは、可動部130が駆動原点Mに位置するときに、A3軸に沿って貫通孔133の両側に設けてある。 As shown in FIG. 12, the lens center O side of the spring mounting portion 136 constitutes a third contact portion 133A. In addition, a fourth contact portion 133B is provided at a position of the through hole 133 facing the third contact portion 133A. The third contact portion 133A and the fourth contact portion 133B are provided on both sides of the through hole 133 along the A3 axis when the movable portion 130 is located at the drive origin M.
 第3当接部133Aは、可動部130がA3軸に沿って下方向に移動したときに、第3ストッパ部143Aに当接可能であり、第4当接部133Bは、可動部130がA3軸に沿って上方向に移動したときに、第4ストッパ部143Bに当接可能である。 The third abutting portion 133A can abut on the third stopper portion 143A when the movable portion 130 moves downward along the A3 axis, and the fourth abutting portion 133B is configured such that the movable portion 130 is A3. When it moves upward along the axis, it can come into contact with the fourth stopper portion 143B.
 次に、図13に示すフローチャートを用いて、本実施形態のブレ補正装置100が備える位置検出部120(図4)の校正動作(感度調整)の一例を説明する。位置検出部120の感度調整は、たとえば、図1に示すカメラ1の電源投入後に行われる。本実施形態では、図12に示すように、可動部130にA2軸に沿った駆動力を作用させることにより、可動部130をA2軸に沿って移動させて、位置検出部120の感度調整を行う。 Next, an example of the calibration operation (sensitivity adjustment) of the position detection unit 120 (FIG. 4) provided in the shake correction apparatus 100 of the present embodiment will be described using the flowchart shown in FIG. The sensitivity adjustment of the position detection unit 120 is performed, for example, after the camera 1 shown in FIG. In the present embodiment, as shown in FIG. 12, by applying a driving force along the A2 axis to the movable unit 130, the movable unit 130 is moved along the A2 axis, and sensitivity adjustment of the position detection unit 120 is performed. Do.
 本実施形態では、第1VCM152の駆動軸であるX’軸および第2VCM154の駆動軸であるY’軸は、A2軸に対して角度θで傾いており、A2軸上で交差している。そこで、たとえば、図14に示すように、可動部130をA2軸に沿って第1ストッパ部141A側に移動させる際には、第1VCM152の駆動力Fx’および第2VCM154の駆動力Fy’を合成した合成駆動力FA2を可動部130に作用させる。なぜなら、第1VCM152による駆動力Fx’は、A2軸に沿った駆動力成分とA3軸に沿った駆動力成分とを含む。そこで、駆動力Fx’のA3軸に沿った駆動力成分をキャンセルするように、第2VCM154を駆動する。つまり、第2VCM154による駆動力Fy’のA3軸に沿った駆動力成分により、第1VCM152のA3軸に沿った駆動力をキャンセルする。このように、第1VCM152および第2VCM154を駆動することにより、可動部130にA2軸に沿った駆動力FA2を作用させて、可動部130をA2軸に沿って移動させることができる。 In this embodiment, the X ′ axis that is the drive axis of the first VCM 152 and the Y ′ axis that is the drive axis of the second VCM 154 are inclined at an angle θ with respect to the A2 axis and intersect on the A2 axis. Therefore, for example, as shown in FIG. 14, when the movable part 130 is moved to the first stopper part 141A side along the A2 axis, the driving force Fx ′ of the first VCM 152 and the driving force Fy ′ of the second VCM 154 are combined. The combined driving force FA2 is applied to the movable part 130. This is because the driving force Fx ′ by the first VCM 152 includes a driving force component along the A2 axis and a driving force component along the A3 axis. Therefore, the second VCM 154 is driven so as to cancel the driving force component along the A3 axis of the driving force Fx ′. That is, the driving force along the A3 axis of the first VCM 152 is canceled by the driving force component along the A3 axis of the driving force Fy ′ by the second VCM 154. Thus, by driving the first VCM 152 and the second VCM 154, the driving force FA2 along the A2 axis can be applied to the movable portion 130, and the movable portion 130 can be moved along the A2 axis.
 図13に示すステップS02にて、図14に示すように、可動部130をA2軸に沿って第1ストッパ部141A側に移動させて、可動部130の第1当接部131Aを第1ストッパ部141Aに当接させる。ステップS04にて、図1に示すメモリ22は、可動部130を第1ストッパ部141Aに当接させたときに、第1ホール素子122が検出した位置座標信号D1および第2ホール素子124が検出した位置座標信号D2を記憶する。 In step S02 shown in FIG. 13, as shown in FIG. 14, the movable part 130 is moved to the first stopper part 141A side along the A2 axis, and the first contact part 131A of the movable part 130 is moved to the first stopper. It abuts on the part 141A. In step S04, the memory 22 shown in FIG. 1 detects the position coordinate signal D1 detected by the first Hall element 122 and the second Hall element 124 when the movable part 130 is brought into contact with the first stopper part 141A. The obtained position coordinate signal D2 is stored.
 次に、図13に示すステップS06にて、可動部130をA2軸に沿って第2ストッパ部141B側に移動させて、可動部130の第2当接部131Bを第2ストッパ部141Bに当接させる(図14参照)。ステップS08にて、図1に示すメモリ22は、可動部130を第2ストッパ部141Bに当接させたときに、第1ホール素子122が検出した位置座標信号D3および第2ホール素子124が検出した位置座標信号D4を記憶する。 Next, in step S06 shown in FIG. 13, the movable part 130 is moved to the second stopper part 141B side along the A2 axis, and the second contact part 131B of the movable part 130 is brought into contact with the second stopper part 141B. (See FIG. 14). In step S08, the memory 22 shown in FIG. 1 detects the position coordinate signal D3 detected by the first Hall element 122 and the second Hall element 124 when the movable part 130 is brought into contact with the second stopper part 141B. The obtained position coordinate signal D4 is stored.
 ステップS10にて、検出部120の校正(感度調整)を行う。すなわち、図1に示すCPU14は、メモリ22に記憶してある第1ホール素子122の位置座標信号D1およびD3を用いて、第1ホール素子122の感度を調整する。また、CPU14は、第2ホール素子124の位置座標信号D2およびD4を用いて、第2ホール素子124の感度を調整する。このように、検出部120の感度調整を行うことにより、可動部130の位置検出を精度良く行うことができる。 In step S10, the detection unit 120 is calibrated (sensitivity adjustment). That is, the CPU 14 shown in FIG. 1 adjusts the sensitivity of the first Hall element 122 using the position coordinate signals D1 and D3 of the first Hall element 122 stored in the memory 22. Further, the CPU 14 adjusts the sensitivity of the second Hall element 124 by using the position coordinate signals D2 and D4 of the second Hall element 124. As described above, by adjusting the sensitivity of the detection unit 120, the position of the movable unit 130 can be accurately detected.
 なお、図15に示すように、本実施形態では、第1ホール素子122の検出軸であるX軸および第2ホール素子124の検出軸であるY軸が、A2軸に対してθ度傾いている。このため、可動部130がA2軸に沿ってS1からS2まで距離Aを移動したときに、X軸上での距離はP1からP2までの距離A/cosθであり、Y軸上での距離はP3からP4までの距離A/cosθである。したがって、本実施形態では、X軸上またはY軸上での移動距離A/cosθを用いてセンサ感度の調整を行う。 As shown in FIG. 15, in this embodiment, the X axis that is the detection axis of the first Hall element 122 and the Y axis that is the detection axis of the second Hall element 124 are inclined by θ degrees with respect to the A2 axis. Yes. For this reason, when the movable unit 130 moves the distance A from S1 to S2 along the A2 axis, the distance on the X axis is the distance A / cos θ from P1 to P2, and the distance on the Y axis is A distance A / cos θ from P3 to P4. Therefore, in this embodiment, the sensor sensitivity is adjusted using the movement distance A / cos θ on the X axis or the Y axis.
 本実施形態では、A2軸に沿った駆動力を作用させることにより可動部130をA2軸に沿って移動させて、可動部130を固定部140に当接させている。しかも、固定部140に当接させる可動部130の第1当接部131Aおよび第2当接部131Bは、A2軸に沿って可動部130の両側に設けられている。このため、本実施形態では、第1当接部131Aおよび第2当接部131Bを固定部140に確実に当接させることができる。すなわち、本実施形態では、可動部130を固定部140に当接させる際に、可動部130が回転等することがないので、可動部130を固定部140に当接させたときの可動部130の位置座標を正確に取得することができる。したがって、本実施形態では、検出部120の感度調整を好適に行うことができる。 In the present embodiment, the movable portion 130 is moved along the A2 axis by applying a driving force along the A2 axis, and the movable portion 130 is brought into contact with the fixed portion 140. Moreover, the first contact portion 131A and the second contact portion 131B of the movable portion 130 that are in contact with the fixed portion 140 are provided on both sides of the movable portion 130 along the A2 axis. For this reason, in this embodiment, 131 A of 1st contact parts and the 2nd contact part 131B can be made to contact | abut to the fixing | fixed part 140 reliably. That is, in this embodiment, when the movable part 130 is brought into contact with the fixed part 140, the movable part 130 does not rotate or the like. Therefore, the movable part 130 when the movable part 130 is brought into contact with the fixed part 140. The position coordinates of can be obtained accurately. Therefore, in this embodiment, the sensitivity adjustment of the detection unit 120 can be suitably performed.
 なお、従来では、たとえば、図18に示すように、B1軸およびB2軸に沿って可動部330を移動させて、B1軸およびB2軸に沿った位置座標を検出する位置検出センサの感度調整を行っていた。このとき、図18に示すように、従来技術においては、B1軸およびB2軸に沿って可動部330の両側に当接部が形成されていなかった。このため、従来では、たとえば、図19に示すように、可動部330を下側に移動させて固定部340に当接させたときに、可動部330が回転してしまう問題があった。可動部330に作用する駆動力FB2と当接部での反力とによりモーメントが発生してしまうためである。その結果、従来では、可動部330を固定部340に当接させたときの可動部330の位置座標を正確に取得することができず、位置検出センサの感度調整に誤差が生じていた。 Conventionally, for example, as shown in FIG. 18, the sensitivity adjustment of the position detection sensor that detects the position coordinates along the B1 axis and the B2 axis by moving the movable unit 330 along the B1 axis and the B2 axis is performed. I was going. At this time, as shown in FIG. 18, in the prior art, the contact portions are not formed on both sides of the movable portion 330 along the B1 axis and the B2 axis. For this reason, conventionally, for example, as shown in FIG. 19, when the movable part 330 is moved downward and brought into contact with the fixed part 340, there is a problem that the movable part 330 rotates. This is because a moment is generated by the driving force FB2 acting on the movable portion 330 and the reaction force at the contact portion. As a result, conventionally, the position coordinates of the movable part 330 when the movable part 330 is brought into contact with the fixed part 340 cannot be obtained accurately, and an error occurs in sensitivity adjustment of the position detection sensor.
 また、本実施形態では、A2軸がX軸およびY軸に交差している。このため、本実施形態では、A2軸に沿って可動部130を移動させるのみで、第1ホール素子122および第2ホール素子124の感度調整を行うことができる。 In this embodiment, the A2 axis intersects the X axis and the Y axis. For this reason, in this embodiment, the sensitivity adjustment of the first Hall element 122 and the second Hall element 124 can be performed only by moving the movable portion 130 along the A2 axis.
