WO2014188499A1 - 無線中継装置、無線端末、無線中継方法 - Google Patents

無線中継装置、無線端末、無線中継方法 Download PDF

Info

Publication number
WO2014188499A1
WO2014188499A1 PCT/JP2013/063976 JP2013063976W WO2014188499A1 WO 2014188499 A1 WO2014188499 A1 WO 2014188499A1 JP 2013063976 W JP2013063976 W JP 2013063976W WO 2014188499 A1 WO2014188499 A1 WO 2014188499A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
wireless terminal
access point
wireless
priority
Prior art date
Application number
PCT/JP2013/063976
Other languages
English (en)
French (fr)
Inventor
隆雄 清水
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2013/063976 priority Critical patent/WO2014188499A1/ja
Publication of WO2014188499A1 publication Critical patent/WO2014188499A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/60Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources
    • H04L67/61Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources taking into account QoS or priority requirements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention relates to a wireless relay device, a wireless terminal, and a wireless relay method.
  • the ad hoc configuration is a configuration in which wireless terminals communicate with each other on a one-to-one basis.
  • a distributed control method (DCF: Distributed Coordination Function) is used.
  • the infrastructure configuration is a configuration for performing communication between an AP (Access Point) and a wireless terminal.
  • Inflation configurations include a distributed control method (DCF) and an AP centralized control method (PCF: Point Coordination Function).
  • QoS guarantee there is IEEE 802.11e.
  • CSMA / CA Carrier Sense Multiple Access / Collision Avoidance
  • CD Carrier Sense Multiple Access / Collision Detection
  • PCF controls transmission on the wireless terminal side on the AP side.
  • polling is applied to each wireless terminal, so the load on the AP side is large.
  • IEEE802.11e Although a bandwidth guarantee system called IEEE802.11e has been standardized for QoS guarantee, IEEE802.11e is a bandwidth reservation method, control is complicated, and bandwidth efficiency is not improved.
  • an object of the present invention is to provide a wireless communication method that efficiently uses a bandwidth in wireless communication.
  • the first aspect is A wireless relay device wirelessly connected by one or more wireless terminals, An application request for requesting the wireless terminal to notify the size of data scheduled to be transmitted at a predetermined cycle and the priority of the data is transmitted to the wireless terminal, and a response to the application request is received from the wireless terminal.
  • a wireless communication unit A controller that generates schedule information for assigning a time for transmitting the data in the cycle based on the size of the data included in the response and the priority of the data;
  • the control unit controls the wireless communication unit to transmit the schedule information to the wireless terminal, and performs data transmission / reception control with the wireless terminal based on the schedule information.
  • a wireless relay device is assumed.
  • the above-described aspect may be realized by executing a program by the information processing apparatus. That is, the processing executed by each unit in the above-described aspect can be specified as a program for causing the information processing apparatus to execute, or a computer-readable recording medium on which the program is recorded. Moreover, you may identify with the method which an information processing apparatus performs the process which each above-mentioned means performs.
  • FIG. 1 is a diagram illustrating an example of a configuration of a system according to the present embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of the access point 100.
  • FIG. 3 is a diagram illustrating a configuration example of the wireless terminal 200.
  • FIG. 4 is a diagram illustrating an example (1) of the operation sequence of the present embodiment.
  • FIG. 5 is a diagram illustrating an example (2) of the operation sequence of the present embodiment.
  • FIG. 6 is a diagram illustrating an example (3) of the operation sequence of the present embodiment.
  • FIG. 7 is a diagram illustrating an example of basic information.
  • FIG. 8 is a diagram illustrating an example of packet transmission time.
  • FIG. 9 is a diagram illustrating an example of a priority data schedule.
  • FIG. 1 is a diagram illustrating an example of a configuration of a system according to the present embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of the access point 100.
  • FIG. 3 is a diagram illustrating a configuration example
  • FIG. 10 is a diagram illustrating an example of a schedule of best effort data.
  • FIG. 11 is a diagram illustrating an example of a voice sample period, codec time, and voice data transmission time at an access point in a wireless terminal.
  • FIG. 12 is a diagram illustrating an example of the relationship between the basic period and priority data.
  • FIG. 13 is a diagram illustrating an example of the relationship between the basic period and the priority data in the first modification.
  • FIG. 14 is a diagram illustrating an example of a voice sample period, a codec time, and a voice data transmission time at an access point in the wireless terminal according to the first modification.
  • FIG. 15 is a diagram illustrating an example of a relationship between a basic period and priority data in the second modification.
  • FIG. 1 is a diagram illustrating an example of a configuration of a system according to the present embodiment.
  • the system of the present embodiment includes an access point (AP) 100, a radio terminal 200A, and a radio terminal 200B.
  • Access point 100 and wireless terminal 200A are wirelessly connected.
  • Access point 100 and wireless terminal 200B are wirelessly connected.
  • the radio terminal 200A and the radio terminal 200B have the same configuration.
  • the radio terminal 200A and the radio terminal 200B are not distinguished, they are collectively referred to as the radio terminal 200.
  • the number of wireless terminals is not limited to two, and may be one or three or more.
  • the access point 100 is connected to a higher level network (WAN: Wide Area Network).
  • WAN Wide Area Network
  • FIG. 2 is a diagram illustrating a configuration example of the access point 100.
  • the access point 100 includes a CPU 102, a memory 104, a WiFi interface 106, a NIC (Network Interface Card) 108, and an antenna 110.
  • the access point 100 is an example of a wireless relay device.
  • the CPU 102 controls the access point 100 and performs a predetermined calculation.
  • the CPU 102 processes transmission / reception data with other communication devices.
  • the CPU 102 is an example of a control unit.
  • the CPU 102 creates a schedule.
  • the memory 104 stores a program executed by the CPU 102, data used by the CPU 102, and the like.
  • the memory 104 stores data to be transmitted and received, a schedule, and the like.
  • the WiFi interface 106 is an interface for wireless connection with other wireless devices such as the wireless terminal 200.
  • the WiFi interface 106 is an example of a wireless communication unit.
  • the NIC (Network Interface Card) 108 is an interface for connecting the access point 100 to a higher level network.
  • the access point 100 is connected to the host device via the NIC 108 and the network.
  • the access point 100 transmits and receives data to and from the host device via the NIC 108.
  • the antenna 110 receives a radio signal transmitted from another radio apparatus such as the radio terminal 200. In addition, the antenna 110 transmits a radio signal to be transmitted to another radio apparatus such as the radio terminal 200.
  • the access point 100 transmits and receives data and the like with the wireless terminal 200 via the WiFi interface 106 and the antenna 110.
  • FIG. 3 is a diagram illustrating a configuration example of the wireless terminal 200.
  • the wireless terminal 200 includes a CPU 202, a memory 204, a WiFi interface 206, and a user interface 208.
  • the CPU 202 controls the wireless terminal 200 and performs a predetermined calculation.
  • the CPU 202 processes transmission / reception data with the foot communication device.
  • the CPU 202 is an example of a control unit.
  • the CPU 202 creates a response (application information) to the application request.
  • the memory 204 stores a program executed by the CPU 202, data used by the CPU 202, and the like.
  • the memory 204 stores data to be transmitted, received data, a schedule, and the like.
  • the WiFi interface 206 is an interface for wireless connection with other wireless devices such as the access point 100.
  • the WiFi interface 206 is an example of a wireless communication unit.
  • the user interface 208 is an interface for exchanging information with the user of the wireless terminal 200.
  • the user interface 208 includes an input device and an output device.
  • the antenna 210 receives a wireless signal transmitted from another wireless device or the like such as the access point 100. In addition, the antenna 210 transmits a radio signal to be transmitted to other wireless devices such as the access point 100.
  • the wireless terminal 200 transmits / receives data and the like to / from the access point 100 via the WiFi interface 206 and the antenna 210.
  • the access point 100 and the wireless terminal 200 can be realized by using a general-purpose computer such as a personal computer (PC: Personal Computer) or a dedicated computer such as a server machine.
  • the wireless terminal 200 can be realized using a dedicated or general-purpose computer such as a smartphone, a mobile phone, or a car navigation device, or an electronic device equipped with a computer.
  • the computer that is, the information processing apparatus includes a processor, a main storage device, and an interface device with peripheral devices such as a secondary storage device and a communication interface device.
  • the main storage device and the secondary storage device are computer-readable recording media.
  • the processor loads a program stored in the recording medium into the work area of the main storage device and executes the program, and the peripheral device is controlled through the execution of the program, thereby realizing a function meeting a predetermined purpose. Can do.
  • the processor is, for example, a CPU (Central Processing Unit) or a DSP (Digital Signal Processor).
  • the main storage device includes, for example, a RAM (Random Access Memory) and a ROM (Read Only Memory).
  • the secondary storage device is, for example, an EPROM (Erasable Programmable ROM) or a hard disk drive (HDD, Hard Disk Drive).
  • the secondary storage device can include a removable medium, that is, a portable recording medium.
  • the removable medium is, for example, a USB (Universal Serial Bus) memory or a disc recording medium such as a CD (Compact Disc) or a DVD (Digital Versatile Disc).
  • the communication interface device is, for example, a LAN (Local Area Network) interface board or a wireless communication circuit for wireless communication.
  • LAN Local Area Network
  • Peripheral devices include input devices such as keyboards and pointing devices, output devices such as display devices and printers, in addition to the secondary storage devices and communication interface devices described above.
  • the input device may include a video / image input device such as a camera, and an audio input device such as a microphone.
  • the output device may include an audio output device such as a speaker.
  • the computer used as the access point 100 implements functions such as data transmission / reception and schedule creation by the processor loading and executing a program stored in the secondary storage device into the main storage device.
  • the memory 104 is provided in a storage area of the main storage device or the secondary storage device.
  • the computer used as the wireless terminal 200 implements functions such as data transmission / reception and telephone by the processor loading and executing the program stored in the secondary storage device into the main storage device.
  • the memory 204 is provided in a storage area of the main storage device or the secondary storage device.
  • FIG. 4 is diagrams illustrating an example of an operation sequence according to the present embodiment.
  • “A”, “B”, and “C” in FIG. 4 are connected to “A”, “B”, and “C” in FIG. 5, respectively.
  • “1” in FIG. 4 is connected to “1” in FIG.
  • “D”, “E”, and “F” in FIG. 5 are connected to “D”, “E”, and “F” in FIG. 6, respectively.
  • “2” in FIG. 5 is connected to “2” in FIG.
  • connection between the access point 100 and the wireless terminal 200A and the connection between the access point 100 and the wireless terminal 200B are completed by executing a communication procedure known in IEEE 802.11 or the like.
  • the access point 100 can acquire an identifier for identifying the wireless terminal 200A and the wireless terminal 200B that are wirelessly connected.
  • uplink is a direction from the wireless terminal 200 toward the access point 100.
  • Downlink is a direction from the access point 100 toward the wireless terminal 200.
  • the access point 100 transmits beacon information and basic information to all wireless terminals 200 (here, the wireless terminal 200A and the wireless terminal 200B) wirelessly connected to the access point 100 itself (SQ1001). From here, the basic period (P0) is started.
  • the beacon information is information on the access point 100 notified to the wireless terminal 200.
  • the beacon information includes identification information of the access point 100 and the like.
  • FIG. 7 is a diagram showing an example of basic information.
  • the basic information includes information such as protocol ID, length of one cycle (length of one basic cycle), number of users, broadcast program, and the like.
  • the protocol ID is identification information indicating a communication method according to the present embodiment.
  • the identification information is “VDFX”.
  • the wireless terminal 200 receives the basic information including the protocol ID, and recognizes that communication with the access point 100 is performed by the communication method according to the present embodiment.
  • the length of the basic period is 100 ms.
  • the length of the basic period is not limited to 100 ms.
  • the number of users is the number of wireless terminals 200 connected to the access point 100.
  • the broadcast program is, for example, a program table of a broadcast program using audio data and video data transmitted as multicast data.
  • the user of the wireless terminal 200 can select a broadcast program to view based on the program guide.
  • the access point 100 transmits an application request to the wireless terminal 200A that is the first wireless terminal (SQ1002).
  • the application request is a signal for requesting the wireless terminal 200 to notify the access point 100 of the data size and data class that the wireless terminal 200 intends to transmit to the access point 100.
  • Data classes include, for example, H type and BE type.
  • the H (High) type indicates data with high priority.
  • the BE (Best Effort) type indicates data with low priority.
  • Data with high priority is, for example, data that requires real-time performance.
  • the data with high priority includes, for example, IP phone data.
  • information about data scheduled to be transmitted in the basic cycle (P0) is requested.
  • Data with high priority is also referred to as priority data.
  • Data with low priority is also referred to as best effort data. Best effort data is an example of non-priority data.
  • the wireless terminal 200A When the wireless terminal 200A receives an application request addressed to the wireless terminal 200A from the access point 100, the wireless terminal 200A creates a data size and a data class that the wireless terminal 200A itself intends to transmit as application information (response). Transmit (SQ1003). If the wireless terminal 200A does not have data to be transmitted, the wireless terminal 200A transmits to the access point 100 as application information that there is no data to be transmitted.
  • the application information may include information other than the data size and the data class.
  • the access point 100 When the access point 100 receives the application information from the wireless terminal 200A, the access point 100 stores information (data size, data class) included in the application information in the memory 104.
  • the access point 100 transmits a confirmation response (Ack: Acknowledgement) to the application information to the wireless terminal 200A (SQ1004).
  • the access point 100 transmits an application request to the radio terminal 200B that is the second radio terminal (SQ1005).
  • the access point 100 may collectively transmit the confirmation response to the wireless terminal 200A and the application request to the wireless terminal 200B. Sending all together saves time compared to sending separately.
  • the wireless terminal 200B When receiving the application request from the access point 100, the wireless terminal 200B creates the data size and data class that the wireless terminal 200B intends to transmit as application information and transmits it to the access point 100 (SQ1006). If the wireless terminal 200B does not have data to transmit, the wireless terminal 200B transmits to the access point 100 as application information that there is no data to be transmitted.
  • the access point 100 When the access point 100 receives the application information from the wireless terminal 200B, the access point 100 stores the information (data size, data class) included in the application information in the memory 104. Further, the access point 100 transmits a confirmation response (Ack) to the application information to the radio terminal 200A (SQ1007).
  • Ack confirmation response
  • the access point 100 determines that the wireless terminal 200 does not have data to transmit.
  • the access point 100 creates a schedule based on the application information received from each wireless terminal 200, the size of data sent from the host device to the wireless terminal 200, and the like.
  • the schedule table is created for each of upstream priority data, downstream priority data, downstream priority multicast data, upstream best effort data, downstream best effort data, and upstream multicast best effort data.
  • the downlink data schedule is created based on the data addressed to the wireless terminal 200 received from the host device via the network.
  • the schedule is a schedule for the basic period (P0).
  • the schedule is an example of schedule information.
  • FIG. 8 is a diagram showing an example of packet transmission time.
  • the transmission time at 10 Mbps, 50 Mbps, and 100 Mbps with respect to a predetermined data capacity is shown.
  • an 864-byte IP packet corresponding to 100 ms of telephone voice is transmitted at 70 ⁇ s (100 Mbps).
  • FIG. 9 is a diagram showing an example of a priority data schedule.
  • classification, direction, order, ID, and time are set.
  • the division “S0” means transmission of upstream priority data.
  • the division “S01” means transmission of downlink priority data.
  • the division “S02” means transmission of downlink priority multicast data.
  • the direction indicates up or down.
  • the ID is an identifier that identifies each wireless terminal 200.
  • the time is the start time of the time allocated to transmit predetermined data. The allocated time is determined based on the size of data to be transmitted. For example, in the case of 100 Mbps, the time allocated to the wireless terminal 200 that is scheduled to transmit 864 bytes of data is 100 ⁇ s obtained by adding the response limit time 30 ⁇ s to the data transmission time 70 ⁇ s.
  • the response time limit is a time during which the access point 100 waits for a response.
  • the response time limit may be predetermined to a predetermined value.
  • the access point 100 may perform the following processing when data or an acknowledgment is not transmitted even if the response time limit is exceeded.
  • the time allocated to the multicast data may not include the response limit time. This is because the access point 100 does not request an acknowledgment for multicast data.
  • FIG. 10 is a diagram showing an example of a schedule of best effort data.
  • the classification, direction, order, ID, and time are set as in the schedule table of priority data.
  • the division “S1” means transmission of uplink best effort data.
  • the division “S11” means transmission of downlink best effort data.
  • the division “S12” means transmission of downlink best effort multicast data.
  • the access point 100 creates the schedule so as to be within 100 ms of the basic period (P0). If there is a lot of data to be transmitted and all the data does not fit within the basic period (P0), some of the best effort data is not included in the schedule. The best effort data not included in the schedule may be determined in any way.
  • the access point 100 transmits all the created schedules and the S0 start command to all the wireless terminals 200 (SQ1008). From here, transmission / reception of priority data between the access point 100 and the wireless terminal 200 is started.
  • the S0 start command is a signal notifying the wireless terminal 200 that the classification “S0” is started.
  • the access point 100 transmits a confirmation request signal to the wireless terminal 200A as the first wireless terminal according to the schedule (SQ1009).
  • the confirmation request signal is a signal that requests the wireless terminal 200 to transmit to the access point 100 the priority data that the wireless terminal 200 intends to transmit to the access point 100.
  • the confirmation request signal to the radio terminal 200A as the first radio terminal may be transmitted together with the S0 start command of the sequence SQ1008.
  • the wireless terminal 200A When receiving the confirmation request signal addressed to the wireless terminal 200A from the access point 100, the wireless terminal 200A transmits the priority data notified to the access point 100 by the application request to the access point 100 (SQ1010).
  • the access point 100 When the access point 100 receives the priority data from the radio terminal 200A, the access point 100 transmits an acknowledgment to the radio terminal 200A (SQ1011). Further, the access point 100 transmits a confirmation request signal to the wireless terminal 200B that is the second wireless terminal according to the schedule (SQ1012). The access point 100 may collectively transmit a confirmation response to the wireless terminal 200A and a confirmation request signal to the wireless terminal 200B. Sending all together saves time compared to sending separately. Further, the access point 100 transmits the priority data to the destination of the priority data via the network.
  • the wireless terminal 200A When the wireless terminal 200A does not receive the confirmation response to the transmission of the priority data, when the next application request is received, the wireless terminal 200A notifies the transmission of the priority data again and tries to transmit the priority data. Also good.
  • the wireless terminal 200B When the wireless terminal 200B receives the confirmation request signal addressed to the wireless terminal 200B from the access point 100, the wireless terminal 200B transmits the priority data notified to the access point 100 by the application request to the access point 100 (SQ1013).
  • the access point 100 When the access point 100 receives the priority data from the radio terminal 200B, the access point 100 transmits an acknowledgment to the radio terminal 200A (SQ1014).
  • the access point 100 may perform the following process when data or an acknowledgment is not transmitted even after the response time limit is exceeded. In this case, the access point 100 may update the schedule. For example, when the schedule is advanced because no data or the like is transmitted, the access point 100 can incorporate the transmission / reception of the best effort data that was not included in the schedule when creating the schedule into the schedule. The access point 100 transmits the updated schedule to the wireless terminal 200 together with the start command, for example.
  • the access point 100 does not transmit a confirmation request signal for requesting transmission of priority data to the wireless terminal 200 that does not have priority data to be transmitted.
  • the access point 100 transmits S01 and S02 start command to all the wireless terminals 200 (SQ1015).
  • the S01 and S02 start command is a signal that notifies the wireless terminal 200 that the sections “S01” and “S02” are started.
  • the access point 100 transmits downlink priority data addressed to the radio terminal 200A to the radio terminal 200A that is the first radio terminal according to the schedule (SQ1016).
  • the wireless terminal 200A When receiving the downlink priority data addressed to the wireless terminal 200A from the access point 100, the wireless terminal 200A transmits an acknowledgment to the access point 100 (SQ1017).
  • the access point 100 When the access point 100 receives the confirmation response from the radio terminal 200A, the access point 100 transmits downlink priority data addressed to the radio terminal 200B to the radio terminal 200B according to the schedule (SQ1018).
  • the wireless terminal 200B When receiving the downlink priority data addressed to the wireless terminal 200B from the access point 100, the wireless terminal 200B transmits an acknowledgment to the access point 100 (SQ1019).
  • the wireless terminal 200 that has received the downlink priority data stores the received data in the memory 204 and performs predetermined processing on the received data.
  • the access point 100 may transmit the next downlink priority data according to the schedule even when the confirmation response is not received even after a predetermined time has elapsed since the downlink priority data was transmitted.
  • the access point 100 transmits the downlink priority multicast data to all the radio terminals 200 according to the schedule (SQ1020).
  • the downlink priority multicast data is multicast data having a high priority.
  • the access point 100 transmits an S1 start command to all the wireless terminals 200 (SQ1021). From here, transmission / reception of the best effort data is started between the access point 100 and the wireless terminal 200.
  • the S1 start command is a signal notifying the wireless terminal 200 that the division “S1” is started.
  • the access point 100 transmits a confirmation request signal to the wireless terminal 200A as the first wireless terminal according to the schedule (SQ1022).
  • the confirmation request signal is a signal for requesting the wireless terminal 200 to transmit to the access point 100 the best effort data that the wireless terminal 200 intends to transmit to the access point 100.
  • the confirmation request signal to the radio terminal 200A as the first radio terminal may be transmitted together with the S1 start command of the sequence SQ1021.
  • the wireless terminal 200A When receiving the confirmation request signal addressed to the wireless terminal 200A from the access point 100, the wireless terminal 200A transmits the best effort data notified to the access point 100 by the application request to the access point 100 (SQ1023).
