WO2014181458A1 - 溶接方法、溶接システム及び溶接凝固割れモニタリングシステム - Google Patents

溶接方法、溶接システム及び溶接凝固割れモニタリングシステム Download PDF

Info

Publication number
WO2014181458A1
WO2014181458A1 PCT/JP2013/063117 JP2013063117W WO2014181458A1 WO 2014181458 A1 WO2014181458 A1 WO 2014181458A1 JP 2013063117 W JP2013063117 W JP 2013063117W WO 2014181458 A1 WO2014181458 A1 WO 2014181458A1
Authority
WO
WIPO (PCT)
Prior art keywords
analysis
solidification
welding
temperature
segregation
Prior art date
Application number
PCT/JP2013/063117
Other languages
English (en)
French (fr)
Inventor
真 緒方
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/063117 priority Critical patent/WO2014181458A1/ja
Priority to JP2015515726A priority patent/JP6012855B2/ja
Priority to EP13883866.9A priority patent/EP2995416A4/en
Publication of WO2014181458A1 publication Critical patent/WO2014181458A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/003Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to controlling of welding distortion

Definitions

  • the present invention relates to a welding method, a welding system, and a welding solidification crack monitoring system for performing welding while preventing weld solidification cracking.
  • welding is included in the manufacturing process of a thermal power plant, a nuclear power plant, a railway vehicle, and the like.
  • Carbon steel, stainless steel, aluminum alloy, nickel-base alloy are used for the materials constituting thermal power plants, nuclear power plants, and railway vehicles.
  • arc or A fusion welding method is employed in which a laser is used as a heat source and the materials are joined by melting and solidifying.
  • the temperature of a welded part when an appropriate welding state is obtained is set as a standard temperature
  • the temperature of the welded part is detected in real time by an infrared sensor
  • the temperature of the welded part is the standard temperature.
  • Patent Document 2 obtains information on strain behavior immediately after solidification of a material accompanying welding and information on hot cracks and phase transformations accompanying it on the spot to evaluate the weldability of the material and improve reliability.
  • Patent Document 2 by detecting strain dynamically, a discontinuous portion appearing on a strain change curve as a time change of strain amount is determined, and a hot crack of a welded portion is determined. Detected. However, in Patent Document 2, weldability is evaluated (quality control of a welded product), and it is not considered to reduce hot cracking based on measurement results in an actual welding process.
  • the object of the present invention is to eliminate weld solidification cracks during the welding process without essentially requiring a prior study on a construction method that reduces or prevents solidification cracks during fusion welding each time the material or product shape changes. It is an object of the present invention to provide a welding method, a welding system, and a weld solidification cracking monitoring system capable of performing welding with reduction or prevention.
  • the present invention measures the temperature and strain of the surface of the welded portion, the material composition of the base material and the wire, the welding process conditions including the product, groove shape, heat input conditions and restraint conditions, and the measured welding. Analyzes solidification cracks in welds based on surface temperature and strain, and analyzes solidification cracks in welds when heat input conditions or restraint conditions are changed when solidification cracking is predicted by the analysis
  • the present invention is characterized by finding heat input conditions or restraint conditions that can reduce or prevent solidification cracking, and controlling the heat input of welding or the strain load on the base material based on the found heat input conditions or restraint conditions.
  • welding of any material and any product shape can be performed without the need for a prior study on a construction method that reduces or prevents solidification cracking during fusion welding every time the material or product shape changes. It is possible to perform welding while reducing or preventing weld solidification cracks during the process.
  • FIG. 1 shows a welding system in which the base material 1 is arc-welded using a welding torch 7 and a wire feeding device 9.
  • a high-speed temperature strain measuring device 6 is installed to monitor the temperature and strain state of the surface of the weld.
  • the high-speed temperature strain measurement device 6 includes a high-speed camera 13, a thermometer 12 attached to the high-speed camera 13, and a high-power lens 14.
  • the measured values of temperature and strain obtained by the high-speed temperature strain measuring device 6 are taken into the solidification crack analysis system 10 and used for solidification crack analysis described later.
  • the solidification crack analysis system 10 analyzes the solidification crack and reversely analyzes a heat input condition that reduces or prevents the solidification crack when the solidification crack is predicted, and outputs the result to the welding heat input control device 11.
  • the welding heat input control device 11 controls the heat input of the welding torch 7.
  • the analysis result of the solidification crack analysis system is displayed on the monitor display 15.
  • FIG. 2 also shows a welding system in which the base material 1 is arc-welded using the welding torch 7 and the wire feeder 9 in the same manner.
  • the welding system shown in FIG. 2 further includes a longitudinal strain restraining jig 3 on both sides of the weld metal portion 2 in the plate width direction and a lateral strain restraint on the end portion of the base material 1 in the plate width direction.
  • a jig 4 is arranged.
  • the longitudinal strain restraining jig 3 and the lateral strain restraining jig 4 give a strain load to the base material 1 and are configured so that the magnitude of strain and strain distribution can be adjusted based on a control command from the welding strain control device 8. Yes.
  • the solidification crack analysis system 10 reversely analyzes a strain load condition that reduces or prevents the solidification crack when a solidification crack is predicted, and outputs it to the welding strain control device 8.
  • FIG. 2 illustration of the high-speed camera 13 and the like in the high-speed temperature strain measurement device 6 that monitors the temperature and strain state of the surface of the weld metal part 2 and the base material 1 is omitted.
  • 1 and 2 show the case of a one-layer one-side welding structure, but the present invention can also be applied to the case of multilayer and two-side welding.
  • the high-speed temperature strain measuring device 6 uses a high-speed camera 13 and a thermometer (for example, a dichroic ratio measurement unit) 12, a high-speed camera 13 and a high-power lens 14 as shown in FIG.
  • An optical fiber thermocouple or the like can also be used as the thermometer.
  • the high magnification lens 14 is a lens having a magnification of, for example, about 500 to 1000 times.
  • Information obtained by the thermometer 12 and the high-speed camera 13 is processed by the high-speed temperature strain measurement device 6, and the temperatures (temperature distribution) of the surfaces of the base material 1 and the weld metal part 2 can be obtained.
  • Information obtained by the high-power lens 14 and the high-speed camera 13 is processed by the high-speed temperature strain measuring device 6.
  • the surface dendrite unevenness of the weld metal part 2 is used as a marking to obtain the spatial displacement of the surface dendrite unevenness at a high speed, whereby the surface strain (strain) of the base material 1 and the weld metal part 2 is obtained. Distribution) can be measured.
  • the temperature and strain of the weld as described above are measured in advance.
  • the solidification crack prediction technology an approach of obtaining an optimum temperature and strain so as to reduce solidification cracking during fusion welding of any material and any shape has not been performed.
  • the welding condition is measured in-process in the welding process, and the welding process is not performed in advance. Based on the conditions, welding is based on a completely new concept of predicting the occurrence of solidification cracks by linking multiple analysis technologies and adjusting the heat input or strain load to reduce or prevent this solidification crack occurrence. It is a thing.
  • the measurement of temperature and strain by the high-speed temperature strain measuring device 6 can be performed only on the surface of the base material 1 and the weld metal part 2, and on the information inside the base material 1 and the weld metal part 2 where solidification cracks can occur. Temperature and strain information cannot be obtained.
  • internal weld solidification crack prediction is performed based on the information on the temperature and strain of the surface of the weld metal part and the material and the welding process conditions.
  • Solidification cracking is considered to occur in the solidification process from the liquid phase to the solid phase shown in FIG.
  • the solidification crack is predicted (analyzed) in consideration of this solidification crack generation mechanism.
  • the metal is in a liquid phase at a high temperature.
  • a metal transforms from a liquid phase to a solid phase in the cooling process the solid phase grows while forming a protrusion shape called a dendrite.
  • the density of the solid phase is larger than the liquid phase, so that solidification shrinkage occurs and deformation / stress occurs.
  • the liquid phase flows so as to fill the gaps where deformation due to solidification shrinkage has occurred.
  • the solidification crack analysis shown in FIGS. 6 to 7 is performed in consideration of such a solidification crack generation mechanism.
  • FIG. 6 is a diagram showing a flow of a solidification crack prediction method.
  • FIG. 7 shows the entire system configuration for adjusting the heat input of the welding torch and the strain load applied to the base metal based on the details of the solidification crack analysis system and the analysis of the solidification crack analysis system.
  • the solidification crack analysis system 10 includes a material property value analysis unit 21, a welding heat source model 22, a welding heat transfer analysis unit 23, a material structure / segregation analysis unit 24, a deformation / stress analysis unit 25, a liquid phase flow analysis unit 26, a fine particle. It has a crack analysis unit 27, a solidification crack sensitivity evaluation unit 28, and a solidification crack prevention analysis unit 29. Existing analysis software or the like is used for each analysis unit.
  • An operator inputs material components and welding process conditions in advance into the solidification crack analysis system 10, and information on the temperature and strain of the weld metal part and the base metal from the high-speed temperature strain measurement device 6 when performing the welding process. input.
  • the material component As the material component, the material component of the welding wire fed from the base material 1 and the wire feeding device 9 is input.
  • the welding process conditions such as the product / groove shape, the heat input conditions, and the restraint conditions excluding the restraint by the longitudinal strain restraint jig 3 and the lateral strain restraint jig 4 are input.
  • Inputs of heat input conditions are heat input (current, voltage), torch feed speed, and the like, and heat sources such as arc, laser, electron beam, energization, and friction can be simulated through an existing welding heat source model.
  • heat and mechanical property values are calculated using the material components of the base material and the wire as inputs, and used in the analysis of A2 to 6.
  • property value calculation software “JmatPro” manufactured by Sente Software Inc., UK
  • JmatPro manufactured by Sente Software Inc., UK
  • material physical property database 20 physical property values necessary for solidification crack analysis information, such as density, specific heat, thermal conductivity, latent heat, stress strain curve, Young's modulus, Poisson's ratio, linear expansion coefficient, and the like can be obtained.
  • the material property value analysis of A1 may not be incorporated into the solidification crack analysis system 10 but may be separately obtained and input to the solidification crack analysis system.
  • heat transfer analysis is performed using welding conditions such as product and groove shape data, heat input conditions such as heat source type and output and feed rate, and boundary conditions such as jig restraint.
  • heat transfer analysis is performed using the surface temperature of the weld as a boundary condition.
  • physical property values obtained by material property value analysis using material components as input, welding heat source model obtained using heat input conditions as input, product / groove shape, restraint jig obtained by input of restraint conditions
  • the heat transfer analysis is carried out using the heat removal due to heat, the dilution between the base metal 1 and the weld metal part 2, and the surface temperature information obtained by the high-speed temperature strain measuring device 6 as boundary conditions.
  • A3 material structure / segregation analysis solidification structure, segregation and phase transformation are analyzed based on the temperature, cooling rate and temperature gradient obtained in A2 heat transfer analysis. Specifically, using the results of welding heat transfer analysis and material components, thermodynamic calculations such as phase field methods such as ⁇ MICRESS '' (manufactured by ACCESS Germany) and ⁇ Thermo-Calc '' (manufactured by Thermo-Calc Software, Sweden) are performed. Based on the analysis used, information on the liquidus temperature, the solidification completion temperature due to segregation, the primary dendrite arm, the secondary dendrite arm, and the region width of the residual liquid phase due to segregation can be obtained.
  • phase field methods such as ⁇ MICRESS '' (manufactured by ACCESS Germany) and ⁇ Thermo-Calc '' (manufactured by Thermo-Calc Software, Sweden
  • the phase field method requires a lot of analysis time, in order to easily reflect the analysis result in control in the in-process, the solidification by the liquidus temperature and segregation using the temperature gradient and the cooling rate as variables in advance.
  • An information data library of completion temperature, primary dendrite arm, secondary dendrite arm, and region width of residual liquid phase due to segregation may be prepared and used.
  • the temperature (temperature distribution) obtained by the heat transfer analysis of A2 and the phase transformation obtained by the material structure / segregation analysis of A3 are used for the solid-liquid analysis by the thermoviscoelastic-plastic method.
  • Analysis of deformation / stress from the coexistence state to room temperature is performed.
  • deformation / stress analysis is performed using the strain on the surface of the weld as a boundary condition.
  • temperature distribution obtained by heat transfer analysis information on phase transformation obtained by material structure / segregation analysis, weld metal part obtained by high-speed temperature strain measurement device 6 and solid-liquid coexistence on the base metal surface
  • the deformation and stress distribution in the base material 1 and the weld metal part 2 during welding are obtained by thermal viscoelastic-plastic analysis using the finite element method with the strain state in the region as the boundary condition.
  • the liquid phase flow analysis is performed based on the temperature obtained by the heat transfer analysis of A2 and the solidified structure shape obtained by the material structure / segregation analysis of A3. Specifically, the solidification completion temperature due to liquidus temperature and segregation, the primary dendrite arm, the secondary dendrite arm, and the residual liquid phase area width due to segregation are used as inputs, based on the Darcy flow law. The behavior of the liquid phase flowing through (liquid phase flow shown in (2) and (3) of FIG. 8) is analyzed.
  • the final solidification temperature and the shape of the microsegregation part by segregation obtained by the material structure / segregation analysis of A3, the deformation / stress obtained by the deformation / stress analysis of A4, and the liquid of A5 Cavity / microcrack analysis is performed using the liquid phase flow behavior obtained by phase flow analysis to calculate solidification cracking susceptibility.
  • the solidification completion temperature obtained by the material structure / segregation analysis of A3 the shape of the microsegregation part such as the primary dendrite arm, the secondary dendrite arm, the region width of the residual liquid phase due to segregation, and the deformation of A4 / Deformation behavior and stress state of solid-liquid coexistence region obtained by stress analysis, and liquid phase pressure drop analysis method based on information on liquid phase flow behavior between solidified structures obtained by A5 liquid phase flow analysis
  • the probability of occurrence of solidification cracking is calculated by comparing the interfacial energy, which is the adhesive force between the solid phase and the unsolidified liquid phase, and predicting the crack growth according to the size.
  • the probability of solidification cracking increases as the large deformation / stress due to solidification shrinkage increases with respect to the interfacial
  • the probability of solidification cracking is obtained, and the solidification cracking that occurs in the weld metal part 2 when the welding process proceeds under the current welding process conditions.
  • the result of position and occurrence probability is output.
  • the solidification crack sensitivity evaluation unit 28 determines whether the solidification crack occurrence probability is equal to or higher than a predetermined solidification crack occurrence probability.
  • the solidification crack analysis of the weld metal part when the heat input conditions and / or restraint conditions are changed Implemented in parallel, the reverse analysis (solidification crack prevention reverse analysis) to find the heat input condition or restraint condition that can reduce or prevent the solidification cracking is performed.
  • solidification cracking analysis is performed in parallel when the heat input, feed rate, and strain amount are increased and decreased. Then, in the solidification crack prevention reverse analysis unit 29, the amount of heat input, feed rate, and strain amount exerted on the weld solidification crack obtained by the response phase method, etc.
  • the solidification crack prevention reverse analysis unit 29 also outputs the temperature distribution and strain distribution when the solidification crack occurrence probability is reduced or prevented at the heat input amount, feed rate, and strain amount.
  • the heat input conditions and / or restraint conditions obtained in the solidification crack prevention reverse analysis are output to the welding heat input control device 11 and / or the weld strain control device 8, and the heat input of welding and / or the strain load on the base material. Is controlled.
  • the next solidification crack analysis is performed at a predetermined cycle to perform solidification crack sensitivity evaluation.
  • This period is, for example, 0.01 to 0.001 seconds. This period can correspond to the rate (fps) of a high-speed camera (generally 10000 fps: 0.0001 seconds).
  • the welding heat input control device 11 controls the heat input amount (current, voltage) and the torch feed speed so as to realize a heat input condition that can reduce or prevent the solidification cracks found in the solidification crack prevention reverse analysis unit 29.
  • a signal is output to the welding torch 7. Thereby, a temperature distribution that prevents the occurrence of solidification cracks is realized.
  • the welding strain control device 8 adjusts the strain load on the base material so as to realize a constraint condition that can reduce or prevent the solidification cracks found in the solidification crack prevention reverse analysis unit 29. 3.
  • a control command is given to the lateral strain restraining jig 4. Thereby, a strain distribution that prevents the occurrence of solidification cracks is realized.
  • the base material 1 is moved in the width direction using the lateral strain restraint jig 4.
  • the base material 1 is moved so as to shrink (a strain load in the compressive strain direction is applied to the base material 1).
  • the base material 1 is moved in the plate thickness direction using the longitudinal strain restraining jig 3. (Strain load in the compressive strain direction is applied to the base material 1).
  • the solidification crack of the weld is analyzed, and the heat input condition or restraint condition that can reduce or prevent the solidification crack is found. Since the heat input of welding or the strain load on the base metal is controlled based on the found heat input conditions or restraint conditions, so as to reduce or prevent solidification cracking during fusion welding whenever the material or product shape changes. Therefore, it is possible to perform welding while reducing or preventing weld solidification cracks during the welding process of an arbitrary material and an arbitrary product shape, without requiring a prior study on a proper construction method.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Arc Welding In General (AREA)

Abstract

 材料や製品形状が変化する度に溶融溶接時の凝固割れを低減または防止するような施工方法に関する事前検討を本来的に必要とすることなく、溶接工程時に溶接凝固割れを低減または防止して溶接を行うことが可能な溶接方法、溶接システム及び溶接凝固割れモニタリングシステムを提供する。 溶接工程において、溶接部表面の温度とひずみを測定し、母材及びワイヤの材料成分と、製品と開先形状,入熱条件および拘束条件を含む溶接プロセス条件と、測定した溶接部表面の温度及びひずみとに基づき、溶接部の凝固割れを解析し、解析により凝固割れ発生が予測されたときに、入熱条件または拘束条件を変えた場合の溶接部の凝固割れを解析することにより、凝固割れを低減または防止できる入熱条件または拘束条件を見出し、見出した入熱条件または拘束条件に基づき、溶接の入熱または母材へのひずみ負荷を制御する。

Description

溶接方法、溶接システム及び溶接凝固割れモニタリングシステム
 本発明は、溶接凝固割れを防止しながら溶接を行う溶接方法と溶接システム及び溶接凝固割れモニタリングシステムに関する。
 例えば、火力プラントや原子力プラント、鉄道車両等の製造工程においては溶接が含まれる。火力プラントや原子力プラント、鉄道車両を構成する材料には、炭素鋼、ステンレス鋼、アルミ合金、ニッケル基合金が用いられており、それらの材料で構成された部材を接合する場合には、アークもしくはレーザを熱源とし、材料を溶融および凝固させることで接合する溶融溶接法が用いられている。
 溶融溶接の場合、溶接欠陥の一つとして溶接金属部に発生する凝固割れがある。溶接部の信頼性向上にとって溶接時の凝固割れの低減および防止を図ることが不可欠である。
 例えば、特許文献1には、適切な溶接状態が得られるときの溶接部の温度を標準温度として設定しておき、赤外線センサにより溶接部の温度をリアルタイムで検出して溶接部の温度が標準温度と一致するようにレーザ発生器の出力をフィードバック制御することにより、面倒な試行錯誤を要する条件出し作業を行わなくても、簡単な操作によって最適の温度条件で溶接作業を行う溶接温度制御方法が提案されている。
 また、特許文献2には、溶接にともなう材料の凝固直後からのひずみ挙動とそれに付随しての高温割れや相変態の情報をその場で取得し、材料の溶接性の評価と信頼性の向上を図るために、溶接部の溶融・凝固の過程を経る箇所もしくは熱的にその影響を受ける近傍箇所にレーザービームを照射し、スペックル・パターンの変化によりひずみ量を動的に測定する方法が提案されている。
特開2000-218383号公報 特開2000-39308号公報
 特許文献1に記載された方法では、適切な溶接作業を行うことのできる標準温度の下限値と上限値の値がワークの形状や大きさ等に関わりなくワークの材質によって決まることが多いという観点のもと溶接温度を制御している。しかしながら、最近の溶接工程においては、材料の多様化や製品形状の複雑化の潮流が強く、これらの場合、標準温度に基づいた溶接温度の制御では不十分な場合が想定される。このため、溶接工程の度に溶接時の凝固割れを低減および防止するような施工方法に関する検討が必要となる。この溶接時の凝固割れを低減および防止するような施工方法に関する検討にはコストと時間がかかる。
 また、特許文献2に記載された方法では、ひずみを動的に検出することにより、ひずみ量の時間変化としてのひずみ変化曲線上に現れる不連続部などを判定して溶接部の高温割れなどを検出している。しかしながら、特許文献2では、溶接性の評価(溶接製品の品質管理)を行うものであり、実際の溶接工程において、測定結果に基づき高温割れを低減することは考慮されていない。
 本発明の目的は、材料や製品形状が変化する度に溶融溶接時の凝固割れを低減または防止するような施工方法に関する事前検討を本来的に必要とすることなく、溶接工程時に溶接凝固割れを低減または防止して溶接を行うことが可能な溶接方法、溶接システム及び溶接凝固割れモニタリングシステムを提供することにある。
 本発明は、溶接工程において、溶接部表面の温度とひずみを測定し、母材及びワイヤの材料成分と、製品と開先形状,入熱条件および拘束条件を含む溶接プロセス条件と、測定した溶接部表面の温度及びひずみとに基づき、溶接部の凝固割れを解析し、解析により凝固割れ発生が予測されたときに、入熱条件または拘束条件を変えた場合の溶接部の凝固割れを解析することにより、凝固割れを低減または防止できる入熱条件または拘束条件を見出し、見出した入熱条件または拘束条件に基づき、溶接の入熱または母材へのひずみ負荷を制御することを特徴とする。
 本発明によれば、材料や製品形状が変化する度に溶融溶接時の凝固割れを低減または防止するような施工方法に関する事前検討を必要とすることなく、任意の材料および任意の製品形状の溶接工程時に溶接凝固割れを低減または防止して溶接を行うことが可能となる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の一実施例である溶接システムの概略図である。 本発明の一実施例である溶接システムの概略図である。 本発明の実施例に用いられる温度およびひずみを測定する装置構成の一例を示す図である。 溶融溶接時に発生しうる縦型の凝固割れを説明する図である。 溶融溶接時に発生しうる横型の凝固割れを説明する図である。 本発明の一実施例の溶接方法における溶接凝固割れ予測手法を説明する図である。 本発明の一実施例の溶接システムにおける溶接凝固割れ制御を説明する図である。 溶接凝固割れのメカニズムを説明する図である。
 以下に本発明の実施例について図面を用いて説明する。
 図1及び図2に基づき本発明の実施例の溶接システムの概略を説明する。
 図1は溶接トーチ7およびワイヤ送給装置9を用いて母材1をアーク溶接する溶接システムである。溶接部の表面の温度およびひずみの状態をモニタリングするために高速温度ひずみ測定装置6が設置されている。高速温度ひずみ測定装置6は、高速度カメラ13と高速度カメラ13に取り付けられた温度計12と高倍率レンズ14を含む。高速温度ひずみ測定装置6で得られた温度およびひずみの測定値は、凝固割れ解析システム10に取り込まれ、後述の凝固割れ解析に用いられる。凝固割れ解析システム10は、凝固割れを解析するとともに凝固割れが予測された場合に凝固割れを低減または防止するような入熱条件を逆解析し溶接入熱制御装置11に出力する。溶接入熱制御装置11は、溶接トーチ7の入熱を制御する。また、凝固割れ解析システムの解析結果は、モニターディスプレイ15に表示される。
 図2も同様に溶接トーチ7およびワイヤ送給装置9を用いて母材1をアーク溶接する溶接システムである。図2に示す溶接システムでは、図1の構成に加えて、さらに、溶接金属部2の板幅方向の両側に縦ひずみ拘束冶具3と、母材1の板幅方向の端部に横ひずみ拘束冶具4が配置されている。縦ひずみ拘束冶具3と横ひずみ拘束冶具4は、母材1にひずみ負荷を与えるもので、溶接ひずみ制御装置8からの制御指令に基づき、ひずみの大きさやひずみ分布を調整できるように構成されている。凝固割れ解析システム10は、凝固割れが予測された場合に凝固割れを低減または防止するようなひずみ負荷の条件を逆解析し溶接ひずみ制御装置8に出力する。なお、図2では、溶接金属部2および母材1の表面の温度およびひずみの状態をモニタリングする高速温度ひずみ測定装置6における高速度カメラ13などの図示を省略している。
 図1及び図2では、1層の片側溶接構造の場合を示しているが、多層および両側溶接の場合においても本発明は適用可能である。
 高速温度ひずみ測定装置6は、図3に示すような、高速度カメラ13および温度計(例えば、二色比法測定ユニット)12と、高速度カメラ13と高倍率レンズ14が用いられている。温度計としては光ファイバ熱電対なども用いることができる。高倍率レンズ14は倍率が例えば500~1000倍程度のレンズが用いられる。温度計12と高速度カメラ13とで得られた情報は、高速温度ひずみ測定装置6で処理され、母材1および溶接金属部2の表面の温度(温度分布)を得ることができる。また、高倍率レンズ14と高速度カメラ13とで得られた情報は、高速温度ひずみ測定装置6で処理される。すなわち、高速温度ひずみ測定装置6において、溶接金属部2の表面デンドライト凹凸をマーキングとして表面デンドライト凹凸の空間的変位を高速に取得することで、母材1および溶接金属部2の表面のひずみ(ひずみ分布)を測定することができる。
 従来は、施工方法や溶接条件を決定するために、事前検討において、上述のような溶接部の温度やひずみを測定することが行われている。しかし、溶接工程においてインプロセスで測定した溶接部の温度とひずみに基づき、その溶接工程において溶接の入熱や母材の拘束の条件を調整することは検討されていない。また、凝固割れの予測技術に関しては、任意の材料および任意の形状の溶融溶接時の凝固割れを低減するような最適な温度およびひずみを得るというアプローチさえも行なわれていない。
 本発明においては、母材などの材料や製品形状が変化したときに、改めて、溶接条件を事前検討するという手法ではなく、溶接工程においてインプロセスで測定した溶接部の温度及びひずみと、溶接プロセス条件とに基づき、複数の解析技術を連携させて凝固割れ発生を予測し、この凝固割れ発生を低減または防止するように入熱またはひずみ負荷を調整するという、全く新しい発想に基づき溶接を行うようにしたものである。
 ここで、溶接凝固割れとしては、図4に示す縦型凝固割れ30や図5に示す横型凝固割れ40が溶接金属部2の内部に生じる可能性がある。一方、高速温度ひずみ測定装置6による温度とひずみの測定は、母材1および溶接金属部2の表面に関してのみ可能であり、凝固割れが発生しうる母材1および溶接金属部2内部の情報に関しては、温度およびひずみ情報の取得は不可能である。
 そこで、本発明では、溶接金属部および材料の表面の温度およびひずみの情報と、溶接プロセス条件とに基づき、内部の溶接凝固割れ予測を実施するようにしている。
 先ず、凝固割れ発生のメカニズムについて説明する。凝固割れは、図8に示す液相から固相に至る凝固過程で発生すると考えられている。本発明では、この凝固割れ発生メカニズムを考慮して凝固割れの予測(解析)を行うようにしている。
(1)金属は高温状態において液相状態である。
(2-1)冷却過程において金属が液相から固相へ変態するとき、デンドライトと呼ばれる突起形状を形成しながら固相が成長する。
(2-2)液相から固相に変態すると、固相の密度が液相より大きいため凝固収縮が発生し、変形/応力が発生する。
(2-3)凝固収縮による変形が発生した箇所に対し、すき間を埋めるように液相が流れる。
(3-1)更に凝固が進むと偏析と呼ばれる材料成分中の不純物が液相に濃化する現象が生じ、液相の凝固完了温度を低下させる。このため、液相が固相とならずに部分的に残留液相として存在する。
(3-2)複雑な凝固組織形状を呈すると液相流れが困難となりキャビティが発生する。
(3-3)上記(3-2)の状態で、凝固収縮による大きな変形/応力が固相と残留液相間の界面エネルギー(接着力)を超えると、キャビティが微細なき裂となる。
(4)微細なき裂がさらに進展することでマクロに観察されるような凝固割れとなる。
 本発明ではこのような凝固割れ発生メカニズムを考慮して、図6~図7に示す凝固割れ解析を行うようにしている。
 図6は凝固割れ予測手法のフローを示す図である。図7は凝固割れ解析システムの詳細と凝固割れ解析システムの解析に基づき溶接トーチの入熱と母材に与えるひずみ負荷の調整を行うシステム全体構成を示す。
 凝固割れ解析システム10は、材料物性値解析部21、溶接熱源モデル22、溶接伝熱解析部23、材料組織/偏析解析部24、変形/応力解析部25、液相流れ解析部26、微細き裂解析部27、凝固割れ感受性評価部28、凝固割れ防止解析部29を有する。各解析部には、既存の解析ソフトなどが用いられる。
 凝固割れ解析システム10に、材料成分と溶接プロセス条件をオペレータが事前に入力し、また、溶接工程を実施の際に溶接金属部と母材の温度とひずみの情報を高速温度ひずみ測定装置6から入力する。
 材料成分としては、母材1およびワイヤ送給装置9から送給される溶接ワイヤの材料成分をインプットする。
 また、溶接プロセス条件としては、製品/開先形状、入熱条件、および縦ひずみ拘束冶具3および横ひずみ拘束冶具4による拘束を除く拘束条件など溶接プロセス条件をインプットする。入熱条件のインプットは、入熱量(電流、電圧)、トーチ送り速度などであり、既存の溶接熱源モデルを通して、アーク、レーザ、電子ビーム、通電、摩擦などの熱源を模擬することができる。
 凝固割れ解析システム10では、これらの入力情報に基づき、基本的には、各解析部において、図6に示すA1からA6に示す解析を連携して実施する。各解析それ自体は既存の解析ソフトが用いられるが、これらの各解析を連携して実施することに特徴を有する。
 A1の材料物性値解析では、母材およびワイヤの材料成分をインプットとして、熱および機械的物性値を算出し、A2~6の解析で使用する。材料物性値解析には、物性値計算ソフトウェア「JmatPro」(英国Sente Software社製)などが用いられる。材料物性データベース20を利用して、凝固割れ解析情報に必要な物性値、たとえば密度、比熱、熱伝導率、潜熱、応力ひずみ曲線、ヤング率、ポアソン比、線膨張係数などを得ることができる。このA1の材料物性値解析は、凝固割れ解析システム10に組み入れないで、別途求めておいて凝固割れ解析システムにインプットするようにしても良い。
 A2の伝熱解析では、溶接プロセス条件として、製品や開先形状のデータ、熱源の種類や出力および送り速度等の入熱条件、冶具拘束等の境界条件を用いて伝熱解析を行う。また、溶接部表面の温度を境界条件として伝熱解析を行う。具体的には、材料成分をインプットとして材料物性値解析で得られた物性値、入熱条件をインプットとして得られた溶接熱源モデル、製品/開先形状、拘束条件のインプットで得られた拘束冶具による抜熱、母材1および溶接金属部2間の希釈、高速温度ひずみ測定装置6で得られた表面の温度情報を境界条件とし、溶接伝熱解析を実施する。この伝熱解析により溶接金属部2内部の温度(温度分布)、冷却速度、温度勾配を得る。なお、この伝熱解析にも既存の解析ソフトが用いられる。
 A3の材料組織/偏析解析では、A2の伝熱解析で得られた温度、冷却速度、温度勾配をもとに凝固組織、偏析および相変態の解析を行う。具体的には、溶接伝熱解析の結果および材料成分を用い、「MICRESS」(ドイツACCESS社製)などフェーズフィールド法や「Thermo-Calc」(スウェーデンThermo-Calc Software社製)など熱力学計算を用いた解析により、液相線温度や偏析による凝固完了温度、1次デンドライトアーム、2次デンドライトアーム、偏析による残留液相の領域幅の情報を得ることができる。なお、フェーズフィールド法は解析時間を多く必要とするため、インプロセスにおいて解析結果を制御に反映しやすくするためには、事前に温度勾配および冷却速度を変数とした液相線温度や偏析による凝固完了温度、1次デンドライトアーム、2次デンドライトアーム、偏析による残留液相の領域幅の情報データライブラリを準備しておき、それを用いるようにしても良い。
 A4の変形/応力解析では、A2の伝熱解析で得られた温度(温度分布)およびA3の材料組織/偏析解析で得られた相変態の情報をもとに熱粘弾塑性法による固液共存状態から室温までの変形/応力の解析(図8の(2)および(3)に示す変形/応力の解析)を行う。また、溶接部表面のひずみを境界条件として変形/応力解析を行う。具体的には、伝熱解析で得られた温度分布、材料組織/偏析解析で得られた相変態の情報、高速温度ひずみ測定装置6で得られた溶接金属部および母材表面の固液共存領域におけるひずみ状態を境界条件とし、有限要素法を用いた熱粘弾塑性解析によって、溶接時の母材1および溶接金属部2の内部における変形および応力分布を得る。
 A5の液相流れ解析では、A2の伝熱解析で得られた温度およびA3の材料組織/偏析解析で得られた凝固組織形状をもとに液相の流れ解析を行う。具体的には、液相線温度や偏析による凝固完了温度、1次デンドライトアーム、2次デンドライトアーム、偏析による残留液相の領域幅の情報をインプットとして、ダルシー流れ則をもとに凝固組織間に流れる液相の挙動(図8の(2)および(3)に示す液相流れ)を解析する。
 A6の微細き裂解析では、A3の材料組織/偏析解析で得られた偏析による最終凝固温度およびミクロ偏析部の形状と、A4の変形/応力解析で得られた変形/応力と、A5の液相流れ解析で得られた液相流れ挙動を用いて、固相と液相界面のキャビティ/微細き裂解析(図8の(3)に示す微細きれつの解析)を行い、凝固割れ感受性を算出する。具体的には、A3の材料組織/偏析解析で得られた凝固完了温度や、1次デンドライトアーム,2次デンドライトアーム,偏析による残留液相の領域幅などのミクロ偏析部の形状、A4の変形/応力解析によって得られた固液共存領域の変形挙動と応力状態、A5の液相流れ解析で得られた凝固組織間の液相流れ挙動の情報をもとに、液相圧力低下解析法を用いて未凝固の液相が凝固組織間を流れながら凝固する際に発生する組織内圧力低下から固液共存のき裂発生を予測し、また、Young-Laplaceの関係式を用いて応力と凝固した固相と未凝固の液相間の接着力である界面エネルギーを比較し、その大小によってき裂進展を予測することで凝固割れの発生確率を計算する。凝固割れ発生確率は、固相と残留液相間の界面エネルギー(接着力)に対して凝固収縮による大きな変形/応力が大きいほど発生確率が大きくなる。
 このようにA1~A6の解析を連携して行うことにより、凝固割れの発生確率が得られ、現状の溶接プロセス条件のまま溶接工程を進めた場合に溶接金属部2内に発生する凝固割れの位置および発生確率の結果が出力される。
 凝固割れ感受性評価部28で、凝固割れ発生確率が予め定めた凝固割れ発生確率以上か否か判断される。
 凝固割れ発生確率が予め定めた凝固割れ発生確率以上になった場合、すなわち、凝固割れが発生すると認められる場合、入熱条件および/または拘束条件を変えた場合の溶接金属部の凝固割れ解析を並列で実施し、凝固割れを低減または防止できる入熱条件または拘束条件を見出す逆解析(凝固割れ防止逆解析)を行うようにする。具体的には、凝固割れが発生すると認められる場合、入熱量、送り速度およびひずみ量を増加および減少させた場合の溶接凝固割れ解析を並列で実施する。そして、凝固割れ防止逆解析部29において、応答局面法などで得られた溶接凝固割れに及ぼす入熱量、送り速度およびひずみ量を整理し、凝固割れ発生確率が低下する場合の入熱量、送り速度およびひずみ量を見出す。また、凝固割れ防止逆解析部29では、凝固割れ発生確率が低下または防止される場合の入熱量、送り速度およびひずみ量のときの温度分布およびひずみ分布も併せて出力される。
 凝固割れ防止逆解析で求められた入熱条件および/または拘束条件は、溶接入熱制御装置11および/または溶接ひずみ制御装置8へ出力され、溶接の入熱および/または母材へのひずみ負荷が制御される。
 凝固割れ感受性評価で、凝固割れが発生しないと判断された場合、あらかじめ定められた周期で次の凝固割れ解析を行い凝固割れ感受性評価を行う。この周期は、例えば、0.01~0.001秒で行う。この周期は、高速度カメラのレート(fps)が対応できる(一般に10000fps:0.0001秒)ものである。
 溶接入熱制御装置11は、凝固割れ防止逆解析部29で見出された凝固割れを低減または防止できる入熱条件を実現するように、入熱量(電流、電圧)およびトーチ送り速度を制御する信号を溶接トーチ7に出力する。これにより、凝固割れ発生を防止するような温度分布が実現される。
 また、溶接ひずみ制御装置8は、凝固割れ防止逆解析部29で見出された凝固割れを低減または防止できる拘束条件を実現するように、母材へのひずみ負荷量を調節する縦ひずみ拘束冶具3、横ひずみ拘束冶具4へ制御指令を与える。これにより、凝固割れ発生を防止するようなひずみ分布が実現される。
 なお、高速温度ひずみ測定装置6で観察されたデンドライトの成長方向が母材1の板厚方向に対し垂直かつ幅方向に水平であれば横ひずみ拘束冶具4を用いて母材1を幅方向に縮めるように移動させる(母材1に圧縮ひずみ方向のひずみ負荷が与えられる。)。
 また、高速温度ひずみ測定装置6で観察されたデンドライトの成長方向が母材1の板厚方向に対し平行かつ幅方向に垂直であれば縦ひずみ拘束冶具3を用いて母材1を板厚方向に縮めるように移動させる(母材1に圧縮ひずみ方向のひずみ負荷が与えられる。)。
 本実施例によれば、溶接プロセス条件と、測定した溶接部表面の温度及びひずみとに基づき、溶接部の凝固割れを解析し、凝固割れを低減または防止できる入熱条件または拘束条件を見出し、見出した入熱条件または拘束条件に基づき、溶接の入熱または母材へのひずみ負荷を制御しているので、材料や製品形状が変化する度に溶融溶接時の凝固割れを低減または防止するような施工方法に関する事前検討を必要とすることなく、任意の材料および任意の製品形状の溶接工程時に溶接凝固割れを低減または防止して溶接を行うことが可能となる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加,削除,置換をすることが可能である。
 1…母材、2…溶接金属部、3…縦ひずみ拘束冶具、4…横ひずみ拘束冶具、6…高速温度ひずみ測定装置、7…溶接トーチ、8…溶接ひずみ制御装置、9…ワイヤ送給装置、10…凝固割れ解析システム、11…溶接入熱制御装置、12…温度計、13…高速度カメラ、14…高倍率レンズ、15…モニターディスプレイ、20…材料物性データベース、21…材料物性値解析部、22…溶接熱源モデル、23…溶接伝熱解析部、24…材料組織/偏析解析部、25…変形/応力解析部、…26液相流れ解析部、27…微細き裂解析部、28…凝固割れ感受性評価部、29…凝固割れ防止解析部。

Claims (7)

  1.  溶接部表面の温度とひずみを測定し、
     母材及びワイヤの材料成分と、製品と開先形状,入熱条件および拘束条件を含む溶接プロセス条件と、測定した前記溶接部表面の温度及びひずみとに基づき、溶接部の凝固割れを解析し、
     前記解析により凝固割れ発生が予測されたときに、前記入熱条件または前記拘束条件を変えた場合の溶接部の凝固割れを解析することにより、凝固割れを低減または防止できる入熱条件または拘束条件を逆解析し、
     前記逆解析により見出した前記凝固割れを低減または防止できる入熱条件または拘束条件に基づき、溶接の入熱または母材へのひずみ負荷を制御して溶接を行うことを特徴とする溶接方法。
  2.  請求項1に記載の溶接方法において、
     前記溶接部の凝固割れの解析は、溶接伝熱解析、材料組織/偏析解析、変形/応力解析、液相流れ解析、微細き裂解析、凝固割れ感受性評価を含み、
     前記溶接伝熱解析では、母材およびワイヤの材料物性値、前記溶接プロセス条件、前記測定した溶接部表面の温度情報を境界条件として溶接伝熱解析を実施することにより溶接金内部の温度、冷却速度、温度勾配を得るようにし、
     前記材料組織/偏析解析では、前記溶接伝熱解析で得られた温度、冷却速度、温度勾配をもとに凝固組織、偏析および相変態の解析を行って、偏析による最終凝固完了温度やミクロ偏析部の形状を得るようにし、
     前記変形/応力解析では、前記溶接伝熱解析で得られた温度、前記材料組織/偏析解析で解析した相変態の情報、前記測定したひずみを境界条件として、熱粘弾塑性解析によって、溶接部内部における変形および応力分布を得るようにし、
     前記液相流れ解析では、前記溶接伝熱解析で得られた温度および前記材料組織/偏析解析で得られたミクロ偏析部の形状をもとに凝固組織間に流れる液相の挙動を解析し、
     前記微細き裂解析では、前記材料組織/偏析解析で得られた偏析による最終凝固温度およびミクロ偏析部の形状と、前記変形/応力解析で得られた変形/応力と、前記液相流れ解析で得られた液相流れ挙動を用いて、固相と液相界面の微細き裂解析を行ってき裂進展を予測することで凝固割れの発生確率を計算し、
     前記凝固割れ感受性評価では、前記微細き裂解析で得られた凝固割れ発生確率に基づいて凝固割れ発生を予測するようにしたことを特徴とすることを特徴とする溶接方法。
  3.  溶接トーチと、ワイヤ供給装置と、前記溶接トーチの入熱量およびトーチ送り速度を制御する溶接入熱制御装置と、溶接部表面の温度とひずみを測定する測定装置と、前記測定装置で測定した温度とひずみと溶接プロセス条件に基づき溶接部内部の凝固割れを解析する凝固割れ解析システムとを備え、
     前記凝固割れ解析システムは、母材及びワイヤの材料成分と、前記溶接プロセス条件としての製品と開先形状,入熱条件および拘束条件と、前記測定装置で測定した温度及びひずみとに基づき、前記溶接部内部の凝固割れを解析し、前記解析により凝固割れ発生が予測されたときに、前記入熱条件を変えた場合の溶接部の凝固割れを解析することにより、凝固割れを低減または防止できる入熱条件を逆解析し、前記逆解析により見出した前記凝固割れを低減または防止できる入熱条件を前記溶接入熱制御装置へ出力することを特徴とする溶接システム。
  4.  請求項3に記載の溶接システムにおいて、
     前記母材へのひずみ負荷量を与えるひずみ拘束装置と、前記ひずみ拘束装置が母材に与えるひずみ負荷量を制御する溶接ひずみ制御装置を備え、
     前記凝固割れ解析システムは、前記解析により凝固割れ発生が予測されたときに、前記入熱条件および/または前記ひずみ拘束装置による拘束条件を変えた場合の溶接部の凝固割れを解析することにより、凝固割れを低減または防止できる入熱条件および/または拘束条件を逆解析し、前記逆解析により見出した前記凝固割れを低減または防止できる入熱条件および/または拘束条件を前記溶接入熱制御装置および/または前記溶接ひずみ制御装置へ出力することを特徴とする溶接システム。
  5.  請求項4に記載の溶接システムにおいて、
     前記ひずみ拘束装置は、溶接金属部の板幅方向の両側に設けられた縦ひずみ拘束冶具と、母材の板幅方向の端部に設けられた横ひずみ拘束冶具を有することを特徴とする溶接システム。
  6.  請求項5に記載の溶接システムにおいて、
     前記凝固割れ解析システムは、材料物性値解析部、溶接熱源モデル、溶接伝熱解析部、材料組織/偏析解析部、変形/応力解析部、液相流れ解析部、微細き裂解析部、凝固割れ感受性評価部、凝固割れ防止解析部を備え、
     前記溶接伝熱解析部では、母材およびワイヤの材料物性値、前記溶接プロセス条件としての製品や開先形状のデータ、熱源の種類や出力および送り速度の入熱条件、母材の拘束条件、前記測定装置で測定した溶接部表面の温度情報を境界条件として溶接伝熱解析を実施することにより溶接金内部の温度、冷却速度、温度勾配を得るようにし、
     前記材料組織/偏析解析部では、前記溶接伝熱解析部で得られた温度、冷却速度、温度勾配をもとに凝固組織、偏析および相変態の解析を行って、偏析による最終凝固完了温度やミクロ偏析部の形状を得るようにし、
     前記変形/応力解析部では、前記溶接伝熱解析部で得られた温度、前記材料組織/偏析解析部で解析した相変態の情報、前記測定装置で測定したひずみを境界条件として、熱粘弾塑性解析によって、溶接部内部における変形および応力分布を得るようにし、
     前記液相流れ解析部では、前記溶接伝熱解析部で得られた温度および前記材料組織/偏析解析部で得られたミクロ偏析部の形状をもとに凝固組織間に流れる液相の挙動を解析し、
     前記微細き裂解析部では、前記材料組織/偏析解析部で得られた偏析による最終凝固温度およびミクロ偏析部の形状と、前記変形/応力解析部で得られた変形/応力と、前記液相流れ解析部で得られた液相流れ挙動を用いて、固相と液相界面の微細き裂解析を行って凝固割れ感受性を算出し、
    固相と液相界面の微細き裂解析を行ってき裂進展を予測することで凝固割れの発生確率を計算し、
     前記凝固割れ感受性評価部では、前記微細き裂解析で得られた凝固割れ発生確率に基づいて凝固割れ発生を予測するようにし、
     凝固割れ防止解析部では、前記凝固割れ感受性評価部で、凝固割れが発生すると判断された場合、入熱条件および/または拘束条件を変えた場合の凝固割れ解析を実施し、凝固割れを低減または防止できる入熱条件または拘束条件を見出す逆解析を行うようにしたことを特徴とする溶接システム。
  7.  溶接部表面の温度とひずみを測定する測定装置と、前記測定装置で測定した温度とひずみと溶接プロセス条件に基づき溶接部内部の凝固割れを解析する凝固割れ解析システムとを備え、
     前記凝固割れ解析システムは、溶接伝熱解析部、材料組織/偏析解析部、変形/応力解析部、液相流れ解析部、微細き裂解析部、凝固割れ感受性評価部を備え、
     前記溶接伝熱解析部では、母材およびワイヤの材料物性値、前記溶接プロセス条件としての製品や開先形状のデータ、熱源の種類や出力および送り速度の入熱条件、母材の拘束条件、前記測定装置で測定した溶接部表面の温度情報を境界条件として溶接伝熱解析を実施することにより溶接金内部の温度、冷却速度、温度勾配を得るようにし、
     前記材料組織/偏析解析部では、前記溶接伝熱解析部で得られた温度、冷却速度、温度勾配をもとに凝固組織、偏析および相変態の解析を行って、偏析による最終凝固完了温度やミクロ偏析部の形状を得るようにし、
     前記変形/応力解析部では、前記溶接伝熱解析部で得られた温度、前記材料組織/偏析解析部で解析した相変態の情報、前記測定装置で測定したひずみを境界条件として、熱粘弾塑性解析によって、溶接部内部における変形および応力分布を得るようにし、
     前記液相流れ解析部では、前記溶接伝熱解析部で得られた温度および前記材料組織/偏析解析部で得られたミクロ偏析部の形状をもとに凝固組織間に流れる液相の挙動を解析し、
     前記微細き裂解析部では、前記材料組織/偏析解析部で得られた偏析による最終凝固温度およびミクロ偏析部の形状と、前記変形/応力解析部で得られた変形/応力と、前記液相流れ解析部で得られた液相流れ挙動を用いて、固相と液相界面の微細き裂解析を行ってき裂進展を予測することで凝固割れの発生確率を計算し、
     前記凝固割れ感受性評価部では、前記微細き裂解析部で得られた凝固割れ発生確率に基づいて凝固割れ発生を予測するようにした特徴とする溶接凝固割れモニタリングシステム。
PCT/JP2013/063117 2013-05-10 2013-05-10 溶接方法、溶接システム及び溶接凝固割れモニタリングシステム WO2014181458A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2013/063117 WO2014181458A1 (ja) 2013-05-10 2013-05-10 溶接方法、溶接システム及び溶接凝固割れモニタリングシステム
JP2015515726A JP6012855B2 (ja) 2013-05-10 2013-05-10 溶接方法、溶接システム及び溶接凝固割れモニタリングシステム
EP13883866.9A EP2995416A4 (en) 2013-05-10 2013-05-10 Welding method, welding system, and system for monitoring weld solidification cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/063117 WO2014181458A1 (ja) 2013-05-10 2013-05-10 溶接方法、溶接システム及び溶接凝固割れモニタリングシステム

Publications (1)

Publication Number Publication Date
WO2014181458A1 true WO2014181458A1 (ja) 2014-11-13

Family

ID=51866959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063117 WO2014181458A1 (ja) 2013-05-10 2013-05-10 溶接方法、溶接システム及び溶接凝固割れモニタリングシステム

Country Status (3)

Country Link
EP (1) EP2995416A4 (ja)
JP (1) JP6012855B2 (ja)
WO (1) WO2014181458A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107186342A (zh) * 2017-06-18 2017-09-22 西安优耐特容器制造有限公司 一种薄壁管件焊接成型控制***及方法
CN111637991A (zh) * 2020-06-09 2020-09-08 石家庄铁道大学 钢轨温度应力检测方法及终端设备
CN114535799A (zh) * 2022-01-30 2022-05-27 扬州市亚普仪表厂 一种加热管的激光对准及焊接***
JP7116829B1 (ja) 2021-07-09 2022-08-10 日鉄エンジニアリング株式会社 溶接システム、中継装置、溶接方法、中継方法及び溶接システムの設置方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106425044B (zh) * 2016-11-28 2018-09-21 哈尔滨电气动力装备有限公司 核主泵屏蔽电机电阻式温度检测器测温线的连接方法
CN113510327B (zh) * 2021-06-23 2022-12-13 上海空间推进研究所 异种材料钎焊间隙控制方法和***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100948A (en) * 1975-03-04 1976-09-06 Nippon Steel Corp i gatakokatamenjidoyosetsusochi
JPH11314155A (ja) * 1998-04-28 1999-11-16 Ishikawajima Harima Heavy Ind Co Ltd 溶接割れの予測診断方法
JP2000039308A (ja) 1998-07-21 2000-02-08 Natl Res Inst For Metals 溶接部の動的ひずみ測定方法
JP2000218383A (ja) 1999-01-28 2000-08-08 Suzuki Motor Corp レーザ溶接における溶接温度制御方法
JP2006247746A (ja) * 2005-02-10 2006-09-21 Toyota Central Res & Dev Lab Inc 溶接解析方法
JP2010201474A (ja) * 2009-03-04 2010-09-16 Toshiba Corp 溶接最適化方法及びシステム並びに溶接方法
JP2012006078A (ja) * 2010-05-21 2012-01-12 Toshiba Corp 溶接システムおよび溶接方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100948A (en) * 1975-03-04 1976-09-06 Nippon Steel Corp i gatakokatamenjidoyosetsusochi
JPH11314155A (ja) * 1998-04-28 1999-11-16 Ishikawajima Harima Heavy Ind Co Ltd 溶接割れの予測診断方法
JP2000039308A (ja) 1998-07-21 2000-02-08 Natl Res Inst For Metals 溶接部の動的ひずみ測定方法
JP2000218383A (ja) 1999-01-28 2000-08-08 Suzuki Motor Corp レーザ溶接における溶接温度制御方法
JP2006247746A (ja) * 2005-02-10 2006-09-21 Toyota Central Res & Dev Lab Inc 溶接解析方法
JP2010201474A (ja) * 2009-03-04 2010-09-16 Toshiba Corp 溶接最適化方法及びシステム並びに溶接方法
JP2012006078A (ja) * 2010-05-21 2012-01-12 Toshiba Corp 溶接システムおよび溶接方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2995416A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107186342A (zh) * 2017-06-18 2017-09-22 西安优耐特容器制造有限公司 一种薄壁管件焊接成型控制***及方法
CN107186342B (zh) * 2017-06-18 2023-04-07 西安优耐特容器制造有限公司 一种薄壁管件焊接成型控制***及方法
CN111637991A (zh) * 2020-06-09 2020-09-08 石家庄铁道大学 钢轨温度应力检测方法及终端设备
CN111637991B (zh) * 2020-06-09 2022-05-31 石家庄铁道大学 钢轨温度应力检测方法及终端设备
JP7116829B1 (ja) 2021-07-09 2022-08-10 日鉄エンジニアリング株式会社 溶接システム、中継装置、溶接方法、中継方法及び溶接システムの設置方法
JP2023010202A (ja) * 2021-07-09 2023-01-20 日鉄エンジニアリング株式会社 溶接システム、中継装置、溶接方法、中継方法及び溶接システムの設置方法
CN114535799A (zh) * 2022-01-30 2022-05-27 扬州市亚普仪表厂 一种加热管的激光对准及焊接***
CN114535799B (zh) * 2022-01-30 2023-04-14 扬州市亚普仪表厂 一种加热管的激光对准及焊接***

Also Published As

Publication number Publication date
EP2995416A4 (en) 2017-01-18
EP2995416A1 (en) 2016-03-16
JP6012855B2 (ja) 2016-10-25
JPWO2014181458A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6012855B2 (ja) 溶接方法、溶接システム及び溶接凝固割れモニタリングシステム
Derakhshan et al. Numerical simulation and experimental validation of residual stress and welding distortion induced by laser-based welding processes of thin structural steel plates in butt joint configuration
Bi et al. Development and qualification of a novel laser-cladding head with integrated sensors
Tapia et al. A review on process monitoring and control in metal-based additive manufacturing
Kong et al. 3D finite element modeling of the thermally induced residual stress in the hybrid laser/arc welding of lap joint
Chiumenti et al. Finite element modeling of multi-pass welding and shaped metal deposition processes
Zhao et al. A 3D dynamic analysis of thermal behavior during single-pass multi-layer weld-based rapid prototyping
CN110334469B (zh) 一种基于ansys的齿轮断齿激光熔覆焊接工艺优化方法
Fehrenbacher et al. Measurement of tool-workpiece interface temperature distribution in friction stir welding
Zhao et al. Effects of interpass idle time on thermal stresses in multipass multilayer weld-based rapid prototyping
Yau et al. Temperature distribution study during the friction stir welding process of Al2024-T3 aluminum alloy
Zahidin et al. Research challenges, quality control and monitoring strategy for Wire Arc Additive Manufacturing
Gouge et al. An introduction to additive manufacturing processes and their modeling challenges
Graf et al. Numerical simulation of metallic wire arc additive manufacturing (WAAM)
Simunovic et al. Metal big area additive manufacturing: Process modeling and validation
Vemanaboina et al. Thermal analysis simulation for laser butt welding of Inconel625 using FEA
JP2016198805A (ja) 溶接良否判定方法および溶接良否判定機構を備える溶接装置
Odermatt et al. Coaxial laser directed energy deposition with wire of thin-walled duplex stainless steel parts: Process discontinuities and their impact on the mechanical properties
Mahapatra et al. Three-dimensional finite element analysis to predict the effects of shielded metal arc welding process parameters on temperature distributions and weldment zones in butt and one-sided fillet welds
Vemanaboina et al. Simulation of hybrid laser-TIG welding process using FEA
Quarto et al. Hybrid finite elements method-artificial neural network approach for hardness prediction of AA6082 friction stir welded joints
Langrieger et al. Thermomechanical analysis of the formation of hot cracks in remote laser welded aluminium fillet welds
Hartmann et al. Digital Twin of the laser-DED process based on a multiscale approach
Sheikhbahaee et al. Investigating sensitivity to process parameters in pulsed laser micro-welding of stainless steel foils
Seibold et al. Influence of solidification rate on hot crack behavior in heat conduction laser beam welding of EN AW-6082

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883866

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015515726

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013883866

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE