WO2014185243A1 - Fiber-reinforced resin composition - Google Patents

Fiber-reinforced resin composition Download PDF

Info

Publication number
WO2014185243A1
WO2014185243A1 PCT/JP2014/061504 JP2014061504W WO2014185243A1 WO 2014185243 A1 WO2014185243 A1 WO 2014185243A1 JP 2014061504 W JP2014061504 W JP 2014061504W WO 2014185243 A1 WO2014185243 A1 WO 2014185243A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
component
resin composition
rayon
reinforced resin
Prior art date
Application number
PCT/JP2014/061504
Other languages
French (fr)
Japanese (ja)
Inventor
小邦稔夫
Original Assignee
ダイセルポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイセルポリマー株式会社 filed Critical ダイセルポリマー株式会社
Publication of WO2014185243A1 publication Critical patent/WO2014185243A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/297Feeding the extrusion material to the extruder at several locations, e.g. using several hoppers or using a separate additive feeding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/046Reinforcing macromolecular compounds with loose or coherent fibrous material with synthetic macromolecular fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/08Cellulose derivatives
    • C08J2401/22Cellulose xanthate
    • C08J2401/24Viscose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Definitions

  • the present invention relates to a fiber reinforced resin composition from which a molded article having excellent mechanical strength can be obtained, and a method for producing the same.
  • a resin molded body is used as a metal substitute, but it is known to mold a resin composition containing fibers in order to increase its mechanical strength.
  • JP 2013-503980 discloses an invention of a composite material in which a thermoplastic polymer is blended with a cellulose-based artificial fiber having an average diameter of 5 to 20 ⁇ m and a number-weighted average length of 200 to 800 ⁇ m.
  • TENCEL registered trademark
  • An object of the present invention is to provide a fiber reinforced resin composition from which a molded article having excellent mechanical strength can be obtained, and a method for producing the same.
  • the present invention (A) 40 to 90% by mass of thermoplastic resin, (B) 60 to 10% by mass of rayon fiber, and (B) component rayon fiber (however, rayon fiber in component (A) thermoplastic resin) Except for resin-impregnated fiber bundles containing Provided is a fiber-reinforced resin composition in which the rayon fiber of component (B) has a fiber diameter of 5 to 30 ⁇ m and a fiber length of 1 to 30 mm, and a method for producing the same.
  • the molded product obtained from the fiber reinforced resin composition of the present invention has excellent mechanical strength because it contains the rayon fiber of component (B) in a long state.
  • thermoplastic resin of component (A) polyolefin resin, polyamide resin, styrene resin, polycarbonate resin, polyvinyl chloride, polyvinylidene chloride, polycarbonate resin, acrylic resin, methacrylic resin, polyester resin, Examples thereof include polyacetal resins and polyphenylene sulfide resins.
  • thermoplastic resin of component (A) those including those selected from polyolefin resins and polyamide resins are preferable, and those selected from polyolefin resins and polyamide resins are more preferable.
  • Polyolefin resins include polypropylene, high density, low density and linear low density polyethylene, poly-1-butene, polyisobutylene, copolymers of ethylene and propylene, ethylene-propylene-diene terpolymers (as raw materials) Diene component of 10% by mass or less), polymethylpentene, ethylene or propylene (50 mol% or more) and other copolymerization monomers (vinyl acetate, alkyl methacrylate, alkyl acrylate, aromatic vinyl, etc.) Random, block, and graft copolymers can be used. Among these, polypropylene is preferable.
  • a polyolefin-based resin is used as the component (A)
  • an acid-modified polyolefin in combination in order to easily mix with the rayon fiber of the component (B).
  • the acid-modified polyolefin maleic acid-modified polyolefin (maleic acid-modified polypropylene) and maleic anhydride-modified polyolefin (maleic anhydride-modified polyolefin) are preferable.
  • the amount of acid in component (A) is 0.005 to an average in terms of maleic anhydride. It is preferable to mix so that it may become the range of 0.5 mass%.
  • the polyamide resin is preferably selected from aliphatic polyamides and aromatic polyamides.
  • aliphatic polyamide examples include polyamide 6, polyamide 66, polyamide 69, polyamide 610, polyamide 612, polyamide 46, polyamide 11 and polyamide 12.
  • Aromatic polyamides include those obtained from aromatic dicarboxylic acids and aliphatic diamines or aliphatic dicarboxylic acids and aromatic diamines, such as nylon MXD (metaxylylenediamine and adipic acid), nylon 6T (hexamethylenediamine and terephthalate).
  • nylon 6I hexamethylenediamine and isophthalic acid
  • nylon 9T nonanediamine and terephthalic acid
  • nylon M5T methylpentadiamine and terephthalic acid
  • nylon 10T decamethylenediamine and terephthalic acid
  • aliphatic polyamides such as polyamide 6, polyamide 69, polyamide 610, polyamide 612, polyamide 11 and polyamide 12 are preferable.
  • component (B) rayon fiber
  • rayon fiber those described in Lenzinger Berichte 87 (2009) p98-p105 can be used.
  • the rayon fiber of component (B) is composed of rayon fiber alone, and does not include those in which a rayon fiber bundle is impregnated with a thermoplastic resin and integrated.
  • Component rayon fiber has a fiber diameter of 5 to 30 ⁇ m, preferably 6 to 20 ⁇ m, more preferably 7 to 15 ⁇ m in order to increase the mechanical strength of the molded body.
  • the rayon fiber (B) has a fiber length of 1 to 30 mm, preferably 2 to 15 mm, more preferably 2 to 8 mm in order to increase the mechanical strength of the molded product.
  • the rayon fiber of component (B) may contain a powdery product generated by physical force applied in the production process, and therefore 90% by mass or more of the rayon fiber of component (B) in the composition is fiber.
  • Those having a length in the range of 1 to 30 mm are preferable, those having a fiber length in the range of 2 to 15 mm are more preferable, and those having a fiber length in the range of 2 to 8 mm are more preferable.
  • the fiber length of the rayon fiber of a component is the length as a raw material used at the time of manufacture.
  • the X-ray orientation degree of the component (B) rayon fiber is preferably 86% or more, more preferably 90% or more.
  • the degree of X-ray orientation is obtained from the mathematical formulas in paragraphs 0012 and 0013 of JP-A-9-31744 and paragraphs 0020 to 0021 of JP-A-9-256216.
  • Component (B) is a rayon fiber in which cellulose molecules are highly oriented in the longitudinal direction of the fiber (X-ray orientation degree is 86% or more), has a high tensile elastic modulus, and a high interfacial strength with the resin. Therefore, it is very excellent as a fiber for fiber reinforced resin.
  • the rayon fiber (B) has a strong activity on the fiber surface and a high reactivity compared to natural cellulose fiber having high crystallinity. Therefore, in order to further enhance the effect of containing the component (B), it is preferable to use an acid-modified polyolefin in combination as the component (A).
  • the interfacial strength between the rayon fiber of the component (B) and the resin of the component (A) becomes higher, and the physical properties are further improved.
  • the effect of improving physical properties by using long fibers is further increased.
  • the ratio in the total amount of the thermoplastic resin of the component (A) and the rayon fiber of the component (B) in the composition is:
  • the component (A) is 40 to 90% by mass, the component (B) is 60 to 10% by mass, (A) Component 40 to 80% by mass, (B) Component 60 to 20% by mass are preferable, More preferably, the component (A) is 50 to 70% by mass and the component (B) is 50 to 30% by mass.
  • composition of the present invention includes other known flame retardants and flame retardant aids, heat stabilizers, lubricants, light stabilizers, antioxidants, colorants, mold release agents within the scope of solving the problems of the present invention.
  • An antistatic agent can be contained.
  • the composition of the present invention is preferably a granulated product (spherical granulated product) obtained by solidifying the melted thermoplastic resin of component (A) to the rayon fiber of component (B).
  • the particle size is preferably in the range of 1 to 30 mm, more preferably in the range of 3 to 20 mm, and still more preferably in the range of 5 to 18 mm. .
  • the particle size is 10 mm or more, an effect of improving the mechanical strength of the molded product is obtained, and when it is 30 mm or less, supply to the injection molding machine is stable when molding using an injection molding machine.
  • the manufacturing method of the above-described fiber reinforced resin composition of the present invention will be described step by step.
  • the rayon fiber of component (B) is put into a mixer having rotating blades as stirring means and stirred.
  • the rayon fiber of component (B) is composed of rayon fiber alone, and does not include those in which a rayon fiber bundle is impregnated with a thermoplastic resin and integrated.
  • the rayon fiber used as the production raw material may have a fiber diameter of 5 to 30 ⁇ m and a length of about 1 to 30 mm.
  • the mixer only needs to have rotating blades as stirring means, and preferably has heating means.
  • Henschel mixer manufactured by Mitsui Mining Co., Ltd., FM20C / I (capacity 20L), Super mixer manufactured by Kawata Co., Ltd., SMV-20 (capacity 20L), Moriyama Manufacturing Co., Ltd., pressure kneader (DR3-10MB-E) Can be used.
  • Rotating blades are usually composed of two upper blades and lower blades, or three upper blades, intermediate blades, and lower blades, but the number is not limited.
  • the shape of the blade is not limited, but for example, the kneading type is used for the upper blade, the high circulation / high load is used for the lower blade, and the melt is used when the intermediate blade is used.
  • the first step it is preferable to stir in the range of the average peripheral speed of the rotating blades during stirring in the range of 10 to 100 m / sec, more preferably the average peripheral speed is 10 to 90 m / sec, and still more preferably the average peripheral speed is 10 Stir at ⁇ 80 m / sec.
  • thermoplastic resin of the component (A) is melted by the generated frictional heat by stirring after the thermoplastic resin of the component (A) is put in the mixer, and (B) A mixture in which the thermoplastic resin (A) is adhered to the component rayon fiber is obtained.
  • the 1st process and the 2nd process can be made into one continuous process, without stopping stirring of a mixer.
  • Friction heat is generated by stirring in the second step and the temperature in the mixer rises, so that the thermoplastic resin of component (A) melts and adheres to the rayon fiber of component (B), and the heat of component (A) A mixture of the plastic resin and the (B) component rayon fiber is obtained.
  • the second step it is preferable to stir at an average peripheral speed of the rotating blades during stirring in the range of 10 to 100 m / second, more preferably an average peripheral speed of 10 to 90 m / second, and still more preferably an average peripheral speed of 10 Stir at ⁇ 80 m / sec. If stirring is continued, the temperature in the mixer will continue to rise, and the power of the motor will increase. It is preferable to reduce the rotational speed by gradually or decelerating the stirring speed in accordance with the increase in power and the temperature in the mixer so that the average peripheral speed falls within the above range.
  • the temperature inside the mixer is assisted to facilitate the production of the mixture of the thermoplastic resin of component (A) and the rayon fiber of component (B). It can also be warmed.
  • the temperature at this time is preferably about 120 to 140 ° C.
  • the mixture of the component (A) and the component (B) obtained in the second step is stirred at a low speed while being cooled.
  • the mixture is solidified (granulated by solidification).
  • stirring is preferably performed with the average peripheral speed of the rotating blades during stirring in the range of 1 to 30 m / sec, more preferably the average peripheral speed is 2 to 25 m / sec, and still more preferably the average peripheral speed is 3 Stir at ⁇ 25m / sec.
  • the stirring speed in the third step is smaller than the stirring speed in the first step and the second step.
  • the treatment in the third step is the completion of the treatment in the third step when the mixture of the thermoplastic resin of component (A) and the rayon fiber of component (B) is solidified to the extent that it can be handled as a molding material. can do.
  • the temperature inside the mixer rises too much due to the generation of frictional heat, the once solidified thermoplastic resin of component (A) will be remelted, so the temperature inside the mixer should also be controlled in the third step. Is preferred.
  • a composition (granulated product) obtained by solidifying the melted thermoplastic resin (A) on the component (B) rayon fiber is obtained.
  • the rayon fiber of the component (B) is softer than glass fiber or carbon fiber.
  • the manufacturing method described above is, for example, in paragraphs 0013 to 0041 of JP 2007-84713 A, Example 1 of the publication, paragraphs 0023 to 0043 of JP 2008-150492 A, and examples of the publication.
  • the described manufacturing method can be applied.
  • an additive other than the component (A) and the component (B) is added, it can be added in the second step or after the third step.
  • the composition is a granulated product
  • the granulated product is further supplied to an extruder, melted and kneaded, extruded into a strand shape, and then cut into pellets (columnar shape).
  • the outer diameter of the pellet is preferably in the range of 1 to 10 mm, more preferably in the range of 2 to 8 mm, and still more preferably in the range of 2 to 6 mm.
  • the length of the pellet is preferably in the range of 1 to 30 mm, more preferably in the range of 2 to 15 mm, and still more preferably in the range of 2 to 8 mm.
  • the molded body obtained from the composition of the present invention is lightweight and has high mechanical strength, it can be used as an alternative to metal parts used in various fields such as electrical / electronic equipment, communication equipment, automobiles, building materials, and daily necessities. It can be used, and is particularly suitable as a housing for various devices and a plate-shaped exterior material.
  • Cooling mixer [Rotating blade: Standard blade for cooling, with water cooling means (20 ° C) and thermometer, capacity 45L, cooler mixer] Stirring was started at an average peripheral speed of 10 m / sec, and the temperature in the mixer reached 80 ° C. At this point, stirring was terminated.
  • the mixture of the component (A) polypropylene and the component (B) rayon fiber was solidified to obtain a spherical granulated product (composition) having a diameter of about 15 mm.
  • Antioxidant 1 Irganox 1010 (BASF Japan KK)
  • Antioxidant 2 IRGAFOS 168 (BASF Japan Ltd.)
  • Lubricant calcium stearate
  • (A) component and (B) component are mass%, and another component is a mass part display with respect to a total of 100 mass parts of (A) component and (B) component.
  • the molded product of the example containing the rayon fiber of the component (B) had higher mechanical strength than the molded product of the comparative example.

Abstract

The present invention provides a fiber-reinforced resin composition whereby a molded body having excellent mechanical strength can be obtained. The fiber-reinforced resin composition contains 40%-90% by mass thermoplastic resin (A) and 60%-10% by mass rayon fiber (B). The component (B) rayon fiber (excluding resin-impregnated fiber bundles including rayon fibers) are scattered in the component (A) thermoplastic resin. The diameter of the component (B) rayon fibers is 5-30 µm and the fiber length thereof is 1-30 mm.

Description

繊維強化樹脂組成物Fiber reinforced resin composition
 本発明は、機械的強度に優れた成形体が得られる繊維強化樹脂組成物と、その製造方法に関する。 The present invention relates to a fiber reinforced resin composition from which a molded article having excellent mechanical strength can be obtained, and a method for producing the same.
 軽量化の目的で金属代替品として樹脂成形体が使用されているが、その機械的強度を高めるため、繊維が配合された樹脂組成物を成形することが知られている。 For the purpose of weight reduction, a resin molded body is used as a metal substitute, but it is known to mold a resin composition containing fibers in order to increase its mechanical strength.
 特表2013-503980号公報には、熱可塑性ポリマーに平均径が5~20μmであり、数加重平均長が200~800μmであるセルロース系人工繊維を配合した複合材料の発明が記載されている。
 セルロース系人工繊維として、実施例ではTENCEL(登録商標)が使用されている。
JP 2013-503980 discloses an invention of a composite material in which a thermoplastic polymer is blended with a cellulose-based artificial fiber having an average diameter of 5 to 20 μm and a number-weighted average length of 200 to 800 μm.
In the examples, TENCEL (registered trademark) is used as the cellulose-based artificial fiber.
 本発明は、機械的強度に優れた成形体が得られる繊維強化樹脂組成物と、その製造方法を提供することを課題とする。 An object of the present invention is to provide a fiber reinforced resin composition from which a molded article having excellent mechanical strength can be obtained, and a method for producing the same.
 本発明は、課題の解決手段として、
 (A)熱可塑性樹脂40~90質量%、(B)レーヨン繊維60~10質量%を含有しており、(A)成分の熱可塑性樹脂中に(B)成分のレーヨン繊維(但し、レーヨン繊維を含む樹脂含浸繊維束は除く)が分散されたものであり、
 (B)成分のレーヨン繊維が繊維径5~30μm、繊維長1~30mmのものである、繊維強化樹脂組成物と、その製造方法を提供する。
As a means for solving the problems, the present invention
(A) 40 to 90% by mass of thermoplastic resin, (B) 60 to 10% by mass of rayon fiber, and (B) component rayon fiber (however, rayon fiber in component (A) thermoplastic resin) Except for resin-impregnated fiber bundles containing
Provided is a fiber-reinforced resin composition in which the rayon fiber of component (B) has a fiber diameter of 5 to 30 μm and a fiber length of 1 to 30 mm, and a method for producing the same.
 本発明の繊維強化樹脂組成物から得られた成形体は、(B)成分のレーヨン繊維の繊維長が長い状態で含有されているため、優れた機械的強度を有している。 The molded product obtained from the fiber reinforced resin composition of the present invention has excellent mechanical strength because it contains the rayon fiber of component (B) in a long state.
発明の詳細な説明Detailed Description of the Invention
 <繊維強化樹脂組成物>
 〔(A)成分〕
 (A)成分の熱可塑性樹脂としては、ポリオレフィン系樹脂、ポリアミド系樹脂、スチレン系樹脂、ポリカーボネート樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリカーボネート系樹脂、アクリル系樹脂、メタクリル系樹脂、ポリエステル系樹脂、ポリアセタール系樹脂、ポリフェニレンスルフィド系樹脂を挙げることができる。
 (A)成分の熱可塑性樹脂としては、ポリオレフィン系樹脂、ポリアミド系樹脂から選ばれるものを含むものが好ましく、ポリオレフィン系樹脂、ポリアミド系樹脂から選ばれるものがより好ましい。
<Fiber-reinforced resin composition>
[Component (A)]
As the thermoplastic resin of component (A), polyolefin resin, polyamide resin, styrene resin, polycarbonate resin, polyvinyl chloride, polyvinylidene chloride, polycarbonate resin, acrylic resin, methacrylic resin, polyester resin, Examples thereof include polyacetal resins and polyphenylene sulfide resins.
As the thermoplastic resin of component (A), those including those selected from polyolefin resins and polyamide resins are preferable, and those selected from polyolefin resins and polyamide resins are more preferable.
 ポリオレフィン系樹脂としては、ポリプロピレン、高密度、低密度及線状低密度ポリエチレン、ポリ-1-ブテン、ポリイソブチレン、エチレンとプロピレンの共重合体、エチレン-プロピレン-ジエン三元共重合体(原料としてのジエン成分が10質量%以下)、ポリメチルペンテン、エチレン又はプロピレン(50モル%以上)と他の共重合モノマー(酢酸ビニル、メタクリル酸アルキルエステル、アクリル酸アルキルエステル、芳香族ビニル等)とのランダム、ブロック、グラフト共重合体等を用いることができる。これらの中でもポリプロピレンが好ましい。 Polyolefin resins include polypropylene, high density, low density and linear low density polyethylene, poly-1-butene, polyisobutylene, copolymers of ethylene and propylene, ethylene-propylene-diene terpolymers (as raw materials) Diene component of 10% by mass or less), polymethylpentene, ethylene or propylene (50 mol% or more) and other copolymerization monomers (vinyl acetate, alkyl methacrylate, alkyl acrylate, aromatic vinyl, etc.) Random, block, and graft copolymers can be used. Among these, polypropylene is preferable.
 (A)成分としてポリオレフィン系樹脂を使用するときは、(B)成分のレーヨン繊維と混ざりやすくするため、酸変性ポリオレフィンを併用することが好ましい。
 酸変性ポリオレフィンとしては、マレイン酸変性ポリオレフィン(マレイン酸変性ポリプロピレン)、無水マレイン酸変性ポリオレフィン(無水マレイン酸変性ポリオレフィン)が好ましい。
 (A)成分として酸変性ポリオレフィンを併用するとき、(A)成分中の酸量(酸変性ポリオレフィンに含まれる酸の(A)成分中の量)が、無水マレイン酸換算で平均0.005~0.5質量%の範囲になるように配合することが好ましい。
When a polyolefin-based resin is used as the component (A), it is preferable to use an acid-modified polyolefin in combination in order to easily mix with the rayon fiber of the component (B).
As the acid-modified polyolefin, maleic acid-modified polyolefin (maleic acid-modified polypropylene) and maleic anhydride-modified polyolefin (maleic anhydride-modified polyolefin) are preferable.
When acid-modified polyolefin is used in combination as component (A), the amount of acid in component (A) (the amount of acid contained in acid-modified polyolefin in component (A)) is 0.005 to an average in terms of maleic anhydride. It is preferable to mix so that it may become the range of 0.5 mass%.
 ポリアミド系樹脂としては、脂肪族ポリアミドと芳香族ポリアミドから選ばれるものが好ましい。
 脂肪族ポリアミドとしては、ポリアミド6、ポリアミド66、ポリアミド69、ポリアミド610、ポリアミド612、ポリアミド46、ポリアミド11、ポリアミド12等を挙げることができる。
 芳香族ポリアミドとしては、芳香族ジカルボン酸と脂肪族ジアミン又は脂肪族ジカルボン酸と芳香族ジアミンから得られるもの、例えば、ナイロンMXD(メタキシリレンジアミンとアジピン酸)、ナイロン6T(ヘキサメチレンジアミンとテレフタル酸)、ナイロン6I(ヘキサメチレンジアミンとイソフタル酸)、ナイロン9T(ノナンジアミンとテレフタル酸)、ナイロンM5T(メチルペンタジアミンとテレフタル酸)、ナイロン10T(デカメチレンジアミンとテレフタル酸)を挙げることができる。
 これらの中でも、ポリアミド6、ポリアミド69、ポリアミド610、ポリアミド612、ポリアミド11、ポリアミド12等の脂肪族ポリアミドが好ましい。
The polyamide resin is preferably selected from aliphatic polyamides and aromatic polyamides.
Examples of the aliphatic polyamide include polyamide 6, polyamide 66, polyamide 69, polyamide 610, polyamide 612, polyamide 46, polyamide 11 and polyamide 12.
Aromatic polyamides include those obtained from aromatic dicarboxylic acids and aliphatic diamines or aliphatic dicarboxylic acids and aromatic diamines, such as nylon MXD (metaxylylenediamine and adipic acid), nylon 6T (hexamethylenediamine and terephthalate). Acid), nylon 6I (hexamethylenediamine and isophthalic acid), nylon 9T (nonanediamine and terephthalic acid), nylon M5T (methylpentadiamine and terephthalic acid), and nylon 10T (decamethylenediamine and terephthalic acid).
Among these, aliphatic polyamides such as polyamide 6, polyamide 69, polyamide 610, polyamide 612, polyamide 11 and polyamide 12 are preferable.
 [(B)成分]
 (B)成分のレーヨン繊維は、Lenzinger Berichte 87(2009)p98-p105に記載されたものを使用することができ、例えば、ビスコースレーヨン、ポリノジック、モダール、キュプラ、リヨセル(テンセル)、BocellやFORTIZAN(〔CELANESE社製〕レーヨンアセテートを延伸した後、アルカリでケン化させて得られる繊維)等を使用することができる。
 (B)成分のレーヨン繊維は、レーヨン繊維単独からなるものであり、レーヨン繊維束に熱可塑性樹脂を含浸させて一体化させたものは含まれない。
[Component (B)]
As the component (B) rayon fiber, those described in Lenzinger Berichte 87 (2009) p98-p105 can be used. (A fiber obtained by stretching a rayon acetate [manufactured by CELANESE) and then saponifying with an alkali) or the like.
The rayon fiber of component (B) is composed of rayon fiber alone, and does not include those in which a rayon fiber bundle is impregnated with a thermoplastic resin and integrated.
 (B)成分のレーヨン繊維は、成形体の機械的強度を高めるため、繊維径が5~30μmのものであり、好ましくは6~20μm、より好ましくは7~15μmのものである。 (B) Component rayon fiber has a fiber diameter of 5 to 30 μm, preferably 6 to 20 μm, more preferably 7 to 15 μm in order to increase the mechanical strength of the molded body.
 (B)成分のレーヨン繊維は、成形体の機械的強度を高めるため、繊維長1~30mmのものであり、好ましくは2~15mm、より好ましくは2~8mmのものである。
 (B)成分のレーヨン繊維は、製造工程において加えられる物理的力により生じる粉状のものを含むこともあるため、組成物中の(B)成分のレーヨン繊維に含まれる90質量%以上が繊維長1~30mmの範囲であるものが好ましく、繊維長2~15mmの範囲にあるものがより好ましく、繊維長2~8mmの範囲にあるものがさらに好ましい。
 (B)成分のレーヨン繊維の繊維長は、製造時に使用する原料としての長さである。
The rayon fiber (B) has a fiber length of 1 to 30 mm, preferably 2 to 15 mm, more preferably 2 to 8 mm in order to increase the mechanical strength of the molded product.
The rayon fiber of component (B) may contain a powdery product generated by physical force applied in the production process, and therefore 90% by mass or more of the rayon fiber of component (B) in the composition is fiber. Those having a length in the range of 1 to 30 mm are preferable, those having a fiber length in the range of 2 to 15 mm are more preferable, and those having a fiber length in the range of 2 to 8 mm are more preferable.
(B) The fiber length of the rayon fiber of a component is the length as a raw material used at the time of manufacture.
 (B)成分のレーヨン繊維のX線配向度は、86%以上のものが好ましく、90%以上のものがより好ましい。
 ここでX線配向度は、特開平9-31744号公報の段落番号0012と段落番号0013や特開平9-256216号公報の段落0020から段落0021の数式から求められるものである。
The X-ray orientation degree of the component (B) rayon fiber is preferably 86% or more, more preferably 90% or more.
Here, the degree of X-ray orientation is obtained from the mathematical formulas in paragraphs 0012 and 0013 of JP-A-9-31744 and paragraphs 0020 to 0021 of JP-A-9-256216.
 (B)成分のレーヨン繊維は、セルロース分子が繊維の長手方向に高配向した(X線配向度が86%以上)ものであり、引張弾性率が高く、樹脂との界面強度も高く、繊維としての特性にも優れるために、繊維強化樹脂用の繊維として非常に優れている。
 (B)成分のレーヨン繊維は、結晶性が高い天然セルロース繊維等に比べると繊維表面の活性が強く反応性が高い。よって、(B)成分を含有することによる効果をより高めるため、(A)成分として酸変性ポリオレフィンを併用することが好ましい。(A)成分として酸変性ポリオレフィンのような官能基含有樹脂を含有することで、(B)成分のレーヨン繊維と(A)成分の樹脂との界面強度がより高くなり、物性がさらに向上されるとともに、長い繊維を使用することによる物性向上効果もさらに大きくなる。
Component (B) is a rayon fiber in which cellulose molecules are highly oriented in the longitudinal direction of the fiber (X-ray orientation degree is 86% or more), has a high tensile elastic modulus, and a high interfacial strength with the resin. Therefore, it is very excellent as a fiber for fiber reinforced resin.
The rayon fiber (B) has a strong activity on the fiber surface and a high reactivity compared to natural cellulose fiber having high crystallinity. Therefore, in order to further enhance the effect of containing the component (B), it is preferable to use an acid-modified polyolefin in combination as the component (A). By containing a functional group-containing resin such as acid-modified polyolefin as the component (A), the interfacial strength between the rayon fiber of the component (B) and the resin of the component (A) becomes higher, and the physical properties are further improved. In addition, the effect of improving physical properties by using long fibers is further increased.
 組成物中における(A)成分の熱可塑性樹脂と(B)成分のレーヨン繊維の合計量中の割合は、
 (A)成分が40~90質量%、(B)成分が60~10質量%、
 (A)成分40~80質量%、(B)成分60~20質量%が好ましく、
 (A)成分50~70質量%で(B)成分50~30質量%がより好ましい。
The ratio in the total amount of the thermoplastic resin of the component (A) and the rayon fiber of the component (B) in the composition is:
The component (A) is 40 to 90% by mass, the component (B) is 60 to 10% by mass,
(A) Component 40 to 80% by mass, (B) Component 60 to 20% by mass are preferable,
More preferably, the component (A) is 50 to 70% by mass and the component (B) is 50 to 30% by mass.
 本発明の組成物は、本発明の課題を解決できる範囲内で、公知の他の難燃剤及び難燃助剤、熱安定剤、滑剤、光安定剤、酸化防止剤、着色剤、離型剤、帯電防止剤を含有することができる。 The composition of the present invention includes other known flame retardants and flame retardant aids, heat stabilizers, lubricants, light stabilizers, antioxidants, colorants, mold release agents within the scope of solving the problems of the present invention. An antistatic agent can be contained.
 本発明の組成物は、(B)成分のレーヨン繊維に溶融した(A)成分の熱可塑性樹脂が付着したものが固化した造粒物(球状の造粒物)であることが好ましい。
 本発明の組成物が造粒物であるとき、粒径は1~30mmの範囲であるものが好ましく、3~20mmの範囲であるものがより好ましく、5~18mmの範囲であるものがさらに好ましい。
 粒径が10mm以上であると、成形体の機械的強度を向上させる効果が得られ、30mm以下であると、射出成形機を使用して成形するとき、射出成形機への供給が安定する。
The composition of the present invention is preferably a granulated product (spherical granulated product) obtained by solidifying the melted thermoplastic resin of component (A) to the rayon fiber of component (B).
When the composition of the present invention is a granulated product, the particle size is preferably in the range of 1 to 30 mm, more preferably in the range of 3 to 20 mm, and still more preferably in the range of 5 to 18 mm. .
When the particle size is 10 mm or more, an effect of improving the mechanical strength of the molded product is obtained, and when it is 30 mm or less, supply to the injection molding machine is stable when molding using an injection molding machine.
 <繊維強化樹脂組成物の製造方法>
 上記した本発明の繊維強化樹脂組成物の製造方法を工程ごとに説明する。
 第1工程にて、攪拌手段として回転羽根を有するミキサーに、(B)成分のレーヨン繊維を入れて攪拌する。
 (B)成分のレーヨン繊維は、レーヨン繊維単独からなるものであり、レーヨン繊維束に熱可塑性樹脂を含浸させて一体化させたものは含まれない。
 製造原料として使用するレーヨン繊維は、繊維径が5~30μmで、長さが1~30mm程度のものであればよい。
<Method for producing fiber-reinforced resin composition>
The manufacturing method of the above-described fiber reinforced resin composition of the present invention will be described step by step.
In the first step, the rayon fiber of component (B) is put into a mixer having rotating blades as stirring means and stirred.
The rayon fiber of component (B) is composed of rayon fiber alone, and does not include those in which a rayon fiber bundle is impregnated with a thermoplastic resin and integrated.
The rayon fiber used as the production raw material may have a fiber diameter of 5 to 30 μm and a length of about 1 to 30 mm.
 ミキサーは、攪拌手段として回転羽根を有するものであればよく、好ましくは加温手段を有しているものである。
 例えば、三井鉱山(株)製ヘンシェルミキサー、FM20C/I(容量20L)、(株)カワタ製スーパーミキサー、SMV-20(容量20L)、(株)森山製作所 加圧ニーダー(DR3-10MB-E)を用いることができる。
The mixer only needs to have rotating blades as stirring means, and preferably has heating means.
For example, Henschel mixer manufactured by Mitsui Mining Co., Ltd., FM20C / I (capacity 20L), Super mixer manufactured by Kawata Co., Ltd., SMV-20 (capacity 20L), Moriyama Manufacturing Co., Ltd., pressure kneader (DR3-10MB-E) Can be used.
 回転羽根は、通常、上羽根と下羽根の2枚構成、あるいは上羽根、中間羽根、下羽根の3枚構成であるが、その枚数に制約はない。また、羽根の形状に制約はないが、たとえば上羽根には混練用タイプ、下羽根には高循環・高負荷用、中間羽根を使用する場合は溶融液用を用いる。 Rotating blades are usually composed of two upper blades and lower blades, or three upper blades, intermediate blades, and lower blades, but the number is not limited. The shape of the blade is not limited, but for example, the kneading type is used for the upper blade, the high circulation / high load is used for the lower blade, and the melt is used when the intermediate blade is used.
 第1工程では、攪拌時の回転羽根の平均周速が10~100m/秒の範囲で攪拌することが好ましく、より好ましくは平均周速が10~90m/秒、更に好ましくは平均周速が10~80m/秒で攪拌する。 In the first step, it is preferable to stir in the range of the average peripheral speed of the rotating blades during stirring in the range of 10 to 100 m / sec, more preferably the average peripheral speed is 10 to 90 m / sec, and still more preferably the average peripheral speed is 10 Stir at ~ 80 m / sec.
 次に第2工程にて、前記ミキサー内に(A)成分の熱可塑性樹脂を入れた後に攪拌することで、発生した摩擦熱により(A)成分の熱可塑性樹脂を溶融させて、(B)成分のレーヨン繊維に(A)成分の熱可塑性樹脂が付着した混合物を得る。
 第1工程と第2工程は、ミキサーの攪拌を停止することなく、連続した1つの工程にすることができる。
Next, in the second step, the thermoplastic resin of the component (A) is melted by the generated frictional heat by stirring after the thermoplastic resin of the component (A) is put in the mixer, and (B) A mixture in which the thermoplastic resin (A) is adhered to the component rayon fiber is obtained.
The 1st process and the 2nd process can be made into one continuous process, without stopping stirring of a mixer.
 第2工程の攪拌により摩擦熱が発生してミキサー内が昇温するため、(A)成分の熱可塑性樹脂が溶融し、(B)成分のレーヨン繊維に付着して、(A)成分の熱可塑性樹脂と(B)成分のレーヨン繊維との混合物が得られる。 Friction heat is generated by stirring in the second step and the temperature in the mixer rises, so that the thermoplastic resin of component (A) melts and adheres to the rayon fiber of component (B), and the heat of component (A) A mixture of the plastic resin and the (B) component rayon fiber is obtained.
 第2工程では、攪拌時の回転羽根の平均周速が10~100m/秒の範囲で攪拌することが好ましく、より好ましくは平均周速が10~90m/秒、更に好ましくは平均周速が10~80m/秒で攪拌する。
 攪拌を継続するとミキサー内の温度が上昇し続け、モーターの動力が上昇する。この動力の上昇及びミキサー内の温度に応じて攪拌速度を徐々にあるいは一気に減速して回転数を低下させることが好ましく、平均周速が前記範囲になるようにする。
In the second step, it is preferable to stir at an average peripheral speed of the rotating blades during stirring in the range of 10 to 100 m / second, more preferably an average peripheral speed of 10 to 90 m / second, and still more preferably an average peripheral speed of 10 Stir at ~ 80 m / sec.
If stirring is continued, the temperature in the mixer will continue to rise, and the power of the motor will increase. It is preferable to reduce the rotational speed by gradually or decelerating the stirring speed in accordance with the increase in power and the temperature in the mixer so that the average peripheral speed falls within the above range.
 この状態で撹拌を継続した場合、再び動力が上昇するので、連結する次の第3工程で使用する冷却ミキサーに混合物を排出する。このとき、この混合物では、(B)成分のレーヨン繊維が(A)成分の熱可塑性樹脂中にほぼ均一に付着している。 If the stirring is continued in this state, the power increases again, so the mixture is discharged to the cooling mixer used in the next third step to be connected. At this time, in this mixture, the rayon fiber of the component (B) is adhered almost uniformly in the thermoplastic resin of the component (A).
 第2工程では、ミキサー内の昇温を補助して、(A)成分の熱可塑性樹脂と(B)成分のレーヨン繊維との混合物の製造を容易にするため、加温手段により、ミキサーを加温することもできる。
 このときの温度は120~140℃程度が好ましい。
In the second step, the temperature inside the mixer is assisted to facilitate the production of the mixture of the thermoplastic resin of component (A) and the rayon fiber of component (B). It can also be warmed.
The temperature at this time is preferably about 120 to 140 ° C.
 第3工程において、第2工程で得られた(A)成分と(B)成分の混合物を冷却しながら低速攪拌する。
 この工程の処理により、前記混合物を固化する(固化により造粒する)。第3工程では、ミキサーの冷却効率を高めるため、第1工程と第2工程で用いたミキサーとは別のミキサー(好ましくは冷却手段を有しているもの)を用いることが好ましい。
In the third step, the mixture of the component (A) and the component (B) obtained in the second step is stirred at a low speed while being cooled.
By the treatment in this step, the mixture is solidified (granulated by solidification). In the third step, in order to increase the cooling efficiency of the mixer, it is preferable to use a mixer (preferably having a cooling means) different from the mixer used in the first step and the second step.
 第3工程では、攪拌時の回転羽根の平均周速が1~30m/秒の範囲で攪拌することが好ましく、より好ましくは平均周速が2~25m/秒、更に好ましくは平均周速が3~25m/秒で攪拌する。第3工程の攪拌速度は、第1工程及び第2工程の攪拌速度よりも小さい。 In the third step, stirring is preferably performed with the average peripheral speed of the rotating blades during stirring in the range of 1 to 30 m / sec, more preferably the average peripheral speed is 2 to 25 m / sec, and still more preferably the average peripheral speed is 3 Stir at ~ 25m / sec. The stirring speed in the third step is smaller than the stirring speed in the first step and the second step.
 第3工程における処理は、(A)成分の熱可塑性樹脂と(B)成分のレーヨン繊維との混合物が、成形用の材料として取り扱いできる程度に固化された時点を第3工程の処理の終了とすることができる。
 なお、摩擦熱の発生により、ミキサー内の温度が上がりすぎると一旦固化された(A)成分の熱可塑性樹脂が再溶融してしまうため、第3工程においても、ミキサー内の温度を管理することが好ましい。
The treatment in the third step is the completion of the treatment in the third step when the mixture of the thermoplastic resin of component (A) and the rayon fiber of component (B) is solidified to the extent that it can be handled as a molding material. can do.
In addition, if the temperature inside the mixer rises too much due to the generation of frictional heat, the once solidified thermoplastic resin of component (A) will be remelted, so the temperature inside the mixer should also be controlled in the third step. Is preferred.
 このような各工程の処理により、(B)成分のレーヨン繊維に溶融状態の(A)成分の熱可塑性樹脂が付着したものが固化した組成物(造粒物)が得られる。
 なお、(B)成分のレーヨン繊維はガラス繊維や炭素繊維と比べると柔らかいこと、上記した製造方法を適用した場合には、押出機により溶融混練してペレットを得た場合と比べてレーヨン繊維が折れ難いことから、製造原料として繊維長さ1~30mmの範囲内のレーヨン繊維を使用した場合、得られた組成物(造粒物)の繊維長さは実質的には変化が小さいものと考えられる。
By the treatment in each step, a composition (granulated product) obtained by solidifying the melted thermoplastic resin (A) on the component (B) rayon fiber is obtained.
In addition, the rayon fiber of the component (B) is softer than glass fiber or carbon fiber. When the above-described manufacturing method is applied, the rayon fiber is more melted and kneaded with an extruder than when the pellet is obtained. Since it is difficult to break, it is considered that when a rayon fiber having a fiber length of 1 to 30 mm is used as a production raw material, the fiber length of the obtained composition (granulated product) is substantially small. It is done.
 なお、上記した製造方法は、例えば特開2007-84713号公報の段落番号0013~0041、同公報の実施例1、特開2008-150492号公報の段落番号0023~0043、同公報の実施例に記載の製造方法を応用することができる。
 (A)成分および(B)成分以外の添加剤を添加するときは、第2工程において添加するか、第3工程終了後に添加することができる。
The manufacturing method described above is, for example, in paragraphs 0013 to 0041 of JP 2007-84713 A, Example 1 of the publication, paragraphs 0023 to 0043 of JP 2008-150492 A, and examples of the publication. The described manufacturing method can be applied.
When an additive other than the component (A) and the component (B) is added, it can be added in the second step or after the third step.
 また、組成物が造粒物であるとき、必要に応じて、さらに押出機に前記造粒物を供給し溶融混練して、ストランド状に押し出した後に切断して、ペレット(円柱形状)にすることもできる。
 このペレットの外径は、1~10mmの範囲が好ましく、2~8mmの範囲がより好ましく、2~6mmの範囲がさらに好ましい。
 このペレットの長さは、1~30mmの範囲が好ましく、2~15mmの範囲がより好ましく、2~8mmの範囲がさらに好ましい。
Further, when the composition is a granulated product, if necessary, the granulated product is further supplied to an extruder, melted and kneaded, extruded into a strand shape, and then cut into pellets (columnar shape). You can also.
The outer diameter of the pellet is preferably in the range of 1 to 10 mm, more preferably in the range of 2 to 8 mm, and still more preferably in the range of 2 to 6 mm.
The length of the pellet is preferably in the range of 1 to 30 mm, more preferably in the range of 2 to 15 mm, and still more preferably in the range of 2 to 8 mm.
 本発明の組成物から得られる成形体は、軽量で機械的強度が高いため、電気・電子機器、通信機器、自動車、建築材料、日用品等の各種分野で使用されている金属部品の代替品として使用することができ、特に各種機器のハウジング、板状の外装材として好適である。 Since the molded body obtained from the composition of the present invention is lightweight and has high mechanical strength, it can be used as an alternative to metal parts used in various fields such as electrical / electronic equipment, communication equipment, automobiles, building materials, and daily necessities. It can be used, and is particularly suitable as a housing for various devices and a plate-shaped exterior material.
 実施例1~3、比較例1、2
 [第1工程]
 ヒーターミキサー(上羽根:混練用タイプ、下羽根:高循環・高負荷用、ヒーター及び温度計付き、容量20L、品名ヘンシェルミキサーFM20C/I、三井鉱山(株)製)を140℃に加温し、表1に示す繊維長の(B)成分のレーヨン繊維や比較用(B)成分を投入し、平均周速50m/秒で攪拌した。
Examples 1 to 3, Comparative Examples 1 and 2
[First step]
Heat the heater mixer (upper blade: kneading type, lower blade: high circulation / high load, with heater and thermometer, capacity 20L, Henschel mixer FM20C / I, manufactured by Mitsui Mining Co., Ltd.) to 140 ° C. The fiber length (B) component rayon fiber shown in Table 1 and the comparative (B) component were added and stirred at an average peripheral speed of 50 m / sec.
 [第2工程]
 続いて、表1に示す(A)成分のポリプロピレン樹脂(酸変性PPを含む)とその他の成分を同じヒーターミキサー内に投入した後、平均周速50m/秒で攪拌を続けた。このときのモーターの動力は2.5kWであった。
 約10分経過時点において、動力が上がり始めた。さらに1分後、動力が4Aに上昇したので、周速を25m/sの低速に落とした。さらに、低速の攪拌の継続により、動力が再度上昇し始めた。
 低速回転開始1分30秒後、動力は5kWに達したので、ミキサーの排出口を開け、接続する冷却ミキサーに排出した。
[Second step]
Subsequently, after the polypropylene resin (including acid-modified PP) of component (A) shown in Table 1 and other components were put into the same heater mixer, stirring was continued at an average peripheral speed of 50 m / sec. The power of the motor at this time was 2.5 kW.
At about 10 minutes, power started to increase. After another minute, the power increased to 4A, so the peripheral speed was reduced to a low speed of 25 m / s. Furthermore, the power began to rise again due to continued low-speed stirring.
1 minute and 30 seconds after the start of low-speed rotation, the power reached 5 kW, so the outlet of the mixer was opened and discharged to the connected cooling mixer.
 [第3工程]
 冷却ミキサー〔回転羽根:冷却用標準羽根,水冷手段(20℃)及び温度計付き,容量45L,クーラーミキサー〕平均周速10m/秒で攪拌を開始し、ミキサー内の温度が80℃になった時点で攪拌を終了した。この工程により、(A)成分のポリプロピレンと(B)成分のレーヨン繊維の混合物は固化して、直径が15mm程度の球状の造粒物(組成物)が得られた。
[Third step]
Cooling mixer [Rotating blade: Standard blade for cooling, with water cooling means (20 ° C) and thermometer, capacity 45L, cooler mixer] Stirring was started at an average peripheral speed of 10 m / sec, and the temperature in the mixer reached 80 ° C. At this point, stirring was terminated. By this step, the mixture of the component (A) polypropylene and the component (B) rayon fiber was solidified to obtain a spherical granulated product (composition) having a diameter of about 15 mm.
 <(A)成分>
 PP(ポリプロピレン):J139((株)プライムポリマー製)
 酸変性PP:UM1001(三洋化成工業(株)製)、無水マレイン酸5%
<(A) component>
PP (polypropylene): J139 (manufactured by Prime Polymer Co., Ltd.)
Acid-modified PP: UM1001 (manufactured by Sanyo Chemical Industries), maleic anhydride 5%
 <(B)成分>
・レーヨン繊維1:Bocellを繊維長6mmにカットしたもの、繊維径12μm、X線配向度93%
・レーヨン繊維2:Bocellを繊維長4mmにカットしたもの、繊維径12μm、X線配向度93%
・レーヨン繊維3:Bocellを繊維長2mmにカットしたもの、繊維径12μm、X線配向度93%
(比較(B)成分)
・レーヨン繊維4:TENCEL FCP(Lenzing社製)繊維長0.6mm、繊維径10μm、X線配向度91%
・セルロース繊維1:NDP-T(日本製紙(株)),繊維径20μm、
<(B) component>
-Rayon fiber 1: Bocell cut to 6 mm fiber length, fiber diameter 12 μm, X-ray orientation 93%
-Rayon fiber 2: Bocell cut to 4 mm fiber length, fiber diameter 12 μm, X-ray orientation 93%
-Rayon fiber 3: Bocell cut to 2 mm fiber length, fiber diameter 12 μm, X-ray orientation 93%
(Comparison (B) component)
Rayon fiber 4: TENCEL FCP (manufactured by Lenzing) fiber length 0.6 mm, fiber diameter 10 μm, X-ray orientation 91%
Cellulose fiber 1: NDP-T (Nippon Paper Industries Co., Ltd.), fiber diameter 20 μm,
 <その他の成分>
 酸化防止剤1:Irganox 1010 (BASFジャパン(株))
 酸化防止剤2:IRGAFOS 168 (BASFジャパン(株))
 滑剤:ステアリン酸カルシウム
<Other ingredients>
Antioxidant 1: Irganox 1010 (BASF Japan KK)
Antioxidant 2: IRGAFOS 168 (BASF Japan Ltd.)
Lubricant: calcium stearate
 <測定方法>
 (レーヨン繊維のX線配向度)
 X線配向度は,透過法で求めた。シンチレーションカウンターを(101)面の回折角度に相当する2θ=20.1°に固定し,繊維束を入射X線に対し垂直に回転させ,方位角ψの回折X線強度を測定し、E.Ott、M.Spurlin編「Cellulose and Cellulose Derivatives」2nd.ed、Vol.II,Interscience lishers, New York(1954)に記載される次式により算出した。式中、ψ1/2 は、方位角度(degrees)で表した半値幅である。
 fc(%)={(1-(ψ1/2/180))×100
<Measurement method>
(X-ray orientation degree of rayon fiber)
The X-ray orientation degree was determined by a transmission method. The scintillation counter was fixed at 2θ = 20.1 ° corresponding to the diffraction angle of the (101) plane, the fiber bundle was rotated perpendicular to the incident X-ray, and the diffracted X-ray intensity at the azimuth angle ψ was measured. It was calculated by the following formula described in Ott, M. Spurlin, “Cellulose and Cellulose Derivatives” 2nd.ed, Vol. II, Interscience lishers, New York (1954). In the formula, ψ 1/2 is a half-value width expressed in an azimuth angle (degrees).
fc (%) = {(1- (ψ 1/2 / 180)) × 100
 (機械的強度測定用の試験片作製方法)
 下記条件にてISO多目的試験片A型形状品(厚み4mm)を作製して、下記の各測定用の試験片とした。
 装置:(株)三菱重機工業製,265/100MSII
 シリンダー温度200℃
 金型温度:80℃
 スクリュー径:36mm
(Method for preparing test piece for measuring mechanical strength)
An ISO multipurpose test piece A-shaped product (thickness 4 mm) was produced under the following conditions, and used as a test piece for each measurement described below.
Equipment: 265 / 100MSII manufactured by Mitsubishi Heavy Industries, Ltd.
Cylinder temperature 200 ° C
Mold temperature: 80 ℃
Screw diameter: 36mm
 (1)引張強さ(MPa):ISO527に準拠して測定した。
 (2)伸び率(%):ISO527に準拠して測定した。
 (3)曲げ強さ(MPa):ISO178に準拠して測定した。
 (4)曲げ弾性率(MPa):ISO178に準拠して測定した。
 (5)比弾性率:曲げ弾性率/密度
 (6)シャルピー衝撃強度(kJ/m2):ISO179/1eAに準拠して、ノッチ付きシャルピー衝撃強さを測定した。
 (7)荷重たわみ温度(℃):ISO75に準拠して測定した。
(1) Tensile strength (MPa): Measured according to ISO527.
(2) Elongation rate (%): Measured according to ISO527.
(3) Bending strength (MPa): Measured according to ISO178.
(4) Flexural modulus (MPa): Measured according to ISO178.
(5) Specific elastic modulus: flexural modulus / density (6) Charpy impact strength (kJ / m 2 ): Notched Charpy impact strength was measured in accordance with ISO 179 / 1eA.
(7) Deflection temperature under load (° C.): Measured according to ISO75.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中、(A)成分と(B)成分は質量%、他の成分は(A)成分と(B)成分の合計100質量部に対する質量部表示。
 表1から確認できるとおり、(B)成分のレーヨン繊維を含んでいる実施例の成形体は、比較例の成形体と比べると高い機械的強度を有していた。
In Table 1, (A) component and (B) component are mass%, and another component is a mass part display with respect to a total of 100 mass parts of (A) component and (B) component.
As can be confirmed from Table 1, the molded product of the example containing the rayon fiber of the component (B) had higher mechanical strength than the molded product of the comparative example.

Claims (8)

  1.  (A)熱可塑性樹脂40~90質量%、(B)レーヨン繊維60~10質量%を含有しており、(A)成分の熱可塑性樹脂中に(B)成分のレーヨン繊維(但し、レーヨン繊維を含む樹脂含浸繊維束は除く)が分散されたものであり、
     (B)成分のレーヨン繊維が繊維径5~30μm、繊維長1~30mmのものである、繊維強化樹脂組成物。
    (A) 40 to 90% by mass of thermoplastic resin, (B) 60 to 10% by mass of rayon fiber, and (B) component rayon fiber (however, rayon fiber in component (A) thermoplastic resin) Except for resin-impregnated fiber bundles containing
    (B) A fiber-reinforced resin composition in which the component rayon fiber has a fiber diameter of 5 to 30 μm and a fiber length of 1 to 30 mm.
  2.  繊維強化樹脂組成物が造粒物である、請求項1記載の繊維強化樹脂組成物。 The fiber-reinforced resin composition according to claim 1, wherein the fiber-reinforced resin composition is a granulated product.
  3.  (B)成分のレーヨン繊維が繊維長2~15mmのものである請求項1記載の繊維強化樹脂組成物。 The fiber-reinforced resin composition according to claim 1, wherein the rayon fiber of component (B) has a fiber length of 2 to 15 mm.
  4.  (B)成分のレーヨン繊維が繊維長2~8mmのものである請求項1記載の繊維強化樹脂組成物。 The fiber-reinforced resin composition according to claim 1, wherein the rayon fiber of component (B) has a fiber length of 2 to 8 mm.
  5.  (B)成分のレーヨン繊維が、X線配向度が86%以上のものである請求項1~3のいずれか1項に記載の繊維強化樹脂組成物。 The fiber-reinforced resin composition according to any one of claims 1 to 3, wherein the (B) component rayon fiber has an X-ray orientation degree of 86% or more.
  6.  (A)成分の熱可塑性樹脂がポリオレフィン系樹脂又はポリアミド系樹脂である請求項1~5のいずれか1項に記載の繊維強化樹脂組成物。 The fiber reinforced resin composition according to any one of claims 1 to 5, wherein the thermoplastic resin of component (A) is a polyolefin resin or a polyamide resin.
  7.  請求項1~6のいずれか1項に記載の繊維強化樹脂組成物の製造方法であって、
     攪拌手段として回転羽根を有するミキサーに、(B)成分のレーヨン繊維(但し、レーヨン繊維を含む樹脂含浸繊維束は除く)を入れて攪拌する工程、
     前記ミキサー内に(A)成分の熱可塑性樹脂を入れた後に攪拌することで、発生した摩擦熱により(A)成分の熱可塑性樹脂を溶融させて、(B)成分のレーヨン繊維に(A)成分の熱可塑性樹脂が付着した混合物を得る工程、
     前記混合物を冷却しながら低速攪拌する工程、
    を有する繊維強化樹脂組成物の製造方法。
    A method for producing a fiber-reinforced resin composition according to any one of claims 1 to 6,
    (B) component rayon fiber (however, excluding resin-impregnated fiber bundles containing rayon fiber) is stirred in a mixer having rotating blades as a stirring means,
    The thermoplastic resin of component (A) is melted by the generated frictional heat by stirring after the thermoplastic resin of component (A) is placed in the mixer, and the rayon fiber of component (B) is (A) Obtaining a mixture to which the thermoplastic resin component is attached;
    Stirring the mixture at low speed while cooling,
    The manufacturing method of the fiber reinforced resin composition which has this.
  8.  前記ミキサーが、ヘンシェルミキサーまたはバンバリーミキサーである、請求項7記載の繊維強化樹脂組成物の製造方法。 The method for producing a fiber-reinforced resin composition according to claim 7, wherein the mixer is a Henschel mixer or a Banbury mixer.
PCT/JP2014/061504 2013-05-13 2014-04-24 Fiber-reinforced resin composition WO2014185243A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-100863 2013-05-13
JP2013100863A JP2014221848A (en) 2013-05-13 2013-05-13 Fiber-reinforced resin composition

Publications (1)

Publication Number Publication Date
WO2014185243A1 true WO2014185243A1 (en) 2014-11-20

Family

ID=51898223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061504 WO2014185243A1 (en) 2013-05-13 2014-04-24 Fiber-reinforced resin composition

Country Status (2)

Country Link
JP (1) JP2014221848A (en)
WO (1) WO2014185243A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194271A1 (en) * 2014-06-18 2015-12-23 ダイセルポリマー株式会社 Fiber-reinforced resin composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022265100A1 (en) * 2021-06-18 2022-12-22

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62146947A (en) * 1985-12-19 1987-06-30 Chisso Corp Polypropylene resin composition
JPH03206819A (en) * 1990-01-10 1991-09-10 Kanai Hiroyuki Artificial aggregate soil
JP2001040155A (en) * 1999-07-28 2001-02-13 Nof Corp Thermoplastic resin composition and molded product thereof
WO2013051369A1 (en) * 2011-10-05 2013-04-11 ダイセルポリマー株式会社 Fiber-reinforced resin composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442470A (en) * 1977-09-02 1979-04-04 Yoshikazu Nakashima Composition and method for regenerating waste paper in dry condition by using synthetic resin
JPH0931744A (en) * 1995-07-20 1997-02-04 Asahi Chem Ind Co Ltd Man-made cellulosic fiber
JP5393141B2 (en) * 2008-12-29 2014-01-22 住友ゴム工業株式会社 Rubber composition and tire using the same
JP5474627B2 (en) * 2010-03-29 2014-04-16 三洋化成工業株式会社 Active hydrogen component for polyurethane resin production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62146947A (en) * 1985-12-19 1987-06-30 Chisso Corp Polypropylene resin composition
JPH03206819A (en) * 1990-01-10 1991-09-10 Kanai Hiroyuki Artificial aggregate soil
JP2001040155A (en) * 1999-07-28 2001-02-13 Nof Corp Thermoplastic resin composition and molded product thereof
WO2013051369A1 (en) * 2011-10-05 2013-04-11 ダイセルポリマー株式会社 Fiber-reinforced resin composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194271A1 (en) * 2014-06-18 2015-12-23 ダイセルポリマー株式会社 Fiber-reinforced resin composition
JP2016020465A (en) * 2014-06-18 2016-02-04 ダイセルポリマー株式会社 Fiber reinforced resin composition
US11338475B2 (en) 2014-06-18 2022-05-24 Daicel Polymer Ltd. Fiber-reinforced resin composition

Also Published As

Publication number Publication date
JP2014221848A (en) 2014-11-27

Similar Documents

Publication Publication Date Title
JP5938299B2 (en) Fiber reinforced resin composition
JP2010168526A (en) Carbon filament-reinforced composite material
JP6070575B2 (en) Pellet mixture, carbon fiber reinforced polypropylene resin composition, molded product, and method for producing pellet mixture
JP2010150371A (en) Carbon filament-reinforced polypropylene composite material
JP2005220173A (en) Fiber-reinforced polyolefin-based resin composition and its molding
CN103421309A (en) Cold-resistant super-tough reinforced nylon 6 material for automobiles and preparation method thereof
JP6453575B2 (en) Fiber reinforced resin composition
WO2014185243A1 (en) Fiber-reinforced resin composition
JP6843330B2 (en) Method for manufacturing a foam molded product of carbon fiber reinforced / modified polypropylene resin
CN106893269B (en) A kind of resin combination and preparation method thereof, metal-resin composite
JP2012051225A (en) Compression molding method of fiber-reinforced thermoplastic resin sheet
JP6711876B2 (en) Fiber reinforced resin composition
JP6707225B2 (en) Method for producing carbon fiber reinforced/modified polypropylene resin
JP2010235774A (en) Carbon filament-reinforced polypropylene composite
JP2008201863A (en) Method for producing molded article of polylactic acid resin
JP2021028374A (en) Resin composition and molded article
MXPA05004599A (en) Polyolefin resin composition and processes for the production thereof.
WO2017056958A1 (en) Propylene-resin-adhered fiber bundle
JP2017008242A (en) Long fiber pellet, pellet mixture and molded article
JP4910506B2 (en) Manufacturing method of long fiber reinforced resin molding
JP3736260B2 (en) Organic fiber resin composition and use thereof
WO2023120464A1 (en) Glass fiber-reinforced propylene-based resin composition
JP6889349B2 (en) Injection molding method of carbon fiber reinforced / modified polypropylene resin
JP2017179277A (en) Resin composition
JP4910505B2 (en) Manufacturing method of long fiber reinforced resin molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14798326

Country of ref document: EP

Kind code of ref document: A1