  • the access point 100 When the access point 100 receives the best effort data from the radio terminal 200A, the access point 100 transmits an acknowledgment to the radio terminal 200A (SQ1024). Further, the access point 100 transmits a confirmation request signal to the wireless terminal 200B as the second wireless terminal according to the schedule (SQ1025). The access point 100 may collectively transmit a confirmation response to the wireless terminal 200A and a confirmation request signal to the wireless terminal 200B. Sending all together saves time compared to sending separately. Further, the access point 100 transmits the priority data via the network with the received best effort data directed to the destination of the best effort data.
  • the wireless terminal 200A may notify the transmission of the best effort data again when the next application request is received.
  • the wireless terminal 200B When receiving the confirmation request signal addressed to the wireless terminal 200B from the access point 100, the wireless terminal 200B transmits the best effort data notified to the access point 100 by the application request to the access point 100 (SQ1026).
  • the access point 100 When the access point 100 receives the best effort data from the radio terminal 200B, the access point 100 transmits an acknowledgment to the radio terminal 200A (SQ1027).
  • the access point 100 does not transmit a confirmation request signal for requesting transmission of best effort data to the wireless terminal 200 that does not have the best effort data to be transmitted.
  • the access point 100 transmits S11 and S12 start command to all the wireless terminals 200 (SQ1028).
  • the S11 and S12 start command is a signal that notifies the wireless terminal 200 that the sections “S11” and “S12” are started.
  • the access point 100 transmits the downlink best effort data addressed to the radio terminal 200A to the radio terminal 200A as the first radio terminal according to the schedule (SQ1029).
  • the wireless terminal 200A When receiving the downlink best effort data addressed to the wireless terminal 200A from the access point 100, the wireless terminal 200A transmits an acknowledgment to the access point 100 (SQ1030).
  • the access point 100 When the access point 100 receives the confirmation response from the radio terminal 200A, the access point 100 transmits the downlink best effort data addressed to the radio terminal 200B to the radio terminal 200B according to the schedule (SQ1031).
  • the wireless terminal 200B When receiving the downlink best effort data addressed to the wireless terminal 200B from the access point 100, the wireless terminal 200B transmits an acknowledgment to the access point 100 (SQ1032).
  • the wireless terminal 200 that has received the downlink priority data stores the received data in the memory 204 and performs predetermined processing on the received data.
  • the access point 100 transmits the downlink best effort multicast data to all the radio terminals 200 according to the schedule (SQ1033).
  • the downlink best effort multicast data is multicast data having a low priority. Data with low priority is, for example, data that does not require real-time performance.
  • the basic period (P0) started in the sequence SQ1001 ends.
  • the access point 100 transmits beacon information and basic information to the radio terminal 200, whereby the next basic period (P1) is started (SQ1034).
  • the schedule generated by the access point 100 may be updated at any time. That is, when there is no response for a predetermined time from the radio terminal 200 to which the uplink transmission time is assigned based on the application information, the confirmation request signal may be sent to the next radio terminal 200 by moving up the schedule. In addition, when the schedule is changed, the updated schedule may be transmitted from the access point 100 to the wireless terminal 200 at the timing of transmitting each start command.
  • the wireless terminal 200 transmits uplink data.
  • the access point 100 may transmit uplink data according to the schedule received by the wireless terminal 200 from the access point 100 without transmitting the confirmation request signal. In this case, since the access point 100 does not transmit the confirmation request signal, the band use efficiency is improved.
  • Audio data is generated by codec processing.
  • the wireless terminal 200 makes a call using a telephone such as an IP phone via the network via the access point 100 and the host device.
  • audio data generated by codec processing by the wireless terminal 200 used as a telephone is transmitted to the host device via the access point 100.
  • the codec process is performed after the audio sample time has elapsed.
  • the audio data is transmitted to the access point 100 after the codec processing.
  • Voice data in a telephone is transmitted as data with high priority because real-time performance is required.
  • the time required for codec processing is codec time.
  • the delay time in the telephone includes at least a voice sample time, a codec time, a time until the voice data is transmitted after the codec processing, and a music data transmission time. In the telephone, it is required to shorten the delay time. If the time from the codec processing to the transmission of audio data is long, the delay time becomes long. If radio terminal 200 transmits audio data once in one basic period, the length of the audio sample period may be adjusted to the length of the basic period. By adjusting the length of the voice sample period to the length of the basic period, the delay time becomes substantially constant. If the length of the audio sample period is different from the length of the basic period, the time from the codec processing to the transmission of the audio data varies, and the delay time varies. That is, if the delay time fluctuates, the telephone quality may be degraded.
  • FIG. 11 is a diagram illustrating an example of a voice sample period, codec time, and voice data transmission time at an access point in a wireless terminal.
  • codec processing is started after an audio sample period has elapsed, and audio data is transmitted to access point 100 after completion of codec processing.
  • the audio data is transmitted based on the schedule of uplink priority data.
  • the wireless terminal 200 When receiving an application request from the access point 100, the wireless terminal 200 notifies that priority data (voice data) is scheduled to be transmitted in the application information.
  • the radio terminal 200 can shorten the delay time by adjusting the phase of the audio sample period so that the end time of the codec processing is immediately before the audio data transmission time. For example, the radio terminal 200 can shorten the delay time by adjusting the phase of the audio sample period so that the end time of the codec processing becomes the start time of the basic period. That is, the wireless terminal 200 sets a time obtained by subtracting the codec time and the voice sample period from the start time of the basic period as the start time of the voice sample period.
  • FIG. 12 is a diagram illustrating an example of the relationship between the basic period and the priority data.
  • transmission / reception of priority data is performed once at time ⁇ T within one basic period. That is, transmission / reception of uplink priority data, downlink priority data, and downlink priority multicast data is performed between the access point 100 and the wireless terminal 200 at time ⁇ T.
  • the application for upstream priority data is made at the beginning of the basic cycle. Therefore, the radio terminal 200 transmits the uplink priority data after waiting for a time ⁇ T at the maximum after transmitting the application information regarding the uplink priority data. If the waiting time until the priority data is transmitted becomes longer, for example, the quality of a service (such as a telephone) that uses the priority data decreases. Therefore, it is desirable that the waiting time until the priority data is transmitted is shorter. In the first modification, the time for transmitting and receiving priority data is divided into a plurality of times.
  • FIG. 13 is a diagram showing an example of the relationship between the basic period and the priority data in the first modification.
  • transmission / reception of priority data is performed twice at time ⁇ T / 2 within one basic period.
  • the access point 100 transmits an application request to all the wireless terminals 200 at the beginning of transmission / reception of each priority data.
  • the standby time of the priority data is a maximum time ⁇ T / 2, and the standby time is reduced as compared with the example of FIG.
  • priority data transmission / reception is divided into two, assuming that the basic period is 100 ms, priority data transmission / reception is started at intervals of 50 ms.
  • the transmission / reception of the best effort data is assigned at a time when the transmission / reception of the priority data is not performed.
  • the transmission time of the priority data is divided into two times within the basic period, but may be divided into two or more times.
  • Information on the number of divisions of the transmission time of the priority data may be included in the basic information and notified from the access point 100 to the wireless terminal 200, for example.
  • FIG. 14 is a diagram illustrating an example of a voice sample period, a codec time, and a voice data transmission time at an access point in the wireless terminal in the first modification.
  • the upper diagram in FIG. 14 is similar to that shown in FIG. 11 and is a comparative example.
  • the upper diagram in FIG. 14 shows the relationship among the voice sample period, codec time, and voice data transmission time when priority data transmission / reception time is assigned as shown in FIG.
  • the lower diagram of FIG. 14 shows the relationship between the voice sample period, the codec time, and the voice data transmission time when priority data transmission / reception time is assigned as shown in FIG. If the telephone delay time in the upper diagram of FIG. 14 is D, in the lower diagram of FIG. 14, the telephone delay time is approximately D / 2. That is, by dividing the transmission / reception of priority data into two times within one basic period, the delay time of the telephone can be almost halved.
  • Modification 2 In the second modification, the wireless terminal 200 connected to the access point 100 is divided into a plurality of groups, and the size of the priority data in the basic period is reduced, thereby reducing the waiting time.
  • FIG. 15 is a diagram illustrating an example of the relationship between the basic period and the priority data in the second modification.
  • the wireless terminal 200 is divided into a group A and a group B.
  • Each wireless terminal 200 belongs to group A or group B. Whether each wireless terminal 200 belongs to group A or group B may be determined in any way.
  • Half of the wireless terminals 200 belong to group A, and half of the wireless terminals 200 belong to group B.
  • the access point 100 shifts the phase of the basic period of group A and the phase of the basic period of group B by a half period (1/2 period).
  • the access point 100 causes the start time of the basic period (Pa1) of group A and the start time of the basic period (Pb1) of group B to be shifted by a half time of the basic period.
  • the access point 100 divides the wireless terminal 200 into two groups, but it may be divided into three or more groups.
  • the access point 100 shifts the start time of the basic period of each group by 1 / n time of the basic period.
  • the group to which the wireless terminal 200 belongs is notified from the access point 100 to each wireless terminal 200 by basic information, for example.
  • the transmission / reception time of the priority data in each basic cycle is approximately 1 ⁇ 2 of the transmission / reception time of the priority data in the example of FIG.
  • the schedule a schedule for group A and a schedule for group B are created.
  • the wireless terminal 200 When the wireless terminal 200 is divided into a plurality of groups, the priority data transmission / reception time in one basic period is reduced, and the standby time for priority data transmission is reduced.
  • the access point 100 transmits an application request to all wireless terminals 200 that are wirelessly connected.
  • the wireless terminal 200 that has received the application request notifies the access point of information (application information) of data scheduled to be transmitted.
  • the access point 100 creates a schedule for one basic period based on the application information received from the wireless terminal 200, the data addressed to the wireless terminal 200 from the host device, and the like.
  • the access point 100 creates a schedule for priority data and a schedule for best effort data.
  • the access point 100 transmits the schedule to the wireless terminal 200.
  • the access point 100 and the wireless terminal 200 transmit and receive priority data and best effort data based on the schedule.
  • the bandwidth usage efficiency between the access point 100 and the wireless terminal 200 is improved by grasping the data transmitted / received between the access point 100 and the wireless terminal 200 and creating a schedule.
  • the vertical band ratio is fixed or semi-fixed.
  • the upper / lower bandwidth ratio is not fixed, and the access point 100 can dynamically change the upper / lower bandwidth ratio according to the data amount, so that the bandwidth usage efficiency is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

1以上の無線端末によって無線接続される無線中継装置であって、所定の周期で送信予定のデータのサイズ、前記データの優先度を通知することを前記無線端末に対し要求する申請要求を、前記無線端末に送信し、前記申請要求に対する応答を前記無線端末から受信する無線通信部と、前記応答に含まれる前記データのサイズおよび前記データの優先度に基づいて、前記周期で前記データを送信する時間を割り当てる予定情報を生成する制御部と、を備え、前記制御部は、前記予定情報を前記無線端末に送信するように前記無線通信部を制御し、前記予定情報に基づいて、前記無線端末との間のデータ送受信制御を行う、無線中継装置とする。

Description

無線中継装置、無線端末、無線中継方法
 本発明は、無線中継装置、無線端末、無線中継方法に関する。
 従来の無線LAN構成においては、アドホック構成とインフラ構成とがある。アドホック構成は、無線端末同士が1対1で通信を行う構成である。アドホック構成では、分散制御方式(DCF:Distributed Coordination Function)が使用される。インフラ構成は、AP(Access Point)と無線端末との間で通信を行う構成である。インフレ構成には、分散制御方式(DCF)、AP集中制御方式(PCF:Point Coordination Function)がある。QoS保証に関しては、IEEE802.11eがある。
特開2004-23564号公報 特表2004-505573号公報
 DCFにおいては、CSMA/CA(Carrier Sense Multiple Access/Collision Avoidance)という通信制御方式が使用される。これは、初期の有線ネットワークのCSMA/CD(Carrier Sense Multiple Access/Collision Detection)を無線用に改良したものである。CSMA/CAには、各種のタイミング制御等が複雑であり、帯域効率が悪い(60%程度)という欠点がある。
 PCFは、AP側で無線端末側の送信を制御するものである。PCFでは、無線端末毎にポーリングをかけているためAP側の負荷も大きい。
 QoS保証に関してIEEE802.11eという帯域保証システムが標準化されたが、IEEE802.11eは帯域予約方式であり、制御が複雑で帯域効率は向上しない。
 1つの側面では、本発明は、無線通信において、効率よく帯域を利用する無線通信方法を提供することを課題とする。
 第1の態様は、
1以上の無線端末によって無線接続される無線中継装置であって、
 所定の周期で送信予定のデータのサイズ、前記データの優先度を通知することを前記無線端末に対し要求する申請要求を、前記無線端末に送信し、前記申請要求に対する応答を前記無線端末から受信する無線通信部と、
 前記応答に含まれる前記データのサイズおよび前記データの優先度に基づいて、前記周期で前記データを送信する時間を割り当てる予定情報を生成する制御部と、を備え、
 前記制御部は、前記予定情報を前記無線端末に送信するように前記無線通信部を制御し、前記予定情報に基づいて、前記無線端末との間のデータ送受信制御を行う、
無線中継装置とする。
 前述の態様は、プログラムが情報処理装置によって実行されることによって実現されてもよい。即ち、上記した態様における各手段が実行する処理を、情報処理装置に対して実行させるためのプログラム、或いは当該プログラムを記録したコンピュータ読み取り可能な記録媒体として特定することができる。また、上記した各手段が実行する処理を情報処理装置が実行する方法をもって特定されてもよい。
 無線通信において、効率よく帯域を利用する無線通信方法を提供することができる。
図1は、本実施形態のシステムの構成の例を示す図である。 図2は、アクセスポイント100の構成例を示す図である。 図3は、無線端末200の構成例を示す図である。 図4は、本実施形態の動作シーケンスの例(1)を示す図である。 図5は、本実施形態の動作シーケンスの例(2)を示す図である。 図6は、本実施形態の動作シーケンスの例(3)を示す図である。 図7は、基本情報の例を示す図である。 図8は、パケットの伝送時間の例を示す図である。 図9は、優先データの予定表の例を示す図である。 図10は、ベストエフォートデータの予定表の例を示す図である。 図11は、無線端末における音声サンプル期間、コーデック時間、アクセスポイントにおける音声データ送信時間の例を示す図である。 図12は、基本周期と優先データとの関係の例を示す図である。 図13は、変形例1における基本周期と優先データとの関係の例を示す図である。 図14は、変形例1における無線端末における音声サンプル期間、コーデック時間、アクセスポイントにおける音声データ送信時間の例を示す図である。 図15は、変形例2における基本周期と優先データとの関係の例を示す図である。
 以下、図面を参照して実施形態について説明する。実施形態の構成は例示であり、開示の実施形態の構成に限定されない。本実施形態では、無線LAN機能を有するアクセスポイント及び無線端末等に適用することを前提としているが、本実施形態の通信方法は、無線LANに適用することに限定されるものではない。
 〔実施形態1〕
 (構成例)
 図1は、本実施形態のシステムの構成の例を示す図である。本実施形態のシステムは、アクセスポイント(AP:Access Point)100、無線端末200A及び無線端末200Bを含む。アクセスポイント100と無線端末200Aとは無線接続される。アクセスポイント100と無線端末200Bとは無線接続される。無線端末200A及び無線端末200Bは、互いに同様の構成を有する。以後、無線端末200A及び無線端末200Bを区別しない場合、総称して無線端末200とする。本実施形態のシステムにおいて、無線端末の数は、2台に限定されるものではなく、1台であっても3台以上であってもよい。アクセスポイント100は、上位のネットワーク(WAN:Wide Area Netowrk)に接続される。
 図2は、アクセスポイント100の構成例を示す図である。アクセスポイント100は、CPU102、メモリ104、WiFiインタフェース106、NIC(Network Interface Card)108、アンテナ110を含む。アクセスポイント100は、無線中継装置の一例である。
 CPU102は、アクセスポイント100の制御及び所定の演算を行う。CPU102は、他の通信装置との間の送受信データを処理する。CPU102は、制御部の一例である。CPU102は、予定表を作成する。
 メモリ104は、CPU102が実行するプログラム、CPU102が使用するデータ等を記憶する。メモリ104には、送受信するデータ、予定表などが格納される。
 WiFiインタフェース106は、無線端末200等の他の無線装置等と無線接続するためのインタフェースである。WiFiインタフェース106は、無線通信部の一例である。
 NIC(Network Interface Card)108は、アクセスポイント100を上位のネットワークに接続するためのインタフェースである。アクセスポイント100は、NIC108、ネットワークを介して、上位装置に接続される。アクセスポイント100は、NIC108を介して、上位装置とデータの送受信を行う。
 アンテナ110は、無線端末200等の他の無線装置等から送信される無線信号を受信する。また、アンテナ110は、無線端末200等の他の無線装置等に送信する無線信号を送信する。アクセスポイント100は、WiFiインタフェース106、アンテナ110を介して、無線端末200とデータ等を送受信する。
 図3は、無線端末200の構成例を示す図である。無線端末200は、CPU202、メモリ204、WiFiインタフェース206、ユーザインタフェース208を含む。
 CPU202は、無線端末200の制御及び所定の演算を行う。CPU202は、足の通信装置との間の送受信データを処理する。CPU202は、制御部の一例である。CPU202は、申請要求に対する応答(申請情報)を作成する。
 メモリ204は、CPU202が実行するプログラム、CPU202が使用するデータ等を記憶する。メモリ204には、送信予定のデータ、受信したデータ、予定表等が格納される。
 WiFiインタフェース206は、アクセスポイント100等の他の無線装置と無線接続するためのインタフェースである。WiFiインタフェース206は、無線通信部の一例である。
 ユーザインタフェース208は、無線端末200のユーザとの間で情報をやりとりするためのインタフェースである。ユーザインタフェース208には、入力装置、出力装置が含まれる。
 アンテナ210は、アクセスポイント100等の他の無線装置等から送信される無線信号を受信する。また、アンテナ210は、アクセスポイント100等の他の無線装置等に送信する無線信号を送信する。無線端末200は、WiFiインタフェース206、アンテナ210を介して、アクセスポイント100とデータ等を送受信する。
 アクセスポイント100及び無線端末200は、パーソナルコンピュータ(PC:Personal Computer)のような汎用のコンピュータまたはサーバマシンのような専用のコンピュータを使用して実現可能である。また、無線端末200は、スマートフォン、携帯電話、カーナビゲーション装置のような専用または汎用のコンピュータ、あるいは、コンピュータを搭載した電子機器を使用して実現可能である。
 コンピュータ、すなわち、情報処理装置は、プロセッサ、主記憶装置、及び、二次記憶装置や、通信インタフェース装置のような周辺装置とのインタフェース装置を含む。主記憶装置及び二次記憶装置は、コンピュータ読み取り可能な記録媒体である。
 コンピュータは、プロセッサが記録媒体に記憶されたプログラムを主記憶装置の作業領域にロードして実行し、プログラムの実行を通じて周辺機器が制御されることによって、所定の目的に合致した機能を実現することができる。
 プロセッサは、例えば、CPU(Central Processing Unit)やDSP(Digital Signal Processor)である。主記憶装置は、例えば、RAM(Random Access Memory)やROM(Read Only Memory)を含む。
 二次記憶装置は、例えば、EPROM(Erasable Programmable ROM)、ハードディスクドライブ(HDD、Hard Disk Drive)である。また、二次記憶装置は、リムーバブルメディア、即ち可搬記録媒体を含むことができる。リムーバブルメディアは、例えば、USB(Universal Serial Bus)メモリ、あるいは、CD(Compact Disc)やDVD(Digital Versatile Disc)のようなディスク記録媒体である。
 通信インタフェース装置は、例えば、LAN(Local Area Network)インタフェースボードや、無線通信のための無線通信回路である。
 周辺装置は、上記の二次記憶装置や通信インタフェース装置の他、キーボードやポインティングデバイスのような入力装置や、ディスプレイ装置やプリンタのような出力装置を含む。また、入力装置は、カメラのような映像や画像の入力装置や、マイクロフォンのような音声の入力装置を含むことができる。また、出力装置は、スピーカのような音声の出力装置を含むことができる。
 アクセスポイント100として使用されるコンピュータは、プロセッサが二次記憶装置に記憶されているプログラムを主記憶装置にロードして実行することによって、データの送受信、予定表の作成等の機能を実現する。一方、メモリ104は、主記憶装置または二次記憶装置の記憶領域に設けられる。
 無線端末200として使用されるコンピュータは、プロセッサが二次記憶装置に記憶されているプログラムを主記憶装置にロードして実行することによって、データの送受信、電話等の機能を実現する。一方、メモリ204は、主記憶装置または二次記憶装置の記憶領域に設けられる。
 (動作例)
 図4、図5、図6は、本実施形態の動作シーケンスの例を示す図である。図4の「A」、「B」、「C」は、それぞれ、図5の「A」、「B」、「C」と接続する。図4の「1」は、図5の「1」と接続する。図5の「D」、「E」、「F」は、それぞれ、図6の「D」、「E」、「F」と接続する。図5の「2」は、図6の「2」と接続する。
 アクセスポイント100と無線端末200Aとの間の接続、及び、アクセスポイント100と無線端末200Bとの間の接続は、IEEE802.11等で既知の通信手順の実効によって完了しているものとする。当該通信手順の実行によりアクセスポイント100は、無線接続された無線端末200A及び無線端末200Bを識別する識別子を取得できる。ここで、「上り」とは、無線端末200からアクセスポイント100に向かう方向である。「下り」とは、アクセスポイント100から無線端末200に向かう方向である。
 アクセスポイント100は、アクセスポイント100自身に無線接続しているすべての無線端末200(ここでは、無線端末200A及び無線端末200B)に対し、ビーコン情報、基本情報を送信する(SQ1001)。ここから、基本周期(P0)が開始される。
 ビーコン情報は、無線端末200に通知されるアクセスポイント100の情報である。ビーコン情報には、アクセスポイント100の識別情報などが含まれる。
 図7は、基本情報の例を示す図である。基本情報は、例えば、プロトコルID、1周期の長さ(1基本周期の長さ)、ユーザ数、放送番組などの情報を含む。プロトコルIDは、本実施形態による通信方式を示す識別情報である。図7では、当該識別情報を「VDFX」としている。無線端末200は、当該プロトコルIDが含まれた基本情報を受信することで、アクセスポイント100との間の通信は、本実施形態による通信方式で行われることを認識する。ここでは、基本周期の長さを100msとする。基本周期の長さは、100msに限定されるものではない。ユーザ数は、アクセスポイント100に接続している無線端末200の数である。放送番組は、例えば、マルチキャストデータとして送信される音声データ、映像データによる放送番組の番組表である。無線端末200のユーザは、番組表に基づいて、視聴する放送番組を選択できる。
 アクセスポイント100は、第1の無線端末である無線端末200Aに、申請要求を送信する(SQ1002)。申請要求は、無線端末200がアクセスポイント100に向けて送信しようとしている、データのサイズ、及び、データのクラスを、無線端末200がアクセスポイント100に通知するように求める信号である。データのクラス(優先度)には、例えば、H型及びBE型がある。H(High)型は、優先度が高いデータを示す。BE(Best Effort)型は、優先度が低いデータを示す。優先度が高いデータは、例えば、リアルタイム性が求められるデータである。優先度が高いデータには、例えば、IP電話のデータが含まれる。申請要求では、基本周期(P0)で送信する予定のデータについての情報が要求される。優先度が高いデータは、優先データともいう。優先度が低いデータは、ベストエフォートデータともいう。ベストエフォートデータは、非優先データの一例である。
 無線端末200Aは、アクセスポイント100から無線端末200A宛の申請要求を受信すると、無線端末200A自身が送信しようとしているデータのサイズ及びデータのクラスを申請情報(応答)として作成し、アクセスポイント100に送信する(SQ1003)。仮に、無線端末200Aが送信するデータを有していない場合、無線端末200Aは、送信するデータがない旨を申請情報として、アクセスポイント100に送信する。申請情報には、データのサイズ及びデータのクラス以外の情報が含まれてもよい。
 アクセスポイント100は、無線端末200Aから申請情報を受信すると、当該申請情報に含まれる情報(データのサイズ、データのクラス)をメモリ104に格納する。
 アクセスポイント100は、無線端末200Aに、申請情報に対する確認応答(Ack: Acknowledgement)を送信する(SQ1004)。また、アクセスポイント100は、第2の無線端末である無線端末200Bに、申請要求を送信する(SQ1005)。アクセスポイント100は、無線端末200Aに対する確認応答と無線端末200Bに対する申請要求とをまとめて送信してもよい。まとめて送信することで、別々に送信するよりも時間が短縮される。
 無線端末200Bは、アクセスポイント100から申請要求を受信すると、無線端末200B自身が送信しようとしているデータのサイズ及びデータのクラスを申請情報として作成し、アクセスポイント100に送信する(SQ1006)。仮に、無線端末200Bが送信するデータを有していない場合、無線端末200Bは、送信するデータがない旨を申請情報として、アクセスポイント100に送信する。
 アクセスポイント100は、無線端末200Bから申請情報を受信すると、当該申請情報に含まれる情報(データのサイズ、データのクラス)をメモリ104に格納する。また、アクセスポイント100は、無線端末200Aに、申請情報に対する確認応答(Ack)を送信する(SQ1007)。
 アクセスポイント100は、無線端末200に申請要求を送信してから、所定時間、当該無線端末200から申請情報を受信しない場合、当該無線端末200は送信するデータを有していないと判定する。
 アクセスポイント100は、各無線端末200から受信した申請情報、上位装置から無線端末200に送られるデータの大きさ等に基づいて、予定表を作成する。予定表は、上りの優先データ、下りの優先データ、下りの優先マルチキャストデータ、上りのベストエフォートデータ、下りのベストエフォートデータ、上りのマルチキャストベストエフォートデータの、それぞれについて作成される。下りのデータの予定表は、ネットワークを介して上位装置から受信した無線端末200宛のデータ等に基づいて作成される。予定表は、基本周期(P0)についての予定表である。予定表は、予定情報の一例である。
 図8は、パケットの伝送時間の例を示す図である。図8の表では、所定のデータ容量に対する、10Mbps、50Mbps、100Mbpsにおける伝送時間が示されている。例えば、電話の音声100ms分に相当する864バイトのIPパケットは、70μs(100Mbps)で伝送される。
 図9は、優先データの予定表の例を示す図である。優先データの予定表では、区分、方向、順番、ID、時刻が設定される。区分「S0」は、上りの優先データの送信を意味する。区分「S01」は、下りの優先データの送信を意味する。区分「S02」は、下りの優先マルチキャストデータの送信を意味する。方向は、上り、または、下りを示す。IDは、各無線端末200を識別する識別子である。時刻は、所定のデータを送信するのに割り当てられる時間の開始時刻である。割り当てられる時間は、送信する予定のデータの大きさに基づいて決定される。例えば、864バイトのデータを送信予定の無線端末200に割り当てられる時間は、100Mbpsの場合、応答制限時間30μsにデータ送信時間70μsを足した100μsである。データ送信時間は、アクセスポイント100と無線端末200との間の通信速度とデータのサイズとから算出される(データ送信時間=データサイズ/通信速度)。応答制限時間は、アクセスポイント100が応答を待機する時間である。応答制限時間は、所定の値にあらかじめ決められていてもよい。アクセスポイント100は、応答制限時間を超えてもデータ又は確認応答が送信されない場合に、次の処理を行ってもよい。マルチキャストデータに割り当てられる時間には、応答制限時間が含まれなくてもよい。アクセスポイント100は、マルチキャストデータに対する確認応答を求めないからである。
 図10は、ベストエフォートデータの予定表の例を示す図である。ベストエフォートデータの予定表では、優先データの予定表と同様に、区分、方向、順番、ID、時刻が設定される。区分「S1」は、上りのベストエフォートデータの送信を意味する。区分「S11」は、下りのベストエフォートデータの送信を意味する。区分「S12」は、下りのベストエフォートマルチキャストデータの送信を意味する。
 アクセスポイント100は、予定表を、基本周期(P0)の100msに収まるように、作成する。送信予定のデータが多く、基本周期(P0)内にすべてのデータが収まらない場合、一部のベストエフォートデータが予定表に含まれない。予定表に含まれないベストエフォートデータは、どのように決定されてもよい。
 アクセスポイント100は、作成したすべての予定表及びS0開始司令を、すべての無線端末200に対して送信する(SQ1008)。ここから、アクセスポイント100と無線端末200との間で優先データの送受信が開始される。S0開始司令は、区分「S0」が開始されることを無線端末200に通知する信号である。
 アクセスポイント100は、予定表に従って、第1の無線端末である無線端末200Aに確認依頼信号を送信する(SQ1009)。確認依頼信号は、無線端末200がアクセスポイント100に向けて送信しようとしている優先データを、無線端末200がアクセスポイント100に送信するように求める信号である。第1の無線端末である無線端末200Aへの確認依頼信号は、シーケンスSQ1008のS0開始司令と共に送信されてもよい。
 無線端末200Aは、アクセスポイント100から無線端末200A宛の確認依頼信号を受信すると、申請要求でアクセスポイント100に通知した優先データを、アクセスポイント100に送信する(SQ1010)。
 アクセスポイント100は、無線端末200Aから優先データを受信すると、無線端末200Aに対し確認応答を送信する(SQ1011)。また、アクセスポイント100は、予定表に従って、第2の無線端末である無線端末200Bに、確認依頼信号を送信する(SQ1012)。アクセスポイント100は、無線端末200Aに対する確認応答と無線端末200Bに対する確認依頼信号とをまとめて送信してもよい。まとめて送信することで、別々に送信するよりも時間が短縮される。さらに、アクセスポイント100は、受信した優先データを、当該優先データの宛先に向けて、ネットワークを介して当該優先データを送信する。
 無線端末200Aは、優先データの送信に対する確認応答を受信しない場合、次の申請要求を受信した際に、再び、当該優先データについて送信することを通知し、当該優先データを送信することを試みてもよい。
 無線端末200Bは、アクセスポイント100から無線端末200B宛の確認依頼信号を受信すると、申請要求でアクセスポイント100に通知した優先データを、アクセスポイント100に送信する(SQ1013)。
 アクセスポイント100は、無線端末200Bから優先データを受信すると、無線端末200Aに対し確認応答を送信する(SQ1014)。
 アクセスポイント100は、応答制限時間を超えてもデータ又は確認応答が送信されない場合に、次の処理を行ってもよい。この場合、アクセスポイント100は、予定表を更新してもよい。アクセスポイント100は、例えば、データ等が送信されないことで予定が繰り上がった場合、予定表作成の際に予定表に入れられなかったベストエフォートデータの送受信を予定表に組み込むことができる。アクセスポイント100は、更新された予定表を、例えば、開始司令とともに、無線端末200に送信する。
 アクセスポイント100は、送信する優先データを有していない無線端末200に対して、優先データを送信することを求める確認依頼信号を送信しない。
 アクセスポイント100は、S01及びS02開始司令を、すべての無線端末200に対して送信する(SQ1015)。S01及びS02開始司令は、区分「S01」及び区分「S02」が開始されることを無線端末200に通知する信号である。
 アクセスポイント100は、予定表に従って、第1の無線端末である無線端末200Aに、無線端末200A宛の下り優先データを送信する(SQ1016)。
 無線端末200Aは、無線端末200A宛の下り優先データを、アクセスポイント100から受信すると、アクセスポイント100に対して確認応答を送信する(SQ1017)。
 アクセスポイント100は、無線端末200Aから確認応答を受信すると、予定表に従って、無線端末200Bに、無線端末200B宛の下り優先データを送信する(SQ1018)。
 無線端末200Bは、無線端末200B宛の下り優先データを、アクセスポイント100から受信すると、アクセスポイント100に対して確認応答を送信する(SQ1019)。
 下り優先データを受信した無線端末200は、受信したデータをメモリ204に格納し、受信したデータに対し所定の処理を行う。
 アクセスポイント100は、下り優先データを送信してから所定時間経過しても確認応答を受信しない場合でも、予定表に従って、次の下り優先データを送信してもよい。
 アクセスポイント100は、予定表に記載された、すべての下り優先データの送信が完了すると、予定表に従って、下り優先マルチキャストデータを、すべての無線端末200に送信する(SQ1020)。下り優先マルチキャストデータは、優先度が高い、マルチキャストデータである。
 アクセスポイント100は、S1開始司令を、すべての無線端末200に対して送信する(SQ1021)。ここから、アクセスポイント100と無線端末200との間でベストエフォートデータの送受信が開始される。S1開始司令は、区分「S1」が開始されることを無線端末200に通知する信号である。
 アクセスポイント100は、予定表に従って、第1の無線端末である無線端末200Aに確認依頼信号を送信する(SQ1022)。確認依頼信号は、無線端末200がアクセスポイント100に向けて送信しようとしているベストエフォートデータを、無線端末200がアクセスポイント100に送信するように求める信号である。第1の無線端末である無線端末200Aへの確認依頼信号は、シーケンスSQ1021のS1開始司令と共に送信されてもよい。
 無線端末200Aは、アクセスポイント100から無線端末200A宛の確認依頼信号を受信すると、申請要求でアクセスポイント100に通知したベストエフォートデータを、アクセスポイント100に送信する(SQ1023)。
 アクセスポイント100は、無線端末200Aからベストエフォートデータを受信すると、無線端末200Aに対し確認応答を送信する(SQ1024)。また、アクセスポイント100は、予定表に従って、第2の無線端末である無線端末200Bに、確認依頼信号を送信する(SQ1025)。アクセスポイント100は、無線端末200Aに対する確認応答と無線端末200Bに対する確認依頼信号とをまとめて送信してもよい。まとめて送信することで、別々に送信するよりも時間が短縮される。さらに、アクセスポイント100は、受信したベストエフォートデータを、当該ベストエフォートデータの宛先に向けて、ネットワークを介して当該優先データを送信する。
 無線端末200Aは、ベストエフォートデータの送信に対する確認応答を受信しない場合、次の申請要求を受信した際に、再び、当該ベストエフォートデータについて送信することを通知してもよい。
 無線端末200Bは、アクセスポイント100から無線端末200B宛の確認依頼信号を受信すると、申請要求でアクセスポイント100に通知したベストエフォートデータを、アクセスポイント100に送信する(SQ1026)。
 アクセスポイント100は、無線端末200Bからベストエフォートデータを受信すると、無線端末200Aに対し確認応答を送信する(SQ1027)。
 アクセスポイント100は、送信するベストエフォートデータを有していない無線端末200に対して、ベストエフォートデータを送信することを求める確認依頼信号を送信しない。
 アクセスポイント100は、S11及びS12開始司令を、すべての無線端末200に対して送信する(SQ1028)。S11及びS12開始司令は、区分「S11」及び区分「S12」が開始されることを無線端末200に通知する信号である。
 アクセスポイント100は、予定表に従って、第1の無線端末である無線端末200Aに、無線端末200A宛の下りベストエフォートデータを送信する(SQ1029)。
 無線端末200Aは、無線端末200A宛の下りベストエフォートデータを、アクセスポイント100から受信すると、アクセスポイント100に対して確認応答を送信する(SQ1030)。
 アクセスポイント100は、無線端末200Aから確認応答を受信すると、予定表に従って、無線端末200Bに、無線端末200B宛の下りベストエフォートデータを送信する(SQ1031)。
 無線端末200Bは、無線端末200B宛の下りベストエフォートデータを、アクセスポイント100から受信すると、アクセスポイント100に対して確認応答を送信する(SQ1032)。
 下り優先データを受信した無線端末200は、受信したデータをメモリ204に格納し、受信したデータに対し所定の処理を行う。
 アクセスポイント100は、予定表に記載された、すべての下りベストエフォートデータの送信が完了すると、予定表に従って、下りベストエフォートマルチキャストデータを、すべての無線端末200に送信する(SQ1033)。下りベストエフォートマルチキャストデータは、優先度が低い、マルチキャストデータである。優先度が低いデータは、例えば、リアルタイム性が求められないデータである。
 ここで、シーケンスSQ1001で開始された基本周期(P0)が終了する。シーケンスSQ1001と同様に、アクセスポイント100が、無線端末200にビーコン情報、基本情報を送信することで、次の基本周期(P1)が開始される(SQ1034)。
 アクセスポイント100で生成される予定表は、随時更新されてもよい。即ち、申請情報に基づいて上り送信時間を割り当てられた無線端末200から所定時間応答がない場合に、予定を繰り上げて、次の無線端末200に、確認依頼信号を送ってもよい。また、予定が変更された場合に、各開始司令を送信するタイミング等に、更新された予定表が、アクセスポイント100から無線端末200に送信されてもよい。
 ここでは、アクセスポイント100が確認依頼信号を無線端末200に送信した後、無線端末200が上りデータを送信する構成としている。アクセスポイント100が確認依頼信号を送信せずに、無線端末200がアクセスポイント100から受信した予定表に従って、上りデータを送信する構成としてもよい。この場合、アクセスポイント100が確認依頼信号を送信しないので、帯域使用効率が向上する。
 (電話)
 IP電話等のネットワークを介した電話では、所定の音声サンプル期間毎に、音声情報をデジタルデータに変換して圧縮するコーデック処理が行われる。コーデック処理によって音声データが生成される。ここでは、無線端末200が、アクセスポイント100を介して、上位装置とネットワークを介したIP電話等の電話による通話をするとする。例えば、電話として使用される無線端末200によるコーデック処理で生成された音声データは、アクセスポイント100を介して上位装置に送信される。コーデック処理は、音声サンプル時間経過後に行われる。また、音声データは、コーデック処理後に、アクセスポイント100に送信される。電話における音声データは、リアルタイム性が求められるため優先度が高いデータとして送信される。コーデック処理に要する時間は、コーデック時間である。電話における遅延時間には、少なくとも、音声サンプル時間、コーデック時間、コーデック処理後から音声データを送信するまでの時間、音楽データ送信時間が含まれる。電話では、遅延時間を短くすることが求められる。コーデック処理後から音声データを送信するまでの時間が長いと、遅延時間が長くなる。無線端末200は1つの基本周期において1回音声データを送信するとすると、音声サンプル期間の長さは、基本周期の長さに合わせるとよい。音声サンプル期間の長さを基本周期の長さに合わせることで、遅延時間がほぼ一定になる。音声サンプル期間の長さと基本周期の長さとが異なると、コーデック処理後から音声データを送信するまでの時間に変動が生じ、遅延時間が変動する。即ち、遅延時間が変動すると、電話の品質が低下するおそれがある。
 図11は、無線端末における音声サンプル期間、コーデック時間、アクセスポイントにおける音声データ送信時間の例を示す図である。無線端末200において、音声サンプル期間経過後、コーデック処理が開始され、コーデック処理終了後、音声データが、アクセスポイント100に送信される。音声データは、上り優先データの予定表に基づいて、送信される。無線端末200は、アクセスポイント100から申請要求を受信した際、申請情報において、優先データ(音声データ)を送信する予定であることを通知する。
 無線端末200は、コーデック処理の終了時刻が音声データ送信時刻の直前になるように音声サンプル期間の位相を調整することで、遅延時間を短くすることができる。無線端末200は、例えば、コーデック処理の終了時刻が基本周期の開始時刻になるように、音声サンプル期間の位相を調整することで、遅延時間を短くすることができる。即ち、無線端末200は、基本周期の開始時刻から、コーデック時間及び音声サンプル期間を引いた時刻を、音声サンプル期間の開始時刻とする。
 (変形例1)
 図12は、基本周期と優先データとの関係の例を示す図である。図12の例では、1つの基本周期内で優先データの送受信が時間ΔTで1回行われている。即ち、アクセスポイント100と無線端末200との間で、上り優先データ、下り優先データ、下り優先マルチキャストデータの送受信が、時間ΔTで行われている。
 例えば、上り優先データの申請は、基本周期の最初に行われる。従って、無線端末200では、上り優先データについての申請情報を送信してから最大で時間ΔT待機してから、当該上り優先データを送信することになる。優先データを送信するまでの待機時間が長くなると、例えば、優先データを使用するサービス(電話等)の品質が低下する。よって、優先データを送信するまでの待機時間は、短いほうが望ましい。変形例1では、優先データを送受信する時間を複数に分割する。
 図13は、変形例1における基本周期と優先データとの関係の例を示す図である。図13の例では、1つの基本周期内で優先データの送受信が時間ΔT/2で2回行われている。図13の例では、アクセスポイント100は、それぞれの優先データの送受信の最初に、すべての無線端末200に対して申請要求を送信する。基本周期内で2回に分割して、優先データが送信されることで、優先データの待機時間が最大で時間ΔT/2となり、図12の例に比べて、待機時間が減少する。優先データの送受信を2回に分割する場合、基本周期が100msであるとすると、優先データの送受信が50ms間隔で開始されるようにする。ベストエフォートデータの送受信は、優先データの送受信が行われていない時間に割り当てられる。
 ここでは、基本周期内で、優先データの送信時間を2回に分割しているが、2回以上に分割されてもよい。優先データの送信時間の分割数の情報は、例えば、基本情報に含まれて、アクセスポイント100から無線端末200に通知されてもよい。
 図14は、変形例1における無線端末における音声サンプル期間、コーデック時間、アクセスポイントにおける音声データ送信時間の例を示す図である。図14の上側の図は、図11に示すものと同様であり、比較例である。図14の上側の図は、図12のように、優先データの送受信時間が割り当てられた場合における音声サンプル期間、コーデック時間、音声データ送信時間の関係を示す。図14の下側の図は、図13のように、優先データの送受信時間が割り当てられた場合における音声サンプル期間、コーデック時間、音声データ送信時間の関係を示す。図14の上側の図における、電話の遅延時間をDとすると、図14の下側の図では、電話の遅延時間は、ほぼD/2となる。即ち、1つの基本周期内で優先データの送受信を2回に分割することで、電話の遅延時間をほぼ半分にすることができる。
 (変形例2)
 変形例2では、アクセスポイント100に接続される無線端末200を複数のグループに分けて、基本周期内における優先データの大きさを小さくすることで、待機時間の減少を図る。
 図15は、変形例2における基本周期と優先データとの関係の例を示す図である。図15の例では、無線端末200はグループA及びグループBに分けられる。各無線端末200は、グループA又はグループBに所属する。各無線端末200がグループAに属するか、グループBに属するはどのように決定されてもよい。半分の無線端末200がグループAに所属し、半分の無線端末200がグループBに所属する。アクセスポイント100は、グループAの基本周期の位相と、グループBの基本周期の位相を半周期分(1/2周期分)ずらす。即ち、アクセスポイント100は、グループAの基本周期(Pa1)の開始時刻と、グループBの基本周期(Pb1)の開始時刻とが、基本周期の1/2の時間、ずれるようにする。ここでは、アクセスポイント100は、無線端末200を、2つのグループに分けているが、3つ以上のグループに分けてもよい。n個のグループに分けられた場合、アクセスポイント100は、各グループの基本周期の開始時刻が基本周期の1/nの時間ずつずれるようにする。無線端末200が所属するグループは、例えば、基本情報によって、アクセスポイント100から各無線端末200に通知される。図15の例では、各基本周期における優先データの送受信時間は、図12の例における優先データの送受信時間のほぼ1/2となる。グループAの無線端末200とアクセスポイント100との間で、データの送受信が行われている間、グループBの無線端末200とアクセスポイント100との間で、データの送受信が行われない。グループBの無線端末200とアクセスポイント100との間で、データの送受信が行われている間、グループAの無線端末200とアクセスポイント100との間で、データの送受信が行われない。予定表については、グループAに対する予定表と、グループBに対する予定表とが作成される。
 無線端末200が複数のグループに分割されることで、1つの基本周期における優先データの送受信時間が減少し、優先データ送信のための待機時間が減少する。
 (実施形態の作用、効果)
 アクセスポイント100は、無線接続されるすべての無線端末200に対し、申請要求を送信する。申請要求を受信した無線端末200は、送信予定のデータの情報(申請情報)をアクセスポイントに通知する。アクセスポイント100は、無線端末200から受信した申請情報、上位装置から無線端末200宛のデータ等に基づいて、1つの基本周期についての予定表を作成する。アクセスポイント100は、優先データの予定表およびベストエフォートデータの予定表を作成する。アクセスポイント100は、予定表を無線端末200に送信する。アクセスポイント100及び無線端末200は、予定表に基づいて、優先データ及びベストエフォートデータを送受信する。
 アクセスポイント100が、無線端末200との間で送受信するデータを把握して、予定表を作成することで、アクセスポイント100と無線端末200との間の帯域使用効率が向上する。
 従来の方式では、上下帯域比率が固定化もしくは半固定化されていた。本実施形態の通信方式では、上下帯域比率が固定化されず、アクセスポイント100は、データ量に応じて上下帯域比率を動的に変更できるため、帯域使用効率が向上する。
      100     アクセスポイント
      102      CPU
      104      メモリ
      106      WiFiインタフェース
      108      NIC
      110      アンテナ
      200     無線端末
      202      CPU
      204      メモリ
      206      WiFiインタフェース
      208      ユーザインタフェース
      210      アンテナ

Claims (5)

  1. 1以上の無線端末によって無線接続される無線中継装置であって、
     所定の周期で送信予定のデータのサイズ、前記データの優先度を通知することを前記無線端末に対し要求する申請要求を、前記無線端末に送信し、前記申請要求に対する応答を前記無線端末から受信する無線通信部と、
     前記応答に含まれる前記データのサイズおよび前記データの優先度に基づいて、前記周期で前記データを送信する時間を割り当てる予定情報を生成する制御部と、を備え、
     前記制御部は、前記予定情報を前記無線端末に送信するように前記無線通信部を制御し、前記予定情報に基づいて、前記無線端末との間のデータ送受信制御を行う、
    無線中継装置。
  2.  前記制御部は、前記周期を複数に分割し、それぞれの領域に前記優先度の高いデータを送受信する領域を設けるように前記予定情報を作成する
    請求項1に記載の無線中継装置。
  3.  前記制御部は、前記無線端末を複数のグループに分割し、グループ毎に互いに位相が異なる周期を設定して予定情報を作成する
    請求項1に記載の無線中継装置。
  4. 無線中継装置に無線接続する無線端末であって、
     前記無線中継装置から、所定の周期で送信予定のデータのサイズ、前記データの優先度を通知することを要求する申請要求を受信する無線通信部と、
     前記周期で送信予定のデータのサイズおよび前記データの優先度を前記申請要求に対する応答として作成する制御部と、を備え、
     前記無線通信部は、前記応答を前記無線中継装置に送信し、前記無線中継装置から前記周期で前記データを送信する時間を割り当てる予定情報を受信し、前記予定情報に基づいて、前記無線中継装置との間でデータを送受信する
    無線端末。
  5. 1以上の無線端末が無線接続する無線中継装置が、
     所定の周期で送信予定のデータのサイズ、前記データの優先度を通知することを前記無線端末に対し要求する申請要求を、前記無線端末に送信し、前記申請要求に対する応答を前記無線端末から受信し、
     前記応答に含まれる前記データのサイズおよび前記データの優先度に基づいて、前記周期で前記データを送信する時間を割り当てる予定情報を作成し、
     前記予定情報を前記無線端末に送信し、
     前記予定情報に基づいて、前記無線端末との間でデータを送受信する
    無線中継方法。
PCT/JP2013/063976 2013-05-20 2013-05-20 無線中継装置、無線端末、無線中継方法 WO2014188499A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/063976 WO2014188499A1 (ja) 2013-05-20 2013-05-20 無線中継装置、無線端末、無線中継方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/063976 WO2014188499A1 (ja) 2013-05-20 2013-05-20 無線中継装置、無線端末、無線中継方法

Publications (1)

Publication Number Publication Date
WO2014188499A1 true WO2014188499A1 (ja) 2014-11-27

Family

ID=51933090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063976 WO2014188499A1 (ja) 2013-05-20 2013-05-20 無線中継装置、無線端末、無線中継方法

Country Status (1)

Country Link
WO (1) WO2014188499A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020258301A1 (zh) * 2019-06-28 2020-12-30 华为技术有限公司 一种通信方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050467A1 (en) * 2006-10-27 2008-05-02 Mitsubishi Electric Corporation Data communication method, communication system and mobile terminal
JP2009152880A (ja) * 2007-12-20 2009-07-09 Nippon Telegr & Teleph Corp <Ntt> 無線通信方法及び無線通信システム
JP2011101314A (ja) * 2009-11-09 2011-05-19 Hitachi Kokusai Electric Inc 無線通信システム
JP2011135577A (ja) * 2009-12-23 2011-07-07 Intel Corp グループリソース割り当てシステム及び技術
WO2011112741A1 (en) * 2010-03-09 2011-09-15 Qualcomm Incorporated Multi-user uplink communication using edca with polling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050467A1 (en) * 2006-10-27 2008-05-02 Mitsubishi Electric Corporation Data communication method, communication system and mobile terminal
JP2009152880A (ja) * 2007-12-20 2009-07-09 Nippon Telegr & Teleph Corp <Ntt> 無線通信方法及び無線通信システム
JP2011101314A (ja) * 2009-11-09 2011-05-19 Hitachi Kokusai Electric Inc 無線通信システム
JP2011135577A (ja) * 2009-12-23 2011-07-07 Intel Corp グループリソース割り当てシステム及び技術
WO2011112741A1 (en) * 2010-03-09 2011-09-15 Qualcomm Incorporated Multi-user uplink communication using edca with polling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020258301A1 (zh) * 2019-06-28 2020-12-30 华为技术有限公司 一种通信方法及装置

Similar Documents

Publication Publication Date Title
JP6545912B2 (ja) メッセージ送信方法及びユーザ機器
US20110019628A1 (en) Method and Apparatus for Scheduling Request
CN104160741A (zh) 提高无线网络中的效率
JP7079793B2 (ja) 測定方法および装置
JP2010062846A (ja) 無線通信制御方法、無線通信基地局、無線通信端末および無線通信システム
EP2642808A1 (en) Wireless Communication Method And Wireless Communication System
CN113645155B (zh) 具有基于定时可预测性的冲突解决方案的智能无线电仲裁器
WO2022143176A1 (zh) 业务传输方法、装置及***
JP4021396B2 (ja) 移動体通信システム、移動体通信方法、基地局及び移動機
WO2016044981A1 (zh) 一种上行业务数据传输的方法、装置
JP5494382B2 (ja) アクセスポイント、通信制御方法、プログラム、及び記録媒体
US20180160459A1 (en) Method and apparatus for cooperative microsleep operation
TW201208317A (en) Methods and apparatus to communicate data between a wireless network and a mobile station
WO2014188499A1 (ja) 無線中継装置、無線端末、無線中継方法
JP2011035600A (ja) 無線通信システム
JP4148272B2 (ja) 無線アクセス制御装置
JP5201498B2 (ja) 無線通信装置及び無線通信方法
JP2013197653A (ja) 無線伝送システム
WO2013107004A1 (en) Method and apparatus for facilitating concurrent occupation of a channel
US9204458B2 (en) Method and apparatus for providing fairness-assured quality of service in contention-based wireless network
JP2007074214A (ja) 無線パケットスケジューリング拡張方法および無線基地局装置
JP5655965B2 (ja) 無線通信装置、通信制御方法、プログラム、及び記録媒体
JP2014099743A (ja) 通信装置、通信装置の制御方法、および、プログラム
WO2024034050A1 (ja) アクセスポイント
WO2022033297A1 (zh) 一种信道接入方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP