WO2014188850A1 - Light-shielding moisture-proof insulating coating material, sealing/insulating treatment method using light-shielding moisture-proof insulating coating material, and electronic component which is sealed/insulated using light-shielding moisture-proof insulating coating material - Google Patents

Light-shielding moisture-proof insulating coating material, sealing/insulating treatment method using light-shielding moisture-proof insulating coating material, and electronic component which is sealed/insulated using light-shielding moisture-proof insulating coating material Download PDF

Info

Publication number
WO2014188850A1
WO2014188850A1 PCT/JP2014/061779 JP2014061779W WO2014188850A1 WO 2014188850 A1 WO2014188850 A1 WO 2014188850A1 JP 2014061779 W JP2014061779 W JP 2014061779W WO 2014188850 A1 WO2014188850 A1 WO 2014188850A1
Authority
WO
WIPO (PCT)
Prior art keywords
moisture
proof insulating
meth
insulating paint
acrylate
Prior art date
Application number
PCT/JP2014/061779
Other languages
French (fr)
Japanese (ja)
Inventor
一彦 大賀
寛人 江夏
快 鈴木
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2014188850A1 publication Critical patent/WO2014188850A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • H05K3/287Photosensitive compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/447Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from acrylic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0112Absorbing light, e.g. dielectric layer with carbon filler for laser processing

Definitions

  • the present invention relates to a light-shielding moisture-proof insulating paint, a sealing / insulating treatment method using the light-shielding moisture-proof insulating paint, and an electronic component sealed and insulated with the light-shielding moisture-proof insulating paint.
  • UV lamps there is an increasing demand for ultraviolet irradiation devices using LED-UV lamps as UV lamps.
  • An ultraviolet irradiation device using an LED-UV lamp has low power consumption and generates less ozone. Therefore, there is an advantage that the running cost and the influence on the natural environment can be reduced.
  • LED-UV lamps have a single wavelength, so that a cured resin composition is required to have high sensitivity to ultraviolet rays. Further, for further cost reduction, it is also required to cure the ends of the laminated electronic components at a time with a smaller exposure amount.
  • JP-A-2008-280414 discloses a polyolefin polyol compound, an ethylenically unsaturated compound having a hydroxyl group, and a compound having two or more isocyanato groups in one molecule.
  • a photocurable resin composition containing it is disclosed.
  • 2008-2804144 although cured with a small amount of exposure, have a problem that poor curing at the resin / electronic component substrate interface tends to occur when the film thickness increases. there were. Moreover, there is no description about the light-shielding property with respect to visible light.
  • JP-A 2006-045340 discloses a composition containing an ABA type styrene block copolymer rubber as a thermoplastic elastomer and an azo compound chromic acid complex salt as a dye.
  • azo dyes have a drawback that there is a concern about environmental and human effects.
  • 100 mass parts of the thermoplastic elastomer is added with an amount of dye reaching 25 mass parts, the transmittance is 10% and 25% in the wavelength region of 650 nm and 700 nm, respectively.
  • this composition contains a solvent and performs moisture-proof insulating coating by volatilizing the solvent, and has a disadvantage that it has a larger environmental load than moisture-proof insulating coating cured by ultraviolet rays.
  • the present invention has been made in view of the above-described problems of the prior art, has a low environmental burden, is excellent in deep curability at a low dose, and is hydrophobic and has high long-term insulation reliability.
  • An object of the present invention is to provide a photo-curing moisture-proof insulating coating material having a light shielding property against visible light in a wide wavelength range.
  • Another object of the present invention is to provide a sealing treatment or insulation treatment method by curing a photocurable moisture-proof insulating paint for a mounting circuit board with an LED-UV lamp.
  • Another object of the present invention is to provide an electronic component that is highly reliable and capable of suppressing light leakage, which is sealed or insulated with the photocurable moisture-proof insulating paint for a mounting circuit board.
  • the present inventors have found that a photocurable moisture-proof insulating paint containing a (meth) acryloyl group-containing compound, a photopolymerization initiator, and two or more dyes has little environmental impact.
  • the present inventors have found that the present invention has completed the present invention by discovering that it has excellent deep-part curability at a low irradiation dose, is hydrophobic and has high long-term insulation reliability, and has a light-shielding property against visible light in a wide wavelength range.
  • the present invention (I) (1) (meth) acryloyl group-containing compound, (2) a photopolymerization initiator, and (3) a moisture-proof insulating paint containing two or more dyes, wherein the cured film having a thickness of 500 ⁇ m obtained by curing the paint has a total light transmittance of less than 10%, and In the wavelength range of 400 to 700 nm, the total of the wavelength range having a transmittance of 10% or more is 50 nm or less, the illuminance at a wavelength of 365 nm is 400 mW / cm 2 , and the exposure amount is 300 mJ / cm 2.
  • the present invention relates to a moisture-proof insulating paint characterized in that the thickness of a cured film obtained by irradiating with ultraviolet rays under the above conditions is 500 ⁇ m or more.
  • the present invention (II) includes (1) a (meth) acryloyl group-containing compound, (2) a photopolymerization initiator, and (3) a moisture-proof insulating paint containing two or more types of dyes, When at least two dyes (3) were measured for UV-visible light transmittance in a butyl acetate solution with an optical path length of 10 mm, the concentration was adjusted so that the transmittance at the absorption maximum wavelength was 10%.
  • the present invention relates to a moisture-proof insulating paint characterized in that it is a dye having a transmittance of 50% or more at a wavelength of 365 nm.
  • the present invention (III) relates to a method for sealing or insulating an electronic component including the steps of applying the moisture-proof insulating paint of the present invention (I) to an electronic component, irradiating the application portion with an LED-UV lamp, and curing it. .
  • the present invention (IV) relates to an electronic component sealed or insulated with the moisture-proof insulating paint of the present invention (I).
  • the present invention relates to the following [1] to [15].
  • [1] (1) (Meth) acryloyl group-containing compound, (2) a photopolymerization initiator, and (3) a moisture-proof insulating paint containing two or more dyes, wherein the cured film having a thickness of 500 ⁇ m obtained by curing the paint has a total light transmittance of less than 10%,
  • the total of the wavelength range with a transmittance of 10% or more in the wavelength range of 400 to 700 nm is 50 nm or less
  • the illuminance at a wavelength of 365 nm is 400 mW / cm 2
  • the exposure amount is 300 mJ / cm. 2.
  • a moisture-proof insulating paint characterized in that the thickness of a cured film obtained by irradiating ultraviolet rays under the condition 2 is 500 ⁇ m or more.
  • a cured film having a thickness of 500 ⁇ m obtained by curing the coating material has a total light transmittance of less than 10% and a transmittance of less than 10% in all wavelength ranges of 400 to 700 nm
  • the transmittance at the absorption maximum wavelength is 10%.
  • [4] When at least one of the dyes (3) has an absorption maximum wavelength in the range of 450 nm or more and less than 550 nm when converted into a butyl acetate solution, and at least one other is converted into a butyl acetate solution.
  • the photopolymerization initiator (2) is represented by the formula (1) (In the formula, R 1 is a hydrocarbon group which may contain a hetero atom, and R 2 and R 3 are hydrocarbon groups.)
  • the (meth) acryloyl group-containing compound (1) includes at least one selected from the group consisting of polyol poly (meth) acrylate, epoxy (meth) acrylate, urethane (meth) acrylate, and (meth) acrylic monomer. [1] to [8] The moisture-proof insulating paint according to any one of [1] to [8].
  • the (meth) acryloyl group-containing compound (1) is at least one selected from the group consisting of a polyol poly (meth) acrylate, an epoxy (meth) acrylate, and a (meth) acryl monomer, and a urethane (meth) acrylate,
  • the moisture-proof insulating paint according to any one of [1] to [9].
  • the urethane (meth) acrylate includes a structure derived from a polyester polyol having a structural unit derived from a hydrogenated dimer acid and a structural unit derived from a hydrogenated dimer diol. Or the moisture-proof insulating paint as described in [10].
  • a sealing process for an electronic component including a step of applying the moisture-proof insulating paint according to any one of [1] to [13] to the electronic component, irradiating the application portion with an LED-UV lamp, and curing the applied portion. Or insulation treatment method.
  • the moisture-proof insulating paint of the present invention has a low environmental impact, is excellent in deep-curing property at a low irradiation dose, and has a long-term insulation reliability that is hydrophobic and has a light shielding property against visible light in a wide wavelength range, By applying and curing this moisture-proof insulating coating, it is possible to produce an electronic component that is highly reliable and can suppress light leakage. In addition, by applying the moisture-proof insulating paint of the present invention, irradiating the application part with an LED-UV lamp and curing it, it is possible to manufacture highly reliable electronic components that can suppress light leakage at low cost and with low environmental impact. can do.
  • (meth) acryloyl group means an acryloyl group and / or a methacryloyl group.
  • the present invention (I) (1) (meth) acryloyl group-containing compound, (2) a photopolymerization initiator, and (3) a moisture-proof insulating paint containing two or more dyes, wherein the cured film having a thickness of 500 ⁇ m obtained by curing the paint has a total light transmittance of less than 10% and In the wavelength range of 400 to 700 nm, the total of the wavelength range having a transmittance of 10% or more is 50 nm or less, and the paint applied to a thickness of 1 mm or more has an illuminance of 400 mW / cm 2 at a wavelength of 365 nm and an exposure amount of 300 mJ /
  • the moisture-proof insulating paint is characterized in that the thickness of a cured film obtained by irradiating with ultraviolet rays under the condition of cm 2 is 500 ⁇ m or more.
  • the (meth) acryloyl group-containing compound (1) will be described. If this component is a (meth) acryloyl group containing compound, there will be no restriction
  • the moisture-proof insulating paint of the present invention contains the silane coupling agent (4)
  • the silane coupling agent (4) contains a (meth) acryloyl group
  • the (meth) acryloyl group It is assumed that the silane coupling agent having a silane coupling agent is contained in the silane coupling agent (4) and not in the (meth) acryloyl group-containing compound (1).
  • the (meth) acryloyl group-containing compound (1) include polyol poly (meth) acrylate, epoxy (meth) acrylate, urethane (meth) acrylate, and (meth) acrylic monomer.
  • polyol poly (meth) acrylate is an ester compound of polyol and acrylic acid or methacrylic acid.
  • polyol chosen in this case there is no restriction
  • Product names Kuraray Polyol C-590, C-1065N, C-1015N, C- 2015N etc. are mentioned. These may be used alone or in combination of two or more.
  • the polyol which has an aromatic ring, polyether polyol, (poly) carbonate diol, and polyester polyol are mainly preferable from a viewpoint of the adhesiveness to a base material. More preferred is a polyester polyol having a structural unit derived from a hydrogenated dimer acid and a structural unit derived from a hydrogenated dimer diol.
  • the amount of the polyol poly (meth) acrylate used in the moisture-proof insulating coating of the present invention (I) is preferably 20 to 70% by mass, more preferably 24 to 60% by mass, based on the total polymerizable component. Particularly preferred is 24 to 55% by mass. If the amount of the polyol poly (meth) acrylate used is less than 20% by mass relative to the total polymerizable component, the moisture-proof performance of the moisture-proof insulating coating may be lowered, which is not preferable.
  • epoxy (meth) acrylate is a compound obtained by adding acrylic acid or methacrylic acid to a terminal epoxy group of an epoxy resin.
  • epoxy resin selected in this case.
  • bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, glycidyl ester type epoxy resin, biphenyl type epoxy resin and the like can be mentioned. These may be used alone or in combination of two or more.
  • Examples of commercially available products of epoxy (meth) acrylate include epoxy ester 3000A (manufactured by Kyoeisha Chemical Co., Ltd.), EBECRYL600 (manufactured by Daicel-Cytec Co., Ltd.), EBECRYL6040 (manufactured by Daicel-Cytech Co., Ltd.), and the like.
  • the amount of the epoxy (meth) acrylate used in the moisture-proof insulating coating of the present invention (I) is preferably 20 to 70% by mass, more preferably 24 to 60% by mass, based on all polymerizable components. It is particularly preferably 24 to 55% by mass. If the amount of the epoxy (meth) acrylate used is less than 20% by mass relative to the total polymerizable component, the moisture-proof performance of the moisture-proof insulating coating may be lowered, which is not preferable. Moreover, when the usage-amount of an epoxy (meth) acrylate becomes more than 70 mass% with respect to all the polymeric components, the viscosity of a moisture-proof insulating coating will become high too much and it cannot be said that it is preferable on handling.
  • urethane (meth) acrylate is a compound obtained by reacting polyol and polyisocyanate with hydroxyl group-containing (meth) acrylate, or polyol and isocyanato group-containing (meth) acrylate.
  • polyol polyisocyanate, hydroxyl group-containing (meth) acrylate, and isocyanato group-containing (meth) acrylate selected at this time.
  • the polyol is the same as the polyol used in the polyol poly (meth) acrylate.
  • polyisocyanate examples include 1,4-cyclohexane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, , 4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane-4,4'-diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, lysine triisocyanate, lysine diisocyanate, hexamethylene diisocyanate 2,4,4-trimethylhexamethylene diisocyanate, 2,2,4-trimethylhexanemethylene diisocyanate, norbornane diisocyanate, etc.
  • hydroxyl group-containing (meth) acrylate examples include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 3-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 4-hydroxybutyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate 2-hydroxy-3- (o-phenylphenoxy) propyl acrylate, 2-hydroxyethyl acrylamide, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate, 4-hydroxybutyl Methacrylate, 2-hydroxy-3-phenoxypropyl methacrylate, 2-hydroxy-3- (o-phenylphenoxy) pro Methacrylate, and the like.
  • isocyanato group-containing (meth) acrylate examples include 2-isocyanatoethyl acrylate and 2-isocyanatoethyl methacrylate. These may be used alone or in combination of two or more.
  • urethane (meth) acrylate, polyol and polyisocyanate and hydroxyl group-containing (meth) acrylate, or polyol and isocyanato in the presence or absence of a known urethanization catalyst such as dibutyltin dilaurate and dioctyltin dilaurate.
  • a known urethanization catalyst such as dibutyltin dilaurate and dioctyltin dilaurate.
  • the amount used is polyol, polyisocyanate, hydroxyl group-containing (meth) acrylate, or polyol.
  • the amount is preferably 0.001 to 1 part by mass with respect to 100 parts by mass of the total amount of the isocyanato group-containing (meth) acrylate.
  • the urethanization catalyst catalyzes the hydrolysis reaction of the alkoxysilyl group when the moisture-proof insulating coating of the present invention (I) contains an alkoxysilyl group.
  • the amounts used in that case include polyol, polyisocyanate and hydroxyl group-containing ( It is preferably 0.003 to 0.2 parts by mass, more preferably 0.005 to 0.15 parts by mass with respect to 100 parts by mass of the total amount of (meth) acrylate or polyol and isocyanato group-containing (meth) acrylate. Part.
  • the polyisocyanate and, if necessary, a urethanization catalyst are charged into the reactor. Stirring is performed, and then the polyol is charged at a temperature in the reactor of 50 ° C. to 140 ° C., preferably 60 ° C. to 120 ° C., and then the temperature in the reactor is 50 ° C. to 160 ° C., preferably 60 ° C. These are reacted at ⁇ 140 ° C. Thereafter, the temperature in the reactor is 30 ° C.
  • the temperature in the reactor is preferably maintained at 30 ° C. to 120 ° C., desirably 50 ° C. to 100 ° C.
  • the temperature in the reactor is maintained at 30 ° C. to 120 ° C., preferably 50 ° C. to 100 ° C., to complete the reaction.
  • the isocyanato group-containing (meth) acrylate, a polymerization inhibitor and, if necessary, a urethanization catalyst are charged into the reactor, followed by stirring, and then the temperature in the reactor
  • the polyol is charged at 50 ° C. to 140 ° C., preferably 60 ° C. to 120 ° C., and then reacted at a temperature in the reactor of 50 ° C. to 160 ° C., preferably 60 ° C. to 140 ° C. Thereafter, the temperature in the reactor is maintained at 30 ° C. to 120 ° C., desirably 50 ° C. to 100 ° C., to complete the reaction.
  • the raw material charge molar ratio ie, (number of hydroxyl groups in the polyol) / (number of isocyanate groups in the polyisocyanate) / (hydroxyl group-containing (meta))
  • the number of hydroxyl groups in the acrylate) is adjusted according to the molecular weight of the target polyurethane. However, it is necessary to increase the number of isocyanato groups in the polyisocyanate than the number of hydroxyl groups in the polyol.
  • the ratio of the total number of hydroxyl groups in the polyol to the number of isocyanate groups in the polyisocyanate is close to 1.0, the molecular weight increases. When the ratio deviates from 1.0, the molecular weight decreases.
  • the feed molar ratio of the raw material is not particularly limited, but the ratio of the number of isocyanate groups in the polyisocyanate and the total number of hydroxyl groups in the polyol is preferably in the range of 4: 1 to 1.5: 1. If this ratio is larger than 4: 1, the abundance of structural units derived from polyol may be reduced, which may be undesirable in terms of moisture resistance of the moisture-proof insulating coating. Moreover, when it is smaller than 1.4: 1, the molecular weight becomes too large, and when used in the moisture-proof insulating paint of the present invention (I), the viscosity may become too high.
  • the amount of urethane (meth) acrylate used in the moisture-proof insulating coating of the present invention (I) is preferably 20 to 70% by mass, more preferably 24 to 60% by mass, based on all polymerizable components. It is particularly preferably 24 to 55% by mass. If the amount of urethane (meth) acrylate used is less than 20% by mass relative to the total polymerizable component, the moisture-proof performance of the moisture-proof insulating coating may be lowered, which is not preferable.
  • urethane (meth) acrylates urethane (meth) acrylate derived from a polyester polyol having a structural unit derived from a hydrogenated dimer acid and a structural unit derived from a hydrogenated dimer diol is particularly preferable.
  • dimer acid means a fatty acid having 14 to 22 carbon atoms (hereinafter referred to as unsaturated fatty acid A) having 2 to 4 ethylenic double bonds, preferably 14 carbon atoms having two ethylenic double bonds.
  • unsaturated fatty acid A a fatty acid having 14 to 22 carbon atoms having 2 to 4 ethylenic double bonds, preferably 14 carbon atoms having two ethylenic double bonds.
  • unsaturated fatty acid B a fatty acid having 14 to 22 carbon atoms having 1 to 4 ethylenic double bonds
  • the dimer acid obtained by reacting with ⁇ 22 fatty acids at the double bond part.
  • unsaturated fatty acid A tetradecadienoic acid, hexadecadienoic acid, octadecadienoic acid (linoleic acid, etc.), eicosadienoic acid, docosadienoic acid, octadecatrienoic acid (linolenic acid, etc.), eicosatetraenoic acid ( Arachidonic acid and the like), and linoleic acid is most preferable.
  • unsaturated fatty acid B tetradecenoic acid (tuzuic acid, sperm acid, myristoleic acid) as a fatty acid having 14 to 22 carbon atoms having one ethylenic double bond in addition to those exemplified above , Hexadecenoic acid (such as palmitoleic acid), octadecenoic acid (such as oleic acid, elaidic acid, vaccenic acid), eicosenoic acid (such as gadoleic acid), docosenoic acid (such as erucic acid, cetreic acid, brassic acid), etc. Acid or linoleic acid is most preferred.
  • the use ratio (molar ratio) of unsaturated fatty acid A and unsaturated fatty acid B is preferably about 1: 1.2 to 1.2: 1, and most preferably 1: 1.
  • the dimerization reaction can be performed according to a known method, for example, a method described in JP-A-9-136861. That is, for example, an unsaturated fatty acid A and an unsaturated fatty acid B are mixed with a Lewis acid or Bronsted acid type liquid or solid catalyst, preferably montmorillonite activated clay, and the total amount of unsaturated fatty acid A and unsaturated fatty acid B is 100 parts by mass.
  • the pressure during the reaction is usually a slightly pressurized state, but may be normal pressure.
  • the reaction time varies depending on the amount of catalyst and the reaction temperature, but is usually 5 to 7 hours.
  • the catalyst can be filtered off and then distilled under reduced pressure to distill off unreacted raw materials and isomerized fatty acids, and then dimer acid fraction can be distilled off.
  • the dimerization reaction is thought to proceed through double bond transfer (isomerization) and Diels-Alder reaction, but the present invention is not limited thereto.
  • the obtained dimer acid is usually a mixture of dimer acids having different structures depending on the bonding site or isomerization of the double bond, and may be used separately, but can be used as it is. Further, the obtained dimer acid contains a small amount of monomeric acid (for example, 6% by mass or less, particularly 4% by mass or less), trimer acid or higher polymer acid (for example, 6% by mass or less, particularly 4% by mass or less). May be.
  • the “hydrogenated dimer acid” described in the present specification refers to a saturated dicarboxylic acid obtained by hydrogenating the carbon-carbon double bond of the dimer acid.
  • the dimer acid having 36 carbon atoms produced from, for example, linoleic acid and linoleic acid or oleic acid is used as the raw material, the structure of the main component of the hydrogenated dimer acid is represented by the following formula (4 ) And formula (5).
  • Examples of commercially available hydrogenated dimer acid include PRIPOL (registered trademark) 1009 (manufactured by Croda), EMPOL (registered trademark) 1008, and EMPOL (registered trademark) 1062 (manufactured by BASF).
  • the “hydrogenated dimer diol” described in the present specification refers to the reduction of at least one of the above dimer acid, the above hydrogenated dimer acid and the lower alcohol ester thereof in the presence of a catalyst,
  • the main component is a diol obtained by hydrogenating the double bond.
  • a hydrogenated dimer diol is produced by reducing a hydrogenated dimer acid containing a compound having a structure represented by formula (4) or formula (5) as a main component, the main component of the hydrogenated dimer diol is reduced.
  • the structure is a structure represented by the following formulas (6) and (7).
  • Examples of commercially available hydrogenated dimer diol include PRIPOL (registered trademark) 2033 (manufactured by Croda) and Sovermol (registered trademark) 908 (manufactured by BASF).
  • the polyol component as a component can be produced by performing a condensation reaction in the presence of an esterification catalyst. Since the esterification reaction removes water, the reaction is generally performed at a reaction temperature of about 150 to 250 ° C. In general, the reaction is performed under normal pressure or reduced pressure.
  • a polyester polyol having a structural unit derived from a hydrogenated dimer acid and a structural unit derived from a hydrogenated dimer diol includes a lower alkyl ester of an acid containing a hydrogenated dimer acid as an essential component, and the hydrogenated dimer described above.
  • a polyol component containing diol as an essential component can also be produced by performing a transesterification reaction in the presence of a transesterification catalyst. In the transesterification reaction, alcohol is removed, so that the reaction is generally performed at a reaction temperature of about 120 to 230 ° C. In general, the reaction is performed under normal pressure or reduced pressure.
  • (Meth) acrylic monomer in the present specification is a compound obtained by removing the polyol poly (meth) acrylate, the epoxy (meth) acrylate and the urethane (meth) acrylate from the (meth) acryloyl group-containing compound.
  • (meth) acrylic monomers include (meth) acryloyl-containing compounds having a cyclic ether group such as glycidyl acrylate, tetrahydrofurfuryl acrylate, glycidyl methacrylate, and tetrahydrofurfuryl methacrylate, cyclohexyl acrylate, isobornyl acrylate, and dicyclopentenyl.
  • a cyclic ether group such as glycidyl acrylate, tetrahydrofurfuryl acrylate, glycidyl methacrylate, and tetrahydrofurfuryl methacrylate, cyclohexyl acrylate, isobornyl acrylate, and dicyclopentenyl.
  • the amount of the (meth) acrylic monomer used in the moisture-proof insulating coating of the present invention (I) is preferably 30 to 80% by mass, more preferably 40 to 70% by mass, based on the total polymerizable components. More preferably, it is 45 to 70% by mass. If the amount of the (meth) acrylic monomer used is more than 80% by mass relative to the total polymerizable component, the moisture-proof performance of the moisture-proof insulating paint may be lowered, which is not preferable.
  • the “polymerizable component” described in the present specification means a compound that can be polymerized by radical polymerization, and the “total polymerizable component” means the total amount of the polymerizable component.
  • the (meth) acryloyl group-containing compound (1) and urethane (meth) acrylate are both included in the polymerizable component.
  • a (meth) acrylic monomer having a chain aliphatic hydrocarbon group having 9 or more carbon atoms such as lauryl acrylate, isononyl acrylate, lauryl methacrylate, isononyl methacrylate, etc.
  • (meth) acrylic monomer Isobornyl acrylate, dicyclopentenyl acrylate, dicyclopentenyloxyethyl acrylate, dicyclopentanyl acrylate, dicyclopentanyl ethyl acrylate, 4-tert-butylcyclohexyl acrylate, isobornyl methacrylate, dicyclopentenyl methacrylate, dicyclo Pentenyloxyethyl methacrylate, dicyclopentanyl methacrylate, dicyclopentanyl ethyl methacrylate, 4-tert-butylcyclohexyl methacrylate Having a number of 9 or more cyclic aliphatic hydrocarbon group having a carbon etc., it is preferable that (meth) the total amount of the acrylic monomer is more than 50 mass%.
  • the photopolymerization initiator (2) is not particularly limited as long as it is a compound that generates radicals that contribute to the initiation of radical polymerization upon irradiation with light such as near infrared rays, visible rays, and ultraviolet rays.
  • Specific examples of the photopolymerization initiator include acetophenone, 2,2-dimethoxy-2-phenylacetophenone, diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, 1,2-hydroxy-2-methyl-1-phenylpropane.
  • bisacylphosphine oxides include bis- (2,6-dichlorobenzoyl) phenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2, 6-dichlorobenzoyl) -4-propylphenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -1-naphthylphosphine oxide, bis- (2,6-dimethoxybenzoyl) phenylphosphine oxide, bis- ( 2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2,4,6- Trimethylbenzoyl) phenyl phosphite Oxide, (2,5,6-trimethylbenzo
  • a metallocene compound can be used as a photopolymerization initiator.
  • the metallocene compound the transition metal represented by Fe, Ti, V, Cr, Mn, Co, Ni, Mo, Ru, Rh, Lu, Ta, W, Os, Ir, etc. can be used as the metallocene compound,
  • An example is bis ( ⁇ 5-2,4-cyclopentadien-1-yl) -bis [2,6-difluoro-3- (pyrrol-1-yl) phenyl] titanium.
  • photopolymerization initiators can be used alone or in combination of two or more.
  • the more preferable photopolymerization initiator used in the present invention is a compound represented by the following formula (1) or benzyldimethyl ketal.
  • R 1 , R 2 and R 3 are not particularly limited in structure, but R 1 is a hydrocarbon group which may contain a hetero atom, and R 2 and R 3 are hydrocarbon groups.
  • R 1 is a structure containing a hetero atom
  • R 2 and R 3 are structures containing an alkyl group, and / or a phenyl group, and / or a cycloalkyl group.
  • R 1 is represented by the formula (2) or (3)
  • R 2 is a hydrocarbon group having 1 to 10 carbon atoms and may contain a cycloalkyl group
  • R 3 is a methyl group or a phenyl group. It is a group.
  • R 2 is an alkyl group having 1 to 6 carbon atoms.
  • Examples of the compound represented by the formula (1) include Irgacure OXE 01, Irgacure OXE 02 (both manufactured by BASF), TR-PBG-304, TR-PBG-305 (both Changzhou Powerful Electronic New Materials Co., Ltd. ( CHANGZHOU TRONLY NEW ELECTRONIC MATERIALS CO., LTD) etc.
  • benzyl dimethyl ketal Irgacure 651 (manufactured by BASF Corp.) can be mentioned, which may be used alone or in combination of two or more. Further, benzyl dimethyl ketal is most preferable from the viewpoint of storage stability when blended in a moisture-proof insulating coating.
  • the amount of the compound represented by the formula (1) or benzyl dimethyl ketal is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 100 parts by mass of the total photopolymerizable component.
  • the range is from 6 parts by mass.
  • the amount of the compound represented by the formula (1) or the benzyldimethyl ketal is less than 0.1 parts by mass with respect to 100 parts by mass of the total photopolymerizable component, the deep curability is hardly exhibited. It is not preferable.
  • the usage-amount of the compound or benzyl dimethyl ketal represented by Formula (1) exceeds 10 mass parts with respect to 100 mass parts of all photopolymerizable components, it may have a bad influence on the physical property of hardened
  • Preferred as a photocuring initiator represented by the formula (1) or a photopolymerization initiator combined with benzyldimethyl ketal is 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone, 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone.
  • Examples of 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone include Irgacure 369 (manufactured by BASF).
  • 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone for example, Irgacure 379EG (manufactured by BASF) etc. Is mentioned.
  • the amount of the photopolymerization initiator other than the compound represented by the formula (1) or benzyldimethyl ketal is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the total photopolymerizable component. Preferably, it is in the range of 0.5 to 6 parts by mass.
  • These photopolymerization initiators other than the compound represented by the formula (1) or benzyl dimethyl ketal may be used alone or in combination of two or more. When the amount of the compound represented by the formula (1) or the benzyldimethyl ketal used is less than 0.1 parts by mass with respect to 100 parts by mass of the total photopolymerizable component, the photopolymerization initiation performance is hardly exhibited. It is not preferable.
  • the dye (3) is used by mixing two or more kinds in order to impart a light shielding property to visible light in a wide wavelength range.
  • the dye used as a component of the moisture-proof insulating paint of the present invention (I) include direct dyes, acid dyes, basic dyes, mordant dyes, acid mordant dyes, vat dyes, disperse dyes, reactive dyes, and fluorescent whitening dyes. And plastic dyes. Among these, two or more dyes are used.
  • the “dye” described in the present specification means “a substance that has a property of being soluble in a solvent or having compatibility with a resin and coloring dissolved and compatible substances”.
  • the “direct dye” described in the present specification means a dye that is water-soluble and dyes the fiber with a neutral salt or the like in a neutral or weak alkaline bath.
  • the “acid dye” described in the present specification means a dye that is water-soluble and dyes fibers with an acid bath such as sulfuric acid, formic acid, and acetic acid.
  • the “basic dye” described in the present specification means a dye that is water-soluble and dyes in a neutral or weak alkaline bath on a fiber to which an acidic substance such as tannic acid is previously attached.
  • Mordant dye described in the present specification means a dye that is dyed in a mordant dye solution bath on a fiber to which a metal hydroxide or oxide such as chromium, aluminum, iron, or tin is fixed in advance. To do.
  • the “acid mordant dye” described in the present specification is water-soluble, and the fiber can be dyed with an acid bath such as sulfuric acid, formic acid, acetic acid, etc. It means a dye that can be dyed with a mordant dye solution bath on an oxide or a fiber to which an oxide is fixed.
  • “Vat dye” described in this specification is insoluble or sparingly soluble in water.
  • the “dispersion dye” described in the present specification means a dye that is insoluble or hardly soluble in water and dyes by immersing fibers in a liquid dispersed in water using a surfactant.
  • the “reactive dye” described in the present specification means a dye having a chemical structure capable of forming a covalent bond with cellulose, wool, nylon and the like, and dyeing by reacting with those fibers.
  • the “fluorescent whitening dye” described in the present specification means a dye that absorbs ultraviolet rays and emits blue to violet light having a longer wavelength.
  • the “plastic dye” described in the present specification means a dye that is oil-soluble and highly compatible with a resin, and is intended to dye a resin rather than a fiber.
  • plastic dyes for example, monoazo dyes (Color Index Constitution Number 11000 to 19999), diazo dyes (Color Index Constitution Number 20000 to 29999), triaryl dyes (Color Index Conb 42000-44999), quinoline dyes (Color Index Constitution Number 47000-47999), methine dyes (Color Index Constitution Number 48000-4999), azine dyes (Color Index Constitution) Number 50000-50999), aminoketone dyes (Color Index Constitution Number 56000-56999), anthraquinone dyes (Color Index Constitution Number 58000-72699), Indigo dyes 7 It is preferable to contain at least one dye selected from these dyes and to use two or more dyes in order to impart light-shielding properties in a wide visible light wavelength range.
  • monoazo dyes Color Index Constitution Number 11000 to 19999
  • diazo dyes Color Index Constitution Number 20000 to 29999
  • triaryl dyes Color Index Conb 42000-44999
  • quinoline dyes Color Index Constitution Number 47000
  • At least two of the dyes (3) each have a transmittance at a maximum absorption wavelength of 10% when UV-visible light transmittance measurement is performed in a butyl acetate solution under an optical path length of 10 mm.
  • concentration of the solution thus adjusted is a dye having a transmittance of 50% or more at a wavelength of 365 nm
  • at least one of the at least two dyes (3) is a butyl acetate solution.
  • the absorption maximum wavelength exists in the range of 450 nm or more and less than 550 nm, and at least another kind is a dye having the absorption maximum wavelength in the range of 550 nm or more and 700 nm or less when the butyl acetate solution is used.
  • the dyes are anthraquinone dyes, and most preferably all of the dyes are anthraquinone dyes.
  • the anthraquinone dye corresponds to Color Index Constitution Number 58000 to 72699.
  • the “Color Index Constitution Number” described in this specification is the “Sociity of Dyers and Colorists and The American Association of Textiles and Related Colors”. In the compound database Color Index International, it refers to “Number given based on chemical structure”.
  • the amount of the dye used in the moisture-proof insulating coating of the present invention (I) is not particularly limited. However, if the concentration in the moisture-proof insulating coating is too low, sufficient light-shielding properties cannot be obtained. May decrease and cause poor curing. Therefore, the amount of the dye used is preferably in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass of all polymerizable components. Further, it is preferably 0.15 to 5 parts by mass.
  • the method for measuring the thickness of the cured film obtained by curing the moisture-proof insulating paint of the present invention (I) will be described.
  • the thickness of the cured film is measured using an outer micrometer.
  • the constant pressure mechanism include a ratchet stop type.
  • a polymerization inhibitor may be added and is preferable in order to increase storage stability.
  • the polymerization inhibitor is not particularly limited.
  • the polymerization inhibitor is preferably added in an amount of 0.01 to 10 parts by mass with respect to 100 parts by mass of all polymerizable components.
  • the moisture-proof insulating paint of the present invention (I) can further contain a silane coupling agent (4) for the purpose of imparting adhesion to glass, metal or metal oxide.
  • the silane coupling agent (4) is an organosilicon compound having both a functional group reactively bonded to an organic material and a functional group reactively bonded to an inorganic material in the molecule, and the structure is generally represented by the following formula (8). Shown in
  • Y is a functional group reactively bonded to an organic material, and representative examples thereof include a vinyl group, an epoxy group, an amino group, a substituted amino group, a (meth) acryloyl group, a mercapto group, and the like.
  • X is a functional group that reacts with an inorganic material and is hydrolyzed by water or moisture to produce silanol. This silanol reacts with the inorganic material.
  • Representative examples of X include an alkoxy group, an acetoxy group, a chloro atom, and the like.
  • R 12 is a divalent organic group, and R 13 represents an alkyl group.
  • i represents an integer of 1 to 3
  • silane coupling agent examples include 3-isocyanatopropyltriethoxysilane, 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropylmethyldiethoxysilane, 3-isocyanatopropylmethyldimethoxysilane, p-styryltrimethoxysilane, p -Styryltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriisopropoxysilane, vinyltris (2-methoxyethoxy) silane, 3-acryloyloxypropyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3 -Acryloyloxypropyltriethoxysilane, 3-methacryloyloxypropyltriethoxysilane, 3-acryloyloxypropylmethyldi Toxisilane, 3-methacryloyloxyprop
  • Y is preferably a compound having reactivity with (meth) acryloyl group-containing compound (1) and urethane (meth) acrylate, and among them, p-styryltrimethoxysilane, p-styryl.
  • Triethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriisopropoxysilane, vinyltris (2-methoxyethoxy) silane, 3-acryloyloxypropyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-acryloyl Oxypropyltriethoxysilane, 3-methacryloyloxypropyltriethoxysilane, 3-acryloyloxypropylmethyldimethoxysilane, 3-methacryloyloxypropylmethyldimethoxysilane, 3-actyl Royloxypropylmethyldiethoxysilane and 3-methacryloyloxypropylmethyldiethoxysilane are preferred, more preferably 3-acryloyloxypropyltrimethoxysilane and 3-methacryloyl which are easily incorporated into the cured product during the photocuring reaction.
  • the silane coupling agent (4) is preferably in the range of 0.01 to 8 parts by weight, more preferably 100 parts by weight of all polymerizable components in the moisture-proof insulating paint of the present invention (I).
  • the range is from 0.1 to 5 parts by mass. In the case of less than 0.01 part by mass with respect to 100 parts by mass of all polymerizable components in the moisture-proof insulating paint of the present invention (I), adhesion to glass, metal or metal oxide may not be sufficiently exhibited. It is not preferable.
  • the moisture-proof insulating paint of the present invention (I) can further contain a tackifier (5) for the purpose of imparting adhesion to the substrate.
  • the tackifier used in the moisture-proof insulating paint of the present invention (I) is a substance for providing an adhesive function by blending with a polymer compound represented by urethane (meth) acrylate or elastomer having rubber elasticity. In general, it is a compound in an oligomer region having a molecular weight of several hundred to several thousand, and has a property of not exhibiting rubber elasticity in itself in a glass state at room temperature.
  • petroleum resin tackifiers In general, petroleum resin tackifiers, terpene resin tackifiers, rosin resin tackifiers, coumarone indene resin tackifiers, styrene resin tackifiers, and the like can be used as tackifiers.
  • Examples of petroleum resin tackifiers include aliphatic petroleum resins, aromatic petroleum resins, aliphatic-aromatic copolymer petroleum resins, alicyclic petroleum resins, dicyclopentadiene resins, and hydrogenated products thereof. Of the modified product.
  • the synthetic petroleum resin may be C5 or C9.
  • terpene resin tackifier examples include ⁇ -pinene resin, ⁇ -pinene resin, terpene-phenol resin, aromatic modified terpene resin, hydrogenated terpene resin and the like. Many of these terpene resins are resins having no polar group. Rosin resin tackifiers include rosins such as gum rosin, tall oil rosin, wood rosin; hydrogenated rosin, disproportionated rosin, polymerized rosin, modified rosin such as maleated rosin; rosin glycerin ester, hydrogenated rosin ester, water Examples thereof include rosin esters such as rosin glycerol ester. These rosin resins have polar groups.
  • tackifiers can be used alone or in combination of two or more.
  • it preferably contains at least one petroleum resin tackifier and a terpene resin tackifier, and more preferably at least one petroleum resin tackifier. It contains the agent.
  • the total amount of tackifier is 0.1 to 35 parts by mass with respect to 100 parts by mass of all polymerizable components.
  • the total amount of the tackifier is less than 0.1 parts by mass with respect to 100 parts by mass of the total polymerizable component, it is not preferable that the effect of adding the tackifier is hardly expressed.
  • the moisture-proof insulating paint of the present invention (I) may become cloudy or the viscosity may become too high. This is not preferable.
  • a radical chain transfer agent can be used for the moisture-proof insulating paint of this invention (I) as needed.
  • a radical chain transfer agent a compound that has the function of reactivating the polymerization active species trapped by an inert radical scavenger such as oxygen and contributes to the improvement of the surface curability can be used without limitation.
  • Examples of the compound serving as a chain transfer agent include N, N-dimethylaniline, N, N-dimethyl-p-toluidine, N, N-dimethyl-m-toluidine, N, N-diethyl-p-toluidine, N, N -Dimethyl-3,5-dimethylaniline, N, N-dimethyl-3,4-dimethylaniline, N, N-dimethyl-4-ethylaniline, N, N-dimethyl-4-isopropylaniline, N, N-dimethyl -4-t-butylaniline, N, N-dimethyl-3,5-di-t-butylaniline, N, N-bis (2-hydroxyethyl) -3,5-dimethylaniline, N, N-di ( 2-hydroxyethyl) -p-toluidine, N, N-bis (2-hydroxyethyl) -3,4-dimethylaniline, N, N-bis (2-
  • the amount used is 0.01 to 10 parts by mass with respect to 100 parts by mass of all polymerizable components. High sensitivity and improved surface curability in air. More preferably, the surface curability is further improved within the range of 0.5 to 5 parts by mass.
  • radical chain transfer agents may be used alone or in combination of two or more.
  • the moisture-proof insulating paint of the present invention (I) preferably has a viscosity at 25 ° C. of 2000 mPa ⁇ s or less. More preferably, the viscosity at 25 ° C. is 1600 mPa ⁇ s or less.
  • the viscosity at 25 ° C. is higher than 2000 mPa ⁇ s, when the curable composition is applied by a drawing application method using a dispenser, the spread after application is suppressed, and as a result, the thickness after curing is more than necessary. May be higher.
  • a filler, a modifier, an antifoaming agent, a colorant, and the like can be added as necessary within a range that does not adversely affect fluidity and photocurability. .
  • filler examples include fine powder silicon oxide, magnesium oxide, aluminum hydroxide, calcium carbonate and the like.
  • the modifier examples include a leveling agent for improving leveling properties.
  • a leveling agent for example, polyether-modified dimethylpolysiloxane copolymer, polyester-modified dimethylpolysiloxane copolymer, polyether-modified methylalkylpolysiloxane copolymer, aralkyl-modified methylalkylpolysiloxane copolymer, etc. can be used. . These may be used alone or in combination of two or more. 0.01 to 10 parts by mass can be added to 100 parts by mass of all polymerizable components. When the amount is less than 0.01 part by mass, the effect of adding the leveling agent may not be exhibited. On the other hand, when the amount is more than 10 parts by mass, depending on the type of leveling agent used, there is a possibility of surface tack or deterioration of electrical insulation characteristics.
  • the antifoaming agent is not particularly limited as long as it literally has an action of eliminating or suppressing bubbles generated or remaining when the moisture-proof insulating coating of the present invention (I) is applied.
  • Examples of the antifoaming agent used in the moisture-proof insulating coating of the present invention (I) include known antifoaming agents such as silicone oils, fluorine-containing compounds, polycarboxylic acid compounds, polybutadiene compounds, and acetylenic diol compounds. .
  • Specific examples thereof include, for example, BYK-077 (manufactured by Big Chemie Japan Co., Ltd.), SN deformer 470 (manufactured by San Nopco Co., Ltd.), TSA750S (manufactured by Momentive Performance Materials LLC), silicone oil SH-203 (Toray Industries, Inc.) -Silicone defoaming agents such as Dow Corning Co., Ltd., Dappo SN-348 (San Nopco Co., Ltd.), Dappo SN-354 (San Nopco Co., Ltd.), Dappo SN-368 (San Nopco Co., Ltd.), Disparon 230HF Acetylendiols such as acrylic polymer antifoaming agents (manufactured by Enomoto Kasei Co., Ltd.), Surfynol DF-110D (Nisshin Chemical Industry Co., Ltd.), Surfynol DF-37 (Nisshin Chemical Industry Co., Ltd.
  • 0.001 to 5 parts by mass can be added to 100 parts by mass of all polymerizable components. If the amount is less than 0.01 parts by mass, the effect of adding the antifoaming agent may not be exhibited. On the other hand, when the amount is more than 5 parts by mass, depending on the type of antifoaming agent used, surface tack may occur or the electrical insulation characteristics may be deteriorated.
  • colorant examples include known inorganic pigments, organic pigments, organic dyes, and the like, and each is blended according to a desired color tone. These may be used alone or in combination of two or more.
  • the sealing treatment or insulation treatment method of the present invention (III) will be described.
  • the moisture-proof insulating paint of the present invention (I) is applied to an electronic component, and then the moisture-proof insulating paint coating portion is irradiated with an LED-UV lamp to be cured.
  • the method for applying the moisture-proof insulating coating is not particularly limited, but examples include dipping, brushing, spraying, and drawing.
  • the method of irradiating the moisture-proof insulating paint application part with ultraviolet rays from the LED-UV lamp is not particularly limited, but the electronic parts coated with the moisture-proof insulating paint by holding or operating the flexible light guide tube by hand or machine are irradiated.
  • a method in which an electronic component coated with a moisture-proof insulating coating is placed on a conveyor and irradiated through an area irradiated with ultraviolet rays from an LED-UV lamp.
  • the present invention (IV) is an electronic component sealed or insulated with the moisture-proof insulating paint of the present invention (I).
  • the electronic component include a microcomputer, a transistor, a capacitor, a resistor, a relay, a transformer, and a mounting circuit board on which these are mounted, and also includes a lead wire, a harness, a film substrate, and the like that are joined to these electronic components. be able to.
  • the signal input part of flat panel display panels such as a liquid crystal display panel, a plasma display panel, an organic electroluminescent panel, a field emission display panel, the touch sensor of a touch panel, its wiring, etc. are mentioned as an electronic component.
  • the electronic component of the present invention (IV) can be manufactured by applying the moisture-proof insulating paint of the present invention (I) to the electronic component and then curing the applied moisture-proof insulating paint.
  • the above-mentioned moisture-proof insulating paint is applied to the electronic component by a generally known method such as dipping, brushing, spraying, or drawing. Apply to.
  • an electronic component is obtained by irradiating ultraviolet rays using a high-pressure mercury lamp, a metal halide lamp, an LED or the like as a light source and curing the coating film of the moisture-proof insulating coating applied to the electronic component.
  • polyester polyol A a mixture of a polyester polyol and a hydrogenated dimer diol having a hydroxyl value of 59 mg KOH / g and a number average molecular weight of 2000 and containing 15% by mass of a hydrogenated dimer diol (hereinafter referred to as polyester polyol A).
  • urethane acrylate B urethane acrylate
  • urethane acrylate D urethane acrylate
  • polyol polyacrylate E hydrogenated polybutadiene diacrylate
  • Example 1 4.50 g of urethane acrylate B, 4.50 g of IBXA (isobornyl acrylate manufactured by Osaka Organic Chemical Co., Ltd.), 0.80 g of Blemmer LA (lauryl acrylate manufactured by NOF Corporation), A-DPH (Shin Nakamura Chemical Co., Ltd.) Dipentaerythritol hexaacrylate) 0.20 g, 1- (methylamino) anthraquinone 0.01 g, 1,4-bis (4-methylanilino) anthracene-9,10-dione 0.01 g as a dye, photopolymerization initiator TR-PBG-304 (ChangZhou TRONLY NEW ELECTRONIC MATERIALS CO., LTD 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]- 3-cyclopentylpropa N--1- (O-acetyloxime) 0.20 g and
  • Examples 2 to 8, Comparative Examples 1 to 3 In the same manner as in Example 1, the components and amounts as shown in Table 1 were blended to obtain moisture-proof insulating coatings B2 to B6, C1, D1, E1, and F1.
  • Irgacure (registered trademark) 651 is a benzyldimethyl ketal manufactured by BASF
  • Irgacure (registered trademark) 369 is 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 manufactured by BASF. is there.
  • Deep part curability was evaluated by the following method.
  • Moisture-proof insulating paints B1 to B6, C1, D1, E1, and F1 are each applied onto a polyimide film (trade name: Kapton (registered trademark) 150EN, manufactured by Toray DuPont Co., Ltd.) so that the thickness is 1 mm.
  • -A moisture-proof insulating coating applied by irradiating ultraviolet rays under the conditions of an illuminance of 400 mW / cm 2 and an exposure amount of 300 mJ / cm 2 using an ultraviolet irradiation device (manufactured by Eye Graphics) using a UV lamp (wavelength 365 nm).
  • the case where the thickness of the cured part after wiping off the uncured liquid part was 500 ⁇ m or more was rated as “ ⁇ ”, and the case where it was less than 500 ⁇ m was marked as “X”.
  • Table 1 The results are shown in Table 1.
  • Moisture-proof insulating paints B1 to B6, C1, D1, E1, and F1 are each made of a glass plate (50 mm x 50 mm x 0.7 mm, glass type: product using a bar coater so that the film thickness after curing is 500 ⁇ m.
  • EAGLE XG registered trademark
  • CORNING the same type of glass is superimposed on the coating surface, and an ultraviolet irradiation device (made by Eye Graphics) using an LED-UV lamp (wavelength 365 nm) is used.
  • Ultraviolet rays were irradiated from both sides under the conditions of an illuminance of 400 mW / cm 2 and an exposure amount of 300 mJ / cm 2 to completely cure each moisture-proof insulating coating material to obtain a test piece. Using this test piece, the following visible light wavelength transmittance and total light transmittance were measured.
  • the moisture-proof insulating coatings B1 to 3, C1, D1, E1, and F1 containing two or more dyes have both high deep curability and light shielding properties. It can be seen that the moisture-proof insulating coatings B4 to B6 containing only one kind of dye are inferior in either deep-curing property or light-shielding property. That is, it has been found that the moisture-proof insulating paint of the present invention (I) has both high deep-curing properties and light-shielding properties as compared with a moisture-proof insulating paint that does not contain an existing dye or contains only one type of dye.
  • the moisture-proof insulating paint of the present invention (I) has both high deep curability and light shielding properties. Further, the sealing treatment / insulation treatment performed using the moisture-proof insulating paint and the LED-UV lamp of the present invention (I) has a low environmental load and is low in cost. Electronic parts sealed and insulated using the moisture-proof insulating paint of the present invention (I) are highly reliable, can suppress light leakage, and are useful for mounting circuit boards equipped with microcomputers and various parts. is there.

Abstract

Provided is a photocurable moisture-proof insulating coating material which has little impact on the environment, can exhibit excellent deep part curability upon the irradiation of a small quantity of light, is hydrophobic, has high long-term insulation reliability, and also has a light-shielding property against visible light in a broad wavelength range. A moisture-proof insulating coating material comprising (1) a compound containing a (meth)acryloyl group, (2) a photopolymerization initiator and (3) at least two types of dyes, said coating material being characterized in that: a 500 μm-thick cured film produced by curing the coating material has a total light transmittance of less than 10%, wherein the sum total of wavelength regions which fall within the wavelength range from 400 to 700 nm and in which the transmittance becomes 10% or more is 50 nm or less; and a cured film produced by irradiating the coating material applied in a thickness of 1 mm or more with ultraviolet ray under such conditions that the illuminance at a wavelength of 365 nm is 400 mW/cm2 and the light exposure quantity is 300 mJ/cm2 has a thickness of 500 μm or more.

Description

遮光性防湿絶縁塗料、遮光性防湿絶縁塗料を用いた封止・絶縁処理方法、および遮光性防湿絶縁塗料によって封止・絶縁処理された電子部品Light-shielding moisture-proof insulating paint, sealing / insulating treatment method using light-shielding moisture-proof insulating paint, and electronic parts sealed / insulated with light-shielding moisture-proof insulating paint
 本発明は、遮光性防湿絶縁塗料と、遮光性防湿絶縁塗料を用いた封止・絶縁処理方法、および遮光性防湿絶縁塗料によって封止・絶縁処理された電子部品に関する。 The present invention relates to a light-shielding moisture-proof insulating paint, a sealing / insulating treatment method using the light-shielding moisture-proof insulating paint, and an electronic component sealed and insulated with the light-shielding moisture-proof insulating paint.
 電気機器は、年々小型軽量化および多機能化の傾向にあり、これを制御する各種電気機器に搭載した実装回路板は、湿気、塵埃、ガス等から保護する目的で絶縁処理が行われている。この絶縁処理法には、アクリル系樹脂、ウレタン系樹脂等の塗料による保護コーティング処理が広く採用されている。また、紫外線または電子線の照射によって硬化可能な樹脂組成物が多く開発され、実装回路板の絶縁処理用途でも、既に、種々の光硬化性塗料が実用化され、使用に供されている。このような樹脂組成物として、ポリエステルポリオール化合物やポリオレフィンポリオール化合物等から誘導される変性アクリレート樹脂組成物が知られている。 Electrical devices tend to be smaller and lighter and more multifunctional year after year, and the mounting circuit boards mounted on the various electrical devices that control them are insulated for the purpose of protecting them from moisture, dust, and gas. . In this insulation treatment method, a protective coating treatment with a paint such as an acrylic resin or a urethane resin is widely adopted. In addition, many resin compositions that can be cured by irradiation with ultraviolet rays or electron beams have been developed, and various photo-curable coatings have already been put into practical use and used for insulation treatment of mounted circuit boards. As such a resin composition, a modified acrylate resin composition derived from a polyester polyol compound or a polyolefin polyol compound is known.
 一方、UVランプとしてLED-UVランプを用いた紫外線照射装置の需要が高まっている。LED-UVランプを用いた紫外線照射装置は、低消費電力であり、かつオゾンの発生も少ない。よってランニングコストおよび自然環境への影響を小さくできる利点がある。しかしながらLED-UVランプは他のUVランプと違い単一波長であることから、硬化する樹脂組成物には紫外線に対する高い感度が求められる。また、更なるコストダウンのため、積層された電子部品の末端を一度に、より少ない露光量で硬化することも求められる。積層された末端を一度に封止するため、樹脂の膜厚が大きく、かつ露光量が少なくなると、紫外線の届きにくい樹脂/電子部品基材界面における硬化不良が起き易くなる。この点においても高い紫外線感度が求められる。しかし、紫外線感度の高い光重合開始剤は電気絶縁性を悪化させる物が多く、絶縁処理に用いる樹脂組成物に適さないという問題があった。また近年、液晶モニターの普及により、LEDバックライトの光漏れを防ぐため、保護コーティングに可視光に対する遮光性を付与することが強く求められているが、可視光を吸収または散乱するような材料は、紫外線も吸収または散乱してしまうため、更に界面における硬化不良が起き易くなるという問題がある。 On the other hand, there is an increasing demand for ultraviolet irradiation devices using LED-UV lamps as UV lamps. An ultraviolet irradiation device using an LED-UV lamp has low power consumption and generates less ozone. Therefore, there is an advantage that the running cost and the influence on the natural environment can be reduced. However, unlike other UV lamps, LED-UV lamps have a single wavelength, so that a cured resin composition is required to have high sensitivity to ultraviolet rays. Further, for further cost reduction, it is also required to cure the ends of the laminated electronic components at a time with a smaller exposure amount. Since the laminated ends are sealed at a time, when the resin film thickness is large and the exposure dose is reduced, poor curing at the resin / electronic component base material interface where ultraviolet rays are difficult to reach easily occurs. Also in this respect, high ultraviolet sensitivity is required. However, many photopolymerization initiators with high ultraviolet sensitivity deteriorate the electrical insulation, and there is a problem that they are not suitable for a resin composition used for insulation treatment. In recent years, with the widespread use of liquid crystal monitors, in order to prevent light leakage of LED backlights, it has been strongly demanded to provide a protective coating with a light-shielding property against visible light. In addition, since ultraviolet rays are also absorbed or scattered, there is a problem that curing failure at the interface is more likely to occur.
 以上のような、市場からの技術的要求に対し、特開2008-280414号公報にはポリオレフィンポリオール化合物、ヒドロキシル基を有するエチレン性不飽和化合物および1分子中にイソシアナト基を2個以上有する化合物を反応させて得られるエチレン性不飽和二重結合を有するウレタン化合物と、分子内に5以上10以下のエチレン性不飽和二重結合を有する光重合性単量体と、および光重合開始剤とを含有してなる光硬化性樹脂組成物が開示されている。しかし特開2008-280414号公報の実施例に記載された組成物は、少ない露光量で硬化はするものの、膜厚が大きくなると樹脂/電子部品基材界面での硬化不良が起き易いという問題があった。また、可視光に対する遮光性に関する記述も無い。 In response to the technical demands from the market as described above, JP-A-2008-280414 discloses a polyolefin polyol compound, an ethylenically unsaturated compound having a hydroxyl group, and a compound having two or more isocyanato groups in one molecule. A urethane compound having an ethylenically unsaturated double bond obtained by reaction, a photopolymerizable monomer having 5 to 10 ethylenically unsaturated double bonds in the molecule, and a photopolymerization initiator. A photocurable resin composition containing it is disclosed. However, the compositions described in the examples of Japanese Patent Application Laid-Open No. 2008-280414, although cured with a small amount of exposure, have a problem that poor curing at the resin / electronic component substrate interface tends to occur when the film thickness increases. there were. Moreover, there is no description about the light-shielding property with respect to visible light.
 また、特開2006-045340号公報には、熱可塑性エラストマーとしてA-B-A型スチレンブロック共重合体ゴム、染料としてアゾ化合物クロム酸錯塩を含有する組成物が開示されている。しかしアゾ系染料は、環境および人体への影響が懸念されるという欠点がある。さらに、熱可塑性エラストマー100質量部に対して、25質量部に達する量の染料を添加しているにも拘わらず、650nm、700nmの波長領域においてそれぞれ10%、25%の透過率を示しており、遮光性が十分であるとは言い難い上、染料を多く添加し、電気絶縁性を担う樹脂の割合が減少することは電気絶縁性の低下に繋がる。また、この組成物は溶剤を含み、溶剤を揮発させることで防湿絶縁コーティングを行うものであり、紫外線で硬化させる防湿絶縁コーティングに比べ、環境負荷が大きいという欠点がある。 JP-A 2006-045340 discloses a composition containing an ABA type styrene block copolymer rubber as a thermoplastic elastomer and an azo compound chromic acid complex salt as a dye. However, azo dyes have a drawback that there is a concern about environmental and human effects. Furthermore, although 100 mass parts of the thermoplastic elastomer is added with an amount of dye reaching 25 mass parts, the transmittance is 10% and 25% in the wavelength region of 650 nm and 700 nm, respectively. In addition, it is difficult to say that the light-shielding property is sufficient, and adding a large amount of dye and reducing the proportion of the resin responsible for electrical insulation leads to a decrease in electrical insulation. In addition, this composition contains a solvent and performs moisture-proof insulating coating by volatilizing the solvent, and has a disadvantage that it has a larger environmental load than moisture-proof insulating coating cured by ultraviolet rays.
特開2008-280414号公報JP 2008-280414 A 特開2006-045340号公報JP 2006-045340 A
 本発明は、上記の従来技術の有する課題を鑑みてなされたものであり、環境負荷が少なく、低照射量で深部硬化性に優れ、しかも疎水性で高い長期絶縁信頼性を有し、加えて広い波長範囲の可視光に対する遮光性を持つ光硬化性防湿絶縁塗料を提供することを目的とする。
 また、本発明は、上記実装回路板用の光硬化性防湿絶縁塗料をLED-UVランプにて硬化することによる封止処理または絶縁処理方法を提供することを目的とする。
 また、本発明は、上記実装回路板用の光硬化性防湿絶縁塗料にて封止処理または絶縁処理された、信頼性が高く光漏れを抑制できる電子部品を提供することを目的とする。
The present invention has been made in view of the above-described problems of the prior art, has a low environmental burden, is excellent in deep curability at a low dose, and is hydrophobic and has high long-term insulation reliability. An object of the present invention is to provide a photo-curing moisture-proof insulating coating material having a light shielding property against visible light in a wide wavelength range.
Another object of the present invention is to provide a sealing treatment or insulation treatment method by curing a photocurable moisture-proof insulating paint for a mounting circuit board with an LED-UV lamp.
Another object of the present invention is to provide an electronic component that is highly reliable and capable of suppressing light leakage, which is sealed or insulated with the photocurable moisture-proof insulating paint for a mounting circuit board.
 本発明者らは、上記課題を解決すべく研究を重ねた結果、(メタ)アクリロイル基含有化合物と光重合開始剤、2種類以上の染料を含む光硬化性防湿絶縁塗料は、環境負荷が少なく、低照射量で深部硬化性に優れ、しかも疎水性で高い長期絶縁信頼性を有し、加えて広い波長範囲の可視光に対する遮光性を持つことを見出し、本発明を完成するに至った。 As a result of repeated studies to solve the above problems, the present inventors have found that a photocurable moisture-proof insulating paint containing a (meth) acryloyl group-containing compound, a photopolymerization initiator, and two or more dyes has little environmental impact. The present inventors have found that the present invention has completed the present invention by discovering that it has excellent deep-part curability at a low irradiation dose, is hydrophobic and has high long-term insulation reliability, and has a light-shielding property against visible light in a wide wavelength range.
 即ち、本発明(I)は、
 (1)(メタ)アクリロイル基含有化合物、
 (2)光重合開始剤、および
 (3)2種類以上の染料
を含む防湿絶縁塗料であって、該塗料を硬化させて得た厚み500μmの硬化膜の全光線透過率が10%未満、かつ400~700nmの波長範囲において透過率10%以上の波長範囲の合計が50nm以下であり、1mm以上の厚みに塗布した該塗料に波長365nmにおける照度が400mW/cm、露光量が300mJ/cmの条件で紫外線照射を行って得た硬化膜の厚みが500μm以上であることを特徴とする防湿絶縁塗料に関する。
 本発明(II)は、(1)(メタ)アクリロイル基含有化合物、
 (2)光重合開始剤、および
 (3)2種類以上の染料
を含む防湿絶縁塗料であって、
 染料(3)の少なくとも2種がそれぞれ、酢酸ブチル溶液にして光路長10mmの条件でUV-可視光線透過率測定を行った際、吸収極大波長における透過率が10%となるように濃度を調整した溶液の、波長365nmにおける透過率が50%以上となる染料であることを特徴とする防湿絶縁塗料に関する。
 本発明(III)は、本発明(I)の防湿絶縁塗料を電子部品に塗布し、塗布部にLED-UVランプを照射し、硬化させる工程を含む電子部品の封止処理または絶縁処理方法に関する。
 本発明(IV)は、本発明(I)の防湿絶縁塗料によって封止処理または絶縁処理された電子部品に関する。
That is, the present invention (I)
(1) (meth) acryloyl group-containing compound,
(2) a photopolymerization initiator, and (3) a moisture-proof insulating paint containing two or more dyes, wherein the cured film having a thickness of 500 μm obtained by curing the paint has a total light transmittance of less than 10%, and In the wavelength range of 400 to 700 nm, the total of the wavelength range having a transmittance of 10% or more is 50 nm or less, the illuminance at a wavelength of 365 nm is 400 mW / cm 2 , and the exposure amount is 300 mJ / cm 2. The present invention relates to a moisture-proof insulating paint characterized in that the thickness of a cured film obtained by irradiating with ultraviolet rays under the above conditions is 500 μm or more.
The present invention (II) includes (1) a (meth) acryloyl group-containing compound,
(2) a photopolymerization initiator, and (3) a moisture-proof insulating paint containing two or more types of dyes,
When at least two dyes (3) were measured for UV-visible light transmittance in a butyl acetate solution with an optical path length of 10 mm, the concentration was adjusted so that the transmittance at the absorption maximum wavelength was 10%. The present invention relates to a moisture-proof insulating paint characterized in that it is a dye having a transmittance of 50% or more at a wavelength of 365 nm.
The present invention (III) relates to a method for sealing or insulating an electronic component including the steps of applying the moisture-proof insulating paint of the present invention (I) to an electronic component, irradiating the application portion with an LED-UV lamp, and curing it. .
The present invention (IV) relates to an electronic component sealed or insulated with the moisture-proof insulating paint of the present invention (I).
 さらに言えば、本発明は、以下の[1]~[15]に関する。
 [1](1)(メタ)アクリロイル基含有化合物、
 (2)光重合開始剤、および
 (3)2種類以上の染料
を含む防湿絶縁塗料であって、該塗料を硬化させて得た、厚み500μmの硬化膜の全光線透過率が10%未満、かつ400~700nmの波長範囲において透過率10%以上の波長範囲の合計が50nm以下であり、1mm以上の厚みに塗布した該塗料に波長365nmにおける照度が400mW/cm、露光量が300mJ/cmの条件で紫外線照射を行って得た硬化膜の厚みが500μm以上であることを特徴とする防湿絶縁塗料。
 [2]該塗料を硬化させて得た厚み500μmの硬化膜の全光線透過率が10%未満、かつ400~700nmの全ての波長範囲において透過率10%未満であることを特徴とする[1]に記載の防湿絶縁塗料。
 [3]染料(3)の少なくとも2種が、それぞれ、酢酸ブチル溶液にして光路長10mmの条件でUV-可視光線透過率測定を行った際、吸収極大波長における透過率が10%となるように濃度を調整した溶液の、波長365nmにおける透過率が50%以上となる染料であることを特徴とする[1]または[2]に記載の防湿絶縁塗料。
 [4]染料(3)の内、少なくとも1種類が、酢酸ブチル溶液にした際の吸収極大波長が450nm以上550nm未満の範囲に存在し、また別の少なくとも1種類が、酢酸ブチル溶液にした際の吸収極大波長が550nm以上700nm以下の範囲に存在することを特徴とする[1]~[3]のいずれか1つに記載の防湿絶縁塗料。
 [5](1)(メタ)アクリロイル基含有化合物、
 (2)光重合開始剤、および
 (3)2種類以上の染料
を含む防湿絶縁塗料であって、
 染料(3)の少なくとも2種が、それぞれ、酢酸ブチル溶液にして光路長10mmの条件でUV-可視光線透過率測定を行った際、吸収極大波長における透過率が10%となるように濃度を調整した溶液の、波長365nmにおける透過率が50%以上となる染料であることを特徴とする防湿絶縁塗料。
 [6]染料(3)の内、少なくとも1種類が、酢酸ブチル溶液にした際の吸収極大波長が450nm以上550nm未満の範囲に存在し、また別の少なくとも1種類が、酢酸ブチル溶液にした際の吸収極大波長が550nm以上700nm以下の範囲に存在することを特徴とする[5]に記載の防湿絶縁塗料。
 [7]染料(3)の少なくとも2種がアントラキノン系染料であることを特徴とする[1]~[6]のいずれか1つに記載の防湿絶縁塗料。
 [8]光重合開始剤(2)が、式(1)
Figure JPOXMLDOC01-appb-C000002
(式中、Rはヘテロ原子を含んでいてもよい炭化水素基であり、RおよびRは炭化水素基である。)
で表される化合物またはベンジルジメチルケタールであることを特徴とする[1]~[7]のいずれか1つに記載の防湿絶縁塗料。
 [9](メタ)アクリロイル基含有化合物(1)が、ポリオールポリ(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレートおよび(メタ)アクリルモノマーからなる群から選ばれる少なくとも1種を含む、[1]~[8]のいずれか1つに記載の防湿絶縁塗料。
 [10](メタ)アクリロイル基含有化合物(1)が、ポリオールポリ(メタ)アクリレート、エポキシ(メタ)アクリレートおよび(メタ)アクリルモノマーからなる群から選ばれる少なくとも1種と、ウレタン(メタ)アクリレートとを含む、[1]~[9]のいずれか1つに記載の防湿絶縁塗料。
 [11]ウレタン(メタ)アクリレートが、水添ダイマー酸から誘導される構造単位および水添ダイマージオールから誘導される構造単位を有するポリエステルポリオールから誘導される構造を含むことを特徴とする[9]または[10]に記載の防湿絶縁塗料。
 [12]さらに、(4)シランカップリング剤を含む[1]~[11]のいずれか1つに記載の防湿絶縁塗料。
 [13]さらに、(5)粘着付与剤を含む[1]~[12]のいずれか1つに記載の防湿絶縁塗料。
 [14][1]~[13]のいずれか1つに記載の防湿絶縁塗料を電子部品に塗布し、塗布部にLED-UVランプを照射し、硬化させる工程を含む電子部品の封止処理または絶縁処理方法。
 [15][1]~[13]のいずれか1つに記載の防湿絶縁塗料によって封止処理または絶縁処理された電子部品。
Furthermore, the present invention relates to the following [1] to [15].
[1] (1) (Meth) acryloyl group-containing compound,
(2) a photopolymerization initiator, and (3) a moisture-proof insulating paint containing two or more dyes, wherein the cured film having a thickness of 500 μm obtained by curing the paint has a total light transmittance of less than 10%, In addition, the total of the wavelength range with a transmittance of 10% or more in the wavelength range of 400 to 700 nm is 50 nm or less, the illuminance at a wavelength of 365 nm is 400 mW / cm 2 , and the exposure amount is 300 mJ / cm. 2. A moisture-proof insulating paint characterized in that the thickness of a cured film obtained by irradiating ultraviolet rays under the condition 2 is 500 μm or more.
[2] A cured film having a thickness of 500 μm obtained by curing the coating material has a total light transmittance of less than 10% and a transmittance of less than 10% in all wavelength ranges of 400 to 700 nm [1] ] The moisture-proof insulating paint described in the above.
[3] When at least two kinds of dyes (3) are each measured for UV-visible light transmittance in a butyl acetate solution under an optical path length of 10 mm, the transmittance at the absorption maximum wavelength is 10%. The moisture-proof insulating paint according to [1] or [2], which is a dye having a transmittance adjusted to 50% or more at a wavelength of 365 nm.
[4] When at least one of the dyes (3) has an absorption maximum wavelength in the range of 450 nm or more and less than 550 nm when converted into a butyl acetate solution, and at least one other is converted into a butyl acetate solution The moisture-proof insulating coating material according to any one of [1] to [3], wherein the absorption maximum wavelength of is present in a range of 550 nm to 700 nm.
[5] (1) (meth) acryloyl group-containing compound,
(2) a photopolymerization initiator, and (3) a moisture-proof insulating paint containing two or more types of dyes,
When at least two kinds of dyes (3) were each measured for UV-visible light transmittance in a butyl acetate solution with an optical path length of 10 mm, the concentration was adjusted so that the transmittance at the absorption maximum wavelength was 10%. A moisture-proof insulating paint, characterized in that the prepared solution is a dye having a transmittance of 50% or more at a wavelength of 365 nm.
[6] When at least one of the dyes (3) has an absorption maximum wavelength in the range of 450 nm to less than 550 nm when converted into a butyl acetate solution, and at least one of the other dyes converted into a butyl acetate solution The moisture-proof insulating paint as set forth in [5], wherein the absorption maximum wavelength is in the range of 550 nm to 700 nm.
[7] The moisture-proof insulating paint according to any one of [1] to [6], wherein at least two of the dyes (3) are anthraquinone dyes.
[8] The photopolymerization initiator (2) is represented by the formula (1)
Figure JPOXMLDOC01-appb-C000002
(In the formula, R 1 is a hydrocarbon group which may contain a hetero atom, and R 2 and R 3 are hydrocarbon groups.)
The moisture-proof insulating paint according to any one of [1] to [7], which is a compound represented by the formula:
[9] The (meth) acryloyl group-containing compound (1) includes at least one selected from the group consisting of polyol poly (meth) acrylate, epoxy (meth) acrylate, urethane (meth) acrylate, and (meth) acrylic monomer. [1] to [8] The moisture-proof insulating paint according to any one of [1] to [8].
[10] The (meth) acryloyl group-containing compound (1) is at least one selected from the group consisting of a polyol poly (meth) acrylate, an epoxy (meth) acrylate, and a (meth) acryl monomer, and a urethane (meth) acrylate, The moisture-proof insulating paint according to any one of [1] to [9].
[11] The urethane (meth) acrylate includes a structure derived from a polyester polyol having a structural unit derived from a hydrogenated dimer acid and a structural unit derived from a hydrogenated dimer diol. Or the moisture-proof insulating paint as described in [10].
[12] The moisture-proof insulating paint according to any one of [1] to [11], further comprising (4) a silane coupling agent.
[13] The moisture-proof insulating paint according to any one of [1] to [12], further comprising (5) a tackifier.
[14] A sealing process for an electronic component including a step of applying the moisture-proof insulating paint according to any one of [1] to [13] to the electronic component, irradiating the application portion with an LED-UV lamp, and curing the applied portion. Or insulation treatment method.
[15] An electronic component that is sealed or insulated with the moisture-proof insulating paint according to any one of [1] to [13].
 本発明の防湿絶縁塗料は、環境負荷が少なく、低照射量で深部硬化性に優れ、しかも疎水性で高い長期絶縁信頼性を有し、加えて広い波長範囲の可視光に対する遮光性を持ち、この防湿絶縁塗料を塗布、硬化することにより、信頼性が高く光漏れを抑制できる電子部品を製造することができるという効果を有する。
 また、本発明の防湿絶縁塗料を塗布し、塗布部にLED-UVランプを照射し、硬化させることにより、信頼性が高く光漏れを抑制できる電子部品を低コストかつ少ない環境負荷の下で製造することができる。
The moisture-proof insulating paint of the present invention has a low environmental impact, is excellent in deep-curing property at a low irradiation dose, and has a long-term insulation reliability that is hydrophobic and has a light shielding property against visible light in a wide wavelength range, By applying and curing this moisture-proof insulating coating, it is possible to produce an electronic component that is highly reliable and can suppress light leakage.
In addition, by applying the moisture-proof insulating paint of the present invention, irradiating the application part with an LED-UV lamp and curing it, it is possible to manufacture highly reliable electronic components that can suppress light leakage at low cost and with low environmental impact. can do.
 以下、本発明を具体的に説明する。
 なお、本明細書における「(メタ)アクリロイル基」とは、アクリロイル基および/またはメタクリロイル基を意味する。
Hereinafter, the present invention will be specifically described.
In the present specification, “(meth) acryloyl group” means an acryloyl group and / or a methacryloyl group.
 まず、本発明(I)について説明する。
 本発明(I)は、
 (1)(メタ)アクリロイル基含有化合物、
 (2)光重合開始剤、および
 (3)2種類以上の染料
を含む防湿絶縁塗料であって、該塗料を硬化させて得た、厚み500μmの硬化膜の全光線透過率が10%未満かつ、400~700nmの波長範囲において透過率10%以上の波長範囲の合計が50nm以下であり、1mm以上の厚みに塗布した該塗料に、波長365nmにおける照度が400mW/cm、露光量が300mJ/cmの条件で紫外線照射を行って得た硬化膜の厚みが、500μm以上であることを特徴とする防湿絶縁塗料である。
First, the present invention (I) will be described.
The present invention (I)
(1) (meth) acryloyl group-containing compound,
(2) a photopolymerization initiator, and (3) a moisture-proof insulating paint containing two or more dyes, wherein the cured film having a thickness of 500 μm obtained by curing the paint has a total light transmittance of less than 10% and In the wavelength range of 400 to 700 nm, the total of the wavelength range having a transmittance of 10% or more is 50 nm or less, and the paint applied to a thickness of 1 mm or more has an illuminance of 400 mW / cm 2 at a wavelength of 365 nm and an exposure amount of 300 mJ / The moisture-proof insulating paint is characterized in that the thickness of a cured film obtained by irradiating with ultraviolet rays under the condition of cm 2 is 500 μm or more.
 まず、(メタ)アクリロイル基含有化合物(1)について説明する。
 この成分は、(メタ)アクリロイル基含有化合物であれば、特に制限はない。ただし、(メタ)アクリロイル基含有化合物(1)は、後述するシランカップリング剤(4)のうち(メタ)アクリロイル基を有するものを除く。すなわち、本発明の防湿絶縁塗料がシランカップリング剤(4)を含む場合において、シランカップリング剤(4)の中に(メタ)アクリロイル基を有するものが含まれるときは、(メタ)アクリロイル基を有するシランカップリング剤は、シランカップリング剤(4)に含まれるものとし、(メタ)アクリロイル基含有化合物(1)には含まれないものとする。
 (メタ)アクリロイル基含有化合物(1)としては、ポリオールポリ(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、(メタ)アクリルモノマー等が挙げられる。
First, the (meth) acryloyl group-containing compound (1) will be described.
If this component is a (meth) acryloyl group containing compound, there will be no restriction | limiting in particular. However, the (meth) acryloyl group-containing compound (1) excludes those having a (meth) acryloyl group among the silane coupling agents (4) described later. That is, when the moisture-proof insulating paint of the present invention contains the silane coupling agent (4), when the silane coupling agent (4) contains a (meth) acryloyl group, the (meth) acryloyl group It is assumed that the silane coupling agent having a silane coupling agent is contained in the silane coupling agent (4) and not in the (meth) acryloyl group-containing compound (1).
Examples of the (meth) acryloyl group-containing compound (1) include polyol poly (meth) acrylate, epoxy (meth) acrylate, urethane (meth) acrylate, and (meth) acrylic monomer.
 一般にポリオールポリ(メタ)アクリレートとは、ポリオールと、アクリル酸またはメタクリル酸とのエステル化合物である。この際選ばれるポリオールに、特に制限はない。具体的には、例えば、水添ダイマージオール(鎖状のもの)、1,3-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,10-デカンジオール、1,12-ドデカンジオール、ポリオレフィンポリオール、水添ポリオレフィンポリオール等のダイマージオール以外の鎖状脂肪族ポリオール、水添ダイマージオール(脂環構造を有するもの)、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、トリシクロ[5.2.1.02,6]デカンジメタノール、2-メチルシクロヘキサン-1,1-ジメタノール等のダイマージオール以外の脂環構造を有するポリオール、トリマートリオール、p-キシリレングリコール、ビスフェノールAエチレンオキサイド付加物、ビスフェノールFエチレンオキサイド付加物、ビフェノールエチレンオキサイド付加物等の芳香環を有するポリオール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルポリオール、ポリヘキサメチレンアジペート、ポリヘキサメチレンサクシネート、ポリカプロラクトン等のポリエステルポリオール、α,ω-ポリ(1,6-ヘキシレンカーボネート)ジオール、α,ω-ポリ(3-メチル-1,5-ペンチレンカーボネート)ジオール、α,ω-ポリ[(1,6-ヘキシレン:3-メチル-ペンタメチレン)カーボネート]ジオール、α,ω-ポリ[(1,9-ノニレン:2-メチル-1,8-オクチレン)カーボネート]ジオール等の(ポリ)カーボネートジオール、水添ダイマー酸から誘導される構造単位および水添ダイマージオールから誘導される構造単位を有するポリエステルポリオールが挙げられ、市販品としては、ダイセル化学株式会社製の商品名PLACCEL、CD-205、205PL、205HL、210、210PL、210HL、220、220PL、220HL、株式会社クラレ製の商品名クラレポリオールC-590、C-1065N、C-1015N、C-2015N等が挙げられる。これらは単独でも、あるいは2種以上を適宜組み合わせて使用してもよい。また、主に基材への密着性の観点から、芳香環を有するポリオール、ポリエーテルポリオール、(ポリ)カーボネートジオール、ポリエステルポリオールが好ましい。更に好ましくは、水添ダイマー酸から誘導される構造単位および水添ダイマージオールから誘導される構造単位を有するポリエステルポリオールである。 Generally, polyol poly (meth) acrylate is an ester compound of polyol and acrylic acid or methacrylic acid. There is no restriction | limiting in particular in the polyol chosen in this case. Specifically, for example, hydrogenated dimer diol (chain-like), 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 2-ethyl-2-butyl-1,3-propanediol Chain aliphatic polyols other than dimer diols such as 2,4-diethyl-1,5-pentanediol, 1,10-decanediol, 1,12-dodecanediol, polyolefin polyol, hydrogenated polyolefin polyol, and hydrogenated dimer Diol (having alicyclic structure), 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimeta , Tricyclo [5.2.1.02,6] decandimethanol, polyols having an alicyclic structure other than dimer diol such as 2-methylcyclohexane-1,1-dimethanol, trimer triol, p-xylylene Polyols having aromatic rings such as glycol, bisphenol A ethylene oxide adduct, bisphenol F ethylene oxide adduct, biphenol ethylene oxide adduct, polyether polyols such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyhexamethylene adipate, Polyester polyols such as polyhexamethylene succinate and polycaprolactone, α, ω-poly (1,6-hexylene carbonate) diol, α, ω-poly (3-methyl-1,5-pentylene) Carbonate) diol, α, ω-poly [(1,6-hexylene: 3-methyl-pentamethylene) carbonate] diol, α, ω-poly [(1,9-nonylene: 2-methyl-1,8- (Poly) carbonate diols such as octylene) carbonate] diol, structural units derived from hydrogenated dimer acid, and polyester polyols having structural units derived from hydrogenated dimer diol, and commercial products include Daicel Chemical Co., Ltd. Product names PLACEL, CD-205, 205PL, 205HL, 210, 210PL, 210HL, 220, 220PL, 220HL, manufactured by Kuraray Co., Ltd. Product names Kuraray Polyol C-590, C-1065N, C-1015N, C- 2015N etc. are mentioned. These may be used alone or in combination of two or more. Moreover, the polyol which has an aromatic ring, polyether polyol, (poly) carbonate diol, and polyester polyol are mainly preferable from a viewpoint of the adhesiveness to a base material. More preferred is a polyester polyol having a structural unit derived from a hydrogenated dimer acid and a structural unit derived from a hydrogenated dimer diol.
 本発明(I)の防湿絶縁塗料中のポリオールポリ(メタ)アクリレートの使用量は、全重合性成分に対して、20~70質量%含有することが好ましく、さらに好ましくは、24~60質量%であり、特に好ましくは、24~55質量%である。ポリオールポリ(メタ)アクリレートの使用量が、全重合性成分に対して20質量%未満になると、防湿絶縁塗料の防湿性能が低下する場合があり、好ましいこととはいえない。また、ポリオールポリ(メタ)アクリレートの使用量が、全重合性成分に対して70質量%より多くなると、防湿絶縁塗料の粘度が高くなりすぎ、ハンドリング上好ましいこととはいえない。 The amount of the polyol poly (meth) acrylate used in the moisture-proof insulating coating of the present invention (I) is preferably 20 to 70% by mass, more preferably 24 to 60% by mass, based on the total polymerizable component. Particularly preferred is 24 to 55% by mass. If the amount of the polyol poly (meth) acrylate used is less than 20% by mass relative to the total polymerizable component, the moisture-proof performance of the moisture-proof insulating coating may be lowered, which is not preferable. Moreover, when the usage-amount of polyol poly (meth) acrylate becomes more than 70 mass% with respect to all the polymeric components, the viscosity of a moisture-proof insulating coating will become high too much and it cannot be said that it is preferable on handling.
 一般にエポキシ(メタ)アクリレートとは、エポキシ樹脂の末端エポキシ基にアクリル酸またはメタクリル酸を付加させることで得られる化合物である。この際選ばれるエポキシ樹脂に、特に制限は無い。具体的には、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、ビフェニル型エポキシ樹脂等が挙げられる。これらは単独でも、あるいは2種以上を適宜組み合わせて使用してもよい。
 エポキシ(メタ)アクリレートの市販品としては、例えば、エポキシエステル3000A(共栄社化学株式会社製)、EBECRYL600(ダイセル・サイテック株式会社製)、EBECRYL6040(ダイセル・サイテック株式会社製)等が挙げられる。
Generally, epoxy (meth) acrylate is a compound obtained by adding acrylic acid or methacrylic acid to a terminal epoxy group of an epoxy resin. There is no restriction | limiting in particular in the epoxy resin selected in this case. Specifically, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, glycidyl ester type epoxy resin, biphenyl type epoxy resin and the like can be mentioned. These may be used alone or in combination of two or more.
Examples of commercially available products of epoxy (meth) acrylate include epoxy ester 3000A (manufactured by Kyoeisha Chemical Co., Ltd.), EBECRYL600 (manufactured by Daicel-Cytec Co., Ltd.), EBECRYL6040 (manufactured by Daicel-Cytech Co., Ltd.), and the like.
 本発明(I)の防湿絶縁塗料中のエポキシ(メタ)アクリレートの使用量は、全重合性成分に対して、20~70質量%含有することが好ましく、さらに好ましくは、24~60質量%であり、特に好ましくは、24~55質量%である。エポキシ(メタ)アクリレートの使用量が、全重合性成分に対して20質量%未満になると、防湿絶縁塗料の防湿性能が低下する場合があり、好ましいこととはいえない。また、エポキシ(メタ)アクリレートの使用量が、全重合性成分に対して70質量%より多くなると、防湿絶縁塗料の粘度が高くなりすぎ、ハンドリング上好ましいこととはいえない。 The amount of the epoxy (meth) acrylate used in the moisture-proof insulating coating of the present invention (I) is preferably 20 to 70% by mass, more preferably 24 to 60% by mass, based on all polymerizable components. It is particularly preferably 24 to 55% by mass. If the amount of the epoxy (meth) acrylate used is less than 20% by mass relative to the total polymerizable component, the moisture-proof performance of the moisture-proof insulating coating may be lowered, which is not preferable. Moreover, when the usage-amount of an epoxy (meth) acrylate becomes more than 70 mass% with respect to all the polymeric components, the viscosity of a moisture-proof insulating coating will become high too much and it cannot be said that it is preferable on handling.
 一般にウレタン(メタ)アクリレートとは、ポリオールとポリイソシアネートと水酸基含有(メタ)アクリレート、またはポリオールとイソシアナト基含有(メタ)アクリレートを反応させることで得られる化合物である。この際選ばれるポリオール、ポリイソシアネート、水酸基含有(メタ)アクリレート、イソシアナト基含有(メタ)アクリレートに特に制限は無い。ポリオールは、ポリオールポリ(メタ)アクリレートにおいて使用されるポリオールと同様である。ポリイソシアネートとしては、例えば、1,4-シクロヘキサンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ジフェニルメタン-4,4′-ジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシリレンジイソシアネート、リシントリイソシアネート、リシンジイソシアネート、ヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサンメチレンジイソシアネートおよびノルボルナンジイソシアネート等が挙げられる。これらは単独でも、あるいは2種以上を適宜組み合わせて使用してもよい。水酸基含有(メタ)アクリレートとしては、例えば、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、3-ヒドロキシプロピルアクリレート、2-ヒドロキシブチルアクリレート、4-ヒドロキシブチルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、2-ヒドロキシ-3-(o-フェニルフェノキシ)プロピルアクリレート、2-ヒドロキシエチルアクリルアミド、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、3-ヒドロキシプロピルメタクリレート、2-ヒドロキシブチルメタクリレート、4-ヒドロキシブチルメタクリレート、2-ヒドロキシ-3-フェノキシプロピルメタクリレート、2-ヒドロキシ-3-(o-フェニルフェノキシ)プロピルメタクリレート等が挙げられる。これらは単独でも、あるいは2種以上を適宜組み合わせて使用してもよい。イソシアナト基含有(メタ)アクリレートとしては、2-イソシアナトエチルアクリレート、2-イソシアナトエチルメタクリレート等が挙げられる。これらは単独でも、あるいは2種以上を適宜組み合わせて使用してもよい。 Generally, urethane (meth) acrylate is a compound obtained by reacting polyol and polyisocyanate with hydroxyl group-containing (meth) acrylate, or polyol and isocyanato group-containing (meth) acrylate. There are no particular restrictions on the polyol, polyisocyanate, hydroxyl group-containing (meth) acrylate, and isocyanato group-containing (meth) acrylate selected at this time. The polyol is the same as the polyol used in the polyol poly (meth) acrylate. Examples of the polyisocyanate include 1,4-cyclohexane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, , 4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane-4,4'-diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, lysine triisocyanate, lysine diisocyanate, hexamethylene diisocyanate 2,4,4-trimethylhexamethylene diisocyanate, 2,2,4-trimethylhexanemethylene diisocyanate, norbornane diisocyanate, etc. And the like. These may be used alone or in combination of two or more. Examples of the hydroxyl group-containing (meth) acrylate include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 3-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 4-hydroxybutyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate 2-hydroxy-3- (o-phenylphenoxy) propyl acrylate, 2-hydroxyethyl acrylamide, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate, 4-hydroxybutyl Methacrylate, 2-hydroxy-3-phenoxypropyl methacrylate, 2-hydroxy-3- (o-phenylphenoxy) pro Methacrylate, and the like. These may be used alone or in combination of two or more. Examples of the isocyanato group-containing (meth) acrylate include 2-isocyanatoethyl acrylate and 2-isocyanatoethyl methacrylate. These may be used alone or in combination of two or more.
 ウレタン(メタ)アクリレートの製造方法では、ジブチル錫ジラウレート、ジオクチル錫ジラウレートのような公知のウレタン化触媒の存在下または非存在下で、ポリオールとポリイソシアネートと水酸基含有(メタ)アクリレート、またはポリオールとイソシアナト基含有(メタ)アクリレートを反応させることにより合成ができるが、触媒の存在下で反応させたほうが、反応時間を短縮する意味では好ましい。ただし、多く使用しすぎると、最終的に硬化膜としての実使用時の物性値に悪影響を及ぼす可能性があるので、使用量は、ポリオールとポリイソシアネートと水酸基含有(メタ)アクリレート、またはポリオールとイソシアナト基含有(メタ)アクリレートの総量100質量部に対して0.001~1質量部であることが好ましい。 In the method for producing urethane (meth) acrylate, polyol and polyisocyanate and hydroxyl group-containing (meth) acrylate, or polyol and isocyanato in the presence or absence of a known urethanization catalyst such as dibutyltin dilaurate and dioctyltin dilaurate. Although the synthesis can be performed by reacting the group-containing (meth) acrylate, the reaction in the presence of a catalyst is preferable in terms of shortening the reaction time. However, if too much is used, there is a possibility that the physical properties at the time of actual use as a cured film will be adversely affected, so the amount used is polyol, polyisocyanate, hydroxyl group-containing (meth) acrylate, or polyol. The amount is preferably 0.001 to 1 part by mass with respect to 100 parts by mass of the total amount of the isocyanato group-containing (meth) acrylate.
 また、前記ウレタン化触媒は、本発明(I)の防湿絶縁塗料中にアルコキシシリル基を含む場合には、アルコキシシリル基の加水分解反応を触媒する。そのような場合には、本発明(I)の防湿絶縁塗料の経時安定性と基板への密着性のバランスを考慮する必要があり、その際の使用量は、ポリオールとポリイソシアネートと水酸基含有(メタ)アクリレート、またはポリオールとイソシアナト基含有(メタ)アクリレートの総量100質量部に対して0.003~0.2質量部であることが好ましく、さらに、好ましくは、0.005~0.15質量部である。0.001質量部未満では、触媒の添加効果が発現されにくく、1質量部より多く使用すると、先にも述べたように最終的に硬化膜としての実使用時の物性値に悪影響を及ぼす場合がある。 The urethanization catalyst catalyzes the hydrolysis reaction of the alkoxysilyl group when the moisture-proof insulating coating of the present invention (I) contains an alkoxysilyl group. In such a case, it is necessary to consider the balance between the stability over time of the moisture-proof insulating paint of the present invention (I) and the adhesion to the substrate, and the amounts used in that case include polyol, polyisocyanate and hydroxyl group-containing ( It is preferably 0.003 to 0.2 parts by mass, more preferably 0.005 to 0.15 parts by mass with respect to 100 parts by mass of the total amount of (meth) acrylate or polyol and isocyanato group-containing (meth) acrylate. Part. When the amount is less than 0.001 part by mass, the effect of adding a catalyst is hardly exhibited, and when it is used more than 1 part by mass, the physical property value at the time of actual use as a cured film is adversely affected as described above. There is.
 原料の仕込みを行う順番については特に制約はないが、通常は、ポリオールとポリイソシアネートと水酸基含有(メタ)アクリレートの反応の場合はポリイソシアネートおよび必要に応じてウレタン化触媒を反応器に投入し、撹拌を行い、その後、反応器内の温度を50℃~140℃、好ましくは60℃~120℃で、ポリオールを投入し、その後、反応器内の温度を50℃~160℃、好ましくは60℃~140℃でこれらを反応させる。その後、反応器内の温度を30℃~120℃、好ましくは50℃~100℃で、重合禁止剤および必要に応じてウレタン化触媒を添加し、滴下により水酸基含有(メタ)アクリレートを投入する。滴下中、反応器内の温度を30℃~120℃、望ましくは50℃~100℃に維持することが好ましい。滴下終了後、反応器内の温度を30℃~120℃、望ましくは50℃~100℃に維持し、反応を完結させる。ポリオールとイソシアナト基含有(メタ)アクリレートの場合は、イソシアナト基含有(メタ)アクリレート、重合禁止剤および必要に応じてウレタン化触媒を反応器に投入し、撹拌を行い、その後、反応器内の温度を50℃~140℃、好ましくは60℃~120℃で、ポリオールを投入し、その後、反応器内の温度を50℃~160℃、好ましくは60℃~140℃でこれらを反応させる。その後、反応器内の温度を30℃~120℃、望ましくは50℃~100℃に維持し、反応を完結させる。 There are no particular restrictions on the order in which the raw materials are charged. Usually, in the case of a reaction of a polyol, a polyisocyanate, and a hydroxyl group-containing (meth) acrylate, the polyisocyanate and, if necessary, a urethanization catalyst are charged into the reactor. Stirring is performed, and then the polyol is charged at a temperature in the reactor of 50 ° C. to 140 ° C., preferably 60 ° C. to 120 ° C., and then the temperature in the reactor is 50 ° C. to 160 ° C., preferably 60 ° C. These are reacted at ~ 140 ° C. Thereafter, the temperature in the reactor is 30 ° C. to 120 ° C., preferably 50 ° C. to 100 ° C., a polymerization inhibitor and, if necessary, a urethanization catalyst are added, and a hydroxyl group-containing (meth) acrylate is added dropwise. During the dropping, the temperature in the reactor is preferably maintained at 30 ° C. to 120 ° C., desirably 50 ° C. to 100 ° C. After completion of the dropwise addition, the temperature in the reactor is maintained at 30 ° C. to 120 ° C., preferably 50 ° C. to 100 ° C., to complete the reaction. In the case of a polyol and an isocyanato group-containing (meth) acrylate, the isocyanato group-containing (meth) acrylate, a polymerization inhibitor and, if necessary, a urethanization catalyst are charged into the reactor, followed by stirring, and then the temperature in the reactor The polyol is charged at 50 ° C. to 140 ° C., preferably 60 ° C. to 120 ° C., and then reacted at a temperature in the reactor of 50 ° C. to 160 ° C., preferably 60 ° C. to 140 ° C. Thereafter, the temperature in the reactor is maintained at 30 ° C. to 120 ° C., desirably 50 ° C. to 100 ° C., to complete the reaction.
 ポリオールとポリイソシアネートと水酸基含有(メタ)アクリレートの反応の場合は、原料の仕込みモル比(即ち、(ポリオール中の水酸基の数)/(ポリイソシアネート中のイソシアナト基の数)/(水酸基含有(メタ)アクリレート中の水酸基の数))は、目的とするポリウレタンの分子量に応じて調節する。ただし、ポリオール中の水酸基の数よりポリイソシアネート中のイソシアナト基の数を多くする必要がある。
 ポリオール中の水酸基の総数とポリイソシアネート中のイソシアナト基数の比が、1.0に近いと分子量が大きくなり、1.0からずれて小さくなると分子量は小さくなる。
 原料の仕込みモル比には特に制限はないが、ポリイソシアネート中のイソシアナト基の数と、ポリオール中の水酸基の総数の比は、4:1~1.5:1の範囲であることが好ましい。
 この比が4:1よりも大きくなると、ポリオールから誘導される構造単位の存在率が少なくなり防湿絶縁塗料の防湿性の面で好ましくない場合を生じることがある。また、1.4:1よりも小さい場合には、分子量が大きくなりすぎ、本発明(I)の防湿絶縁塗料に使用した場合には、粘度が高くなりすぎる場合がある。
In the case of a reaction between a polyol, a polyisocyanate, and a hydroxyl group-containing (meth) acrylate, the raw material charge molar ratio (ie, (number of hydroxyl groups in the polyol) / (number of isocyanate groups in the polyisocyanate) / (hydroxyl group-containing (meta)) ) The number of hydroxyl groups in the acrylate)) is adjusted according to the molecular weight of the target polyurethane. However, it is necessary to increase the number of isocyanato groups in the polyisocyanate than the number of hydroxyl groups in the polyol.
When the ratio of the total number of hydroxyl groups in the polyol to the number of isocyanate groups in the polyisocyanate is close to 1.0, the molecular weight increases. When the ratio deviates from 1.0, the molecular weight decreases.
The feed molar ratio of the raw material is not particularly limited, but the ratio of the number of isocyanate groups in the polyisocyanate and the total number of hydroxyl groups in the polyol is preferably in the range of 4: 1 to 1.5: 1.
If this ratio is larger than 4: 1, the abundance of structural units derived from polyol may be reduced, which may be undesirable in terms of moisture resistance of the moisture-proof insulating coating. Moreover, when it is smaller than 1.4: 1, the molecular weight becomes too large, and when used in the moisture-proof insulating paint of the present invention (I), the viscosity may become too high.
 本発明(I)の防湿絶縁塗料中のウレタン(メタ)アクリレートの使用量は、全重合性成分に対して、20~70質量%含有することが好ましく、さらに好ましくは、24~60質量%であり、特に好ましくは、24~55質量%である。ウレタン(メタ)アクリレートの使用量が、全重合性成分に対して20質量%未満になると、防湿絶縁塗料の防湿性能が低下する場合があり、好ましいこととはいえない。また、ウレタン(メタ)アクリレートの使用量が、全重合性成分に対して70質量%より多くなると、防湿絶縁塗料の粘度が高くなりすぎ、ハンドリング上好ましいこととはいえない。 The amount of urethane (meth) acrylate used in the moisture-proof insulating coating of the present invention (I) is preferably 20 to 70% by mass, more preferably 24 to 60% by mass, based on all polymerizable components. It is particularly preferably 24 to 55% by mass. If the amount of urethane (meth) acrylate used is less than 20% by mass relative to the total polymerizable component, the moisture-proof performance of the moisture-proof insulating coating may be lowered, which is not preferable. Moreover, when the usage-amount of urethane (meth) acrylate becomes more than 70 mass% with respect to all the polymeric components, the viscosity of a moisture-proof insulating coating will become high too much and it cannot be said that it is preferable on handling.
 ウレタン(メタ)アクリレートの中でも、特に、水添ダイマー酸から誘導される構造単位および水添ダイマージオールから誘導される構造単位を有するポリエステルポリオール、から誘導されるウレタン(メタ)アクリレートが好ましい。 Among urethane (meth) acrylates, urethane (meth) acrylate derived from a polyester polyol having a structural unit derived from a hydrogenated dimer acid and a structural unit derived from a hydrogenated dimer diol is particularly preferable.
 一般に「ダイマー酸」とは、エチレン性二重結合を2~4個有する炭素数14~22の脂肪酸(以下、不飽和脂肪酸Aという)、好ましくはエチレン性二重結合を2個有する炭素数14~22の脂肪酸と、エチレン性二重結合を1~4個有する炭素数14~22の脂肪酸(以下、不飽和脂肪酸Bという)、好ましくはエチレン性二重結合を1もしくは2個有する炭素数14~22の脂肪酸とを二重結合部で反応して得られる二量体酸をいうものとする。上記で不飽和脂肪酸Aとしてはテトラデカジエン酸、ヘキサデカジエン酸、オクタデカジエン酸(リノール酸等)、エイコサジエン酸、ドコサジエン酸、オクタデカトリエン酸(リノレン酸等)、エイコサテトラエン酸(アラキドン酸等)等が挙げられ、リノール酸がもっとも好ましい。また、不飽和脂肪酸Bとしては、上記例示のものに加え、エチレン性二重結合を1個有する炭素数14~22の脂肪酸としての、テトラデセン酸(ツズ酸、マッコウ酸、ミリストオレイン酸)、ヘキサデセン酸(パルミトレイン酸等)、オクタデセン酸(オレイン酸、エライジン酸、バクセン酸等)、エイコセン酸(ガドレイン酸等)、ドコセン酸(エルカ酸、セトレイン酸、ブラシジン酸等)等が挙げられ、オレイン酸もしくはリノール酸がもっとも好ましい。 In general, “dimer acid” means a fatty acid having 14 to 22 carbon atoms (hereinafter referred to as unsaturated fatty acid A) having 2 to 4 ethylenic double bonds, preferably 14 carbon atoms having two ethylenic double bonds. A fatty acid having ˜22 and a fatty acid having 14 to 22 carbon atoms having 1 to 4 ethylenic double bonds (hereinafter referred to as unsaturated fatty acid B), preferably having 14 carbon atoms having 1 or 2 ethylenic double bonds The dimer acid obtained by reacting with ˜22 fatty acids at the double bond part. As the unsaturated fatty acid A, tetradecadienoic acid, hexadecadienoic acid, octadecadienoic acid (linoleic acid, etc.), eicosadienoic acid, docosadienoic acid, octadecatrienoic acid (linolenic acid, etc.), eicosatetraenoic acid ( Arachidonic acid and the like), and linoleic acid is most preferable. Further, as the unsaturated fatty acid B, tetradecenoic acid (tuzuic acid, sperm acid, myristoleic acid) as a fatty acid having 14 to 22 carbon atoms having one ethylenic double bond in addition to those exemplified above , Hexadecenoic acid (such as palmitoleic acid), octadecenoic acid (such as oleic acid, elaidic acid, vaccenic acid), eicosenoic acid (such as gadoleic acid), docosenoic acid (such as erucic acid, cetreic acid, brassic acid), etc. Acid or linoleic acid is most preferred.
 上記二量化反応において、不飽和脂肪酸Aと不飽和脂肪酸Bとの使用比率(モル比率)は1:1.2~1.2:1程度が好ましく、1:1がもっとも好ましい。上記二量化反応は、公知の方法、例えば特開平9-136861号公報に記載された方法に従って行うことができる。すなわち例えば、不飽和脂肪酸Aおよび不飽和脂肪酸Bにルイス酸やブレンステッド酸型の液体もしくは固体状の触媒、好ましくはモンモリロナイト系活性白土を、不飽和脂肪酸Aおよび不飽和脂肪酸Bの総量100質量部に対して1~20質量部、好ましくは2~8質量部添加し、200~270℃、好ましくは220~250℃に加熱することにより行うことができる。反応時の圧力は、通常やや加圧された状態であるが常圧でもよい。反応時間は、触媒量と反応温度により変わるが、通常5~7時間である。反応終了後、触媒を濾別し、ついで減圧蒸留して未反応原料や異性化脂肪酸類を留去し、その後、ダイマー酸留分を留出して得ることができる。上記二量化反応は、二重結合の移動(異性化)およびディールス・アルダー反応を通して進行するものと思われるが、本発明はこれに縛られるものではない。 In the dimerization reaction, the use ratio (molar ratio) of unsaturated fatty acid A and unsaturated fatty acid B is preferably about 1: 1.2 to 1.2: 1, and most preferably 1: 1. The dimerization reaction can be performed according to a known method, for example, a method described in JP-A-9-136861. That is, for example, an unsaturated fatty acid A and an unsaturated fatty acid B are mixed with a Lewis acid or Bronsted acid type liquid or solid catalyst, preferably montmorillonite activated clay, and the total amount of unsaturated fatty acid A and unsaturated fatty acid B is 100 parts by mass. 1 to 20 parts by mass, preferably 2 to 8 parts by mass, and heated to 200 to 270 ° C., preferably 220 to 250 ° C. The pressure during the reaction is usually a slightly pressurized state, but may be normal pressure. The reaction time varies depending on the amount of catalyst and the reaction temperature, but is usually 5 to 7 hours. After completion of the reaction, the catalyst can be filtered off and then distilled under reduced pressure to distill off unreacted raw materials and isomerized fatty acids, and then dimer acid fraction can be distilled off. The dimerization reaction is thought to proceed through double bond transfer (isomerization) and Diels-Alder reaction, but the present invention is not limited thereto.
 得られるダイマー酸は、通常、二重結合の結合部位や異性化によって、構造が異なるダイマー酸の混合物であり、分離して使用してもよいが、そのまま使用できる。さらに、得られるダイマー酸は、少量のモノマー酸(例えば6質量%以下、特に4質量%以下)やトリマー酸以上のポリマー酸等(例えば6質量%以下、特に4質量%以下)を含有していてもよい。 The obtained dimer acid is usually a mixture of dimer acids having different structures depending on the bonding site or isomerization of the double bond, and may be used separately, but can be used as it is. Further, the obtained dimer acid contains a small amount of monomeric acid (for example, 6% by mass or less, particularly 4% by mass or less), trimer acid or higher polymer acid (for example, 6% by mass or less, particularly 4% by mass or less). May be.
 本明細書に記載の「水添ダイマー酸」とは、上記ダイマー酸の炭素-炭素二重結合を水素化して得られる飽和ジカルボン酸をいうものとする。
 上記ダイマー酸として、例えばリノール酸とリノール酸もしくはオレイン酸とから製造される炭素数36のダイマー酸を原料として用いた場合には、水添ダイマー酸の主成分の構造は、以下の式(4)および式(5)で表される構造である。
The “hydrogenated dimer acid” described in the present specification refers to a saturated dicarboxylic acid obtained by hydrogenating the carbon-carbon double bond of the dimer acid.
When the dimer acid having 36 carbon atoms produced from, for example, linoleic acid and linoleic acid or oleic acid is used as the raw material, the structure of the main component of the hydrogenated dimer acid is represented by the following formula (4 ) And formula (5).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、RおよびRはアルキル基であり、かつRおよびRに含まれる各炭素数、aおよびbの合計は28(即ち、Rに含まれる炭素数+Rに含まれる炭素数+a+b=28)である。) (In the formula, R 4 and R 5 are alkyl groups, and the number of carbon atoms contained in R 4 and R 5 , the sum of a and b is 28 (ie, the number of carbon atoms contained in R 4 + contained in R 5 ) Carbon number + a + b = 28).)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、RおよびRはアルキル基であり、かつRおよびRに含まれる各炭素数、cおよびdの合計は32(即ち、Rに含まれる炭素数+Rに含まれる炭素数+c+d=32)である。) (In the formula, R 6 and R 7 are alkyl groups, and each carbon number contained in R 6 and R 7 , the sum of c and d is 32 (that is, the number of carbons contained in R 6 + contained in R 7 ) Carbon number + c + d = 32).)
 水添ダイマー酸の市販品としては、例えば、PRIPOL(登録商標)1009等(クローダ社製)、EMPOL(登録商標)1008およびEMPOL(登録商標)1062(BASF社製)を挙げることができる。 Examples of commercially available hydrogenated dimer acid include PRIPOL (registered trademark) 1009 (manufactured by Croda), EMPOL (registered trademark) 1008, and EMPOL (registered trademark) 1062 (manufactured by BASF).
 本明細書に記載の「水添ダイマージオール」とは、上記のダイマー酸、上記の水添ダイマー酸およびその低級アルコールエステルの少なくとも1種を触媒存在下で還元して、ダイマー酸のカルボン酸あるいはカルボキシレート部分をアルコールとし、原料に炭素-炭素二重結合を有する場合にはその二重結合を水素化したジオールを主成分としたものである。
 例えば、式(4)および式(5)で表される構造の化合物を主成分とする水添ダイマー酸を還元して水添ダイマージオールを製造した場合には、水添ダイマージオールの主成分の構造は、以下の式(6)および式(7)で表される構造である。
The “hydrogenated dimer diol” described in the present specification refers to the reduction of at least one of the above dimer acid, the above hydrogenated dimer acid and the lower alcohol ester thereof in the presence of a catalyst, When the carboxylate moiety is an alcohol and the raw material has a carbon-carbon double bond, the main component is a diol obtained by hydrogenating the double bond.
For example, when a hydrogenated dimer diol is produced by reducing a hydrogenated dimer acid containing a compound having a structure represented by formula (4) or formula (5) as a main component, the main component of the hydrogenated dimer diol is reduced. The structure is a structure represented by the following formulas (6) and (7).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、RおよびRはアルキル基であり、かつRおよびRに含まれる各炭素数、eおよびfの合計は30(即ち、Rに含まれる炭素数+Rに含まれる炭素数+e+f=30)である。) (In the formula, R 8 and R 9 are alkyl groups, and the total number of carbon atoms contained in R 8 and R 9 , and the sum of e and f is 30 (that is, contained in R 8 + R 9. Carbon number + e + f = 30).)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、R10およびR11はアルキル基であり、かつR10およびR11に含まれる各炭素数、gおよびhの合計は34(即ち、R10に含まれる炭素数+R11に含まれる炭素数+g+h=34)である。) (In the formula, R 10 and R 11 are alkyl groups, and the total number of carbon atoms contained in R 10 and R 11 , g and h is 34 (ie, the number of carbon atoms contained in R 10 + included in R 11 ). Carbon number + g + h = 34).)
 水添ダイマージオールの市販品としては、例えば、PRIPOL(登録商標)2033等(クローダ社製)やSovermol(登録商標)908(BASF社製)を挙げることができる。 Examples of commercially available hydrogenated dimer diol include PRIPOL (registered trademark) 2033 (manufactured by Croda) and Sovermol (registered trademark) 908 (manufactured by BASF).
 水添ダイマー酸から誘導される構造単位および水添ダイマージオールから誘導される構造単位を有するポリエステルポリオールは、前記の水添ダイマー酸を必須成分とする酸成分と、前記の水添ダイマージオールを必須成分とするポリオール成分を、エステル化触媒の存在下で縮合反応を行うことによって製造することができる。
 上記エステル化反応は、水を除去するので、150~250℃程度の反応温度で反応を行うことが一般的である。反応時の圧力は、常圧または減圧条件下で反応することが一般的である。
A polyester polyol having a structural unit derived from a hydrogenated dimer acid and a structural unit derived from a hydrogenated dimer diol, an acid component containing the hydrogenated dimer acid as an essential component and the hydrogenated dimer diol as essential The polyol component as a component can be produced by performing a condensation reaction in the presence of an esterification catalyst.
Since the esterification reaction removes water, the reaction is generally performed at a reaction temperature of about 150 to 250 ° C. In general, the reaction is performed under normal pressure or reduced pressure.
 また、水添ダイマー酸から誘導される構造単位および水添ダイマージオールから誘導される構造単位を有するポリエステルポリオールは、水添ダイマー酸を必須成分とする酸の低級アルキルエステルと、前記の水添ダイマージオールを必須成分とするポリオール成分を、エステル交換触媒の存在下でエステル交換反応を行うことによっても製造することができる。
 上記エステル交換反応は、アルコールを除去するので、120~230℃程度の反応温度で反応を行うことが一般的である。反応時の圧力は、常圧または減圧条件下で反応することが一般的である。
A polyester polyol having a structural unit derived from a hydrogenated dimer acid and a structural unit derived from a hydrogenated dimer diol includes a lower alkyl ester of an acid containing a hydrogenated dimer acid as an essential component, and the hydrogenated dimer described above. A polyol component containing diol as an essential component can also be produced by performing a transesterification reaction in the presence of a transesterification catalyst.
In the transesterification reaction, alcohol is removed, so that the reaction is generally performed at a reaction temperature of about 120 to 230 ° C. In general, the reaction is performed under normal pressure or reduced pressure.
 本明細書における(メタ)アクリルモノマーは、前記の(メタ)アクリロイル基含有化合物から、前記ポリオールポリ(メタ)アクリレート、前記エポキシ(メタ)アクリレートおよび前記ウレタン(メタ)アクリレートを除いた化合物である。 (Meth) acrylic monomer in the present specification is a compound obtained by removing the polyol poly (meth) acrylate, the epoxy (meth) acrylate and the urethane (meth) acrylate from the (meth) acryloyl group-containing compound.
 (メタ)アクリルモノマーとしては、例えば、グリシジルアクリレート、テトラヒドロフルフリルアクリレート、グリシジルメタクリレート、テトラヒドロフルフリルメタクリレート等の環状エーテル基を有する(メタ)アクリロイル含有化合物、シクロヘキシルアクリレート、イソボルニルアクリレート、ジシクロペンテニルアクリレート、ジシクロペンテニルオキシエチルアクリレート、ジシクロペンタニルアクリレート、ジシクロペンタニルエチルアクリレート、4-tert-ブチルシクロヘキシルアクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、ジシクロペンテニルメタクリレート、ジシクロペンテニルオキシエチルメタクリレート、ジシクロペンタニルメタクリレート、ジシクロペンタニルエチルメタクリレート、4-tert-ブチルシクロヘキシルメタクリレート等の環状脂肪族基を有する単官能(メタ)アクリロイル基含有化合物、ラウリルアクリレート、イソノニルアクリレート、2-エチルヘキシルアクリレート、イソブチルアクリレート、tert-ブチルアクリレート、イソオクチルアクリレート、イソアミルアクリレート、ラウリルメタクリレート、イソノニルメタクリレート、2-エチルヘキシルメタクリレート、イソブチルメタクリレート、tert-ブチルメタクリレート、イソオクチルメタクリレート、イソアミルメタクリレート等の鎖状脂肪族基を有する単官能(メタ)アクリロイル基含有化合物、ベンジルアクリレート、フェノキシエチルアクリレート、ベンジルメタクリレート、フェノキシエチルメタクリレート、2-ヒドロキシ-3-フェノキシプロピルメタクリレート等の芳香環を有する単官能(メタ)アクリロイル基含有化合物、ポリエチレングリコールジアクリレート、デカンジオールジアクリレート、ノナンジオールジアクリレート、ヘキサンジオールジアクリレート、トリシクロデカンジメタノールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート等の多官能(メタ)アクリロイル基含有化合物を挙げることができる。 Examples of (meth) acrylic monomers include (meth) acryloyl-containing compounds having a cyclic ether group such as glycidyl acrylate, tetrahydrofurfuryl acrylate, glycidyl methacrylate, and tetrahydrofurfuryl methacrylate, cyclohexyl acrylate, isobornyl acrylate, and dicyclopentenyl. Acrylate, dicyclopentenyloxyethyl acrylate, dicyclopentanyl acrylate, dicyclopentanyl ethyl acrylate, 4-tert-butylcyclohexyl acrylate, cyclohexyl methacrylate, isobornyl methacrylate, dicyclopentenyl methacrylate, dicyclopentenyloxyethyl methacrylate, Dicyclopentanyl methacrylate, dicyclopentanyl ethyl Monofunctional (meth) acryloyl group-containing compounds having a cyclic aliphatic group such as methacrylate, 4-tert-butylcyclohexyl methacrylate, lauryl acrylate, isononyl acrylate, 2-ethylhexyl acrylate, isobutyl acrylate, tert-butyl acrylate, isooctyl acrylate Monofunctional (meth) acryloyl group-containing compounds having a chain aliphatic group such as isoamyl acrylate, lauryl methacrylate, isononyl methacrylate, 2-ethylhexyl methacrylate, isobutyl methacrylate, tert-butyl methacrylate, isooctyl methacrylate, isoamyl methacrylate, benzyl Acrylate, phenoxyethyl acrylate, benzyl methacrylate, phenoxyethyl meta Monofunctional (meth) acryloyl group-containing compounds having an aromatic ring such as relate, 2-hydroxy-3-phenoxypropyl methacrylate, polyethylene glycol diacrylate, decanediol diacrylate, nonanediol diacrylate, hexanediol diacrylate, tricyclode Mention may be made of polyfunctional (meth) acryloyl group-containing compounds such as candimethanol diacrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate and the like.
 本発明(I)の防湿絶縁塗料中の(メタ)アクリルモノマーの使用量は、全重合性成分に対して、30~80質量%含有することが好ましく、より好ましくは40~70質量%であり、さらに好ましくは45~70質量%である。(メタ)アクリルモノマーの使用量が、全重合性成分に対して80質量%より多くなると、防湿絶縁塗料の防湿性能が低下する場合があり、好ましいこととはいえない。また、(メタ)アクリルモノマーの使用量が、全重合性成分に対して30質量%未満になると、防湿絶縁塗料の粘度が高くなりすぎ、ハンドリング上好ましいこととはいえない。 The amount of the (meth) acrylic monomer used in the moisture-proof insulating coating of the present invention (I) is preferably 30 to 80% by mass, more preferably 40 to 70% by mass, based on the total polymerizable components. More preferably, it is 45 to 70% by mass. If the amount of the (meth) acrylic monomer used is more than 80% by mass relative to the total polymerizable component, the moisture-proof performance of the moisture-proof insulating paint may be lowered, which is not preferable. Moreover, when the usage-amount of a (meth) acryl monomer will be less than 30 mass% with respect to all the polymeric components, the viscosity of a moisture-proof insulating coating will become high too much and it cannot be said that it is preferable on handling.
 なお、本明細書に記載の「重合性成分」とは、ラジカル重合により重合可能な化合物を意味し、「全重合性成分」とは重合性成分の総量を意味する。(メタ)アクリロイル基含有化合物(1)、ウレタン(メタ)アクリレートは、ともに重合性成分に含まれる。後述のシランカップリング剤(4)中のp-スチリルトリメトキシシラン、p-スチリルトリエトキシシラン、3-アクリロイルオキシプロピルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アクリロイルオキシプロピルトリエトキシシラン、3-メタクリロイルオキシプロピルトリエトキシシラン、3-アクリロイルオキシプロピルメチルジメトキシシラン、3-メタクリロイルオキシプロピルメチルジメトキシシラン、3-アクリロイルオキシプロピルメチルジエトキシシラン、3-メタクリロイルオキシプロピルメチルジエトキシシランのラジカル重合性不飽和基を有するシランカップリング剤も重合性成分に含まれることを意味する。 The “polymerizable component” described in the present specification means a compound that can be polymerized by radical polymerization, and the “total polymerizable component” means the total amount of the polymerizable component. The (meth) acryloyl group-containing compound (1) and urethane (meth) acrylate are both included in the polymerizable component. P-styryltrimethoxysilane, p-styryltriethoxysilane, 3-acryloyloxypropyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-acryloyloxypropyltriethoxy in the silane coupling agent (4) described later Silane, 3-methacryloyloxypropyltriethoxysilane, 3-acryloyloxypropylmethyldimethoxysilane, 3-methacryloyloxypropylmethyldimethoxysilane, 3-acryloyloxypropylmethyldiethoxysilane, 3-methacryloyloxypropylmethyldiethoxysilane radicals It means that a silane coupling agent having a polymerizable unsaturated group is also included in the polymerizable component.
 また、(メタ)アクリルモノマーの総量に対して、ラウリルアクリレート、イソノニルアクリレート、ラウリルメタクリレート、イソノニルメタクリレート等の炭素数9以上の鎖状脂肪族炭化水素基を有する、(メタ)アクリルモノマーと、イソボルニルアクリレート、ジシクロペンテニルアクリレート、ジシクロペンテニルオキシエチルアクリレート、ジシクロペンタニルアクリレート、ジシクロペンタニルエチルアクリレート、4-tert-ブチルシクロヘキシルアクリレート、イソボルニルメタクリレート、ジシクロペンテニルメタクリレート、ジシクロペンテニルオキシエチルメタクリレート、ジシクロペンタニルメタクリレート、ジシクロペンタニルエチルメタクリレート、4-tert-ブチルシクロヘキシルメタクリレート等の炭素数9以上の環状脂肪族炭化水素基を有する、(メタ)アクリルモノマーの総量が50質量%以上であることが好ましい。 Further, a (meth) acrylic monomer having a chain aliphatic hydrocarbon group having 9 or more carbon atoms such as lauryl acrylate, isononyl acrylate, lauryl methacrylate, isononyl methacrylate, etc. with respect to the total amount of (meth) acrylic monomer, Isobornyl acrylate, dicyclopentenyl acrylate, dicyclopentenyloxyethyl acrylate, dicyclopentanyl acrylate, dicyclopentanyl ethyl acrylate, 4-tert-butylcyclohexyl acrylate, isobornyl methacrylate, dicyclopentenyl methacrylate, dicyclo Pentenyloxyethyl methacrylate, dicyclopentanyl methacrylate, dicyclopentanyl ethyl methacrylate, 4-tert-butylcyclohexyl methacrylate Having a number of 9 or more cyclic aliphatic hydrocarbon group having a carbon etc., it is preferable that (meth) the total amount of the acrylic monomer is more than 50 mass%.
 次に、光重合開始剤(2)について説明する。
 光重合開始剤は、近赤外線、可視光線、紫外線等の光の照射により、ラジカル重合の開始に寄与するラジカルを発生する化合物であれば、特に制限はない。
 光重合開始剤としては、具体的には、アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、ジエトキシアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、1,2-ヒドロオキシ-2-メチル-1-フェニルプロパン-1-オン、α-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパノン、2-ヒドロキシ-2-メチル-1-(4-イソプロピルフェニル)プロパノン、2-ヒドロキシ-2-メチル-1-(4-ドデシルフェニル)プロパノン、および、2-ヒドロキシ-2-メチル-1-[(2-ヒドロキシエトキシ)フェニル]プロパノン、ベンゾフェノン、2-メチルベンゾフェノン、3-メチルベンゾフェノン、4-メチルベンゾフェノン、4-メトキシベンゾフェノン、2-クロロベンゾフェノン、4-クロロベンゾフェノン、4-ブロモベンゾフェノン、2-カルボキシベンゾフェノン、2-エトキシカルボニルベンゾフェノン、4-ベンゾイル-4′-メチルジフェニルスルフィド、ベンゾフェノンテトラカルボン酸またはそのテトラメチルエステル、4,4′-ビス(ジアルキルアミノ)ベンゾフェノン類(例えば4,4′-ビス(ジメチルアミノ)ベンゾフェノン、4,4′-ビス(ジシクロヘキシルアミノ)ベンゾフェノン、4,4′-ビス(ジエチルアミノ)ベンゾフェノン、4,4′-ビス(ジヒドロキシエチルアミノ)ベンゾフェノン)、4-メトキシ-4′-ジメチルアミノベンゾフェノン、4,4′-ジメトキシベンゾフェノン、4-ジメチルアミノベンゾフェノン、4-ジメチルアミノアセトフェノン、ベンジル、アントラキノン、2-t-ブチルアントラキノン、2-メチルアントラキノン、フェナントラキノン、フルオレノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-1-プロパノン、2-ヒドロキシ-2-メチル-[4-(1-メチルビニル)フェニル]プロパノールオリゴマー、ベンゾイン、ベンゾインエーテル類(例えばベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾインフェニルエーテル、ベンジルジメチルケタール)、アクリドン、クロロアクリドン、N-メチルアクリドン、N-ブチルアクリドン、N-ブチル-クロロアクリドン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、2,6-ジメトキシベンゾイルジフェニルホスフィンオキサイド、2,6-ジクロロベンゾイルジフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルメトキシフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルエトキシフェニルホスフィンオキサイド、2,3,5,6-テトラメチルベンゾイルジフェニルホスフィンオキサイド、ベンゾイルジ-(2,6-ジメチルフェニル)ホスホネート、1-[4-(フェニルチオ)フェニル]-1,2-オクタンジオン-2-(O-ベンゾイルオキシム)、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン-1-(O-アセチルオキシム)、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-3-シクロペンチルプロパノン-1-(O-アセチルオキシム)、1-[4-(フェニルチオ)フェニル]-3-シクロペンチルプロパン-1,2-ジオン-2-(O-ベンゾイルオキシム)などが挙げられる。ビスアシルフォスフィンオキサイド類としては、ビス-(2,6-ジクロロベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-4-プロピルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-1-ナフチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、(2,5,6-トリメチルベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントンなどが挙げられる。
Next, the photopolymerization initiator (2) will be described.
The photopolymerization initiator is not particularly limited as long as it is a compound that generates radicals that contribute to the initiation of radical polymerization upon irradiation with light such as near infrared rays, visible rays, and ultraviolet rays.
Specific examples of the photopolymerization initiator include acetophenone, 2,2-dimethoxy-2-phenylacetophenone, diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, 1,2-hydroxy-2-methyl-1-phenylpropane. -1-one, α-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropanone, 2-hydroxy-2-methyl-1- (4-isopropylphenyl) propanone, 2-hydroxy-2- Methyl-1- (4-dodecylphenyl) propanone and 2-hydroxy-2-methyl-1-[(2-hydroxyethoxy) phenyl] propanone, benzophenone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methyl Benzophenone, 4-methoxy Nzophenone, 2-chlorobenzophenone, 4-chlorobenzophenone, 4-bromobenzophenone, 2-carboxybenzophenone, 2-ethoxycarbonylbenzophenone, 4-benzoyl-4'-methyldiphenyl sulfide, benzophenone tetracarboxylic acid or its tetramethyl ester, 4 , 4'-bis (dialkylamino) benzophenones (for example, 4,4'-bis (dimethylamino) benzophenone, 4,4'-bis (dicyclohexylamino) benzophenone, 4,4'-bis (diethylamino) benzophenone, 4, 4'-bis (dihydroxyethylamino) benzophenone), 4-methoxy-4'-dimethylaminobenzophenone, 4,4'-dimethoxybenzophenone, 4-dimethylaminobenzophenone, 4- Dimethylaminoacetophenone, benzyl, anthraquinone, 2-t-butylanthraquinone, 2-methylanthraquinone, phenanthraquinone, fluorenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone, 2 -(Dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, 2-methyl-1- [4- (methylthio) phenyl]- 2-morpholino-1-propanone, 2-hydroxy-2-methyl- [4- (1-methylvinyl) phenyl] propanol oligomer, benzoin, benzoin ethers (eg benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin) Isopropyl ether, Zoin isobutyl ether, benzoin phenyl ether, benzyldimethyl ketal), acridone, chloroacridone, N-methylacridone, N-butylacridone, N-butyl-chloroacridone, 2,4,6-trimethylbenzoyldiphenylphosphine Oxide, 2,6-dimethoxybenzoyldiphenylphosphine oxide, 2,6-dichlorobenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoylmethoxyphenylphosphine oxide, 2,4,6-trimethylbenzoylethoxyphenylphosphine oxide, 2, 3,5,6-tetramethylbenzoyldiphenylphosphine oxide, benzoyldi- (2,6-dimethylphenyl) phosphonate, 1- [4- (phenylthio) phene L] -1,2-octanedione-2- (O-benzoyloxime), 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] ethanone-1- (O— Acetyloxime), 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -3-cyclopentylpropanone-1- (O-acetyloxime), 1- [4- ( Phenylthio) phenyl] -3-cyclopentylpropane-1,2-dione-2- (O-benzoyloxime) and the like. Examples of bisacylphosphine oxides include bis- (2,6-dichlorobenzoyl) phenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2, 6-dichlorobenzoyl) -4-propylphenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -1-naphthylphosphine oxide, bis- (2,6-dimethoxybenzoyl) phenylphosphine oxide, bis- ( 2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2,4,6- Trimethylbenzoyl) phenyl phosphite Oxide, (2,5,6-trimethylbenzoyl) -2,4,4-trimethylpentylphosphine oxide, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, 1 -Chloro-4-propoxythioxanthone and the like.
 また、光重合開始剤として、メタロセン化合物を使用することもできる。メタロセン化合物としては、中心金属がFe、Ti、V、Cr、Mn、Co、Ni、Mo、Ru、Rh、Lu、Ta、W、Os、Irなどに代表される遷移元素を用いることができ、例えば、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス[2,6-ジフルオロ-3-(ピロール-1-イル)フェニル]チタニウムを挙げることができる。 Also, a metallocene compound can be used as a photopolymerization initiator. As the metallocene compound, the transition metal represented by Fe, Ti, V, Cr, Mn, Co, Ni, Mo, Ru, Rh, Lu, Ta, W, Os, Ir, etc. can be used as the metallocene compound, An example is bis (η5-2,4-cyclopentadien-1-yl) -bis [2,6-difluoro-3- (pyrrol-1-yl) phenyl] titanium.
 これらの光重合開始剤は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。 These photopolymerization initiators can be used alone or in combination of two or more.
 本発明に使用される光重合開始剤としてより好ましいものは、下記式(1)で表される化合物またはベンジルジメチルケタールである。 The more preferable photopolymerization initiator used in the present invention is a compound represented by the following formula (1) or benzyldimethyl ketal.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式中、R、R、Rは特に構造を限定されないが、Rはヘテロ原子を含んでいてもよい炭化水素基であり、RおよびRは炭化水素基である。好ましくは、Rはヘテロ原子を含む構造であり、RおよびRはアルキル基、および/またはフェニル基、および/またはシクロアルキル基を含む構造である。より好ましくは、Rは式(2)または式(3)で表され、Rは炭素数1~10でシクロアルキル基を含んでいてよい炭化水素基であり、Rはメチル基またはフェニル基である。さらに好ましくは、Rは炭素数1~6のアルキル基である。 In the formula, R 1 , R 2 and R 3 are not particularly limited in structure, but R 1 is a hydrocarbon group which may contain a hetero atom, and R 2 and R 3 are hydrocarbon groups. Preferably, R 1 is a structure containing a hetero atom, and R 2 and R 3 are structures containing an alkyl group, and / or a phenyl group, and / or a cycloalkyl group. More preferably, R 1 is represented by the formula (2) or (3), R 2 is a hydrocarbon group having 1 to 10 carbon atoms and may contain a cycloalkyl group, and R 3 is a methyl group or a phenyl group. It is a group. More preferably, R 2 is an alkyl group having 1 to 6 carbon atoms.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(1)で表される化合物としては、例えば、Irgacure OXE 01、Irgacure OXE 02(共にBASF社製)、TR-PBG-304、TR-PBG-305(共に常州強力電子新材料有限公司社(CHANGZHOU TRONLY NEW ELECTRONIC MATERIALS CO.,LTD)製等が挙げられる。また、ベンジルジメチルケタールとしては、Irgacure 651(BASF社製)が挙げられる。これらは単独でも、あるいは2種以上を適宜組み合わせて使用してもよい。そして更に、防湿絶縁塗料に配合された時の保存安定性から、ベンジルジメチルケタールが最も好ましい。 Examples of the compound represented by the formula (1) include Irgacure OXE 01, Irgacure OXE 02 (both manufactured by BASF), TR-PBG-304, TR-PBG-305 (both Changzhou Powerful Electronic New Materials Co., Ltd. ( CHANGZHOU TRONLY NEW ELECTRONIC MATERIALS CO., LTD) etc. In addition, as benzyl dimethyl ketal, Irgacure 651 (manufactured by BASF Corp.) can be mentioned, which may be used alone or in combination of two or more. Further, benzyl dimethyl ketal is most preferable from the viewpoint of storage stability when blended in a moisture-proof insulating coating.
 式(1)で表される化合物またはベンジルジメチルケタールの使用量は、全光重合性成分100質量部に対して、0.1~10質量部含有することが好ましく、更に好ましくは、0.5~6質量部の範囲である。これらの式(1)で表される化合物またはベンジルジメチルケタールの使用量が、全光重合性成分100質量部に対して、0.1質量部未満の場合には、深部硬化性が発現されにくくなり好ましいことではない。また、式(1)で表される化合物またはベンジルジメチルケタールの使用量が、全光重合性成分100質量部に対して、10質量部より多くなると、硬化物の物性に悪影響を与える可能性があり、好ましいことではない。 The amount of the compound represented by the formula (1) or benzyl dimethyl ketal is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 100 parts by mass of the total photopolymerizable component. The range is from 6 parts by mass. When the amount of the compound represented by the formula (1) or the benzyldimethyl ketal is less than 0.1 parts by mass with respect to 100 parts by mass of the total photopolymerizable component, the deep curability is hardly exhibited. It is not preferable. Moreover, when the usage-amount of the compound or benzyl dimethyl ketal represented by Formula (1) exceeds 10 mass parts with respect to 100 mass parts of all photopolymerizable components, it may have a bad influence on the physical property of hardened | cured material. Yes, not preferable.
 式(1)で表される光硬化開始剤またはベンジルジメチルケタールと組み合わせる光重合開始剤として好ましいものは、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノンまたは、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノンである。2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノンとしては、例えば、Irgacure 369(BASF社製)等が挙げられる。また、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノンとしては、例えば、Irgacure 379EG(BASF社製)等が挙げられる。 Preferred as a photocuring initiator represented by the formula (1) or a photopolymerization initiator combined with benzyldimethyl ketal is 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone, 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone. Examples of 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone include Irgacure 369 (manufactured by BASF). Further, as 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, for example, Irgacure 379EG (manufactured by BASF) etc. Is mentioned.
 式(1)で表される化合物またはベンジルジメチルケタール以外の光重合開始剤の使用量は、全光重合性成分100質量部に対して、0.1~10質量部含有することが好ましく、更に好ましくは、0.5~6質量部の範囲である。これらの式(1)で表される化合物またはベンジルジメチルケタール以外の光重合開始剤は、単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。式(1)で表される化合物またはベンジルジメチルケタールの使用量が、全光重合性成分100質量部に対して、0.1質量部未満の場合には、光重合開始性能が発現されにくくなり好ましいことではない。また、式(1)で表される化合物またはベンジルジメチルケタール以外の光重合開始剤の使用量が、全光重合性成分100質量部に対して、10質量部より多くなると、硬化物の物性に悪影響を与える可能性があり、好ましいことではない。 The amount of the photopolymerization initiator other than the compound represented by the formula (1) or benzyldimethyl ketal is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the total photopolymerizable component. Preferably, it is in the range of 0.5 to 6 parts by mass. These photopolymerization initiators other than the compound represented by the formula (1) or benzyl dimethyl ketal may be used alone or in combination of two or more. When the amount of the compound represented by the formula (1) or the benzyldimethyl ketal used is less than 0.1 parts by mass with respect to 100 parts by mass of the total photopolymerizable component, the photopolymerization initiation performance is hardly exhibited. It is not preferable. Moreover, when the usage-amount of photoinitiators other than the compound represented by Formula (1) or benzyl dimethyl ketal exceeds 10 mass parts with respect to 100 mass parts of all photopolymerizable components, it will become the physical property of hardened | cured material. This may be adversely affected and is not preferred.
 次に、2種類以上の染料(3)について説明する。
 染料(3)は、広い波長範囲の可視光に対する遮光性を付与するために、2種類以上を混合して使用される。
 本発明(I)の防湿絶縁塗料の成分として使用される染料としては、直接染料、酸性染料、塩基性染料、媒染染料、酸性媒染染料、建染染料、分散染料、反応染料、蛍光増白染料、プラスチック染料等が挙げられ、これらの中から2種類以上の染料が用いられる。
Next, two or more kinds of dyes (3) will be described.
The dye (3) is used by mixing two or more kinds in order to impart a light shielding property to visible light in a wide wavelength range.
Examples of the dye used as a component of the moisture-proof insulating paint of the present invention (I) include direct dyes, acid dyes, basic dyes, mordant dyes, acid mordant dyes, vat dyes, disperse dyes, reactive dyes, and fluorescent whitening dyes. And plastic dyes. Among these, two or more dyes are used.
 なお、本明細書に記載の「染料」とは、「溶剤に可溶、もしくは樹脂に対し相溶性を持ち、溶解・相溶した物質を着色する性質を持つ物質」を意味する。
 また、本明細書に記載の「直接染料」とは、水溶性で、繊維に対して中性または弱アルカリ性浴にて、中性塩等を助剤にして染色する染料を意味する。
 本明細書に記載の「酸性染料」とは、水溶性で、繊維に対して硫酸、蟻酸、酢酸等の酸性浴で染色する染料を意味する。
 本明細書に記載の「塩基性染料」とは、水溶性で、予めタンニン酸等の酸性物質を付着させた繊維に対して、中性または弱アルカリ性浴にて、染色する染料を意味する。
 本明細書に記載の「媒染染料」とは、予め、クロム、アルミニウム、鉄、スズなどの金属水酸化物や酸化物を固着させた繊維に対して、媒染染料溶液浴で染色する染料を意味する。
 本明細書に記載の「酸性媒染染料」とは、水溶性で、繊維に対して硫酸、蟻酸、酢酸等の酸性浴で染色することも、予め、クロム、アルミニウム、鉄、スズなどの金属水酸化物や酸化物を固着させた繊維に対して、媒染染料溶液浴で染色することもできる染料を意味する。
 本明細書に記載の「建染染料」とは、水に不溶または難溶で、化学構造中のカルボニル基を還元することでアルカリ性浴に溶解し、それに浸した繊維を空気酸化することで染色する染料を意味する。
 本明細書に記載の「分散染料」とは、水に不溶または難溶で、界面活性剤を用いて水に分散させた液に、繊維を浸すことで染色する染料を意味する。
 本明細書に記載の「反応染料」とは、セルロースや羊毛、ナイロン等と共有結合を作ることができる化学構造を持ち、それらの繊維と反応することで染色する染料を意味する。
 本明細書に記載の「蛍光増白染料」とは、紫外線を吸収し、それより長波長の青~紫色の光を発する染料を意味する。
 本明細書に記載の「プラスチック染料」とは、油溶性で樹脂との相溶性が高く、繊維ではなく樹脂を染色することを目的とした染料を意味する。
The “dye” described in the present specification means “a substance that has a property of being soluble in a solvent or having compatibility with a resin and coloring dissolved and compatible substances”.
In addition, the “direct dye” described in the present specification means a dye that is water-soluble and dyes the fiber with a neutral salt or the like in a neutral or weak alkaline bath.
The “acid dye” described in the present specification means a dye that is water-soluble and dyes fibers with an acid bath such as sulfuric acid, formic acid, and acetic acid.
The “basic dye” described in the present specification means a dye that is water-soluble and dyes in a neutral or weak alkaline bath on a fiber to which an acidic substance such as tannic acid is previously attached.
“Mordant dye” described in the present specification means a dye that is dyed in a mordant dye solution bath on a fiber to which a metal hydroxide or oxide such as chromium, aluminum, iron, or tin is fixed in advance. To do.
The “acid mordant dye” described in the present specification is water-soluble, and the fiber can be dyed with an acid bath such as sulfuric acid, formic acid, acetic acid, etc. It means a dye that can be dyed with a mordant dye solution bath on an oxide or a fiber to which an oxide is fixed.
"Vat dye" described in this specification is insoluble or sparingly soluble in water. It is dissolved in an alkaline bath by reducing the carbonyl group in the chemical structure and dyed by air oxidation of the fibers immersed in the bath. It means the dye to do.
The “dispersion dye” described in the present specification means a dye that is insoluble or hardly soluble in water and dyes by immersing fibers in a liquid dispersed in water using a surfactant.
The “reactive dye” described in the present specification means a dye having a chemical structure capable of forming a covalent bond with cellulose, wool, nylon and the like, and dyeing by reacting with those fibers.
The “fluorescent whitening dye” described in the present specification means a dye that absorbs ultraviolet rays and emits blue to violet light having a longer wavelength.
The “plastic dye” described in the present specification means a dye that is oil-soluble and highly compatible with a resin, and is intended to dye a resin rather than a fiber.
 これらの中で好ましいものは、プラスチック染料であり、例えば、モノアゾ系染料(Colour Index Constitution Number 11000~19999)、ジアゾ系染料(Colour Index Constitution Number 20000~29999)、トリアリール系染料(Colour Index Constitution Number 42000~44999)、キノリン系染料(Colour Index Constitution Number 47000~47999)、メチン系染料(Colour Index Constitution Number 48000~48999)、アジン系染料(Colour Index Constitution Number 50000~50999)、アミノケトン系染料(Colour Index Constitution Number 56000~56999)、アントラキノン系染料(Colour Index Constitution Number 58000~72699)、インジゴイド系染料(Colour Index Constitution Number 72000~72999)、等が挙げられ、これらの染料の中から選ばれる少なくとも1種以上の染料を含有しかつ2種類以上を使用することが、広い可視光波長範囲で遮光性を付与する上で好ましい。 Among these, preferred are plastic dyes, for example, monoazo dyes (Color Index Constitution Number 11000 to 19999), diazo dyes (Color Index Constitution Number 20000 to 29999), triaryl dyes (Color Index Conb 42000-44999), quinoline dyes (Color Index Constitution Number 47000-47999), methine dyes (Color Index Constitution Number 48000-4999), azine dyes (Color Index Constitution) Number 50000-50999), aminoketone dyes (Color Index Constitution Number 56000-56999), anthraquinone dyes (Color Index Constitution Number 58000-72699), Indigo dyes 7 It is preferable to contain at least one dye selected from these dyes and to use two or more dyes in order to impart light-shielding properties in a wide visible light wavelength range.
 さらに好ましくは、染料(3)の少なくとも2種が、それぞれ、酢酸ブチル溶液にして光路長10mmの条件でUV-可視光線透過率測定を行った際、吸収極大波長における透過率が10%となるように濃度を調整した溶液の、波長365nmにおける透過率が50%以上となる染料であり、また、上記少なくとも2種の染料(3)の内、少なくとも1種類が、酢酸ブチル溶液にした際の吸収極大波長が450nm以上550nm未満の範囲に存在し、また別の少なくとも1種類が、酢酸ブチル溶液にした際の吸収極大波長が550nm以上700nm以下の範囲に存在する染料である。好ましくは、該染料の少なくとも2種がアントラキノン系染料であり、該染料のすべてがアントラキノン系染料であることが最も好ましい。ここでアントラキノン系染料は、Colour Index Constitution Number 58000~72699に該当する。 More preferably, at least two of the dyes (3) each have a transmittance at a maximum absorption wavelength of 10% when UV-visible light transmittance measurement is performed in a butyl acetate solution under an optical path length of 10 mm. When the concentration of the solution thus adjusted is a dye having a transmittance of 50% or more at a wavelength of 365 nm, at least one of the at least two dyes (3) is a butyl acetate solution. The absorption maximum wavelength exists in the range of 450 nm or more and less than 550 nm, and at least another kind is a dye having the absorption maximum wavelength in the range of 550 nm or more and 700 nm or less when the butyl acetate solution is used. Preferably, at least two of the dyes are anthraquinone dyes, and most preferably all of the dyes are anthraquinone dyes. Here, the anthraquinone dye corresponds to Color Index Constitution Number 58000 to 72699.
 このような、酢酸ブチル溶液にして光路長10mmの条件でUV-可視光線透過率測定を行った際、吸収極大波長における透過率が10%となるように濃度を調整した溶液の、波長365nmにおける透過率(以下単に「T365」ともいう。)が50%以上であり、かつ酢酸ブチル溶液にした際の吸収極大波長(以下単に「λmax」ともいう。)が450nm以上550nm未満の範囲に存在するアントラキノン系染料としては、1,4-ジアミノ-2,3-ジフェノキシ-9,10-アントラキノン(T365=95%、λmax=516nm)、1-アミノ-2-フェノキシ-4-ヒドロキシ-9,10-アントラキノン(T365=83%、λmax=516nm)、1-(メチルアミノ)アントラキノン(T365=90%、λmax=500nm)等が挙げられる。また、酢酸ブチル溶液にして光路長10mmの条件でUV-可視光線透過率測定を行った際、吸収極大波長における透過率が10%となるように濃度を調整した溶液の、波長365nmにおける透過率が50%以上であり、かつ吸収極大波長が550nm以上700nm以下の範囲に存在するアントラキノン系染料としては、1,4-ビス(2,4,6-トリメチルフェニルアミノ)-9,10-アントラキノン(T365=67%、λmax=630nm)、1,4-ビス(ブチルアミノ)-9,10-アントラキノン(T365=70%、λmax=645nm)、1,4-ビス(4-メチルアニリノ)アントラセン-9,10-ジオン(T365=52%、λmax=640nm)、5,8-ビス(p-ブチルアニリノ)-1,4-ジヒドロキシアントラキノン(T365=68%、λmax=683nm)等が挙げられる。 When the UV-visible light transmittance measurement was performed in such a butyl acetate solution under the condition of an optical path length of 10 mm, a solution whose concentration was adjusted so that the transmittance at the absorption maximum wavelength was 10% was obtained at a wavelength of 365 nm. The transmittance (hereinafter also simply referred to as “T 365 ”) is 50% or more, and the absorption maximum wavelength (hereinafter also simply referred to as “λ max ”) when used in a butyl acetate solution is in the range of 450 nm to less than 550 nm. The anthraquinone dyes present are 1,4-diamino-2,3-diphenoxy-9,10-anthraquinone (T 365 = 95%, λ max = 516 nm), 1-amino-2-phenoxy-4-hydroxy- 9,10-anthraquinone (T 365 = 83%, λ max = 516nm), 1- ( methylamino) anthraquinone (T 365 = 9 %, And a λ max = 500nm) and the like. Further, when UV-visible light transmittance measurement was performed in a butyl acetate solution under the condition of an optical path length of 10 mm, the transmittance at a wavelength of 365 nm of a solution whose concentration was adjusted so that the transmittance at the absorption maximum wavelength was 10%. As an anthraquinone dye having an absorption maximum wavelength in the range of 550 nm to 700 nm, 1,4-bis (2,4,6-trimethylphenylamino) -9,10-anthraquinone ( T 365 = 67%, λ max = 630 nm), 1,4-bis (butylamino) -9,10-anthraquinone (T 365 = 70%, λ max = 645 nm), 1,4-bis (4-methylanilino) 9,10-dione (T 365 = 52%, λ max = 640nm), 5,8- bis (p- butylanilino) -1, - dihydroxy anthraquinone (T 365 = 68%, λ max = 683nm) , and the like.
 なお、本明細書に記載の「Colour Index Constitution Number」とは、「The Society of Dyers and ColouristsおよびThe American Association of Textile Chemists and Coloristsにより存立されている、色素・着色材(顔料と染料)および関連化合物データベースColour Index Internationalにおいて、化学構造に基づいて与えられるNumber」を指す。 The “Color Index Constitution Number” described in this specification is the “Sociity of Dyers and Colorists and The American Association of Textiles and Related Colors”. In the compound database Color Index International, it refers to “Number given based on chemical structure”.
 染料の本発明(I)の防湿絶縁塗料中の使用量は特に限定されないが、防湿絶縁塗料中の濃度が低すぎると十分な遮光性が得られず、濃度が高すぎると、紫外線の透過率が低下して硬化不良を起こす可能性がある。そのため、染料の使用量は、全重合性成分100質量部に対して、0.1~10質量部の範囲にあることが好ましい。さらに、好ましくは、0.15~5質量部である。 The amount of the dye used in the moisture-proof insulating coating of the present invention (I) is not particularly limited. However, if the concentration in the moisture-proof insulating coating is too low, sufficient light-shielding properties cannot be obtained. May decrease and cause poor curing. Therefore, the amount of the dye used is preferably in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass of all polymerizable components. Further, it is preferably 0.15 to 5 parts by mass.
 本発明(I)の防湿絶縁塗料を硬化させて得た、硬化膜の厚みの測定方法について説明する。硬化膜の厚みは、外側マイクロメータを用いて測定する。なおこの際、測定試行毎、また測定者毎の測定誤差を少なくするため、定圧機構を持つ外側マイクロメータを用いることが好ましい。定圧機構としては、例えば、ラチェットストップ式等が挙げられる。 The method for measuring the thickness of the cured film obtained by curing the moisture-proof insulating paint of the present invention (I) will be described. The thickness of the cured film is measured using an outer micrometer. At this time, it is preferable to use an outer micrometer having a constant pressure mechanism in order to reduce measurement errors for each measurement trial and each measurer. Examples of the constant pressure mechanism include a ratchet stop type.
 本発明(I)の防湿絶縁塗料は、保存安定性を増すために、重合禁止剤を添加することがありかつ好ましい。
 なお、この重合禁止剤としては、特に限定されるものではないが、例えば、ヒドロキノン、p-メトキシフェノール、p-ベンゾキノン、ナフトキノン、フェナンスラキノン、トルキノン、2,5-ジアセトキシ-p-ベンゾキノン、2,5-ジカプロキシ-p-ベンゾキノン、2,5-アシロキシ-p-ベンゾキノン、2,5-ジ-tert-ブチル-3-メチルフェノール、p-t-ブチルカテコール、2,5-ジ-t-ブチルヒドロキノン、p-tert-ブチルカテコール、モノ-t-ブチルヒドロキノン、2,5-ジ-t-アミルヒドロキノン、ジ-t-ブチル・パラクレゾールヒドロキノンモノメチルエーテル、アルファナフトール、アセトアミジンアセテート、アセトアミジンサルフェート、フェニルヒドラジン塩酸塩、ヒドラジン塩酸塩、トリメチルベンジルアンモニウムクロライド、ラウリルピリジニウムクロライド、セチルトリメチルアンモニウムクロライド、フェニルトリメチルアンモニウムクロライド、トリメチルベンジルアンモニウムオキザレート、ジ(トリメチルベンジルアンモニウム)オキザレート、トリメチルベンジルアンモニウムマレート、トリメチルベンジルアンモニウムタータレート、トリメチルベンジルアンモニウムグリコレート、フェニル-β-ナフチルアミン、パラベンジルアミノフェノール、ジ-β-ナフチルパラフェニレンジアミン、ジニトロベンゼン、トリニトロトルエン、ピクリン酸、シクロヘキサノンオキシム、ピロガロール、タンニン酸、レゾルシン、トリエチルアミン塩酸塩、ジメチルアニリン塩酸塩およびジブチルアミン塩酸塩等が挙げられる。
 これらは単独でも、あるいは2種以上を適宜組み合わせて使用することができる。
 これらの中でも、ヒドロキノン、p-メトキシフェノール、p-ベンゾキノン、ナフトキノン、フェナンスラキノン、トルキノン、2,5-ジアセトキシ-p-ベンゾキノン、2,5-ジカプロキシ-p-ベンゾキノン、2,5-アシロキシ-p-ベンゾキノン、p-t-ブチルカテコール、2,5-ジ-t-ブチルヒドロキノン、p-tert-ブチルカテコール、モノ-t-ブチルヒドロキノン、2,5-ジ-t-アミルヒドロキノン、ジ-t-ブチル・パラクレゾールヒドロキノンモノメチルエーテルおよびフェノチアジンが好適に用いられる。
 通常、この重合禁止剤は、全重合性成分100質量部に対し、0.01~10質量部添加することが好ましい。
In the moisture-proof insulating paint of the present invention (I), a polymerization inhibitor may be added and is preferable in order to increase storage stability.
The polymerization inhibitor is not particularly limited. For example, hydroquinone, p-methoxyphenol, p-benzoquinone, naphthoquinone, phenanthraquinone, tolquinone, 2,5-diacetoxy-p-benzoquinone, 2,5-dicaproxy-p-benzoquinone, 2,5-acyloxy-p-benzoquinone, 2,5-di-tert-butyl-3-methylphenol, pt-butylcatechol, 2,5-di-t- Butylhydroquinone, p-tert-butylcatechol, mono-t-butylhydroquinone, 2,5-di-t-amylhydroquinone, di-t-butylparacresol hydroquinone monomethyl ether, alpha naphthol, acetamidine acetate, acetamidine sulfate , Phenylhydrazine hydrochloride, hydride Gin hydrochloride, trimethylbenzylammonium chloride, laurylpyridinium chloride, cetyltrimethylammonium chloride, phenyltrimethylammonium chloride, trimethylbenzylammonium oxalate, di (trimethylbenzylammonium) oxalate, trimethylbenzylammonium malate, trimethylbenzylammonium tartrate, Trimethylbenzylammonium glycolate, phenyl-β-naphthylamine, parabenzylaminophenol, di-β-naphthylparaphenylenediamine, dinitrobenzene, trinitrotoluene, picric acid, cyclohexanone oxime, pyrogallol, tannic acid, resorcin, triethylamine hydrochloride, dimethyl Aniline hydrochloride and dibutyla Down the hydrochloride salt, and the like.
These may be used alone or in combination of two or more.
Among these, hydroquinone, p-methoxyphenol, p-benzoquinone, naphthoquinone, phenanthraquinone, tolquinone, 2,5-diacetoxy-p-benzoquinone, 2,5-dicaproxy-p-benzoquinone, 2,5-acyloxy- p-benzoquinone, pt-butylcatechol, 2,5-di-t-butylhydroquinone, p-tert-butylcatechol, mono-t-butylhydroquinone, 2,5-di-t-amylhydroquinone, di-t -Butyl paracresol hydroquinone monomethyl ether and phenothiazine are preferably used.
Usually, the polymerization inhibitor is preferably added in an amount of 0.01 to 10 parts by mass with respect to 100 parts by mass of all polymerizable components.
 本発明(I)の防湿絶縁塗料には、ガラス、金属あるいは金属酸化物への密着性を付与する目的で、さらに、シランカップリング剤(4)を含むことが可能である。
 シランカップリング剤(4)は分子内に有機材料と反応結合する官能基、および無機材料と反応結合する官能基を同時に有する有機ケイ素化合物で、一般的にその構造は下記式(8)のように示される。
The moisture-proof insulating paint of the present invention (I) can further contain a silane coupling agent (4) for the purpose of imparting adhesion to glass, metal or metal oxide.
The silane coupling agent (4) is an organosilicon compound having both a functional group reactively bonded to an organic material and a functional group reactively bonded to an inorganic material in the molecule, and the structure is generally represented by the following formula (8). Shown in
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 ここで、Yは有機材料と反応結合する官能基で、ビニル基、エポキシ基、アミノ基、置換アミノ基、(メタ)アクリロイル基、メルカプト基等がその代表例として挙げられる。Xは無機材料と反応する官能基で、水、あるいは湿気により加水分解を受けてシラノールを生成する。このシラノールが無機材料と反応結合する。Xの代表例としてアルコキシ基、アセトキシ基、クロル原子などを挙げることができる。R12は、2価の有機基であり、R13はアルキル基を表す。iは1~3の整数を表し、jは0~2の整数を表す。ただし、i+j=3である。 Here, Y is a functional group reactively bonded to an organic material, and representative examples thereof include a vinyl group, an epoxy group, an amino group, a substituted amino group, a (meth) acryloyl group, a mercapto group, and the like. X is a functional group that reacts with an inorganic material and is hydrolyzed by water or moisture to produce silanol. This silanol reacts with the inorganic material. Representative examples of X include an alkoxy group, an acetoxy group, a chloro atom, and the like. R 12 is a divalent organic group, and R 13 represents an alkyl group. i represents an integer of 1 to 3, and j represents an integer of 0 to 2. However, i + j = 3.
 シランカップリング剤としては、例えば、3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルメチルジエトキシシラン、3-イソシアネートプロピルメチルジメトキシシラン、p-スチリルトリメトキシシラン、p-スチリルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリイソプロポキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、3-アクリロイルオキシプロピルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アクリロイルオキシプロピルトリエトキシシラン、3-メタクリロイルオキシプロピルトリエトキシシラン、3-アクリロイルオキシプロピルメチルジメトキシシラン、3-メタクリロイルオキシプロピルメチルジメトキシシラン、3-アクリロイルオキシプロピルメチルジエトキシシラン、3-メタクリロイルオキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-ミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、アリルトリメトキシシラン等を挙げることができる。 Examples of the silane coupling agent include 3-isocyanatopropyltriethoxysilane, 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropylmethyldiethoxysilane, 3-isocyanatopropylmethyldimethoxysilane, p-styryltrimethoxysilane, p -Styryltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriisopropoxysilane, vinyltris (2-methoxyethoxy) silane, 3-acryloyloxypropyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3 -Acryloyloxypropyltriethoxysilane, 3-methacryloyloxypropyltriethoxysilane, 3-acryloyloxypropylmethyldi Toxisilane, 3-methacryloyloxypropylmethyldimethoxysilane, 3-acryloyloxypropylmethyldiethoxysilane, 3-methacryloyloxypropylmethyldiethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycid Xylpropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, N-2- (aminoethyl) -3-aminopropyl Methyldimethoxysilane, N- (2-minoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3- Minopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyl Examples include triethoxysilane and allyltrimethoxysilane.
 これらの中で、好ましいものとしては、Yが(メタ)アクリロイル基含有化合物(1)、ウレタン(メタ)アクリレートと反応性を有する化合物であり、その中でも、p-スチリルトリメトキシシラン、p-スチリルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリイソプロポキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、3-アクリロイルオキシプロピルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アクリロイルオキシプロピルトリエトキシシラン、3-メタクリロイルオキシプロピルトリエトキシシラン、3-アクリロイルオキシプロピルメチルジメトキシシラン、3-メタクリロイルオキシプロピルメチルジメトキシシラン、3-アクリロイルオキシプロピルメチルジエトキシシラン、3-メタクリロイルオキシプロピルメチルジエトキシシランが好ましく、さらに好ましくは、光硬化反応の際に硬化物中に容易に取り込まれる3-アクリロイルオキシプロピルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アクリロイルオキシプロピルトリエトキシシラン、3-メタクリロイルオキシプロピルトリエトキシシラン、3-アクリロイルオキシプロピルメチルジメトキシシラン、3-メタクリロイルオキシプロピルメチルジメトキシシラン、3-アクリロイルオキシプロピルメチルジエトキシシラン、3-メタクリロイルオキシプロピルメチルジエトキシシランであり、アリコキシシリル基の反応性を考慮すると、特に、3-アクリロイルオキシプロピルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アクリロイルオキシプロピルメチルジメトキシシラン、3-メタクリロイルオキシプロピルメチルジメトキシシランが好ましい。 Among these, Y is preferably a compound having reactivity with (meth) acryloyl group-containing compound (1) and urethane (meth) acrylate, and among them, p-styryltrimethoxysilane, p-styryl. Triethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriisopropoxysilane, vinyltris (2-methoxyethoxy) silane, 3-acryloyloxypropyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-acryloyl Oxypropyltriethoxysilane, 3-methacryloyloxypropyltriethoxysilane, 3-acryloyloxypropylmethyldimethoxysilane, 3-methacryloyloxypropylmethyldimethoxysilane, 3-actyl Royloxypropylmethyldiethoxysilane and 3-methacryloyloxypropylmethyldiethoxysilane are preferred, more preferably 3-acryloyloxypropyltrimethoxysilane and 3-methacryloyl which are easily incorporated into the cured product during the photocuring reaction. Oxypropyltrimethoxysilane, 3-acryloyloxypropyltriethoxysilane, 3-methacryloyloxypropyltriethoxysilane, 3-acryloyloxypropylmethyldimethoxysilane, 3-methacryloyloxypropylmethyldimethoxysilane, 3-acryloyloxypropylmethyldiethoxy Silane, 3-methacryloyloxypropylmethyldiethoxysilane, especially considering the reactivity of the alkoxysilyl group, 3-acryloyl Trimethoxysilane, 3-methacryloyloxypropyl trimethoxy silane, 3-acryloyloxypropyl methyl dimethoxysilane, 3-methacryloyloxypropyl methyl dimethoxysilane is preferable.
 本発明(I)の防湿絶縁塗料中の全重合性成分100質量部に対してシランカップリング剤(4)は、0.01質量部~8質量部の範囲であることが好ましく、さらに好ましくは、0.1質量部~5質量部の範囲である。本発明(I)の防湿絶縁塗料中の全重合性成分100質量部に対して0.01質量部未満の場合には、ガラス、金属あるいは金属酸化物への密着性が十分に発現されない場合があり好ましいことではない。また、本発明(I)の防湿絶縁塗料中の全重合性成分100質量部に対して8質量%より多い場合には、使用するシランカップリング剤の種類によっては硬化物の表面タックが増加する傾向がある。 The silane coupling agent (4) is preferably in the range of 0.01 to 8 parts by weight, more preferably 100 parts by weight of all polymerizable components in the moisture-proof insulating paint of the present invention (I). The range is from 0.1 to 5 parts by mass. In the case of less than 0.01 part by mass with respect to 100 parts by mass of all polymerizable components in the moisture-proof insulating paint of the present invention (I), adhesion to glass, metal or metal oxide may not be sufficiently exhibited. It is not preferable. Moreover, when it is more than 8 mass% with respect to 100 mass parts of all the polymeric components in the moisture-proof insulating coating material of this invention (I), depending on the kind of silane coupling agent to be used, the surface tack of hardened | cured material increases. Tend.
 本発明(I)の防湿絶縁塗料には、基材への密着性を付与する目的で、さらに、粘着付与剤(5)を含むことが可能である。
 本発明(I)の防湿絶縁塗料に用いられる粘着付与剤とは、ウレタン(メタ)アクリレートや、ゴム弾性を有するエラストマーに代表される高分子化合物に配合して粘着機能を持たせるための物質であり、一般に、分子量数百~数千のオリゴマー領域の化合物であり、室温ではガラス状態でそのもの自体ではゴム弾性を示さない性質を有する。
The moisture-proof insulating paint of the present invention (I) can further contain a tackifier (5) for the purpose of imparting adhesion to the substrate.
The tackifier used in the moisture-proof insulating paint of the present invention (I) is a substance for providing an adhesive function by blending with a polymer compound represented by urethane (meth) acrylate or elastomer having rubber elasticity. In general, it is a compound in an oligomer region having a molecular weight of several hundred to several thousand, and has a property of not exhibiting rubber elasticity in itself in a glass state at room temperature.
 粘着付与剤としては、一般に、石油系樹脂粘着付与剤、テルペン系樹脂粘着付与剤、ロジン系樹脂粘着付与剤、クマロンインデン樹脂粘着付与剤、スチレン系樹脂粘着付与剤などを用いることができる。
 石油系樹脂粘着付与剤としては、脂肪族系石油樹脂、芳香族系石油樹脂、脂肪族-芳香族共重合系石油樹脂、脂環族系石油樹脂、ジシクロペンタジエン樹脂およびこれらの水添物等の変性物が挙げられる。合成石油樹脂は、C5系でも、C9系でもよい。
 テルペン系樹脂粘着付与剤としては、β-ピネン樹脂、α-ピネン樹脂、テルペン-フェノール樹脂、芳香族変性テルペン樹脂、水添テルペン樹脂などが挙げられる。これらのテルペン系樹脂の多くは、極性基を有しない樹脂である。
 ロジン系樹脂粘着付与剤としては、ガムロジン、トール油ロジン、ウッドロジンなどのロジン;水添ロジン、不均化ロジン、重合ロジン、マレイン化ロジンなどの変性ロジン;ロジングリセリンエステル、水添ロジンエステル、水添ロジングリセリンエステルなどのロジンエステルなどが挙げられる。これらのロジン系樹脂は、極性基を有するものである。
 これらの粘着付与剤は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。
 これらの粘着付与剤の中で、少なくとも1種以上の石油系樹脂粘着付与剤、テルペン系樹脂粘着付与剤を含んでいることが好ましく、さらに、好ましくは、少なくとも1種以上の石油系樹脂粘着付与剤を含んでいることである。
In general, petroleum resin tackifiers, terpene resin tackifiers, rosin resin tackifiers, coumarone indene resin tackifiers, styrene resin tackifiers, and the like can be used as tackifiers.
Examples of petroleum resin tackifiers include aliphatic petroleum resins, aromatic petroleum resins, aliphatic-aromatic copolymer petroleum resins, alicyclic petroleum resins, dicyclopentadiene resins, and hydrogenated products thereof. Of the modified product. The synthetic petroleum resin may be C5 or C9.
Examples of the terpene resin tackifier include β-pinene resin, α-pinene resin, terpene-phenol resin, aromatic modified terpene resin, hydrogenated terpene resin and the like. Many of these terpene resins are resins having no polar group.
Rosin resin tackifiers include rosins such as gum rosin, tall oil rosin, wood rosin; hydrogenated rosin, disproportionated rosin, polymerized rosin, modified rosin such as maleated rosin; rosin glycerin ester, hydrogenated rosin ester, water Examples thereof include rosin esters such as rosin glycerol ester. These rosin resins have polar groups.
These tackifiers can be used alone or in combination of two or more.
Among these tackifiers, it preferably contains at least one petroleum resin tackifier and a terpene resin tackifier, and more preferably at least one petroleum resin tackifier. It contains the agent.
 粘着付与剤の総量が、全重合性成分100質量部に対して、0.1~35質量部含有されることが望ましい。粘着付与剤の総量が、全重合性成分100質量部に対して、0.1質量部未満の場合には、粘着付与剤の添加効果が発現されづらく好ましいことではない。また、粘着付与剤の総量が、全重合性成分100質量部に対して、35質量部より多い場合には、本発明(I)の防湿絶縁塗料が濁る可能性あるいは粘度が高くなりすぎる可能性があり好ましいこととは言えない。 Desirably, the total amount of tackifier is 0.1 to 35 parts by mass with respect to 100 parts by mass of all polymerizable components. When the total amount of the tackifier is less than 0.1 parts by mass with respect to 100 parts by mass of the total polymerizable component, it is not preferable that the effect of adding the tackifier is hardly expressed. Further, when the total amount of the tackifier is more than 35 parts by mass with respect to 100 parts by mass of all polymerizable components, the moisture-proof insulating paint of the present invention (I) may become cloudy or the viscosity may become too high. This is not preferable.
 また、本発明(I)の防湿絶縁塗料には、必要に応じて、ラジカル連鎖移動剤を使用することができる。
 ラジカル連鎖移動剤としては、酸素等の不活性なラジカル捕捉剤にトラップされた重合活性種を再活性化させる働きを持ち、表面硬化性の向上に寄与する化合物を際限なく使用することができる。連鎖移動剤となる化合物として、例えば、N,N-ジメチルアニリン、N,N-ジメチル-p-トルイジン、N,N-ジメチル-m-トルイジン、N,N-ジエチル-p-トルイジン、N,N-ジメチル-3,5-ジメチルアニリン、N,N-ジメチル-3,4-ジメチルアニリン、N,N-ジメチル-4-エチルアニリン、N,N-ジメチル-4-イソプロピルアニリン、N,N-ジメチル-4-t-ブチルアニリン、N,N-ジメチル-3,5-ジ-t-ブチルアニリン、N,N-ビス(2-ヒドロキシエチル)-3,5-ジメチルアニリン、N,N-ジ(2-ヒドロキシエチル)-p-トルイジン、N,N-ビス(2-ヒドロキシエチル)-3,4-ジメチルアニリン、N,N-ビス(2-ヒドロキシエチル)-4-エチルアニリン、N,N-ビス(2-ヒドロキシエチル)-4-イソプロピルアニリン、N,N-ビス(2-ヒドロキシエチル)-4-t-ブチルアニリン、N,N-ビス(2-ヒドロキシエチル)-3,5-ジ-イソプロピルアニリン、N,N-ビス(2-ヒドロキシエチル)-3,5-ジ-t-ブチルアニリン、4-N,N-ジメチルアミノ安息香酸エチルエステル、4-N,N-ジメチルアミノ安息香酸メチルエステル、N,N-ジメチルアミノ安息香酸n-ブトキシエチルエステル、4-N,N-ジメチルアミノ安息香酸2-(メタクリロイルオキシ)エチルエステル、4-N,N-ジメチルアミノベンゾフェノン、トリメチルアミン、トリエチルアミン、N-メチルジエタノールアミン、N-エチルジエタノールアミン、N-n-ブチルジエタノールアミン、N-ラウリルジエタノールアミン、トリエタノールアミン、2-(ジメチルアミノ)エチルメタクリレート、N-メチルジエタノールアミンジメタクリレート、N-エチルジエタノールアミンジメタクリレート、トリエタノールアミンモノメタクリレート、トリエタノールアミンジメタクリレート、トリエタノールアミントリメタクリレート等が挙げられるが、特に好適なアミン類としては、2-エチルへキシル-4-ジメチルアミノベンゾエートである。
Moreover, a radical chain transfer agent can be used for the moisture-proof insulating paint of this invention (I) as needed.
As the radical chain transfer agent, a compound that has the function of reactivating the polymerization active species trapped by an inert radical scavenger such as oxygen and contributes to the improvement of the surface curability can be used without limitation. Examples of the compound serving as a chain transfer agent include N, N-dimethylaniline, N, N-dimethyl-p-toluidine, N, N-dimethyl-m-toluidine, N, N-diethyl-p-toluidine, N, N -Dimethyl-3,5-dimethylaniline, N, N-dimethyl-3,4-dimethylaniline, N, N-dimethyl-4-ethylaniline, N, N-dimethyl-4-isopropylaniline, N, N-dimethyl -4-t-butylaniline, N, N-dimethyl-3,5-di-t-butylaniline, N, N-bis (2-hydroxyethyl) -3,5-dimethylaniline, N, N-di ( 2-hydroxyethyl) -p-toluidine, N, N-bis (2-hydroxyethyl) -3,4-dimethylaniline, N, N-bis (2-hydroxyethyl) -4-ethylaniline, , N-bis (2-hydroxyethyl) -4-isopropylaniline, N, N-bis (2-hydroxyethyl) -4-tert-butylaniline, N, N-bis (2-hydroxyethyl) -3,5 -Di-isopropylaniline, N, N-bis (2-hydroxyethyl) -3,5-di-t-butylaniline, 4-N, N-dimethylaminobenzoic acid ethyl ester, 4-N, N-dimethylamino Benzoic acid methyl ester, N, N-dimethylaminobenzoic acid n-butoxyethyl ester, 4-N, N-dimethylaminobenzoic acid 2- (methacryloyloxy) ethyl ester, 4-N, N-dimethylaminobenzophenone, trimethylamine, Triethylamine, N-methyldiethanolamine, N-ethyldiethanolamine, Nn-butyldiethanol Amine, N-lauryl diethanolamine, triethanolamine, 2- (dimethylamino) ethyl methacrylate, N-methyldiethanolamine dimethacrylate, N-ethyldiethanolamine dimethacrylate, triethanolamine monomethacrylate, triethanolamine dimethacrylate, triethanolamine tri Examples of suitable amines include 2-ethylhexyl-4-dimethylaminobenzoate.
 本発明(I)の防湿絶縁塗料において、ラジカル連鎖移動剤を用いる場合には、その使用量は、全重合性成分100質量部に対して、0.01~10質量部となるようにすると、高感度となり空気中での表面硬化性が向上する。更に好ましくは、0.5~5質量部の範囲内では表面硬化性が更に改善される。これらのラジカル連鎖移動剤は、単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。 In the moisture-proof insulating paint of the present invention (I), when a radical chain transfer agent is used, the amount used is 0.01 to 10 parts by mass with respect to 100 parts by mass of all polymerizable components. High sensitivity and improved surface curability in air. More preferably, the surface curability is further improved within the range of 0.5 to 5 parts by mass. These radical chain transfer agents may be used alone or in combination of two or more.
 本発明(I)の防湿絶縁塗料は、25℃での粘度が2000mPa・s以下であることが好ましい。さらに好ましくは、25℃での粘度が1600mPa・s以下である。25℃での粘度が2000mPa・sより高くなると、硬化性組成物をディスペンサーを用いた線引き塗布法で塗布する場合には、塗布後の広がりが抑制され、その結果、必要以上に硬化後の厚みが高くなることがある。 The moisture-proof insulating paint of the present invention (I) preferably has a viscosity at 25 ° C. of 2000 mPa · s or less. More preferably, the viscosity at 25 ° C. is 1600 mPa · s or less. When the viscosity at 25 ° C. is higher than 2000 mPa · s, when the curable composition is applied by a drawing application method using a dispenser, the spread after application is suppressed, and as a result, the thickness after curing is more than necessary. May be higher.
 本発明(I)の防湿絶縁塗料は、流動性や光硬化性に悪影響を与えない範囲において、必要に応じて、充填剤、改質剤、消泡剤および着色剤などを添加することができる。 In the moisture-proof insulating paint of the present invention (I), a filler, a modifier, an antifoaming agent, a colorant, and the like can be added as necessary within a range that does not adversely affect fluidity and photocurability. .
 充填剤としては、微粉末酸化珪素、酸化マグネシウム、水酸化アルミニウム、炭酸カルシウム等が挙げられる。 Examples of the filler include fine powder silicon oxide, magnesium oxide, aluminum hydroxide, calcium carbonate and the like.
 改質剤としては、例えば、レベリング性を向上させるためのレベリング剤等が挙げられる。レベリング剤としては、例えば、ポリエーテル変性ジメチルポリシロキサン共重合物、ポリエステル変性ジメチルポリシロキサン共重合物、ポリエーテル変性メチルアルキルポリシロキサン共重合物、アラルキル変性メチルアルキルポリシロキサン共重合物等が使用できる。これらは、単独で使用しても、2種以上組み合わせて使用してもよい。全重合性成分100質量部に対し、0.01~10質量部添加することができる。0.01質量部未満の場合には、レベリング剤の添加効果が発現しない可能性がある。また、10質量部より多い場合には、使用するレベリング剤の種類によっては、表面タックがでたり、電気絶縁特性を劣化させる可能性がある。 Examples of the modifier include a leveling agent for improving leveling properties. As the leveling agent, for example, polyether-modified dimethylpolysiloxane copolymer, polyester-modified dimethylpolysiloxane copolymer, polyether-modified methylalkylpolysiloxane copolymer, aralkyl-modified methylalkylpolysiloxane copolymer, etc. can be used. . These may be used alone or in combination of two or more. 0.01 to 10 parts by mass can be added to 100 parts by mass of all polymerizable components. When the amount is less than 0.01 part by mass, the effect of adding the leveling agent may not be exhibited. On the other hand, when the amount is more than 10 parts by mass, depending on the type of leveling agent used, there is a possibility of surface tack or deterioration of electrical insulation characteristics.
 上記の消泡剤は、文字通り、本発明(I)の防湿絶縁塗料を塗布する際に、発生あるいは残存する気泡を消すあるいは抑制する作用を有するものであれば、特に制限はない。
 本発明(I)の防湿絶縁塗料に使用される消泡剤としては、シリコーン系オイル、フッ素含有化合物、ポリカルボン酸系化合物、ポリブタジエン系化合物、アセチレンジオール系化合物など公知の消泡剤が挙げられる。その具体例としては、例えば、BYK-077(ビックケミー・ジャパン株式会社製)、SNデフォーマー470(サンノプコ株式会社製)、TSA750S(モメンティブ・パフォーマンス・マテリアルズ合同会社製)、シリコーンオイルSH-203(東レ・ダウコーニング株式会社製)等のシリコーン系消泡剤、ダッポーSN-348(サンノプコ株式会社製)、ダッポーSN-354(サンノプコ株式会社製)、ダッポーSN-368(サンノプコ株式会社製)、ディスパロン230HF(楠本化成株式会社製)等のアクリル重合体系消泡剤、サーフィノールDF-110D(日信化学工業株式会社製)、サーフィノールDF-37(日信化学工業株式会社製)等のアセチレンジオール系消泡剤、FA-630等のフッ素含有シリコーン系消泡剤等を挙げることができる。これらは、単独で使用しても、2種以上組み合わせて使用してもよい。通常、全重合性成分100質量部に対し、0.001~5質量部添加することができる。0.01質量部未満の場合には、消泡剤の添加効果が発現しない可能性がある。また、5質量部より多い場合には、使用する消泡剤の種類によっては、表面タックが生じたり、電気絶縁特性を劣化させる可能性がある。
The antifoaming agent is not particularly limited as long as it literally has an action of eliminating or suppressing bubbles generated or remaining when the moisture-proof insulating coating of the present invention (I) is applied.
Examples of the antifoaming agent used in the moisture-proof insulating coating of the present invention (I) include known antifoaming agents such as silicone oils, fluorine-containing compounds, polycarboxylic acid compounds, polybutadiene compounds, and acetylenic diol compounds. . Specific examples thereof include, for example, BYK-077 (manufactured by Big Chemie Japan Co., Ltd.), SN deformer 470 (manufactured by San Nopco Co., Ltd.), TSA750S (manufactured by Momentive Performance Materials LLC), silicone oil SH-203 (Toray Industries, Inc.) -Silicone defoaming agents such as Dow Corning Co., Ltd., Dappo SN-348 (San Nopco Co., Ltd.), Dappo SN-354 (San Nopco Co., Ltd.), Dappo SN-368 (San Nopco Co., Ltd.), Disparon 230HF Acetylendiols such as acrylic polymer antifoaming agents (manufactured by Enomoto Kasei Co., Ltd.), Surfynol DF-110D (Nisshin Chemical Industry Co., Ltd.), Surfynol DF-37 (Nisshin Chemical Industry Co., Ltd.) Defoaming agent, fluorine-containing silicon such as FA-630 Emissions-based anti-foaming agents, and the like can be mentioned. These may be used alone or in combination of two or more. Usually, 0.001 to 5 parts by mass can be added to 100 parts by mass of all polymerizable components. If the amount is less than 0.01 parts by mass, the effect of adding the antifoaming agent may not be exhibited. On the other hand, when the amount is more than 5 parts by mass, depending on the type of antifoaming agent used, surface tack may occur or the electrical insulation characteristics may be deteriorated.
 着色剤としては、公知の無機顔料、有機系顔料、および有機系染料等が挙げられ、所望する色調に応じてそれぞれを配合する。これらは、単独で使用しても、2種以上組み合わせて使用してもよい。 Examples of the colorant include known inorganic pigments, organic pigments, organic dyes, and the like, and each is blended according to a desired color tone. These may be used alone or in combination of two or more.
 次に、本発明(III)の封止処理または絶縁処理方法について説明する。
 本発明(III)の封止処理または絶縁処理方法は、本発明(I)の防湿絶縁塗料を電子部品に塗布し、次いで、防湿絶縁塗料塗布部にLED-UVランプを照射し、硬化させるというものである。防湿絶縁塗料の塗布方法は、特に限定されないが、浸漬法、ハケ塗り法、スプレー法、線引き塗布法等が挙げられる。防湿絶縁塗料塗布部への、LED-UVランプから照射される紫外線の照射方法は特に限定されないが、フレキシブル導光管を手または機械で保持・操作して防湿絶縁塗料を塗布した電子部品に照射する方法や、コンベアに防湿絶縁塗料を塗布した電子部品を乗せ、LED-UVランプから紫外線が照射される領域を通過させて照射する方法等が挙げられる。
Next, the sealing treatment or insulation treatment method of the present invention (III) will be described.
According to the sealing treatment or insulation treatment method of the present invention (III), the moisture-proof insulating paint of the present invention (I) is applied to an electronic component, and then the moisture-proof insulating paint coating portion is irradiated with an LED-UV lamp to be cured. Is. The method for applying the moisture-proof insulating coating is not particularly limited, but examples include dipping, brushing, spraying, and drawing. The method of irradiating the moisture-proof insulating paint application part with ultraviolet rays from the LED-UV lamp is not particularly limited, but the electronic parts coated with the moisture-proof insulating paint by holding or operating the flexible light guide tube by hand or machine are irradiated. And a method in which an electronic component coated with a moisture-proof insulating coating is placed on a conveyor and irradiated through an area irradiated with ultraviolet rays from an LED-UV lamp.
 次に、本発明(IV)の電子部品について説明する。
 本発明(IV)は、本発明(I)の防湿絶縁塗料によって封止処理または絶縁処理された電子部品である。電子部品としては、マイクロコンピュータ、トランジスタ、コンデンサ、抵抗、リレー、トランス等、およびこれらを搭載した実装回路板などが挙げられ、さらにこれら電子部品に接合されるリード線、ハーネス、フィルム基板等も含むことができる。
 また、液晶ディスプレイパネル、プラズマディスプレイパネル、有機エレクトロルミネッセンスパネル、フィールドエミッションディスプレイパネル等のフラットパネルディスプレイパネルの信号入力部、タッチパネルのタッチセンサーおよびその配線等も、電子部品として挙げられる。
Next, the electronic component of the present invention (IV) will be described.
The present invention (IV) is an electronic component sealed or insulated with the moisture-proof insulating paint of the present invention (I). Examples of the electronic component include a microcomputer, a transistor, a capacitor, a resistor, a relay, a transformer, and a mounting circuit board on which these are mounted, and also includes a lead wire, a harness, a film substrate, and the like that are joined to these electronic components. be able to.
Moreover, the signal input part of flat panel display panels, such as a liquid crystal display panel, a plasma display panel, an organic electroluminescent panel, a field emission display panel, the touch sensor of a touch panel, its wiring, etc. are mentioned as an electronic component.
 本発明(IV)の電子部品は、本発明(I)の防湿絶縁塗料を電子部品に塗布し、次いで、塗布した防湿絶縁塗料を硬化することにより製造することができる。本発明(IV)の電子部品の具体的な製造方法としては、まず、一般に知られている浸漬法、ハケ塗り法、スプレー法、線引き塗布法等の方法によって上述した防湿絶縁塗料を上記電子部品に塗布する。次に、高圧水銀灯、メタルハライドランプ、LED等を光源として紫外線を照射し、電子部品に塗布した防湿絶縁塗料の塗膜を硬化することにより、電子部品が得られる。 The electronic component of the present invention (IV) can be manufactured by applying the moisture-proof insulating paint of the present invention (I) to the electronic component and then curing the applied moisture-proof insulating paint. As a specific manufacturing method of the electronic component of the present invention (IV), first, the above-mentioned moisture-proof insulating paint is applied to the electronic component by a generally known method such as dipping, brushing, spraying, or drawing. Apply to. Next, an electronic component is obtained by irradiating ultraviolet rays using a high-pressure mercury lamp, a metal halide lamp, an LED or the like as a light source and curing the coating film of the moisture-proof insulating coating applied to the electronic component.
 以下、実施例により本発明を更に具体的に説明するが、本発明は以下の実施例にのみ制限されるものではない。 Hereinafter, the present invention will be described more specifically by way of examples. However, the present invention is not limited only to the following examples.
(合成例1)
 攪拌機、水分離器付き反応容器中にSovermol(登録商標)908(BASF製水添ダイマージオール、水添ダイマージオール純度97.5wt%)22.00g、EMPOL(登録商標)1008(BASF製水添ダイマー酸、水添ダイマー酸純度92.0%)23.00g、ネオスタンU-810(日東化成株式会社製ジオクチル錫ジラウレート)0.01gを仕込み、約240℃、常圧下から始めて縮合水を流出させながら減圧しつつ脱水エステル化反応を行い、水酸基価59mgKOH/g、数平均分子量2000で、水添ダイマージオールを15質量%含む、ポリエステルポリオールと水添ダイマージオールの混合物(以下、ポリエステルポリオールAと記す。)を得た。
(Synthesis Example 1)
In a reaction vessel equipped with a stirrer and a water separator, Sovermol (registered trademark) 908 (hydrogenated dimer diol manufactured by BASF, hydrogenated dimer diol purity 97.5 wt%) 22.00 g, EMPOL (registered trademark) 1008 (hydrogenated dimer manufactured by BASF) Acid, hydrogenated dimer acid purity 92.0%) 23.00 g, Neostan U-810 (dioctyltin dilaurate manufactured by Nitto Kasei Co., Ltd.) 0.01 g, starting at about 240 ° C. under normal pressure, while allowing condensed water to flow out A dehydration esterification reaction was performed while reducing the pressure, and a mixture of a polyester polyol and a hydrogenated dimer diol having a hydroxyl value of 59 mg KOH / g and a number average molecular weight of 2000 and containing 15% by mass of a hydrogenated dimer diol (hereinafter referred to as polyester polyol A). )
(合成例2)
 攪拌装置、温度計およびコンデンサーを備えた300mLの反応容器に、ポリエステルポリオールAを45.00g、Sovermol(登録商標)908(BASF製水添ダイマージオール、水添ダイマージオール純度97.5wt%)17.94g、ノニオン(登録商標)L-2(日油株式会社製モノラウリン酸ポリエチレングリコール)0.82g、Irganox(登録商標)1010(BASF製ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)]プロピオネート)0.12g、ネオスタンU-810(日東化成株式会社製ジオクチル錫ジラウレート)0.01gおよび、VESTANAT(登録商標)H12MDI(エボニックデグサ製メチレンビス(4-シクロヘキシルイソシアネート))32.62gを投入し、撹拌しながら、オイルバスを用いて75~80℃に昇温した。その後、2.5時間撹拌しながら反応を継続した。その後、4-HBA(大阪有機化学工業株式会社製4-ヒドロキシブチルアクリレート)20.69gを反応容器内に投入し、撹拌を継続しながら反応容器内の温度が80℃±5℃の範囲に保ったまま、10時間反応を継続した。その後、赤外吸収スペクトルを測定し、イソシアナト基の吸収が消失していることを確認し、反応を終了し、ウレタンアクリレート(以下、ウレタンアクリレートBと記す。)を得た。
(Synthesis Example 2)
16. In a 300 mL reaction vessel equipped with a stirrer, a thermometer and a condenser, 45.00 g of polyester polyol A, Sovermol (registered trademark) 908 (hydrogenated dimer diol manufactured by BASF, purity of hydrogenated dimer diol 97.5 wt%) 94 g, Nonion (registered trademark) L-2 (polyethylene glycol monolaurate manufactured by NOF Corporation) 0.82 g, Irganox (registered trademark) 1010 (pentaerythritol tetrakis [3- (3,5-di-tert-butyl manufactured by BASF) -4-hydroxyphenyl)] propionate) 0.12 g, neostan U-810 (dioctyltin dilaurate manufactured by Nitto Kasei Co., Ltd.) Cyanate)) 32.62g was charged, with stirring, the temperature was raised to 75 ~ 80 ° C. in an oil bath. Thereafter, the reaction was continued with stirring for 2.5 hours. Thereafter, 20.69 g of 4-HBA (4-hydroxybutyl acrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was charged into the reaction vessel, and the temperature in the reaction vessel was kept within the range of 80 ° C. ± 5 ° C. while continuing stirring. The reaction was continued for 10 hours. Thereafter, an infrared absorption spectrum was measured, and it was confirmed that the absorption of the isocyanate group had disappeared. The reaction was terminated, and urethane acrylate (hereinafter referred to as urethane acrylate B) was obtained.
(合成例3)
 攪拌装置、温度計およびコンデンサーを備えた300mLの反応容器に、Sovermol(登録商標)908(BASF製水添ダイマージオール、水添ダイマージオール純度97.5wt%)34.0g、ヒドロキノンモノメチルエーテル100mgを投入し、撹拌しながら、オイルバスを用いて40℃に昇温した。その後、メチレンビス(4-シクロヘキシルイソシアネート)(エボニックデグサ製、商品名:VESTANAT(登録商標)H12MDI)32.60g(124.2mmol)およびネオスタンU-810(日東化成株式会社製ジオクチル錫ジラウレート)0.01gを投入し、撹拌を継続しながら内温90℃に昇温した。90℃に昇温後、4時間撹拌しながら反応を継続した。その後、4-ヒドロキシブチルアクリレート17.91g(124.2mmol)を反応容器内に投入し、撹拌を継続しながら反応容器内の温度が90℃±5℃の範囲に保ったまま、6時間反応を継続した。その後、赤外吸収スペクトルを測定し、イソシアナト基の吸収が消失していることを確認し、反応を終了し、ウレタンアクリレート(以下、ウレタンアクリレートCと記す。)を得た。
(Synthesis Example 3)
A 300 mL reaction vessel equipped with a stirrer, a thermometer and a condenser was charged with 34.0 g of Sovermol (registered trademark) 908 (hydrogenated dimer diol manufactured by BASF, purity of hydrogenated dimer diol 97.5 wt%) and 100 mg of hydroquinone monomethyl ether. While stirring, the temperature was raised to 40 ° C. using an oil bath. Thereafter, methylene bis (4-cyclohexyl isocyanate) (Evonik Degussa, trade name: VESTANAT (registered trademark) H12MDI) 32.60 g (124.2 mmol) and Neostan U-810 (Nitto Kasei Co., Ltd. dioctyltin dilaurate) 0.01 g The internal temperature was raised to 90 ° C. while stirring was continued. After raising the temperature to 90 ° C., the reaction was continued with stirring for 4 hours. Thereafter, 17.91 g (124.2 mmol) of 4-hydroxybutyl acrylate was charged into the reaction vessel, and the reaction was performed for 6 hours while maintaining the temperature in the reaction vessel in the range of 90 ° C. ± 5 ° C. while continuing stirring. Continued. Thereafter, the infrared absorption spectrum was measured, and it was confirmed that the absorption of the isocyanato group had disappeared. The reaction was terminated, and urethane acrylate (hereinafter referred to as urethane acrylate C) was obtained.
(合成例4)
 撹拌機、温度計、冷却管および空気ガス導入管を装備した反応容器に空気ガスを導入させた後、HEA(大阪有機化学工業株式会社製2-ヒドロキシエチルアクリレート)53.00g、GI-1000(日本曹達株式会社製水添ポリブタジエンジオール、数平均分子量:約1,500)600.00gおよびヒドロキノンモノメチルエーテル(和光純薬工業株式会社製)0.50gを投入し、オイルバスを用いて70℃に昇温した。その後、攪拌しながら70~75℃で30分間保温し、これに、コロネート(登録商標)T-65(日本ポリウレタン工業株式会社製トリレンジイソシアネート)70.00gを3時間で均一滴下した。滴下完了後、攪拌しながら70~75℃で約5時間保温し、反応を継続した。その後、赤外吸収スペクトルを測定し、イソシアナト基の吸収が消失していることを確認し、反応を終了し、ウレタンアクリレート(以下、ウレタンアクリレートDと記す。)を得た。
(Synthesis Example 4)
After introducing air gas into a reaction vessel equipped with a stirrer, thermometer, cooling pipe and air gas introduction pipe, HEA (2-hydroxyethyl acrylate manufactured by Osaka Organic Chemical Co., Ltd.) 53.00 g, GI-1000 ( Charge 600.00 g of hydrogenated polybutadiene diol manufactured by Nippon Soda Co., Ltd., number average molecular weight: about 1,500) and 0.50 g of hydroquinone monomethyl ether (manufactured by Wako Pure Chemical Industries, Ltd.) to 70 ° C. using an oil bath. The temperature rose. Thereafter, the mixture was kept at 70 to 75 ° C. for 30 minutes with stirring, and 70.00 g of Coronate (registered trademark) T-65 (Tolylene diisocyanate manufactured by Nippon Polyurethane Industry Co., Ltd.) was added dropwise uniformly over 3 hours. After completion of the dropwise addition, the reaction was continued at 70 to 75 ° C. with stirring for about 5 hours. Thereafter, an infrared absorption spectrum was measured, and it was confirmed that absorption of the isocyanato group had disappeared. The reaction was terminated, and urethane acrylate (hereinafter referred to as urethane acrylate D) was obtained.
(合成例5)
 撹拌機および蒸留装置のついた1リットル四口フラスコに、水添ポリブタジエンポリオール(日本曹達株式会社製、商品名:NISSO-PB GI-2000、水酸基価47.3mgKOH/g)540.0g、アクリル酸n-ブチル162.0g、ジオクチル錫ジラウレート0.81gおよびペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート](BASF社製、商品名:IRGANOX1010)3.51gを投入し、空気気流下で、130℃に加熱して生成してくるn-ブタノールおよびアクリル酸n-ブチルの混合液を還流しながら、10時間程度かけて徐々に反応系外に留去した。n-ブタノールおよびアクリル酸n-ブチルが出なくなった後、真空ポンプを用いて、反応系内を10kPaまで減圧にし、再度n-ブタノールとアクリル酸n-ブチルを系外に留去した。1.5時間程度50Paに保持した後、反応器を冷却して、水添ポリブタジエンジアクリレート(以下ポリオールポリアクリレートEと記す。)を得た。
(Synthesis Example 5)
In a 1-liter four-necked flask equipped with a stirrer and a distillation apparatus, hydrogenated polybutadiene polyol (manufactured by Nippon Soda Co., Ltd., trade name: NISSO-PB GI-2000, hydroxyl value 47.3 mgKOH / g) 540.0 g, acrylic acid 2. n-butyl 162.0 g, dioctyltin dilaurate 0.81 g and pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (manufactured by BASF, trade name: IRGANOX 1010) 51 g was added and heated to 130 ° C. under an air stream, and the mixture of n-butanol and n-butyl acrylate produced was gradually distilled out of the reaction system over about 10 hours while refluxing. did. After n-butanol and n-butyl acrylate disappeared, the pressure in the reaction system was reduced to 10 kPa using a vacuum pump, and n-butanol and n-butyl acrylate were again distilled out of the system. After maintaining at 50 Pa for about 1.5 hours, the reactor was cooled to obtain hydrogenated polybutadiene diacrylate (hereinafter referred to as polyol polyacrylate E).
(実施例1)
 前記ウレタンアクリレートB4.50g、IBXA(大阪有機化学工業株式会社製イソボルニルアクリレート)4.50g、ブレンマーLA(日油株式会社製ラウリルアクリレート)0.80g、A-DPH(新中村化学工業株式会社製ジペンタエリスリトールヘキサアクリレート)0.20g、染料として1-(メチルアミノ)アントラキノン0.01g、1,4-ビス(4-メチルアニリノ)アントラセン-9,10-ジオン0.01g、光重合開始剤としてTR-PBG-304(常州強力電子新材料有限公司(CHANGZHOU TRONLY NEW ELECTRONIC MATERIALS CO.,LTD)製1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-3-シクロペンチルプロパノン-1-(O-アセチルオキシム)0.20g、消泡剤としてDISPALON L-1982N(楠本化成株式会社製アクリル共重合物)0.025gをあわとり練太郎ARE-310(株式会社シンキー製自転・公転ミキサー)を用いて混合した。この配合物を防湿絶縁塗料B1とした。
(Example 1)
4.50 g of urethane acrylate B, 4.50 g of IBXA (isobornyl acrylate manufactured by Osaka Organic Chemical Co., Ltd.), 0.80 g of Blemmer LA (lauryl acrylate manufactured by NOF Corporation), A-DPH (Shin Nakamura Chemical Co., Ltd.) Dipentaerythritol hexaacrylate) 0.20 g, 1- (methylamino) anthraquinone 0.01 g, 1,4-bis (4-methylanilino) anthracene-9,10-dione 0.01 g as a dye, photopolymerization initiator TR-PBG-304 (ChangZhou TRONLY NEW ELECTRONIC MATERIALS CO., LTD 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]- 3-cyclopentylpropa N--1- (O-acetyloxime) 0.20 g and DISPALON L-1982N (acrylic copolymer manufactured by Enomoto Kasei Co., Ltd.) 0.025 g as an antifoaming agent Awatori Nerita ARE-310 (Sinky Co., Ltd.) Mixing was performed using a revolutionary mixer, and this blend was designated as moisture-proof insulating paint B1.
(実施例2~8、比較例1~3)
 実施例1と同様の方法で、表1に示すとおりの成分、量で配合を行い、防湿絶縁塗料B2~B6、C1、D1、E1、F1を得た。
 表1中、Irgacure(登録商標)651はBASF製ベンジルジメチルケタールであり、Irgacure(登録商標)369はBASF製2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1である。
(Examples 2 to 8, Comparative Examples 1 to 3)
In the same manner as in Example 1, the components and amounts as shown in Table 1 were blended to obtain moisture-proof insulating coatings B2 to B6, C1, D1, E1, and F1.
In Table 1, Irgacure (registered trademark) 651 is a benzyldimethyl ketal manufactured by BASF, and Irgacure (registered trademark) 369 is 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 manufactured by BASF. is there.
 なお、実施例、比較例で用いた染料は、次の6種類である。
 1-(メチルアミノ)アントラキノン(T365=90%、λmax=500nm)
 1-アミノ-2-フェノキシ-4-ヒドロキシ-9,10-アントラキノン(T365=83%、λmax=516nm)
 1,4-ビス(4-メチルアニリノ)アントラセン-9,10-ジオン(T365=52%、λmax=640nm)
 5,8-ビス(p-ブチルアニリノ)-1,4-ジヒドロキシアントラキノン(T365=68%、λmax=683nm)
 1,4-ビス(2,4,6-トリメチルフェニルアミノ)-9,10-アントラキノン(T365=67%、λmax=630nm)
 2,3-ジヒドロ-2,2-ジメチル-6-((4-(フェニルアゾ)-1-ナフチル)アゾ)-1h-ペリミジン(T365=42%、λmax=595nm)
The following six types of dyes were used in the examples and comparative examples.
1- (Methylamino) anthraquinone (T 365 = 90%, λ max = 500 nm)
1-amino-2-phenoxy-4-hydroxy-9,10-anthraquinone (T 365 = 83%, λ max = 516 nm)
1,4-bis (4-methylanilino) anthracene-9,10-dione (T 365 = 52%, λ max = 640 nm)
5,8-bis (p-butylanilino) -1,4-dihydroxyanthraquinone (T 365 = 68%, λ max = 683 nm)
1,4-bis (2,4,6-trimethylphenylamino) -9,10-anthraquinone (T 365 = 67%, λ max = 630 nm)
2,3-dihydro-2,2-dimethyl-6-((4- (phenylazo) -1-naphthyl) azo) -1h-perimidine (T 365 = 42%, λ max = 595 nm)
<深部硬化性の評価>
 深部硬化性は以下の方法により評価した。
 防湿絶縁塗料B1~B6、C1、D1、E1、F1を、それぞれポリイミドフィルム(商品名:カプトン(登録商標)150EN、東レ・デュポン株式会社製)上に厚みが1mmになるように塗布し、LED-UVランプ(波長365nm)を用いた紫外線照射装置(アイグラフィックス社製)を用い、照度が400mW/cm、露光量が300mJ/cmの条件で紫外線を照射し、塗布した防湿絶縁塗料の硬化していない液状部分を拭き取った後の硬化した部分の厚みが500μm以上であった場合を○、500μm未満であった場合を×とした。結果を表1に示す。
<Evaluation of deep curability>
Deep part curability was evaluated by the following method.
Moisture-proof insulating paints B1 to B6, C1, D1, E1, and F1 are each applied onto a polyimide film (trade name: Kapton (registered trademark) 150EN, manufactured by Toray DuPont Co., Ltd.) so that the thickness is 1 mm. -A moisture-proof insulating coating applied by irradiating ultraviolet rays under the conditions of an illuminance of 400 mW / cm 2 and an exposure amount of 300 mJ / cm 2 using an ultraviolet irradiation device (manufactured by Eye Graphics) using a UV lamp (wavelength 365 nm). The case where the thickness of the cured part after wiping off the uncured liquid part was 500 μm or more was rated as “◯”, and the case where it was less than 500 μm was marked as “X”. The results are shown in Table 1.
<遮光性評価用試験片の作製>
 防湿絶縁塗料B1~B6、C1、D1、E1、F1を、それぞれ、バーコーターを用い、硬化後の膜厚が500μmとなるようにガラス板(50mm×50mm×0.7mm、ガラスの種類:商品名「EAGLE XG」(登録商標)、CORNING製)に塗布し、同型のガラスを塗布面に重ね、LED-UVランプ(波長365nm)を用いた紫外線照射装置(アイグラフィックス社製)を用い、照度が400mW/cm、露光量が300mJ/cmの条件で両面から紫外線を照射し、各防湿絶縁塗料を完全に硬化させ、試験片を得た。この試験片を用い、下記の可視光波長の透過率の測定および全光線透過率の測定を行った。
<Preparation of light-shielding evaluation test piece>
Moisture-proof insulating paints B1 to B6, C1, D1, E1, and F1 are each made of a glass plate (50 mm x 50 mm x 0.7 mm, glass type: product using a bar coater so that the film thickness after curing is 500 μm. Name "EAGLE XG" (registered trademark), manufactured by CORNING), the same type of glass is superimposed on the coating surface, and an ultraviolet irradiation device (made by Eye Graphics) using an LED-UV lamp (wavelength 365 nm) is used. Ultraviolet rays were irradiated from both sides under the conditions of an illuminance of 400 mW / cm 2 and an exposure amount of 300 mJ / cm 2 to completely cure each moisture-proof insulating coating material to obtain a test piece. Using this test piece, the following visible light wavelength transmittance and total light transmittance were measured.
<可視光波長の透過率の測定>
 遮光性評価用試験片を、2枚のガラス板(50mm×50mm×0.7mm、ガラスの種類:商品名「EAGLE XG」(登録商標)、CORNING製)の間に500μm厚の蒸留水を入れたものをリファレンスに用い、UV-可視分光光度計(島津製作所製)で400~700nmの波長範囲で各波長の透過率を測定した。400~700nmの全ての波長範囲で透過率が10%未満であった場合を◎、400~700nmの波長範囲で透過率が10%以上の波長範囲の合計が50nm以下であった場合を○、400~700nmの波長範囲で透過率が10%以上の波長範囲の合計が50nmを超える場合を×とした。表1に、その結果を示す。
<Measurement of transmittance of visible light wavelength>
Put a 500 μm thick distilled water between two glass plates (50 mm × 50 mm × 0.7 mm, glass type: trade name “EAGLE XG” (registered trademark), CORNING) The transmittance of each wavelength was measured in a wavelength range of 400 to 700 nm with a UV-visible spectrophotometer (manufactured by Shimadzu Corporation). The case where the transmittance was less than 10% in the entire wavelength range of 400 to 700 nm, the case where the total of the wavelength range where the transmittance was 10% or more in the wavelength range of 400 to 700 nm was 50 nm or less, The case where the total of the wavelength range in which the transmittance is 10% or more in the wavelength range of 400 to 700 nm exceeds 50 nm was evaluated as x. Table 1 shows the results.
<全光線透過率の測定>
 遮光性評価用試験片を、2枚のガラス板(50mm×50mm×0.7mm、ガラスの種類:商品名「EAGLE XG」(登録商標)、CORNING製)の間に500μm厚の蒸留水を入れたものをリファレンスに用いて、全光線透過率を、JIS K 7361-1に準拠して測定した。全光線透過率が10%未満の場合を○、10%以上の場合を×とした。表1に、その結果を示す。
<Measurement of total light transmittance>
Put a 500 μm thick distilled water between two glass plates (50 mm × 50 mm × 0.7 mm, glass type: trade name “EAGLE XG” (registered trademark), CORNING) The total light transmittance was measured in accordance with JIS K 7361-1 using the sample as a reference. The case where the total light transmittance was less than 10% was evaluated as ◯, and the case where the total light transmittance was 10% or more was evaluated as ×. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表1より2種類以上の染料を含有する防湿絶縁塗料B1~3、C1、D1、E1、F1は高い深部硬化性と遮光性を併せ持つことが判る。1種類の染料しか含有しない防湿絶縁塗料B4~B6は深部硬化性または遮光性のいずれかにおいて劣ることが判る。すなわち、本発明(I)の防湿絶縁塗料は、既存の染料を含有しない、または染料を1種類しか含有しない防湿絶縁塗料に比べ、高い深部硬化性および遮光性を併せ持つことが判った。 From Table 1, it can be seen that the moisture-proof insulating coatings B1 to 3, C1, D1, E1, and F1 containing two or more dyes have both high deep curability and light shielding properties. It can be seen that the moisture-proof insulating coatings B4 to B6 containing only one kind of dye are inferior in either deep-curing property or light-shielding property. That is, it has been found that the moisture-proof insulating paint of the present invention (I) has both high deep-curing properties and light-shielding properties as compared with a moisture-proof insulating paint that does not contain an existing dye or contains only one type of dye.
 本発明(I)の防湿絶縁塗料は、高い深部硬化性と遮光性を併せ持つ。また、本発明(I)の防湿絶縁塗料とLED-UVランプを用いて行う封止処理・絶縁処理は環境負荷が少なく、低コストである。本発明(I)の防湿絶縁塗料を用いて封止処理・絶縁処理された電子部品は信頼性が高く、また光漏れを抑制でき、マイクロコンピュータや各種の部品を搭載した実装回路板に有用である。 The moisture-proof insulating paint of the present invention (I) has both high deep curability and light shielding properties. Further, the sealing treatment / insulation treatment performed using the moisture-proof insulating paint and the LED-UV lamp of the present invention (I) has a low environmental load and is low in cost. Electronic parts sealed and insulated using the moisture-proof insulating paint of the present invention (I) are highly reliable, can suppress light leakage, and are useful for mounting circuit boards equipped with microcomputers and various parts. is there.

Claims (15)

  1.  (1)(メタ)アクリロイル基含有化合物、
     (2)光重合開始剤、および
     (3)2種類以上の染料
    を含む防湿絶縁塗料であって、該塗料を硬化させて得た厚み500μmの硬化膜の全光線透過率が10%未満、かつ400~700nmの波長範囲において透過率10%以上の波長範囲の合計が50nm以下であり、1mm以上の厚みに塗布した該塗料に波長365nmにおける照度が400mW/cm、露光量が300mJ/cmの条件で紫外線照射を行って得た硬化膜の厚みが500μm以上であることを特徴とする防湿絶縁塗料。
    (1) (meth) acryloyl group-containing compound,
    (2) a photopolymerization initiator, and (3) a moisture-proof insulating paint containing two or more dyes, wherein the cured film having a thickness of 500 μm obtained by curing the paint has a total light transmittance of less than 10%, and In the wavelength range of 400 to 700 nm, the total of the wavelength range having a transmittance of 10% or more is 50 nm or less, the illuminance at a wavelength of 365 nm is 400 mW / cm 2 , and the exposure amount is 300 mJ / cm 2. A moisture-proof insulating paint, characterized in that the thickness of the cured film obtained by irradiating with ultraviolet rays under the conditions is 500 μm or more.
  2.  該塗料を硬化させて得た厚み500μmの硬化膜の全光線透過率が10%未満、かつ400~700nmの全ての波長範囲において透過率10%未満であることを特徴とする請求項1に記載の防湿絶縁塗料。 2. The cured film having a thickness of 500 μm obtained by curing the coating material has a total light transmittance of less than 10% and a transmittance of less than 10% in all wavelength ranges of 400 to 700 nm. Moisture-proof insulating paint.
  3.  染料(3)の少なくとも2種が、それぞれ、酢酸ブチル溶液にして光路長10mmの条件でUV-可視光線透過率測定を行った際、吸収極大波長における透過率が10%となるように濃度を調整した溶液の、波長365nmにおける透過率が50%以上となる染料であることを特徴とする請求項1または2に記載の防湿絶縁塗料。 When at least two kinds of dyes (3) were each measured for UV-visible light transmittance in a butyl acetate solution with an optical path length of 10 mm, the concentration was adjusted so that the transmittance at the absorption maximum wavelength was 10%. The moisture-proof insulating paint according to claim 1 or 2, wherein the adjusted solution is a dye having a transmittance of 50% or more at a wavelength of 365 nm.
  4.  染料(3)の内、少なくとも1種類が、酢酸ブチル溶液にした際の吸収極大波長が450nm以上550nm未満の範囲に存在し、また別の少なくとも1種類が、酢酸ブチル溶液にした際の吸収極大波長が550nm以上700nm以下の範囲に存在することを特徴とする請求項1~3のいずれか1項に記載の防湿絶縁塗料。 Among the dyes (3), at least one type has an absorption maximum wavelength in the range of 450 nm or more and less than 550 nm when converted into a butyl acetate solution, and at least one other type has an absorption maximum when converted into a butyl acetate solution. The moisture-proof insulating paint according to any one of claims 1 to 3, wherein the wavelength is in the range of 550 nm to 700 nm.
  5.  (1)(メタ)アクリロイル基含有化合物、
     (2)光重合開始剤、および
     (3)2種類以上の染料
    を含む防湿絶縁塗料であって、
     染料(3)の少なくとも2種がそれぞれ、酢酸ブチル溶液にして光路長10mmの条件でUV-可視光線透過率測定を行った際、吸収極大波長における透過率が10%となるように濃度を調整した溶液の、波長365nmにおける透過率が50%以上となる染料であることを特徴とする防湿絶縁塗料。
    (1) (meth) acryloyl group-containing compound,
    (2) a photopolymerization initiator, and (3) a moisture-proof insulating paint containing two or more types of dyes,
    When at least two dyes (3) were measured for UV-visible light transmittance in a butyl acetate solution with an optical path length of 10 mm, the concentration was adjusted so that the transmittance at the absorption maximum wavelength was 10%. A moisture-proof insulating paint, characterized in that it is a dye having a transmittance of 50% or more at a wavelength of 365 nm.
  6.  染料(3)の内、少なくとも1種類が、酢酸ブチル溶液にした際の吸収極大波長が450nm以上550nm未満の範囲に存在し、また別の少なくとも1種類が、酢酸ブチル溶液にした際の吸収極大波長が550nm以上700nm以下の範囲に存在することを特徴とする請求項5に記載の防湿絶縁塗料。 Among the dyes (3), at least one type has an absorption maximum wavelength in the range of 450 nm or more and less than 550 nm when converted into a butyl acetate solution, and at least one other type has an absorption maximum when converted into a butyl acetate solution. 6. The moisture-proof insulating paint according to claim 5, wherein the wavelength is in a range of 550 nm to 700 nm.
  7.  染料(3)の少なくとも2種がアントラキノン系染料であることを特徴とする請求項1~6のいずれか1項に記載の防湿絶縁塗料。 The moisture-proof insulating paint according to any one of claims 1 to 6, wherein at least two of the dyes (3) are anthraquinone dyes.
  8.  光重合開始剤(2)が、式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rはヘテロ原子を含んでいてもよい炭化水素基であり、RおよびRは炭化水素基である。)
    で表される化合物またはベンジルジメチルケタールであることを特徴とする請求項1~7のいずれか1項に記載の防湿絶縁塗料。
    The photopolymerization initiator (2) has the formula (1)
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 is a hydrocarbon group which may contain a hetero atom, and R 2 and R 3 are hydrocarbon groups.)
    The moisture-proof insulating paint according to any one of claims 1 to 7, which is a compound represented by the following formula or benzyldimethyl ketal.
  9.  (メタ)アクリロイル基含有化合物(1)が、ポリオールポリ(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレートおよび(メタ)アクリルモノマーからなる群から選ばれる少なくとも1種を含む、請求項1~8のいずれか1項に記載の防湿絶縁塗料。 The (meth) acryloyl group-containing compound (1) contains at least one selected from the group consisting of polyol poly (meth) acrylate, epoxy (meth) acrylate, urethane (meth) acrylate, and (meth) acrylic monomer. The moisture-proof insulating paint according to any one of 1 to 8.
  10.  (メタ)アクリロイル基含有化合物(1)が、ポリオールポリ(メタ)アクリレート、エポキシ(メタ)アクリレートおよび(メタ)アクリルモノマーからなる群から選ばれる少なくとも1種と、ウレタン(メタ)アクリレートとを含む、請求項1~9のいずれか1項に記載の防湿絶縁塗料。 The (meth) acryloyl group-containing compound (1) includes at least one selected from the group consisting of polyol poly (meth) acrylate, epoxy (meth) acrylate and (meth) acrylic monomer, and urethane (meth) acrylate, The moisture-proof insulating paint according to any one of claims 1 to 9.
  11.  ウレタン(メタ)アクリレートが、水添ダイマー酸から誘導される構造単位および水添ダイマージオールから誘導される構造単位を有するポリエステルポリオールから誘導される構造を含むことを特徴とする請求項9または10に記載の防湿絶縁塗料。 11. The urethane (meth) acrylate comprises a structure derived from a polyester polyol having a structural unit derived from a hydrogenated dimer acid and a structural unit derived from a hydrogenated dimer diol. The moisture-proof insulating paint described.
  12.  さらに、(4)シランカップリング剤を含む請求項1~11のいずれか1項に記載の防湿絶縁塗料。 Furthermore, the moisture-proof insulating paint according to any one of claims 1 to 11, further comprising (4) a silane coupling agent.
  13.  さらに、(5)粘着付与剤を含む請求項1~12のいずれか1項に記載の防湿絶縁塗料。 Furthermore, the moisture-proof insulating paint according to any one of claims 1 to 12, further comprising (5) a tackifier.
  14.  請求項1~13のいずれか1項に記載の防湿絶縁塗料を電子部品に塗布し、塗布部にLED-UVランプを照射し、硬化させる工程を含む電子部品の封止処理または絶縁処理方法。 14. A method for sealing or insulating an electronic component comprising the steps of applying the moisture-proof insulating paint according to any one of claims 1 to 13 to an electronic component, irradiating the application portion with an LED-UV lamp and curing the applied portion.
  15.  請求項1~13のいずれか1項に記載の防湿絶縁塗料によって封止処理または絶縁処理された電子部品。 An electronic component sealed or insulated with the moisture-proof insulating paint according to any one of claims 1 to 13.
PCT/JP2014/061779 2013-05-21 2014-04-25 Light-shielding moisture-proof insulating coating material, sealing/insulating treatment method using light-shielding moisture-proof insulating coating material, and electronic component which is sealed/insulated using light-shielding moisture-proof insulating coating material WO2014188850A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013107365 2013-05-21
JP2013-107365 2013-05-21

Publications (1)

Publication Number Publication Date
WO2014188850A1 true WO2014188850A1 (en) 2014-11-27

Family

ID=51933414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061779 WO2014188850A1 (en) 2013-05-21 2014-04-25 Light-shielding moisture-proof insulating coating material, sealing/insulating treatment method using light-shielding moisture-proof insulating coating material, and electronic component which is sealed/insulated using light-shielding moisture-proof insulating coating material

Country Status (2)

Country Link
TW (1) TW201446900A (en)
WO (1) WO2014188850A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016166042A1 (en) * 2015-04-14 2016-10-20 Covestro Deutschland Ag Method for producing shaped bodies having a radiation-cured coating
JPWO2017111064A1 (en) * 2015-12-22 2018-10-11 日立化成株式会社 Photo-curable resin composition, light-shielding paint, and cured product
CN112225645A (en) * 2020-09-17 2021-01-15 万华化学集团股份有限公司 Preparation method of m-cresol
WO2021031673A1 (en) * 2019-08-21 2021-02-25 青岛海尔空调电子有限公司 Uv nano anticorrosive coating, circuit board obtained by using same, and preparation method and application
WO2021075197A1 (en) * 2019-10-16 2021-04-22 ナミックス株式会社 Resin composition
CN112898225A (en) * 2020-12-09 2021-06-04 大丰跃龙化学有限公司 Synthesis method of 1, 2-benzisothiazolin-3-ketone
CN114423731A (en) * 2019-09-26 2022-04-29 汉高股份有限及两合公司 Bio-based acrylate monomers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159437A (en) * 2006-12-25 2008-07-10 Hitachi Kasei Polymer Co Ltd Single liquid type coating agent for both light curing and moisture curing, electric-electronic component subjected to insulating treatment by the same, and its manufacturing method
WO2011074503A1 (en) * 2009-12-14 2011-06-23 昭和電工株式会社 Polymerizable compound and curable composition containing same
WO2011074504A1 (en) * 2009-12-14 2011-06-23 昭和電工株式会社 Photocurable moistureproof insulating coating material
WO2012124737A1 (en) * 2011-03-15 2012-09-20 昭和電工株式会社 Moisture-proof insulative coating with visible light-blocking properties

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159437A (en) * 2006-12-25 2008-07-10 Hitachi Kasei Polymer Co Ltd Single liquid type coating agent for both light curing and moisture curing, electric-electronic component subjected to insulating treatment by the same, and its manufacturing method
WO2011074503A1 (en) * 2009-12-14 2011-06-23 昭和電工株式会社 Polymerizable compound and curable composition containing same
WO2011074504A1 (en) * 2009-12-14 2011-06-23 昭和電工株式会社 Photocurable moistureproof insulating coating material
WO2012124737A1 (en) * 2011-03-15 2012-09-20 昭和電工株式会社 Moisture-proof insulative coating with visible light-blocking properties

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016166042A1 (en) * 2015-04-14 2016-10-20 Covestro Deutschland Ag Method for producing shaped bodies having a radiation-cured coating
CN107428975A (en) * 2015-04-14 2017-12-01 科思创德国股份有限公司 The manufacture method of formed body with radiation-curable couting
CN107428975B (en) * 2015-04-14 2021-07-06 科思创德国股份有限公司 Method for producing a shaped body with a radiation-curable coating
JPWO2017111064A1 (en) * 2015-12-22 2018-10-11 日立化成株式会社 Photo-curable resin composition, light-shielding paint, and cured product
WO2021031673A1 (en) * 2019-08-21 2021-02-25 青岛海尔空调电子有限公司 Uv nano anticorrosive coating, circuit board obtained by using same, and preparation method and application
CN114423731A (en) * 2019-09-26 2022-04-29 汉高股份有限及两合公司 Bio-based acrylate monomers
WO2021075197A1 (en) * 2019-10-16 2021-04-22 ナミックス株式会社 Resin composition
CN112225645A (en) * 2020-09-17 2021-01-15 万华化学集团股份有限公司 Preparation method of m-cresol
CN112225645B (en) * 2020-09-17 2022-08-05 万华化学集团股份有限公司 Preparation method of m-cresol
CN112898225A (en) * 2020-12-09 2021-06-04 大丰跃龙化学有限公司 Synthesis method of 1, 2-benzisothiazolin-3-ketone

Also Published As

Publication number Publication date
TW201446900A (en) 2014-12-16

Similar Documents

Publication Publication Date Title
WO2013118655A1 (en) Urethane (meth)acrylate and moisture-proof insulating coating material
TWI431023B (en) A polymerizable compound and a hardening composition containing the compound
WO2014188850A1 (en) Light-shielding moisture-proof insulating coating material, sealing/insulating treatment method using light-shielding moisture-proof insulating coating material, and electronic component which is sealed/insulated using light-shielding moisture-proof insulating coating material
CN102361947B (en) Adhesive protective film, screen panel, and portable electronic terminal
JP6124916B2 (en) Polymerizable composition, polymer, optical pressure-sensitive adhesive sheet, image display device and method for producing the same
JP5715955B2 (en) Radiation curable adhesive composition for optical member and adhesive optical member
WO2013187508A1 (en) Polymerizable composition, polymer, optical adhesive sheet, image display device, and method for manufacturing image display device
KR101701183B1 (en) Polymerizable composition, polymer, image display device, and method for producing same
JP5540220B2 (en) Radiation curable adhesive composition for optical member and adhesive optical member
JP2008280414A (en) Photocurable resin composition, photocurable moistureproof insulating coating for mounting circuit board, electronic part and its manufacturing method
WO2013099985A1 (en) Polymerizable composition, polymer, image-display device, and manufacturing method therefor
JP2008291114A (en) Photosetting resin composition, photosetting and moistureproof insulating paint for mounted circuit board, electronic component and method for manufacturing the component
WO2014065048A1 (en) Novel electronic circuit reinforcing agent
JP2010254890A (en) Photocurable resin composition, photocurable moisture-proof insulation coating, electronic part, and flat panel display, using the same
JP5162893B2 (en) Manufacturing method of photocurable resin composition, photocurable moisture-proof insulating coating for mounting circuit board, mounting circuit board, and manufacturing method of mounting circuit board
JP2015010113A (en) Moisture-proof insulation coating, sealing insulating treatment method using the coating, and electronic component
JP2014122267A (en) Moisture proof insulation coating, encapsulation and insulation treatment method by using moisture proof insulation coating and encapsulation and insulation treated electronic component obtained using moisture proof insulation coating
WO2011074504A1 (en) Photocurable moistureproof insulating coating material
JP2017155144A (en) Photocuring composition and cured article thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14801204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP