WO2014187346A1 - 传输随钻井下测量数据至地面的数据传输***及方法 - Google Patents

传输随钻井下测量数据至地面的数据传输***及方法 Download PDF

Info

Publication number
WO2014187346A1
WO2014187346A1 PCT/CN2014/078170 CN2014078170W WO2014187346A1 WO 2014187346 A1 WO2014187346 A1 WO 2014187346A1 CN 2014078170 W CN2014078170 W CN 2014078170W WO 2014187346 A1 WO2014187346 A1 WO 2014187346A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
memory
drilling
data
control circuit
Prior art date
Application number
PCT/CN2014/078170
Other languages
English (en)
French (fr)
Inventor
曾义金
张卫
李继博
倪卫宁
陆黄生
李三国
邓大伟
朱祖扬
郑奕挺
李新
李永杰
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油工程技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201310193918.8A external-priority patent/CN104179495A/zh
Priority claimed from CN201310191269.8A external-priority patent/CN104179497B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油工程技术研究院 filed Critical 中国石油化工股份有限公司
Priority to GB1521799.5A priority Critical patent/GB2533044B/en
Priority to US14/892,842 priority patent/US9739141B2/en
Priority to CA2912958A priority patent/CA2912958C/en
Publication of WO2014187346A1 publication Critical patent/WO2014187346A1/zh
Priority to CN201410798838.XA priority patent/CN105089644B/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/26Storing data down-hole, e.g. in a memory or on a record carrier

Definitions

  • the present invention relates to the field of oil and gas development and exploration, and more particularly to a data transmission system and method for transmitting measurement data along a well to a surface.
  • the method of transmitting the bottom hole signal to the ground is divided into a real-time transmission mode and a storage transmission mode.
  • the real-time transmission method transmits the data measured while drilling to the ground in time through various wired or wireless data transmission methods. This method is very important for guiding the drilling, especially the geosteering during drilling.
  • various data transmissions are currently difficult to meet the requirements of timely and effective transmission of large amounts of data to the ground.
  • the storage type means that the data while drilling is stored directly in the measuring tool. When the drilling while the instrument is mentioned in the cellar, the data is read out through the cable. Data collection, but not real-time.
  • Document 2 (“New Technology for Data Transmission While Drilling", Petroleum Instruments, 2004, 18 (6): 26-31.) discloses the following:
  • the fiber transmission method is to drive the fiber with the protective layer into the well, and the fiber From the bottom while drilling instrument is connected to the ground, and then the transmission of the data while drilling through the optical fiber. Since the function of the fiber is the same as that of the cable, the same problem arises.
  • Literature 3 (“Remote Direction and Prospects of Rotary Steering Drilling Technology". Petroleum Machinery, 2006, 34 (4): 66-70)
  • the drill collar transmission method is to install the conductor in the drill collar to make it a part of the drill collar.
  • the special connection module assembled on the drill pipe joint makes the entire drill string electrically Signal channel, which in turn enables data transmission.
  • Wireless transmission methods include mud (ie drilling fluid) pulses, electromagnetic waves and sound waves.
  • mud pulse and electromagnetic wave mode have been applied to actual LWD production, and the mud pulse type is the most widely used.
  • Patent 1 (“High-speed transmission launcher for measurement while drilling", publication number: 201020298582.3) discloses the following:
  • the mud pulse signal generator is mainly composed of bleeder or throttling, when the valve is opened and closed. Because of the change in the flow rate of the drilling fluid flowing into the annulus in the drill string, it will bow!
  • the drilling fluid pressure waves in the drill collar produce a series of pulses that can be transmitted to the surface by loading and closing the valve to load data onto these buffers.
  • Patent 2 (“A method and system for transmitting electromagnetic wave signals measured while drilling", publication number: 022022769A) discloses an electromagnetic wave while drilling measurement method using a formation as a transmission medium or a drill string as a transmission conductor. Specifically, the downhole instrument modulates the measured data onto the electromagnetic wave carrier, is emitted by the electromagnetic wave transmitter downhole, and is transmitted to the ground through various channels, and then the ground detector detects the electromagnetic wave signal modulated by the measurement data, and processes The circuit demodulates the measured data in the electromagnetic wave signal.
  • Document 3 Application of Acoustic Transmission Test Technology in Oilfields. Measurement and Control Technology, 2005, 24 (11): 76278) is the use of sound waves or seismic waves to transmit signals through drill pipes or formations.
  • the acoustic wave transmitting system is mounted on the drill pipe, and the system modulates various measurement data onto the acoustic wave vibration signal, and the acoustic wave vibration signal is transmitted to the ground along the drill pipe, and is received by the sound wave receiving system installed in the mantle, and the measurement data is received from The acoustic vibration signal is demodulated.
  • Acoustic wave transmission and electromagnetic wave transmission do not require mud circulation, and the implementation method is simple and low in cost. The disadvantage is that the attenuation is too fast, and the environment is greatly affected.
  • the low-intensity signal generated by the wellbore and the sound waves and electromagnetic waves generated by the drill collar equipment make the detection signal very difficult and the transmission speed is slow.
  • One of the technical problems to be solved by the present invention is to provide a data transmission system that transmits data to the ground with the measurement data under the well while the transmission speed is fast and the cost is low.
  • the present invention provides a data transmission system for transmitting measurement data along a well to a ground, comprising: a drill string mounted with a logging while drilling measurement tool; and a while drilling disposed on the drill string Throw a short section that holds a micro memory.
  • the drilling while drilling short section includes: a housing that is disposed outside the drill string and forms a clearance space therebetween; a control circuit disposed in the gap space for receiving and transmitting the measurement while drilling The underarm measurement data measured by the well measurement tool; and a wireless transceiver connected to the control circuit, configured to write the downhole measurement data received by the control circuit into the micro memory;
  • the drilling-while-drilling short section releases the micro-memory loaded with the downhole measurement data to the ground under the action of the micro-memory release command sent by the control circuit.
  • a micro memory release hole is disposed on a sidewall of the housing of the while-drilling throwing nipple, wherein the levitation memory loaded with the downhole measurement data is released to the In the annular space between the drill string and the wellbore, the micro-memory is cycled back to the ground following the mud.
  • the while-drilling throwing peg further comprises: a power mechanism connected to the control circuit, which acts under the action of a micro-memory release command sent by the control circuit; and a memory release mechanism capable of Holding the sign memory in a first state ⁇ and switching to a second state under the action of the power mechanism, such that a sign memory loaded with the underarm measurement data can be released to the In the annular space.
  • the micro memory release mechanism includes a micro memory temporary storage compartment, and the micro memory temporary storage compartment can temporarily store the measurement data loaded with the underarm when the micro memory release mechanism is in the first state. And storing, when the memory release mechanism is in the second state, rotating the buffer memory to be in communication with the micro memory release hole under the action of the power mechanism.
  • the while-drilling throwing peg further includes a micro-memory storage compartment disposed in the interstitial space, the upper end of which is in communication with the drill string, and the lower end is temporarily connected to the micro-memory, such that The recovery memory in the micromemory storage compartment can enter the recovery memory buffer under the action of drilling fluid from the drill string.
  • the wireless transceiver device includes a data while drilling while being connected to the control circuit, and a data line for connecting the data while drilling, and is disposed in the micro memory storage bay.
  • the data while drilling is written to the antenna, and the data while drilling while being written to the antenna is set to perform writing of downhole measurement data only for one micro memory stored in the micro memory storage compartment at a time.
  • the while-drilling data write antenna is disposed in the micro-memory storage compartment proximate to the micro The area of the memory scratch compartment.
  • the power mechanism includes a motor and a speed reducer.
  • the micro-memory release mechanism further includes: a drill collar flow passage configured to communicate with the micro-memory storage compartment only in the second state such that the drill collar fluid is circulated The drill collar fluid can enter the micro memory temporary buffer to release the micro memory in the micro memory temporary storage compartment.
  • the drilling fluid flow passage is formed as a flow tube with a branch pipe, the branch pipe being in communication with the micro-memory release storage compartment.
  • the micro memory release mechanism is rotated 90 degrees relative to the first state in the second state.
  • control circuit sends a micro memory release instruction periodically.
  • the while-drilling throwing stub further includes: a signal receiving antenna coupled to the control circuit, receiving a register memory release command from the ground, and transmitting the log memory release command to the control In the circuit.
  • the signal receiving antenna is an RF0 tag antenna that receives a micro memory release command from an RFID tag on the ground.
  • the method further includes: a ground receiving device that receives and processes the underarm measurement data in the micro memory.
  • the micro-memory is formed as a sphere or cylinder having a diameter in the range of 5 mm to 50 mm and a thickness in the range of 0.1 mm to 50 mm.
  • the amount of data that the micromemory can load is in the range of 1 bit to 100 megabits.
  • a method of transmitting underarm measurement data using the system described above comprising: placing a plurality of micro memories into a dart shot while drilling; receiving and transmitting along with the control circuit Drilling logging measurement tool measured downhole measurement data; writing downhole measurement data of the control circuit to the memory through a wireless transceiver; under the action of the memory release command sent by the control circuit, The drill throws a short section to release the log memory loaded with the downhole measurement data to the ground.
  • a data transmission system for transmitting measurement data while drilling under the armpit to the ground, comprising: a drill string mounted with a logging while drilling measuring tool; being sleeved on the outside of the drill string and a housing having a gap space formed therein; a control circuit disposed in the gap space for receiving and transmitting downhole measurement data measured by the logging while drilling measurement tool; and wirelessly electrically connected to the control circuit Transceiving device for The downhole measurement data received by the control circuit is written into the micro memory via the wireless transceiver; wherein the micro memory loaded with the downhole measurement data is configured to be capable of being drilled by the drill collar within the drill string It is released to the ground through the water eye of the drill bit connected to the drill string.
  • the method further includes: a ground throwing device for throwing the micro memory from the ground into the interior of the drill string.
  • the micro memory is further loaded with a ground control command
  • the wireless transceiver transmits the ground control command to the control when the micro memory carrying the ground control command is passed through the wireless transceiver a circuit, and wherein the control circuit transmits the acquired ground control command to the downhole measurement tool.
  • the micro-memory is formed as a sphere or cylinder having a diameter in the range of 5 mm - 20 mm and a thickness in the range of 0.1 mm - 20 mm.
  • the amount of data that the micromemory can load is within a range of 1 bit to 100 megabits.
  • a method for transmitting underarm measurement data using the system described above comprising: receiving and transmitting measurement of underarm measurement data by a logging while drilling measurement tool through a control circuit; Inserting a plurality of micro memories in the drill string; writing the downhole measurement data received by the control circuit to the micro memory via the wireless transceiver through a wireless transceiver, so that the measurement data of the underarm is loaded
  • the micro-memory can be released into the ground through the drilling fluid in the drill string from the water eye of the drill bit connected to the drill string.
  • the data transmission system of the invention transmits the measurement data to the ground along with the drilling, and the micro-memory written with the downhole measurement data is provided to the ground through the drilling-drilling short section connected with the measurement while drilling tool, thereby uploading the downhole measurement data. To the ground.
  • This data transmission system greatly increases the data transmission rate and communication reliability, and since only mud is used as the transmission medium of the micro-memory, the cost is not required, and the normal drilling process is not affected.
  • drawing - 1 is a schematic diagram of a data transmission system for transmitting measurement data of a submerged underarm to the ground according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a throwing short section while drilling according to an embodiment of the present invention
  • Figure 3 is an enlarged schematic view showing a region A
  • FIG. 4 is a schematic diagram of a micro memory rotation release mechanism in a first state according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a micro memory rotation release mechanism in a second state according to an embodiment of the present invention. An enlarged view of the area;
  • Figure 7 is a diagram of a data transmission system for transmitting measurement data downhole to the surface in accordance with another embodiment of the present invention.
  • Figure 1 is a schematic illustration of a data transmission system for transmitting measurement data of a submerged underarm to the surface in accordance with an embodiment of the present invention.
  • the data transmission system includes: a drill string 40 connected to the drilling truss 20 on the ground, on which a logging while drilling measuring tool 65 is mounted; and a drilling while drilling on the drill string 40 Section 71, which houses the micro memory 43.
  • the drill string 40 includes a longitudinal fluid passage 60, the outlet of which is in communication with the water eye 51 of the drill bit 50.
  • a drilling fluid is passed through the longitudinal fluid passage 60 for lubricating the drill bit 50 and flushing the cuttings from the water eye 51.
  • an annular space 201 is formed between the drill string 40 and the well wall 70.
  • the drilling rig 40 placed on the ground and the drilling rig 30 disposed at the end of the drill string 40 (close to the mantle end) drive the drill string 40 to rotate at a high speed, and the drill string 40 drives the drill bit 50 to quickly Drilling underground, drilling a hole in the ground. Subsequently, the drill bit 50 cuts into different geological formations in the ground. After the drill bit 50 is cut into different formations, the under-drilling measurement tool 65 disposed near the drill bit 51 measures different information in the geology.
  • the radio transceiver 63 in the Drilling Drill Shorts 71 writes the acquired downhole measurement data into the micro memory 43, and the micro memory 43 loaded with the downhole measurement data is released to the ground by the Drilling Drill 7.
  • 2 is a schematic view showing the structure of a throwing stub 71 while drilling according to an embodiment of the present invention.
  • the while-drilling throwing stub 71 includes: a housing that is disposed outside the drill string 40 and forms a gap space therebetween; a control circuit 901 disposed in the gap space for receiving and transmitting The downhole measurement data measured by the drill logging measurement tool 65; the wireless transceiver connected to the control circuit 901 for writing the underarm measurement data received by the control circuit 901 into the acquisition memory.
  • the drilling while drilling short section 71 releases the micro memory loaded with the downhole measurement data to the ground under the action of the micro memory release command sent by the control circuit 901.
  • the housing is fixedly fitted to the drill string 40 by a drill collar 701 and a drill collar 93.
  • a micro memory release aperture 46 is disposed on the sidewall of the housing, wherein the memory loaded with the measured data is released through the micro memory release aperture 46 to a ring between the drill string 40 and the well wall 70 (the formation 101) In space 201, the micro-memory follows the mud loop back to the ground.
  • the control circuit 901 receives the underarm measurement data of the logging while drilling measurement tool 65 via the LWD data line 601.
  • the drilling while drilling short section 71 further includes: a power mechanism connected to the control circuit 901, which operates under the action of the memory release command sent by the control circuit 901; and a micro memory release mechanism 47 capable of being held in the first state a micro memory (refer to FIG. 4) and switched to a second state under the action of the power mechanism, so that the micro memory loaded with the underarm measurement data can be released into the annular space 201 via the memory release hole 46 (refer to FIG. 5 or FIG. 6).
  • a power mechanism connected to the control circuit 901, which operates under the action of the memory release command sent by the control circuit 901
  • a micro memory release mechanism 47 capable of being held in the first state a micro memory (refer to FIG. 4) and switched to a second state under the action of the power mechanism, so that the micro memory loaded with the underarm measurement data can be released into the annular space 201 via the memory release hole 46 (refer to FIG. 5 or FIG. 6).
  • the memory release mechanism 47 includes a micro memory temporary storage compartment 48.
  • the micro memory temporary storage compartment 48 can temporarily store the micro memory loaded with the downhole measurement data.
  • the micro memory temporary storage compartment 48 is rotated by the power mechanism to communicate with the micro memory release hole 46 (refer to FIG. 5 or FIG. 6).
  • the while-drilling throwing stub 71 further includes: a micro-memory storage compartment 42 disposed in the interstitial space, the upper end of which is in communication with the drill string 40, and the lower end is in communication with the micro-memory temporary storage compartment 48 such that the micro-memory storage compartment 42 is micro-
  • the reservoir can enter the micromemory temporary storage compartment 48 under the action of drilling fluid 801 from the drill string 40.
  • a filter 401 and a capillary drainage tube 41 for circulating drilling fluid 801 are disposed between the micro-storage storage compartment 42 and the drill string 40.
  • the filter 40 is capable of filtering out impurities in the drilling fluid 80 such that the drilling fluid flowing through the micro-memory storage compartment 42 does not damage the micro-memory.
  • the micro memory 43 Since the micro memory 43 does not go out through the water eye 51, the micro memory 43 composed of the transceiver circuit, the storage circuit, and other subsidiary mechanisms can be made very small.
  • the micro memory 43 can be formed into a sphere or cylinder having a diameter in the range of 5 mm to 50 mm and a thickness in the range of 0.1 mm to 50 mm.
  • the micro memory 43 can The amount of data stored is in the range of 1 bit and 100 megabits.
  • the levitation memory 43 in this embodiment is designed as a sphere having a diameter of only 1.2 cm and a thickness of only 0.2 cm.
  • the 000 spheres are only about 226 cm3 in volume and can be loaded well on the tool while drilling.
  • each of the micro memories in this embodiment can load data of SKByies, so that a total of SMBytes of data can be loaded. Compared with the mud pulse transmission, the amount of data that can be uploaded to the ground in the embodiment of the present invention is large.
  • micro memories 43 can be increased or decrease the number of micro memories according to the amount of data to be uploaded. It is also possible to design the micro memory 43 to be larger, so that higher traffic can be achieved. Alternatively, it is also possible to increase the transmission capacity of data by cascading a plurality of while-drilling short sections.
  • the working mode of the micro memory it can be either a power supply mode or a powerless mode, and is not limited thereto.
  • the micro-memory release mechanism 47 further includes: a drill collar turbulence passage 49 that is configured to communicate with the micro-memory storage compartment 42 only in the second state such that the flow through the drilling fluid passage 49 The drilling fluid can enter the micro-memory temporary storage compartment 48 to release the micro-memory within the micro-memory temporary storage compartment 48.
  • the drilling fluid overflow passage 49 is formed as a flow tube with a branch pipe, and the branch pipe communicates with the micro-storage release storage tank 48.
  • the drilling fluid overflow passage 49 can be formed as a structure in which the branch pipe is perpendicular to the main pipe and is substantially T-shaped. Further, the micro memory release mechanism 47 is rotated by 90 degrees with respect to the first state in the second state.
  • the wireless grazing device 63 includes a data while drilling while writing data line 44 connected to the control circuit 901, and a data line 45 connected to the data while being drilled, which is disposed in the micro memory storage compartment 48.
  • the drill data is written to the antenna 45, and the data while drilling write antenna 45 is designed to perform writes of downhole measurement data only for one micro memory stored in the micro memory storage bay 48 at a time.
  • the data while drilling data writing antenna 45 is disposed in an area of the micro memory storage compartment 42 adjacent to the micro memory temporary storage compartment 48.
  • the wireless transceiver 63 can also use other wireless communication transmission methods to write downhole measurement data to the micro memory, such as WiFi, Bluetooth or Zigbee. Since the transmission speed of the wireless communication transmission method is many orders of magnitude higher than the speed of the mud pulse, the electromagnetic wave, and the sound wave transmission, it is possible to ensure fast and accurate transmission of the data under the actual data.
  • the same downhole measurement data can also be written to the plurality of acquisition memories 43.
  • the power mechanism includes: a motor 511 connected to the control circuit 901, which generates rotational power according to the micro memory release command of the control circuit 901; is connected to the motor 511, and is disposed at the lower end of the micro memory release mechanism 47.
  • the speed reducer 501 cooperates with the motor 511 to rotate the micro memory release mechanism 47 by a certain angle to switch from the first state to the second state.
  • control circuit 901 controls the execution of the motor 511 via the motor control signal line 52. Further, the battery 92 disposed on the side of the control circuit 901 supplies power to the motor 511 and the control circuit 901 through the motor power supply line 53 and the control circuit power supply line 9, respectively.
  • the while-drilling throwing stub 71 further includes: a signal receiving antenna 301 coupled to the control circuit 90 (having a seal ring 73 at each end thereof) that receives a micro-memory release command from the mantle And transferring the micro memory release instruction to the control circuit 901.
  • the signal receiving antenna is an RFID tag antenna that receives a micro memory release command from an RFID tag on the ground.
  • the control program can be preloaded in control circuit 901 to cause control circuit 901 to periodically transmit a micro memory release command.
  • the staff or ground throwing device places an information tag, such as an RFID tag, under the arm.
  • the signal receiving antenna 301 acquires a micro memory release command from the RFID tag.
  • the control circuit 901 After receiving the micro memory release command from the signal receiving antenna 301, the control circuit 901 performs the data while drilling the micro memory 43 in the micro memory storage compartment 42 by using the data while drilling the data line 44 and the data while being written to the antenna 45. Write operation.
  • the micro-memory stored in the levitation memory storage compartment 42 is pushed downward by the pressure generated by the drilling fluid passing through the filter 401 and the draft tube 41, thereby pushing the micro-memory 43 loaded with the downhole measurement data to the micro-memory release mechanism 47.
  • the memory is temporarily stored in the memory 48 (the first state shown in FIG. 4).
  • a part of the drilling fluid flow 801 in the drill string 40 passes through the filter 401 disposed on the side wall of the casing, flows through the capillary drainage tube 41 connected to the filter 401 to generate capillary pressure, and thus The bottommost micromemory in the memory storage compartment 42 is pushed into the micromemory temporary storage compartment 48.
  • micro-memory release mechanism 47 is rotated by an angle of the power mechanism to align its internal micro-memory temporary storage compartment 48 with the micro-memory release opening 46.
  • control circuit 901 controls the motor 51 1 to generate power, and the motor 51 1 cooperates with the speed reducer 501 to rotate the micro memory release mechanism 47 by 90 degrees in a clockwise direction (eg, The arrow z in Fig. 4, in turn, aligns the inner portion of the micro-memory release buffer 48 with the micro-memory release aperture 46 (as shown in Figure 5).
  • the drilling fluid stream 80 in the drill string 40 enters the micro-memory temporary storage compartment 48 through the filter 401, the capillary drainage tube 411, the micro-memory storage compartment 42, and the drilling fluid overflow passage 49, and the resulting pressure can be used to recover the reservoir 43.
  • the micro-memory release aperture 46 is pushed into the annular space 201 (as shown in Figure 6) such that the micro-memory 43 rotates back to the ground following the mud cycle.
  • the control circuit 901 controls the operation of the motor 511.
  • the memory release mechanism 47 is reversed. Rotate (here counterclockwise) 90 degrees to prepare for the one-time memory release operation.
  • the data transmission system of the embodiment of the present invention transmits the measurement data to the ground along with the drilling, and releases the recovery code loaded with the downhole measurement data to the ground through the drilling and drilling short section connected with the measurement while drilling tool. , and then upload the well T measurement data to the ground.
  • This data transmission system greatly increases the data transmission rate and communication reliability, and since only mud is used as the transmission medium of the micro-memory, no additional cost is required, and the normal drilling process is not affected.
  • Figure 7 is a schematic illustration of a data transmission system for transmitting measurement data downhole to the surface in accordance with another embodiment of the present invention.
  • the data transmission system includes: a drill string 40 connected to the drilling derrick 20 on the ground, on which a logging while drilling measuring tool 65 is mounted; a casing that is disposed outside the drill string 40 and forms a clearance space therebetween; a control circuit in the interstitial space for receiving and transmitting downhole measurement data measured by the logging while drilling measurement tool 65; a radio transceiver 62 electrically coupled to the control circuit for receiving the downhole received by the control circuit
  • the measurement data is written into the micro memory 43 via the wireless transceiver 62; a ground throwing device 11 for throwing the micro memory from the ground into the interior of the drill string 40.
  • the drill string 40 includes a longitudinal fluid passage 60, the outlet of the longitudinal fluid passage 60 and the water eye 51 of the drill bit 50 Connected.
  • a drilling fluid is passed through the longitudinal fluid passage 60 for lubricating the drill bit 50 and flushing the cuttings from the water eye 51.
  • an annular space 201 is formed between the drill string 40 and the well wall 70.
  • the micro-memory 43 loaded with the underarm measurement data is configured to pass through the water eye 51 of the drill bit 50 connected to the drill string 40 under the action of drilling fluid in the longitudinal fluid passage 60, and then released via the annular space 20. To the ground.
  • the following section details how the system transmits downhole measurement data to the surface.
  • the control circuit connected to the well-free measurement tool 65 is used to obtain the downhole measurement data measured by the under-drill measurement tool 65 by wire transmission.
  • the ground throwing device 11 throws the micro memory 43 from the ground into the fluid passage 60 of the drill string 40.
  • the ground throwing device 11 can throw the B-inch memory 43 from the ground into the fluid channel 60 of the drill string 40, and the number of the memory 43 is at least one, because continuous data transmission.
  • the wireless transceiver unit 62 When the micro memory 43 passes through the wireless transceiver unit 62, the wireless transceiver unit 62 writes the downhole measurement data in the control circuit to the event memory 43 by wireless communication.
  • the micro memory 43 can transmit a control command from the ground to the control circuit through the wireless transceiver 62 in addition to the write operation of the downhole measurement data when passing through the wireless transceiver 62.
  • the micro memory 43 is loaded with ground control commands before being thrown into the fluid passage 60 of the drill string 40.
  • the radio transceiver 62 transmits the control command to the control circuit connected to the radio transceiver 62 by wireless communication.
  • the control circuit then transmits the acquired ground control commands to the downhole measurement tool 65. This ensures that ground control commands are transmitted to the armpit in time to guide the drilling and to achieve data interaction between the drilling ground and the well.
  • the short-distance wireless transmission method described above preferably includes a wireless transmission protocol of WiFi, Bluetooth, Zigbee, and RFID. Since the transmission rate of the commonly used short-range wireless transmission mode can reach above 10 OKMtsZs, the transmission rate is compared with the mud pulse and the electromagnetic wave. The sound wave transmission is many orders of magnitude higher, so that the data transfer speed can be greatly improved.
  • the micro memory 43 includes a transceiver circuit and a memory circuit.
  • the amount of data that the micro memory can load is in the range of 1 bit - 100 megabits.
  • the transmission time of the data transfer by the micro memory 43 to the wireless transceiver device 62 can be equivalent to the OKS (about 3 hours) used for the mud pulse transmission. If the continuous throwing mode is used for 1 minute as the fixed time interval, the data transmission efficiency of the wireless transceiver device 62 is equivalent to several times or even several hundred times of the mud pulse transmission efficiency, and the transmission mode affects the normal drilling. It is small, so it can guarantee the fast and accurate transmission of real-time data.
  • the micro-memory 43 loaded with the downhole measurement data is transported downward with the drilling fluid in the fluid passage 60 of the drill string 40, passing through the drill string 40 from the water eye 51 of the drill bit 50, into the drill string 40 and the wall. In the annular space 20 formed between 70, finally, it follows the rotation of the mud to return to the ground.
  • the memory 43 is formed into a sphere or a cylinder having a diameter in the range of 5 mm to 20 mm and a thickness in the range of 0.1 mm to 20 mm. .
  • the inventors integrated all the circuits required for the micro memory 43 into a package by using a system-level packaging technique to realize a package of 7 mm diameter.
  • the designed reservoir 43 is made small enough to pass completely through the water eye 51 of the drill bit 50, and its packaging process can withstand the high pressure, high temperature environment of the underarm.
  • the operation mode of the micro memory 43 may be either a power supply mode or a powerless mode, which is not limited thereto.
  • the underarm data is not modulated onto the mud pulse wave, which greatly increases the data transmission speed. Moreover, since the ground throwing device 11 periodically registers the memory 43, thus ensuring continuous output and real-time performance of the underarm measurement data.
  • the terrestrial receiving device 12 communicates with the micro-memory 43 looped to the cymbal to receive and process the downhole measurement data carried in the micro-memory 43.
  • the data transmission system for transmitting the measurement data under the well to the ground greatly improves the transmission rate and communication reliability of the underarm measurement data transmission to the ground, and since only the mud is used as the micro memory.
  • the transmission medium therefore requires no additional cost and does not affect the normal drilling process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Earth Drilling (AREA)

Abstract

公开了一种传输随钻井下测量数据至地面的数据传输***和方法,该***包括:安装有随钻测井测量工具的钻柱(40);随钻投掷短节(71),其容纳有微存储器(43)。随钻投掷短节(71)包括:套装在钻柱(40)的外侧并在其间形成了间隙空间的壳体;控制电路(901);无线收发装置(63);其中,随钻投掷短节(71)在控制电路(901)发送的微存储器(43)释放指令的作用下,将加载了井下测量数据的微存储器(43)释放至地面。传输随钻井下测量数据至地面的数据传输***,大幅地提高了数据传输速率和通信可靠性,而目由于仅使用泥浆作为微存储器的传输媒介,因此无需额外成本,也不影响正常钻井过程。

Description

传输随钻井下测量数据至地面的数据传输***及方法
技术领域 本发明涉及油气开发与勘探领域, 尤其涉及传输随钻井下测量数据至地面的数据传 输***及方法。
背景技术
随着海上钻井的快速增长以及水平弁技术的不断发展, 随钻测弁技术的应用也越来 越广泛。 与常规电缆测井的主要区别在于: 随钻测井的数据采集的实时性。 即, 地层数据 是在钻井液有轻微入侵或没有入侵的情况下获得的, 因而更接近原状地层。 由于,在钻井 的同时完成地层数据的测试并传输到地面进行现场分析与解释, 不但节约了钻井周期, 而且可以指导钻井、调节钻井轨迹和完善钻井进程, 因此, 井底的信号如何传输到地面是 随钻测井技术的一个关键环节, 同时也是制约随钻测井技术发展的 "瓶颈"之一。
目前,对亍将井底信号传输到地面的方法,分为实时传输方式和存储式传输方式。 实 时传输方式是通过各种有线或无线的数据传输方式把随钻测量的数据及时传输到地面。 这种方式对指导钻井, 特别是钻井时的地质导向有着非常重要的意义, 但是目前各种数 据传输都难以满足将弁下大量数据及时有效的传输到地面的要求。 存储式传输方式是指 随钻测弁的数据直接存储在测量工具里靣, 当起钻时, 把随钻仪器提到地靣时, 再通过 电缆把数据读取出来, 这种方式 以完成大量数据的采集, 但实时性不够。
在有线传输方式中,包括电缆传输方式、 光纤传输方式和钻杼传输方式。 文献 1 (《智 能钻柱信息及电力传输***的研究, 石油钻探技术》 2006, 34 ( 5 ) ; 10-13. ) 公开了以 下内容:电缆随钻信号传输的方法是在钻杆内部下入铠装电缆, 进而传输信号。 但是随着 钻井深度的加深, 加接单根电缆时必须将电缆和随钻仪器升出地面, 或者是预先将电缆 线穿插在钻衧内孔中。 文献 2 (《随钻数据传输新技术》,石油仪器, 2004, 18 ( 6): 26-31. ) 公开了以下内容: 光纤传输方式是将具有保护层的光纤下入到井里, 将光纤从底部随钻 仪器连接到地面,进而通过光纤进行随钻数据的传输。 由于光纤的作用与电缆一样,所产 生的问题也是相同的。 文献 3 (《旋转导向钻井技术发展现状及展望》.石油机械, 2006 , 34 (4 ) : 66-70 ) 公开了以下内容: 钻杼传输方式是将导体安装在钻杼内使其成为钻杼 整体的一部分,装配在钻杆接头的专用连接模块使整个钻柱形成电信号通道, 进而实现数 据传输。
以上这些方式由于采用有线连接, 其优势在亍传输速度非常快, 远高于无线方式。 但是电缆、 光纤、 专用钻杼连接器都需安装在整个井筒上, 在钻弁时, 由于钻杆在高速 旋转会导致这些有线媒介极易损坏。 因此这些现有技术多存在共同的缺点为:可靠性差、 制作工艺相对复杂, 并且经常影响正常钻井过程。 因而以上这些现有技术在实际随钻测 弁生产过程中应^较少。
无线传输方式包括泥浆(即钻井液)脉冲、 电磁波和声波三种。 其中泥浆脉冲和电磁 波方式已经应用到实际随钻测井生产, 以泥浆脉冲式使用最为广泛。 专利 1 ( 《一种用于 随钻测量的高速传输发射装置》, 公开号: 201020298582.3 )公开了以下内容: 泥浆脉冲 信号发生器主要由泄流 Π或者节流 构成, 在阀门打开和关闭状态下, 由于钻柱内流 向环空的钻井液流速产生变化, 就会弓!起钻衧内的钻井液压力波产生一系列的脉冲, 通 过打开和关闭阀门把数据加载到这些詠冲上, 就可以把数据传输到地面。 但泥浆波相当 于机械波, 其调刺方式使其速率受到很大限刺, 目前技术报道的最高传输速度也只能达 到每秒几十位的数据, 难以满足井下测量数据的快速上传。 专利 2 ( 《一种随钻测量的电 磁波信号传输方法及***》 , 公开号: 〗02251769A ) 公开了以地层为传输介质或以钻柱 为传输导体的电磁波随钻测量方法。 具体为, 井下仪器将测量的数据调制到电磁波载波 上, 由电磁波发射器在井下发射出去, 经过各种通道传输到地面,然后,地面检波器将检 测到的调制了测量数据的电磁波信号, 处理电路将电磁波信号中的测量数据解调出来。 文献 3 ( 《声波传输测试技术在油田的应用》 .测控技术, 2005 , 24 (11) : 76278 )是利用 声波或地震波经过钻杆或地层来传输信号。 具体为,声波发射***安装在钻杆上, ***将 各种测量数据调制到声波振动信号上, 声波振动信号沿钻杆传输到地面, 被安装在地靣 的声波接收***接收, 将测量数据从声波振动信号解调出来。 声波传输和电磁波传输一 样, 不需要泥浆循环, 实现方法简单、 成本低。 而其缺点是衰减太快, 受环境影响很 大, 井眼产生的低强度信号和由钻弁设备产生的声波和电磁波干扰, 使探测信号非常困 难, 旦传输速度较慢。
因此, 亟需一种传输速度快、 成本低的将随钻井下测量数据传输至地面的数据传输 方案来解决上述问题。 发明内容
本发明所要解决的技术问题之一是需要提供一种传输速度快、 成本低的将随钻井下 测量数据传输至地面的数据传输***。
为了解决上述技术问题, 本发明提供了一种传输随钻井下测量数据至地面的数据传 输***, 包括: 安装有隨钻测井测量工具的钻柱; 和设置在所述钻柱上的隨钻投掷短 节, 其容纳有微存储器。所述随钻投掷短节包括: 套装在所述钻柱的外侧并在其间形成了 间隙空间的壳体; 设置在所述间隙空间中的控制电路, 其用于接收并发送所述随钻测井 测量工具测量得到的弁下测量数据; 以及与所述控制电路连接的无线收发装置, 其用于 将所述控制电路所接收的所述井下测量数据写入至微存储器中; 其中, 所述随钻投掷短 节在所述控制电路发送的微存储器释放指令的作用下, 将加载了所述井下测量数据的微 存储器释放至地面。
在一个实施例中,在所述随钻投掷短节的壳体侧壁上设置有微存储器释放孔, 其中加 载了所述井下测量数据的徵存储器通过所述微存储器释放孔而释放至所述钻柱和井壁之 间的环形空间中, 使得所述微存储器跟随泥浆循环返回至地面上。
在一个实施例中,所述随钻投掷短节还包括: 与所述控制电路连接的动力机构, 其在 所述控制电路发送的微存储器释放指令的作用下动作; 徵存储器释放机构, 其能够在第 一状态 τ保持所述徵存储器, 并在所述动力机构的作用下转换到第二状态, 使得加载了 所述弁下测量数据的徵存储器能够经由所述微存储器释放孔释放至所述环形空间中。
在一个实施例中,所述微存储器释放机构包括微存储器暂存舱, 在所述微存储器释放 机构处于第一状态下时, 所述微存储器暂存舱能暂时存放加载了弁下测量数据的徵存储 器, 在所述徵存储器释放机构处于第二状态下时, 所述徵存储器暂存鲶在所述动力机构 的作用下旋转至与所述微存储器释放孔连通。
在一个实施例中, 所述随钻投掷短节还包括设置在所述间隙空间中的微存储器储存 舱, 其上端与所述钻柱连通, 下端与所述微存储器暂存齄连通, 使得所述微存储器储存 艙内的徵存储器能在来自所述钻柱的钻井液的作用下进入所述徵存储器暂存鲶。
在一个实施例中, 所述无线收发装置包括与所述控刺电路连接的随钻数据写入数据 线,以及连接所述随钻数据写入数据线、 且设置在所述微存储器储存舱中的随钻数据写入 天线, 所述随钻数据写入天线被设 ^为每次仅对存储在所述微存储器存储舱中的一粒微 存储器进行井下测量数据的写入。
在一个实施例中,所述随钻数据写入天线设置在所述微存储器储存舱中的靠近所述微 存储器暂存舱的区域。
在一个实施例中, 所述动力机构包括电机和减速器。
在一个实施例中,所述微存储器释放机构还包括: 钻弁液过流通道, 其设置成仅在第 二状态下才与所述微存储器储存舱连通, 使得经由所述钻弁液过流通道的钻弁液能够进 入所述微存储器暂存齄内, 以将所述微存储器暂存舱内的微存储器向夕卜释放。
在一个实施例中,所述钻井液过流通道形成为带有支管的流通管, — 所述支管与所述 微存储器释放暂存舱连通。
在一个实施例中,所述微存储器释放机构在所述第二状态下相对于所述第一状态旋转 了 90度。
在一个实施例中, 所述控制电路定时发送微存储器释放指令。
在一个实施例中,所述随钻投掷短节还包括: 与所述控制电路连接的信号接收天线, 其接收来自地面的徵存储器释放指令, 并将所述徵存储器释放指令传输到所述控制电路 中。
在一个实施例中, 所述信号接收天线为 RF0 标签天线, 其接收来自地面的 RFID标 签中的微存储器释放指令。
在一个实施例中,还包括: 地面接收装置, 其接收并处理所述微存储器中的弁下测量 数据。
在一个实施例中, 所述微存储器形成为直径在 5毫米 50毫米的范围内、 厚度在 0.1 毫米 -50毫米的范围内的球体或柱体。
在一个实施例中, 所述微存储器可装载的数据量在 1比特 -100兆比特的范 内。 根据本发明的另一方面,还提供了一种使用上述的***来传输弁下测量数据的方法, 包括: 向随钻投掷短节中放入多个微存储器; 通过控制电路来接收并发送随钻测井测量 工具测量得到的井下测量数据; 通过无线收发装置来将所述控制电路的井下测量数据写 入至徵存储器中; 在所述控制电路发送的徵存储器释放指令的作用下, 通过随钻投掷短 节来将加载了所述井下测量数据的徵存储器释放至地面。
根据本发明的另一方面, 还提供了一种传输随钻弁下测量数据至地面的数据传输系 统, 包括: 安装有随钻测井测量工具的钻柱; 套装在所述钻柱的外侧并在其间形成了间 隙空间的壳体; 设置在所述间隙空间中的控制电路, 用于接收并发送所述随钻测井测量 工具测量得到的井下测量数据; 与所述控制电路电连接的无线收发装置, 其用于将所述 控制电路所接收的所述井下测量数据写入至经由所述无线收发装置的微存储器中; 其 中, 加载了井下测量数据的微存储器构造成能在所述钻柱内的钻弁液的作用下从与所述 钻柱连接的钻头的水眼中穿过而被释放至地面上。
在一个实施例中,还包括: 地面投掷装置, 其用于将所述微存储器从地面投掷于所述 钻柱的内部。
在一个实施例中,所述微存储器还装载有地面控制指令, 在载有地面控制指令的微存 储器经由所述无线收发装置时, 所述无线收发装置将所述地面控制指令传输至所述控制 电路, 并 ϋ所述控制电路将获取的地面控制指令传输至所述井下随钻测量工具中。
在一个实施例中, 所述微存储器形成为直径在 5毫米- 20毫米的范围内、 厚度在 0.1 毫米 -20毫米的范围内的球体或柱体。
在一个实施例中, 所述微存储器可装载的数据量在 1比特- 100兆比特的范 ID内。 根据本发明的另一方面,还提供了一种利用上述的***来传输弁下测量数据的方法, 包括: 通过控制电路来接收并发送随钻测井测量工具测量得到的弁下测量数据; 向钻柱 内放入多个微存储器; 通过无线收发装置来将所述控制电路所接收的所述井下测量数据 写入至经由所述无线收发装置的微存储器中, 使得加载了弁下测量数据的微存储器能够 在所述钻柱内的钻井液的作用下从与所述钻柱连接的钻头的水眼中穿过而被释放至地面 与现有技术相比, 本发明的一个或多个实施 ί到可以具有如下优点;
本发明的传输随钻井下测量数据至地面的数据传输***, 通过与随钻测量工具连接 的随钻投掷短节, 将写入了井下测量数据的微存储器向地面提供 ,进而将井下测量数据上 传至地面。 这种数据传输***大幅地提高了数据传输速率和通信可靠性, 而 由于仅使 用泥浆作为微存储器的传输媒介, 因此无需额夕卜成本, 也不影响正常钻井过程。
本发明的其它特征和优点将在随后的说明书中阐述, 并 部分地从说明书中变得 显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优点可通过在说明书、 权 利要求书以及附图中所特别指出的结构来实现和获得。
險图说明
附图用来提供对本发明的进一步理解, 并旦构成说明书的一部分, 与本发明的实施 例共同用于解释本发明, 并不构成对本发明的限制。 在附图中- 图 1 是根据本发明实施例的传输随钻弁下测量数据至地面的数据传输***的示意 图;
图 2是根据本发明实施例的随钻投掷短节的结构示意图;
图 3是表示 A区域的放大示意图;
图 4是根据本发明实施例的微存储器旋转释放机构处于第一状态中的示意图; 图 5是根据本发明实施例的微存储器旋转释放机构处于第二状态中的示意图; 图 6是表示 A'区域的放大示意图;
图 7 是根据本发明另一实施 ί到的传输随钻井下测量数据至地面的数据传输***的示 章 。
在附图中, 相同的部件使用相同的附图标记。 图并未按照实际的比例绘制。
具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 以下结合險图对本发明作进一步地 详细说明。 应当注意的是,在本发明中所提到的方向用语,例如: 上、下仅是附图的方向。 因此, 所使用的方向仅用于更好地说明本发明, 而非限制本发明的保护范 。
第一实施例
图 1 是根据本发明实施例的传输随钻弁下测量数据至地面的数据传输***的示意 图。
如图 1所示, 该数据传输***包括; 与地面上的钻井弁架 20相连的钻柱 40, 其上安 装有随钻测井测量工具 65 ; 以及安装在钻柱 40上的随钻投掷短节 71 , 其容纳有微存储器 43。 其中, 钻柱 40包括纵向流体通道 60, 该纵向流体通道 60的出口与钻头 50的水眼 51 连通。 在纵向流体通道 60中流经有钻井液, 该钻井液用以润滑钻头 50和冲洗来自水眼 51的钻屑。 并旦, 在钻柱 40和井壁 70之间形成一个环形空间 201。
在进行钻弁作业时, 利用置于地面上的钻井井架 20与设置在钻柱 40—端 (靠近地靣 端)的钻机 30带动钻柱 40高速旋转, 进而钻柱 40带动钻头 50快速地向地下钻进, 在地 层内钻凿一个弁眼。 随后, 钻头 50切入地下不同的地质构造层。 在钻头 50切入到不同地 层之后, 靠近钻头 51设置的弁下随钻测量工具 65对地质中不同的信息进行测量。 最后, 随钻投掷短节 71中的无线收发装置 63将所获取的井下测量数据写入至微存储器 43中, 通过随钻投掷短节 71将加载了井下测量数据的微存储器 43向地面释放。 图 2是根据本发明实施例的随钻投掷短节 71的结构示意图。
如图 2所示, 该随钻投掷短节 71包括: 套装在钻柱 40的外侧并在其间形成了间隙空 间的壳体; 设置在间隙空间中的控制电路 901, 其用于接收并发送随钻测井测量工具 65 测量得到的井下测量数据; 与控制电路 901连接的无线收发装置, 其用于将控制电路 901 所接收的弁下测量数据写入至徵存储器中。 其中, 随钻投掷短节 71在控制电路 901发送 的微存储器释放指令的作用下, 将加载了井下测量数据的微存储器释放至地面。
在图 2所示的实施例中, 上述壳体通过钻铤母扣 701和钻铤公扣 93被固定套装在钻 柱 40上。 在该壳体侧壁上设置有微存储器释放孔 46, 其中加载了所下测量数据的徵存储 器通过该微存储器释放孔 46而释放至钻柱 40和井壁 70 (地层 101 )之间的环形空间 201 中, 使得微存储器跟随泥浆循环返回至地面上。 控制电路 901则通过 LWD数据线 601来 接收随钻测井测量工具 65的弁下测量数据。
另外, 隨钻投掷短节 71 还包括: 与控制电路 901 连接的动力机构, 其在控制电路 901 发送的徵存储器释放指令的作用下动作; 微存储器释放机构 47, 其能够在第一状态 下保持微存储器(参考图 4 ) , 并在动力机构的作用下转换到第二状态, 使得加载了弁下 测量数据的微存储器能够经由徵存储器释放孔 46释放至环形空间 201中 (参考图 5或图 6) 。
为了进一步说明上述徵存储器释放机构 47, 还请参考图 3。 如图 3所示, 徵存储器释 放机构 47包括微存储器暂存舱 48, 在微存储器释放机构 47处于第一状态下时, 微存储 器暂存舱 48能暂 '存放加载了井下测量数据的微存储器, 在微存储器释放机构 47处于第 二状态下时, 微存储器暂存舱 48在动力机构的作用下旋转至与微存储器释放孔 46连通 (可参考图 5或图 6) 。
进而, 隨钻投掷短节 71还包括: 设置在间隙空间中的微存储器储存舱 42 , 其上端与 钻柱 40连通, 下端与微存储器暂存舱 48连通, 使得微存储器储存舱 42内的微存储器能 在来自钻柱 40的钻井液 801的作用下进入微存储器暂存舱 48。 在一个实施例中, 在微存 储器存储舱 42和钻柱 40之间设置有使钻井液 801流通的过滤器 401以及毛细引流管 41。 该过滤器 40 能够将钻井液 80 中的杂质滤除, 使得流过微存储器储存舱 42中的钻弁液 不会损坏微存储器。
由于该微存储器 43不通过水眼 51出去, 所以由收发电路、 存储电路及其他附属机构 构成的微存储器 43可以做得非常小。 优选地, 微存储器 43能够形成为直径在 5毫米 -50 毫米的范围内、 厚度在 0.1毫米- 50毫米的范围内的球体或柱体。 并 , 该微存储器 43可 装载的数据存储量在 1比特 100兆比特的范围内。
在本实施例中的徵存储器 43 , 其被设计为直径只有 1.2cm、 厚度只有 0.2cm的球体。 这样, 000个球体的体积只有大约 226cm3, 可以很好地被装载在随钻工具上。 并且, 该 实施例中的每个微存储器可装载 SKByies的数据, 这样一共可以装载 SMBytes的数据。 相比泥浆脉冲传输来说, 本发明实施例所能上传到地面的数据量是很大的。
另外, 本领域技术人员可以根据需要上传的数据量的大小, 来增加或减少微存储器 的个数。 也可以将微存储器 43设计得更大, 这样就能够达到更高的通信量。 或者也可以 采用将多个隨钻投掷短节级联的方式来增加数据的传输能力。
对于微存储器的工作模式来说, 其可以为有电源方式, 也可以为无电源方式, 对其 不作限定。
另外, 如图 3所示, 微存储器释放机构 47还包括: 钻弁液 ϋ流通道 49, 其设置成仅 在第二状态下才与微存储器储存舱 42连通, 使得经由钻井液过流通道 49的钻井液能够进 入微存储器暂存舱 48内, 以将微存储器暂存舱 48内的微存储器向外释放。
在本发明实施例中, 钻井液过流通道 49形成为带有支管的流通管, 且支管与微存储 器释放暂存舱 48连通。 如图 3所示,更优选地, 该钻井液过流通道 49能够被形成为支管 与主管垂直的结构, 呈大致 T字型。 进而, 微存储器释放机构 47在第二状态下相对于第 一状态旋转了 90度。
在本发明实施例中, 无线牧发装置 63包括与控制电路 901连接的随钻数据写入数据 线 44,以及连接随钻数据写入数据线 45、 旦设置在微存储器储存舱 48中的随钻数据写入 天线 45 , 随钻数据写入天线 45被设计为每次仅对存储在微存储器存储舱 48中的一粒微 存储器进行井下测量数据的写入。 而且, 随钻数据写入天线 45设置在微存储器储存舱 42 中的靠近微存储器暂存舱 48的区域。
然而, 上述仅为一个 ί到子, 无线收发装置 63还可以采用其它的无线通信传输方式来 向微存储器写入井下测量数据, 例如 WiFi、 蓝牙或 Zigbee。 由于这种无线通信传输方式 的传输速度比泥浆脉冲、 电磁波和声波传输的速度高出多个数量级, 因此能够保证实^ 弁下数据快速准确的传输。
在一个实施例中, 也可以将相同的井下测量数据写入多个徵存储器 43中。 这样, 如 果出现某一个微存储器 43内部的数据不能被地面接收装置 12获取或处理的情况, 则通过 获取或处理载入了相同数据的其他的微存储器的数据, 就能够解决数据上传缺失的问 题。 另外, 如图 2所示,动力机构包括: 与控制电路 901连接的电机 511 , 其根据控制电 路 901的微存储器释放指令来产生旋转动力; 与电机 511连接、 且设置在微存储器释放机 构 47下端的减速器 501 , 其与电机 511共同协作, 以使微存储器释放机构 47旋转一定角 度进而从第一状态转换到第二状态。 在本实施例中, 控制电路 901 通 ϋ电机控制信号线 52对电机 511的执行动作进行控制。 并旦, 设置在控制电路 901—侧的电池 92通过电机 电源线 53和控制电路电源线 9 分别对电机 511和控制电路 901供电。
在本发明的一个实施例中, 随钻投掷短节 71还包括: 与控制电路 90 连接的信号接 收天线 301 (其两端部分别具有密封圈 73 ), 其接收来自地靣的微存储器释放指令, 并将 微存储器释放指令传输到控制电路 901中。
优选地, 该信号接收天线为 RFID标签天线, 其接收来自地面的 RFID标签中的微存 储器释放指令。 当然, 在一个实施例中, 可以在控制电路 901 中预先加载控制程序, 以 使得控制电路 901定时发送微存储器释放指令。
不面, 参考图 4至图 6来说明本实施例的数据传输***的工作过程。 需要说明的是, 在本实施例中, 随钻投掷短节 71是依次地一粒一粒地释放微存储器。 容易理解, 在其他 实施例中, 也可以将设定粒数的微存储器一起发送出去。
在进行钻井作业的过程中, 如若需要将井下测量数据上传至地面时, 工作人员或地 面投掷装置向弁下投放信息标签, 例如 RFID标签。 在 RFID标签经由信号接收天线 301 时, 该信号接收天线 301获取来自 RFID标签中的微存储器释放指令。 控制电路 901接收 来自信号接收天线 301的微存储器释放指令后, 利用随钻数据写入数据线 44和随钻数据 写入天线 45 , 对微存储器储存舱 42中的微存储器 43进行随钻数据的写入操作。
利用通过过滤器 401和引流管 41的钻井液所产生的压力将存储在徵存储器储存舱 42 中的微存储器向下推送, 进而将加载了井下测量数据的微存储器 43推送至微存储器释放 机构 47的徵存储器暂存鲶 48中 (如图 4所示的第一状态) 。
具体地, 在上述过程中, 钻柱 40内的部分钻井液流 801通过设置在壳体侧壁的过滤 器 401, 流经与该过滤器 401连接的毛细引流管 41 以产生毛细压力, 进而将徵存储器储 存舱 42中最底端的微存储器推至微存储器暂存艙 48中。
随后, 微存储器释放机构 47在动力机构的作用下被旋转一定角度, 以将其内部的微 存储器暂存舱 48与微存储器释放孔 46对准。
具体地, 在此阶段中, 控制电路 901通过对电机 51 1进行控制, 使得电机 511产生动 力, 通过电机 51 1与减速器 501协作将微存储器释放机构 47按顺时针方向旋转 90度(如 图 4中箭头 z所示) , 进而将其内部的微存储器释放暂存舱 48的□部与微存储器释放孔 46对准 (如图 5所示) 。
最后, 钻柱 40内的钻井液流 80 通过过滤器 401、 毛细引流管 411、 微存储器储存舱 42、 钻井液过流孔道 49进入微存储器暂存舱 48中, 形成的压力能够将徵存储器 43从微 存储器释放孔 46推入环形空间 201中(如图 6所示), 使得微存储器 43跟随泥浆循环旋 转返回地面。
需要说明的是, 由于这里仅将泥浆作为徵存储器 43的载体, 而并没有将井 数据调 制到泥浆脉冲波上, 这样在不增加成本的基础上, 极大程度提高了数据传输速度。 而 由于按照测量数据的加载顺序来释放微存储器 43 , 这样能够保证测量数据的连续输 最后, 控制电路 901控制电机 511动作, 通过电机 51 与减速器 501的协作, 使得徵 存储器释放机构 47反向旋转(此处为逆时针旋转) 90度, 进而为 一次徵存储器释放操 作作好准备。
综上所述, 本发明实施例的传输随钻井下测量数据至地面的数据传输***, 通过与 随钻测量工具连接的随钻投篛短节, 将加载了井下测量数据的徵存储器向地面释放, 进 而将井 T测量数据上传至地面。 这种数据传输***大幅地提高了数据传输速率和通信可 靠性, 而且由于仅使用泥浆作为微存储器的传输媒介, 因此无需额外成本, 也不影响正 常钻弁过程。
第二实施例
图 7 是根据本发明另一实施例的传输随钻井下测量数据至地面的数据传输***的示 意图。
该数据传输***包括: 与地面上的钻井井架 20相连的钻柱 40, 其上安装有随钻测井 测量工具 65 ; 套装在钻柱 40的外侧并在其间形成了间隙空间的壳体; 设置在间隙空间中 的控制电路, 用于接收并发送随钻测井测量工具 65测量得到的井下测量数据; 与控制电 路电连接的无线收发装置 62, 其用于将控制电路所接收的所述井下测量数据写入至经由 该无线收发装置 62的微存储器 43中; 地面投掷装置 11 , 其用于将微存储器从地面投掷 于钻柱 40的内部。
其中,钻柱 40包括纵向流体通道 60, 该纵向流体通道 60的出口与钻头 50的水眼 51 连通。 在纵向流体通道 60中流经有钻井液, 该钻井液用以润滑钻头 50和冲洗来自水眼 51的钻屑。 并 ,在钻柱 40和井壁 70之间形成一个环形空间 201。 加载了弁下测量数据 的微存储器 43构造成能在纵向流体通道 60内的钻井液的作用下从与钻柱 40连接的钻头 50的水眼 51中穿过, 然后经由环形空间 20而被释放至地面上。
下靣来详细说明该***如何将井下测量数据传输至地面。
与井不隨钻测量工具 65连接的控制电路通过有线传输方式来获取弁下随钻测量工具 65测量得到的井下测量数据。 并且, 地面投掷装置 1 1将微存储器 43从地面投掷于钻柱 40的流体通道 60内。 在一个实施例中, 地面投掷装置 1 1可以定 B寸将徵存储器 43从地面 投掷于钻柱 40的流体通道 60内, 并且徵存储器 43的个数至少为一个, 这是因为要保证 连续的数据传输。
在微存储器 43经过无线收发装置 62时, 该无线收发装置 62通过无线通信方式将控 制电路中的井下测量数据写入至该徵存储器 43中。
需要说明的是, 微存储器 43除了在经过无线收发装置 62时进行井下测量数据的被写 入操作以外, 还可以通过无线收发装置 62 向控制电路传送来自地面的控制指令。 具体 地, 微存储器 43在被投掷入钻柱 40的流体通道 60内之前, 被装载了地面控制指令。 在 载有地面控制指令的徵存储器 43经过无线收发装置 62时, 该无线收发装置 62通过无线 通信方式将控制指令传输至与该无线收发装置 62连接的控制电路中。 然后, 控制电路将 获取的地面控制指令传输至井下随钻测量工具 65中。 这样可以保证地面控制指令及时传 输至弁下以指导钻井, 实现钻井地面与井下的数据交互。
上述这种短距离无线传输方式, 优选包括 WiFi、 蓝牙、 Zigbee、 RFID的无线传输协 议, 由于常用的短距离无线传输方式的传输速率都可以达到 lOOKMtsZs 以上, 该传输速 率相比泥浆脉^、 电磁波和声波传输高出多个数量级, 因此能够大幅地提高数据传输速 在本发明实施例中, 微存储器 43包括收发电路和存储电路。 优选地, 该微存储器可 装载的数据量在 1比特 - 100兆比特的范围内。
另外, 需要说明的是, 只要微存储器 43在弁下与无线收发装置 62进行数据传输的传 输时间达到 s, 就可以等效为泥浆脉冲传输所用的 OKS (约为 3个小时) 。 若以 1分钟 作为定时间间隔, 采用连续投掷的方式, 则无线收发装置 62的数据传输效率等效为泥浆 脉冲传输效率的几十倍甚至几百 '倍, 且其传输方式对正常钻井作 影响很小, 因此能够 保证实时弁下数据快速准确地传输。 随后, 加载了井下测量数据的微存储器 43随钻柱 40的流体通道 60内的钻弁液向下 运移, 从钻头 50的水眼 51穿出钻柱 40, 进入至钻柱 40与弁壁 70之间形成的环形空间 20 中, 最后, 其跟随泥浆循环旋转返回至地面上。
因为微存储器 43需要通过水眼 51穿出钻柱 40, 因此优选地, 徵存储器 43形成为直 径在 5毫米 -20毫米的范围内、 厚度在 0.1毫米 -20毫米的范圏内的球体或柱体。
在本实施例中, 发明人通过采用***级封装技术把微存储器 43所需要的全部电路集 成在 ·个封装里面, 实现了 7mm直径的封装。 使得设计出的徵存储器 43体积足够小得 可以完全通过钻头 50的水眼 51 , 并且其封装工艺也能够承受弁下的高压、 高温环境。 另 外, 对于微存储器 43的工作方式来说, 可以为有电源方式, 也可以为无电源方式, 对此 不作限定。
由于这里仅将泥浆作为微存储器 43的载体, 而并没有将弁下数据调制到泥浆脉冲波 上, 这样极大程度地提高了数据传输速度。 而且, 由于地面投掷装置 11定时投篛徵存储 器 43, 因此保证了弁下测量数据的连续输出和实时性。
最后, 地面接收装置 12与循环至弁上的微存储器 43进行通信, 接收并处理微存储器 43中载有的井下测量数据。 综上所述, 本发明实施例的传输随钻井下测量数据至地面的数据传输***, 大幅地 提高了弁下测量数据传输至地面的传输速率和通信可靠性, 而且由于仅使用泥浆作为微 存储器的传输媒介, 因此无需额外成本, 也不影响正常钻井过程。
以上所述, 仅为本发明的具体实施案例, 本发明的保护范園并不局限于此, 任何熟 悉本技术的技术人员在本发明所述的技术规范内, 对本发明的修改或替换, 都应在本发 明的保护范围之内。

Claims

权利要求书
1、 一种传输随钻井下测量数据至地靣的数据传输***, 包括:
安装有随钻测井测量工具的钻柱; 和
设置在所述钻柱上的随钻投掷短节, 其容纳有微存储器,所述随钻投掷短节包括:套 装在所述钻柱的外侧并在其间形成了间隙空间的壳体; 设置在所述间隙空间中的控制电 路,其用亍接收并发送所述随钻测井测量工具测量得到的井下测量数据; 以及与所述控制 电路连接的无线收发装置,其用亍将所述控制电路所接收的所述井下测量数据写入至微存 储器中;
其中,所述随钻投掷短节在所述控制电路发送的徵存储器释放指令的作用下,将加载 了所述井下测量数据的微存储器释放至地面。
2、 根据权利要求〗所述的数据传输***, 其特征在于,
在所述随钻投掷短节的壳体侧壁上设置有微存储器释放孔,其中加载了所述弁下测量 数据的微存储器通过所述微存储器释放孔而释放至所述钻柱和井壁之间的环形空间中, 使得所述微存储器跟随泥浆循环返回至地面上。
3、 根据权利要求 2所述的数据传输***, 其特 ¾E在于, 所述随钻投掷短节还包括: 与所述控制电路连接的动力机构,其在所述控刺电路发送的微存储器释放指令的作用 不动作;
微存储器释放机构,其能够在第一状态下保持所述微存储器,并在所述动力机构的作 用下转换到第二状态,使得加载了所述井下测量数据的微存储器能够经由所述微存储器释 放孔释放至所述环形空间中。
4、 根据权利要求 3所述的数据传输***, 其特征在于, 所述微存储器释放机构包括 微存储器暂存艙,在所述微存储器释放机构处于第一状态下 ^1%所述微存储器暂存舱能暂 时存放加载了弁下测量数据的微存储器,在所述微存储器释放机构处于第二状态下时,所 述微存储器暂存舱在所述动力机构的作用下旋转至与所述微存储器释放孔连通。
5、 根据权利要求 4所述的数据传输***, 其特征在于, 所述随钻投掷短节还包括设 置在所述间隙空间中的微存储器储存舱,其上端与所述钻柱连通,下端与所述微存储器暂 存舱连通,使得所述微存储器储存舱内的微存储器能在来自所述钻柱的钻井液的作 ^下进 入所述微存储器暂存舱。
6、 根据权利要求 5所述的数据传输***, 其特 ¾E在于, 所述无线收发装置包括与所 述控制电路连接的随钻数据写入数据线, 以及连接所述随钻数据写入数据线、且设置在所 述微存储器储存舱中的随钻数据写入天线,所述随钻数据写入天线被设 为每次仅对存储 在所述微存储器存储舱中的一粒微存储器进行井下测量数据的写入。
7、 根据权利要求 6所述的数据传输***, 其特征在于, 所述随钻数据写入天线设置 在所述徵存储器储存鲶中的靠近所述微存储器暂存舱的区域。
8、 根据权利要求 3所述的数据传输***, 其特征在于, 所述动力机构包括电机和减 速器。
9、 根据权利要求 5所述的数据传输***, 其特征在于, 所述微存储器释放机构还包 括钻弁液 ϋ流通道,其设置成仅在第二状态下才与所述微存储器储存舱连通,使得经由所 述钻弁液 ϋ流通道的钻井液能够进入所述微存储器暂存舱内,以将所述微存储器暂存舱内 的微存储器向外释放。
10、 根据权利要求 9所述的数据传输***, 其特征在于, 所述钻井液过流通道形成为带有支管的流通管,旦所述支管与所述微存储器释放暂存 餘连通。
11、 根据权利要求 9所述的数据传输***, 其特征在于, 所述微存储器释放机构在所述第二状态下相对于所述第一状态旋转了 90度。
12、 根据权利要求 1所述的数据传输***, 其特征在于,
所述控制电路定时发送微存储器释放指令。
13、根据权利要求 1所述的数据传输***, 其特征在于, 所述随钻投掷短节还包括: 与所述控制电路连接的信号接收天线,其接收来自地面的微存储器释放指令,并将所 述徵存储器释放指令传输到所述控制电路中。
14、 根据权利要求 13所述的数据传输***, 其特征在于,
所述信号接收天线为 RFID标签天线, 其接收来自地面的 RFID标签中的微存储器释 放指令。
15、 根据权利要求 1所述的数据传输***, 其特征在于, 还包括- 地靣接收装置, 其接收并处理所述微存储器中的井下测量数据。
16、 根据权利要求 1至 15中任一项所述的数据传输***, 其特征在于,
所述微存储器形成为直径在 5毫米- 50毫米的范围内、厚度在 0.1毫米- 50毫米的范围 内的球体或柱体。
17、 根据权利要求 16所述的数据传输***, 其特征在于,
所述微存储器可装载的数据量在 1比特- 100兆比特的范围内。
18、 一种传输随钻井下测量数据至地面的数据传输***, 包括:
安装有隨钻测井测量工具的钻柱;
套装在所述钻柱的外侧并在其间形成了间隙空间的壳体;
设置在所述间隙空间中的控制电路,用于接收并发送所述随钻测井测量工具测量得到 的井 T测量数据;
与所述控制电路电连接的无线收发装置,其用于将所述控制电路所接收的所述井下测 量数据写入至经由所述无线收发装置的微存储器中;
其中,加载了井下测量数据的微存储器构造成能在所述钻柱内的钻弁液的作用下从与 所述钻柱连接的钻头的水眼中穿过而被释放至地面上。
19、 根据权利要求 18所述的数据传输***, 其特征在于, 还包括:
地面投掷装置, 其用于将所述徵存储器从地面投掷于所述钻柱的内部。
20、 根据权利要求 19所述的数据传输***, 其特征在于,
所述徵存储器还装载有地面控制指令, 在载有地面控制指令的微存储器经由所述无 线收发装置^ , 所述无线收发装置将所述地面控制指令传输至所述控制电路,并 ϋ所述控 制电路将获取的地面控制指令传输至所述井下随钻测量工具中。
21、 根据权利要求 18至 20中任一项所述的数据传输***, 其特征在于, 所述微存储器形成为直径在 5毫米- 20毫米的范围内、厚度在 0.1毫米 -20毫米的范围 内的球体或柱体。
22、 根据权利要求 18至 20中任一项所述的数据传输***, 其特征在于, 所述微存储器 装载的数据量在 1比特- 100兆比特的范圈内。
23、 一种使 ^如权利要求 1至 17中任一项所述的***来传输弁下测量数据的方法, 包括; 向隨钻投掷短节中放入多个微存储器;
通过控制电路来接收并发送随钻测井测量工具测量得到的井下测量数据; 通过无线收发装置来将所述控制电路的井下测量数据写入至微存储器中; 在所述控制电路发送的微存储器释放指令的作用下,通过随钻投掷短节来将加载了所 述井下测量数据的微存储器释放至地面。
24、 一种使用如权利要求 18至 22中任一项所述的***来传输井下测量数据的方法, 包括: 通过控制电路来接收并发送随钻测井测量工具测量得到的井下测量数据; 向钻柱内放入多个微存储器; 通过无线收发装置来将所述控制电路所接收的所述井下测量数据写入至经由所述无 线收发装置的微存储器中,使得加载了井下测量数据的微存储器能够在所述钻柱内的钻井 液的作用下从与所述钻柱连接的钻头的水眼中穿过而被释放至地面上。
PCT/CN2014/078170 2013-05-22 2014-05-22 传输随钻井下测量数据至地面的数据传输***及方法 WO2014187346A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB1521799.5A GB2533044B (en) 2013-05-22 2014-05-22 Data transmission system and method for transmission of downhole measurement-while-drilling data to ground
US14/892,842 US9739141B2 (en) 2013-05-22 2014-05-22 Data transmission system and method for transmission of downhole measurement-while-drilling data to ground
CA2912958A CA2912958C (en) 2013-05-22 2014-05-22 Data transmission system and method for transmission of downhole measurement-while-drilling data to ground
CN201410798838.XA CN105089644B (zh) 2014-05-22 2014-12-19 传输随钻井下测量数据至地面的数据传输***及方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201310193918.8 2013-05-22
CN201310193918.8A CN104179495A (zh) 2013-05-22 2013-05-22 一种随钻地面与井下数据交互方法及***
CN201310191269.8A CN104179497B (zh) 2013-05-22 2013-05-22 一种释放式随钻井下数据上传方法与***
CN201310191269.8 2013-05-22

Publications (1)

Publication Number Publication Date
WO2014187346A1 true WO2014187346A1 (zh) 2014-11-27

Family

ID=51932903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078170 WO2014187346A1 (zh) 2013-05-22 2014-05-22 传输随钻井下测量数据至地面的数据传输***及方法

Country Status (4)

Country Link
US (1) US9739141B2 (zh)
CA (1) CA2912958C (zh)
GB (1) GB2533044B (zh)
WO (1) WO2014187346A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104612669A (zh) * 2015-02-02 2015-05-13 中国石油集团渤海钻探工程有限公司 用于连续油管钻井的井筒检漏设备

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2508710B (en) 2012-10-16 2015-05-27 Petrowell Ltd Flow control assembly
CA2920404C (en) * 2013-08-13 2019-06-04 Evolution Engineering Inc. Downhole probe assembly with bluetooth device
US9869176B2 (en) * 2016-04-07 2018-01-16 Tubel Energy, Llc Downhole to surface data lift apparatus
CN107143328A (zh) * 2017-07-21 2017-09-08 西南石油大学 一种随钻光纤通信装置
CN109469475B (zh) * 2017-09-08 2021-11-09 中国石油化工股份有限公司 井下随钻数据存储及释放装置和随钻数据传输方法
US10394193B2 (en) 2017-09-29 2019-08-27 Saudi Arabian Oil Company Wellbore non-retrieval sensing system
US10584580B2 (en) 2017-10-23 2020-03-10 SharpKeen Enterprises, Inc. Electromagnetic surface wave communication in a pipe
US11050377B2 (en) 2017-10-30 2021-06-29 Schlumberger Technology Corporation Systems and methods for managing drive parameters after maintenance
US10920562B2 (en) 2017-11-01 2021-02-16 Schlumberger Technology Corporation Remote control and monitoring of engine control system
NO344782B1 (en) * 2018-02-14 2020-04-27 Well Id As Downhole measurement tool assembly for measuring and storing at least one quantity in a wellbore and for wireless surface readout
US11264801B2 (en) 2018-02-23 2022-03-01 Schlumberger Technology Corporation Load management algorithm for optimizing engine efficiency
US10605077B2 (en) 2018-05-14 2020-03-31 Alfred T Aird Drill stem module for downhole analysis
CN111594151A (zh) * 2019-02-19 2020-08-28 中国石油化工股份有限公司 井下信息传输***
CN112696193B (zh) * 2019-10-18 2022-11-25 中国石油化工股份有限公司 一种存储设备及包含其的钻铤
US11708758B2 (en) * 2019-10-28 2023-07-25 ExxonMobil Technology and Engineering Comany Hydrocarbon wells and methods of probing a subsurface region of the hydrocarbon wells
US11125075B1 (en) 2020-03-25 2021-09-21 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11280178B2 (en) 2020-03-25 2022-03-22 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11414963B2 (en) 2020-03-25 2022-08-16 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11414984B2 (en) 2020-05-28 2022-08-16 Saudi Arabian Oil Company Measuring wellbore cross-sections using downhole caliper tools
US11414985B2 (en) 2020-05-28 2022-08-16 Saudi Arabian Oil Company Measuring wellbore cross-sections using downhole caliper tools
US11631884B2 (en) 2020-06-02 2023-04-18 Saudi Arabian Oil Company Electrolyte structure for a high-temperature, high-pressure lithium battery
US11149510B1 (en) 2020-06-03 2021-10-19 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11391104B2 (en) 2020-06-03 2022-07-19 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
CN113846965B (zh) * 2020-06-09 2024-07-09 中国石油化工股份有限公司 一种用于控制井下导向工具的***
US11719089B2 (en) 2020-07-15 2023-08-08 Saudi Arabian Oil Company Analysis of drilling slurry solids by image processing
US11255130B2 (en) 2020-07-22 2022-02-22 Saudi Arabian Oil Company Sensing drill bit wear under downhole conditions
US11506044B2 (en) 2020-07-23 2022-11-22 Saudi Arabian Oil Company Automatic analysis of drill string dynamics
US11867008B2 (en) 2020-11-05 2024-01-09 Saudi Arabian Oil Company System and methods for the measurement of drilling mud flow in real-time
US11434714B2 (en) 2021-01-04 2022-09-06 Saudi Arabian Oil Company Adjustable seal for sealing a fluid flow at a wellhead
US11697991B2 (en) 2021-01-13 2023-07-11 Saudi Arabian Oil Company Rig sensor testing and calibration
US11572752B2 (en) 2021-02-24 2023-02-07 Saudi Arabian Oil Company Downhole cable deployment
US11727555B2 (en) 2021-02-25 2023-08-15 Saudi Arabian Oil Company Rig power system efficiency optimization through image processing
US11846151B2 (en) 2021-03-09 2023-12-19 Saudi Arabian Oil Company Repairing a cased wellbore
CN113216943B (zh) * 2021-05-24 2023-04-14 电子科技大学 一种随钻测井信号无线电磁波传输收发***
US11624265B1 (en) 2021-11-12 2023-04-11 Saudi Arabian Oil Company Cutting pipes in wellbores using downhole autonomous jet cutting tools
US11867012B2 (en) 2021-12-06 2024-01-09 Saudi Arabian Oil Company Gauge cutter and sampler apparatus
US11898436B2 (en) 2021-12-14 2024-02-13 Saudi Arabian Oil Company Method and apparatus for downhole charging, initiation, and release of drilling micro sensing systems (microchips)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0550521B1 (en) * 1990-09-29 1995-08-23 Metrol Technology Limited Transmission of data in boreholes
US5679894A (en) * 1993-05-12 1997-10-21 Baker Hughes Incorporated Apparatus and method for drilling boreholes
EP0848512A2 (en) * 1996-12-11 1998-06-17 Labarge, Inc. Method of and system for communication between points along a fluid flow
WO2000073625A1 (en) * 1999-05-28 2000-12-07 Baker Hughes Incorporated Method of utilizing flowable devices in wellbores
CN1305564A (zh) * 1998-06-12 2001-07-25 国际壳牌研究有限公司 在一个流体传输管道中测量数据的方法和设备
US6554065B2 (en) * 1999-03-26 2003-04-29 Core Laboratories, Inc. Memory gravel pack imaging apparatus and method
EP1584783B1 (en) * 2000-03-28 2007-08-08 Schlumberger Technology B.V. Telemetry methods for use in wells

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL120957A0 (en) * 1997-03-07 1997-09-30 Goldman Ilan Code activated system
US6443228B1 (en) * 1999-05-28 2002-09-03 Baker Hughes Incorporated Method of utilizing flowable devices in wellbores
US20080007421A1 (en) * 2005-08-02 2008-01-10 University Of Houston Measurement-while-drilling (mwd) telemetry by wireless mems radio units
SG135989A1 (en) * 2006-03-14 2007-10-29 Sembcorp Logistics Ltd A tracking system
CN201705343U (zh) 2010-08-20 2011-01-12 中国石油集团钻井工程技术研究院 一种用于随钻测量的高速传输发射装置
US8973656B2 (en) * 2010-11-22 2015-03-10 Guy L. McClung, III Wellbore operations, systems, and methods with McNano devices
CN102251769A (zh) 2011-06-08 2011-11-23 刘新元 一种随钻测量的电磁波信号传输方法及***
US9250339B2 (en) * 2012-03-27 2016-02-02 Baker Hughes Incorporated System and method to transport data from a downhole tool to the surface

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0550521B1 (en) * 1990-09-29 1995-08-23 Metrol Technology Limited Transmission of data in boreholes
US5679894A (en) * 1993-05-12 1997-10-21 Baker Hughes Incorporated Apparatus and method for drilling boreholes
EP0848512A2 (en) * 1996-12-11 1998-06-17 Labarge, Inc. Method of and system for communication between points along a fluid flow
CN1305564A (zh) * 1998-06-12 2001-07-25 国际壳牌研究有限公司 在一个流体传输管道中测量数据的方法和设备
US6554065B2 (en) * 1999-03-26 2003-04-29 Core Laboratories, Inc. Memory gravel pack imaging apparatus and method
WO2000073625A1 (en) * 1999-05-28 2000-12-07 Baker Hughes Incorporated Method of utilizing flowable devices in wellbores
EP1584783B1 (en) * 2000-03-28 2007-08-08 Schlumberger Technology B.V. Telemetry methods for use in wells

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104612669A (zh) * 2015-02-02 2015-05-13 中国石油集团渤海钻探工程有限公司 用于连续油管钻井的井筒检漏设备

Also Published As

Publication number Publication date
CA2912958C (en) 2021-01-26
CA2912958A1 (en) 2014-11-27
GB201521799D0 (en) 2016-01-27
US9739141B2 (en) 2017-08-22
GB2533044A (en) 2016-06-08
US20160115783A1 (en) 2016-04-28
GB2533044B (en) 2017-12-13

Similar Documents

Publication Publication Date Title
WO2014187346A1 (zh) 传输随钻井下测量数据至地面的数据传输***及方法
CN105089644B (zh) 传输随钻井下测量数据至地面的数据传输***及方法
AU2014234933B2 (en) Microwave communication system for downhole drilling
CN104179497B (zh) 一种释放式随钻井下数据上传方法与***
US9347277B2 (en) System and method for communicating between a drill string and a logging instrument
CA3055546C (en) Wireless communication between downhole components and surface systems
CN104179495A (zh) 一种随钻地面与井下数据交互方法及***
EA009637B1 (ru) Система связи буровой площадки
US8708041B2 (en) Method and system for using wireline configurable wellbore instruments with a wired pipe string
CN204405865U (zh) 隧道施工超前地质预报装置
CN205713966U (zh) 一种复合式海洋天然气水合物地层勘探钻具
CN106988734A (zh) 一种井下数据转存装置、数据上传***及数据上传方法
CN112081548A (zh) 自主通过的管状井下穿梭机
Li et al. Implementation of a drilling microchip for downhole data acquisition
US11513247B2 (en) Data acquisition systems
NO316294B1 (no) Fremgangsmåte og anordning for reservoarovervåkning via en klargjort brönn
CA3070383C (en) Connector ring
CN102425410A (zh) 一种随钻测量超声波数据传输方法及装置
CN102777170B (zh) 测井仪器信息的电磁波传输方法
CN114737904A (zh) 一种绳索取心近钻头随钻测量***及方法
CN109469475A (zh) 井下随钻数据存储及释放装置和随钻数据传输方法
CN106401573A (zh) 井下信息声波信号发生***
CN112431586A (zh) 一种有缆瞬变电磁探管钻孔内采集数据的方法和装置
CN206600148U (zh) 一种带红外线摄像头的地质勘察钻杆
CN109594975A (zh) 一种井下数据采集及运载方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14800480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2912958

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14892842

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 201521799

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20140522

122 Ep: pct application non-entry in european phase

Ref document number: 14800480

Country of ref document: EP

Kind code of ref document: A1