 本実施形態では、図12に示すように、可動部130の駆動原点Mを、可動部130の可動部重心Gに近づけてある。このため、本実施形態では、可動部130を移動させる際に悪影響となる回転成分の影響を抑制することができる。より好適には、駆動原点Mは可動部重心Gに一致し、このときは回転成分の影響を完全に除去することができる。このため、本実施形態では、可動部130を固定部140との当接位置まで好適に移動させることが可能であり、より好適な感度調整を提供することができる。さらに、本実施形態では、可動部130の目標位置への収束性や可動部130の制御安定性等が向上されており、ブレ補正装置100の制御性能が向上されている。 In this embodiment, as shown in FIG. 12, the driving origin M of the movable part 130 is brought close to the movable part gravity center G of the movable part 130. For this reason, in the present embodiment, it is possible to suppress the influence of the rotation component that has an adverse effect when the movable unit 130 is moved. More preferably, the driving origin M coincides with the movable portion gravity center G, and at this time, the influence of the rotation component can be completely removed. For this reason, in this embodiment, the movable part 130 can be suitably moved to the contact position with the fixed part 140, and more suitable sensitivity adjustment can be provided. Furthermore, in this embodiment, the convergence of the movable part 130 to the target position, the control stability of the movable part 130, and the like are improved, and the control performance of the shake correction apparatus 100 is improved.
 本実施形態では、図5に示すように、ブレ検出部12が検出するブレ角速度信号ωp、ωyと、第1ホール素子122,第2ホール素子124が検出する可動部位置座標x、yとを利用して可動部130の制御を行っているので、可動部130を正確な目標位置に収束させることができる。 In the present embodiment, as shown in FIG. 5, the shake angular velocity signals ωp and ωy detected by the shake detection unit 12 and the movable unit position coordinates x and y detected by the first Hall element 122 and the second Hall element 124 are obtained. Since the movable part 130 is controlled by using it, the movable part 130 can be converged to an accurate target position.
 本実施形態では、第1ホール素子122,第2ホール素子124の検出軸X,Yに沿った目標位置座標を、可動部130の駆動軸X’,Y’に沿った目標移動量に変換して、可動部130を移動させているので、ブレ補正装置の制御を好適に行うことができる。 In the present embodiment, the target position coordinates along the detection axes X and Y of the first Hall element 122 and the second Hall element 124 are converted into target movement amounts along the drive axes X ′ and Y ′ of the movable unit 130. Since the movable part 130 is moved, it is possible to suitably control the shake correction device.
 なお、上記においては、A2軸に沿って可動部130を移動させて検出部120の感度調整を行ったが、たとえば、図16に示すように、A3軸に沿って可動部130を移動させて検出部120の感度調整を行うことができる。 In the above description, the movable unit 130 is moved along the A2 axis to adjust the sensitivity of the detection unit 120. For example, as shown in FIG. 16, the movable unit 130 is moved along the A3 axis. Sensitivity adjustment of the detection unit 120 can be performed.
 この場合においては、可動部130にA3軸に沿った駆動力を作用させることにより可動部130をA3軸に沿って移動させて、可動部130を固定部140に当接させる。このとき、固定部140に当接させる可動部130の第3当接部133Aおよび第4当接部133BがA3軸に沿って可動部130の両側に設けてあるので、第3当接部133Aおよび第4当接部133Bを固定部140に好適に当接させることができる。すなわち、可動部130を固定部140に当接させる際に、可動部130が回転等することがないので、可動部130を固定部140に当接させたときの位置座標を正確に取得することができる。したがって、検出部120の感度調整を好適に行うことができる。なお、このA3軸に沿って可動部130を移動させて行う検出部120の感度調整は、A2軸に沿って可動部130を移動させて行う感度調整の代わりに行ってもよい。また、A2軸に沿って可動部130を移動させて行う感度調整とA3軸に沿って可動部130を移動させて行う感度調整との両方を行ってもよい。A2軸およびA3軸に沿って可動部130を移動させて感度調整を行うことにより、可動部130の駆動原点Mの補正を行うことが可能である。 In this case, the movable portion 130 is moved along the A3 axis by applying a driving force along the A3 axis to the movable portion 130, and the movable portion 130 is brought into contact with the fixed portion 140. At this time, since the third contact portion 133A and the fourth contact portion 133B of the movable portion 130 to be in contact with the fixed portion 140 are provided on both sides of the movable portion 130 along the A3 axis, the third contact portion 133A. And the 4th contact part 133B can be made to contact | abut to the fixing | fixed part 140 suitably. That is, when the movable part 130 is brought into contact with the fixed part 140, the movable part 130 does not rotate or the like, so that the position coordinates when the movable part 130 is brought into contact with the fixed part 140 are accurately obtained. Can do. Therefore, the sensitivity adjustment of the detection unit 120 can be suitably performed. The sensitivity adjustment of the detection unit 120 performed by moving the movable unit 130 along the A3 axis may be performed instead of the sensitivity adjustment performed by moving the movable unit 130 along the A2 axis. Further, both sensitivity adjustment performed by moving the movable unit 130 along the A2 axis and sensitivity adjustment performed by moving the movable unit 130 along the A3 axis may be performed. It is possible to correct the driving origin M of the movable unit 130 by moving the movable unit 130 along the A2 axis and the A3 axis to perform sensitivity adjustment.
 第4実施形態
 第4実施形態では、以下に示す以外は、上述した第1~第3実施形態と同様であり、重複する部分の説明は省略する。
Fourth Embodiment The fourth embodiment is the same as the first to third embodiments described above except for the following, and a description of the overlapping portions is omitted.
 図17は、第2実施形態に係るブレ補正装置200を示す。第4実施形態に係るブレ補正装置200は、可動部230および固定部240の一部の構成を除いては、第1~第3実施形態に係るブレ補正装置100と同様である。なお、本実施形態では、図12等に示す第3実施形態のA2軸に沿って設けられる固定部140の第1ストッパ部141Aおよび第2ストッパ部141B、可動部130の第1当接部131Aおよび第2当接部131Bが省略されている。 FIG. 17 shows a shake correction apparatus 200 according to the second embodiment. The shake correction apparatus 200 according to the fourth embodiment is the same as the shake correction apparatus 100 according to the first to third embodiments except for a part of the configuration of the movable portion 230 and the fixed portion 240. In this embodiment, the first stopper portion 141A and the second stopper portion 141B of the fixed portion 140 provided along the A2 axis of the third embodiment shown in FIG. 12 and the like, and the first contact portion 131A of the movable portion 130 are provided. The second contact portion 131B is omitted.
 図17に示すように、本実施形態では、固定部240は、A3軸に沿ってA1軸よりも上側に、光軸Lに沿って可動部230に向けて突出する係止要素243を有する。係止要素243は、可動部230の孔233内に挿入してあり、第1ストッパ部243Aと、第2ストッパ部243Bと、第3ストッパ部243Cと、第4ストッパ部243Dとを有する。第1ストッパ部243Aおよび第2ストッパ部243Bは、可動部230のA1軸方向の可動範囲を規定しており、第3ストッパ部243Cおよび第4ストッパ部243Dは、可動部130のA3軸方向の可動範囲を規定している。第3ストッパ部243Cおよび第4ストッパ部243Dは、係止要素243のA3軸に沿って両側に設けられている。 As shown in FIG. 17, in this embodiment, the fixing portion 240 has a locking element 243 that protrudes toward the movable portion 230 along the optical axis L on the upper side of the A1 axis along the A3 axis. The locking element 243 is inserted into the hole 233 of the movable portion 230, and includes a first stopper portion 243A, a second stopper portion 243B, a third stopper portion 243C, and a fourth stopper portion 243D. The first stopper portion 243A and the second stopper portion 243B define the movable range in the A1 axis direction of the movable portion 230, and the third stopper portion 243C and the fourth stopper portion 243D are in the A3 axis direction of the movable portion 130. It defines the movable range. The third stopper portion 243C and the fourth stopper portion 243D are provided on both sides along the A3 axis of the locking element 243.
 可動部230には、その外周よりも内側に孔233が形成してある。孔233の内周には、第1当接部233Aと、第2当接部233Bと、第3当接部233Cと第4当接部233Dとが設けられている。第1当接部233Aは第1ストッパ部243Aに当接可能であり、第2当接部233Bは第2ストッパ部243Bに当接可能であり、第3当接部233Cは第3ストッパ部243Cに当接可能であり、第4当接部233Dは第4ストッパ部243Dに当接可能である。なお、本実施形態では、第1当接部233A~第4当接部233Dと、第1ストッパ部243A~第4ストッパ部243Dとは、面接触可能に設けられている。また、第3当接部233Cおよび第4当接部233Dは、可動部230が駆動原点Mに位置するときに、A3軸に沿って貫通孔233の両側に設けてある。 The hole 233 is formed in the movable part 230 inside the outer periphery. A first contact part 233A, a second contact part 233B, a third contact part 233C, and a fourth contact part 233D are provided on the inner periphery of the hole 233. The first contact portion 233A can contact the first stopper portion 243A, the second contact portion 233B can contact the second stopper portion 243B, and the third contact portion 233C can be the third stopper portion 243C. The fourth contact portion 233D can contact the fourth stopper portion 243D. In the present embodiment, the first contact portion 233A to the fourth contact portion 233D and the first stopper portion 243A to the fourth stopper portion 243D are provided so as to be in surface contact. Further, the third contact portion 233C and the fourth contact portion 233D are provided on both sides of the through hole 233 along the A3 axis when the movable portion 230 is located at the driving origin M.
 本実施形態におけるブレ補正装置200の校正は、可動部230をA3軸に沿って移動させることにより行われる。すなわち、可動部230にA3軸に沿った駆動力を作用させることにより可動部230を移動させて、可動部230を固定部240に当接させる。このとき、固定部240に当接させる可動部230の第3当接部233Cおよび第4当接部233DがA3軸に沿って可動部230の両側に設けてあるので、第3当接部233Cおよび第4当接部233Dを固定部240に好適に当接させることができる。すなわち、可動部230を固定部240に当接させる際に、可動部230が回転等することがないので、可動部230を固定部240に当接させたときの位置座標を正確に取得することができる。したがって、検出部120の感度調整を好適に行うことができる。本実施形態のブレ補正装置200は、図12等に示す第3実施形態のブレ補正装置100と比較して、第1ストッパ部141Aおよび第2ストッパ部141B、第1当接部131Aおよび第2当接部131Bが省略されたシンプルな構成である。 The calibration of the shake correction apparatus 200 in the present embodiment is performed by moving the movable unit 230 along the A3 axis. That is, the movable part 230 is moved by applying a driving force along the A3 axis to the movable part 230, and the movable part 230 is brought into contact with the fixed part 240. At this time, since the third contact portion 233C and the fourth contact portion 233D of the movable portion 230 to be in contact with the fixed portion 240 are provided on both sides of the movable portion 230 along the A3 axis, the third contact portion 233C. In addition, the fourth contact portion 233D can be preferably brought into contact with the fixed portion 240. That is, when the movable part 230 is brought into contact with the fixed part 240, the movable part 230 is not rotated, and therefore the position coordinates when the movable part 230 is brought into contact with the fixed part 240 are accurately obtained. Can do. Therefore, the sensitivity adjustment of the detection unit 120 can be suitably performed. Compared with the shake correction apparatus 100 of the third embodiment shown in FIG. 12 and the like, the shake correction apparatus 200 of the present embodiment has a first stopper portion 141A, a second stopper portion 141B, a first contact portion 131A, and a second contact portion. This is a simple configuration in which the contact portion 131B is omitted.
 第5実施形態
 第5実施形態では、以下に示す以外は、上述した第1~第4実施形態と同様であり、重複する部分の説明は省略する。
Fifth Embodiment The fifth embodiment is the same as the first to fourth embodiments described above except for the following, and a description of the overlapping portions is omitted.
 図20A~図20Cを用いて、本実施形態のブレ補正装置100の位置検出部120と可動部130と固定部140との位置関係を詳細に説明する。図2および図4に示すように、位置検出部120は固定部140に取り付けられている。可動部130は、位置検出部120と固定部140との間に配置されており、光軸Lに交差する平面上において固定部130に対して相対移動可能である。 20A to 20C, the positional relationship among the position detection unit 120, the movable unit 130, and the fixed unit 140 of the shake correction apparatus 100 of the present embodiment will be described in detail. As shown in FIGS. 2 and 4, the position detection unit 120 is attached to the fixing unit 140. The movable unit 130 is disposed between the position detection unit 120 and the fixed unit 140, and is movable relative to the fixed unit 130 on a plane that intersects the optical axis L.
 以下の説明では、光軸Lに垂直なX-Y平面上にある相互に垂直な軸をA1軸およびA2軸とする。A1,A2軸は、光軸Lに垂直な平面において光軸Lを通り、相互に垂直である。A2軸は、X軸とY軸とが交差する角度を二等分する。A3軸およびA4軸は相互に垂直であり、A1軸とA2軸とが光軸Lにおいて交差する角度を二等分する。 In the following description, the mutually perpendicular axes on the XY plane perpendicular to the optical axis L are defined as A1 axis and A2 axis. The A1 and A2 axes pass through the optical axis L in a plane perpendicular to the optical axis L and are perpendicular to each other. The A2 axis bisects the angle at which the X axis and the Y axis intersect. The A3 axis and the A4 axis are perpendicular to each other, and bisect the angle at which the A1 axis and the A2 axis intersect at the optical axis L.
 図20Aに示すように、検出部120は、第1ホール素子122および第2ホール素子124を備え、可動部130のX軸およびY軸に沿った位置座標を検出する。すなわち、第1ホール素子122は、図20Bに示す可動部130に備えられる第1磁石132のX軸方向の位置を検出し、第2ホール素子124は、第2磁石134のY軸方向の位置を検出する。ここで、X軸とY軸との交点を検出軸原点Nとする。 As shown in FIG. 20A, the detection unit 120 includes a first Hall element 122 and a second Hall element 124, and detects the position coordinates of the movable unit 130 along the X axis and the Y axis. That is, the first Hall element 122 detects the position of the first magnet 132 provided in the movable portion 130 shown in FIG. 20B in the X-axis direction, and the second Hall element 124 is the position of the second magnet 134 in the Y-axis direction. Is detected. Here, the intersection of the X axis and the Y axis is set as a detection axis origin N.
 図20Bに示すように、可動部130は、A1軸に対して非対称な形状である。なぜなら、図2および図4に示すように、ブレ補正装置100の小型化等の観点から、シャッター部110がブレ補正装置100に組み込まれており、固定部140の下側の約半分の領域がシャッター部110によって占領されている。このため、可動部130は、A2軸に沿った長さよりも、A1軸に沿った長さの方が長くなるように構成してあり、固定部140の約上半分の領域に配置される。なお、可動部130の形状は、A1軸に沿って対称な形状であっても良く、A2軸に沿って非対称な形状であっても良い。 As shown in FIG. 20B, the movable part 130 has an asymmetric shape with respect to the A1 axis. 2 and 4, the shutter unit 110 is incorporated in the blur correction device 100 from the viewpoint of downsizing the blur correction device 100 and the like. Occupied by the shutter unit 110. For this reason, the movable portion 130 is configured such that the length along the A1 axis is longer than the length along the A2 axis, and is arranged in an approximately upper half region of the fixed portion 140. In addition, the shape of the movable part 130 may be a symmetric shape along the A1 axis, or may be an asymmetric shape along the A2 axis.
 可動部130は、ブレ補正レンズL3、第1磁石132および第2磁石134を備える。第1磁石132は、X軸およびX’軸を通るように配置してあり、好適には、その中心がX軸およびX’軸を通るように配置してある。第2磁石134は、Y軸およびY’軸を通るように配置してあり、好適には、その中心がY軸およびY’軸を通るように配置してある。さらに、第1磁石132および第2磁石134は、図20Aに示す第1ホール素子122の検出軸Xと第2ホール素子124の検出軸Yとの検出軸原点Nが、レンズ中心Oよりも可動部重心Gに近い位置に存在するように配置してある。なお、可動部130の可動部重心Gは、可動部130および可動部130に配置されるブレ補正レンズL3、第1磁石132および第2磁石134等によって決まり、本実施形態では、可動部重心Gは、レンズ中心Oではなく、A2軸に沿ったレンズ中心Oの上側に存在する。 The movable unit 130 includes a shake correction lens L3, a first magnet 132, and a second magnet 134. The first magnet 132 is disposed so as to pass through the X axis and the X ′ axis, and is preferably disposed such that the center thereof passes through the X axis and the X ′ axis. The second magnet 134 is disposed so as to pass through the Y axis and the Y ′ axis, and is preferably disposed so that the center thereof passes through the Y axis and the Y ′ axis. Further, in the first magnet 132 and the second magnet 134, the detection axis origin N of the detection axis X of the first Hall element 122 and the detection axis Y of the second Hall element 124 shown in FIG. It arrange | positions so that it may exist in the position near the partial gravity center G. Note that the movable portion center of gravity G of the movable portion 130 is determined by the movable portion 130 and the shake correction lens L3 disposed on the movable portion 130, the first magnet 132, the second magnet 134, and the like. Is not on the lens center O but above the lens center O along the A2 axis.
 可動部130は、光軸Lに交差する平面上で目標位置に向けて移動される。すなわち、可動部130の第1磁石132と図20Cに示す固定部140の第1駆動コイル142とは、第1VCM152を構成しており、可動部130にX’軸に沿った電磁駆動力Fx’を作用させることができる。また、可動部130の第2磁石134と固定部140の第2駆動コイル144とは、第2VCM154を構成しており、可動部130にY’軸に沿った電磁駆動力Fy’を作用させることができる。可動部130は、電磁駆動力Fx’、Fy’により、光軸Lに交差する平面上で目標位置に向けて移動される。ここで、X’軸 とY’軸との交点を駆動軸原点Mとし、可動部130が、その駆動中心である駆動軸原点Mに位置するときに、撮像素子3のレンズ中心Oが光軸Lを通る。 The movable part 130 is moved toward the target position on a plane intersecting the optical axis L. That is, the first magnet 132 of the movable part 130 and the first drive coil 142 of the fixed part 140 shown in FIG. 20C constitute a first VCM 152, and the electromagnetic drive force Fx ′ along the X ′ axis is applied to the movable part 130. Can act. The second magnet 134 of the movable part 130 and the second drive coil 144 of the fixed part 140 constitute a second VCM 154, and an electromagnetic driving force Fy ′ along the Y ′ axis is applied to the movable part 130. Can do. The movable part 130 is moved toward the target position on a plane intersecting the optical axis L by the electromagnetic driving forces Fx ′ and Fy ′. Here, when the intersection of the X ′ axis and the Y ′ axis is the drive axis origin M, and the movable portion 130 is located at the drive axis origin M, which is the drive center, the lens center O of the image sensor 3 is the optical axis. Pass through L.
 図20Cに示すように、固定部140は、第1駆動コイル142および第2駆動コイル144を備える。すなわち、第1駆動コイル142と図20Bに示す第1磁石132とからなる第1VCM152の駆動軸であるX’軸が、レンズ中心Oよりも可動部重心Gの近くを通るように、第1駆動コイル142を固定部140に配置する。本実施形態では、A3軸に対してVCM駆動軸X’を、駆動軸傾斜角度θ(deg)傾けるようにして、第1駆動コイル142を配置する。 As shown in FIG. 20C, the fixing unit 140 includes a first drive coil 142 and a second drive coil 144. That is, the first drive is performed so that the X ′ axis, which is the drive axis of the first VCM 152 composed of the first drive coil 142 and the first magnet 132 shown in FIG. 20B, passes closer to the movable part gravity center G than the lens center O. The coil 142 is disposed on the fixing unit 140. In the present embodiment, the first drive coil 142 is disposed such that the VCM drive axis X ′ is inclined with respect to the A3 axis by the drive axis tilt angle θ (deg).
 また、第2駆動コイル144と第2磁石134とからなる第2VCM154の駆動軸であるY’軸が、レンズ中心Oよりも可動部重心Gの近くを通るように、第2駆動コイル144を固定部140に配置する。すなわち、A4軸に対してVCM駆動軸Y’を、駆動軸傾斜角度θ(deg)傾けるようにして、第2駆動コイル144を配置する。なお、A3軸に対するX’軸の傾き角度とA4軸に対するY’軸の傾き角度とが異なっても良い。また、コイル142,144の固定部140に対する配置位置を変化させて、X’軸およびY’軸がレンズ中心Oよりも可動部重心Gの近くを通るように調整しても良い。 In addition, the second drive coil 144 is fixed so that the Y ′ axis, which is the drive axis of the second VCM 154 composed of the second drive coil 144 and the second magnet 134, passes closer to the movable portion center of gravity G than the lens center O. It arranges in part 140. That is, the second drive coil 144 is arranged such that the VCM drive axis Y ′ is inclined with respect to the A4 axis by the drive axis tilt angle θ (deg). Note that the inclination angle of the X ′ axis with respect to the A3 axis and the inclination angle of the Y ′ axis with respect to the A4 axis may be different. Further, the arrangement positions of the coils 142 and 144 with respect to the fixed portion 140 may be changed so that the X ′ axis and the Y ′ axis pass closer to the movable portion gravity center G than the lens center O.
 本実施形態では、第1駆動コイル142および第2駆動コイル144を上記のように配置してあるので、駆動軸X’と駆動軸Y’との交点である駆動軸原点Mが、レンズ中心Oよりも可動部重心Gに近い位置に存在する。好適には、駆動軸原点Mは可動部重心Gに一致する。このとき、駆動軸X’と駆動軸Y’とは直角以外の角度θ0で交差し、本実施形態ではθ0は鈍角(例えば、91度~120度)である。 In this embodiment, since the first drive coil 142 and the second drive coil 144 are arranged as described above, the drive axis origin M that is the intersection of the drive axis X ′ and the drive axis Y ′ is the lens center O. Exists closer to the center of gravity G of the movable part. Preferably, the drive shaft origin M coincides with the movable part center of gravity G. At this time, the drive axis X 'and the drive axis Y' intersect at an angle θ0 other than a right angle, and in the present embodiment, θ0 is an obtuse angle (for example, 91 degrees to 120 degrees).
 本実施形態では、図20に示すように、VCM駆動軸X’,Y’が、ホール素子検出軸X,Yに対して検出軸傾斜角度φで傾いている。そこで、たとえば、図21に示すように、可動部130をX軸方向に移動させる場合には、第1VCM152の駆動力Fx’および第2VCM154の駆動力Fy’を可動部130に作用させる。なぜなら、第1VCM152による駆動力Fx’は、X軸に沿った駆動力成分Fx’xとY軸に沿った駆動力成分Fx’yとを含む。そこで、駆動力Fx’のY軸に沿った駆動力成分Fx’yをキャンセルするように、第2VCM154を駆動する。つまり、第2VCM154による駆動力Fy’のY軸に沿った駆動力成分Fy’yにより、第1VCM152のY軸に沿った駆動力Fx’yをキャンセルする。このように、第1VCM152および第2VCM154を駆動することにより、可動部130をX軸に沿って移動させることができる。なお、上記の場合においては、駆動力Fy’の作用に伴って駆動力Fy’xも作用するので、可動部130には、Fx’xおよびFy’xが作用している。また、図22に示すように、可動部130をY軸方向に移動させる場合も、可動部130をX軸方向に移動させる場合と同様に、第1VCM152の駆動力Fx’および第2VCM154の駆動力Fy’を可動部130に作用させる。 In the present embodiment, as shown in FIG. 20, the VCM drive axes X ′ and Y ′ are tilted at a detection axis tilt angle φ with respect to the Hall element detection axes X and Y. Therefore, for example, as shown in FIG. 21, when the movable unit 130 is moved in the X-axis direction, the driving force Fx ′ of the first VCM 152 and the driving force Fy ′ of the second VCM 154 are applied to the movable unit 130. This is because the driving force Fx ′ by the first VCM 152 includes a driving force component Fx′x along the X axis and a driving force component Fx′y along the Y axis. Therefore, the second VCM 154 is driven so as to cancel the driving force component Fx′y along the Y axis of the driving force Fx ′. That is, the driving force Fx′y along the Y axis of the first VCM 152 is canceled by the driving force component Fy′y along the Y axis of the driving force Fy ′ by the second VCM 154. In this manner, by driving the first VCM 152 and the second VCM 154, the movable unit 130 can be moved along the X axis. In the above case, since the driving force Fy′x also acts with the action of the driving force Fy ′, Fx′x and Fy′x act on the movable portion 130. As shown in FIG. 22, when the movable unit 130 is moved in the Y-axis direction, the driving force Fx ′ of the first VCM 152 and the driving force of the second VCM 154 are the same as when the movable unit 130 is moved in the X-axis direction. Fy ′ is applied to the movable part 130.
 第1VCM152による駆動力Fx’は下記の数式7により表され、第2VCM154の駆動力Fy’は数式8により表される。したがって、数式7および数式8に示すベクトル変換を用いて、第1VCM152および第2VCM154を駆動することにより、ホール素子検出軸X,YとVCM駆動軸X’,Y’との整合性が保たれる。 The driving force Fx ′ by the first VCM 152 is expressed by the following formula 7, and the driving force Fy ′ by the second VCM 154 is expressed by the formula 8. Therefore, by driving the first VCM 152 and the second VCM 154 using the vector conversions shown in Equation 7 and Equation 8, the consistency between the Hall element detection axes X and Y and the VCM drive axes X ′ and Y ′ is maintained. .
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 ここで、上記の数式7および数式8を変形することにより、以下の数式9および数式10が得られる。 Here, the following formulas 9 and 10 are obtained by modifying the above formulas 7 and 8.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 数式9および数式10からも明らかなように、ホール素子の検出軸であるX軸およびY軸方向に沿った駆動力FxおよびFyを発生させる際には、第1VCM152および第2VCM154は、“-Fy’sinφ”および“-Fx’sinφ”で示される負値の駆動力(目標移動方向とは逆向きの駆動力)を発生させる必要がある。 As is clear from Equation 9 and Equation 10, when generating the driving forces Fx and Fy along the X-axis and Y-axis directions, which are the detection axes of the Hall elements, the first VCM 152 and the second VCM 154 are “−Fy It is necessary to generate a negative driving force (driving force in the direction opposite to the target movement direction) indicated by “sin φ” and “−Fx ′ sin φ”.
 そこで、本実施形態では、図20~図22に示すように、第1ホール素子122の検出軸Xと第2ホール素子124の検出軸Yとの検出軸原点Nが、レンズ中心Oよりも可動部重心Gに近い位置に存在するように、第1磁石132および第2磁石134を配置する。すなわち、検出軸原点Nが、レンズ中心Oよりも駆動軸原点Mに近い位置に存在するように、第1磁石132および第2磁石134を配置する。このように、第1磁石132および第2磁石134を配置することにより、X軸がX’軸に近接するとともに、Y軸がY’軸に近接して、検出軸傾斜角度φが小さくなる。なお、X’軸に対するX軸の傾き角度とY’軸に対するY軸の傾き角度とが異なっても良い。また、ホール素子122,124の配置位置を変化させて、検出軸原点Nが、レンズ中心Oよりも駆動軸原点Mに近い位置を通るように調整しても良い。 Therefore, in this embodiment, the detection axis origin N of the detection axis X of the first Hall element 122 and the detection axis Y of the second Hall element 124 is movable from the lens center O as shown in FIGS. The first magnet 132 and the second magnet 134 are arranged so as to be present at a position close to the partial center of gravity G. That is, the first magnet 132 and the second magnet 134 are arranged so that the detection axis origin N is located closer to the drive axis origin M than the lens center O. By arranging the first magnet 132 and the second magnet 134 in this way, the X axis is close to the X ′ axis, the Y axis is close to the Y ′ axis, and the detection axis tilt angle φ becomes small. Note that the tilt angle of the X axis with respect to the X ′ axis may be different from the tilt angle of the Y axis with respect to the Y ′ axis. Alternatively, the arrangement positions of the Hall elements 122 and 124 may be changed so that the detection axis origin N passes through a position closer to the drive axis origin M than the lens center O.
 本実施形態では、上記のように、検出軸傾斜角度φが小さくなるように構成してあるので、上記の数式9および数式10に示す目標移動方向とは逆向きの余分な駆動力“-Fy’sinφ”および“-Fx’sinφ”が小さくなっている。したがって、本実施形態では、検出軸に沿った駆動力を効率良く可動部に作用させることが可能であり、可動部を効率良く目標位置に移動させることができる。なお、検出軸傾斜角度φは、好適には、0度である。検出軸傾斜角度φが0度のときには、X軸とX’軸とが一致するとともにY軸とY’軸とが一致し、目標移動方向とは逆向きの余分な駆動力“-Fy’sinφ”および“-Fx’sinφ”が発生しない。検出軸傾斜角度φが大きすぎる場合、検出軸であるX軸とY軸のなす角度が小さくなるが、この角度が小さくなりすぎると、検出ができなくなるので好ましくない。 In the present embodiment, as described above, the detection axis inclination angle φ is configured to be small. Therefore, the excess driving force “−Fy opposite to the target movement direction shown in the above-described Equations 9 and 10 is used. “sinφ” and “−Fx′sinφ” are small. Therefore, in this embodiment, the driving force along the detection axis can be efficiently applied to the movable part, and the movable part can be efficiently moved to the target position. The detection axis inclination angle φ is preferably 0 degrees. When the detection axis tilt angle φ is 0 degree, the X axis and the X ′ axis coincide with each other, the Y axis and the Y ′ axis coincide with each other, and an excessive driving force “−Fy′sinφ opposite to the target moving direction”. "And" -Fx'sinφ "do not occur. When the detection axis tilt angle φ is too large, the angle formed by the X axis and the Y axis, which are detection axes, is small. However, if this angle is too small, detection is not possible, which is not preferable.
 次に、図23および図24を用いて、図1に示す角速度センサ12とブレ補正装置100との位置関係を具体的に説明する。図23に示すように、カメラボディ1a内に配置される角速度センサ12は、第1角速度センサ12-1および第2角速度センサ12-2を含む。第1角速度センサ12-1および第2角速度センサ12-2とレンズ鏡筒2に配置されるブレ補正装置100とは、Z軸に沿って距離Rを隔てて配置されている。 Next, the positional relationship between the angular velocity sensor 12 and the shake correction apparatus 100 shown in FIG. 1 will be specifically described with reference to FIGS. As shown in FIG. 23, the angular velocity sensor 12 disposed in the camera body 1a includes a first angular velocity sensor 12-1 and a second angular velocity sensor 12-2. The first angular velocity sensor 12-1 and the second angular velocity sensor 12-2 and the shake correction device 100 arranged in the lens barrel 2 are arranged at a distance R along the Z axis.
 図24に示すように、第1角速度センサ12-1および第2角速度センサ12-2のそれぞれは、ピッチ方向およびヨー方向のブレ角速度信号ωp,ωyを検出する。本実施形態では、ピッチ軸B1が検出軸Yに直交し、ヨー軸B2が検出軸Xに直交するように、図23に示す第1角速度センサ12-1および第2角速度センサ12-2を配置してある。したがって、本実施形態では、ブレ角速度信号ωp、ωyに基づくブレを打ち消すための可動部目標位置xt、ytは、以下の数式11および数式12で表される。なお、ブレ角度θp、θy(rad)は、ブレ角速度信号ωp、ωyを積分することにより得られる。 As shown in FIG. 24, each of the first angular velocity sensor 12-1 and the second angular velocity sensor 12-2 detects blur angular velocity signals ωp, ωy in the pitch direction and the yaw direction. In the present embodiment, the first angular velocity sensor 12-1 and the second angular velocity sensor 12-2 shown in FIG. 23 are arranged so that the pitch axis B1 is orthogonal to the detection axis Y and the yaw axis B2 is orthogonal to the detection axis X. It is. Therefore, in this embodiment, the movable part target positions xt and yt for canceling out the shake based on the shake angular velocity signals ωp and ωy are expressed by the following formulas 11 and 12. Note that the shake angles θp and θy (rad) are obtained by integrating the shake angular velocity signals ωp and ωy.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 本実施形態の比較例を図25に示す。図25に示す比較例では、従来技術と同様に、ピッチ軸B1’およびヨー軸B2’が相互に垂直になるように角速度センサを配置してある。この場合には、ピッチ軸B1’およびヨー軸B2’がX軸またはY軸に直交せず、B1’軸とY軸およびB2’軸とX軸とは、角度P’度で交差する。このとき、B1’軸とX軸およびB2’軸とY軸とが交差する角度をQとすると、ブレ角速度信号ωp、ωyに基づくブレを打ち消すための可動部目標位置xt、ytは、以下の数式13および数式14で表される。 FIG. 25 shows a comparative example of this embodiment. In the comparative example shown in FIG. 25, the angular velocity sensor is arranged so that the pitch axis B1 'and the yaw axis B2' are perpendicular to each other, as in the prior art. In this case, the pitch axis B1 'and the yaw axis B2' are not orthogonal to the X axis or the Y axis, and the B1 'axis, the Y axis, the B2' axis, and the X axis intersect at an angle P 'degree. At this time, assuming that the angle at which the B1 ′ axis and the X axis and the B2 ′ axis and the Y axis intersect is Q, the movable part target positions xt and yt for canceling the shake based on the shake angular velocity signals ωp and ωy are as follows: It is expressed by Equation 13 and Equation 14.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 数式13および数式14に示すように、比較例では、位置検出軸とブレ角速度検出軸との間にクロストークが発生する。すなわち、数式13および数式14に示すように、可動部目標位置xt、ytは、ブレ角度θpおよびθyにより生成される。これに対して、本実施形態では、上記の数式11および数式12に示すように、可動部目標位置xtはブレ角度θyにより生成されており、可動部目標位置ytはブレ角度θpにより生成されており、クロストークが回避されているので、ブレ信号の検出精度を高めることができる。 As shown in Equation 13 and Equation 14, in the comparative example, crosstalk occurs between the position detection axis and the shake angular velocity detection axis. That is, as shown in Expression 13 and Expression 14, the movable part target positions xt and yt are generated by the shake angles θp and θy. On the other hand, in this embodiment, as shown in the above formulas 11 and 12, the movable part target position xt is generated by the blur angle θy, and the movable part target position yt is generated by the blur angle θp. In addition, since crosstalk is avoided, blur signal detection accuracy can be increased.
 次に、本実施形態のブレ補正装置の制御性能について説明する。以下では、本実施形態の理解を容易にするために、X軸方向の制御の説明のみを行う。なお、Y軸方向の制御については、X軸方向の制御と同様なので、説明を省略する。 Next, the control performance of the shake correction apparatus of this embodiment will be described. Hereinafter, only the control in the X-axis direction will be described in order to facilitate understanding of the present embodiment. Since the control in the Y-axis direction is the same as the control in the X-axis direction, the description is omitted.
 X軸方向の可動部130の加速度axを入力とし、ホール素子が検出するX軸方向の変位XSensorを出力とする伝達関数を数式15に示す。数式15において、mは可動部130の質量(kg)を表し、JGZは可動部重心Gを通るZ軸まわりの慣性モーメント(kg・mm2)を表し、ωmおよびωjはそれぞれ並進方向(X軸方向)、回転方向(可動部重心Gを通るZ軸方向まわりの回転)の固有角振動数(rad/s)を表し、ζmおよびζJはそれぞれ並進方向、回転方向の減衰比(-)(無次元数)を表す。また、図20にも示すように、δは駆動力Fxの重心ずれ(駆動軸原点M-可動部重心G間距離)(mm)を表し、Bはホール素子122の重心ずれ(mm)を表す。 The transfer function with the acceleration ax of the movable part 130 in the X-axis direction as an input and the displacement XSensor in the X-axis direction detected by the Hall element as an output is shown in Equation 15. In Equation 15, m represents the mass (kg) of the movable part 130, JGZ represents the moment of inertia (kg · mm2) around the Z-axis passing through the center of gravity G of the movable part, and ωm and ωj are respectively translational directions (X-axis direction). ), The natural angular frequency (rad / s) in the rotation direction (rotation around the Z-axis direction passing through the center of gravity G of the movable part), and ζm and ζJ are the damping ratio (−) (non-dimensional) in the translation direction and the rotation direction, respectively. Number). Also, as shown in FIG. 20, δ represents the displacement of the center of gravity of the driving force Fx (distance between the drive shaft origin M and the movable portion gravity center G) (mm), and B represents the displacement of the center of gravity of the Hall element 122 (mm). .
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 数式15に示す伝達関数において、第1項は並進方向の伝達関数を表し、第2項は回転方向の伝達関数を表す。この伝達関数は、図5の制御ブロック図において、可動部からホール素子までの伝達関数を表しており、コントローラ部およびVCM部は含まれない。 In the transfer function shown in Formula 15, the first term represents the transfer function in the translation direction, and the second term represents the transfer function in the rotation direction. This transfer function represents the transfer function from the movable part to the Hall element in the control block diagram of FIG. 5, and does not include the controller part and the VCM part.
 数式15において、「mδB/JGZ」は、本発明に係るブレ補正装置の制御性能を論じる上で重要なパラメータである。これを、KKファクタと定義し、数式16に表す。 In Expression 15, “mδB / JGZ” is an important parameter in discussing the control performance of the shake correction apparatus according to the present invention. This is defined as a KK factor and expressed in Equation 16.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 ここで、ブレ補正装置の制御性能の理解を容易にするために、数式17に示すように並進方向および回転方向の共振周波数および減衰比が等しいと仮定し、数式15に示す伝達関数から数式18に示す伝達関数を導く。 Here, in order to facilitate understanding of the control performance of the blur correction apparatus, it is assumed that the resonance frequency and the damping ratio in the translation direction and the rotation direction are equal as shown in Expression 17, and the transfer function shown in Expression 15 is used to calculate Expression 18 The transfer function shown below is derived.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 数式18に示されるように、KKファクタの値が-1以下の場合は、伝達関数が全周波数帯域に渡って負になる。したがって、この場合は、フィードバックが正帰還になってしまうので、制御不能となる。 As shown in Equation 18, when the value of the KK factor is −1 or less, the transfer function becomes negative over the entire frequency band. Therefore, in this case, the feedback becomes positive feedback, and control becomes impossible.
 KKファクタの値が-1よりも大きく且つ0よりも小さい場合は、数式18に示す伝達関数は正になる。しかしながら、並進成分と回転成分が分割された数式15に示す伝達関数では、回転成分が負となる。したがって、この場合は、回転成分の振舞いが不安定であることが分かる。 When the value of the KK factor is larger than -1 and smaller than 0, the transfer function shown in Equation 18 becomes positive. However, in the transfer function shown in Formula 15 in which the translation component and the rotation component are divided, the rotation component is negative. Therefore, in this case, it can be seen that the behavior of the rotation component is unstable.
 KKファクタの値が0以上の場合は、数式18に示す伝達関数が正になり、しかも数式15に示す伝達関数において回転成分が正となり、安定的である。 When the value of the KK factor is 0 or more, the transfer function shown in Formula 18 is positive, and in the transfer function shown in Formula 15, the rotation component is positive and stable.
 上記より、KKファクタの値が正であるときは制御が安定し、逆に負であるときは制御が不安定である。したがって、KKファクタの極性は、制御性能に密接に関係する。 From the above, when the value of the KK factor is positive, the control is stable, and when the value is negative, the control is unstable. Therefore, the polarity of the KK factor is closely related to the control performance.
 数式16に示すように、KKファクタの極性は、駆動力Fxの重心ずれδの向きとホール素子位置の重心ずれBの向きとの関係で決まる。つまり、図20に示すように、X軸とX’軸とが、可動部重心Gに対して同じ方向にずれているときに、KKファクタの値が正となり、ブレ補正部100に関する伝達関数が安定になる。 As shown in Equation 16, the polarity of the KK factor is determined by the relationship between the direction of the center of gravity deviation δ of the driving force Fx and the direction of the center of gravity deviation B of the Hall element position. That is, as shown in FIG. 20, when the X-axis and the X′-axis are shifted in the same direction with respect to the movable portion center of gravity G, the value of the KK factor becomes positive, and the transfer function related to the blur correction unit 100 is Become stable.
 本実施形態では、図20Bに示すように、駆動軸原点Mが、レンズ中心Oよりも可動部重心Gに近い位置に存在し、且つ検出軸原点Nがレンズ中心Oよりも駆動軸原点Mに近い位置に存在し、更に駆動軸原点Mおよび検出軸原点Nが可動部重心Gに対して同じ方向にずれるように検出部120と可動部130と固定部140とを構成してある。さらに、上記のように、好適には、X軸がX’軸に近接するとともに、Y軸がY’軸に近接しており、駆動力Fxの重心ずれδとホール素子122の重心ずれBとは以下の数式19に示す関係を満たす。 In the present embodiment, as shown in FIG. 20B, the drive axis origin M is located closer to the movable part center of gravity G than the lens center O, and the detection axis origin N is closer to the drive axis origin M than the lens center O. The detection unit 120, the movable unit 130, and the fixed unit 140 are configured so that the drive shaft origin M and the detection shaft origin N are shifted in the same direction with respect to the movable part center of gravity G. Further, as described above, preferably, the X-axis is close to the X′-axis and the Y-axis is close to the Y′-axis, the center-of-gravity deviation δ of the driving force Fx and the center-of-gravity deviation B of the Hall element 122 Satisfies the relationship shown in Equation 19 below.
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 図26に、KKファクタの値に応じた、ステップ応答における可動部の移動量に係る定常偏差の関係を示す。図26に示すように、KKファクタの値が0に近い領域では偏差が小さく制御性能に優れ、KKファクタが負の範囲では偏差が大きく制御性能に劣る。本実施形態では、KKファクタが正の領域であり、且つ偏差の値がD1以下に収まる範囲内でKKファクタを設定する。ここで、偏差D1は、偏差の極大値ピークD2の70%の値である。 FIG. 26 shows the relationship of the steady deviation related to the moving amount of the movable part in the step response according to the value of the KK factor. As shown in FIG. 26, the deviation is small and the control performance is excellent in the region where the value of the KK factor is close to 0, and the deviation is large and the control performance is inferior in the range where the KK factor is negative. In the present embodiment, the KK factor is set within a range in which the KK factor is positive and the deviation value falls within D1. Here, the deviation D1 is a value of 70% of the maximum peak D2 of the deviation.
 本実施形態では、上記のように、図20Bおよび図20Cにおいて、駆動軸傾斜角度θを調整することにより、駆動軸原点M-可動部重心G間距離δおよびKKファクタの値を調整する。すなわち、駆動軸原点Mがレンズ中心Oよりも可動部重心Gに近い位置になるように、および/またはKKファクタの値が0以上であり且つKK1以下となるように、駆動軸傾斜角度θを調整する。 In this embodiment, as described above, in FIG. 20B and FIG. 20C, by adjusting the drive shaft inclination angle θ, the distance δ between the drive shaft origin M and the movable portion gravity center G and the value of the KK factor are adjusted. That is, the drive shaft inclination angle θ is set so that the drive shaft origin M is closer to the movable portion center of gravity G than the lens center O and / or the value of the KK factor is 0 or more and KK1 or less. adjust.
 図27に、駆動軸傾斜角度θに対する距離δおよびKKファクタの関係を示す。図27において、横軸が駆動軸傾斜角度θ(deg)、左側の縦軸が距離δ(mm)、右側の縦軸がKKファクタであり、距離δは黒四角のプロットで表示され、KKファクタは黒ひし形のプロットで表示される。図27に示すように、駆動軸傾斜角度θが-αから+αの範囲で、距離δおよびKKファクタが変化する。 FIG. 27 shows the relationship between the distance δ and the KK factor with respect to the drive shaft tilt angle θ. In FIG. 27, the horizontal axis is the drive shaft tilt angle θ (deg), the left vertical axis is the distance δ (mm), the right vertical axis is the KK factor, and the distance δ is displayed as a black square plot. Is displayed as a black diamond plot. As shown in FIG. 27, the distance δ and the KK factor change when the drive shaft tilt angle θ is in the range of −α to + α.
 距離δは、駆動軸傾斜角度θがθ1の時に0になる。このとき、図20において、駆動軸原点Mが可動部重心Gに一致する。図27に示す角度θ1を含む範囲R1(θ3≦θ≦θ2)にて、駆動軸原点Mが、レンズ中心Oに対して可動部重心Gに近い位置に存在する。駆動軸原点Mが、可動部重心Gに近い位置になるように、駆動軸傾斜角度θを調整することで、可動部を移動させる際の回転成分を抑制することができる。 The distance δ becomes 0 when the drive shaft inclination angle θ is θ1. At this time, in FIG. 20, the drive shaft origin M coincides with the movable portion gravity center G. In the range R1 (θ3 ≦ θ ≦ θ2) including the angle θ1 shown in FIG. 27, the drive shaft origin M exists at a position close to the movable portion gravity center G with respect to the lens center O. By adjusting the drive shaft inclination angle θ so that the drive shaft origin M is located near the movable portion center of gravity G, the rotational component when moving the movable portion can be suppressed.
 また、KKファクタは、駆動軸傾斜角度θがθ1以下の時に0以上になり、駆動軸傾斜角度θがθ4以上の時にKK1以下になる。つまり、KKファクタは、範囲R2(θ4≦θ≦θ1)にて、0以上であり且つKK1以下になる。KKファクタが、0以上であり且つKK1以下になるように、駆動軸傾斜角度θを調整することで、可動部を移動させる際に安定した制御を行うことができる。 Also, the KK factor is 0 or more when the drive shaft tilt angle θ is θ1 or less, and is KK1 or less when the drive shaft tilt angle θ is θ4 or more. That is, the KK factor is 0 or more and KK1 or less in the range R2 (θ4 ≦ θ ≦ θ1). By adjusting the drive shaft inclination angle θ so that the KK factor is 0 or more and KK1 or less, stable control can be performed when the movable part is moved.
 本実施形態では、範囲R1の条件を満たすとともに範囲R2の条件を満たす範囲R3(θ3≦θ≦θ1)内で、駆動軸傾斜角度θを調整することが好ましい。範囲R3内に駆動軸傾斜角度θを調整することで、可動部を移動させる際の回転成分を抑制し且つ安定した制御を行うことができるからである。 In this embodiment, it is preferable to adjust the drive shaft inclination angle θ within a range R3 (θ3 ≦ θ ≦ θ1) that satisfies the condition of the range R1 and satisfies the condition of the range R2. This is because by adjusting the drive shaft inclination angle θ within the range R3, it is possible to suppress the rotation component when moving the movable part and perform stable control.
 なお、さらに好適には、上記の範囲R3内において、駆動軸原点M-可動部重心G間距離δが0に近づきしかもKKファクタが正となる(このとき、数式10からも明らかなように、KKファクタの値も0に近づく)ように、駆動軸傾斜角度θをθ1に調整する。このように、駆動軸傾斜角度θを調整することで、さらに好適に回転成分を抑制し且つ安定した制御を行うことができる。 More preferably, within the above range R3, the distance δ between the drive shaft origin M and the movable portion gravity center G approaches 0 and the KK factor is positive (at this time, as is clear from Equation 10, The drive shaft inclination angle θ is adjusted to θ1 so that the value of the KK factor also approaches 0. Thus, by adjusting the drive shaft inclination angle θ, it is possible to more suitably suppress the rotation component and perform stable control.
 本実施形態では、図20Bに示すように、第1VCM152の駆動軸であるX’軸と第2VCM154の駆動軸であるY’軸との交点である駆動軸原点Mを、ブレ補正光学部材L3のレンズ中心Oよりも可動部130の可動部重心Gに近い位置に配置している。このため、可動部130の駆動軸原点Mを、可動部130の可動部重心Gに近づけることができるので、可動部130を移動させる際に悪影響となる回転成分の影響を抑制し、可動部130の移動に有効な並進成分を効率よく作用させることができる。好ましくは、駆動軸原点Mは可動部重心Gに一致し、このときは回転成分の影響を完全に除去することができる。したがって、本実施形態では、可動部130の目標位置への収束性や可動部130の制御安定性等を向上させ、ブレ補正装置100の制御性能を向上させることができる。 In the present embodiment, as shown in FIG. 20B, the drive axis origin M, which is the intersection of the X ′ axis that is the drive axis of the first VCM 152 and the Y ′ axis that is the drive axis of the second VCM 154, is defined on the blur correction optical member L3. The movable part 130 is disposed closer to the movable part center of gravity G than the lens center O. For this reason, since the drive shaft origin M of the movable part 130 can be brought close to the movable part center of gravity G of the movable part 130, the influence of the rotational component that adversely affects the movement of the movable part 130 is suppressed, and the movable part 130 is suppressed. The translational component effective for the movement of can be made to act efficiently. Preferably, the drive shaft origin M coincides with the movable portion gravity center G, and at this time, the influence of the rotation component can be completely removed. Therefore, in the present embodiment, the convergence of the movable unit 130 to the target position, the control stability of the movable unit 130, and the like can be improved, and the control performance of the shake correction apparatus 100 can be improved.
 また、本実施形態では、検出軸原点Nが、レンズ中心Oよりも駆動軸原点Mに近い位置に存在するように、第1磁石132および第2磁石134を配置してあり、X軸がX’軸に近接するとともに、Y軸がY’軸に近接している。したがって、本実施形態では、検出軸に沿った駆動力を効率良く可動部に作用させることが可能であり、可動部を効率良く目標位置に移動させることができる。 In the present embodiment, the first magnet 132 and the second magnet 134 are arranged so that the detection axis origin N is closer to the drive axis origin M than the lens center O, and the X axis is X It is close to the 'axis and the Y axis is close to the Y' axis. Therefore, in this embodiment, the driving force along the detection axis can be efficiently applied to the movable part, and the movable part can be efficiently moved to the target position.
 また、本実施形態では、図20に示すように、第1ホール素子122は、X軸とX’軸との交点を含む位置に配置してあり、第2ホール素子124はY軸とY’軸との交点を含む位置に配置してある。好適には、第1ホール素子122の中心をX軸とX’軸との交点に配置し、第2ホール素子124の中心をY軸とY’軸との交点に配置する。このため、駆動部と検出部とで磁石を共有することが可能になり、しかも検出部による検出特性と、駆動部による駆動特性の双方の特性を向上させることができる。また、可動部のレンズ中心Oが光軸Lを通るときに、第1ホール素子122および第2ホール素子124はともに0に対応する位置情報を出力する。 In the present embodiment, as shown in FIG. 20, the first Hall element 122 is disposed at a position including the intersection of the X axis and the X ′ axis, and the second Hall element 124 is aligned with the Y axis and the Y ′. It is arranged at a position including the intersection with the axis. Preferably, the center of the first Hall element 122 is disposed at the intersection of the X axis and the X ′ axis, and the center of the second Hall element 124 is disposed at the intersection of the Y axis and the Y ′ axis. For this reason, it becomes possible to share a magnet with a drive part and a detection part, and also the characteristic of both the detection characteristic by a detection part and the drive characteristic by a drive part can be improved. Further, when the lens center O of the movable part passes through the optical axis L, the first Hall element 122 and the second Hall element 124 both output position information corresponding to 0.
 本実施形態では、図20に示すように、可動部重心Gとレンズ中心Oとの間に駆動軸原点Mが存在する。このため、ブレ補正装置の伝達関数に関するKKファクタの値が正の値になる。したがって、本発明に係るブレ補正装置では安定した制御を行うことができる。 In the present embodiment, as shown in FIG. 20, the drive shaft origin M exists between the movable part gravity center G and the lens center O. For this reason, the value of the KK factor relating to the transfer function of the shake correction apparatus becomes a positive value. Therefore, stable control can be performed in the shake correction apparatus according to the present invention.
 本実施形態では、図5に示すように、ブレ検出部12が検出するブレ角速度信号ωp、ωyと、第1ホール素子122,第2ホール素子124が検出する可動部位置座標x、yとを利用して可動部130の制御を行っているので、可動部130を正確な目標位置に収束させることができる。 In the present embodiment, as shown in FIG. 5, the shake angular velocity signals ωp and ωy detected by the shake detection unit 12 and the movable unit position coordinates x and y detected by the first Hall element 122 and the second Hall element 124 are obtained. Since the movable part 130 is controlled by using it, the movable part 130 can be converged to an accurate target position.
 本実施形態では、第1ホール素子122,第2ホール素子124の検出軸X,Yに沿った目標位置座標を、可動部130の駆動軸X’,Y’に沿った目標移動量に変換して、可動部130を移動させているので、ブレ補正装置の制御を好適に行うことができる。 In the present embodiment, the target position coordinates along the detection axes X and Y of the first Hall element 122 and the second Hall element 124 are converted into target movement amounts along the drive axes X ′ and Y ′ of the movable unit 130. Since the movable part 130 is moved, it is possible to suitably control the shake correction device.
 なお、本発明は、上記の実施形態に限定されない。 Note that the present invention is not limited to the above embodiment.
 上記の実施形態では、図1に示すブレ補正レンズL3を駆動するタイプの光学系移動型ブレ補正装置であるが、本発明においては、図1に示す撮像素子3が移動するタイプの撮像素子移動型ブレ補正装置にも適用することができる。 In the above-described embodiment, the optical system moving type blur correction device is of a type that drives the blur correction lens L3 shown in FIG. 1, but in the present invention, the type of image sensor movement in which the image sensor 3 shown in FIG. 1 moves is used. The present invention can also be applied to a mold blur correction device.
 上記の実施形態では、可動部を駆動する手段として、2個のVCMを適用したが、これに限定されず、たとえば、2個以上のVCMであってもよい。また、圧電アクチュエータ等のその他のアクチュエータを使用してもよい。 In the above embodiment, two VCMs are applied as means for driving the movable part. However, the present invention is not limited to this. For example, two or more VCMs may be used. Further, other actuators such as a piezoelectric actuator may be used.
 上記の実施形態では、可動部の位置を検出する手段として、2個のホール素子を適用したが、これに限定されず、2個以上のホール素子であってもよく、また、PSDセンサ等のその他の位置検出手段を使用してもよい。 In the above-described embodiment, two Hall elements are applied as means for detecting the position of the movable part. However, the present invention is not limited to this, and two or more Hall elements may be used. Other position detection means may be used.
1    カメラ
1a   カメラボディ
2    レンズ鏡筒
12   角速度センサ
14   CPU
100  ブレ補正装置
110  シャッター部
120  位置検出部
122  第1ホール素子
124  第2ホール素子
130  可動部
131A 第1当接部
131B 第2当接部
132  第1磁石
133  貫通孔
133A 第3当接部
133B 第4当接部
134  第2磁石
140  固定部
141A 第1ストッパ部
141B 第2ストッパ部
142  第1駆動コイル
143  係止要素
143A 第3ストッパ部
143B 第4ストッパ部
144  第2駆動コイル
145  引張コイルばね
145-1 第1バネ
145-2 第2バネ
145-3 第3バネ
152  第1VCM
154  第2VCM
162  目標位置生成部
164  減算器
166  フィードフォワードコントローラ
168  フィードバックコントローラ
170  加算器
L3   ブレ補正レンズ
G     可動部重心
M     駆動原点
O     レンズ中心
L3    ブレ補正レンズ
DESCRIPTION OF SYMBOLS 1 Camera 1a Camera body 2 Lens barrel 12 Angular velocity sensor 14 CPU
100 Shake correction device 110 Shutter part 120 Position detection part 122 1st hall element 124 2nd hall element 130 Movable part 131A 1st contact part 131B 2nd contact part 132 1st magnet 133 Through-hole 133A 3rd contact part 133B Fourth contact portion 134 Second magnet 140 Fixed portion 141A First stopper portion 141B Second stopper portion 142 First drive coil 143 Locking element 143A Third stopper portion 143B Fourth stopper portion 144 Second drive coil 145 Tensile coil spring 145-1 First spring 145-2 Second spring 145-3 Third spring 152 First VCM
154 Second VCM
162 Target position generation unit 164 Subtractor 166 Feed forward controller 168 Feedback controller 170 Adder L3 Shake correction lens G Movable part gravity center M Driving origin O Lens center L3 Shake correction lens

Claims (41)

  1.  固定部材に対して相対的に移動可能であり、光学系により結像される像のブレを補正するブレ補正部材を備え、重心が前記ブレ補正部材の中心から離れた位置にある移動部材と、
     前記光学系の光軸と交差する平面上において、前記移動部材を第1軸に沿って移動させる第1駆動部材と、
     前記平面上において、前記移動部材を第1軸に交差する第2軸に沿って移動させる第2駆動部材と、
     前記移動部材を前記固定部材に対して相対的に移動可能に支持する複数の弾性部材と、を有し、
     前記第1駆動部材および前記第2駆動部材は、前記第1軸と前記第2軸との交点が、前記ブレ補正部材の中心よりも前記移動部材の重心に近い位置となるように設けられ、
     前記複数の弾性部材のうち、前記移動部材の重心に最も近い位置に配置されている第1弾性部材の弾性力は、他の弾性部材の弾性力と異なることを特徴とするブレ補正装置。
    A movable member that is movable relative to the fixed member, includes a blur correcting member that corrects blur of an image formed by the optical system, and whose center of gravity is located away from the center of the blur correcting member;
    A first drive member that moves the moving member along a first axis on a plane that intersects the optical axis of the optical system;
    A second drive member that moves the moving member along a second axis intersecting the first axis on the plane;
    A plurality of elastic members that movably support the moving member relative to the fixed member;
    The first drive member and the second drive member are provided such that the intersection of the first axis and the second axis is closer to the center of gravity of the moving member than the center of the shake correction member,
    The blur correction device according to claim 1, wherein an elastic force of a first elastic member arranged at a position closest to a center of gravity of the moving member among the plurality of elastic members is different from elastic forces of other elastic members.
  2.  前記第1駆動部材の少なくとも一部は、前記移動部材に設けられ、前記第1軸に沿って前記移動部材とともに移動し、
     前記第2駆動部材の少なくとも一部は、前記移動部材に設けられ、前記第2軸に沿って前記移動部材とともに移動することを特徴とするブレ補正装置。
    At least a part of the first drive member is provided on the moving member, moves with the moving member along the first axis,
    At least a part of the second driving member is provided on the moving member, and moves together with the moving member along the second axis.
  3.  前記ブレ補正部材は、少なくとも前記光学系の一部であることを特徴とする請求項1または請求項2に記載のブレ補正装置。 3. The shake correction apparatus according to claim 1, wherein the shake correction member is at least a part of the optical system.
  4.  前記移動部材の重心まわりの回転固有振動数は、前記移動部材の前記平面内での並進軸に沿った並進固有振動数よりも大きく、かつ、前記第1弾性部材の弾性力は、前記他の弾性部材の弾性力よりも大きいことを特徴とする請求項1から請求項3の何れかに記載のブレ補正装置。 The rotational natural frequency around the center of gravity of the moving member is greater than the translational natural frequency along the translation axis in the plane of the moving member, and the elastic force of the first elastic member is The blur correction device according to claim 1, wherein the blur correction device is larger than an elastic force of the elastic member.
  5.  前記移動部材の重心まわりの回転固有振動数は、前記移動部材の前記平面内での並進軸に沿った並進固有振動数よりも小さく、かつ、前記第1弾性部材の弾性力は、前記他の弾性部材の弾性力よりも小さいことを特徴とする請求項1から請求項3の何れかに記載のブレ補正装置。 The rotational natural frequency around the center of gravity of the moving member is smaller than the translational natural frequency along the translation axis in the plane of the moving member, and the elastic force of the first elastic member is The blur correction device according to claim 1, wherein the blur correction device is smaller than an elastic force of the elastic member.
  6.  前記複数の弾性部材は、前記移動部材を前記固定部材に近づく方向に付勢していることを特徴とする請求項1から請求項5の何れかに記載のブレ補正装置。 The blur correction device according to any one of claims 1 to 5, wherein the plurality of elastic members urge the moving member in a direction approaching the fixed member.
  7.  前記他の弾性部材は、第2弾性部材と第3弾性部材とを含むことを特徴とする請求項1から請求項6の何れかに記載のブレ補正装置。 The blur correction device according to any one of claims 1 to 6, wherein the other elastic member includes a second elastic member and a third elastic member.
  8.  前記光軸と交差する平面上において前記移動部材の重心と前記第1弾性部材とを結ぶ直線を第3軸とし、前記平面上で前記移動部材の重心を通り且つ前記第3軸に直交する直線を第4軸とした場合に、
     前記第1弾性部材は、前記第4軸を挟んで前記第2弾性部材および前記第3弾性部材とは反対側に配置してあり、
     前記第2弾性部材は、前記第3軸を挟んで前記第3弾性部材とは反対側に配置してあることを特徴とする請求項7に記載のブレ補正装置。
    A straight line connecting the center of gravity of the moving member and the first elastic member on a plane intersecting the optical axis is defined as a third axis, and a line passing through the center of gravity of the moving member on the plane and orthogonal to the third axis. Is the fourth axis,
    The first elastic member is disposed on the opposite side of the second elastic member and the third elastic member across the fourth shaft,
    The blur correction apparatus according to claim 7, wherein the second elastic member is disposed on the opposite side of the third elastic member with the third shaft interposed therebetween.
  9.  前記移動部材は、前記第3軸に沿った長さよりも、前記第4軸に沿った長さの方が長いことを特徴とする請求項8に記載のブレ補正装置。 The blur correction device according to claim 8, wherein the moving member has a length along the fourth axis that is longer than a length along the third axis.
  10.  前記移動部材にはその外周よりも内側に形成される孔部を形成してあり、
     前記第1弾性部材は、前記孔部内に形成される第1取付部に取り付けてあることを特徴とする請求項1から請求項9の何れかに記載のブレ補正装置。
    The moving member has a hole formed inside the outer periphery thereof,
    The blur correction apparatus according to any one of claims 1 to 9, wherein the first elastic member is attached to a first attachment portion formed in the hole portion.
  11.  前記移動部材は、前記移動部材の重心に向かって突出する第1取付部、前記移動部材の重心から離れる方向に突出する第2取付部および第3取付部を有し、
     前記第1弾性部材は、前記第1取付部に取り付けられており、
     前記第2弾性部材および前記第3弾性部材は、前記第2取付部または前記第3取付部に取り付けられていることを特徴とする請求項7から請求項10の何れかに記載のブレ補正装置。
    The moving member has a first mounting portion that protrudes toward the center of gravity of the moving member, a second mounting portion and a third mounting portion that protrude in a direction away from the center of gravity of the moving member,
    The first elastic member is attached to the first attachment portion,
    The blur correction device according to any one of claims 7 to 10, wherein the second elastic member and the third elastic member are attached to the second attachment portion or the third attachment portion. .
  12.  前記第2弾性部材は、前記第3弾性部材よりも前記移動部材の重心に近い位置に配置してあることを特徴とする請求項7から請求項11の何れかに記載のブレ補正装置。 The blur correction device according to any one of claims 7 to 11, wherein the second elastic member is disposed at a position closer to the center of gravity of the moving member than the third elastic member.
  13.  前記第1軸と前記第2軸とが直角以外の角度で交差することを特徴とする請求項1から請求項12の何れかに記載のブレ補正装置。 The blur correction apparatus according to any one of claims 1 to 12, wherein the first axis and the second axis intersect at an angle other than a right angle.
  14.  固定部材に対して相対的に移動可能であり、光学系により結像される像のブレを補正するブレ補正部材を備え、重心が前記ブレ補正部材の中心から離れた位置にある移動部材と、
     前記光学系の光軸と交差する平面上において、前記移動部材を、前記ブレ補正部材の中心よりも前記移動部材の重心に近い位置で交差する第1軸および第2軸に沿った駆動力を発生させて移動させる駆動部材と、を有し、
     前記移動部材は、前記駆動部材により第1方向に移動した場合に前記固定部材に当接可能な第1当接部、および前記第1方向と反対方向に移動した場合に前記固定部材に当接可能な第2当接部を有することを特徴とするブレ補正装置。
    A movable member that is movable relative to the fixed member, includes a blur correcting member that corrects blur of an image formed by the optical system, and whose center of gravity is located away from the center of the blur correcting member;
    Driving force along the first axis and the second axis intersecting the moving member at a position closer to the center of gravity of the moving member than the center of the blur correction member on a plane intersecting the optical axis of the optical system. A drive member that is generated and moved,
    The moving member abuts on the first abutting portion that can abut on the fixed member when moved in the first direction by the driving member, and on the fixed member when moved in a direction opposite to the first direction. A blur correction device having a second abutting portion that can be used.
  15.  前記平面上において、第3軸に沿った前記移動部材の位置を検出する第1検出手段と、
     前記平面上において、前記第3軸に交差する第4軸に沿った前記移動部材の位置を検出する第2検出手段とを有することを特徴とする請求項14に記載のブレ補正装置。
    First detecting means for detecting a position of the moving member along a third axis on the plane;
    The blur correction device according to claim 14, further comprising: a second detection unit configured to detect a position of the moving member along a fourth axis intersecting the third axis on the plane.
  16.  前記第1方向は、前記第1軸および前記第2軸の方向とは異なることを特徴とする請求項14または請求項15に記載のブレ補正装置。 The blur correction device according to claim 14 or 15, wherein the first direction is different from directions of the first axis and the second axis.
  17.  前記ブレ補正部材は、少なくとも前記光学系の一部であることを特徴とする請求項14から請求項16の何れかに記載のブレ補正装置。 The blur correction device according to any one of claims 14 to 16, wherein the blur correction member is at least a part of the optical system.
  18.  前記移動部材は、前記第2軸に沿って第2方向に移動した場合に前記固定部材に当接可能な第3当接部、および前記第2軸に沿って第2方向と反対方向に移動した場合に前記固定部材に当接可能な第4当接部を有することを特徴とする請求項14から請求項17の何れかに記載のブレ補正装置。 The moving member moves in a direction opposite to the second direction along the second axis, and a third abutting portion that can come into contact with the fixing member when moved in the second direction along the second axis. 18. The blur correction device according to claim 14, further comprising a fourth abutting portion that can abut against the fixing member.
  19.  前記移動部材は、前記第2軸に沿った長さよりも前記第1軸に沿った長さの方が長いことを特徴とする請求項14から請求項18の何れかに記載のブレ補正装置。 The blur correction device according to any one of claims 14 to 18, wherein the moving member has a longer length along the first axis than a length along the second axis.
  20.  前記第1当接部および前記第2当接部は、前記移動部材の外周面に設けられていることを特徴とする請求項14から請求項19の何れかに記載のブレ補正装置。 The blur correction device according to any one of claims 14 to 19, wherein the first contact portion and the second contact portion are provided on an outer peripheral surface of the moving member.
  21.  前記第3当接部および前記第4当接部は、前記移動部材の外周の内側に設けられていることを特徴とする請求項18に記載のブレ補正装置。 The blur correction device according to claim 18, wherein the third contact portion and the fourth contact portion are provided inside an outer periphery of the moving member.
  22.  前記第3当接部および前記第4当接部は、前記移動部材の外周の内側に形成される孔部内に設けられていることを特徴とする請求項18または請求項21に記載のブレ補正装置。 The blur correction according to claim 18 or 21, wherein the third contact part and the fourth contact part are provided in a hole formed inside the outer periphery of the moving member. apparatus.
  23.  前記固定部材は、前記第1当接部に当接可能な第1ストッパ部および前記第2当接部に当接可能な第2ストッパ部を有することを特徴とする請求項14から請求項22の何れかに記載のブレ補正装置。 The said fixing member has a 1st stopper part which can contact | abut to the said 1st contact part, and a 2nd stopper part which can contact | abut to the said 2nd contact part. The blur correction apparatus according to any one of the above.
  24.  前記固定部材は、前記第3当接部および前記第4当接部に当接可能な第3ストッパ部を有することを特徴とする請求項18または請求項21に記載のブレ補正装置。 The blur correction device according to claim 18 or 21, wherein the fixing member includes a third stopper portion capable of contacting the third contact portion and the fourth contact portion.
  25.  前記孔部は、前記第2軸に沿って突出し弾性部材を保持する弾性部材保持部を有し、
     前記第3当接部は、前記弾性部材保持部に設けられていることを特徴とする請求項22に記載のブレ補正装置。
    The hole has an elastic member holding portion that protrudes along the second axis and holds an elastic member;
    The blur correction device according to claim 22, wherein the third contact portion is provided in the elastic member holding portion.
  26.  前記第1軸と前記第2軸とが直交することを特徴とする請求項14から請求項25の何れかに記載のブレ補正装置。 26. The blur correction device according to claim 14, wherein the first axis and the second axis are orthogonal to each other.
  27.  前記平面上において前記移動部材を第3軸に沿って移動させる第1駆動部材と、
     前記平面上において前記移動部材を前記3軸に交差する第4軸に沿って移動させる第2駆動部材と、をさらに有し、
     前記平面上において、前記第3軸と前記第4軸との交点が、前記ブレ補正部材の中心よりも前記移動部材の重心に近い位置にあることを特徴とする請求項14に記載のブレ補正装置。
    A first drive member that moves the moving member along a third axis on the plane;
    A second drive member that moves the moving member along a fourth axis intersecting the three axes on the plane;
    The blur correction according to claim 14, wherein an intersection of the third axis and the fourth axis is located closer to the center of gravity of the moving member than the center of the blur correction member on the plane. apparatus.
  28.  前記第3軸と前記第4軸とが直角以外の角度で交差することを特徴とする請求項27に記載のブレ補正装置。 The blur correction device according to claim 27, wherein the third axis and the fourth axis intersect at an angle other than a right angle.
  29.  前記第1駆動部材による前記第3軸に沿った駆動力と前記第2駆動部材による前記第4軸に沿った駆動力とにより、前記移動部材に前記第1軸に沿った駆動力を作用させることを特徴とする請求項27または請求項28に記載のブレ補正装置。 A driving force along the first axis is applied to the moving member by a driving force along the third axis by the first driving member and a driving force along the fourth axis by the second driving member. 29. The shake correction apparatus according to claim 27 or claim 28.
  30.  前記第1駆動部による前記第3軸に沿った駆動力と前記第2駆動部による前記第4軸に沿った駆動力とにより、前記移動部材に前記第2軸に沿った駆動力を作用させることを特徴とする請求項27から請求項29の何れかに記載のブレ補正装置。 A driving force along the second axis is applied to the moving member by a driving force along the third axis by the first driving unit and a driving force along the fourth axis by the second driving unit. 30. The shake correction apparatus according to claim 27, wherein
  31.  前記第3軸および前記第4軸が前記第1軸に交差するように前記第1検出手段および前記第2検出手段を配置してあることを特徴とする請求項15に記載のブレ補正装置。 16. The shake correction apparatus according to claim 15, wherein the first detection means and the second detection means are arranged so that the third axis and the fourth axis intersect the first axis.
  32.  固定部材に対して相対的に移動可能であり、光学系により結像される像のブレを補正するブレ補正部材を備え、重心が前記ブレ補正部材の中心から離れた位置にある移動部材と、
     前記光学系の光軸と交差する平面上において、前記移動部材を第1軸に沿って移動させる第1駆動部材と、
     前記平面上において、前記移動部材を第1軸に交差する第2軸に沿って移動させる第2駆動部材と、
     前記平面上において、第3軸に沿った前記移動部材の位置を検出する第1検出手段と、
     前記平面上において、前記第3軸に交差する第4軸に沿った前記移動部材の位置を検出する第2検出手段と、を有し、
     前記平面上において、前記第1軸と前記第2軸との交点が、前記ブレ補正部材の中心よりも前記移動部材の重心に近い位置にあり、かつ、前記第3軸と前記第4軸との交点が、前記ブレ補正部材の中心よりも前記第1軸と前記第2軸との交点に近い位置にあることを特徴とするブレ補正装置。
    A movable member that is movable relative to the fixed member, includes a blur correcting member that corrects blur of an image formed by the optical system, and whose center of gravity is located away from the center of the blur correcting member;
    A first drive member that moves the moving member along a first axis on a plane that intersects the optical axis of the optical system;
    A second drive member that moves the moving member along a second axis intersecting the first axis on the plane;
    First detecting means for detecting a position of the moving member along a third axis on the plane;
    A second detecting means for detecting a position of the moving member along a fourth axis intersecting the third axis on the plane;
    On the plane, the intersection of the first axis and the second axis is located closer to the center of gravity of the moving member than the center of the shake correction member, and the third axis and the fourth axis The blur correction device is located at a position closer to the intersection of the first axis and the second axis than the center of the blur correction member.
  33.  前記ブレ補正部材は、少なくとも前記光学系の一部であることを特徴とする請求項32に記載のブレ補正装置。 The blur correction device according to claim 32, wherein the blur correction member is at least a part of the optical system.
  34.  前記第1軸と前記第2軸とが直角以外の角度で交差しており、しかも、前記第3軸と前記第4軸とが直角以外の角度で交差していることを特徴とする請求項32または請求項33に記載のブレ補正装置。 The first axis and the second axis intersect at an angle other than a right angle, and the third axis and the fourth axis intersect at an angle other than a right angle. The blur correction device according to claim 32 or claim 33.
  35.  前記第1検出手段が前記第3軸と前記第1軸との交点を含む位置に配置してあり、
     前記第2検出手段が前記第4軸と前記第2軸との交点を含む位置に配置してあることを特徴とする請求項32から請求項34の何れかに記載のブレ補正装置。
    The first detection means is disposed at a position including an intersection of the third axis and the first axis;
    35. The shake correction apparatus according to claim 32, wherein the second detection means is arranged at a position including an intersection of the fourth axis and the second axis.
  36.  前記平面上において、前記第1軸と前記第2軸との交点および前記第3軸と前記第4軸との交点が、前記移動部材の重心と前記ブレ補正部材の中心との間にあることを特徴とする請求項32から請求項35の何れかに記載のブレ補正装置。 On the plane, the intersection of the first axis and the second axis and the intersection of the third axis and the fourth axis are between the center of gravity of the moving member and the center of the blur correction member. 36. The blur correction device according to any one of claims 32 to 35, wherein:
  37.  第5軸回りの第1角速度を検出し、第1角速度信号を出力する第1角速度検出部と、
     第6軸回りの第2角速度を検出し、第2角速度信号を出力する第2角速度検出部と、をさらに有し、
     前記平面上において、前記第5軸が前記第3軸に直交するように前記第1角速度検出部が配置してあり、しかも、前記第6軸が前記第4軸に直交するように前記第2角速度検出部が配置してあることを特徴とする請求項32から請求項36の何れかに記載のブレ補正装置。
    A first angular velocity detector that detects a first angular velocity around the fifth axis and outputs a first angular velocity signal;
    A second angular velocity detector that detects a second angular velocity around the sixth axis and outputs a second angular velocity signal;
    On the plane, the first angular velocity detector is arranged so that the fifth axis is orthogonal to the third axis, and the second axis is orthogonal to the fourth axis. 37. The shake correction apparatus according to claim 32, wherein an angular velocity detection unit is disposed.
  38.  前記第1角速度信号および前記第2角速度信号を用いて、前記第1駆動部および前記第2駆動部を制御する制御部をさらに有する請求項37に記載のブレ補正装置。 38. The shake correction apparatus according to claim 37, further comprising a control unit that controls the first drive unit and the second drive unit using the first angular velocity signal and the second angular velocity signal.
  39.  前記制御部は、前記ブレ補正部材の位置座標と前記第1角速度信号と前記第2角速度信号とを用いて、前記ブレ補正部材の前記第3軸および前記第4軸に平行な目標位置座標を算出し、前記目標位置座標を用いて前記ブレ補正部材の前記第1軸および前記第2軸に沿った目標移動量を算出し、前記目標移動量を用いて前記第1駆動部および前記第2駆動部を制御することを特徴とする請求項38に記載のブレ補正装置。 The controller uses the position coordinates of the shake correction member, the first angular velocity signal, and the second angular velocity signal to obtain target position coordinates parallel to the third axis and the fourth axis of the shake correction member. And calculating a target movement amount along the first axis and the second axis of the shake correction member using the target position coordinates, and using the target movement amount, the first driving unit and the second driving unit. The shake correction apparatus according to claim 38, wherein the drive unit is controlled.
  40.  請求項1から請求項39の何れかに記載のブレ補正装置を含むレンズ鏡筒。 A lens barrel including the blur correction device according to any one of claims 1 to 39.
  41.  請求項1から請求項39の何れかに記載のブレ補正装置を含む撮影装置。 An imaging device including the blur correction device according to any one of claims 1 to 39.
PCT/JP2014/063288 2013-05-21 2014-05-20 Shake correction device, lens barrel, and imaging device WO2014189027A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-106977 2013-05-21
JP2013106975A JP2014228624A (en) 2013-05-21 2013-05-21 Camera-shake correcting device, lens barrel, and photographing apparatus
JP2013-106972 2013-05-21
JP2013106972A JP2014228622A (en) 2013-05-21 2013-05-21 Camera-shake correcting device, lens barrel, and photographing apparatus
JP2013-106975 2013-05-21
JP2013106977A JP2014228625A (en) 2013-05-21 2013-05-21 Camera-shake correcting device, lens barrel, and photographing apparatus

Publications (1)

Publication Number Publication Date
WO2014189027A1 true WO2014189027A1 (en) 2014-11-27

Family

ID=51933580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063288 WO2014189027A1 (en) 2013-05-21 2014-05-20 Shake correction device, lens barrel, and imaging device

Country Status (1)

Country Link
WO (1) WO2014189027A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111025817A (en) * 2019-06-28 2020-04-17 瑞声声学科技(深圳)有限公司 Lens driving device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009169359A (en) * 2008-01-21 2009-07-30 Canon Inc Image-shake correcting device, imaging device, and optical apparatus
JP2013083754A (en) * 2011-10-07 2013-05-09 Konica Minolta Advanced Layers Inc Image blur correction device
JP2013084013A (en) * 2013-02-01 2013-05-09 Canon Inc Image blur correction device, imaging apparatus and optical device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009169359A (en) * 2008-01-21 2009-07-30 Canon Inc Image-shake correcting device, imaging device, and optical apparatus
JP2013083754A (en) * 2011-10-07 2013-05-09 Konica Minolta Advanced Layers Inc Image blur correction device
JP2013084013A (en) * 2013-02-01 2013-05-09 Canon Inc Image blur correction device, imaging apparatus and optical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111025817A (en) * 2019-06-28 2020-04-17 瑞声声学科技(深圳)有限公司 Lens driving device

Similar Documents

Publication Publication Date Title
US10498961B2 (en) Auto focus and optical image stabilization with roll compensation in a compact folded camera
JP5109450B2 (en) Blur correction device and optical apparatus
KR102196231B1 (en) Camera shake correction device and adjustment method therefor, camera shake correction circuit, camera shake correction method, camera module and position control method for optical element of camera module
JP6960983B2 (en) Imaging device with image stabilization function
JP5693163B2 (en) Vibration correction device, lens barrel, and optical apparatus
JP6444238B2 (en) Drive unit, lens barrel, and optical device
US10241349B2 (en) Image stabilization apparatus, lens apparatus, and imaging apparatus
JP2010286810A (en) Blur correction device and optical instrument
CN109683345B (en) Image blur correction device, lens barrel, and imaging device
JP2018040861A (en) Image blur correction device, lens barrel, and imaging device
JP2014228623A (en) Camera-shake correcting device, lens barrel, and photographing apparatus
WO2014189027A1 (en) Shake correction device, lens barrel, and imaging device
JP2011100045A (en) Image blurring-correcting device
JP2009222744A (en) Lens barrel and optical device including it
US11825198B2 (en) Drive device that drives movable unit by using actuator, image blur correcting device, image pickup apparatus, and lens barrel
JP2013088684A (en) Shake correction device, lens barrel, and optical instrument
JP2014228621A (en) Camera-shake correcting device and photographing apparatus
JP5239856B2 (en) Blur correction device and optical apparatus using the same
KR101662785B1 (en) Camera module
JP2010276842A (en) Image blurring correcting device
JP2016186587A (en) Shake correcting device, lens barrel, and optical equipment
JP2014228622A (en) Camera-shake correcting device, lens barrel, and photographing apparatus
JP2009175241A (en) Optical apparatus and adjusting method thereof
JP2014228624A (en) Camera-shake correcting device, lens barrel, and photographing apparatus
JP2014228625A (en) Camera-shake correcting device, lens barrel, and photographing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14801873

Country of ref document: EP

Kind code of ref document: A1