WO2014188649A1 - 発電装置 - Google Patents

発電装置 Download PDF

Info

Publication number
WO2014188649A1
WO2014188649A1 PCT/JP2014/002019 JP2014002019W WO2014188649A1 WO 2014188649 A1 WO2014188649 A1 WO 2014188649A1 JP 2014002019 W JP2014002019 W JP 2014002019W WO 2014188649 A1 WO2014188649 A1 WO 2014188649A1
Authority
WO
WIPO (PCT)
Prior art keywords
cantilever
power generation
generation device
flow path
support portion
Prior art date
Application number
PCT/JP2014/002019
Other languages
English (en)
French (fr)
Inventor
純矢 小川
貴司 中川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2014188649A1 publication Critical patent/WO2014188649A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/185Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators using fluid streams
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/304Beam type
    • H10N30/306Cantilevers

Definitions

  • the present invention relates to a power generation device, and more particularly to a power generation device that generates power using fluid excitation vibration.
  • a power generation device 201 configured as shown in FIGS. 12A, 12B and 12C has been proposed (for example, Japanese Patent Application Publication No. 2012-97673 (hereinafter referred to as “Document 1”)). .
  • the power generation device 201 includes a base 211 and a lead 213 to which the piezoelectric element 214 is fixed.
  • the base 211 has a plate 215 on which a rectangular window 212 is formed. As shown in FIG. 12A, the size of the window 212 is slightly larger than the lead 213 facing the window 212, and a slight gap through which the gas F passes is formed between the edge of the window 212 and the lead 213. Has been.
  • the lead 213 is flexible so that it can bend and vibrate in the thickness direction.
  • the lead 213 is a flexible printed board formed of FRP (Fiber Reinforced Plastics) or the like, and has an output terminal (not shown) of the piezoelectric element 214.
  • the lead 213 is positioned so that one end 231 is fixed to the upper surface of the plate 215 and the other end 232 faces the window 212 so that the window 212 can freely enter and exit.
  • the lead 213 is slightly inclined with respect to the upper surface of the plate 215 so that the end 232 is located outside the window 212 (the side into which the gas F flows) ( Is up).
  • the distance t from the end 232 of the lead 213 to the window 212 (the upper surface of the plate 215) in a state of not vibrating is set according to the strength of the wind to be used.
  • the distance t may be set to the thickness of the end 232 of the lead 213, or to extract a large energy when the wind force is strong. Describes that the distance t may be increased.
  • the piezoelectric element 214 is a bimorph piezoelectric element, and is fixed to both front and back surfaces of the lead 213 as shown in FIGS. 12A and 12C.
  • Document 1 describes that the piezoelectric element 214 may be a unimorph piezoelectric element fixed to one of the front and back surfaces of the lead 213.
  • a power generation apparatus that converts vibration energy into electrical energy
  • a power generation device 300 having a configuration shown in FIGS. 13A and 13B has been proposed (for example, Japanese Patent Application Publication No. 2011-91318).
  • the power generation device 300 includes a cantilever-forming substrate 320 having a frame part (support part) 321 and a cantilever part 322, and a piezoelectric conversion part 324 that generates an alternating voltage in response to vibration of the cantilever part 322.
  • the piezoelectric conversion portion 324 is formed on the cantilever portion 322 on one surface side of the cantilever forming substrate 320. Further, the cantilever forming substrate 320 is integrally provided with a weight portion 323 at the tip of the cantilever portion 322.
  • the frame part 321, the cantilever part 322, and the weight part 323 are formed using an element formation substrate 420.
  • an SOI (Silicon on Insulator) substrate having a single crystal silicon layer 420c on a buried oxide film 420b on a support substrate 420a made of a single crystal silicon substrate is used.
  • the piezoelectric conversion unit 324 includes a lower electrode 324a, a piezoelectric layer 324b, and an upper electrode 324c.
  • the power generation efficiency is not sufficient, and further improvement is required.
  • the inventors of the present application considered generating the power generation device 300 with a fluid. That is, the inventors of the present application have considered arranging the power generation device in the flow field and generating the power generation device 300 using the fluid flowing in the flow field.
  • the power generation device 300 it is difficult for the power generation device 300 to generate power using a fluid.
  • An object of the present invention is to provide a power generation apparatus that can reduce the critical flow velocity of fluid-excited vibration and can improve power generation efficiency.
  • the power generation device of the present invention includes a frame-shaped support portion, a cantilever portion that is disposed inside the support portion, one end is fixed to the support portion, and the other end is a free end, and the cantilever portion
  • a piezoelectric converter that is provided and generates an AC voltage in response to vibration of the cantilever part; and a first flow path that is formed by a gap formed between the support part and the cantilever part.
  • the cantilever part is warped so that the free end is located outside the space surrounded by the inner surface of the support part.
  • the cantilever part is formed with a second flow path penetrating in the thickness direction of the cantilever part.
  • the second flow path is formed in a shape in which the inner side surface of the support portion in the cantilever portion is opened, and the support portion has the free end of the cantilever portion entering the space. It is preferable that the structural body disposed in the space so as to reduce the cross-sectional area of the second flow path is integrally provided.
  • the thickness of the structure in the direction along the thickness direction of the support portion is the same as the thickness of the support portion.
  • the second flow path is preferably formed so as to divide a part of the cantilever part into a plurality of parts in the width direction of the cantilever part.
  • the cantilever portion includes a weight portion on the free end side, and a portion on the fixed end side of the weight portion in the length direction of the cantilever portion is deformed when the cantilever portion vibrates. It is preferable that a strain generating portion that generates strain is formed, the second flow path is formed in the weight portion, and the piezoelectric conversion portion is provided in the strain generating portion.
  • the cantilever part also forms the second flow path in the strain generating part.
  • the piezoelectric conversion unit includes a plurality of piezoelectric conversion elements, and at least two of the plurality of piezoelectric conversion elements are electrically connected in series.
  • the power generation device of the present invention it is possible to reduce the critical flow velocity of the fluid excitation vibration, and to improve the power generation efficiency.
  • FIG. 1A is a schematic plan view of the power generator of Embodiment 1.
  • FIG. 1B is a schematic cross-sectional view taken along the line XX of FIG. 1A.
  • FIG. 2 is a schematic cross-sectional view of a first modification of the power generation device according to the first embodiment.
  • FIG. 3 is a schematic plan view of a second modification of the power generation device according to the first embodiment.
  • FIG. 4A is a schematic plan view of the power generation device according to the second embodiment. 4B is a schematic cross-sectional view taken along the line XX of FIG. 4A.
  • FIG. 5 is a schematic perspective view of the power generation apparatus according to the second embodiment.
  • FIG. 6 is a schematic plan view of a first modification of the power generation device according to the second embodiment.
  • FIG. 7A is a schematic plan view of the power generation device of the third embodiment.
  • FIG. 7B is a schematic cross-sectional view taken along the line X1-X1 of FIG. 7A.
  • FIG. 7C is a schematic cross-sectional view taken along the line X2-X2 of FIG. 7A.
  • FIG. 8 is a schematic plan view of a first modification of the power generation device according to the third embodiment.
  • FIG. 9 is a schematic plan view of a second modification of the power generation device according to the third embodiment.
  • FIG. 10 is a schematic plan view of a third modification of the power generation device according to the third embodiment.
  • FIG. 11 is a schematic plan view of a fourth modification of the power generation device according to the third embodiment.
  • FIG. 12A is a schematic plan view of a conventional power generator.
  • FIG. 12B is a cross-sectional view taken along the line XX of FIG. 12A.
  • 12C is a YY cross-sectional view of FIG. 12A.
  • FIG. 13A is a schematic plan view of a conventional power generation device.
  • 13B is a schematic cross-sectional view taken along the line XX of FIG. 13A.
  • the power generation device 1a includes a frame-shaped support portion 11, a cantilever portion 12 that is disposed inside the support portion 11, one end is fixed to the support portion 11, and the other end is a free end 12b.
  • the cantilever portion A piezoelectric converter 14 that generates an alternating voltage in response to vibration of the cantilever part 12 and a first flow path 15a that is formed by a gap formed between the support part 11 and the cantilever part 12; I have.
  • the cantilever portion 12 is warped so that the free end 12b is located outside the space 19 surrounded by the inner side surface 11b of the support portion 11.
  • a second flow path 15b penetrating in the thickness direction of the cantilever portion 12 is formed.
  • the power generation device 1a can achieve a reduction in the generation limit flow rate of the fluid excitation vibration, and can improve the power generation efficiency.
  • the fluid-excited vibration is vibration of the cantilever part 12 generated when the fluid flowing through the flow field passes through the first flow path 15a in a state where the power generation device 1a is disposed in the flow field.
  • This fluid excitation vibration is self-excited vibration.
  • the fluid include air, gas, a mixed gas of air and gas, and liquid.
  • the fluid is a gas
  • examples of the flow field include the inside of an air supply duct of an air conditioner and the inside of an exhaust duct of an air conditioner, but may be other than these.
  • the generation limit flow velocity of the fluid excitation vibration means a lower limit value of the flow velocity at which the self-excited vibration of the cantilever portion 12 can be generated.
  • the inventors of the present application contemplate the present invention by paying attention to the following (1) to (3) relating to the power generation apparatus of the reference embodiment having the same basic configuration as the power generation apparatus 1a and not provided with the second flow path 15b. It came to.
  • the generation limit flow velocity of the cantilever portion 12 that self-excites and receives fluid is proportional to the square root of the mass per unit length of the cantilever portion 12.
  • the power generation device includes a first surface 121 side and a second surface 122 side of the cantilever portion 12 that are generated when a fluid passes through a first flow path 15 a provided between the support portion 11 and the cantilever portion 12. Self-excited vibration occurs due to the pressure difference between the cantilever portion 12 and the elasticity of the cantilever portion 12. Therefore, the power generating device can increase the amplitude of the free end 12b of the cantilever part 12 by increasing the cross-sectional area of the first flow path 15a with respect to the area of the cantilever part 12.
  • the amount of power generation can be increased by increasing the area of the piezoelectric conversion unit 14.
  • the power generation device 1a of the present embodiment includes a first flow path 15a configured by a gap formed between the support portion 11 and the cantilever portion 12, and the cantilever portion 12 has a free end 12b. Is warped so as to be located outside the space 19 surrounded by the inner side surface 11 b of the support portion 11. Further, in the power generation device 1 a, a second flow path 15 b that penetrates the cantilever part 12 in the thickness direction of the cantilever part 12 is formed. Therefore, the power generation device 1a can achieve a reduction in the generation limit flow rate of the fluid excitation vibration, and can improve the power generation efficiency.
  • the power generation device 1a is manufactured using a manufacturing technology of MEMS (micro-electromechanical mechanical systems).
  • a support portion 11 and a cantilever portion 12 are formed from a substrate 10.
  • the power generation device 1 a has a cantilever portion 12 formed on the first surface 101 side in the thickness direction of the substrate 10.
  • the substrate 10 an SOI substrate in which a silicon layer 10c is formed on a silicon oxide film (buried oxide film) 10b on a silicon substrate 10a is used.
  • the first surface 101 of the substrate 10 is a (100) surface, but is not limited to this, and may be a (110) surface, for example.
  • the support portion 11 is formed of a silicon substrate 10a, a silicon oxide film 10b, and a silicon layer 10c among SOI substrates.
  • the cantilever part 12 is formed from the silicon layer 10c of the SOI substrate.
  • the cantilever part 12 has elasticity. In short, the cantilever part 12 is supported by the support part 11 so as to be swingable.
  • the substrate 10 and the piezoelectric conversion unit 14 are electrically insulated by a first insulating film 18 a formed on the first surface 101 side of the substrate 10.
  • the first insulating film 18a can be composed of, for example, a silicon oxide film.
  • the power generation device 1 a may include a second insulating film (not shown) made of a silicon oxide film on the second surface 102 side in the thickness direction of the substrate 10.
  • the first insulating film 18a and the second insulating film can be formed by, for example, a thermal oxidation method.
  • the method of forming the first insulating film 18a and the second insulating film is not limited to the thermal oxidation method, and may be, for example, a CVD (Chemical Vapor Deposition) method.
  • the substrate 10 is not limited to an SOI substrate, and a single crystal silicon substrate, a polycrystalline silicon substrate, a magnesium oxide (MgO) substrate, a metal substrate, a glass substrate, a polymer substrate, or the like can also be used.
  • the power generation apparatus 1a uses an insulating substrate such as an MgO substrate, a glass substrate, or a polymer substrate as the substrate 10, the first insulating film 18a and the second insulating film are not necessarily provided.
  • the support portion 11 preferably employs a rectangular frame shape as the frame shape. That is, it is preferable that the support portion 11 has a rectangular outer peripheral shape.
  • the power generation device 1a prepares a wafer as a base of the substrate 10 at the time of manufacture, performs a pre-process for forming a large number of power generation devices 1a from the wafer, and separates the individual power generation devices 1a in a post-process.
  • the substrate 10 is an SOI substrate
  • the wafer serving as the basis of the substrate 10 is an SOI wafer.
  • the support portion 11 preferably has a rectangular outer peripheral shape, but the inner peripheral shape is not limited to a rectangular shape, and may be a polygonal shape other than a rectangular shape, a circular shape, an elliptical shape, or the like. Further, the outer peripheral shape of the support portion 11 may be a shape other than a rectangular shape.
  • the cantilever portion 12 is disposed inside the support portion 11 in a plan view.
  • a slit 10d having a U-shape in plan view surrounding the cantilever portion 12 is formed in the substrate 10, so that a portion other than the fixed end 12a that is a connection portion with the support portion 11 in the cantilever portion 12 is supported. It is separated from the part 11. Thereby, the cantilever part 12 is cantilevered by the support part 11.
  • the slit 10d constitutes the first flow path 15a.
  • the piezoelectric conversion unit 14 is provided on the first surface 121 side (the first surface 101 side of the substrate 10) in the thickness direction of the cantilever unit 12.
  • the piezoelectric conversion unit 14 includes a first electrode (lower electrode) 14a provided on the first surface 121 side of the cantilever unit 12, a piezoelectric layer 14b provided on the first electrode 14a, and a piezoelectric layer 14b. And a second electrode (upper electrode) 14c provided.
  • the piezoelectric conversion unit 14 includes a piezoelectric layer 14b and a first electrode 14a and a second electrode 14c facing each other with the piezoelectric layer 14b sandwiched from both sides in the thickness direction.
  • the piezoelectric layer 14 b of the piezoelectric conversion unit 14 receives stress due to the vibration of the cantilever unit 12, and a bias of electric charge occurs between the second electrode 14 c and the first electrode 14 a, and an AC voltage is appear.
  • the power generation device 1a is a vibration type power generation device in which the piezoelectric conversion unit 14 generates power using the piezoelectric effect of the piezoelectric material.
  • the planar shape of the piezoelectric layer 14b is formed in a rectangular shape.
  • the outer size of the piezoelectric layer 14b is slightly smaller than the outer size of the first electrode 14a and slightly larger than the outer size of the second electrode 14c.
  • a region where the first electrode 14a, the piezoelectric layer 14b, and the second electrode 14c overlap in the thickness direction of the cantilever portion 12 is referred to as a piezoelectric conversion region 141.
  • the piezoelectric conversion region 141 contributes to generation of an alternating voltage.
  • the end 141 a on the fixed end 12 a side of the piezoelectric conversion region 141 is aligned with the boundary between the cantilever portion 12 and the support portion 11 in the length direction of the cantilever portion 12.
  • the power generation device 1a is positioned on the cantilever portion 12 in the length direction of the cantilever portion 12 as compared with the case where the end 141a on the fixed end 12a side of the piezoelectric conversion region 141 is closer to the cantilever portion 12 than the boundary.
  • the area of the existing piezoelectric conversion region 141 can be increased. Thereby, the power generation device 1a can improve the power generation efficiency.
  • the power generation device 1a does not contribute to power generation in the piezoelectric conversion region 141 and has a parasitic capacitance as compared with the case where the end 141a on the fixed end 12a side of the piezoelectric conversion region 141 is closer to the support portion 11 than the boundary. Therefore, it is possible to reduce the portion that is generated and improve the power generation efficiency.
  • the length direction of the cantilever part 12 is a direction along the axis of the cantilever part 12.
  • the AC voltage generated in the piezoelectric converter 14 is a sinusoidal AC voltage corresponding to the vibration of the piezoelectric layer 14b.
  • the piezoelectric conversion unit 14 of the power generation device 1a generates power using self-excited vibration generated by fluid flowing through the first flow path 15a and the second flow path 15b.
  • the resonance frequency of the power generation device 1a is determined by the structural parameters and the material of the movable part composed of the cantilever part 12 and the piezoelectric conversion part 14.
  • the power generation device 1 a is provided with a first pad electrode (not shown) and a second pad electrode (not shown) on the first surface 111 side in the thickness direction of the support portion 11.
  • the first surface 111 of the support portion 11 is smoothly continuous with the first surface 121 of the cantilever portion 12 in the vicinity of the fixed end 12 a of the cantilever portion 12.
  • the second surface 112 in the thickness direction of the support portion 11 and the second surface 102 of the substrate 10 are the same.
  • the power generation device 1 a includes the second insulating film on the second surface 102 side of the substrate 10, the surface of the second insulating film becomes the second surface 112 of the support portion 11.
  • the first pad electrode is electrically connected to the first electrode 14a via a first wiring (not shown).
  • the second pad electrode is electrically connected to the second electrode 14c via a second wiring (not shown).
  • the material of the first wiring, the second wiring, the first pad electrode, and the second pad electrode is Au, but is not limited to this.
  • Mo, Al, Pt, Ir, or the like may be used.
  • the materials of the first wiring, the second wiring, the first pad electrode, and the second pad electrode are not limited to the same material, and different materials may be employed. Further, the first wiring, the second wiring, the first pad electrode, and the second pad electrode are not limited to a single layer structure, and may be a multilayer structure of two or more layers.
  • an insulating layer (not shown) that prevents a short circuit between the second wiring and the first electrode 14a is provided between the second wiring and the peripheral portion of the first electrode 14a.
  • This insulating layer is formed of a silicon oxide film, but is not limited to a silicon oxide film, and may be formed of, for example, a silicon nitride film.
  • the piezoelectric material of the piezoelectric layer 14b PZT (Pb (Zr, Ti) O 3 ) is adopted, but not limited to this, for example, PZT-PMN (Pb (Mn, Nb) O 3 ), PZT added with impurities may also be used.
  • the piezoelectric material may be AlN, ZnO, KNN (K 0.5 Na 0.5 NbO 3 ), KN (KNbO 3 ), NN (NaNbO 3 ), a material obtained by adding impurities to KNN, or the like.
  • the impurity include Li, Nb, Ta, Sb, and Cu.
  • the piezoelectric layer 14b is formed of a piezoelectric thin film.
  • the material of the first electrode 14a is Pt, but is not limited thereto, and may be Au, Al, Ir, or the like, for example. Further, although Au is adopted as the material of the second electrode 14c, it is not limited to this, and for example, Mo, Al, Pt, Ir, or the like may be used.
  • the thickness of the first electrode 14a is set to 500 nm
  • the thickness of the piezoelectric layer 14b is set to 3000 nm
  • the thickness of the second electrode 14c is set to 500 nm. is not.
  • the power generation device 1a may have a structure in which a buffer layer is provided between the substrate 10 and the first electrode 14a.
  • the material of the buffer layer may be appropriately selected according to the piezoelectric material of the piezoelectric layer 14b.
  • the piezoelectric material of the piezoelectric layer 14b is PZT, for example, SrRuO 3 , (Pb, La) TiO 3 , PbTiO 3 , MgO, LaNiO 3 or the like is preferably used as the material of the buffer layer 14b.
  • the buffer layer may be constituted by a laminated film of a Pt film and a SrRuO 3 film, for example.
  • a second flow path 15b penetrating in the thickness direction of the cantilever portion 12 is formed.
  • the second flow path 15b is formed in a shape in which the inner surface 11b side of the support portion 11 in the cantilever portion 12 is opened.
  • the second flow path 15b is formed on the free end 12b side of the vertical projection region of the piezoelectric conversion unit 14 in the cantilever part 12 in the length direction of the cantilever part 12.
  • the second flow path 15b is preferably formed so as to divide a part of the cantilever part 12 into two in the width direction of the cantilever part 12 (vertical direction in FIG. 1A).
  • the second flow path 15b divides a part of the cantilever part 12 into two in the width direction of the cantilever part 12.
  • the width dimension H1 of the part on one side of the second flow path 15b in the width direction of the cantilever part 12 in the cantilever part 12 is equal to the width dimension H2 of the part on the other side. preferable.
  • the fluid inflow port 151 in the first surface 121 of the cantilever part 12 and the fluid outflow port 152 in the second surface 122 of the cantilever part 12 are along the length direction of the cantilever part 12. Is preferably formed.
  • the second flow path 15b is formed so as to divide a part of the cantilever part 12 into two in the width direction of the cantilever part 12.
  • the second flow path 15b is not limited to this.
  • the cantilever portion 12 may be formed so that a part of the cantilever portion 12 is divided into three or more in the width direction of the cantilever portion 12.
  • two second flow paths 15b may be formed so that a part of the cantilever part 12 is divided into three in the width direction of the cantilever part 12.
  • the number of parts of the cantilever part 12 divided in the width direction of the cantilever part 12 is larger, the number of the second flow paths 15b increases, the vibration of the cantilever part 12 becomes more stable, and the power generation efficiency is further increased. It is possible to improve.
  • a substrate 10 made of an SOI substrate is prepared, and then an insulating film forming step is performed.
  • a first insulating film 18a and a second insulating film made of a silicon oxide film are formed on the first surface 101 side and the second surface 102 side of the substrate 10 by using a thermal oxidation method or the like, respectively.
  • the thermal oxidation method is employed as a method for forming the first insulating film 18a and the second insulating film, but the present invention is not limited thereto, and a CVD method or the like may be employed.
  • a first conductive layer forming step for forming a first conductive layer serving as a basis of the first electrode 14a and the first wiring on the entire surface of the substrate 10 on the first surface 101 side is performed, Then, a piezoelectric material layer forming step for forming a piezoelectric material layer serving as a basis of the piezoelectric layer 14b is performed.
  • a method for forming the first conductive layer a sputtering method is employed.
  • the present invention is not limited thereto, and for example, a CVD method, a vapor deposition method, or the like may be employed.
  • a method of forming the piezoelectric material layer a sputtering method is employed, but is not limited thereto, and for example, a CVD method or a sol-gel method may be employed.
  • a first patterning step of patterning the piezoelectric material layer into a predetermined shape of the piezoelectric layer 14b is performed, and subsequently, the first conductive layer is changed to a predetermined shape of the first electrode 14a and the first wiring.
  • a second patterning step for patterning the shape is performed.
  • the piezoelectric material layer is patterned using a lithography technique and an etching technique.
  • the first conductive layer is patterned using a lithography technique and an etching technique.
  • an insulating layer forming step for forming the insulating layer on the first surface 101 side of the substrate 10 is performed.
  • the second conductive layer forming step for forming the second conductive layer serving as the basis of the second electrode 14c and the second wiring on the entire surface on the first surface 101 side of the substrate 10 is performed.
  • a third patterning step of patterning the two conductive layers into a predetermined shape of the second electrode 14c and the second wiring is performed.
  • a sputtering method is employed, but is not limited thereto, and for example, a CVD method, a vapor deposition method, or the like may be employed.
  • the second conductive layer is patterned using a lithography technique and an etching technique.
  • a third conductive layer forming step for forming a third conductive layer serving as a basis for the first pad electrode and the second pad electrode on the entire surface on the first surface 101 side of the substrate 10 is performed.
  • a fourth patterning step of patterning the third conductive layer into a predetermined shape of the first pad electrode and the second pad electrode is performed.
  • a portion other than the support portion 11 and the cantilever portion 12 (scheduled formation region of the slit 10d, planned formation region of the second flow path 15b) is first predetermined from the first surface 101 side of the substrate 10.
  • a first groove forming step is performed in which the first groove is formed by etching to a depth.
  • the first predetermined depth is a depth corresponding to the thickness of the cantilever portion 12.
  • the first groove is formed using a lithography technique, an etching technique, and the like.
  • the silicon oxide film 10b is used as an etching stopper layer.
  • a second groove forming step is performed in which a portion other than the support portion 11 is etched from the second surface 102 side of the substrate 10 to a second predetermined depth to form the second groove.
  • the second groove is formed using a lithography technique, an etching technique, or the like.
  • the silicon oxide film 10b is used as an etching stopper layer.
  • the second groove forming step power generation is performed by performing a cantilever portion forming step of forming the cantilever portion 12 together with the support portion 11 by etching a portion of the silicon oxide film 10b other than the support portion 11 by etching.
  • Device 1a is obtained.
  • the cantilever part 12 is formed together with the support part 11 using a lithography technique, an etching technique, and the like.
  • Each etching in the first groove forming step, the second groove forming step, and the cantilever portion forming step is dry etching using an inductively coupled plasma type dry etching apparatus capable of vertical deep drilling.
  • the first flow path 15a and the second flow path 15b are formed.
  • the cantilever portion 12 when the cantilever portion 12 is formed, the cantilever portion 12 can be warped by, for example, a compressive stress that is an internal stress of the piezoelectric layer 14b.
  • the process until the cantilever part forming process is completed is performed at the wafer level, and then the dicing process is performed to divide the power generation device 1a into individual power generation devices 1a.
  • the first pad electrode and the second pad electrode may be formed using a lift-off method.
  • the first pad electrode and the second pad electrode are formed by vapor deposition using a metal mask or the like. May be.
  • the cantilever portion 12 in the power generation device 1a is warped so that the free end 12b is located outside the space 19 surrounded by the inner side surface 11b of the support portion 11.
  • the free end 12b of the cantilever part 12 is located outside the space 19 on the first surface 111 side of the support part 11 as shown in FIG. 1B. Warped to be located at.
  • the cantilever portion 12 is curved so that the first surface 121 side is a concave curved surface and the second surface 122 side is a convex curved surface.
  • the free end 12b of the cantilever part 12 is positioned outside the space 19 surrounded by the inner side surface 11b of the support part 11 due to the internal stress of the piezoelectric thin film constituting the piezoelectric layer 14b.
  • the cantilever portion 12 is warped.
  • the internal stress of the piezoelectric thin film can be adjusted by appropriately setting process conditions such as gas pressure and temperature.
  • the operation of the power generation device 1a of the present embodiment will be described with the following estimation mechanism. Note that the power generation device 1a of the present embodiment is within the scope of the present invention even if the estimation mechanism is different.
  • the direction in which the fluid flows matches the thickness direction of the support portion 11, the first surface 101 side of the substrate 10 is the upstream side of the fluid, and the second surface 102 side of the substrate 10 is the downstream side of the fluid. It is preferable to arrange and use such that In the power generation device 1a, the fluid flowing from the upstream side toward the power generation device 1a has a higher flow velocity when passing through the first flow path 15a and the second flow path 15b, so the second surface 122 of the cantilever part 12 and the support part 11 The pressure in the space 10 f surrounded by the inner side surface 11 b of the inner surface 11 b decreases, and the free end 12 b of the cantilever portion 12 is displaced in a direction approaching the space 19.
  • the power generation device 1a is assumed to be displaced in a direction in which the free end 12b of the cantilever part 12 returns to the original position due to the elastic force of the cantilever part 12. In the power generation device 1a, it is assumed that the cantilever portion 12 self-excites and the piezoelectric conversion portion 14 generates power by repeating such an operation.
  • the power generation device 1a includes the first flow path 15a and the second flow path 15b, and the free end 12b of the cantilever portion 12 is located outside the space 19 surrounded by the inner surface 11b of the support portion 11. Is warping. As a result, the power generation device 1a generates a pressure difference between the first surface 121 side and the second surface 122 side of the cantilever portion 12 that is generated by a fluid flow (airflow) passing through the first flow path 15a and the second flow path 15b. Since the self-excited vibration can be generated by the elasticity of the cantilever portion 12, it is possible to generate power using a fluid.
  • the second flow path 15b penetrating in the thickness direction of the cantilever part 12 is formed in the cantilever part 12.
  • the power generation device 1a can achieve a reduction in the generation limit flow rate of the fluid excitation vibration, and can improve the power generation efficiency.
  • the power generation device 1b of the first modification is different from the power generation device 1a of the first embodiment in that the cantilever portion 12 is warped by a stress control film 119 formed on the first surface 121 side of the cantilever portion 12. A part of the stress control film 119 is also formed on the first surface 111 side of the support portion 11.
  • symbol is attached
  • the stress control film 119 is formed so as to cover the piezoelectric conversion part 14 on the first surface 121 side of the cantilever part 12.
  • the stress control film 119 is formed of a silicon oxide film, but is not limited thereto, and may be formed of, for example, a silicon nitride film.
  • the stress control film 119 may be formed on the second surface 122 side of the cantilever portion 12.
  • the power generation device 1b according to the first modification can reduce the generation limit flow velocity of the fluid excitation vibration and can improve the power generation efficiency. Become.
  • the cantilever portion 12 may be warped by the stress acting on the cantilever portion 12 due to the stress control film 119 and the internal stress of the piezoelectric layer 14b that is a piezoelectric thin film. .
  • the power generation device 1c of the second modified example is different from the power generation device 1a of the first embodiment in the area where the piezoelectric conversion portion 14 is formed in the cantilever portion 12.
  • symbol is attached
  • the power generation device 1c of the second modified example is formed so that the piezoelectric conversion unit 14 covers the first surface 121 of the cantilever unit 12 in a planar shape. Covering in a plane means covering substantially the entire surface of the first surface 121 of the cantilever portion 12, but is not limited to covering the entire surface of the first surface 121, and as shown in FIG. It is also possible to cover the entire area slightly narrower than the entire surface.
  • the piezoelectric conversion portion 14 is disposed in the vicinity of the side edge of the cantilever portion 12 so as to be separated from the side edge of the cantilever portion 12 by a specified distance.
  • the method for manufacturing the power generation device 1c according to the second modification is basically the same as the method for manufacturing the power generation device 1a according to the first embodiment, except that a photomask for patterning the piezoelectric conversion unit 14 is different.
  • the specified distance may be set so that the piezoelectric conversion portion 14 is not etched when the first groove and the second groove are formed in the method for manufacturing the power generation device 1a of the first embodiment.
  • the power generation device 1d of the present embodiment is different from the power generation device 1a of the first embodiment in the configuration of the support portion 11.
  • symbol is attached
  • the support portion 11 of the power generation device 1d includes a structure 11e arranged in the space 19 so that the cross-sectional area of the second flow path 15b is reduced when the free end 12b of the cantilever portion 12 enters the space 19. Is provided.
  • the first surface 11e1 in the thickness direction of the structure 11e (the vertical direction in FIG. 4B) is preferably on the same plane as the first surface 111 of the support portion 11.
  • the power generation device 1d includes the structure 11e, the cross-sectional area of the second flow path 15b when the first surface 121 of the cantilever portion 12 and the first surface 111 of the support portion 11 are flush with each other is obtained. It can be made smaller. As a result, the power generation device 1d can achieve a further lower flow velocity than the generation limit flow velocity of the fluid excitation vibration as compared with the power generation device 1a of the first embodiment.
  • the thickness t2 of the structure 11e in the direction along the thickness direction of the support portion 11 is preferably the same as the thickness t1 of the support portion 11.
  • the power generation device 1d can increase the rigidity of the structure 11e as compared with the case where the thickness t2 of the structure 11e is the same as the thickness of the cantilever part 12, and the structure when the cantilever part 12 vibrates. It becomes possible to suppress the deformation
  • the power generation device 1e of the first modification is formed so that the piezoelectric conversion unit 14 covers the first surface 121 of the cantilever unit 12 in a planar shape. Covering in a planar manner means covering substantially the entire first surface 121 of the cantilever portion 12, but is not limited to covering the entire surface of the first surface 121, and as shown in FIG. It is also possible to cover the entire area slightly narrower than the entire surface.
  • the piezoelectric conversion unit 14 is arranged in the vicinity of the side edge of the cantilever unit 12 so as to be separated from the side edge of the cantilever unit 12 by a specified distance.
  • the method for manufacturing the power generation device 1e according to the first modification is basically the same as the method for manufacturing the power generation device 1a of the first embodiment, and the photomask and the like for patterning the piezoelectric conversion unit 14 are different.
  • the specified distance may be set so that the piezoelectric conversion portion 14 is not etched when the first groove and the second groove are formed in the method for manufacturing the power generation device 1a of the first embodiment.
  • the power generating device 1f of the present embodiment is different from the power generating device 1d of the second embodiment in the configuration of the cantilever portion 12 and the like.
  • symbol is attached
  • the cantilever part 12 of the power generation device 1f includes a weight part 23 on the free end 12b side. Further, the cantilever portion 12 of the power generation device 1f is deformed and distorted in the length direction of the cantilever portion 12 when the portion of the cantilever portion 12 on the fixed end 12a side of the weight portion 23 is deformed when the cantilever portion 12 vibrates.
  • the generated strain generating portion 12c is configured.
  • the second flow path 15b is formed in the weight part 23, and the piezoelectric conversion part 14 is provided in the strain generating part 12c.
  • the power generation device 1 f can increase the inertial force when the cantilever portion 12 vibrates compared to the case where the weight portion 23 is not provided, and the amplitude of the cantilever portion 12. Can be increased.
  • the power generation device 1 f includes the weight portion 23 in the cantilever portion 12, when the cantilever portion 12 vibrates, it is possible to intensively generate strain in the strain generating portion 12 c and the piezoelectric conversion portion 14. Thus, it is possible to improve the power generation efficiency.
  • the power generation device 1 f can reduce the resonance frequency of the cantilever portion 12 because the cantilever portion 12 includes the weight portion 23.
  • the power generation device 1 f has the second flow path 15 b formed in the weight portion 23, it is possible to further reduce the flow limit for generating the fluid excitation vibration.
  • the power generator 1g of the first modification is different only in that the structure 11e of the power generator 1f of the present embodiment is not provided.
  • the power generation device 1g of the first modification is different only in that the weight portion 23 is provided on the cantilever portion 12 in the power generation device 1a of the first embodiment.
  • the power generation device 1g according to the first modification can further improve the power generation efficiency and further reduce the flow velocity at which the fluid excitation vibration is generated, compared to the power generation device 1a of the first embodiment. .
  • the power generator 1h of the second modification is different from the power generator 1f of the third embodiment in that the second flow path 15b is also formed in the strain generating portion 12c of the cantilever portion 12. For this reason, in the power generation device 1h of the second modification, the piezoelectric conversion unit 14 is divided into two piezoelectric conversion elements 140.
  • the piezoelectric conversion element 140 includes a first electrode 14a, a piezoelectric layer 14b, and a second electrode 14c, like the piezoelectric conversion unit 14.
  • the two piezoelectric conversion elements 140 are connected in series by a third wiring (not shown) provided on the first surface 111 side of the support unit 11.
  • the power generation device 1h can increase the output voltage.
  • the power generation device 1h includes a pad electrode (third pad electrode) electrically connected to one end of the series circuit of the two piezoelectric conversion elements 140 on the first surface 111 side of the support portion 11, and the other end. What is necessary is just to provide it with the pad electrode (4th pad electrode) electrically connected.
  • the power generation device 1h supports the structure 11e corresponding to each of the second flow path 15b provided in the weight portion 23 and the second flow path 15b provided in the strain generating portion 12c of the cantilever portion 12. 11 is integrally provided. As a result, the power generation device 1h can further reduce the flow velocity of the generation limit flow velocity of the fluid excitation vibration.
  • the power generator 1i of the third modification has a longer overall length of the second flow path 15b in the length direction of the cantilever part 12 than the power generator 1h of the second modification, and the strain generating part 12c and the weight part 23 are The point where one second flow path 15b is formed across the power generation apparatus 1h of the second modification is different.
  • the power generation device 1i can further reduce the critical flow velocity of the fluid excitation vibration, similarly to the power generation device 1h of the second modification.
  • the piezoelectric conversion unit 14 is divided into eight piezoelectric conversion elements 140.
  • the piezoelectric conversion elements are provided on both sides in the width direction of the cantilever part 12. The point where four 140 are arranged is different from the power generator 1h of the second modification.
  • the piezoelectric conversion unit 14 of the power generation device 1j for example, it is preferable that all of the eight piezoelectric conversion elements 140 are connected in series. As a result, the power generation device 1j can increase the output voltage.
  • the power generator 1j includes a first series circuit in which four piezoelectric conversion elements 140 arranged on one side of the second flow path 15b in the width direction of the cantilever portion 12 are connected in series, and the other side of the second flow path 15b.
  • a second series circuit in which the four piezoelectric transducer elements 140 arranged in the series are connected in series may be connected in parallel.
  • the power generation device 1j does not limit the number of piezoelectric conversion elements 140.
  • the piezoelectric conversion unit 14 includes a plurality of piezoelectric conversion elements 140, and at least two of the plurality of piezoelectric conversion elements 140 are electrically connected in series. It only has to be. As a result, the power generation device 1j can increase the output voltage.
  • a configuration in which the piezoelectric conversion unit 14 includes a plurality of piezoelectric conversion elements 140 and at least two of the plurality of piezoelectric conversion elements 140 are electrically connected in series may be employed in the first and second embodiments.
  • each component may be separately formed and assembled.
  • the configuration manufactured using the MEMS manufacturing technology it is possible to reduce the size as compared with a configuration in which each component is formed and assembled separately.
  • Embodiments 1 to 3 and the like The configuration of the present invention has been described based on Embodiments 1 to 3 and the like. However, the present invention is not limited to the configurations of Embodiments 1 to 3 and the like, for example, partial configurations of Embodiments 1 to 3 and the like. These may be combined as appropriate.
  • the materials, numerical values, and the like described in the first to third embodiments are merely preferable examples, and are not intended to be limiting.
  • the present invention can be appropriately modified in configuration without departing from the scope of its technical idea.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

発電装置(1a)は、枠状の支持部(11)と、支持部の内側に配置され一端が支持部に固定された固定端(12a)であり他端が自由端(12b)であるカンチレバー部(12)と、カンチレバー部に設けられカンチレバー部の振動に応じて交流電圧を発生する圧電変換部(14)と、支持部とカンチレバー部との間に形成される隙間により構成される第1流路(15a)と、を備えている。カンチレバー部は、自由端が支持部の内側面(11b)により囲まれた空間(19)の外に位置するように反っており、カンチレバー部には、カンチレバー部の厚み方向に貫通した第2流路(15b)を形成してある。

Description

発電装置
 本発明は、発電装置に関し、より詳細には、流体励起振動を利用して発電する発電装置に関する。
 近年、振動エネルギを電気エネルギに変換する発電装置は、環境発電(エナジーハーベスティング)等の分野で注目されている。
 この種の発電装置としては、例えば、図12A、12B及び12Cに示す構成の発電装置201が提案されている(例えば、日本国特許出願公開番号2012-97673(以下、「文献1」という))。
 発電装置201は、ベース211と、圧電素子214が固着されたリード213と、を有する。
 ベース211は、矩形の窓212が形成されたプレート215を有する。窓212のサイズは、図12Aに示すように、窓212に面したリード213よりも一回り大きく、窓212の縁部とリード213との間には、気体Fが通過するわずかな隙間が形成されている。
 リード213は、板厚方向に屈曲振動可能な可撓性を有している。例えば、リード213は、FRP(Fiber Reinforced Plastics)等で形成されたフレキシブルプリント基板であり、圧電素子214の出力端子(不図示)を有する。リード213は、一方の端部231が、プレート215の上面に固定され、他方の端部232が、窓212を自由に出入りできるように窓212に面して位置付けられている。
 また、リード213は、図12Bに示すように、端部232が窓212の外側(気体Fが流れ込んでくる側)に位置するように、プレート215の上面に対してわずかに傾斜している(上がっている)。ここで、振動していない状態におけるリード213の端部232から窓212(プレート215の上面)までの距離tは、利用する風の強さに応じて設定されている。文献1には、例えば、風力が弱いときでもリード213を振動させるために、距離tをリード213の端部232の板厚程度にしてもよく、あるいは、風力が強いときに大きなエネルギを取り出すために、距離tを大きくしてもよい旨が記載されている。
 圧電素子214は、バイモルフ圧電素子であり、図12A、12Cに示すように、リード213の表裏両面に固着されている。文献1には、圧電素子214が、リード213の表面及び裏面の一方に固着されたユニモルフ圧電素子でもよい旨が記載されている。
 また、振動エネルギを電気エネルギに変換する発電装置としては、例えば、図13A、13Bに示す構成の発電デバイス300も提案されている(例えば、日本国特許出願公開番号2011-91318)。
 発電デバイス300は、フレーム部(支持部)321及びカンチレバー部322を有するカンチレバー形成基板320と、カンチレバー部322の振動に応じて交流電圧を発生する圧電変換部324と、を備えている。圧電変換部324は、カンチレバー形成基板320の一表面側においてカンチレバー部322に形成されている。また、カンチレバー形成基板320は、カンチレバー部322の先端部に、錘部323が一体に設けられている。
 フレーム部321とカンチレバー部322と錘部323とは、素子形成基板420を用いて形成されている。素子形成基板420としては、単結晶シリコン基板からなる支持基板420a上の埋込酸化膜420b上に単結晶のシリコン層420cを有するSOI(Silicon on Insulator)基板が用いられている。
 圧電変換部324は、下部電極324aと、圧電層324bと、上部電極324cと、で構成されている。
 上述の発電装置201では、発電効率が十分ではなく、更なる改良が求められている。
 本願発明者らは、発電デバイス300を流体により発電させることを考えた。すなわち、本願発明者らは、発電デバイスを流れ場に配置し、流れ場を流れる流体を利用して発電デバイス300を発電させることを検討した。
 しかしながら、発電デバイス300では、流体を利用して発電させることが難しかった。
 本発明の目的は、流体励起振動の発生限界流速の低流速化を図ることが可能で、且つ、発電効率の向上を図ることが可能な、発電装置を提供することにある。
 本発明の発電装置は、枠状の支持部と、前記支持部の内側に配置され一端が前記支持部に固定された固定端であり他端が自由端であるカンチレバー部と、前記カンチレバー部に設けられ前記カンチレバー部の振動に応じて交流電圧を発生する圧電変換部と、前記支持部と前記カンチレバー部との間に形成される隙間により構成される第1流路と、を備える。前記カンチレバー部は、前記自由端が前記支持部の内側面により囲まれた空間の外に位置するように反っている。前記カンチレバー部には、前記カンチレバー部の厚み方向に貫通した第2流路を形成してある。
 この発電装置において、第2流路は、前記カンチレバー部における前記支持部の前記内側面側が開放された形状に形成されており、前記支持部は、前記カンチレバー部の前記自由端が前記空間に入ったときに前記第2流路の断面積を小さくするように前記空間内に配置された構造体が、一体に設けられていることが好ましい。
 この発電装置において、前記支持部の厚み方向に沿った方向における前記構造体の厚みが、前記支持部の厚みと同じであることが好ましい。
 この発電装置において、前記第2流路は、前記カンチレバー部の一部を前記カンチレバー部の幅方向で複数に分割するように形成されていることが好ましい。
 この発電装置において、前記カンチレバー部は、前記自由端側に錘部を備え、前記カンチレバー部の長さ方向において前記錘部よりも前記固定端側の部位が、前記カンチレバー部が振動するときに変形して歪を発生する起歪部を構成しており、前記錘部に、前記第2流路を形成してあり、前記圧電変換部は、前記起歪部に設けられていることが好ましい。
 この発電装置において、前記カンチレバー部は、前記起歪部にも前記第2流路を形成してあることが好ましい。
 この発電装置において、前記圧電変換部は、複数の圧電変換エレメントを備え、前記複数の圧電変換エレメントの少なくとも2つが電気的に直列接続されていることが好ましい。
 本発明の発電装置においては、流体励起振動の発生限界流速の低流速化を図ることが可能で、且つ、発電効率の向上を図ることが可能となる。
図1Aは、実施形態1の発電装置の概略平面図である。図1Bは、図1AのX-X概略断面図である。 図2は、実施形態1の発電装置の第1変形例の概略断面図である。 図3は、実施形態1の発電装置の第2変形例の概略平面図である。 図4Aは、実施形態2の発電装置の概略平面図である。図4Bは、図4AのX-X概略断面図である。 図5は、実施形態2の発電装置の概略斜視図である。 図6は、実施形態2の発電装置の第1変形例の概略平面図である。 図7Aは、実施形態3の発電装置の概略平面図である。図7Bは、図7AのX1-X1概略断面図である。図7Cは、図7AのX2-X2概略断面図である。 図8は、実施形態3の発電装置の第1変形例の概略平面図である。 図9は、実施形態3の発電装置の第2変形例の概略平面図である。 図10は、実施形態3の発電装置の第3変形例の概略平面図である。 図11は、実施形態3の発電装置の第4変形例の概略平面図である。 図12Aは、従来例の発電装置の概略平面図である。図12Bは、図12AのX-X断面図である。図12Cは、図12AのY-Y断面図である。 図13Aは、従来例の発電デバイスの概略平面図である。図13Bは、図13AのX-X概略断面図である。
 (実施形態1)
 以下では、本実施形態の発電装置1aについて図1A、1Bに基づいて説明する。
 発電装置1aは、枠状の支持部11と、支持部11の内側に配置され一端が支持部11に固定された固定端12aであり他端が自由端12bであるカンチレバー部12と、カンチレバー部12に設けられカンチレバー部12の振動に応じて交流電圧を発生する圧電変換部14と、支持部11とカンチレバー部12との間に形成される隙間により構成される第1流路15aと、を備えている。カンチレバー部12は、自由端12bが支持部11の内側面11bにより囲まれた空間19の外に位置するように反っている。カンチレバー部12には、カンチレバー部12の厚み方向に貫通した第2流路15bを形成してある。これにより、発電装置1aは、流体励起振動の発生限界流速の低流速化を図ることが可能で、且つ、発電効率の向上を図ることが可能となる。
 流体励起振動は、発電装置1aを流れ場に配置した状態等において、流れ場を流れる流体が第1流路15aを通過することによって発生するカンチレバー部12の振動である。この流体励起振動は、自励振動である。流体としては、例えば、空気、ガス、空気とガスとの混合気体、液体等が挙げられる。流体が気体の場合、流れ場としては、例えば、空調機の給気ダクトの内部や、空調機の排気ダクトの内部等が挙げられるが、これら以外でもよい。
 流体励起振動の発生限界流速とは、カンチレバー部12の自励振動が発生しうる流速の下限値を意味する。
 ところで、本願発明者らは、発電装置1aと基本構成が同じで第2流路15bを設けていない参考形態の発電装置に関する次の(1)~(3)に着目して本願発明を想到するに至った。
 (1)流体を受けて自励振動するカンチレバー部12の発生限界流速は、カンチレバー部12の単位長さ当たりの質量の平方根に比例する。
 (2)発電装置は、支持部11とカンチレバー部12との間に設けられた第1流路15aを流体が通過するときに発生するカンチレバー部12の第1面121側と第2面122側との圧力差と、カンチレバー部12の弾性と、に起因して自励振動が起こる。したがって、発電装置は、カンチレバー部12の面積に対して第1流路15aの断面積を大きくしたほうが、カンチレバー部12の自由端12bの振幅を増大させることができる。
 (3)発電装置では、圧電変換部14の面積を大きくしたほうが、発電量を大きくすることができる。
 (1)、(2)と(3)とは、相反する。
 これに対して、本実施形態の発電装置1aは、支持部11とカンチレバー部12との間に形成される隙間により構成される第1流路15aを備え、カンチレバー部12が、その自由端12bが支持部11の内側面11bにより囲まれた空間19の外に位置するように反っている。更に、発電装置1aは、カンチレバー部12に、カンチレバー部12の厚み方向に貫通した第2流路15bを形成してある。よって、発電装置1aは、流体励起振動の発生限界流速の低流速化を図ることが可能で、且つ、発電効率の向上を図ることが可能となる。
 発電装置1aの各構成要素については、以下に詳細に説明する。
 発電装置1aは、MEMS(micro electro mechanical systems)の製造技術を利用して製造されている。
 発電装置1aは、支持部11とカンチレバー部12とが、基板10から形成されている。発電装置1aは、基板10の厚み方向の第1面101側にカンチレバー部12が形成されている。
 基板10としては、シリコン基板10a上のシリコン酸化膜(埋込酸化膜)10b上にシリコン層10cが形成されたSOI基板を用いている。基板10の第1面101は、(100)面としてあるが、これに限らず、例えば、(110)面でもよい。
 支持部11は、SOI基板のうちシリコン基板10aとシリコン酸化膜10bとシリコン層10cとから形成されている。これに対して、カンチレバー部12は、SOI基板のうちシリコン層10cから形成されている。これにより、発電装置1aにおけるカンチレバー部12は、支持部11に比べて薄肉であり、可撓性を有している。カンチレバー部12は、弾性を有している。要するに、カンチレバー部12は、支持部11に揺動自在に支持されている。
 発電装置1aは、基板10と圧電変換部14とが、基板10の第1面101側に形成された第1絶縁膜18aによって、電気的に絶縁されている。第1絶縁膜18aは、例えば、シリコン酸化膜により構成することができる。発電装置1aは、基板10の厚み方向の第2面102側に、シリコン酸化膜からなる第2絶縁膜(図示せず)を備えていてもよい。第1絶縁膜18a及び第2絶縁膜は、例えば、熱酸化法により形成することができる。第1絶縁膜18a及び第2絶縁膜の形成方法は、熱酸化法に限らず、例えば、CVD(Chemical Vapor Deposition)法等でもよい。
 基板10は、SOI基板に限らず、単結晶のシリコン基板や多結晶のシリコン基板、酸化マグネシウム(MgO)基板、金属基板、ガラス基板、ポリマー基板等を用いることも可能である。発電装置1aは、基板10として、MgO基板やガラス基板やポリマー基板等の絶縁性基板を用いる場合、第1絶縁膜18a及び第2絶縁膜を必ずしも設ける必要はない。
 支持部11は、枠状の形状として、矩形枠状の形状を採用することが好ましい。つまり、支持部11は、外周形状が矩形状であるのが好ましい。これにより、発電装置1aは、製造時に、基板10の基礎となるウェハを準備し、このウェハから多数の発電装置1aを形成する前工程を行い、後工程において個々の発電装置1aに分離するような製造方法を採用する場合に、ダイシング工程の作業性を向上させることが可能となる。基板10がSOI基板の場合、基板10の基礎となるウェハは、SOIウェハである。
 また、支持部11は、外周形状が矩形状であることが好ましいが、内周形状については矩形状に限らず、例えば、矩形状以外の多角形状や円形状、楕円形状等の形状でもよい。また、支持部11の外周形状は矩形状以外の形状でもよい。
 発電装置1aは、カンチレバー部12が、平面視において支持部11の内側に配置されている。発電装置1aは、基板10に、カンチレバー部12を囲む平面視U字状のスリット10dを形成することによって、カンチレバー部12における支持部11との連結部位である固定端12a以外の部分が、支持部11と分離されている。これにより、カンチレバー部12は、支持部11に片持ち支持されている。発電装置1aは、スリット10dが、第1流路15aを構成している。
 圧電変換部14は、カンチレバー部12の厚み方向の第1面121側(基板10の第1面101側)に設けられている。圧電変換部14は、カンチレバー部12の第1面121側に設けられた第1電極(下部電極)14aと、第1電極14a上に設けられた圧電体層14bと、圧電体層14b上に設けられた第2電極(上部電極)14cと、を備えている。要するに、圧電変換部14は、圧電体層14bと、圧電体層14bを厚み方向の両側から挟んで互いに対向する第1電極14a及び第2電極14cと、を備えている。
 発電装置1aは、カンチレバー部12の振動によって圧電変換部14の圧電体層14bが応力を受け第2電極14cと第1電極14aとに電荷の偏りが発生し、圧電変換部14において交流電圧が発生する。要するに、発電装置1aは、圧電変換部14が圧電材料の圧電効果を利用して発電する振動型の発電装置である。
 圧電体層14bの平面形状は、矩形状に形成されている。圧電変換部14は、圧電体層14bの外形サイズが、第1電極14aの外形サイズよりもやや小さく、且つ、第2電極14cの外形サイズよりもやや大きい、のが好ましい。以下では、カンチレバー部12の厚み方向において第1電極14aと圧電体層14bと第2電極14cとが重なっている領域を、圧電変換領域141と称する。圧電変換部14は、圧電変換領域141が、交流電圧の発生に寄与する。発電装置1aは、カンチレバー部12の長さ方向において、圧電変換領域141の固定端12a側の端141aを、カンチレバー部12と支持部11との境界に揃えてある。これにより、発電装置1aは、カンチレバー部12の長さ方向において、圧電変換領域141の固定端12a側の端141aが上記境界よりもカンチレバー部12側にある場合に比べて、カンチレバー部12上に存在する圧電変換領域141の面積を大きくできる。これにより、発電装置1aは、発電効率を向上させることが可能となる。また、発電装置1aは、圧電変換領域141の固定端12a側の端141aが上記境界よりも支持部11側にある場合に比べて、圧電変換領域141のうち発電に寄与せず寄生容量となってしまう部分を低減でき、発電効率を向上させることが可能となる。カンチレバー部12の長さ方向は、カンチレバー部12の軸線に沿った方向である。
 圧電変換部14で発生する交流電圧は、圧電体層14bの振動に応じた正弦波状の交流電圧となる。ここで、発電装置1aの圧電変換部14は、第1流路15a及び第2流路15bを流体が流れることによって発生する自励振動を利用して発電することを想定している。発電装置1aの共振周波数は、カンチレバー部12と圧電変換部14とからなる可動部の構造パラメータ及び材料により決まる。
 発電装置1aは、支持部11の厚み方向の第1面111側に、第1パッド電極(図示せず)と、第2パッド電極(図示せず)と、が設けられている。支持部11の第1面111は、カンチレバー部12の固定端12a付近において、カンチレバー部12の第1面121と滑らかに連続している。発電装置1aは、上記第2絶縁膜を備えていない場合、支持部11の厚み方向の第2面112と、基板10の第2面102とが同じである。発電装置1aは、基板10の第2面102側に上記第2絶縁膜を備えている場合、上記第2絶縁膜の表面が支持部11の第2面112となる。
 第1パッド電極は、第1配線(図示せず)を介して第1電極14aと電気的に接続されている。第2パッド電極は、第2配線(図示せず)を介して第2電極14cと電気的に接続されている。第1配線、第2配線、第1パッド電極及び第2パッド電極の材料としては、Auを採用しているが、これに限らず、例えば、Mo、Al、Pt、Ir等でもよい。また、第1配線、第2配線、第1パッド電極及び第2パッド電極の材料は、同じ材料に限らず、別々の材料を採用してもよい。また、第1配線、第2配線、第1パッド電極及び第2パッド電極は、単層構造に限らず、2層以上の多層構造でもよい。
 また、発電装置1aは、第2配線と第1電極14aの周部との間に、第2配線と第1電極14aとの短絡を防止する絶縁層(図示せず)を設けてある。この絶縁層は、シリコン酸化膜により構成してあるが、シリコン酸化膜に限らず、例えば、シリコン窒化膜により構成してもよい。
 圧電体層14bの圧電材料としては、PZT(Pb(Zr,Ti)O3)を採用しているが、これに限らず、例えば、PZT-PMN(Pb(Mn,Nb)O3)や、不純物を添加したPZTでもよい。また、圧電材料は、AlN、ZnO、KNN(K0.5Na0.5NbO3)や、KN(KNbO3)、NN(NaNbO3)、KNNに不純物を添加した材料等でもよい。不純物としては、例えば、Li、Nb、Ta、Sb、Cu等が挙げられる。なお、発電装置1aは、圧電体層14bが、圧電薄膜により構成されている。
 第1電極14aの材料としては、Ptを採用しているが、これに限らず、例えば、Au、Al、Ir等でもよい。また、第2電極14cの材料としては、Auを採用しているが、これに限らず、例えば、Mo、Al、Pt、Ir等でもよい。
 発電装置1aは、第1電極14aの厚みを500nm、圧電体層14bの厚みを3000nm、第2電極14cの厚みを500nmに設定してあるが、これらの数値は一例であって特に限定するものではない。
 発電装置1aは、基板10と第1電極14aとの間に緩衝層を設けた構造でもよい。緩衝層の材料は、圧電体層14bの圧電材料に応じて適宜選択すればよい。緩衝層の材料は、圧電体層14bの圧電材料がPZTの場合、例えば、SrRuO3、(Pb,La)TiO3、PbTiO3、MgO、LaNiO3等を採用することが好ましい。また、緩衝層は、例えば、Pt膜とSrRuO3膜との積層膜により構成してもよい。発電装置1aは、緩衝層を設けることにより、圧電体層14bの結晶性を向上させることが可能となり、発電効率を向上させることが可能となる。
 カンチレバー部12には、カンチレバー部12の厚み方向に貫通した第2流路15bを形成してある。第2流路15bは、カンチレバー部12における支持部11の内側面11b側が開放された形状に形成されている。第2流路15bは、カンチレバー部12の長さ方向において、カンチレバー部12における圧電変換部14の垂直投影領域よりも自由端12b側に形成されている。第2流路15bは、カンチレバー部12の一部をカンチレバー部12の幅方向(図1Aの上下方向)で2つに分割するように形成されていることが好ましい。
 発電装置1aでは、カンチレバー部12の共振周波数がカンチレバー部12の長さで規定されるため、第2流路15bが、カンチレバー部12の一部をカンチレバー部12の幅方向で2つに分割するように形成されていることで、カンチレバー部12の振動が安定し、発電効率の向上を図ることが可能となる。ここで、発電装置1aは、カンチレバー部12のうちカンチレバー部12の幅方向において第2流路15bの一方側にある部位の幅寸法H1と他方側にある部位の幅寸法H2とが等しいのが好ましい。このため、第2流路15bは、カンチレバー部12の第1面121における流体の流入口151及びカンチレバー部12の第2面122における流体の流出口152が、カンチレバー部12の長さ方向に沿って形成されているのが好ましい。発電装置1aでは、第2流路15bが、カンチレバー部12の一部をカンチレバー部12の幅方向で2つに分割するように形成されているが、これに限らず、第2流路15bが、カンチレバー部12の一部をカンチレバー部12の幅方向で3つ以上の複数に分割するように形成されていてもよい。例えば、発電装置1aでは、カンチレバー部12の一部をカンチレバー部12の幅方向で3つに分割するように2つの第2流路15bが形成されていてもよい。発電装置1aは、カンチレバー部12の一部をカンチレバー部12の幅方向で分割する数が多いほうが、第2流路15bが多くなり、カンチレバー部12の振動がより安定し、発電効率の更なる向上を図ることが可能となる。
 発電装置1aに製造方法については、その一例について以下に簡単に説明する。
 発電装置1aの製造にあたっては、まず、SOI基板からなる基板10を準備し、その後、絶縁膜形成工程を行う。絶縁膜形成工程では、熱酸化法等を利用して、基板10の第1面101側、第2面102側にそれぞれ、シリコン酸化膜からなる第1絶縁膜18a、第2絶縁膜を形成する。絶縁膜形成工程では、第1絶縁膜18a、第2絶縁膜を形成する方法として熱酸化法を採用しているが、これに限らず、CVD法等を採用してもよい。
 絶縁膜形成工程の後には、基板10の第1面101側の全面に、第1電極14a及び第1配線の基礎となる第1導電層を形成する第1導電層形成工程を行い、続いて、圧電体層14bの基礎となる圧電材料層を形成する圧電材料層形成工程を行う。第1導電層を形成する方法としては、スパッタ法を採用しているが、これに限らず、例えば、CVD法や蒸着法等を採用してもよい。圧電材料層を形成する方法としては、スパッタ法を採用しているが、これに限らず、例えば、CVD法やゾルゲル法等を採用してもよい。
 圧電材料層形成工程の後には、圧電材料層を圧電体層14bの所定の形状にパターニングする第1パターニング工程を行い、続いて、第1導電層を第1電極14a及び第1配線の所定の形状にパターニングする第2パターニング工程を行う。第1パターニング工程では、リソグラフィ技術及びエッチング技術を利用して圧電材料層をパターニングする。また、第2パターニング工程では、リソグラフィ技術及びエッチング技術を利用して第1導電層をパターニングする。
 第2パターニング工程の後には、基板10の第1面101側に上記絶縁層を形成する絶縁層形成工程を行う。絶縁層形成工程の後には、第2電極14c及び第2配線の基礎となる第2導電層を基板10の第1面101側の全面に形成する第2導電層形成工程を行ってから、第2導電層を第2電極14c及び第2配線の所定の形状にパターニングする第3パターニング工程を行う。第2導電層を形成する方法としては、スパッタ法を採用しているが、これに限らず、例えば、CVD法や蒸着法等を採用してもよい。また、第3パターニング工程では、リソグラフィ技術及びエッチング技術を利用して第2導電層をパターニングする。
 第3パターニング工程の後には、第1パッド電極及び第2パッド電極の基礎となる第3導電層を、基板10の第1面101側の全面に形成する第3導電層形成工程を行う。第3導電層形成工程の後には、第3導電層を、第1パッド電極及び第2パッド電極の所定の形状にパターニングする第4パターニング工程を行う。第4パターニング工程の後には、基板10の第1面101側から、支持部11、カンチレバー部12以外の部位(スリット10dの形成予定領域、第2流路15bの形成予定領域)を第1所定深さまでエッチングすることで第1溝を形成する第1溝形成工程を行う。第1所定深さは、カンチレバー部12の厚みに対応する深さである。第1溝形成工程では、リソグラフィ技術及びエッチング技術等を利用して第1溝を形成する。第1溝形成工程では、シリコン酸化膜10bをエッチングストッパ層として利用する。第1溝形成工程の後には、基板10の第2面102側から支持部11以外の部位を第2所定深さまでエッチングすることで第2溝を形成する第2溝形成工程を行う。第2溝形成工程では、リソグラフィ技術及びエッチング技術等を利用して第2溝を形成する。第2溝形成工程では、シリコン酸化膜10bをエッチングストッパ層として利用する。第2溝形成工程の後には、シリコン酸化膜10bのうち支持部11以外に対応する部分をエッチングすることで支持部11と併せてカンチレバー部12を形成するカンチレバー部形成工程を行うことによって、発電装置1aを得る。また、上述のカンチレバー部形成工程では、リソグラフィ技術及びエッチング技術等を利用して、支持部11と併せてカンチレバー部12を形成する。第1溝形成工程、第2溝形成工程及びカンチレバー部形成工程での各エッチングは、垂直深堀が可能な誘導結合プラズマ型のドライエッチング装置を用いたドライエッチングである。なお、カンチレバー形成工程において、第1流路15a及び第2流路15bが形成される。発電装置1aの製造方法では、カンチレバー部12を形成したときに、例えば圧電体層14bの内部応力である圧縮応力によって、カンチレバー部12を反らせることができる。
 発電装置1aの製造にあたっては、カンチレバー部形成工程が終了するまでをウェハレベルで行ってから、ダイシング工程を行うことで個々の発電装置1aに分割するようにしている。
 発電装置1aの製造方法では、第3導電層形成工程と第4パターニング工程とを順次行う代わりに、リフトオフ法を利用して第1パッド電極及び第2パッド電極を形成してもよい。また、発電装置1aの製造方法では、第3導電層形成工程と第4パターニング工程とを順次行う代わりに、メタルマスク等を利用して蒸着法等により第1パッド電極及び第2パッド電極を形成してもよい。
 ところで、上述のように、発電装置1aにおけるカンチレバー部12は、自由端12bが支持部11の内側面11bにより囲まれた空間19の外に位置するように反っている。要するに、カンチレバー部12は、外部振動や流体等が作用していない初期状態において、図1Bのように、カンチレバー部12の自由端12bが、支持部11の第1面111側において空間19の外に位置するように反っている。ここで、カンチレバー部12は、第1面121側が凹曲面となり且つ第2面122側が凸曲面となるように、湾曲している。本実施形態の発電装置1aでは、圧電体層14bを構成する圧電薄膜の内部応力によって、カンチレバー部12の自由端12bが支持部11の内側面11bにより囲まれた空間19の外に位置するようにカンチレバー部12を反らせてある。圧電薄膜の内部応力は、例えば、圧電薄膜をスパッタ法やCVD法により成膜する場合、ガス圧や、温度等のプロセス条件を適宜設定することによって調整することができる。
 本実施形態の発電装置1aの動作については、以下の推定メカニズムにより説明する。なお、本実施形態の発電装置1aは、仮に推定メカニズムが別であっても、本発明の範囲内である。
 本実施形態の発電装置1aは、流体の流れる方向と支持部11の厚み方向とが一致し、基板10の第1面101側が流体の上流側、基板10の第2面102側が流体の下流側となるように配置して使用するのが好ましい。発電装置1aでは、上流側から発電装置1aに向って流れる流体が第1流路15a及び第2流路15bを通る際に流速が速くなるので、カンチレバー部12の第2面122と支持部11の内側面11bとで囲まれた空間10fの圧力が下がり、カンチレバー部12の自由端12bが空間19に近づく向きへ変位する。そして、発電装置1aでは、カンチレバー部12の第1面121と支持部11の第1面111とが面一になったところで、カンチレバー部12の第1面121側と第2面122側とでの圧力差がなくなる。そして、発電装置1aは、カンチレバー部12の弾性力によってカンチレバー部12の自由端12bが元の位置に戻る向きへ変位するものと推考される。発電装置1aは、このような動作が繰り返されることでカンチレバー部12が自励振動し、圧電変換部14が発電するものと推考される。
 発電装置1aは、上述のように、第1流路15a及び第2流路15bを備え、カンチレバー部12の自由端12bが支持部11の内側面11bにより囲まれた空間19の外に位置するように反っている。これにより、発電装置1aは、第1流路15a及び第2流路15bを通る流体の流れ(気流)によって発生する、カンチレバー部12の第1面121側と第2面122側との圧力差と、カンチレバー部12の弾性と、によって自励振動を発生させることができるので、流体を利用して発電可能となる。
 また、発電装置1aは、カンチレバー部12に、カンチレバー部12の厚み方向に貫通した第2流路15bを形成してある。これにより、発電装置1aは、流体励起振動の発生限界流速の低流速化を図ることが可能となり、且つ、発電効率の向上を図ることが可能となる。
 以下では、本実施形態の発電装置1aの第1変形例の発電装置1bについて図2に基づいて説明する。第1変形例の発電装置1bは、カンチレバー部12の第1面121側に形成された応力制御膜119によって、カンチレバー部12を反らしてある点が実施形態1の発電装置1aと相違する。応力制御膜119の一部は、支持部11の第1面111側にも形成されている。なお、実施形態1の発電装置1aと同様の構成要素については、同様の符号を付して説明を省略する。
 応力制御膜119は、カンチレバー部12の第1面121側において圧電変換部14を覆うように形成してある。応力制御膜119は、シリコン酸化膜により構成してあるが、これに限らず、例えば、シリコン窒化膜等により構成してもよい。なお、応力制御膜119は、カンチレバー部12の第2面122側に形成してもよい。
 第1変形例の発電装置1bは、実施形態1の発電装置1aと同様、流体励起振動の発生限界流速の低流速化を図ることが可能で、且つ、発電効率の向上を図ることが可能となる。
 なお、第1変形例の発電装置1bにおいて、応力制御膜119に起因してカンチレバー部12に作用する応力と圧電薄膜である圧電体層14bの内部応力とによって、カンチレバー部12を反らしてもよい。
 以下では、本実施形態の発電装置1aの第2変形例の発電装置1cについて図3に基づいて説明する。
 第2変形例の発電装置1cは、カンチレバー部12において圧電変換部14が形成されている領域が実施形態1の発電装置1aと相違する。なお、実施形態1の発電装置1aと同様の構成要素については、同様の符号を付して説明を省略する。
 第2変形例の発電装置1cは、圧電変換部14が、カンチレバー部12の第1面121を面状に覆うように形成されている。面状に覆うとは、カンチレバー部12の第1面121の略全面を覆うことを意味するが、第1面121の全面を覆う場合に限らず、図3に示すように、第1面121の全面よりもやや狭い領域の全体を覆う場合でもよい。図3に示した第2変形例では、圧電変換部14が、カンチレバー部12の側縁付近で、カンチレバー部12の側縁から規定距離だけ離れて位置するように配置されている。第2変形例の発電装置1cの製造方法は、実施形態1の発電装置1aの製造方法と基本的に同じであり、圧電変換部14をパターニングする際のフォトマスクが異なるだけである。規定距離は、実施形態1の発電装置1aの製造方法において、第1溝、第2溝をそれぞれ形成する際に、圧電変換部14がエッチングされないように設定すればよい。
 (実施形態2)
 以下では、本実施形態の発電装置1dについて図4A、4B及び5に基づいて説明する。
 本実施形態の発電装置1dは、支持部11の構成が実施形態1の発電装置1aと相違する。なお、実施形態1の発電装置1aと同様の構成要素については、同様の符号を付して説明を省略する。
 発電装置1dの支持部11は、カンチレバー部12の自由端12bが空間19に入ったときに第2流路15bの断面積を小さくするように空間19内に配置された構造体11eが、一体に設けられている。構造体11eの厚み方向(図4Bの上下方向)の第1面11e1は、支持部11の第1面111と同一平面上にあるのが好ましい。
 発電装置1dは、構造体11eを備えていることにより、カンチレバー部12の第1面121と支持部11の第1面111とが面一になったときの第2流路15bの断面積を小さくすることが可能となる。これにより、発電装置1dは、実施形態1の発電装置1aに比べて、流体励起振動の発生限界流速の更なる低流速化を図ることが可能となる。
 発電装置1dは、支持部11の厚み方向に沿った方向における構造体11eの厚みt2が、支持部11の厚みt1と同じであることが好ましい。これにより、発電装置1dは、構造体11eの厚みt2がカンチレバー部12の厚みと同じである場合に比べて、構造体11eの剛性を高めることが可能となり、カンチレバー部12が振動するときに構造体11eが変形するのを抑制することが可能となる。よって、発電装置1dは、カンチレバー部12の振動による振動エネルギが構造体11eの変形に起因して低下したり、カンチレバー部12の振動が不安定になるのを抑制することが可能となる。要するに、発電装置1dは、構造体11eの厚みt2が、支持部11の厚みt1と同じであることにより、カンチレバー部12の振動をより安定させることが可能となる。
 以下では、本実施形態の発電装置1dの第1変形例の発電装置1eについて図6に基づいて説明する。なお、実施形態2の発電装置1dと同様の構成要素については、同様の符号を付して説明を省略する。
 第1変形例の発電装置1eは、圧電変換部14が、カンチレバー部12の第1面121を面状に覆うように形成されている。面状に覆うとは、カンチレバー部12の第1面121の略全面を覆うことを意味するが、第1面121の全面を覆う場合に限らず、図6に示すように、第1面121の全面よりもやや狭い領域の全体を覆う場合でもよい。図6に示した第1変形例では、圧電変換部14が、カンチレバー部12の側縁付近で、カンチレバー部12の側縁から規定距離だけ離れて位置するように配置されている。第1変形例の発電装置1eの製造方法は、実施形態1の発電装置1aの製造方法と基本的に同じであり、圧電変換部14をパターニングする際のフォトマスク等が異なる。規定距離は、実施形態1の発電装置1aの製造方法において、第1溝、第2溝をそれぞれ形成する際に圧電変換部14がエッチングされないように設定すればよい。
 (実施形態3)
 以下では、本実施形態の発電装置1fについて図7A、7B及び7Cに基づいて説明する。
 本実施形態の発電装置1fは、カンチレバー部12の構成等が実施形態2の発電装置1dと相違する。なお、実施形態2の発電装置1dと同様の構成要素については、同様の符号を付して説明を省略する。
 発電装置1fのカンチレバー部12は、自由端12b側に錘部23を備えている。また、発電装置1fのカンチレバー部12は、カンチレバー部12の長さ方向において、カンチレバー部12の錘部23よりも固定端12a側の部位が、カンチレバー部12が振動するときに変形して歪を発生する起歪部12cを構成している。そして、発電装置1fは、錘部23に、第2流路15bを形成してあり、圧電変換部14が、起歪部12cに設けられている。
 発電装置1fは、カンチレバー部12が錘部23を備えていることにより、錘部23を備えていない場合に比べて、カンチレバー部12が振動するときの慣性力を大きくでき、カンチレバー部12の振幅を大きくすることが可能となる。また、発電装置1fは、カンチレバー部12が錘部23を備えていることにより、カンチレバー部12が振動するときに起歪部12c及び圧電変換部14に集中的に歪を発生させることが可能となり、発電効率の向上を図ることが可能となる。また、発電装置1fは、カンチレバー部12が錘部23を備えていることにより、カンチレバー部12の共振周波数を小さくすることが可能となる。また、発電装置1fは、錘部23に、第2流路15bを形成してあることにより、流体励起振動の発生限界流速の更なる低流速化を図ることが可能となる。
 以下では、本実施形態の発電装置1fの第1変形例の発電装置1gについて図8に基づいて説明する。なお、実施形態3の発電装置1fと同様の構成要素については、同様の符号を付して説明を省略する。
 第1変形例の発電装置1gは、本実施形態の発電装置1fの構造体11eを備えていない点が相違するだけである。要するに、第1変形例の発電装置1gは、実施形態1の発電装置1aにおけるカンチレバー部12に錘部23を設けた点が相違するだけである。
 したがって、第1変形例の発電装置1gは、実施形態1の発電装置1aに比べて、発電効率の更なる向上、流体励起振動の発生限界流速の更なる低流速化を図ることが可能となる。
 以下では、本実施形態の発電装置1fの第2変形例の発電装置1hについて図9に基づいて説明する。なお、実施形態3の発電装置1fと同様の構成要素については、同様の符号を付して説明を省略する。
 第2変形例の発電装置1hは、カンチレバー部12の起歪部12cにも第2流路15bを形成してある点が実施形態3の発電装置1fと相違する。このため、第2変形例の発電装置1hは、圧電変換部14を、2つの圧電変換エレメント140に分けてある。圧電変換エレメント140は、圧電変換部14と同様、第1電極14aと、圧電体層14bと、第2電極14cと、を備えている。発電装置1hの圧電変換部14は、2つの圧電変換エレメント140が、支持部11の第1面111側に設けた第3配線(図示せず)により直列接続されているのが好ましい。これにより、発電装置1hは、出力電圧の高電圧化を図ることが可能となる。この場合、発電装置1hは、支持部11の第1面111側に、2つの圧電変換エレメント140の直列回路の一端に電気的に接続されたパッド電極(第3パッド電極)と、他端に電気的に接続されたパッド電極(第4パッド電極)と、を備えるようにすればよい。
 また、第2変形例の発電装置1hは、錘部23に設けた第2流路15b、カンチレバー部12の起歪部12cに設けた第2流路15bそれぞれに対応する構造体11eを支持部11に一体に設けてある。これにより、発電装置1hは、流体励起振動の発生限界流速の更なる低流速化を図ることが可能となる。
 以下では、本実施形態の発電装置1fの第3変形例の発電装置1iについて図10に基づいて説明する。なお、第2変形例の発電装置1hと同様の構成要素については、同様の符号を付して説明を省略する。
 第3変形例の発電装置1iは、第2変形例の発電装置1hに比べて、カンチレバー部12の長さ方向における第2流路15bの全長が長く、起歪部12cと錘部23とに跨って1つの第2流路15bが形成されている点が、第2変形例の発電装置1hと相違する。これにより、発電装置1iは、第2変形例の発電装置1hと同様、流体励起振動の発生限界流速の更なる低流速化を図ることが可能となる。
 以下では、本実施形態の発電装置1fの第4変形例の発電装置1jについて図11に基づいて説明する。なお、第2変形例の発電装置1hと同様の構成要素については、同様の符号を付して説明を省略する。
 第4変形例の発電装置1jは、圧電変換部14を、8つの圧電変換エレメント140に分けてあり、カンチレバー部12の第1面121上において、カンチレバー部12の幅方向の両側に圧電変換エレメント140を4つずつ配置してある点が、第2変形例の発電装置1hと相違する。
 発電装置1jの圧電変換部14は、例えば、8つの圧電変換エレメント140の全部が、直列接続されているのが好ましい。これにより、発電装置1jは、出力電圧の高電圧化を図ることが可能となる。また、発電装置1jは、カンチレバー部12の幅方向において第2流路15bの一方側に配置された4つの圧電変換エレメント140を直列接続した第1直列回路と、第2流路15bの他方側に配置された4つの圧電変換エレメント140を直列接続した第2直列回路と、を並列接続するようにしてもよい。
 発電装置1jは、圧電変換エレメント140の数を限定するものではなく、圧電変換部14が、複数の圧電変換エレメント140を備え、当該複数の圧電変換エレメント140の少なくとも2つが電気的に直列接続されていればよい。これにより、発電装置1jは、出力電圧の高電圧化を図ることが可能となる。
 なお、圧電変換部14が複数の圧電変換エレメント140を備え、当該複数の圧電変換エレメント140の少なくとも2つが電気的に直列接続された構成は、実施形態1、2等において採用してもよい。
 実施形態1~3等では、MEMSの製造技術を利用して製造される構成について説明したが、これに限らず、例えば、各構成要素を別々に形成して組み立てたものでもよい。MEMSの製造技術を利用して製造される構成では、各構成要素を別々に形成して組み立てた構成に比べて、小型化を図ることが可能となる。
 以上、本発明の構成を、実施形態1~3等に基いて説明したが、本発明は、実施形態1~3等の構成に限らず、例えば、実施形態1~3等の部分的な構成を、適宜組み合わせてある構成であってもよい。また、実施形態1~3等に記載した材料、数値等は、好ましいものを例示しているだけであり、それに限定する主旨ではない。更に、本発明は、その技術的思想の範囲を逸脱しない範囲で、構成に適宜変更を加えることが可能である。

Claims (7)

  1.  枠状の支持部と、前記支持部の内側に配置され一端が前記支持部に固定された固定端であり他端が自由端であるカンチレバー部と、前記カンチレバー部に設けられ前記カンチレバー部の振動に応じて交流電圧を発生する圧電変換部と、前記支持部と前記カンチレバー部との間に形成される隙間により構成される第1流路と、を備え、
     前記カンチレバー部は、前記自由端が前記支持部の内側面により囲まれた空間の外に位置するように反っており、前記カンチレバー部には、前記カンチレバー部の厚み方向に貫通した第2流路を形成してある、
     ことを特徴とする発電装置。
  2.  第2流路は、前記カンチレバー部における前記支持部の前記内側面側が開放された形状に形成されており、
     前記支持部は、前記カンチレバー部の前記自由端が前記空間に入ったときに前記第2流路の断面積を小さくするように前記空間内に配置された構造体が、一体に設けられている、
     ことを特徴とする請求項1記載の発電装置。
  3.  前記支持部の厚み方向に沿った方向における前記構造体の厚みが、前記支持部の厚みと同じである、
     ことを特徴とする請求項2記載の発電装置。
  4.  前記第2流路は、前記カンチレバー部の一部を前記カンチレバー部の幅方向で複数に分割するように形成されている、
     ことを特徴とする請求項1乃至3のいずれか1項に記載の発電装置。
  5.  前記カンチレバー部は、前記自由端側に錘部を備え、前記カンチレバー部の長さ方向において前記錘部よりも前記固定端側の部位が、前記カンチレバー部が振動するときに変形して歪を発生する起歪部を構成しており、前記錘部に、前記第2流路を形成してあり、
     前記圧電変換部は、前記起歪部に設けられている、
     ことを特徴とする請求項1乃至4のいずれか1項に記載の発電装置。
  6.  前記カンチレバー部は、前記起歪部にも前記第2流路を形成してある、
     ことを特徴とする請求項5記載の発電装置。
  7.  前記圧電変換部は、複数の圧電変換エレメントを備え、前記複数の圧電変換エレメントの少なくとも2つが電気的に直列接続されている、
     ことを特徴とする請求項1乃至6のいずれか1項に記載の発電装置。
PCT/JP2014/002019 2013-05-23 2014-04-09 発電装置 WO2014188649A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-109370 2013-05-23
JP2013109370A JP2014230426A (ja) 2013-05-23 2013-05-23 発電装置

Publications (1)

Publication Number Publication Date
WO2014188649A1 true WO2014188649A1 (ja) 2014-11-27

Family

ID=51933222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002019 WO2014188649A1 (ja) 2013-05-23 2014-04-09 発電装置

Country Status (2)

Country Link
JP (1) JP2014230426A (ja)
WO (1) WO2014188649A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106230314A (zh) * 2016-09-14 2016-12-14 长春工业大学 用于物联网节点供能的转动拨动式压电发电装置
CN106329995A (zh) * 2016-09-14 2017-01-11 长春工业大学 用于物联网节点供能的环隙射流激励的拨动式压电俘能器
CN106329994A (zh) * 2016-09-14 2017-01-11 长春工业大学 环形微孔增流式菱形压电俘能装置
JP2019169612A (ja) * 2018-03-23 2019-10-03 国立大学法人東北大学 圧電体薄膜、圧電素子および圧電発電装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101748222B1 (ko) * 2016-05-02 2017-06-16 연세대학교 산학협력단 바람 에너지 하베스터
WO2019073766A1 (ja) 2017-10-12 2019-04-18 富士フイルム株式会社 発電素子の製造方法、発電素子及び発電装置
CN108111058B (zh) * 2018-01-08 2019-04-16 河海大学 一种改进型压电悬臂梁涡激振动发电装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103996A (ja) * 1993-10-06 1995-04-21 Oki Electric Ind Co Ltd ガスフローセンサ及びその形成方法
JP2004106172A (ja) * 2002-08-05 2004-04-08 Xerox Corp 流体用導管、流体用導管を形成する方法、マイクロアレイシステム、dpnシステム、流体回路、及びマイクロアレイの製造方法
JP2012097673A (ja) * 2010-11-02 2012-05-24 Oiles Corp 発電装置および発電方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103996A (ja) * 1993-10-06 1995-04-21 Oki Electric Ind Co Ltd ガスフローセンサ及びその形成方法
JP2004106172A (ja) * 2002-08-05 2004-04-08 Xerox Corp 流体用導管、流体用導管を形成する方法、マイクロアレイシステム、dpnシステム、流体回路、及びマイクロアレイの製造方法
JP2012097673A (ja) * 2010-11-02 2012-05-24 Oiles Corp 発電装置および発電方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106230314A (zh) * 2016-09-14 2016-12-14 长春工业大学 用于物联网节点供能的转动拨动式压电发电装置
CN106329995A (zh) * 2016-09-14 2017-01-11 长春工业大学 用于物联网节点供能的环隙射流激励的拨动式压电俘能器
CN106329994A (zh) * 2016-09-14 2017-01-11 长春工业大学 环形微孔增流式菱形压电俘能装置
CN106329994B (zh) * 2016-09-14 2018-03-06 长春工业大学 环形微孔增流式菱形压电俘能装置
CN106329995B (zh) * 2016-09-14 2018-03-30 长春工业大学 用于物联网节点供能的环隙射流激励的拨动式压电俘能器
JP2019169612A (ja) * 2018-03-23 2019-10-03 国立大学法人東北大学 圧電体薄膜、圧電素子および圧電発電装置
JP6994247B2 (ja) 2018-03-23 2022-02-04 国立大学法人東北大学 圧電体薄膜、圧電素子および圧電発電装置

Also Published As

Publication number Publication date
JP2014230426A (ja) 2014-12-08

Similar Documents

Publication Publication Date Title
WO2014188649A1 (ja) 発電装置
EP3140869B1 (en) Micromachined ultrasound transducer using multiple piezoelectric materials
US8631711B2 (en) MEMS composite transducer including compliant membrane
JPWO2016175013A1 (ja) 圧電デバイス、圧電トランスおよび圧電デバイスの製造方法
JP5609244B2 (ja) 振動発電デバイス
US20120240672A1 (en) Miniaturized energy generation system
US20130032906A1 (en) Ferroelectric device
US11066294B2 (en) Micro-electro-mechanical actuator device of piezoelectric type and apparatus integrating the micro-electro-mechanical actuator device
JP2016086599A (ja) 発電装置
KR20220130720A (ko) 향상된 성능을 갖는 mems 변환기
TW201436447A (zh) 壓電轉換裝置及使用該壓電轉換裝置的流量感測器
WO2013186965A1 (ja) 発電装置および発電モジュール
JP2015019434A (ja) 発電デバイス
WO2014013638A1 (ja) 発電モジュールおよびそれを用いた空調管理システム
US20130020910A1 (en) Vibration power generation device and method of making the same
TW201405103A (zh) 流量感測器及利用此感測器之空調管理系統
WO2013190744A1 (ja) 振動発電装置
WO2015136864A1 (ja) 発電装置
JP2015220921A (ja) 発電装置
JP2016058534A (ja) 発電装置
WO2014020786A1 (ja) 発電デバイス
Ralib et al. Fabrication techniques and performance of piezoelectric energy harvesters
JP2011125071A (ja) 発電デバイス
JP2015018830A (ja) 発電デバイス
JP2011091977A (ja) 発電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14801014

Country of ref document: EP

Kind code of ref document: A1