WO2014181643A1 - Compound-eye imaging system and imaging device - Google Patents

Compound-eye imaging system and imaging device Download PDF

Info

Publication number
WO2014181643A1
WO2014181643A1 PCT/JP2014/060592 JP2014060592W WO2014181643A1 WO 2014181643 A1 WO2014181643 A1 WO 2014181643A1 JP 2014060592 W JP2014060592 W JP 2014060592W WO 2014181643 A1 WO2014181643 A1 WO 2014181643A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging system
array
eye imaging
compound
Prior art date
Application number
PCT/JP2014/060592
Other languages
French (fr)
Japanese (ja)
Inventor
健太郎 峠田
一生 松井
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2014181643A1 publication Critical patent/WO2014181643A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • G02B3/0068Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between arranged in a single integral body or plate, e.g. laminates or hybrid structures with other optical elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • H04N13/232Image signal generators using stereoscopic image cameras using a single 2D image sensor using fly-eye lenses, e.g. arrangements of circular lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses

Definitions

  • the present invention relates to a compound-eye imaging system using a plurality of array lenses formed by integrally molding a plurality of single-lens lenses, and an imaging apparatus using the compound-eye imaging system.
  • a compound eye imaging system using an array lens in which a large number of single-lens lenses are arranged in parallel has been developed as one method for reducing the overall optical length of the imaging system to make it compact.
  • one optical system is used for one imaging element.
  • one optical system is divided by a plurality of single-lens lenses, so that one imaging is correspondingly performed.
  • the imaging area corresponding to each individual lens in the element is divided by the number of individual eyes, and the imaging area of each individual lens is reduced by the number of individual eyes, so the optical total length of the individual lens is shortened. Can do.
  • a compound-eye imaging system using an array lens forms an image that finally becomes an imaging area of one imaging element by superimposing a plurality of images obtained by arranging a plurality of single-lens lenses.
  • the optical total length of the compound-eye imaging system using the array lens can be made the same as the optical total length of each single-lens lens.
  • a compound eye imaging system such as a method of reducing the intensity of unnecessary light by providing a light blocking member or absorber between individual lenses, or a groove in the lens shape to block the path of unnecessary light Is known (see, for example, Patent Document 1 and Patent Document 2).
  • Patent Document 1 has a problem that the number of parts increases and the structure becomes complicated because a light shielding member is provided between adjacent lenses.
  • the compound eye imaging system described in Patent Document 2 has a problem that the uneven thickness of the array lens becomes large and the defect of the molded product may increase.
  • an object of the present invention is to provide a compound eye imaging system that suppresses the generation of ghosts and has good optical performance without greatly changing the number of parts and the shape of a molded product.
  • the compound-eye imaging system is a compound-eye imaging system that forms a plurality of object images.
  • the compound-eye imaging system includes a first array lens, a second array lens, and a third array lens in order from the object side.
  • the lens is formed by integrally forming a plurality of individual lenses, the number of the individual lenses is made equal to the number of the object images, and the object side surface of the individual lenses of the first array lens is convex.
  • the following conditional expressions are satisfied. -30 ° ⁇ 2 ⁇ 35 ° (1) However, ⁇ 2: Maximum surface angle at 70% or more of the effective diameter of the image side surface of the single lens of the first array lens
  • each array lens When individually molded single-lens lenses are joined together to form an array lens, there may be a large variation in position for each single-lens lens. If the variation in position is large, the variation in optical performance also increases. As a result, good optical performance cannot be secured.
  • the present invention by forming each array lens by integrally molding a plurality of individual lenses, it is possible to reduce the variation in the position between the individual lenses among one array lens. Therefore, when three array lenses are stacked in the optical axis direction, the alignment of each individual lens in the optical axis orthogonal direction is facilitated. Further, since the array lens is composed of three lenses, it is possible to avoid deterioration of optical performance when the number is two or less, and to avoid an increase in the total optical length when the number is four or more.
  • the object side surface of the single lens of the first array lens has a convex shape.
  • the convex shape By making the convex shape, the angle formed by the light beam on the image side surface of the individual lens with the optical axis can be reduced, so that the ghost caused by total reflection on the image side surface of the individual lens is less than the concave shape. Can be reduced.
  • Conditional expression (1) defines the maximum surface angle at 70% or more of the effective radius of the image side surface of the single lens of the first array lens.
  • the “surface angle ⁇ 2” refers to a tangent line L1 on the curved surface of the image side surface S2 of the single-lens lens IL and a line L2 perpendicular to the optical axis OX in the cross section in the optical axis direction of the array lens LA. It is an angle formed, and is positive when the tangent line L2 is in the clockwise direction around the intersection with respect to the line L1, and negative when it is in the counterclockwise direction.
  • conditional expression (1) When the value of conditional expression (1) exceeds the lower limit, the occurrence of spherical aberration can be suppressed and the optical performance can be improved. When the value of conditional expression (1) is below the upper limit, ghosts caused by total reflection on the image side surface of the individual lens can be reduced.
  • An imaging apparatus has the above-described compound eye imaging system.
  • FIG. 2 is an optical axis direction sectional view showing a part of the 1st array lens. It is a figure which shows typically the imaging device concerning this embodiment.
  • FIG. 2 is a cross-sectional view of a set of single-lens lenses stacked in the optical axis direction in the compound-eye imaging system of Example 1.
  • FIG. 4 is an aberration diagram of Example 1 (spherical aberration (a), astigmatism (b), distortion (c)).
  • 6 is a cross-sectional view of a set of single-lens lenses stacked in the optical axis direction in the compound-eye imaging system of Example 2.
  • FIG. 6 is an aberration diagram of Example 2 (spherical aberration (a), astigmatism (b), distortion (c)). 6 is a cross-sectional view of a set of single-lens lenses stacked in the optical axis direction in the compound-eye imaging system of Example 3.
  • FIG. FIG. 6 is an aberration diagram of Example 3 (spherical aberration (a), astigmatism (b), distortion (c)). 6 is a cross-sectional view of a set of single-lens lenses stacked in the optical axis direction in the compound-eye imaging system of Example 4.
  • FIG. FIG. 6 is an aberration diagram of Example 4 (spherical aberration (a), astigmatism (b), distortion (c)).
  • FIG. 10 is a cross-sectional view of a set of single-lens lenses stacked in the optical axis direction in the compound-eye imaging system of Example 5.
  • FIG. 6 is an aberration diagram of Example 5 (spherical aberration (a), astigmatism (b), distortion (c)).
  • FIG. 10 is a cross-sectional view of a set of single-lens lenses stacked in the optical axis direction in the compound-eye imaging system of Example 6.
  • FIG. 10 is an aberration diagram of Example 6 (spherical aberration (a), astigmatism (b), distortion (c)).
  • FIG. 10 is a cross-sectional view of a set of single-lens lenses stacked in the optical axis direction in the compound-eye imaging system of Example 7.
  • FIG. 6 is an aberration diagram of Example 5 (spherical aberration (a), astigmatism (b), distortion (c)).
  • FIG. 10 is a cross-sectional view of a set of single-len
  • FIG. 10 is an aberration diagram of Example 7 (spherical aberration (a), astigmatism (b), distortion (c)).
  • FIG. 10 is a cross-sectional view of a set of single-lens lenses stacked in the optical axis direction in the compound-eye imaging system of Example 8.
  • FIG. 10 is an aberration diagram of Example 8 (spherical aberration (a), astigmatism (b), distortion (c)).
  • it is sectional drawing of a set of single-lens lenses laminated
  • FIG. 10 is an aberration diagram of Example 9 (spherical aberration (a), astigmatism (b), distortion (c)).
  • FIG. 10 is an aberration diagram of Example 10 (spherical aberration (a), astigmatism (b), distortion (c)).
  • FIG. 10 is an aberration diagram of Example 11 (spherical aberration (a), astigmatism (b), distortion (c)).
  • the compound-eye imaging system is an optical system in which a plurality of lens systems are arranged in an array with respect to one imaging device, and each lens system captures the same field of view, and each field has a different field of view.
  • it is divided into a field division type that performs imaging of the above.
  • a compound-eye imaging system according to a field division type that performs a plurality of images with different fields of view in order to connect a plurality of images with different fields of view and output a single composite image will be described.
  • FIG. 2 schematically shows the imaging apparatus according to the present embodiment.
  • the imaging device DU includes an imaging unit LU, an image processing unit 1, a calculation unit 2, a memory 3, and the like.
  • the imaging unit LU has one imaging element SR and a compound eye imaging system LH that performs a plurality of imaging with different fields of view on the imaging element SR.
  • the image sensor SR for example, a solid-state image sensor such as a CCD image sensor or a CMOS image sensor having a plurality of pixels is used.
  • the compound-eye imaging system LH is provided on the light-receiving surface SS that is the photoelectric conversion unit of the imaging element SR so that an optical image of the subject is formed, the optical image formed by the compound-eye imaging system LH is captured. It is converted into an electrical signal by the element SR.
  • FIG. 3 is an enlarged cross-sectional view of the compound eye imaging system LH of FIG.
  • the compound-eye imaging system LH includes a first array lens LA1, a second array lens LA2, and a third array lens LA3 in order from the object side, and each array lens integrally forms a plurality of single-lens lenses La1, La2, and La3.
  • the number of individual lenses is made equal to the number of object images (referred to as individual images) formed on the imaging surface SS of the image sensor SR. That is, the light beams that have passed through the single-lens lenses La1, La2, and La3 stacked in the optical axis direction form one image on the imaging surface SS.
  • S is an aperture stop
  • F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, and the like.
  • the object side surface of the single lens La1 of the first array lens LA1 is convex and satisfies the following conditional expression (see FIG. 1). -30 ° ⁇ 2 ⁇ 35 ° (1) However, ⁇ 2: Maximum surface angle at 70% or more of the effective diameter of the image side surface of the single lens La1 of the first array lens LA1
  • the single lens in one array lens may be designed for each of at least three or more different wavelength distributions to have different optical characteristics. Further, the single lens in one array lens may be combined with a plurality of color filters having transmittances corresponding to a plurality of different wavelength distributions.
  • the image processing unit 1 includes an image composition unit 1a and an image correction unit 1b.
  • a single-eye composite image ML (output image signal) can be output.
  • the image correction unit 1b performs inversion processing, distortion processing, shading processing, stitching processing, and the like. Further, distortion correction is performed as necessary.
  • the single-eye composite image ML is compressed by the calculation unit 2 and stored in the memory 3.
  • S is a surface number
  • the surface on which the aspheric coefficient is described is a surface having an aspheric shape.
  • the aspheric shape has an apex at the surface as an origin and an X axis in the optical axis direction.
  • the height in the direction perpendicular to the optical axis is represented by the following “Equation 1”.
  • Example 1 shows lens data of Example 1.
  • a power of 10 for example, 2.5 ⁇ 10 ⁇ 02
  • E for example, 2.5E-02
  • 4 is a cross-sectional view of the single-lens lens of Example 1.
  • La1 is a first monocular lens having positive refractive power
  • La2 is a second monocular lens
  • La3 is a third monocular lens.
  • I denotes an imaging surface
  • F denotes a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, or the like.
  • Example 5 is an aberration diagram of Example 1 (spherical aberration (a), astigmatism (b), distortion (c)).
  • the solid line represents the spherical aberration amount and the coma aberration amount with respect to the d line and the dotted line, respectively
  • the solid line S represents the sagittal surface and the dotted line M represents the meridional surface (hereinafter referred to as “meridional surface”). ,the same).
  • Example 2 shows lens data of Example 2.
  • 6 is a cross-sectional view of a single-lens lens of Example 2.
  • FIG. 1 is a first monocular lens having a positive refractive power and a concave image side surface
  • La2 is a second monocular lens
  • La3 is a third monocular lens.
  • I denotes an imaging surface
  • F denotes a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, or the like.
  • FIG. 7 is an aberration diagram of Example 2 (spherical aberration (a), astigmatism (b), distortion (c)).
  • FIG. 8 is a cross-sectional view of the single lens of Example 3.
  • La1 is a first monocular lens having a positive refractive power and a concave image side surface
  • La2 is a second monocular lens
  • La3 is a third monocular lens.
  • I denotes an imaging surface
  • F denotes a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, or the like.
  • FIG. 9 is an aberration diagram of Example 2 (spherical aberration (a), astigmatism (b), distortion (c)).
  • Example 4 shows lens data of Example 4.
  • FIG. 10 is a cross-sectional view of the single-lens lens of Example 4.
  • La1 is a first monocular lens having a positive refractive power and a concave image side surface
  • La2 is a second monocular lens
  • La3 is a third monocular lens.
  • I denotes an imaging surface
  • F denotes a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, or the like.
  • FIG. 11 is an aberration diagram of Example 4 (spherical aberration (a), astigmatism (b), distortion (c)).
  • Example 5 shows lens data of Example 5.
  • 12 is a cross-sectional view of a single-lens lens of Example 5.
  • FIG. 1 is a first monocular lens having a positive refractive power and a concave image side surface
  • La2 is a second monocular lens
  • La3 is a third monocular lens.
  • I denotes an imaging surface
  • F denotes a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, or the like.
  • FIG. 13 is an aberration diagram of Example 5 (spherical aberration (a), astigmatism (b), distortion (c)).
  • FIG. 14 is a cross-sectional view of a single-lens lens of Example 6.
  • La1 is a first monocular lens having positive refractive power
  • La2 is a second monocular lens
  • La3 is a third monocular lens.
  • I indicates an imaging surface
  • F1 and F2 indicate parallel flat plates assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, and the like.
  • FIG. 15 is an aberration diagram of Example 6 (spherical aberration (a), astigmatism (b), distortion (c)).
  • Example 7 shows lens data of Example 7.
  • FIG. 16 is a cross-sectional view of the single lens of Example 7.
  • La1 is a first monocular lens having positive refractive power
  • La2 is a second monocular lens
  • La3 is a third monocular lens.
  • I indicates an imaging surface
  • F1 and F2 indicate parallel flat plates assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, and the like.
  • FIG. 17 is an aberration diagram of Example 7 (spherical aberration (a), astigmatism (b), distortion (c)).
  • FIG. 18 is a cross-sectional view of the single-lens lens of Example 8.
  • La1 is a first monocular lens having a positive refractive power and a concave image side surface
  • La2 is a second monocular lens
  • La3 is a third monocular lens.
  • I indicates an imaging surface
  • F1 and F2 indicate parallel flat plates assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, and the like.
  • FIG. 19 is an aberration diagram of Example 8 (spherical aberration (a), astigmatism (b), distortion (c)).
  • Example 8 Unit mm
  • A Optical system data s r d nd ⁇ d 1 0.8436 0.37 1.5831 59.46 2 3.0581 0.11 3 infinity 0.24 (aperture) 4 -0.9484 0.60 1.5831 59.46 5 -0.4231 0.11 6 -1000.0000 0.20 1.5831 59.46 7 0.5882 0.15 8 infinity 0.10 1.5255 54.50 9 infinity 0.09 10 infinity 0.40 1.5100 62.40 11 infinity 0.06 12 infinity 0.00 (image plane)
  • B Specification value Focal length 1.68 Fno 2.45 ⁇ (degrees) 32.94 Total lens length 2.45
  • C Aspheric coefficient Ai and conic constant K of the aspheric lens s / 1/2/4/5/6/7 K / -3.9935E-01 / 2.7777E + 01 / -1.9474E + 00 / -2.9763E + 00 / -3.0000E + 01 / -8.
  • Example 9 shows lens data of Example 9.
  • FIG. 20 is a cross-sectional view of the single-lens lens of Example 9.
  • La1 is a first monocular lens having positive refractive power
  • La2 is a second monocular lens
  • La3 is a third monocular lens.
  • I indicates an imaging surface
  • F1 and F2 indicate parallel flat plates assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, and the like.
  • FIG. 20 is an aberration diagram of Example 9 (spherical aberration (a), astigmatism (b), distortion (c)).
  • FIG. 22 is a cross-sectional view of the single-lens lens of Example 10.
  • La1 is a first monocular lens having a positive refractive power and a concave image side surface
  • La2 is a second monocular lens
  • La3 is a third monocular lens.
  • I denotes an imaging surface
  • F denotes a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, or the like.
  • FIG. 23 is an aberration diagram of Example 10 (spherical aberration (a), astigmatism (b), distortion (c)).
  • FIG. 24 is a cross-sectional view of the single-lens lens of Example 11.
  • La1 is a first monocular lens having a positive refractive power and a concave image side surface
  • La2 is a second monocular lens
  • La3 is a third monocular lens.
  • I denotes an imaging surface
  • F denotes a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, or the like.
  • FIG. 25 is an aberration diagram of Example 11 (spherical aberration (a), astigmatism (b), distortion (c)).
  • Table 12 shows values of each example corresponding to each conditional expression.
  • Conditional expression (2) defines the maximum surface angle at 70% or more of the effective radius of the object side surface of the single lens of the first array lens.
  • the “surface angle ⁇ 1” is defined as the line between the tangent line L3 on the curved surface of the object side surface S1 of the single lens lens IL and the line L4 perpendicular to the optical axis OX in the section in the optical axis direction of the array lens LA. It is an angle formed, and is positive when the tangent line L4 is in the clockwise direction around the intersection with respect to the line L3, and negative when it is in the counterclockwise direction.
  • the value of conditional expression (2) exceeds the lower limit, ghosts caused by total reflection on the image side surface of the single lens can be reduced.
  • the value of conditional expression (2) is less than the upper limit, the occurrence of spherical aberration can be suppressed and the optical performance can be improved.
  • the image side surface of the single lens of the first array lens is concave.
  • Conditional expression (3) defines the ratio of the effective diameter of the object side surface of the single lens of the first array lens to the effective diameter of the image side surface of the single lens.
  • the effective radius Y2 of the image side S2 of the single lens IL is the effective of the object side S1. It is often smaller than the radius Y1.
  • the effective radius Y2 of the image side surface S2 of the single lens IL is often larger than the effective radius Y1 of the object side surface S1.
  • conditional expression (3) When the value of conditional expression (3) exceeds the lower limit, ghosts caused by total reflection within the effective diameter on the image side surface of the single lens can be reduced. When the value of conditional expression (3) is below the upper limit, the occurrence of spherical aberration can be suppressed and the optical performance can be improved.
  • r1 radius of curvature of the object side surface of the single lens of the first array lens
  • r2 radius of curvature of the image side surface of the single lens of the first array lens
  • Conditional expression (4) defines the ratio of the curvature radius of the object side surface of the single lens of the first array lens to the curvature radius of the image side surface of the single lens.
  • the single lens of the first array lens has a positive refractive power. Since the single lens of the first array lens has a positive refractive power, a short optical total length, which is an advantage when using the array lens, can be secured, and good optical performance can be secured.
  • the single lens in one array lens is designed for at least three different wavelength distributions and has different optical characteristics. Since the plurality of single-lens lenses are divided into at least three different wavelength distributions (colors) and designed to have different optical characteristics, the wavelength region for correcting chromatic aberration of the single-lens lens can be reduced. Good optical performance can be realized.
  • the single lens in one array lens is combined with a plurality of color filters having transmittances according to the plurality of different wavelength distributions.
  • the chromatic aberration correction is not limited to the white visible range, but only the wavelength range to be transmitted. Better optical performance can be realized.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)

Abstract

This invention provides a compound-eye imaging system that exhibits good optical performance and reduces ghosting. Said compound-eye imaging system, which forms a plurality of object images, comprises a first array lens, a second array lens, and a third array lens, in that order from the object side. Each of said array lenses comprises a plurality of individual lenses formed as a single piece. The number of individual lenses is equal to the number of object images, the object-side surfaces of the individual lenses in the first array lens are convex, and condition (1) is satisfied. (1) −30° < θ2 < 35°

Description

複眼撮像系及び撮像装置Compound eye imaging system and imaging apparatus
 本発明は、複数の個眼レンズが一体成形されてなるアレイレンズを複数用いた複眼撮像系、及びこれを用いた撮像装置に関する。 The present invention relates to a compound-eye imaging system using a plurality of array lenses formed by integrally molding a plurality of single-lens lenses, and an imaging apparatus using the compound-eye imaging system.
 近年、撮像系の光学全長を短くしてコンパクトにする1つの手法として、個眼レンズを多数並列的に配列したアレイレンズを用いる複眼撮像系が開発されている。一般的な撮像装置では1つの撮像素子に対して1つの光学系を用いているが、複眼撮像系では1つの光学系を複数の個眼レンズで分割することで、それに対応して1つの撮像素子の中で各個眼レンズに対応する結像エリアが個眼数分別れることになって、各個眼レンズの結像エリアが個眼数分小さくなるので、個眼レンズの光学全長を短くすることができる。アレイレンズを用いた複眼撮像系は、この個眼レンズを複数配列して得られる複数の画を重ね合わせて最終的に1つの撮像素子の結像エリアとなる画を形成する。この個眼レンズを光軸方向に垂直な平面上に配列することで、アレイレンズを用いた複眼撮像系の光学全長を各個眼レンズの光学全長と同じにすることができる。 In recent years, a compound eye imaging system using an array lens in which a large number of single-lens lenses are arranged in parallel has been developed as one method for reducing the overall optical length of the imaging system to make it compact. In a general imaging apparatus, one optical system is used for one imaging element. However, in a compound eye imaging system, one optical system is divided by a plurality of single-lens lenses, so that one imaging is correspondingly performed. The imaging area corresponding to each individual lens in the element is divided by the number of individual eyes, and the imaging area of each individual lens is reduced by the number of individual eyes, so the optical total length of the individual lens is shortened. Can do. A compound-eye imaging system using an array lens forms an image that finally becomes an imaging area of one imaging element by superimposing a plurality of images obtained by arranging a plurality of single-lens lenses. By arranging the single-lens lenses on a plane perpendicular to the optical axis direction, the optical total length of the compound-eye imaging system using the array lens can be made the same as the optical total length of each single-lens lens.
 ところで、このように個眼レンズと結像エリアが1対1に対応している複眼撮像系では、ある個眼レンズに入射した光が、全反射などでアレイ内を導光して、対応していない他の結像エリアに不要光となって現れる可能性がある。これにより画質の劣化を引き起こしたり、画像処理時にノイズとなってきれいな画にならないといったような課題がある。 By the way, in a compound eye imaging system in which the single-lens lens and the imaging area correspond one-to-one in this way, light incident on a single-lens lens is guided in the array by total reflection or the like. It may appear as unnecessary light in other imaging areas that are not. As a result, there is a problem that image quality is deteriorated or noise is not generated during image processing and a beautiful image is not obtained.
 このような課題に対し、個眼レンズ間に遮光部材や吸収材を設けて不要光の強度を弱くする方法や、レンズの形状に溝をつけて不要光の経路を遮るといったような複眼撮像系が知られている(例えば、特許文献1、特許文献2参照)。 In response to such problems, a compound eye imaging system such as a method of reducing the intensity of unnecessary light by providing a light blocking member or absorber between individual lenses, or a groove in the lens shape to block the path of unnecessary light Is known (see, for example, Patent Document 1 and Patent Document 2).
特開平07-154663号公報Japanese Unexamined Patent Publication No. 07-154663 特開2001-221975号広報JP 2001-221975 PR
 しかしながら、特許文献1に記載された複眼撮像系では、隣接するレンズ間に遮光部材を設けているので、部品点数が増加して構造が複雑になるという問題がある。 However, the compound-eye imaging system described in Patent Document 1 has a problem that the number of parts increases and the structure becomes complicated because a light shielding member is provided between adjacent lenses.
 また、特許文献2に記載された複眼撮像系では、アレイレンズの偏肉が大きくなって成形品の不良が増加する可能性があるという問題がある。 In addition, the compound eye imaging system described in Patent Document 2 has a problem that the uneven thickness of the array lens becomes large and the defect of the molded product may increase.
 本発明は、上記した問題に鑑み、部品点数や成形品の形状を大きく変えることなく、ゴーストの発生を抑制し、かつ良好な光学性能を有した複眼撮像系を提供することを目的とする。 In view of the above-described problems, an object of the present invention is to provide a compound eye imaging system that suppresses the generation of ghosts and has good optical performance without greatly changing the number of parts and the shape of a molded product.
 本発明による複眼撮像系は、複数の物体像を形成する複眼撮像系において、前記複眼撮像系は物体側より順に、第1アレイレンズ、第2アレイレンズ、第3アレイレンズ、からなり、各アレイレンズは複数の個眼レンズを一体に形成してなり、前記個眼レンズの数は前記物体像の数と等しくさせてなり、前記第1アレイレンズの個眼レンズの物体側面は凸形状であり、以下の条件式を満足することを特徴とする。
 -30°<θ2<35°   (1)
ただし、
θ2:前記第1アレイレンズの個眼レンズの像側面の有効径の7割以上における最大面角度
The compound-eye imaging system according to the present invention is a compound-eye imaging system that forms a plurality of object images. The compound-eye imaging system includes a first array lens, a second array lens, and a third array lens in order from the object side. The lens is formed by integrally forming a plurality of individual lenses, the number of the individual lenses is made equal to the number of the object images, and the object side surface of the individual lenses of the first array lens is convex. The following conditional expressions are satisfied.
-30 ° <θ2 <35 ° (1)
However,
θ2: Maximum surface angle at 70% or more of the effective diameter of the image side surface of the single lens of the first array lens
 個々に成形した個眼レンズを互いに接合してアレイレンズを形成した場合、個眼レンズ毎の位置のばらつきが大きくなってしまう可能性があり、位置のばらつきが大きいと光学性能のばらつきも大きくなってしまうので、良好な光学性能を確保できなくなる。これに対し本発明によれば、複数の個眼レンズを一体成形することにより各アレイレンズを形成することで、1つのアレイレンズ間における前記個眼レンズ間の位置のばらつきを小さくすることができ、従って3枚のアレイレンズを光軸方向に積層する場合に、各個眼レンズの光軸直交方向の位置合わせも容易になる。また、前記アレイレンズは3枚からなるので、2枚以下としたときの光学性能の劣化を回避し、4枚以上としたときの光学全長の増大を回避できる。 When individually molded single-lens lenses are joined together to form an array lens, there may be a large variation in position for each single-lens lens. If the variation in position is large, the variation in optical performance also increases. As a result, good optical performance cannot be secured. On the other hand, according to the present invention, by forming each array lens by integrally molding a plurality of individual lenses, it is possible to reduce the variation in the position between the individual lenses among one array lens. Therefore, when three array lenses are stacked in the optical axis direction, the alignment of each individual lens in the optical axis orthogonal direction is facilitated. Further, since the array lens is composed of three lenses, it is possible to avoid deterioration of optical performance when the number is two or less, and to avoid an increase in the total optical length when the number is four or more.
 また、前記第1アレイレンズの個眼レンズの物体側面は凸形状である。凸形状とすることで、該個眼レンズの像側面への光線が光軸となす角を小さくすることができるので、凹形状に比べて該個眼レンズの像側面での全反射によるゴーストを低減することができる。 Further, the object side surface of the single lens of the first array lens has a convex shape. By making the convex shape, the angle formed by the light beam on the image side surface of the individual lens with the optical axis can be reduced, so that the ghost caused by total reflection on the image side surface of the individual lens is less than the concave shape. Can be reduced.
 条件式(1)は、前記第1アレイレンズの個眼レンズの像側面の有効半径の7割以上における最大面角度を規定する。「面角度θ2」とは、図1に示すように、アレイレンズLAの光軸方向断面において、個眼レンズILの像側面S2における曲面上の接線L1と光軸OXに垂直な線L2とのなす角であり、線L1を基準として接線L2が交点回りに時計回りの方向にあるときはプラス、反時計回りの方向にあるときはマイナスとする。条件式(1)の値が下限を上回ることで、球面収差の発生を抑制して光学性能を良好にすることができる。条件式(1)の値が上限を下回ることで、該個眼レンズの像側面での全反射によるゴーストを低減することができる。 Conditional expression (1) defines the maximum surface angle at 70% or more of the effective radius of the image side surface of the single lens of the first array lens. As shown in FIG. 1, the “surface angle θ2” refers to a tangent line L1 on the curved surface of the image side surface S2 of the single-lens lens IL and a line L2 perpendicular to the optical axis OX in the cross section in the optical axis direction of the array lens LA. It is an angle formed, and is positive when the tangent line L2 is in the clockwise direction around the intersection with respect to the line L1, and negative when it is in the counterclockwise direction. When the value of conditional expression (1) exceeds the lower limit, the occurrence of spherical aberration can be suppressed and the optical performance can be improved. When the value of conditional expression (1) is below the upper limit, ghosts caused by total reflection on the image side surface of the individual lens can be reduced.
 本発明による撮像装置は、上述の複眼撮像系を有することを特徴とする。 An imaging apparatus according to the present invention has the above-described compound eye imaging system.
 本発明によれば、部品点数や成形品の形状を大きく変えることなく、ゴーストの発生を抑制し、かつ良好な光学性能を有した複眼撮像系を提供することができる。 According to the present invention, it is possible to provide a compound eye imaging system that suppresses the occurrence of ghost and has good optical performance without greatly changing the number of parts and the shape of a molded product.
第1のアレイレンズの一部を示す光軸方向断面図である。It is an optical axis direction sectional view showing a part of the 1st array lens. 本実施形態にかかる撮像装置を模式的に示す図である。It is a figure which shows typically the imaging device concerning this embodiment. 図2の複眼撮像系の断面図である。It is sectional drawing of the compound eye imaging system of FIG. 実施例1の複眼撮像系における、光軸方向に積層した一組の個眼レンズの断面図である。2 is a cross-sectional view of a set of single-lens lenses stacked in the optical axis direction in the compound-eye imaging system of Example 1. FIG. 実施例1の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。FIG. 4 is an aberration diagram of Example 1 (spherical aberration (a), astigmatism (b), distortion (c)). 実施例2の複眼撮像系における、光軸方向に積層した一組の個眼レンズの断面図である。6 is a cross-sectional view of a set of single-lens lenses stacked in the optical axis direction in the compound-eye imaging system of Example 2. FIG. 実施例2の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。FIG. 6 is an aberration diagram of Example 2 (spherical aberration (a), astigmatism (b), distortion (c)). 実施例3の複眼撮像系における、光軸方向に積層した一組の個眼レンズの断面図である。6 is a cross-sectional view of a set of single-lens lenses stacked in the optical axis direction in the compound-eye imaging system of Example 3. FIG. 実施例3の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。FIG. 6 is an aberration diagram of Example 3 (spherical aberration (a), astigmatism (b), distortion (c)). 実施例4の複眼撮像系における、光軸方向に積層した一組の個眼レンズの断面図である。6 is a cross-sectional view of a set of single-lens lenses stacked in the optical axis direction in the compound-eye imaging system of Example 4. FIG. 実施例4の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。FIG. 6 is an aberration diagram of Example 4 (spherical aberration (a), astigmatism (b), distortion (c)). 実施例5の複眼撮像系における、光軸方向に積層した一組の個眼レンズの断面図である。FIG. 10 is a cross-sectional view of a set of single-lens lenses stacked in the optical axis direction in the compound-eye imaging system of Example 5. 実施例5の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。FIG. 6 is an aberration diagram of Example 5 (spherical aberration (a), astigmatism (b), distortion (c)). 実施例6の複眼撮像系における、光軸方向に積層した一組の個眼レンズの断面図である。FIG. 10 is a cross-sectional view of a set of single-lens lenses stacked in the optical axis direction in the compound-eye imaging system of Example 6. 実施例6の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。FIG. 10 is an aberration diagram of Example 6 (spherical aberration (a), astigmatism (b), distortion (c)). 実施例7の複眼撮像系における、光軸方向に積層した一組の個眼レンズの断面図である。FIG. 10 is a cross-sectional view of a set of single-lens lenses stacked in the optical axis direction in the compound-eye imaging system of Example 7. 実施例7の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。FIG. 10 is an aberration diagram of Example 7 (spherical aberration (a), astigmatism (b), distortion (c)). 実施例8の複眼撮像系における、光軸方向に積層した一組の個眼レンズの断面図である。FIG. 10 is a cross-sectional view of a set of single-lens lenses stacked in the optical axis direction in the compound-eye imaging system of Example 8. 実施例8の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。FIG. 10 is an aberration diagram of Example 8 (spherical aberration (a), astigmatism (b), distortion (c)). 実施例9の複眼撮像系における、光軸方向に積層した一組の個眼レンズの断面図である。In the compound eye imaging system of Example 9, it is sectional drawing of a set of single-lens lenses laminated | stacked on the optical axis direction. 実施例9の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。FIG. 10 is an aberration diagram of Example 9 (spherical aberration (a), astigmatism (b), distortion (c)). 実施例10の複眼撮像系における、光軸方向に積層した一組の個眼レンズの断面図である。In the compound eye imaging system of Example 10, it is sectional drawing of a set of single-eye lenses laminated | stacked on the optical axis direction. 実施例10の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。FIG. 10 is an aberration diagram of Example 10 (spherical aberration (a), astigmatism (b), distortion (c)). 実施例11の複眼撮像系における、光軸方向に積層した一組の個眼レンズの断面図である。In the compound eye imaging system of Example 11, it is sectional drawing of a set of single-lens lenses laminated | stacked on the optical axis direction. 実施例11の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。FIG. 10 is an aberration diagram of Example 11 (spherical aberration (a), astigmatism (b), distortion (c)).
 以下、本発明に係る複眼撮像系とそれを用いた撮像装置等を説明する。複眼撮像系は、1つの撮像素子に対して複数のレンズ系がアレイ状に配置された光学系であり、各レンズ系が同じ視野の撮像を行う超解像タイプと、各レンズ系が異なる視野の撮像を行う視野分割タイプと、に通常分けられる。本実施形態では、視野の異なる複数の像をつなぎ合わせて1枚の合成画像を出力するために、視野の異なる複数の結像を行う視野分割タイプにかかる複眼撮像系について説明する。 Hereinafter, a compound eye imaging system according to the present invention and an imaging apparatus using the same will be described. The compound-eye imaging system is an optical system in which a plurality of lens systems are arranged in an array with respect to one imaging device, and each lens system captures the same field of view, and each field has a different field of view. Usually, it is divided into a field division type that performs imaging of the above. In the present embodiment, a compound-eye imaging system according to a field division type that performs a plurality of images with different fields of view in order to connect a plurality of images with different fields of view and output a single composite image will be described.
 図2に本実施形態にかかる撮像装置を模式的に示す。図2に示すように、撮像装置DUは、撮像ユニットLU,画像処理部1,演算部2,メモリー3等を有している。そして、撮像ユニットLUは、1つの撮像素子SRと、その撮像素子SRに対して視野の異なる複数の結像を行う複眼撮像系LHと、を有している。撮像素子SRとしては、例えば複数の画素を有するCCD型イメージセンサー,CMOS型イメージセンサー等の固体撮像素子が用いられる。撮像素子SRの光電変換部である受光面SS上には、被写体の光学像が形成されるように複眼撮像系LHが設けられているので、複眼撮像系LHによって形成された光学像は、撮像素子SRによって電気的な信号に変換される。 FIG. 2 schematically shows the imaging apparatus according to the present embodiment. As shown in FIG. 2, the imaging device DU includes an imaging unit LU, an image processing unit 1, a calculation unit 2, a memory 3, and the like. The imaging unit LU has one imaging element SR and a compound eye imaging system LH that performs a plurality of imaging with different fields of view on the imaging element SR. As the image sensor SR, for example, a solid-state image sensor such as a CCD image sensor or a CMOS image sensor having a plurality of pixels is used. Since the compound-eye imaging system LH is provided on the light-receiving surface SS that is the photoelectric conversion unit of the imaging element SR so that an optical image of the subject is formed, the optical image formed by the compound-eye imaging system LH is captured. It is converted into an electrical signal by the element SR.
 図3は、図2の複眼撮像系LHの拡大断面図である。複眼撮像系LHは、物体側より順に、第1アレイレンズLA1、第2アレイレンズLA2、第3アレイレンズLA3からなり、各アレイレンズは複数の個眼レンズLa1,La2,La3を一体に形成してなり、個眼レンズの数は、撮像素子SRの撮像面SS上に形成される物体像(個眼像という)の数と等しくさせてなる。つまり、光軸方向に積層された個眼レンズLa1,La2、La3を通過した光線が、それぞれ撮像面SS上で1つの像を形成する。尚、Sは、開口絞りであり、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。第1アレイレンズLA1の個眼レンズLa1の物体側面は凸形状であり、以下の条件式を満足する(図1参照)。
 -30°<θ2<35°   (1)
ただし、
θ2:第1アレイレンズLA1の個眼レンズLa1の像側面の有効径の7割以上における最大面角度
FIG. 3 is an enlarged cross-sectional view of the compound eye imaging system LH of FIG. The compound-eye imaging system LH includes a first array lens LA1, a second array lens LA2, and a third array lens LA3 in order from the object side, and each array lens integrally forms a plurality of single-lens lenses La1, La2, and La3. Thus, the number of individual lenses is made equal to the number of object images (referred to as individual images) formed on the imaging surface SS of the image sensor SR. That is, the light beams that have passed through the single-lens lenses La1, La2, and La3 stacked in the optical axis direction form one image on the imaging surface SS. Note that S is an aperture stop, and F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, and the like. The object side surface of the single lens La1 of the first array lens LA1 is convex and satisfies the following conditional expression (see FIG. 1).
-30 ° <θ2 <35 ° (1)
However,
θ2: Maximum surface angle at 70% or more of the effective diameter of the image side surface of the single lens La1 of the first array lens LA1
 1つのアレイレンズ内における個眼レンズが、少なくとも3つ以上の異なる波長分布に対して各々設計され異なる光学特性を有するようにしても良い。又、1つのアレイレンズ内における個眼レンズが、異なる複数の波長分布に応じた透過率を持った複数のカラーフィルタと組み合わされるようにしても良い。 The single lens in one array lens may be designed for each of at least three or more different wavelength distributions to have different optical characteristics. Further, the single lens in one array lens may be combined with a plurality of color filters having transmittances corresponding to a plurality of different wavelength distributions.
 図2に示すように、画像処理部1は、画像合成部1aと、画像補正部1bと、を有している。複眼撮像系LHにより撮像素子SRの撮像面SS上に形成された複数の個眼像Zn(n=1,2,3,…)に応じた信号を、画像合成部1aが、つなぎ合わせて1枚の個眼合成画像ML(出力画像信号)を出力することができる。その際、画像補正部1bは、反転処理,歪曲処理,シェーディング処理,つなぎ合わせ処理等を行う。さらに、必要に応じて歪曲補正も行う。個眼合成画像MLは、演算部2で圧縮されてメモリー3に記憶される。 As shown in FIG. 2, the image processing unit 1 includes an image composition unit 1a and an image correction unit 1b. The image synthesis unit 1a stitches together signals corresponding to a plurality of single-eye images Zn (n = 1, 2, 3,...) Formed on the imaging surface SS of the imaging element SR by the compound eye imaging system LH. A single-eye composite image ML (output image signal) can be output. At that time, the image correction unit 1b performs inversion processing, distortion processing, shading processing, stitching processing, and the like. Further, distortion correction is performed as necessary. The single-eye composite image ML is compressed by the calculation unit 2 and stored in the memory 3.
 次に、上述した実施形態に好適な実施例について説明する。以下に示す実施例において、複眼撮像系のうち、光軸方向に並んだ3つの個眼レンズ群については共通するから、その仕様を説明している。
Fno:Fナンバー
ω:半画角(゜)
r :曲率半径(mm)
d :軸上面間隔(mm)
nd:レンズ材料のd線に対する屈折率
νd:レンズ材料のアッベ数
Next, examples suitable for the above-described embodiment will be described. In the following embodiment, the three-eye lens group arranged in the optical axis direction in the compound-eye imaging system is common, so the specification is described.
Fno: F number ω: Half angle of view (°)
r: radius of curvature (mm)
d: Distance between shaft upper surfaces (mm)
nd: refractive index of lens material with respect to d-line νd: Abbe number of lens material
 各実施例において、Sは面番号であり、非球面係数が記載された面が非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸方向にX軸をとり、光軸と垂直方向の高さをhとして以下の「数1」で表す。 In each embodiment, S is a surface number, and the surface on which the aspheric coefficient is described is a surface having an aspheric shape. The aspheric shape has an apex at the surface as an origin and an X axis in the optical axis direction. The height in the direction perpendicular to the optical axis is represented by the following “Equation 1”.
Figure JPOXMLDOC01-appb-M000001
ただし、
Ai:i次の非球面係数
R :曲率半径
K :円錐定数
Figure JPOXMLDOC01-appb-M000001
However,
Ai: i-order aspheric coefficient R: radius of curvature K: conic constant
(実施例1)
 実施例1のレンズデータを表1に示す。なお、これ以降(表のレンズデータを含む)において、10のべき乗数(たとえば2.5×10-02)を、E(たとえば2.5E-02)を用いて表すものとする。図4は、実施例1の個眼レンズの断面図である。図中、La1は正の屈折力を有する第1個眼レンズ、La2は第2個眼レンズ、La3は第3個眼レンズである。Iは撮像面を示し、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板を示す。図5は実施例1の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。ここで、球面収差図において、実線はd線、点線はg線に対する球面収差量、コマ収差量をそれぞれ表し、非点収差図において、実線Sはサジタル面、点線Mはメリディオナル面を表す(以下、同じ)。
(Example 1)
Table 1 shows lens data of Example 1. In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −02 ) is expressed using E (for example, 2.5E-02). 4 is a cross-sectional view of the single-lens lens of Example 1. FIG. In the figure, La1 is a first monocular lens having positive refractive power, La2 is a second monocular lens, and La3 is a third monocular lens. I denotes an imaging surface, and F denotes a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, or the like. FIG. 5 is an aberration diagram of Example 1 (spherical aberration (a), astigmatism (b), distortion (c)). Here, in the spherical aberration diagram, the solid line represents the spherical aberration amount and the coma aberration amount with respect to the d line and the dotted line, respectively, and in the astigmatism diagram, the solid line S represents the sagittal surface and the dotted line M represents the meridional surface (hereinafter referred to as “meridional surface”). ,the same).
[表1]
実施例1 
単位 mm 
  
(a)光学系データ 
s   r           d       nd       νd 
1   0.9321      0.58    1.5447    56.20  (絞り) 
2   -2.8559     0.19 
3   -0.5961     0.40    1.6347    23.87  
4   -1.6511     0.10 
5   0.9130      0.40    1.5447    56.20  
6   1.1958      0.16  
7   infinity    0.50    1.5073    48.44  
8   infinity    0.47 
9   infinity    0.00                   (像面) 
  
(b)諸元値 
焦点距離    2.2  
Fno         2.4  
ω(度)      25.42 
レンズ全長  2.8 
  
(c)非球面レンズの非球面係数Aiと円錐定数K  
s/1          /2          /3          /4         /5          /6
K/-2.6019E+00/1.0613E+01/-4.5445E+00/-1.3766E+01/-5.1412E+00/9.2567E-01
A4/4.0432E-01/-6.0283E-03/-1.0793E+00/-9.6655E-01/-1.4624E+00/-8.6004E-01
A6/-1.4444E+00/-2.1159E+00/7.3918E+00/6.1873E+00/4.0069E+00/-1.0468E+00
A8/1.2882E+01/1.1445E+01/-5.6858E+01/-2.3509E+01/-2.2850E+01/1.4033E+00
A10/2.9204E+01/-2.2883E+02/-3.0446E+01/4.4589E+01/7.9337E+01/3.2535E+01
A12/-2.1809E+03/1.7901E+03/3.4003E+03/8.3377E+01/-1.3320E+02/-1.6136E+02
A14/2.1870E+04/4.1114E+03/-1.7635E+04/-2.2880E+02/-1.3360E+02/1.2396E+02
A16/-1.0252E+05/-1.4291E+05/3.5512E+02/-2.6203E+03/7.6351E+02/8.5625E+02
A18/2.3566E+05/7.6503E+05/2.1154E+05/1.3947E+04/-2.6748E+02/-2.2473E+03
A20/-2.1352E+05/-1.3266E+06/-4.2605E+05/-2.0387E+04/-9.9549E+02/1.6475E+03
[Table 1]
Example 1
Unit mm

(A) Optical system data
s r d nd νd
1 0.9321 0.58 1.5447 56.20 (Aperture)
2 -2.8559 0.19
3 -0.5961 0.40 1.6347 23.87
4 -1.6511 0.10
5 0.9130 0.40 1.5447 56.20
6 1.1958 0.16
7 infinity 0.50 1.5073 48.44
8 infinity 0.47
9 infinity 0.00 (image plane)

(B) Specification value
Focal length 2.2
Fno 2.4
ω (degrees) 25.42
Total lens length 2.8

(C) Aspheric coefficient Ai and conic constant K of the aspheric lens
s / 1/2/3/4/5/6
K / -2.6019E + 00 / 1.0613E + 01 / -4.5445E + 00 / -1.3766E + 01 / -5.1412E + 00 / 9.2567E-01
A4 / 4.0432E-01 / -6.0283E-03 / -1.0793E + 00 / -9.6655E-01 / -1.4624E + 00 / -8.6004E-01
A6 / -1.4444E + 00 / -2.1159E + 00 / 7.3918E + 00 / 6.1873E + 00 / 4.0069E + 00 / -1.0468E + 00
A8 / 1.2882E + 01 / 1.1445E + 01 / -5.6858E + 01 / -2.3509E + 01 / -2.2850E + 01 / 1.4033E + 00
A10 / 2.9204E + 01 / -2.2883E + 02 / -3.0446E + 01 / 4.4589E + 01 / 7.9337E + 01 / 3.2535E + 01
A12 / -2.1809E + 03 / 1.7901E + 03 / 3.4003E + 03 / 8.3377E + 01 / -1.3320E + 02 / -1.6136E + 02
A14 / 2.1870E + 04 / 4.1114E + 03 / -1.7635E + 04 / -2.2880E + 02 / -1.3360E + 02 / 1.2396E + 02
A16 / -1.0252E + 05 / -1.4291E + 05 / 3.5512E + 02 / -2.6203E + 03 / 7.6351E + 02 / 8.5625E + 02
A18 / 2.3566E + 05 / 7.6503E + 05 / 2.1154E + 05 / 1.3947E + 04 / -2.6748E + 02 / -2.2473E + 03
A20 / -2.1352E + 05 / -1.3266E + 06 / -4.2605E + 05 / -2.0387E + 04 / -9.9549E + 02 / 1.6475E + 03
(実施例2)
 実施例2のレンズデータを表2に示す。図6は、実施例2の個眼レンズの断面図である。図中、La1は正の屈折力を有し像側面が凹形状である第1個眼レンズ、La2は第2個眼レンズ、La3は第3個眼レンズである。Iは撮像面を示し、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板を示す。図7は実施例2の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。
(Example 2)
Table 2 shows lens data of Example 2. 6 is a cross-sectional view of a single-lens lens of Example 2. FIG. In the figure, La1 is a first monocular lens having a positive refractive power and a concave image side surface, La2 is a second monocular lens, and La3 is a third monocular lens. I denotes an imaging surface, and F denotes a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, or the like. FIG. 7 is an aberration diagram of Example 2 (spherical aberration (a), astigmatism (b), distortion (c)).
[表2]
実施例2 
単位 mm 
  
(a)光学系データ 
s   r           d       nd       νd     
1   0.8876      0.64    1.5447    56.20  (絞り) 
2   1.7874      0.10 
3   1.5538      0.47    1.6347    23.87 
4   28.1051     0.26 
5   -3.0386     0.53    1.5447    56.20  
6   2.0612      0.12    
7   infinity    0.17    1.5168    64.17 
8   infinity    0.12 
9   infinity    0.00                    (像面) 
 
(b)諸元値 
焦点距離    2 
Fno         2    
ω(度)      28.02 
レンズ全長  2.4  
  
(c)非球面レンズの非球面係数Aiと円錐定数K  
s/1         /2          /3          /4         /5         /6
K/6.9198E-01/-2.0000E+01/-4.9006E+00/2.0000E+01/1.3995E+01/-1.2798E+01
A4/-2.2963E-01/1.4102E-01/-1.9326E-01/-3.5662E-01/-1.3929E+00/-4.3719E-01
A6/1.0942E-01/-3.5137E+00/-1.3096E+00/-5.1528E-02/-2.2445E+00/-4.6541E-01
A8/-5.2829E+00/1.7296E+01/-6.2574E-01/-5.0343E-01/1.2707E+01/2.4022E+00
A10/2.1258E+01/-8.2406E+01/-1.1670E+00/-1.9268E+01/-8.3068E+01/-3.0600E+00
A12/-4.3294E+01/7.1415E+01/1.9344E+01/5.6272E+01/2.3340E+00/-5.5668E+00
A14/4.4735E+01/6.9109E+02/-4.4329E+02/-6.1729E+01/1.0065E+03/1.4371E+01
A16/-4.6176E+02/-2.5452E+03/-5.6348E+02/-2.3193E+02/-2.9761E+03/9.0483E-02
A18/1.8941E+03/4.0123E+03/1.3877E+04/2.3165E+03/-1.8145E+03/-1.9381E+01
A20/-2.3477E+03/-3.1694E+03/-2.7945E+04/-5.2673E+03/1.0624E+04/1.1957E+01
[Table 2]
Example 2
Unit mm

(A) Optical system data
s r d nd νd
1 0.8876 0.64 1.5447 56.20 (Aperture)
2 1.7874 0.10
3 1.5538 0.47 1.6347 23.87
4 28.1051 0.26
5 -3.0386 0.53 1.5447 56.20
6 2.0612 0.12
7 infinity 0.17 1.5168 64.17
8 infinity 0.12
9 infinity 0.00 (image plane)

(B) Specification value
Focal length 2
Fno 2
ω (degrees) 28.02
Total lens length 2.4

(C) Aspheric coefficient Ai and conic constant K of the aspheric lens
s / 1/2/3/4/5/6
K / 6.9198E-01 / -2.0000E + 01 / -4.9006E + 00 / 2.0000E + 01 / 1.3995E + 01 / -1.2798E + 01
A4 / -2.2963E-01 / 1.4102E-01 / -1.9326E-01 / -3.5662E-01 / -1.3929E + 00 / -4.3719E-01
A6 / 1.0942E-01 / -3.5137E + 00 / -1.3096E + 00 / -5.1528E-02 / -2.2445E + 00 / -4.6541E-01
A8 / -5.2829E + 00 / 1.7296E + 01 / -6.2574E-01 / -5.0343E-01 / 1.2707E + 01 / 2.4022E + 00
A10 / 2.1258E + 01 / -8.2406E + 01 / -1.1670E + 00 / -1.9268E + 01 / -8.3068E + 01 / -3.0600E + 00
A12 / -4.3294E + 01 / 7.1415E + 01 / 1.9344E + 01 / 5.6272E + 01 / 2.3340E + 00 / -5.5668E + 00
A14 / 4.4735E + 01 / 6.9109E + 02 / -4.4329E + 02 / -6.1729E + 01 / 1.0065E + 03 / 1.4371E + 01
A16 / -4.6176E + 02 / -2.5452E + 03 / -5.6348E + 02 / -2.3193E + 02 / -2.9761E + 03 / 9.0483E-02
A18 / 1.8941E + 03 / 4.0123E + 03 / 1.3877E + 04 / 2.3165E + 03 / -1.8145E + 03 / -1.9381E + 01
A20 / -2.3477E + 03 / -3.1694E + 03 / -2.7945E + 04 / -5.2673E + 03 / 1.0624E + 04 / 1.1957E + 01
(実施例3)
 実施例3のレンズデータを表3に示す。図8は、実施例3の個眼レンズの断面図である。図中、La1は正の屈折力を有し像側面が凹形状である第1個眼レンズ、La2は第2個眼レンズ、La3は第3個眼レンズである。Iは撮像面を示し、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板を示す。図9は実施例2の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。
(Example 3)
Table 3 shows lens data of Example 3. FIG. 8 is a cross-sectional view of the single lens of Example 3. In the figure, La1 is a first monocular lens having a positive refractive power and a concave image side surface, La2 is a second monocular lens, and La3 is a third monocular lens. I denotes an imaging surface, and F denotes a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, or the like. FIG. 9 is an aberration diagram of Example 2 (spherical aberration (a), astigmatism (b), distortion (c)).
[表3]
実施例3 
単位 mm  
 
(a)光学系データ 
s   r           d       nd       νd 
1   0.7585      0.32    1.5447    56.20  (絞り) 
2   7.0998      0.25 
3   -0.4432     0.20    1.6347    23.87 
4   -0.7766     0.10 
5   0.6788      0.22    1.5447    56.20 
6   1.0294      0.25 
7   infinity    0.50    1.5073    48.44  
8   infinity    0.56 
9   infinity    0.00                    (像面) 
 
(b)諸元値 
焦点距離    1.9 
Fno         2.4 
ω(度)      29.05 
レンズ全長  2.4  
 
(c)非球面レンズの非球面係数Aiと円錐定数K  
s/1           /2         /3          /4          /5          /6
K/-2.3004E+00/-2.0000E+01/-4.0979E+00/-9.7015E+00/-2.1304E+00/-7.0987E-01
A4/6.3632E-01/-8.4657E-02/-1.0056E+00/-9.4396E-01/-1.5149E+00/-9.5057E-01
A6/-2.4710E-01/-2.2267E+00/8.2950E+00/9.2596E+00/3.4783E+00/-1.2098E-01
A8/-2.7804E-01/1.0367E+01/-3.9580E+01/-2.9202E+01/-2.2951E+01/-6.6264E+00
A10/6.5097E+01/-2.9429E+02/-1.5296E+02/2.9866E+01/7.4109E+01/3.6242E+01
A12/-2.0734E+03/2.1321E+03/3.6839E+03/2.6656E+02/-1.9028E+02/-1.1707E+02
A14/2.1319E+04/3.4309E+03/-1.7634E+04/3.2279E+02/7.9583E+01/1.0864E+02
A16/-1.0566E+05/-1.4289E+05/3.5758E+02/-5.7419E+03/1.2397E+03/6.1986E+02
A18/2.4548E+05/7.6519E+05/2.1154E+05/1.1956E+03/-3.4930E+03/-2.1873E+03
A20/-2.1351E+05/-1.3266E+06/-4.2605E+05/3.8204E+04/7.5488E+02/2.0553E+03
[Table 3]
Example 3
Unit mm

(A) Optical system data
s r d nd νd
1 0.7585 0.32 1.5447 56.20 (Aperture)
2 7.0998 0.25
3 -0.4432 0.20 1.6347 23.87
4 -0.7766 0.10
5 0.6788 0.22 1.5447 56.20
6 1.0294 0.25
7 infinity 0.50 1.5073 48.44
8 infinity 0.56
9 infinity 0.00 (image plane)

(B) Specification value
Focal length 1.9
Fno 2.4
ω (degrees) 29.05
Total lens length 2.4

(C) Aspheric coefficient Ai and conic constant K of the aspheric lens
s / 1/2/3/4/5/6
K / -2.3004E + 00 / -2.0000E + 01 / -4.0979E + 00 / -9.7015E + 00 / -2.1304E + 00 / -7.0987E-01
A4 / 6.3632E-01 / -8.4657E-02 / -1.0056E + 00 / -9.4396E-01 / -1.5149E + 00 / -9.5057E-01
A6 / -2.4710E-01 / -2.2267E + 00 / 8.2950E + 00 / 9.2596E + 00 / 3.4783E + 00 / -1.2098E-01
A8 / -2.7804E-01 / 1.0367E + 01 / -3.9580E + 01 / -2.9202E + 01 / -2.2951E + 01 / -6.6264E + 00
A10 / 6.5097E + 01 / -2.9429E + 02 / -1.5296E + 02 / 2.9866E + 01 / 7.4109E + 01 / 3.6242E + 01
A12 / -2.0734E + 03 / 2.1321E + 03 / 3.6839E + 03 / 2.6656E + 02 / -1.9028E + 02 / -1.1707E + 02
A14 / 2.1319E + 04 / 3.4309E + 03 / -1.7634E + 04 / 3.2279E + 02 / 7.9583E + 01 / 1.0864E + 02
A16 / -1.0566E + 05 / -1.4289E + 05 / 3.5758E + 02 / -5.7419E + 03 / 1.2397E + 03 / 6.1986E + 02
A18 / 2.4548E + 05 / 7.6519E + 05 / 2.1154E + 05 / 1.1956E + 03 / -3.4930E + 03 / -2.1873E + 03
A20 / -2.1351E + 05 / -1.3266E + 06 / -4.2605E + 05 / 3.8204E + 04 / 7.5488E + 02 / 2.0553E + 03
(実施例4)
 実施例4のレンズデータを表4に示す。図10は、実施例4の個眼レンズの断面図である。図中、La1は正の屈折力を有し像側面が凹形状である第1個眼レンズ、La2は第2個眼レンズ、La3は第3個眼レンズである。Iは撮像面を示し、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板を示す。図11は実施例4の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。
Example 4
Table 4 shows lens data of Example 4. FIG. 10 is a cross-sectional view of the single-lens lens of Example 4. In the figure, La1 is a first monocular lens having a positive refractive power and a concave image side surface, La2 is a second monocular lens, and La3 is a third monocular lens. I denotes an imaging surface, and F denotes a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, or the like. FIG. 11 is an aberration diagram of Example 4 (spherical aberration (a), astigmatism (b), distortion (c)).
[表4]
実施例4 
単位 mm 

(a)光学系データ 
s   r           d       nd       νd     
1   0.7345      0.24    1.5447    56.20  (絞り) 
2   1.2939      0.11 
3   1.8430      0.32    1.6347    23.87 
4   -2.5840     0.47 
5   -1.2931     0.46    1.5447    56.20 
6   2.8971      0.13 
7   infinity   0.17     1.5168    64.17 
8   infinity   0.10 
9   infinity   0.00                    (像面) 
  
(b)諸元値  
焦点距離    1.8 
Fno         2 
ω(度)      31.1  
レンズ全長  2 
  
(c)非球面レンズの非球面係数Aiと円錐定数K  
s/1         /2          /3          /4         /5         /6
K/3.8580E-01/-7.2981E+00/1.1037E+01/-2.0000E+01/7.4453E+00/-2.0000E+01
A4/-3.3153E-01/6.8180E-01/1.4401E-01/-2.6798E-01/-1.6301E+00/-7.5676E-01
A6/-6.7269E-01/2.4704E-01/1.6954E+00/8.0308E-01/-2.6237E+00/3.8699E-01
A8/-3.0766E+00/9.2939E+00/4.5698E+00/2.6836E+00/1.0338E+01/-4.5506E-01
A10/5.7849E+00/-3.2191E+01/3.0203E+00/-1.2846E+00/-8.8457E+01/-5.1241E-01
A12/-3.7190E+01/5.7872E+01/-1.1668E+01/5.2692E+01/-1.8890E+02/-8.8857E-01
A14/-4.4075E+01/6.9645E+01/-2.4691E+02/1.1944E+02/4.8421E+02/2.4905E+00
A16/-2.1488E+02/-2.6606E+03/-3.3502E+02/2.8980E+02/1.6968E+03/2.8686E+00
A18/4.8945E+02/-6.6196E+03/3.6313E+03/1.1342E+02/-7.2520E+03/-8.9829E+00
A20/9.7849E+01/3.9226E+04/-6.2292E+03/-4.8117E+03/-1.3461E+05/4.4800E+00
[Table 4]
Example 4
Unit mm

(A) Optical system data
s r d nd νd
1 0.7345 0.24 1.5447 56.20 (Aperture)
2 1.2939 0.11
3 1.8430 0.32 1.6347 23.87
4 -2.5840 0.47
5 -1.2931 0.46 1.5447 56.20
6 2.8971 0.13
7 infinity 0.17 1.5168 64.17
8 infinity 0.10
9 infinity 0.00 (image plane)

(B) Specification value
Focal length 1.8
Fno 2
ω (degrees) 31.1
Total lens length 2

(C) Aspheric coefficient Ai and conic constant K of the aspheric lens
s / 1/2/3/4/5/6
K / 3.8580E-01 / -7.2981E + 00 / 1.1037E + 01 / -2.0000E + 01 / 7.4453E + 00 / -2.0000E + 01
A4 / -3.3153E-01 / 6.8180E-01 / 1.4401E-01 / -2.6798E-01 / -1.6301E + 00 / -7.5676E-01
A6 / -6.7269E-01 / 2.4704E-01 / 1.6954E + 00 / 8.0308E-01 / -2.6237E + 00 / 3.8699E-01
A8 / -3.0766E + 00 / 9.2939E + 00 / 4.5698E + 00 / 2.6836E + 00 / 1.0338E + 01 / -4.5506E-01
A10 / 5.7849E + 00 / -3.2191E + 01 / 3.0203E + 00 / -1.2846E + 00 / -8.8457E + 01 / -5.1241E-01
A12 / -3.7190E + 01 / 5.7872E + 01 / -1.1668E + 01 / 5.2692E + 01 / -1.8890E + 02 / -8.8857E-01
A14 / -4.4075E + 01 / 6.9645E + 01 / -2.4691E + 02 / 1.1944E + 02 / 4.8421E + 02 / 2.4905E + 00
A16 / -2.1488E + 02 / -2.6606E + 03 / -3.3502E + 02 / 2.8980E + 02 / 1.6968E + 03 / 2.8686E + 00
A18 / 4.8945E + 02 / -6.6196E + 03 / 3.6313E + 03 / 1.1342E + 02 / -7.2520E + 03 / -8.9829E + 00
A20 / 9.7849E + 01 / 3.9226E + 04 / -6.2292E + 03 / -4.8117E + 03 / -1.3461E + 05 / 4.4800E + 00
(実施例5)
 実施例5のレンズデータを表5に示す。図12は、実施例5の個眼レンズの断面図である。図中、La1は正の屈折力を有し像側面が凹形状である第1個眼レンズ、La2は第2個眼レンズ、La3は第3個眼レンズである。Iは撮像面を示し、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板を示す。図13は実施例5の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。
(Example 5)
Table 5 shows lens data of Example 5. 12 is a cross-sectional view of a single-lens lens of Example 5. FIG. In the figure, La1 is a first monocular lens having a positive refractive power and a concave image side surface, La2 is a second monocular lens, and La3 is a third monocular lens. I denotes an imaging surface, and F denotes a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, or the like. FIG. 13 is an aberration diagram of Example 5 (spherical aberration (a), astigmatism (b), distortion (c)).
[表5]
実施例5 
単位 mm 
 
(a)光学系データ 
s   r           d       nd       νd   
1   0.9424      0.46    1.5447    56.20  (絞り) 
2   2.2518      0.11 
3   2.5402      0.59    1.5447    56.20 
4   -3.1195     0.33 
5   -4.8627     0.51    1.6347    23.87 
6   1.3754      0.15 
7   infinity    0.15    1.5168    64.17  
8   infinity    0.10 
9   infinity    0.00                    (像面) 
 
(b)諸元値 
焦点距離    1.9 
Fno         2 
ω(度)      28.92 
レンズ全長  2.4 
  
(c)非球面レンズの非球面係数Aiと円錐定数K 
s/1         /2          /3          /4         /5         /6
K/7.2920E-01/-2.0000E+01/-1.3904E+01/-1.9872E+01/1.0534E+01/-9.8382E+00
A4/-1.6992E-01/4.2493E-01/1.9909E-01/-4.6902E-01/-1.5848E+00/-4.2688E-01
A6/7.8931E-02/-5.9620E-01/5.8383E-01/4.4376E-01/-1.1897E+00/-3.5129E-02
A8/-2.9587E+00/9.9774E+00/-3.6089E-02/9.7726E-01/5.9217E+00/9.7534E-01
A10/1.1149E+01/-4.0372E+01/1.6817E+00/-9.0297E+00/-3.7555E+01/-1.5101E+00
A12/-1.5984E+01/3.7375E+01/2.1354E+01/1.8959E+01/-1.0151E+01/-1.4001E+00
A14/2.8802E-01/2.7920E+02/-1.2282E+02/-8.6166E+00/3.9354E+02/4.2255E+00
A16/-1.7173E+02/-7.0152E+02/-2.8844E+02/-2.9644E+01/-5.7842E+02/-3.3720E-01
A18/4.3038E+02/-4.3530E+02/2.5710E+03/-9.0835E+00/-2.3557E+03/-4.5134E+00
A20/1.5809E+02/1.6189E+03/-4.0403E+03/-6.8142E+01/2.6716E+03/2.6728E+00
[Table 5]
Example 5
Unit mm

(A) Optical system data
s r d nd νd
1 0.9424 0.46 1.5447 56.20 (Aperture)
2 2.2518 0.11
3 2.5402 0.59 1.5447 56.20
4 -3.1195 0.33
5 -4.8627 0.51 1.6347 23.87
6 1.3754 0.15
7 infinity 0.15 1.5168 64.17
8 infinity 0.10
9 infinity 0.00 (image plane)

(B) Specification value
Focal length 1.9
Fno 2
ω (degrees) 28.92
Total lens length 2.4

(C) Aspheric coefficient Ai and conic constant K of the aspheric lens
s / 1/2/3/4/5/6
K / 7.2920E-01 / -2.0000E + 01 / -1.3904E + 01 / -1.9872E + 01 / 1.0534E + 01 / -9.8382E + 00
A4 / -1.6992E-01 / 4.2493E-01 / 1.9909E-01 / -4.6902E-01 / -1.5848E + 00 / -4.2688E-01
A6 / 7.8931E-02 / -5.9620E-01 / 5.8383E-01 / 4.4376E-01 / -1.1897E + 00 / -3.5129E-02
A8 / -2.9587E + 00 / 9.9774E + 00 / -3.6089E-02 / 9.7726E-01 / 5.9217E + 00 / 9.7534E-01
A10 / 1.1149E + 01 / -4.0372E + 01 / 1.6817E + 00 / -9.0297E + 00 / -3.7555E + 01 / -1.5101E + 00
A12 / -1.5984E + 01 / 3.7375E + 01 / 2.1354E + 01 / 1.8959E + 01 / -1.0151E + 01 / -1.4001E + 00
A14 / 2.8802E-01 / 2.7920E + 02 / -1.2282E + 02 / -8.6166E + 00 / 3.9354E + 02 / 4.2255E + 00
A16 / -1.7173E + 02 / -7.0152E + 02 / -2.8844E + 02 / -2.9644E + 01 / -5.7842E + 02 / -3.3720E-01
A18 / 4.3038E + 02 / -4.3530E + 02 / 2.5710E + 03 / -9.0835E + 00 / -2.3557E + 03 / -4.5134E + 00
A20 / 1.5809E + 02 / 1.6189E + 03 / -4.0403E + 03 / -6.8142E + 01 / 2.6716E + 03 / 2.6728E + 00
(実施例6)
 実施例6のレンズデータを表6に示す。図14は、実施例6の個眼レンズの断面図である。図中、La1は正の屈折力を有する第1個眼レンズ、La2は第2個眼レンズ、La3は第3個眼レンズである。Iは撮像面を示し、F1,F2は光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板を示す。図15は実施例6の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。
(Example 6)
Table 6 shows lens data of Example 6. FIG. 14 is a cross-sectional view of a single-lens lens of Example 6. In the figure, La1 is a first monocular lens having positive refractive power, La2 is a second monocular lens, and La3 is a third monocular lens. I indicates an imaging surface, and F1 and F2 indicate parallel flat plates assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, and the like. FIG. 15 is an aberration diagram of Example 6 (spherical aberration (a), astigmatism (b), distortion (c)).
[表6]
実施例6 
単位 mm  
 
(a)光学系データ 
s   r           d       nd       νd 
1   1.3278      0.64    1.5831    59.46   
2   infinity    0.02  
3   infinity    0.40                    (絞り)
4   -1.3627     0.53    1.5831    59.46   
5   -0.7116     0.11 
6   2.7878      0.40    1.5831    59.46   
7   0.7660      0.18 
8   infinity    0.10    1.5255    54.50   
9   infinity    0.10            
10  infinity    0.40    1.5100    62.40   
11  infinity    0.03  
12  infinity    0.00                    (像面)
 
(b)諸元値 
焦点距離    1.96  
Fno         2.4  
ω(度)      28.47  
レンズ全長  2.9    
  
(c)非球面レンズの非球面係数Aiと円錐定数K  
s/1          /4          /5          /6          /7
K/-1.0027E+00/-1.4902E+01/-3.1841E+00/-2.4188E+01/-6.3591E+00
A3/4.0750E-03/-1.8034E-01/2.9339E-02/-7.7951E-03/1.9854E-01
A4/1.2733E-02/7.4735E-01/-1.5816E+00/-1.6376E+00/-1.3642E+00
A5/3.0527E-02/-6.4504E+00/2.4263E+00/1.7639E+00/1.7419E+00
A6/-1.8679E-03/1.1284E+01/-9.9450E-01/8.7567E-02/-8.6398E-01
A8/-2.7920E-01/-1.1961E+01/-2.9853E+00/-1.3156E+00/-2.3981E-02
A10/1.0658E+00/-8.2869E+00/1.0400E+01/7.8931E-01/1.3994E-01
A12/-1.3157E+00/1.5070E+02/-7.4324E+00/1.3761E+00/-3.4435E-02
A14/2.8802E-01/-3.3132E+02/-4.5948E+00/-2.6576E+00/-3.2400E-02
[Table 6]
Example 6
Unit mm

(A) Optical system data
s r d nd νd
1 1.3278 0.64 1.5831 59.46
2 infinity 0.02
3 infinity 0.40 (aperture)
4 -1.3627 0.53 1.5831 59.46
5 -0.7116 0.11
6 2.7878 0.40 1.5831 59.46
7 0.7660 0.18
8 infinity 0.10 1.5255 54.50
9 infinity 0.10
10 infinity 0.40 1.5100 62.40
11 infinity 0.03
12 infinity 0.00 (image plane)

(B) Specification value
Focal length 1.96
Fno 2.4
ω (degrees) 28.47
Total lens length 2.9

(C) Aspheric coefficient Ai and conic constant K of the aspheric lens
s / 1/4/5/6/7
K / -1.0027E + 00 / -1.4902E + 01 / -3.1841E + 00 / -2.4188E + 01 / -6.3591E + 00
A3 / 4.0750E-03 / -1.8034E-01 / 2.9339E-02 / -7.7951E-03 / 1.9854E-01
A4 / 1.2733E-02 / 7.4735E-01 / -1.5816E + 00 / -1.6376E + 00 / -1.3642E + 00
A5 / 3.0527E-02 / -6.4504E + 00 / 2.4263E + 00 / 1.7639E + 00 / 1.7419E + 00
A6 / -1.8679E-03 / 1.1284E + 01 / -9.9450E-01 / 8.7567E-02 / -8.6398E-01
A8 / -2.7920E-01 / -1.1961E + 01 / -2.9853E + 00 / -1.3156E + 00 / -2.3981E-02
A10 / 1.0658E + 00 / -8.2869E + 00 / 1.0400E + 01 / 7.8931E-01 / 1.3994E-01
A12 / -1.3157E + 00 / 1.5070E + 02 / -7.4324E + 00 / 1.3761E + 00 / -3.4435E-02
A14 / 2.8802E-01 / -3.3132E + 02 / -4.5948E + 00 / -2.6576E + 00 / -3.2400E-02
(実施例7)
 実施例7のレンズデータを表7に示す。図16は、実施例7の個眼レンズの断面図である。図中、La1は正の屈折力を有する第1個眼レンズ、La2は第2個眼レンズ、La3は第3個眼レンズである。Iは撮像面を示し、F1,F2は光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板を示す。図17は実施例7の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。
(Example 7)
Table 7 shows lens data of Example 7. FIG. 16 is a cross-sectional view of the single lens of Example 7. In the figure, La1 is a first monocular lens having positive refractive power, La2 is a second monocular lens, and La3 is a third monocular lens. I indicates an imaging surface, and F1 and F2 indicate parallel flat plates assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, and the like. FIG. 17 is an aberration diagram of Example 7 (spherical aberration (a), astigmatism (b), distortion (c)).
[表7]
実施例7 
単位 mm  

(a)光学系データ  
s   r            d       nd       νd     
1   1.2221       0.67    1.5831    59.46  
2   -7.0104      0.02  
3   infinity     0.27                    (絞り) 
4   -0.9351      0.59    1.5831    59.46 
5   -0.5982      0.11 
6   -1000.0000   0.40    1.5831    59.46  
7   0.9077       0.15  
8   infinity     0.10    1.5255    54.50 
9   infinity     0.09 
10  infinity     0.40    1.5100    62.40  
11  infinity     0.07  
12  infinity     0.00                    (像面) 
  
(b)諸元値   
焦点距離    1.96  
Fno         2.45  
ω(度)      28.5  
レンズ全長  2.9  
  
(c)非球面レンズの非球面係数Aiと円錐定数K  
s/1          /2         /4          /5          /6         /7
K/-1.1619E+00/1.3522E+01/-7.8734E+00/-2.7621E+00/3.0000E+01/-9.1917E+00
A3/5.1618E-04/3.2374E-03/-2.7216E-01/3.8175E-02/1.8366E-02/1.6959E-01
A4/5.8515E-02/-7.4646E-02/5.3200E-01/-1.6452E+00/-1.5772E+00/-1.3327E+00
A5/-1.2335E-01/-1.0848E+00/-8.3438E+00/2.3589E+00/1.7733E+00/1.7449E+00
A6/1.7098E-01/2.2444E+00/1.4312E+01/-1.0306E+00/-1.9075E-02/-8.8456E-01
A8/-6.4922E-01/-9.3975E+00/-2.3973E+01/-2.9752E+00/-1.7130E+00/-5.4630E-02
A10/7.6100E-01/2.5408E+01/6.7466E+01/9.7678E+00/5.1180E-01/1.2583E-01
A12/-1.5955E+00/-1.2296E+01/-7.4614E+01/-9.5021E+00/1.9242E+00/-4.1907E-02
A14/0.0000E+00/0.0000E+00/-6.3137E+02/-2.5335E+00/-4.3708E+00/-8.5019E-03
[Table 7]
Example 7
Unit mm

(A) Optical system data
s r d nd νd
1 1.2221 0.67 1.5831 59.46
2 -7.0104 0.02
3 infinity 0.27 (aperture)
4 -0.9351 0.59 1.5831 59.46
5 -0.5982 0.11
6 -1000.0000 0.40 1.5831 59.46
7 0.9077 0.15
8 infinity 0.10 1.5255 54.50
9 infinity 0.09
10 infinity 0.40 1.5100 62.40
11 infinity 0.07
12 infinity 0.00 (image plane)

(B) Specification value
Focal length 1.96
Fno 2.45
ω (degrees) 28.5
Total lens length 2.9

(C) Aspheric coefficient Ai and conic constant K of the aspheric lens
s / 1/2/4/5/6/7
K / -1.1619E + 00 / 1.3522E + 01 / -7.8734E + 00 / -2.7621E + 00 / 3.0000E + 01 / -9.1917E + 00
A3 / 5.1618E-04 / 3.2374E-03 / -2.7216E-01 / 3.8175E-02 / 1.8366E-02 / 1.6959E-01
A4 / 5.8515E-02 / -7.4646E-02 / 5.3200E-01 / -1.6452E + 00 / -1.5772E + 00 / -1.3327E + 00
A5 / -1.2335E-01 / -1.0848E + 00 / -8.3438E + 00 / 2.3589E + 00 / 1.7733E + 00 / 1.7449E + 00
A6 / 1.7098E-01 / 2.2444E + 00 / 1.4312E + 01 / -1.0306E + 00 / -1.9075E-02 / -8.8456E-01
A8 / -6.4922E-01 / -9.3975E + 00 / -2.3973E + 01 / -2.9752E + 00 / -1.7130E + 00 / -5.4630E-02
A10 / 7.6100E-01 / 2.5408E + 01 / 6.7466E + 01 / 9.7678E + 00 / 5.1180E-01 / 1.2583E-01
A12 / -1.5955E + 00 / -1.2296E + 01 / -7.4614E + 01 / -9.5021E + 00 / 1.9242E + 00 / -4.1907E-02
A14 / 0.0000E + 00 / 0.0000E + 00 / -6.3137E + 02 / -2.5335E + 00 / -4.3708E + 00 / -8.5019E-03
(実施例8)
 実施例8のレンズデータを表8に示す。図18は、実施例8の個眼レンズの断面図である。図中、La1は正の屈折力を有し像側面が凹形状である第1個眼レンズ、La2は第2個眼レンズ、La3は第3個眼レンズである。Iは撮像面を示し、F1,F2は光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板を示す。図19は実施例8の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。
(Example 8)
Table 8 shows lens data of Example 8. FIG. 18 is a cross-sectional view of the single-lens lens of Example 8. In the figure, La1 is a first monocular lens having a positive refractive power and a concave image side surface, La2 is a second monocular lens, and La3 is a third monocular lens. I indicates an imaging surface, and F1 and F2 indicate parallel flat plates assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, and the like. FIG. 19 is an aberration diagram of Example 8 (spherical aberration (a), astigmatism (b), distortion (c)).
[表8]
実施例8  
単位 mm  
  
(a)光学系データ  
s   r            d       nd       νd     
1   0.8436       0.37    1.5831    59.46 
2   3.0581       0.11 
3   infinity     0.24                    (絞り) 
4   -0.9484      0.60    1.5831    59.46 
5   -0.4231      0.11  
6   -1000.0000   0.20    1.5831    59.46  
7   0.5882       0.15  
8   infinity     0.10    1.5255    54.50 
9   infinity     0.09  
10  infinity     0.40    1.5100    62.40 
11  infinity     0.06  
12  infinity     0.00                    (像面)    
  
(b)諸元値  
焦点距離    1.68  
Fno         2.45  
ω(度)      32.94 
レンズ全長  2.45  
  
(c)非球面レンズの非球面係数Aiと円錐定数K  
s/1          /2          /4          /5          /6          /7
K/-3.9935E-01/2.7777E+01/-1.9474E+00/-2.9763E+00/-3.0000E+01/-8.1515E+00
A3/-2.2864E-02/-4.9060E-02/-1.5251E-01/1.8504E-01/1.7795E-01/2.1486E-01
A4/1.9982E-01/1.5829E-01/2.0250E-01/-2.2998E+00/-1.6073E+00/-1.8622E+00
A5/-1.1976E-01/-1.2051E+00/-7.8487E+00/2.3825E+00/1.6052E+00/2.6713E+00
A6/2.2297E-02/1.5606E+00/1.2559E+01/-2.2103E-01/4.6096E-01/-1.2704E+00
A8/3.1515E-01/-1.0153E+01/-4.7030E+01/-4.3207E+00/-7.8779E-01/-2.4041E-01
A10/9.8480E-01/1.9528E+01/2.2390E+02/8.4048E+00/-1.4557E-01/4.2799E-01
A12/-1.4091E+01/-1.0425E+01/-1.5503E+02/1.4047E+01/4.1593E-01/-5.4073E-02
A14/0.0000E+00/0.0000E+00/-2.4620E+03/-2.2067E+01/-1.8394E-01/-1.0134E-01
[Table 8]
Example 8
Unit mm

(A) Optical system data
s r d nd νd
1 0.8436 0.37 1.5831 59.46
2 3.0581 0.11
3 infinity 0.24 (aperture)
4 -0.9484 0.60 1.5831 59.46
5 -0.4231 0.11
6 -1000.0000 0.20 1.5831 59.46
7 0.5882 0.15
8 infinity 0.10 1.5255 54.50
9 infinity 0.09
10 infinity 0.40 1.5100 62.40
11 infinity 0.06
12 infinity 0.00 (image plane)

(B) Specification value
Focal length 1.68
Fno 2.45
ω (degrees) 32.94
Total lens length 2.45

(C) Aspheric coefficient Ai and conic constant K of the aspheric lens
s / 1/2/4/5/6/7
K / -3.9935E-01 / 2.7777E + 01 / -1.9474E + 00 / -2.9763E + 00 / -3.0000E + 01 / -8.1515E + 00
A3 / -2.2864E-02 / -4.9060E-02 / -1.5251E-01 / 1.8504E-01 / 1.7795E-01 / 2.1486E-01
A4 / 1.9982E-01 / 1.5829E-01 / 2.0250E-01 / -2.2998E + 00 / -1.6073E + 00 / -1.8622E + 00
A5 / -1.1976E-01 / -1.2051E + 00 / -7.8487E + 00 / 2.3825E + 00 / 1.6052E + 00 / 2.6713E + 00
A6 / 2.2297E-02 / 1.5606E + 00 / 1.2559E + 01 / -2.2103E-01 / 4.6096E-01 / -1.2704E + 00
A8 / 3.1515E-01 / -1.0153E + 01 / -4.7030E + 01 / -4.3207E + 00 / -7.8779E-01 / -2.4041E-01
A10 / 9.8480E-01 / 1.9528E + 01 / 2.2390E + 02 / 8.4048E + 00 / -1.4557E-01 / 4.2799E-01
A12 / -1.4091E + 01 / -1.0425E + 01 / -1.5503E + 02 / 1.4047E + 01 / 4.1593E-01 / -5.4073E-02
A14 / 0.0000E + 00 / 0.0000E + 00 / -2.4620E + 03 / -2.2067E + 01 / -1.8394E-01 / -1.0134E-01
(実施例9)
 実施例9のレンズデータを表9に示す。図20は、実施例9の個眼レンズの断面図である。図中、La1は正の屈折力を有する第1個眼レンズ、La2は第2個眼レンズ、La3は第3個眼レンズである。Iは撮像面を示し、F1,F2は光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板を示す。図20は実施例9の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。
Example 9
Table 9 shows lens data of Example 9. FIG. 20 is a cross-sectional view of the single-lens lens of Example 9. In the figure, La1 is a first monocular lens having positive refractive power, La2 is a second monocular lens, and La3 is a third monocular lens. I indicates an imaging surface, and F1 and F2 indicate parallel flat plates assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, and the like. FIG. 20 is an aberration diagram of Example 9 (spherical aberration (a), astigmatism (b), distortion (c)).
[表9]
実施例9  
単位 mm 
 
(a)光学系データ  
s   r            d       nd       νd     
1   1.1560       0.34    1.5831    59.46  
2   -26.3163     0.14 
3   infinity     0.30                    (絞り) 
4   -0.9486      0.56    1.5831    59.46 
5   -0.4193      0.11  
6   -1000.0000   0.20    1.5831    59.46  
7   0.5737       0.15  
8   infinity     0.10    1.5255    54.50 
9   infinity     0.09 
10  infinity     0.40    1.5100    62.40 
11  infinity     0.08 
12  infinity     0.00                    (像面)    
   
(b)諸元値  
焦点距離    1.69  
Fno         2.45  
ω(度)      32.37  
レンズ全長  2.49  
  
(c)非球面レンズの非球面係数Aiと円錐定数K  
s/1          /2          /4           /5         /6          /7
K/-1.0269E+00/2.9921E+01/-2.5169E+00/-3.1850E+00/2.9252E+01/-7.9538E+00
A3/-3.7791E-02/-4.9573E-02/-1.3150E-01/2.7428E-01/4.6991E-01/4.2945E-01
A4/1.0448E-01/3.2634E-02/3.0129E-01/-2.4903E+00/-1.8358E+00/-2.2631E+00
A5/-3.6539E-01/-1.1807E+00/-6.6223E+00/2.6518E+00/1.3431E+00/3.0538E+00
A6/-1.0961E-01/1.9047E+00/1.3189E+01/2.7650E-01/5.6500E-01/-1.4815E+00
A8/7.2484E-02/-8.9860E+00/-4.9528E+01/-5.1982E+00/-6.6434E-01/-2.5000E-01
A10/-5.2577E+00/2.4763E+01/3.3669E+02/8.6219E+00/-3.0310E-01/5.5816E-01
A12/2.0961E+00/-2.6820E+01/-8.8724E+02/3.1050E+01/5.8832E-01/-3.0149E-01
A14/0.0000E+00/0.0000E+00/3.3201E+02/-5.5121E+01/-2.7556E-01/3.0994E-02
[Table 9]
Example 9
Unit mm

(A) Optical system data
s r d nd νd
1 1.1560 0.34 1.5831 59.46
2 -26.3163 0.14
3 infinity 0.30 (aperture)
4 -0.9486 0.56 1.5831 59.46
5 -0.4193 0.11
6 -1000.0000 0.20 1.5831 59.46
7 0.5737 0.15
8 infinity 0.10 1.5255 54.50
9 infinity 0.09
10 infinity 0.40 1.5100 62.40
11 infinity 0.08
12 infinity 0.00 (image plane)

(B) Specification value
Focal length 1.69
Fno 2.45
ω (degrees) 32.37
Total lens length 2.49

(C) Aspheric coefficient Ai and conic constant K of the aspheric lens
s / 1/2/4/5/6/7
K / -1.0269E + 00 / 2.9921E + 01 / -2.5169E + 00 / -3.1850E + 00 / 2.9252E + 01 / -7.9538E + 00
A3 / -3.7791E-02 / -4.9573E-02 / -1.3150E-01 / 2.7428E-01 / 4.6991E-01 / 4.2945E-01
A4 / 1.0448E-01 / 3.2634E-02 / 3.0129E-01 / -2.4903E + 00 / -1.8358E + 00 / -2.2631E + 00
A5 / -3.6539E-01 / -1.1807E + 00 / -6.6223E + 00 / 2.6518E + 00 / 1.3431E + 00 / 3.0538E + 00
A6 / -1.0961E-01 / 1.9047E + 00 / 1.3189E + 01 / 2.7650E-01 / 5.6500E-01 / -1.4815E + 00
A8 / 7.2484E-02 / -8.9860E + 00 / -4.9528E + 01 / -5.1982E + 00 / -6.6434E-01 / -2.5000E-01
A10 / -5.2577E + 00 / 2.4763E + 01 / 3.3669E + 02 / 8.6219E + 00 / -3.0310E-01 / 5.5816E-01
A12 / 2.0961E + 00 / -2.6820E + 01 / -8.8724E + 02 / 3.1050E + 01 / 5.8832E-01 / -3.0149E-01
A14 / 0.0000E + 00 / 0.0000E + 00 / 3.3201E + 02 / -5.5121E + 01 / -2.7556E-01 / 3.0994E-02
(実施例10)
 実施例10のレンズデータを表10に示す。図22は、実施例10の個眼レンズの断面図である。図中、La1は正の屈折力を有し像側面が凹形状である第1個眼レンズ、La2は第2個眼レンズ、La3は第3個眼レンズである。Iは撮像面を示し、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板を示す。図23は実施例10の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。
(Example 10)
Table 10 shows lens data of Example 10. FIG. 22 is a cross-sectional view of the single-lens lens of Example 10. In the figure, La1 is a first monocular lens having a positive refractive power and a concave image side surface, La2 is a second monocular lens, and La3 is a third monocular lens. I denotes an imaging surface, and F denotes a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, or the like. FIG. 23 is an aberration diagram of Example 10 (spherical aberration (a), astigmatism (b), distortion (c)).
[表10]
実施例10 
単位 mm  
  
(a)光学系データ 
s   r           d       nd       νd     
1   0.8856      0.66    1.5447    56.20  (絞り) 
2   6.3794      0.11 
3   244.9909    0.43    1.6347    23.87 
4   -2.0181     0.23  
5   -1.6359     0.49    1.5447    56.20 
6   2.4283      0.13  
7   infinity    0.17    1.5168    64.17 
8   infinity    0.16  
9   infinity    0.00                    (像面) 
  
(b)諸元値 
焦点距離    2  
Fno         2  
ω(度)      28.56  
レンズ全長  2.4  
  
(c)非球面レンズの非球面係数Aiと円錐定数K  
s/1         /2          /3         /4          /5         /6
K/6.7664E-01/-2.0000E+01/2.0000E+01/-2.0000E+01/3.1705E+00/-2.0000E+01
A4/-2.3686E-01/-6.3048E-02/-3.8219E-02/-1.5803E-01/-8.9731E-01/-2.5908E-01
A6/3.7087E-02/-3.6644E+00/-1.7467E+00/8.1571E-01/-1.1538E+00/-5.1549E-01
A8/-5.3722E+00/1.7274E+01/-1.0233E+00/4.7571E-01/1.3751E+01/2.5075E+00
A10/2.1143E+01/-8.1910E+01/5.6914E-01/-1.8844E+01/-8.6026E+01/-2.9630E+00
A12/-4.3622E+01/7.3136E+01/2.6776E+01/5.4532E+01/-9.3725E-02/-5.9100E+00
A14/4.3409E+01/6.9470E+02/-4.2799E+02/-6.8059E+01/1.0830E+03/1.3988E+01
A16/-4.6651E+02/-2.5397E+03/-5.4388E+02/-2.3240E+02/-2.5421E+03/4.3722E-01
A18/1.8803E+03/4.0249E+03/1.3947E+04/2.4364E+03/-1.1475E+03/-1.8823E+01
A20/-2.3789E+03/-3.0892E+03/-2.7112E+04/-4.5694E+03/1.6456E+03/1.1406E+01
[Table 10]
Example 10
Unit mm

(A) Optical system data
s r d nd νd
1 0.8856 0.66 1.5447 56.20 (Aperture)
2 6.3794 0.11
3 244.9909 0.43 1.6347 23.87
4 -2.0181 0.23
5 -1.6359 0.49 1.5447 56.20
6 2.4283 0.13
7 infinity 0.17 1.5168 64.17
8 infinity 0.16
9 infinity 0.00 (image plane)

(B) Specification value
Focal length 2
Fno 2
ω (degrees) 28.56
Total lens length 2.4

(C) Aspheric coefficient Ai and conic constant K of the aspheric lens
s / 1/2/3/4/5/6
K / 6.7664E-01 / -2.0000E + 01 / 2.0000E + 01 / -2.0000E + 01 / 3.1705E + 00 / -2.0000E + 01
A4 / -2.3686E-01 / -6.3048E-02 / -3.8219E-02 / -1.5803E-01 / -8.9731E-01 / -2.5908E-01
A6 / 3.7087E-02 / -3.6644E + 00 / -1.7467E + 00 / 8.1571E-01 / -1.1538E + 00 / -5.1549E-01
A8 / -5.3722E + 00 / 1.7274E + 01 / -1.0233E + 00 / 4.7571E-01 / 1.3751E + 01 / 2.5075E + 00
A10 / 2.1143E + 01 / -8.1910E + 01 / 5.6914E-01 / -1.8844E + 01 / -8.6026E + 01 / -2.9630E + 00
A12 / -4.3622E + 01 / 7.3136E + 01 / 2.6776E + 01 / 5.4532E + 01 / -9.3725E-02 / -5.9100E + 00
A14 / 4.3409E + 01 / 6.9470E + 02 / -4.2799E + 02 / -6.8059E + 01 / 1.0830E + 03 / 1.3988E + 01
A16 / -4.6651E + 02 / -2.5397E + 03 / -5.4388E + 02 / -2.3240E + 02 / -2.5421E + 03 / 4.3722E-01
A18 / 1.8803E + 03 / 4.0249E + 03 / 1.3947E + 04 / 2.4364E + 03 / -1.1475E + 03 / -1.8823E + 01
A20 / -2.3789E + 03 / -3.0892E + 03 / -2.7112E + 04 / -4.5694E + 03 / 1.6456E + 03 / 1.1406E + 01
(実施例11)
 実施例11のレンズデータを表11に示す。図24は、実施例11の個眼レンズの断面図である。図中、La1は正の屈折力を有し像側面が凹形状である第1個眼レンズ、La2は第2個眼レンズ、La3は第3個眼レンズである。Iは撮像面を示し、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板を示す。図25は実施例11の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。
(Example 11)
Table 11 shows lens data of Example 11. FIG. 24 is a cross-sectional view of the single-lens lens of Example 11. In the figure, La1 is a first monocular lens having a positive refractive power and a concave image side surface, La2 is a second monocular lens, and La3 is a third monocular lens. I denotes an imaging surface, and F denotes a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, or the like. FIG. 25 is an aberration diagram of Example 11 (spherical aberration (a), astigmatism (b), distortion (c)).
[表11]
実施例11 
単位 mm  
  
(a)光学系データ  
s   r           d       nd       νd     
1   0.7287      0.24    1.5447    56.20  (絞り) 
2   1.2772      0.11  
3   1.8626      0.32    1.6347    23.87 
4   -3.6184     0.44 
5   -1.2477     0.53    1.5447    56.20 
6   4.9070      0.13 
7   infinity    0.17    1.5168    64.17 
8   infinity    0.21   
9   infinity    0.00                    (像面) 
  
(b)諸元値  
焦点距離    2  
Fno         2  
ω(度)      28.85 
レンズ全長  2.2 
 
(c)非球面レンズの非球面係数Aiと円錐定数K 
s/1         /2          /3         /4          /5         /6
K/4.1591E-01/-6.7369E+00/1.0815E+01/-2.0000E+01/7.1956E+00/2.0000E+01
A4/-2.9237E-01/7.0460E-01/1.5244E-01/-2.1809E-01/-1.3696E+00/-7.2214E-01
A6/-5.4200E-01/3.7541E-01/1.7012E+00/7.7104E-01/-2.1704E+00/3.2774E-01
A8/-2.7387E+00/9.9120E+00/4.5391E+00/2.2434E+00/1.0088E+01/-3.6439E-01
A10/6.5804E+00/-2.9793E+01/2.9765E+00/-3.1621E+00/-8.9544E+01/-3.1451E-01
A12/-3.5557E+01/6.5738E+01/-1.1160E+01/4.5622E+01/-1.7542E+02/-7.6882E-01
A14/-4.1674E+01/9.0283E+01/-2.4304E+02/9.1760E+01/6.3375E+02/2.2947E+00
A16/-2.1570E+02/-2.6332E+03/-3.2137E+02/1.7846E+02/2.7096E+03/2.2322E+00
A18/4.6555E+02/-6.7766E+03/3.6287E+03/-2.9606E+02/-1.4750E+03/-9.7007E+00
A20/-9.2396E+00/3.7320E+04/-6.6948E+03/-5.8518E+03/-1.0023E+05/6.3429E+00
[Table 11]
Example 11
Unit mm

(A) Optical system data
s r d nd νd
1 0.7287 0.24 1.5447 56.20 (Aperture)
2 1.2772 0.11
3 1.8626 0.32 1.6347 23.87
4 -3.6184 0.44
5 -1.2477 0.53 1.5447 56.20
6 4.9070 0.13
7 infinity 0.17 1.5168 64.17
8 infinity 0.21
9 infinity 0.00 (image plane)

(B) Specification value
Focal length 2
Fno 2
ω (degrees) 28.85
Total lens length 2.2

(C) Aspheric coefficient Ai and conic constant K of the aspheric lens
s / 1/2/3/4/5/6
K / 4.1591E-01 / -6.7369E + 00 / 1.0815E + 01 / -2.0000E + 01 / 7.1956E + 00 / 2.0000E + 01
A4 / -2.9237E-01 / 7.0460E-01 / 1.5244E-01 / -2.1809E-01 / -1.3696E + 00 / -7.2214E-01
A6 / -5.4200E-01 / 3.7541E-01 / 1.7012E + 00 / 7.7104E-01 / -2.1704E + 00 / 3.2774E-01
A8 / -2.7387E + 00 / 9.9120E + 00 / 4.5391E + 00 / 2.2434E + 00 / 1.0088E + 01 / -3.6439E-01
A10 / 6.5804E + 00 / -2.9793E + 01 / 2.9765E + 00 / -3.1621E + 00 / -8.9544E + 01 / -3.1451E-01
A12 / -3.5557E + 01 / 6.5738E + 01 / -1.1160E + 01 / 4.5622E + 01 / -1.7542E + 02 / -7.6882E-01
A14 / -4.1674E + 01 / 9.0283E + 01 / -2.4304E + 02 / 9.1760E + 01 / 6.3375E + 02 / 2.2947E + 00
A16 / -2.1570E + 02 / -2.6332E + 03 / -3.2137E + 02 / 1.7846E + 02 / 2.7096E + 03 / 2.2322E + 00
A18 / 4.6555E + 02 / -6.7766E + 03 / 3.6287E + 03 / -2.9606E + 02 / -1.4750E + 03 / -9.7007E + 00
A20 / -9.2396E + 00 / 3.7320E + 04 / -6.6948E + 03 / -5.8518E + 03 / -1.0023E + 05 / 6.3429E + 00
 各条件式に対応する各実施例の値を表12に示す。 Table 12 shows values of each example corresponding to each conditional expression.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以下、好ましい態様についてまとめて説明する。 Hereinafter, preferred embodiments will be described together.
 上記複眼撮像系において、以下の条件式を満足することが好ましい。
 10°<θ1<40°   (2)
ただし、
θ1:前記第1アレイレンズの個眼レンズの物体側面の有効径の7割以上における最大面角度
In the above compound eye imaging system, it is preferable that the following conditional expression is satisfied.
10 ° <θ1 <40 ° (2)
However,
θ1: Maximum surface angle at 70% or more of the effective diameter of the object side surface of the single lens of the first array lens
 条件式(2)は、前記第1アレイレンズの個眼レンズの物体側面の有効半径の7割以上における最大面角度を規定する。「面角度θ1」とは、図1に示すように、アレイレンズLAの光軸方向断面において、個眼レンズILの物体側面S1における曲面上の接線L3と光軸OXに垂直な線L4とのなす角であり、線L3を基準として接線L4が交点回りに時計回りの方向にあるときはプラス、反時計回りの方向にあるときはマイナスとする。条件式(2)の値が下限を上回ることで、該個眼レンズの像側面での全反射によるゴーストを低減することができる。条件式(2)の値が上限を下回ることで、球面収差の発生を抑制して光学性能を良好にすることができる。 Conditional expression (2) defines the maximum surface angle at 70% or more of the effective radius of the object side surface of the single lens of the first array lens. As shown in FIG. 1, the “surface angle θ1” is defined as the line between the tangent line L3 on the curved surface of the object side surface S1 of the single lens lens IL and the line L4 perpendicular to the optical axis OX in the section in the optical axis direction of the array lens LA. It is an angle formed, and is positive when the tangent line L4 is in the clockwise direction around the intersection with respect to the line L3, and negative when it is in the counterclockwise direction. When the value of conditional expression (2) exceeds the lower limit, ghosts caused by total reflection on the image side surface of the single lens can be reduced. When the value of conditional expression (2) is less than the upper limit, the occurrence of spherical aberration can be suppressed and the optical performance can be improved.
 また、前記第1アレイレンズの個眼レンズの像側面は凹形状であることが好ましい。前記第1アレイレンズの個眼レンズの像側面を凹形状にすることで、球面収差の発生を抑制して光学性能を良好にすることができる。 Further, it is preferable that the image side surface of the single lens of the first array lens is concave. By making the image side surface of the single lens of the first array lens concave, it is possible to suppress the occurrence of spherical aberration and improve the optical performance.
 また、以下の条件式を満足することが好ましい。
 0.8<Y1/Y2<1.8   (3)
ただし、
Y1:前記第1アレイレンズの個眼レンズの物体側面の有効半径
Y2:前記第1アレイレンズの個眼レンズの像側面の有効半径
Moreover, it is preferable that the following conditional expressions are satisfied.
0.8 <Y1 / Y2 <1.8 (3)
However,
Y1: Effective radius of the object side surface of the single lens of the first array lens Y2: Effective radius of the image side surface of the single lens of the first array lens
 条件式(3)は、前記第1アレイレンズの個眼レンズの物体側面の有効径と該個眼レンズの像側面の有効径の比を規定する。例えば、第1レンズアレイLAと第2レンズアレイ(図1では右方に位置する)の間に絞りがあるときは、個眼レンズILの像側面S2の有効半径Y2が、物体側面S1の有効半径Y1より小さくなることが多い。又、第1レンズアレイLAの物体側に絞りがある場合、個眼レンズILの像側面S2の有効半径Y2が、物体側面S1の有効半径Y1より大きくなることが多い。条件式(3)の値が下限を上回ることで、該個眼レンズの像側面での有効径内での全反射によるゴーストを低減することができる。条件式(3)の値が上限を下回ることで、球面収差の発生を抑制して光学性能を良好にすることができる。 Conditional expression (3) defines the ratio of the effective diameter of the object side surface of the single lens of the first array lens to the effective diameter of the image side surface of the single lens. For example, when there is a stop between the first lens array LA and the second lens array (located to the right in FIG. 1), the effective radius Y2 of the image side S2 of the single lens IL is the effective of the object side S1. It is often smaller than the radius Y1. In addition, when there is a stop on the object side of the first lens array LA, the effective radius Y2 of the image side surface S2 of the single lens IL is often larger than the effective radius Y1 of the object side surface S1. When the value of conditional expression (3) exceeds the lower limit, ghosts caused by total reflection within the effective diameter on the image side surface of the single lens can be reduced. When the value of conditional expression (3) is below the upper limit, the occurrence of spherical aberration can be suppressed and the optical performance can be improved.
 また、以下の条件式を満足することが好ましい。
-4.0<(r1+r2)/(r1-r2)<-0.3   (4)
ただし、
r1:前記第1アレイレンズの個眼レンズの物体側面の曲率半径
r2:前記第1アレイレンズの個眼レンズの像側面の曲率半径
Moreover, it is preferable that the following conditional expressions are satisfied.
−4.0 <(r1 + r2) / (r1−r2) <− 0.3 (4)
However,
r1: radius of curvature of the object side surface of the single lens of the first array lens r2: radius of curvature of the image side surface of the single lens of the first array lens
 条件式(4)は、前記第1アレイレンズの個眼レンズの物体側面の曲率半径と該個眼レンズの像側面の曲率半径の比を規定する。条件式(4)の値が下限を上回ることで、該個眼レンズの像側面での全反射によるゴーストを低減することができる。条件式(4)の値が上限を下回ることで、該個眼レンズでの球面収差の発生を抑制して光学性能を良好にすることができる。 Conditional expression (4) defines the ratio of the curvature radius of the object side surface of the single lens of the first array lens to the curvature radius of the image side surface of the single lens. When the value of conditional expression (4) exceeds the lower limit, ghosts caused by total reflection on the image side surface of the individual lens can be reduced. When the value of conditional expression (4) is lower than the upper limit, it is possible to improve the optical performance by suppressing the occurrence of spherical aberration in the single lens.
 また、前記第1アレイレンズの個眼レンズは正の屈折力を有することが好ましい。前記第1アレイレンズの個眼レンズが正の屈折力を有することで、アレイレンズを用いた場合の長所である短い光学全長を確保し、かつ良好な光学性能を確保することができる。 In addition, it is preferable that the single lens of the first array lens has a positive refractive power. Since the single lens of the first array lens has a positive refractive power, a short optical total length, which is an advantage when using the array lens, can be secured, and good optical performance can be secured.
 また、1つのアレイレンズ内における前記個眼レンズは、少なくとも3つ以上の異なる波長分布に対して各々設計され異なる光学特性を有することが好ましい。前記複数の個眼レンズを、少なくとも3つ以上の異なる波長分布(色)毎に分けて設計し、異なる光学特性を持たせることで、個眼レンズの色収差補正の波長領域をせまくできるから、より良好な光学性能を実現することができる。 Further, it is preferable that the single lens in one array lens is designed for at least three different wavelength distributions and has different optical characteristics. Since the plurality of single-lens lenses are divided into at least three different wavelength distributions (colors) and designed to have different optical characteristics, the wavelength region for correcting chromatic aberration of the single-lens lens can be reduced. Good optical performance can be realized.
 また、1つのアレイレンズ内における前記個眼レンズは、前記異なる複数の波長分布に応じた透過率を持った複数のカラーフィルタと組み合わされることが好ましい。異なる複数の波長分布に応じた透過率を持った複数のカラーフィルタと組み合わされることで、前記複数の個眼レンズが略同一でも色収差補正が白色可視域でなく透過する波長域のみでよいので、より良好な光学性能を実現することができる。 Further, it is preferable that the single lens in one array lens is combined with a plurality of color filters having transmittances according to the plurality of different wavelength distributions. By combining with a plurality of color filters having transmittance according to a plurality of different wavelength distributions, even if the plurality of single-lens lenses are substantially the same, the chromatic aberration correction is not limited to the white visible range, but only the wavelength range to be transmitted. Better optical performance can be realized.
 本発明は、明細書に記載の実施形態、実施例に限定されるものではなく、他の実施形態や実施例や変形例を含むことは、本明細書に記載された実施形態や実施例や技術思想から本分野の当業者にとって明らかである。 The present invention is not limited to the embodiments and examples described in the specification, and other embodiments, examples, and modifications are included in the embodiments and examples described in the present specification. It will be apparent to those skilled in the art from the technical idea.
1      画像処理部
1a     画像合成部
1b     画像補正部
2      演算部
3      メモリー
F      カバーガラス
LA1    第1レンズアレイ
LA2    第2レンズアレイ
LA3    第3レンズアレイ
LH     複眼撮像系
La1    第1個眼アレイ
La2    第2個眼アレイ
La3    第3個眼アレイ
LU     撮像ユニット
SR     撮像素子
SS     撮像面
DESCRIPTION OF SYMBOLS 1 Image processing part 1a Image composition part 1b Image correction part 2 Calculation part 3 Memory F Cover glass LA1 1st lens array LA2 2nd lens array LA3 3rd lens array LH Compound eye imaging system La1 1st eye array La2 2nd eye Array La3 Third eye array LU Image pickup unit SR Image sensor SS Image pickup surface

Claims (9)

  1.  複数の物体像を形成する複眼撮像系において、前記複眼撮像系は物体側より順に、第1アレイレンズ、第2アレイレンズ、第3アレイレンズ、からなり、各アレイレンズは複数の個眼レンズを一体に形成してなり、前記個眼レンズの数は前記物体像の数と等しくさせてなり、前記第1アレイレンズの個眼レンズの物体側面は凸形状であり、以下の条件式を満足することを特徴とする複眼撮像系。
     -30°<θ2<35°   (1)
    ただし、
    θ2:前記第1アレイレンズの個眼レンズの像側面の有効径の7割以上における最大面角度 
    In the compound eye imaging system for forming a plurality of object images, the compound eye imaging system is composed of a first array lens, a second array lens, and a third array lens in order from the object side, and each array lens includes a plurality of individual eye lenses. It is formed integrally, and the number of the individual lenses is made equal to the number of the object images, and the object side surface of the individual lenses of the first array lens is convex, and satisfies the following conditional expression: A compound eye imaging system.
    -30 ° <θ2 <35 ° (1)
    However,
    θ2: Maximum surface angle at 70% or more of the effective diameter of the image side surface of the single lens of the first array lens
  2.  以下の条件式を満足することを特徴とする、請求項1に記載の複眼撮像系。
     10°<θ1<40°   (2)
    ただし、
    θ1:前記第1アレイレンズの個眼レンズの物体側面の有効径の7割以上における最大面角度
    The compound eye imaging system according to claim 1, wherein the following conditional expression is satisfied.
    10 ° <θ1 <40 ° (2)
    However,
    θ1: Maximum surface angle at 70% or more of the effective diameter of the object side surface of the single lens of the first array lens
  3.  前記第1アレイレンズの個眼レンズの像側面は凹形状であることを特徴とする、請求項1又は2に記載の複眼撮像系。 The compound-eye imaging system according to claim 1 or 2, wherein an image side surface of the single-lens lens of the first array lens is concave.
  4.  以下の条件式を満足することを特徴とする、請求項1から3のいずれか1項に記載の複眼撮像系。
     0.8<Y1/Y2<1.8   (3)
    ただし、
    Y1:前記第1アレイレンズの個眼レンズの物体側面の有効半径
    Y2:前記第1アレイレンズの個眼レンズの像側面の有効半径
    The compound eye imaging system according to any one of claims 1 to 3, wherein the following conditional expression is satisfied.
    0.8 <Y1 / Y2 <1.8 (3)
    However,
    Y1: Effective radius of the object side surface of the single lens of the first array lens Y2: Effective radius of the image side surface of the single lens of the first array lens
  5.  以下の条件式を満足することを特徴とする、請求項1から4のいずれか1項に記載の複眼撮像系。
    -4.0<(r1+r2)/(r1-r2)<-0.3   (4)
    ただし、
    r1:前記第1アレイレンズの個眼レンズの物体側面の曲率半径
    r2:前記第1アレイレンズの個眼レンズの像側面の曲率半径
    The compound eye imaging system according to any one of claims 1 to 4, wherein the following conditional expression is satisfied.
    −4.0 <(r1 + r2) / (r1−r2) <− 0.3 (4)
    However,
    r1: radius of curvature of the object side surface of the single lens of the first array lens r2: radius of curvature of the image side surface of the single lens of the first array lens
  6.  前記第1アレイレンズの個眼レンズは正の屈折力を有することを特徴とする、請求項1から5のいずれか1項に記載の複眼撮像系。 The compound-eye imaging system according to any one of claims 1 to 5, wherein the single-lens lens of the first array lens has a positive refractive power.
  7.  1つのアレイレンズ内における前記個眼レンズは、少なくとも3つ以上の異なる波長分布に対して各々設計され異なる光学特性を有することを特徴とする、請求項1から6のいずれか1項に記載の複眼撮像系。 7. The single lens according to claim 1, wherein the single-lens lenses in one array lens are designed for different wavelength distributions of at least three or more and have different optical characteristics. 8. Compound eye imaging system.
  8.  1つのアレイレンズ内における前記個眼レンズは、前記異なる複数の波長分布に応じた透過率を持った複数のカラーフィルタと組み合わされることを特徴とする、請求項1から6のいずれか1項に記載の複眼撮像系。 The single lens in one array lens is combined with a plurality of color filters having transmittances corresponding to the plurality of different wavelength distributions, according to any one of claims 1 to 6. The compound eye imaging system described.
  9.  請求項1から8のいずれか1項に記載の複眼撮像系を有することを特徴とする撮像装置。 An imaging apparatus comprising the compound eye imaging system according to any one of claims 1 to 8.
PCT/JP2014/060592 2013-05-08 2014-04-14 Compound-eye imaging system and imaging device WO2014181643A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013098051 2013-05-08
JP2013-098051 2013-05-08

Publications (1)

Publication Number Publication Date
WO2014181643A1 true WO2014181643A1 (en) 2014-11-13

Family

ID=51867125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060592 WO2014181643A1 (en) 2013-05-08 2014-04-14 Compound-eye imaging system and imaging device

Country Status (1)

Country Link
WO (1) WO2014181643A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093438A1 (en) * 2013-12-18 2015-06-25 コニカミノルタ株式会社 Compound-eye imaging optics and imaging device
FR3107363A1 (en) * 2020-02-18 2021-08-20 Isorg Structure of an angular filter on a CMOS sensor
EP4009091A3 (en) * 2020-12-03 2022-07-20 Samsung Electronics Co., Ltd. Lens assembly and electronic device including the same
US11776984B2 (en) 2019-03-22 2023-10-03 Isorg Image sensor comprising an angular filter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219522A (en) * 1982-06-15 1983-12-21 Canon Inc Projecting device
JPH1090611A (en) * 1996-09-12 1998-04-10 Michiko Takahashi Compound eye lens
JP2005341301A (en) * 2004-05-27 2005-12-08 Konica Minolta Holdings Inc Double eye imaging device
JP2007304525A (en) * 2006-05-15 2007-11-22 Ricoh Co Ltd Image input device, electronic equipment, and image input method
JP2008083398A (en) * 2006-09-27 2008-04-10 Olympus Corp Compound-eye optics and optical apparatus using the same
JP2011223190A (en) * 2010-04-07 2011-11-04 Sony Corp Image reader and optical module used therein

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219522A (en) * 1982-06-15 1983-12-21 Canon Inc Projecting device
JPH1090611A (en) * 1996-09-12 1998-04-10 Michiko Takahashi Compound eye lens
JP2005341301A (en) * 2004-05-27 2005-12-08 Konica Minolta Holdings Inc Double eye imaging device
JP2007304525A (en) * 2006-05-15 2007-11-22 Ricoh Co Ltd Image input device, electronic equipment, and image input method
JP2008083398A (en) * 2006-09-27 2008-04-10 Olympus Corp Compound-eye optics and optical apparatus using the same
JP2011223190A (en) * 2010-04-07 2011-11-04 Sony Corp Image reader and optical module used therein

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093438A1 (en) * 2013-12-18 2015-06-25 コニカミノルタ株式会社 Compound-eye imaging optics and imaging device
US11776984B2 (en) 2019-03-22 2023-10-03 Isorg Image sensor comprising an angular filter
FR3107363A1 (en) * 2020-02-18 2021-08-20 Isorg Structure of an angular filter on a CMOS sensor
WO2021165089A1 (en) * 2020-02-18 2021-08-26 Isorg Structure of an angular filter on a cmos sensor
EP4009091A3 (en) * 2020-12-03 2022-07-20 Samsung Electronics Co., Ltd. Lens assembly and electronic device including the same
US11899169B2 (en) 2020-12-03 2024-02-13 Samsung Electronics Co., Ltd. Lens assembly and electronic device including the same

Similar Documents

Publication Publication Date Title
US11815661B2 (en) Imaging optical lens assembly, image capturing unit and electronic device
JP4747645B2 (en) Wide angle lens and imaging device
US20120026285A1 (en) Wide angle lens and imaging device
US20070064316A1 (en) Imaging lens
KR20130092846A (en) Imaging lens system
JP2004177435A (en) Wide angle lens, camera and projection display device
JP2009128654A (en) Fisheye system imaging lens
JP2012108302A (en) Wide-angle lens
JP2004145256A (en) Wide angle lens
JP2002244031A (en) Wide-angle lens
US10585263B2 (en) Imaging lens
JP6401420B2 (en) Zoom lens and imaging device
WO2010071077A1 (en) Imaging lens
WO2014199765A1 (en) Compound-eye imaging apparatus
CN110716288A (en) Optical imaging lens
WO2014181643A1 (en) Compound-eye imaging system and imaging device
JP2014197129A (en) Lens device and imaging apparatus including the same
JP2012088705A (en) Zoom lens system
JP5305831B2 (en) Imaging optics
JP6584142B2 (en) Imaging optical system and imaging apparatus having the same
WO2011064922A1 (en) Image pickup lens, image pickup device using same, and portable device equipped with the image pickup device
JP2007264676A (en) Wide angle lens
JP5570260B2 (en) Imaging device
CN113933969A (en) Optical lens, camera module and electronic equipment
JP2015169688A (en) Compound-eye imaging optical system and imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14795303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14795303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP