WO2014180053A1 - 显示装置的背光模组以及白光led - Google Patents

显示装置的背光模组以及白光led Download PDF

Info

Publication number
WO2014180053A1
WO2014180053A1 PCT/CN2013/078282 CN2013078282W WO2014180053A1 WO 2014180053 A1 WO2014180053 A1 WO 2014180053A1 CN 2013078282 W CN2013078282 W CN 2013078282W WO 2014180053 A1 WO2014180053 A1 WO 2014180053A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
quantum dot
backlight module
rgb
phosphor layer
Prior art date
Application number
PCT/CN2013/078282
Other languages
English (en)
French (fr)
Inventor
胡哲彰
樊勇
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/985,291 priority Critical patent/US20140334181A1/en
Publication of WO2014180053A1 publication Critical patent/WO2014180053A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials

Definitions

  • the present invention relates to the field of display devices, and more particularly to a backlight module for a display device and a white LED.
  • color TFT-LCD display elements generally use white LEDs with color RGB photoresist to achieve color display of TFT-LCD components.
  • a white LED with a higher RGB color purity is required.
  • RGB tri-color chip LED There are two main ways to achieve high color purity white LEDs: one is to use RGB tri-color chip LED, and the other is blue chip plus RG phosphor.
  • the RGB three-color chip LED method can achieve high-purity white light, but this method has different lifetimes due to different RGB tri-color chips, especially the green chip has the fastest lifetime decay, which directly affects the attenuation of luminance and the variation of chroma, so this One way is to compare the chroma detection to adjust the drive current, which will increase the manufacturing cost of the device.
  • this type of LED is also the mode adopted by most high color gamut white LEDs, but this method displays the component gamut of TFT-LCD under the same CF (color filter film) condition. The increase is limited and can only be increased by less than 20% NTSC (color saturation) (with the same CF condition) than the yellow YAG LED display component.
  • the Chinese Utility Model Publication No. CN2593229Y discloses a technical solution for exciting RGB phosphors disposed on a light guide plate by ultraviolet light LEDs, wherein the RGB phosphors are mixed in proportion and applied to the light guide plate.
  • this method causes the reabsorption of the RG phosphor, resulting in a decrease in luminous efficiency.
  • the technical problem to be solved by the present invention is to provide a backlight module of a display device excellent in color saturation. Group and white LEDs.
  • a backlight module of a display device comprising:
  • the light bar is provided with a plurality of ultraviolet LEDs
  • the light incident surface of the light guide plate is opposite to the ultraviolet light LED
  • At least one RGB quantum dot phosphor layer is disposed in a path in which the ultraviolet LED emits light to the light exiting from the light exit surface of the light guide plate;
  • the RGB quantum dot phosphor layer includes a red light quantum dot fluorescent film, a green light quantum dot fluorescent film, and a blue quantum dot fluorescent film which are sequentially disposed.
  • the RGB quantum dot phosphor layer is disposed on a light-emitting surface of the light guide plate.
  • the light of the backlight module is mainly emitted from the light-emitting surface of the light guide plate, so that the RGB quantum dot phosphor layer is disposed on the light-emitting surface to ensure the conversion of white light.
  • the RGB quantum dot phosphor layer is disposed on a light incident surface of the light guide plate.
  • the light of the backlight module UV LED mainly enters from the light incident surface of the light guide plate and then exits from the light exit surface. Therefore, the RGB quantum dot phosphor layer is disposed on the light incident surface to ensure that the light emitted from the light exit surface of the light guide plate is also white light.
  • the RGB quantum dot phosphor layer is disposed on the lamp cover of the ultraviolet LED.
  • the light emitted by the ultraviolet light LED is mainly emitted through the lampshade, so that the RGB quantum dot phosphor layer is disposed on the lamp cover to ensure that the light entering the light guide plate and the light exiting from the light exit surface of the light guide plate is white light.
  • a light-emitting surface of the RGB quantum dot phosphor layer is provided with a diffusion film.
  • the diffusion film helps to increase the chromaticity of the light emitted from the light guide.
  • the light-emitting surface of the RGB quantum dot phosphor layer is further provided with an incremental film.
  • the incremental film helps to increase the brightness of the light emitted by the light guide.
  • the ultraviolet light emitted by the ultraviolet LED has a wavelength of 360 to 380 nm.
  • the red light quantum dot fluorescent film has an emission wavelength of 620 nm to 660 nm, and the half maximum full wave is less than 45 nm;
  • the green light quantum dot fluorescent film has an emission wavelength of 520 nm to 540 nm, and the half maximum full wave is less than 45 nm;
  • the blue-ray quantum dot fluorescent film has an emission wavelength of 440 nm to 470 nm, and a half maximum The wave is less than 40 nm.
  • the RGB quantum dot phosphor layer is simultaneously disposed on the light incident surface and the light exit surface of the light guide plate. Effectively ensure that the light emitted by the light guide plate is white light.
  • a white light LED includes: an ultraviolet light chip and a lamp cover; the light cover is provided with an RGB quantum dot phosphor layer; the RGB quantum dot phosphor layer comprises a red light quantum dot fluorescent film, a green light quantum dot fluorescent film, and Blue light quantum dot fluorescent film.
  • the light bar of the backlight module of the present invention uses an ultraviolet LED, and includes at least one RGB quantum dot phosphor layer in the path of the ultraviolet light emitting light to the light emitting surface of the light guide plate, and the RGB quantum dot fluorescent light
  • the powder layer includes a red light quantum dot fluorescent film, a green light quantum dot fluorescent film, and a blue quantum dot fluorescent film which are sequentially disposed.
  • Quantum dot phosphors are quite different from the aluminates, silicates, nitrides, and oxynitride phosphors commonly used in LEDs.
  • the quantum dot phosphor particle size is usually less than 10 nm, which is much smaller than the size of a few micrometers to several tens of micrometers of a typical phosphor; quantum dot phosphors have a quantum size effect, which is generally not available for phosphors.
  • the quantum dot phosphor luminescence spectrum FWHM is usually less than 50 nm, and the FWHM of the usual phosphor luminescence spectrum is generally greater than 50 nm, around 100 nm, so that the quantum dot phosphor has a higher luminescent color purity, and is more suitable for high color saturation. Degree of liquid crystal backlight source.
  • the absorption of ultraviolet light by quantum dot phosphors is much stronger than that of blue light around 450 nm.
  • the conversion efficiency of phosphor dots excited by ultraviolet light is higher, and the general phosphor does not have this property.
  • the RGB quantum dot phosphor layer is sequentially arranged by a red quantum dot fluorescent film, a green quantum dot fluorescent film, and a blue quantum dot fluorescent film, which not only improves the color saturation of the backlight module, but also solves the problem.
  • the problem of resorption of the RG quantum dot phosphor that is, such an arrangement can further improve the luminous efficiency.
  • FIG. 1 is a schematic diagram showing the structure of a backlight module according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic view showing a second arrangement mode of the RGB quantum dot phosphor layer according to the second embodiment of the present invention
  • FIG. 3 is a schematic view showing a third arrangement mode of the RGB quantum dot phosphor layer according to the third embodiment of the present invention
  • 4 is a schematic structural view of a white LED in Embodiment 4 of the present invention
  • Fig. 5 is a schematic view showing the spectrum of ultraviolet light-excited RGB quantum dot phosphor.
  • the embodiment provides a backlight module of a display device.
  • the backlight module includes: a light bar 101 and a light guide plate 103.
  • the light bar 101 is provided with a plurality of ultraviolet light LEDs 109.
  • the light incident surface of the light plate 103 is disposed opposite to the ultraviolet light LED 109; in the path of the ultraviolet light LED 109 emitting light to the light emitting surface of the light guide plate 103, an RGB quantum dot phosphor layer 115 is disposed;
  • the RGB quantum dot phosphor layer 115 includes a red light quantum dot fluorescent film 104, a green light quantum dot fluorescent film 105, and a blue quantum dot fluorescent film 106 which are sequentially disposed.
  • the RGB quantum dot phosphor layer 115 generates white light under the excitation of ultraviolet light emitted from the ultraviolet LED 109, thereby improving the color saturation of the backlight module, and since the RGB quantum dot phosphor layer 115 is respectively composed of the red quantum dot fluorescent film 104, green
  • the photo quantum dot fluorescent film 105 and the blue quantum dot fluorescent film 106 are sequentially arranged, which not only improves the color saturation of the backlight module, but also solves the problem of reabsorption of the RG quantum dot phosphor, that is, the setting can be The luminous efficiency of the light bar is further improved.
  • Quantum dot phosphors are four different from the aluminates, silicates, nitrides, and oxynitride phosphors commonly used in LEDs.
  • the quantum dot phosphor particle size is usually less than 10 nm, which is much smaller than the size of a few micrometers to several tens of micrometers of a typical phosphor; quantum dot phosphors have a quantum size effect, which is generally not possessed by phosphors.
  • the quantum dot phosphor luminescence spectrum FWHM is usually less than 50 nm, and the FWHM of the usual phosphor luminescence spectrum is generally greater than 50 nm, at about 100 nm, so that the quantum dot phosphor has a higher luminescent color purity, and is more suitable for high color. Saturated liquid crystal backlight source.
  • the absorption of ultraviolet light by quantum dot phosphors is much stronger than that of blue light around 450 nm. The conversion efficiency of phosphor dots excited by ultraviolet light is higher, and the general phosphor does not have this property.
  • the RGB quantum dot phosphor layer is respectively composed of a red light quantum dot fluorescent film and a green light quantum dot fluorescent film.
  • the film and the blue quantum dot fluorescent film are sequentially arranged, which not only improves the color saturation of the backlight module, but also solves the problem of reabsorption of the RG quantum dot phosphor, that is, the arrangement can further improve the luminous efficiency. .
  • the other surface opposite to the light-emitting surface of the light guide plate 103 is provided with a reflection sheet 102, and the light emitted from the other surface is reflected back into the light guide plate 103 through the reflection sheet 102, and is emitted through the light-emitting surface, thereby improving Light utilization.
  • An incremental film 107 is further disposed on the light emitting surface of the RGB quantum dot phosphor layer 115 to increase the brightness of the backlight module, and a diffusion film 108 is further disposed to improve the uniformity of the light. The film 107 improves the uniformity and brightness of the backlight module, and further improves the brightness and chromaticity of the backlight module.
  • the ultraviolet light emitted by the ultraviolet LED has a wavelength of 360 to 380 nm.
  • the emission wavelength of the red quantum dot fluorescent film is 620 nm to 660 nm, and the half maximum full wave is less than 45 nm; the emission of the green quantum dot fluorescent film The wavelength is from 520 nm to 540 nm, and the half maximum full wave is less than 45 nm; the emission wavelength of the blue quantum dot fluorescent film is 440 nm to 470 nm, and the half maximum full wave is less than 40
  • the RGB quantum dot phosphor layer 115 is disposed on the light incident surface of the light guide plate 103, and the light of the backlight module ultraviolet light LED 109 is mainly from the light guide plate 103.
  • the surface enters and exits from the light exit surface, so that the RGB quantum dot phosphor layer 115 is disposed on the light incident surface to ensure that the light emitted from the light exit surface of the light guide plate is also white light.
  • the RGB quantum dot phosphor layer is also formed by sequentially arranging the red quantum dot fluorescent film 104, the green quantum dot fluorescent film 105, and the blue quantum dot fluorescent film 106 in the light irradiation direction.
  • the RGB quantum dot phosphor layer 115 is disposed on both the light incident surface and the light exit surface of the light guide plate 103, thereby ensuring that the light emitted from the light guide plate 103 is Pure white light.
  • the embodiment provides a white LED using an ultraviolet (UV) chip, which comprises: an ultraviolet chip 1011, a UV-resistant cladding material 1012, and a UV-resistant lampshade 1013.
  • the lampshade 1013 is UV-resistant.
  • the filling glue is provided with an RGB quantum dot phosphor layer 115 on the surface of the lampshade 1013.
  • the RGB quantum dot phosphor layer is also formed by sequentially arranging the red quantum dot fluorescent film 104, the green quantum dot fluorescent film 105, and the blue quantum dot fluorescent film 106 in the light irradiation direction.
  • the white light LED using the ultraviolet (UV) chip of this embodiment can be used in a backlight module of a liquid crystal display device as a point light source on a light bar. It can also be used in other fields such as lighting.
  • UV ultraviolet

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Led Device Packages (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示装置的背光模组及白光 LED,所述背光模组包括:灯条,所述灯条上设置有多个紫外光 LED;导光板,所述导光板的入光面与所述紫外光 LED相对设置;在所述紫外光 LED发出光线到所述光线从导光板出光面射出的路径中,至少设置有一RGB量子点荧光粉层;所述RGB量子点荧光粉层包括依次设置的红光量子点荧光膜、绿光量子点荧光膜以及蓝光量子点荧光膜。

Description

显示装置的背光模组以及白光 LED
【技术领域】
本发明涉及显示装置领域, 更具体的说, 涉及一种显示装置的背光模组以 及白光 LED。
【背景技术】
目前彩色 TFT-LCD显示元件,普遍采用白光 LED搭配彩色 RGB光阻来实 现 TFT-LCD元件的彩色显示。 为了 TFT-LCD元件显示更丰富的颜色, 也就是 在 CIE 色坐标中要实现更大面积色域覆盖, 这就需要更高 RGB 色纯度的白光 LED。
实现高色纯度的白光 LED 方式主要有两种: 一种是采用 RGB 三色芯片 LED, 另一种是蓝光芯片加 RG荧光粉。 其中, RGB三色芯片 LED方式虽然可 以实现高***光, 但这种方式由于 RGB三色芯片寿命各不同, 尤其是绿色芯 片寿命衰减最快, 直接影响亮度的衰减和色度的变异, 所以这种方式需要比较 进行色度检测来调整驱动电流, 这样会造成器件制造成本的升高。 而对于蓝光 芯片加 RG荧光粉 LED, 该类型 LED也是目前大多数高色域白光 LED所采用 的方式, 但这种方式在相同 CF (彩色滤光膜)条件下对 TFT-LCD显示元件色 域的增加有限,仅能够比黄光 YAG LED 显示元件增加不到 20%的 NTSC (色彩 饱和度) (相同 CF条件下)。
另外, 公开号为 CN2593229Y的中国实用新型专利中公开了一种通过紫外 光 LED激发设置在导光板上的 RGB荧光粉的技术方案, 其中, RGB荧光粉是 按比例混合后涂抹于导光板上。 然而此种方式会造成 RG荧光粉的再吸收作用, 造成发光效率降低。
【发明内容】
本发明所要解决的技术问题是提供一种色饱和度优秀的显示装置的背光模 组以及白光 LED。
本发明的目的是通过以下技术方案来实现的: 一种显示装置的背光模组, 包括:
灯条, 所述灯条上设置有多个紫外光 LED;
导光板, 所述导光板的入光面与所述紫外光 LED相对设置;
在所述紫外光 LED 发出光线到所述光线从导光板出光面射出过程的路径 中, 至少设置有一 RGB量子点荧光粉层;
所述 RGB量子点荧光粉层包括依次设置的红光量子点荧光膜、 绿光量子点 荧光膜以及蓝光量子点荧光膜。
优选的, 所述 RGB量子点荧光粉层设置在所述导光板的出光面上。 背光模 组的光线主要从导光板的出光面射出, 因而在出光面设置 RGB量子点荧光粉层 保证了白光的转化。
优选的, 所述 RGB量子点荧光粉层设置在所述导光板的入光面上。 背光模 组紫外光 LED的光线主要从导光板的入光面进入再从出光面射出, 因而在入光 面设置 RGB量子点荧光粉层保证了导光板出光面射出的光线也是白光。
优选的, 所述 RGB量子点荧光粉层设置在所述紫外光 LED的灯罩上。 紫 外光 LED射出的光线主要经由灯罩射出, 因而在灯罩上设置 RGB量子点荧光 粉层保证了进入导光板和从导光板出光面射出的光线是白光。
优选的, 所述 RGB量子点荧光粉层的出光面设置有扩散膜。 扩散膜有助于 提高导光板射出光线的色度。
优选的, 所述 RGB量子点荧光粉层的出光面还设置有增量膜。 增量膜有助 于提高导光板射出光线的亮度。
优选的, 所述紫外光 LED所发出的紫外光波长为 360~380nm。
优选的, 所述红光量子点荧光膜的发射波长为 620nm~660nm, 半最大值全 波小于 45nm; 所述绿光量子点荧光膜的发射波长为 520nm~540nm, 半最大值全 波小于 45nm; 所述蓝光量子点荧光膜的发射波长为 440nm~470nm, 半最大值全 波小于 40nm。
优选的, 所述 RGB量子点荧光粉层同时设置在所述导光板的入光面以及出 光面。 有效的保证了导光板射出的光线是白光。
一种白光 LED, 包括: 紫外光芯片以及灯罩; 所述灯罩上设置有一 RGB量 子点荧光粉层; 所述 RGB量子点荧光粉层包括依次设置的红光量子点荧光膜、 绿光量子点荧光膜以及蓝光量子点荧光膜。
本发明背光模组的灯条使用了紫外 LED, 并在紫外光 LED发出光线到该光 线从导光板出光面射出过程的路径中, 至少包括一 RGB量子点荧光粉层, 所述 RGB量子点荧光粉层包括依次设置的红光量子点荧光膜、 绿光量子点荧光膜以 及蓝光量子点荧光膜。 量子点荧光粉与通常 LED所用到的铝酸盐、 硅酸盐、 氮 化物、 氮氧化物荧光粉有^ ^大不同的。 首先: 量子点荧光粉的颗粒尺寸通常小 于 10nm, 远远小于通常荧光粉的几微米到几十微米的尺寸; 量子点荧光粉具有 量子尺寸效应, 而通常荧光粉不具备此特性。 再次, 量子点荧光粉发光光谱 FWHM通常小于 50nm,而通常的荧光粉发光光谱的 FWHM—般大于 50nm, 在 lOOnm 左右, 从而量子点荧光粉的发光色纯度更高, 更适合应用于高色饱和度 的液晶背光光源中。 最后, 量子点荧光粉对紫外光的吸收远比 450nm左右蓝光 的吸收强, 采用紫外光激发量子点荧光粉转换效率会更高, 而一般的荧光粉不 具备此特性。 另外, 本发明由于 RGB量子点荧光粉层是分别由红光量子点荧光 膜、 绿光量子点荧光膜以及蓝光量子点荧光膜依次设置而成, 不仅提高了背光 模组的色饱和度, 还解决了 RG量子点荧光粉的再吸收的问题, 也就是说, 此种 设置可以更进一步提高发光效率。
【附图说明】
图 1是本发明实施例一的背光模组结构示意简图,
图 2是本发明实施例二的 RGB量子点荧光粉层的第二种设置方式示意图, 图 3是本发明实施例三的 RGB量子点荧光粉层的第三种设置方式示意图, 图 4是本发明实施例四中白光 LED的结构简图,
图 5是紫外光激发 RGB量子点荧光粉的光谱示意图。
【具体实施方式】
下面结合附图和较佳的实施例对本发明作进一步说明。
实施例一
如图 1所示, 本实施例提供一种显示装置的背光模组, 该背光模组包括: 灯 条 101以及导光板 103; 所述灯条 101上设置有多个紫外光 LED109, 所述导光 板 103的入光面与所述紫外光 LED109相对设置;在所述紫外光 LED109发出光 线到该光线从导光板 103出光面射出过程的路径中, 设置有一 RGB量子点荧光 粉层 115;所述 RGB量子点荧光粉层 115包括依次设置的红光量子点荧光膜 104、 绿光量子点荧光膜 105 以及蓝光量子点荧光膜 106。 RGB量子点荧光粉层 115 在紫外光 LED109发出的紫外光激发下产生白光, 提高了背光模组的色饱和度, 并且由于 RGB量子点荧光粉层 115是分别由红光量子点荧光膜 104、 绿光量子 点荧光膜 105 以及蓝光量子点荧光膜 106依次设置而成, 不仅提高了背光模组 的色饱和度, 还解决了 RG量子点荧光粉的再吸收的问题, 也就是说, 此种设置 可以更进一步提高灯条的发光效率。
量子点荧光粉与通常 LED 所用到的铝酸盐、 硅酸盐、 氮化物、 氮氧化物荧 光粉有 4艮大不同的。 第一, 量子点荧光粉的颗粒尺寸通常小于 10nm, 远远小于 通常荧光粉的几微米到几十微米的尺寸; 量子点荧光粉具有量子尺寸效应, 而 通常荧光粉不具备此特性。第二,量子点荧光粉发光光谱 FWHM通常小于 50nm, 而通常的荧光粉发光光谱的 FWHM—般大于 50nm, 在 lOOnm左右, 从而量子 点荧光粉的发光色纯度更高, 更适合应用于高色饱和度的液晶背光光源中。 第 三, 量子点荧光粉对紫外光的吸收远比 450nm左右蓝光的吸收强, 采用紫外光 激发量子点荧光粉转换效率会更高, 而一般的荧光粉不具备此特性。 另外, 本 实施例由于 RGB量子点荧光粉层是分别由红光量子点荧光膜、 绿光量子点荧光 膜以及蓝光量子点荧光膜依次设置而成, 不仅提高了背光模组的色饱和度, 还 解决了 RG量子点荧光粉的再吸收的问题,也就是说,此种设置可以更进一步提 高发光效率。
在本实施例中, 与导光板 103 出光面相反的另一面设置有反射片 102, 通过 反射片 102将所述的另一面射出的光线反射回导光板 103内并经由出光面射出, 从而可以提高光线的利用率。 在所述 RGB量子点荧光粉层 115之出光面上, 还 设置有增量膜 107、 用以提高背光模组的亮度, 同时, 还设置有扩散膜 108用以 提高光的均匀度, 配合增量膜 107提高背光模组的均匀度和亮度, 进一步提高 背光模组的亮度和色度。
在本实施例中, 为了获得更好的色饱和度, 所述紫外光 LED 所发出的紫外 光波长为 360~380nm。 如图 5所示, 紫外光激发量子点 RGB荧光粉的光谱示意 图, 所述红光量子点荧光膜的发射波长为 620nm~660nm, 半最大值全波小于 45nm; 所述绿光量子点荧光膜的发射波长为 520nm~540nm, 半最大值全波小于 45nm; 所述蓝光量子点荧光膜的发射波长为 440nm~470nm, 半最大值全波小于 40
实施例二
如图 2所示, 与实施例一不同的是, 所述 RGB量子点荧光粉层 115设置在 导光板 103的入光面上, 背光模组紫外光 LED109的光线主要从导光板 103的 入光面进入再从出光面射出, 因而在入光面设置 RGB量子点荧光粉层 115保证 了导光板出光面射出的光线也是白光。 所述 RGB量子点荧光粉层也是红光量子 点荧光膜 104、绿光量子点荧光膜 105以及蓝光量子点荧光膜 106在光的照射方 向上依次设置而成。
实施例三
如图 3所示, 与实施例一及实施例二不同的是, 在导光板 103的入光面及出 光面均设置有 RGB量子点荧光粉层 115, 这样保证了导光板 103的出射光是纯 白光。 实施例四
如图 4所示, 本实施例提供一种使用紫外光(UV ) 芯片的白光 LED, 其包 括: 紫外光芯片 1011、 耐 UV的包覆材料 1012以及耐 UV的灯罩 1013 , 灯罩 1013为耐 UV的填充胶,在灯罩 1013的表面上设置有 RGB量子点荧光粉层 115。 所述 RGB量子点荧光粉层也是红光量子点荧光膜 104、 绿光量子点荧光膜 105 以及蓝光量子点荧光膜 106在光的照射方向上依次设置而成。
本实施例的使用紫外光(UV ) 芯片的白光 LED可用于液晶显示装置的背光 模组中, 作为灯条上的点光源使用。 也可以用于照明等其它领域。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能 认定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通技 术人员来说, 在不脱离本发明构思的前提下, 还可以做出若千简单推演或替换, 都应当视为属于本发明的保护范围。

Claims

权利要求
1、 一种显示装置的背光模组, 包括:
灯条, 所述灯条上设置有多个紫外光 LED;
导光板, 所述导光板的入光面与所述紫外光 LED相对设置;
在所述紫外光 LED 发出光线到所述光线从导光板出光面射出过程的路径 中, 至少设置有一 RGB量子点荧光粉层;
所述 RGB量子点荧光粉层包括依次设置的红光量子点荧光膜、 绿光量子点 荧光膜以及蓝光量子点荧光膜。
2、 如权利要求 1所述的显示装置的背光模组, 其中, , 所述 RGB量子点荧 光粉层设置在所述导光板的出光面上。
3、 如权利要求 1所述的显示装置的背光模组, 其中, , 所述 RGB量子点荧 光粉层设置在所述导光板的入光面上。
4、 如权利要求 1所述的显示装置的背光模组, 其中, , 所述 RGB量子点荧 光粉层设置在所述紫外光 LED的灯罩上。
5、 如权利要求 1所述的显示装置的背光模组, 其中, , 所述 RGB量子点荧 光粉层的出光面设置有扩散膜。
6、 如权利要求 5所述的显示装置的背光模组, 其中, , 所述 RGB量子点荧 光粉层的出光面还设置有增量膜。
7、 如权利要求 1所述的显示装置的背光模组, 其中: , 所述紫外光 LED所 发出的紫外光波长为 360~380nm。
8、 如权利要求 7所述的显示装置的背光模组, 其中, 所述红光量子点荧光 膜的发射波长为 620nm~660nm, 半最大值全波小于 45nm; 所述绿光量子点荧光 膜的发射波长为 520nm~540nm, 半最大值全波小于 45nm; 所述蓝光量子点荧光 膜的发射波长为 440nm~470nm, 半最大值全波小于 40nm
9、 如权利要求 1所述的显示装置的背光模组, 其中, 所述 RGB量子点荧 光粉层同时设置在所述导光板的入光面以及出光面。
10、一种白光 LED, 包括: 紫外光芯片以及灯罩;所述灯罩上设置有一 RGB 量子点荧光粉层;所述 RGB量子点荧光粉层包括依次设置的红光量子点荧光膜、 绿光量子点荧光膜以及蓝光量子点荧光膜。
PCT/CN2013/078282 2013-05-08 2013-06-28 显示装置的背光模组以及白光led WO2014180053A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/985,291 US20140334181A1 (en) 2013-05-08 2013-06-28 Backlight unit of display device and white led

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310167073.5 2013-05-08
CN2013101670735A CN103343943A (zh) 2013-05-08 2013-05-08 显示装置的背光模组以及白光led

Publications (1)

Publication Number Publication Date
WO2014180053A1 true WO2014180053A1 (zh) 2014-11-13

Family

ID=49278761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078282 WO2014180053A1 (zh) 2013-05-08 2013-06-28 显示装置的背光模组以及白光led

Country Status (2)

Country Link
CN (1) CN103343943A (zh)
WO (1) WO2014180053A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499054B (zh) * 2013-10-11 2017-02-15 深圳市华星光电技术有限公司 背光模组及液晶显示器
CN103594608B (zh) * 2013-10-31 2016-05-18 深圳市聚飞光电股份有限公司 一种白光led、背光模组及白光led的制作方法
CN104048221A (zh) * 2014-06-30 2014-09-17 纳晶科技股份有限公司 背光模组
CN104317099B (zh) * 2014-11-17 2017-05-10 京东方科技集团股份有限公司 一种彩膜基板及显示装置
CN104409592A (zh) * 2014-11-26 2015-03-11 京东方科技集团股份有限公司 Led、导光板、背光模组和显示装置
CN104777669B (zh) * 2015-04-24 2017-09-12 张家港康得新光电材料有限公司 量子点膜及背光模组
PL3088945T3 (pl) * 2015-04-29 2018-03-30 Ningbo Jiangbei Exciton New Material Technology Co., Ltd. Folie fluorescencyjne o określonym położeniu koloru i gamucie barw
CN105137651B (zh) * 2015-06-30 2017-12-05 武汉华星光电技术有限公司 背光模组和液晶显示器
CN105093682B (zh) * 2015-09-08 2018-03-06 深圳市华星光电技术有限公司 液晶显示器
DE102015119553A1 (de) * 2015-11-12 2017-05-18 Osram Opto Semiconductors Gmbh Strahlungsemittierender Halbleiterchip, optoelektronisches Bauelement mit einem strahlungsemittierenden Halbleiterchip und Verfahren zur Beschichtung eines strahlungsemittierenden Halbleiterchips
CN105679916A (zh) * 2015-12-24 2016-06-15 中山大学 一种色温可调发光装置
CN105700236A (zh) * 2016-04-13 2016-06-22 深圳市华星光电技术有限公司 双面液晶显示装置及其背光模组
CN107656330A (zh) * 2016-08-19 2018-02-02 武汉保丽量彩科技有限公司 具有多层结构的量子点光学膜、其制备方法和用途
CN106353923A (zh) * 2016-11-25 2017-01-25 江苏华功第三代半导体产业技术研究院有限公司 一种背光源
CN107121842A (zh) * 2017-06-22 2017-09-01 深圳Tcl新技术有限公司 背光模组及显示装置
TWI702362B (zh) * 2017-07-13 2020-08-21 東貝光電科技股份有限公司 Led發光裝置
CN107390432A (zh) * 2017-08-21 2017-11-24 深圳创维-Rgb电子有限公司 一种led光源、背光模组及液晶显示装置
CN108011020B (zh) * 2018-01-12 2020-02-07 惠州市华星光电技术有限公司 一种量子点膜片及背光源模组
CN108549175A (zh) * 2018-04-13 2018-09-18 青岛海信电器股份有限公司 一种量子点发光装置、量子点背光模组、液晶显示装置
CN110687716A (zh) * 2018-07-04 2020-01-14 深圳Tcl新技术有限公司 一种背光源模组
CN109581577A (zh) * 2019-01-03 2019-04-05 Oppo(重庆)智能科技有限公司 显示屏组件及具有其的电子装置
CN109946879A (zh) * 2019-03-05 2019-06-28 惠州市创亿达新材料有限公司 量子点背光模组
CN110279927B (zh) * 2019-05-28 2022-03-29 深圳前海冰寒信息科技有限公司 一种智能睡眠眼镜
CN110242939A (zh) * 2019-05-31 2019-09-17 青岛海信电器股份有限公司 一种背光模组和显示装置
CN111323969A (zh) * 2020-04-09 2020-06-23 Tcl华星光电技术有限公司 一种背光模组、显示面板及显示装置
KR102287241B1 (ko) * 2021-03-04 2021-08-06 에스케이씨하이테크앤마케팅(주) 양자점과 유기 나노형광체의 복합 시트 및 이를 포함하는 디스플레이 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1758114A (zh) * 2004-10-09 2006-04-12 台达电子工业股份有限公司 背光模块
US20060221021A1 (en) * 2005-04-01 2006-10-05 Hajjar Roger A Display systems having screens with optical fluorescent materials
CN201069102Y (zh) * 2007-06-20 2008-06-04 新高功能医用电子有限公司 被动式紫外光激发产生可见光的发光模块
CN101378105B (zh) * 2007-08-31 2010-06-23 株式会社东芝 发光装置
CN101788737A (zh) * 2010-01-26 2010-07-28 友达光电股份有限公司 使用量子点荧光粉的显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201242640Y (zh) * 2008-04-30 2009-05-20 大连路明发光科技股份有限公司 一种液晶显示背光模组
CN102036435B (zh) * 2009-09-28 2014-04-30 财团法人工业技术研究院 一种光色调制方法及光色可变的发光二极管光源模块
CN102959312B (zh) * 2010-09-14 2015-11-25 株式会社东芝 Led灯泡

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1758114A (zh) * 2004-10-09 2006-04-12 台达电子工业股份有限公司 背光模块
US20060221021A1 (en) * 2005-04-01 2006-10-05 Hajjar Roger A Display systems having screens with optical fluorescent materials
CN201069102Y (zh) * 2007-06-20 2008-06-04 新高功能医用电子有限公司 被动式紫外光激发产生可见光的发光模块
CN101378105B (zh) * 2007-08-31 2010-06-23 株式会社东芝 发光装置
CN101788737A (zh) * 2010-01-26 2010-07-28 友达光电股份有限公司 使用量子点荧光粉的显示装置

Also Published As

Publication number Publication date
CN103343943A (zh) 2013-10-09

Similar Documents

Publication Publication Date Title
WO2014180053A1 (zh) 显示装置的背光模组以及白光led
US20140334181A1 (en) Backlight unit of display device and white led
TWI442139B (zh) 液晶顯示裝置
WO2018227653A1 (zh) 背光模组及液晶显示装置
CN106898628B (zh) Led显示面板
TWI726611B (zh) 背光模組、顯示裝置及其驅動方法
US20110211336A1 (en) Light emitting device, and illumination light source, display unit and electronic apparatus including the light emitting device
CN105204226A (zh) 背光模组及显示设备
CA2396019A1 (en) Led-based planar light source
WO2014205880A1 (zh) 一种led背光光源
US10797205B2 (en) Liquid crystal display device and quantum dot LED
US9484505B2 (en) LED structure applied to backlight source
TW201010125A (en) White light light-emitting diodes
CN110534631B (zh) 一种led结合钙钛矿量子点微晶玻璃的显示用宽色域背光源
KR20130018529A (ko) 형광 조성물 및 이를 이용한 백색광 발광 장치
CN105355760A (zh) 一种广色域显示的led器件
KR100737060B1 (ko) 발광 장치 및 이의 구동 방법
WO2016155219A1 (zh) 一种显示器、背光模组及led光源装置
WO2016171333A1 (ko) 표시 장치
TWI544255B (zh) 顯示裝置及使用其之顯示方法
CN113888991B (zh) 一种发光面板、显示面板、背光模组和显示装置
CN105717701A (zh) 一种应用于大屏lcm的背光模组及大屏lcm
TW201024595A (en) Light source module and application thereof
CN107632455A (zh) 基于双芯片双电路连接led灯珠的侧入式背光源
KR101711166B1 (ko) 발광 장치 및 이를 포함하는 표시 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13985291

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13884164

Country of ref document: EP

Kind code of ref document: A1