WO2014176818A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2014176818A1
WO2014176818A1 PCT/CN2013/077950 CN2013077950W WO2014176818A1 WO 2014176818 A1 WO2014176818 A1 WO 2014176818A1 CN 2013077950 W CN2013077950 W CN 2013077950W WO 2014176818 A1 WO2014176818 A1 WO 2014176818A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
color film
light
sub
film layer
Prior art date
Application number
PCT/CN2013/077950
Other languages
French (fr)
Chinese (zh)
Inventor
杜志宏
王尚
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2014176818A1 publication Critical patent/WO2014176818A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • Embodiments of the present invention relate to the field of display technologies, and relate to a liquid crystal display device. Background technique
  • Liquid crystal display has become a mainstream product in flat panel displays due to its small size, low power consumption, and no radiation.
  • display technology high transmittance, large size, low power consumption, low cost display devices have become the future development direction.
  • the existing liquid crystal panel includes a color filer substrate, an array substrate, and a backlight module, and the liquid crystal is disposed between the color filter substrate and the array substrate.
  • the liquid crystal itself does not emit light. Therefore, a backlight module is used in the liquid crystal display device to provide a uniform, high-intensity light source for the liquid crystal panel.
  • the backlight module can be a side-in backlight module and a direct-lit backlight module according to the position of the light source in the backlight module.
  • the light source in the side-lit backlight module is located on the side of the backlight module, and the light source in the direct-lit backlight module is located at the bottom of the backlight module.
  • a color film layer (also referred to as a color filter) is disposed on the color filter substrate, and the color film layer is a key component capable of coloring the display device.
  • the color film layer includes a plurality of sub-color film layers such as red, green, and blue, and the white light emitted by the backlight module passes through the color film layer, and the color lights of the color film layer respectively generate red, green, and blue primary colors.
  • the light emitted by the light source is hindered by the color film layer, so that the light emitted by the backlight module cannot completely pass through the color film layer, that is, part of the light is absorbed after the light passes through the color film layer, resulting in a decrease in light utilization efficiency.
  • it also affects the display chromaticity, which in turn affects the display effect of the liquid crystal display device. Summary of the invention
  • An object of the present invention is to provide a liquid crystal display device which not only ensures good display chromaticity but also improves light utilization efficiency of a backlight module.
  • a liquid crystal display device includes a color filter substrate, an array substrate, and a backlight module, wherein the backlight module includes a light source, and the auxiliary filter layer is disposed in the color filter substrate.
  • a light excitation layer is disposed in the backlight module, and the light excitation layer is excited by a main laser emitted by the light source to generate a laser beam of a specific wavelength, and the auxiliary filter layer enables the excitation Light selectively passes through the color filter substrate to reflect the main laser light back to the backlight module.
  • the color filter substrate further includes a color film layer
  • the color film layer includes a plurality of sub-color film layers capable of transmitting light of different wavelengths
  • the auxiliary filter layer is disposed to correspond to a transmission wavelength greater than The sub-color film layer of the wavelength of the main laser is closer to the backlight module than the color film layer.
  • the color film layer includes a red sub-color film layer, a green sub-color film layer, and a blue sub-color film layer
  • the auxiliary filter layer is disposed to correspond to the red sub-color film layer and the green sub-layer At least one of the color film layers
  • the color film layer includes a red sub-color film layer, a yellow sub-color film layer, a green sub-color film layer, and a blue sub-color film layer
  • the auxiliary filter layer is disposed to correspond to a red sub-color film.
  • the auxiliary filter layer includes alternating high refractive sub-layers and low refractive sub-layers, wherein a high refractive index layer is formed of a high refractive index material and a low refractive sub-layer is formed of a low refractive index material.
  • the high refractive sub-layer is formed of a titanium dioxide material having a thickness of one eighth of a cutoff center wavelength; the low refractive layer is formed of a silicon dioxide material having a thickness of a quarter of a cutoff center wavelength.
  • the photoexcited layer contains quantum dots, and the quantum dots are at least one of red quantum dots, green quantum dots, or yellow quantum dots.
  • the light source employs a blue light source, and the quantum dots are excited by the blue light source to emit light including red light, green light, or yellow light.
  • the color filter substrate further includes a protective layer, a transparent electrode layer, and an alignment layer disposed on the color film layer, wherein the auxiliary filter layer is disposed on the color film layer and the protective layer Or between the protective layer and the transparent electrode layer, or between the transparent electrode layer and the alignment layer.
  • the backlight module is a side-lit backlight module
  • the edge-lit backlight module further includes a reflective sheet, a light guide plate, and a prism film
  • the light source is disposed on the reflective sheet.
  • the light guide plate and the side surface of the prism film are disposed between the light guide plate and the prism film.
  • the backlight module is a direct-lit backlight module
  • the direct-lit backlight module further includes a reflective sheet and a diffusing plate
  • the light source is disposed on the reflective sheet and the diffusing plate.
  • the photoexcitation layer is disposed above the diffusion plate.
  • FIG. 1 is a schematic structural view of a liquid crystal display device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic view showing the working principle of the auxiliary filter layer in FIG. 1;
  • FIG. 3 is a schematic structural view of the auxiliary filter layer of FIG. 2;
  • FIG. 4 is a schematic view showing an optical path of a liquid crystal display device according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram of an optical path of a liquid crystal display device according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic diagram of an optical path of a liquid crystal display device according to Embodiment 3 of the present invention.
  • 3 - backlight module 31 - light source; 32 - reflective sheet; 33 - light guide plate; 34 - photoexcited layer; 35 - prism mirror film; 36 - diffuser;
  • a liquid crystal display device as shown in FIG. 1, includes a color filter substrate 1, an array substrate 2, and a backlight module 3, and the liquid crystal 4 is disposed between the color filter substrate 1 and the array substrate 2.
  • the backlight module includes a light source 31.
  • the color filter substrate 1 is provided with an auxiliary filter layer 13, and the backlight module 3 is provided with a photoexcited layer 34 (see FIG. 4).
  • 34 is excited by a main laser emitted from the light source 31 to generate a laser beam of a specific wavelength, and the auxiliary filter layer 13 selectively transmits the laser light to the color filter substrate 1 to reflect the main laser light back.
  • the backlight module 3 is described.
  • the main laser refers to the light that the light source actively emits
  • the laser light refers to the light that is passively emitted by the energy
  • Fig. 1 shows the complete structure of a liquid crystal display device exemplified by a TN type TFT-LCD.
  • the color filter substrate 1 includes a substrate 10, a black matrix (not specifically shown in FIG. 1), a color film layer 12, an auxiliary filter layer 13, a protective layer 14, a transparent electrode layer 15, and an upper orientation.
  • the array substrate 2 includes a substrate 20, a TFT (Thin Film Transistor) 21, a lower alignment layer 22, and a lower polarizer 23.
  • TFT Thin Film Transistor
  • the auxiliary filter layer 13 is disposed between the color film layer 12 and the protective layer 14 (ie, the structure shown in FIG. 1 ) or the protective layer 14 and the transparent electrode layer 15 . Between or between the transparent electrode layer 15 and the upper alignment layer 16.
  • the protective layer 14 may not be disposed in the color filter substrate 1;
  • the transparent electrode layer 15 may also be disposed in the array substrate 2, for example: in an ADS type (ADvanced Super Dimension Switch) TFT-LCD, the transparent electrode layer 15 and the pixel electrode are different in TFT-LCD type. (Electrically connected to the drain of the TFT, not shown in FIG. 1) are disposed in the array substrate 2.
  • ADS type ADvanced Super Dimension Switch
  • the position of the auxiliary filter layer 13 can be flexibly set, as long as the auxiliary filter layer 13 is closer to the backlight module 3 than the color filter layer 12, which is not limited herein.
  • the color film layer 12 includes a plurality of sub-color film layers capable of transmitting light of different wavelengths
  • the auxiliary filter layer 13 is disposed to correspond to a sub-color film capable of transmitting light having a wavelength greater than a wavelength of the main laser light.
  • the layer is closer to the backlight module 3 than the color film layer 12.
  • the color film layer 12 includes a red sub-color film layer 124, a green sub-color film layer 122, and a blue sub-color film layer 121.
  • the auxiliary filter layer 13 is disposed to correspond to the red sub-layer.
  • Color film layer 124, green color color film layer 122 At least one of them.
  • the auxiliary filter layer 13 is disposed to correspond to the red sub-color film layer 124, or is disposed to correspond to the green sub-color film layer 122, or is disposed to correspond to the red sub-color film layer 124 and the green sub-color film. Both layers 122.
  • a layer having a layer corresponding to the auxiliary filter layer 13 corresponding to the blue sub-color film layer 121 may be provided.
  • the auxiliary filter layer 13 includes alternating high refractive sub-layers and low refractive sub-layers, a high refractive index layer formed of a high refractive index material, and a low refractive sub-layer formed of a low refractive index material.
  • the high refractive sub-layer is formed of a titanium dioxide material having a thickness of one eighth of a cutoff center wavelength; and the low refractive layer is formed of a silicon dioxide material having a thickness of a quarter of a cutoff center wavelength.
  • the wavelength range of visible light commonly used in the display technology is: red light wavelength range 620-770 nm (in the figure of the embodiment of the invention, R is marked with red light), yellow light wavelength range 560-590 nm (in the embodiment of the invention)
  • the yellow light is marked with Y
  • the green light has a wavelength range of 500-530 nm (in the figure of the embodiment of the present invention, G is used to identify green light)
  • the blue light has a wavelength range of 430-470 nm (in the embodiment of the present invention).
  • B is used to identify blue light.
  • the auxiliary filter layer 13 when the auxiliary filter layer 13 is disposed in a region corresponding to the red sub-color film layer 124 and the green sub-color film layer 122, the blue light corresponding to the two regions is realized.
  • the wavelength range of the light permeable to the auxiliary filter layer 13 may be set to 500-770 nm, for example, when the value is preferably set to 580 nm, the wavelength is greater than 580 nm.
  • Light can pass through the auxiliary filter layer 13, and light having a wavelength of less than 580 nm will be reflected back to the backlight module 3.
  • the photoexcited layer 34 contains at least one quantum dot, wherein the quantum dots are excited by the incident blue light to emit visible light of other colors.
  • Quantum Dot is a quasi-zero-dimensional nano-semiconductor luminescent material composed of a small number of atoms that are excited to absorb visible light and emit visible light to excite the quantum dots.
  • the energy includes photoexcitation energy and electric excitation energy.
  • Photoexcitation energy uses photoexcitation to illuminate quantum dots. Compared to phosphor luminescence, quantum dot luminescence has high quantum efficiency and narrow half-peak width of emission spectrum. The chemical composition of the point or by adjusting the size of the quantum dots allows precise control of the excitation The wavelength of light, resulting in visible light of different colors.
  • the wavelength of the main laser emitted by the light source 31 is smaller than the wavelength of the laser light emitted by the quantum dots.
  • the light source 31 adopts a blue light source, and the quantum dots include at least red quantum dots and green quantum dots, and the received laser light emitted by the blue light source is red and green.
  • quantum dots can be precisely controlled by adjusting the size of the quantum dots, thereby obtaining visible light of different colors.
  • quantum dots for the same material can be sized to obtain visible light of different colors; or for quantum dots of the same size, different colors of visible light can be obtained by adjusting its chemical composition. Therefore, in practical applications, according to the luminescent properties of the quantum dots, such as: half-width of the illuminating optical language, illuminating peaks and illuminating wavelengths, etc., by adjusting the ratio of quantum dots of different materials, or adjusting quantum dots of different sizes The ratio is to get different colors of light.
  • the narrower the half-width of the quantum dot luminescence spectrum the higher the color purity, the better the color display effect of the liquid crystal display device; at the same time, the quantum dot luminescence peak, according to the green sub-color film layer 122 in the color film substrate, the red sub-color
  • the wavelength of the transmitted light of the film layer 124 is adjusted.
  • the size of the quantum dot can be adjusted to control the peak position so as to be as close as possible to the wavelength range of the transmitted light of the corresponding sub-color film layer; Adjusting the distribution rate of quantum dots can change the amplitude of the light emitted by the quantum dots.
  • the blue light source may be an LED, a CCFL or an EEFL (External Electrode Fluorescent Lamp) or the like.
  • EEFL Extra Electrode Fluorescent Lamp
  • the mass-produced blue LED wavelengths are concentrated in the range of 440-455 nm, and the shorter the wavelength of light emitted by the blue light source, the higher the efficiency of exciting quantum dots.
  • the backlight module 3 is a side-entry backlight module.
  • the side-lit backlight module further includes a reflective sheet 32, a light guide plate 33, and a prism film 35, which are disposed on the reflective sheet 32, the light guide plate 33, and the The side surface of the prism film 35 is disposed between the light guide plate 33 and the prism film 35.
  • the reflective sheet 32 is configured to reflect the light entering the light guide plate 33 to the light exit surface of the light guide plate 33
  • the prism film 35 is used to diffuse the light emitted from the light exit surface of the light guide plate 33, or to increase the brightness of the light, or Improve the uniformity of light.
  • the expression of the main film system of the auxiliary filter layer 13 is:
  • L represents the thickness of the low refractive sub-layer having a low refractive index and a thickness of 1/4 of the cut-off center wavelength
  • H represents a high refractive index having a high refractive index and a thickness of 1/4 of the center wavelength of the cutoff band.
  • the thickness of the layer, H/2 represents the thickness of the high refractive sub-layer having a high refractive index and a thickness of 1/8 of the cut-off center wavelength
  • M is the number of cycles.
  • the auxiliary filter layer 13 is a symmetric film system, centered on the intermediate sub-layer, and bilaterally symmetric, and the total number of sub-layers is 2M+1, as shown in FIG.
  • the thickness of the high refractive sublayer, the low refractive sublayer, and the number of film cycles in the auxiliary filter layer 13 can be according to formula (2) and formula (
  • ⁇ ⁇ is the width of the cutoff band
  • ⁇ ⁇ is the center wavelength of the cutoff band
  • ⁇ ⁇ and nL are the refractive indices of the high refractive index material and the low refractive index material.
  • TR is the transmittance at the center wavelength of the cutoff band
  • is the refractive index of the upper substrate (ie, the side of the auxiliary filter layer 13 relatively far from the liquid crystal 4)
  • ng is the lower substrate (ie, the The refractive index of the auxiliary filter layer 13 is relatively close to the liquid crystal 4 side
  • nH and nL are the refractive indices of the high and low refractive index materials, respectively
  • M is the number of cycles.
  • the auxiliary filter layer 13 corresponding to the area of the green sub-color film layer 122 should be disposed such that light having a wavelength greater than 500 nm can transmit and propagate to the green sub-color film layer 122, and light having a wavelength of less than 500 nm is reflected.
  • + 0 500 ( 5 )
  • the thickness of the single-layer refractive sub-layer is:
  • the refractive index of the high refractive sub-layer and the refractive index of the low refractive sub-layer are both known, it is only necessary to set the transmittance at the central wavelength, and the basic period number of the main film system can be calculated by the formula (3). ⁇ , considering the error in the actual plating process and the stability of the film parameters of each layer, the number of selected basic cycles can be appropriately increased.
  • the auxiliary filter layer 13 can reflect blue visible light (wavelength 430-470 nm) having a wavelength of less than 500 nm back into the backlight module 3, and pass through the interior of the backlight module 3.
  • the reflection sheet 32 is re-reflected onto the liquid crystal panel and reused again.
  • the green visible light having a wavelength greater than 500 nm, red visible light (green visible light wavelength 500-530 nm, red visible light wavelength 620-770 nm) is transmitted through the auxiliary filter layer 13 to the corresponding color film layer 12.
  • the light propagation process in the liquid crystal display device is as follows:
  • the light source 31 emits blue light, and the blue light is incident on the light guide plate 33 from the light incident surface (ie, the side surface) of the light guide plate 33, and is reflected by the reflection sheet 32.
  • the light exiting surface (ie, the front surface) of the light plate 33 is propagated to the light excitation layer 34.
  • the blue light rays incident on the light excitation layer 34 a part of the blue light is absorbed by the quantum dots, thereby exciting red visible light (ie, red light) or green visible light ( That is, green light); another part of the blue light rays propagate through the photoexcited layer 34 together with the excited red visible light or green visible light to the prism film 35 to be mixed into white light (the white light spectrum is decomposed into three peaks of R, G, and B),
  • the array substrate 2 and the liquid crystal 4 are propagated into the color filter substrate 1.
  • the blue light component in the white light corresponding to the blue sub-color film layer 121 region is directly transmitted to the blue sub-color film layer 121 in the color film layer 12, and finally passes through the color filter substrate 1, and
  • the green light component and the red component corresponding to the blue sub-color film layer 121 are absorbed by the blue sub-color film layer 121; the red light component corresponding to the red sub-color film layer 124 and the green color corresponding to the green sub-color film layer 122 region
  • the light component is transmitted through the auxiliary filter layer 13 to the corresponding red sub-color film layer 124 and the green sub-color film layer 122 in the color film layer 12, and finally passes through the color film substrate 1 so that the liquid crystal panel can display the image normally.
  • the green component of the red sub-color film layer 124 is transmitted through the auxiliary filter layer 13, it is absorbed by the red sub-color film layer 124; the red light component corresponding to the green sub-color film layer 122 region is transmitted through the corresponding auxiliary filter layer 13 After being absorbed by the green sub-color film layer 122, the blue component corresponding to the red sub-color film layer 124 and the green sub-color film layer 122 is reflected back into the backlight module 3 by the auxiliary filter layer 13, and is reflected again by the reflection sheet 32.
  • the color filter film substrate 1 is finally transmitted from the region corresponding to the blue sub-color film layer 121 to the blue sub-color film layer 121 in the color filter substrate 1, which greatly improves the light utilization efficiency of the backlight module 3 and enables the liquid crystal panel Achieve better color display.
  • the auxiliary filter layer may also be partitioned, and the auxiliary filter layer of the corresponding partition is set to: only correspond to the light component of the corresponding color that can be transmitted through the sub-color film layer. Through, the light components of other colors are reflected back to the backlight module to further improve the light utilization efficiency of the backlight module.
  • the auxiliary filter layer in the region corresponding to the green sub-color film layer can be set to only enable the green light component to pass, and the red light component and the blue light component are reflected back to the backlight module; likewise, corresponding to the red color
  • the area of the color film layer can be set such that only the red light component can be transmitted, and both the blue light component and the green light component are reflected back to the backlight module.
  • the auxiliary filter layer corresponding to each sub-layer of the partition should recalculate the thickness of the high-refractive sub-layer, the low-refractive sub-layer and the number of membrane cycles according to formula (2) and formula (3), and can be prepared by partitioning.
  • the green light partition of the auxiliary filter layer is disposed on the protective layer, and the red light partition is disposed on the transparent electrode layer.
  • the difference between the present embodiment and the embodiment 1 is that the color film layer 12 and the auxiliary filter layer 13 provided in the color filter substrate 1 and the color film layer 12 and the auxiliary filter layer 13 in the embodiment 1 are different in the liquid crystal display device.
  • the structure of the photoexcitation layer 34 in the backlight module 3 is different from that of the photoexcitation layer 34 in the embodiment 1, as shown in FIG.
  • the color filter layer 12 includes a red sub-color film layer 124, a yellow sub-color film layer 123, a green sub-color film layer 122, and a blue sub-color film layer 121.
  • the auxiliary filter layer 13 is disposed. It corresponds to at least one of the red sub-color film layer 124, the yellow sub-color film layer 123, and the green sub-color film layer 122.
  • the light of a specific wavelength emitted by the quantum dot excited by the blue light source includes at least one of red light, yellow light, or green light, as needed.
  • the quantum dot is a red quantum dot, a yellow quantum dot, a green quantum dot or a blue quantum dot.
  • the auxiliary filter layer 13 corresponds to the color
  • the transmission characteristics of the regions of the respective sub-color film layers in the film layer 12 are set such that light of a corresponding color can be transmitted.
  • the thickness of the high refractive sub-layer, the low refractive sub-layer and the number of film period in the auxiliary filter layer 13 can be calculated according to the formula (2) and the formula (3) in the embodiment 1, and will not be described again.
  • the quantum dots disposed in the photoexcited layer 34 in the backlight module 3 are different, that is, in order to realize the liquid crystal display panel.
  • the color display should match the color of the color filter layer 12 through the color of the visible light emitted by the quantum dots.
  • the color filter layer 12 of the color filter substrate in the liquid crystal display device is changed, for example, when the color film of the liquid crystal display device is four colors of red, green, blue, and white, the photoexcited layer 34 should include the excited energy.
  • a quantum dot that emits red visible light and green visible light According to this principle, if the color filter layer 12 of the liquid crystal display device is a color of a plurality of other colors, the photoexcited layer 34 is doped with the excitation energy to emit quantum dots of different colors according to actual conditions.
  • Example 3 is the same as those in the first embodiment, and the propagation process of the light is similar to that of the embodiment 1, and details are not described herein again.
  • Example 3 is the same as those in the first embodiment, and the propagation process of the light is similar to that of the embodiment 1, and details are not described herein again.
  • the difference between this embodiment and the first and second embodiments is that the backlight module 3 is different from the backlight module 3 of the first embodiment in the liquid crystal display device.
  • the backlight module 3 is a direct type backlight module, and the direct type backlight module 3 further includes a reflective sheet 32 and a diffusion plate 36 , which are stacked. Provided between the reflection sheet 32 and the diffusion plate 36, the photo excitation layer 34 is disposed above the diffusion plate 36.
  • the backlight module in this embodiment may further include a prism film (not shown in FIG. 6), and the prism film may be disposed above the photoexcited layer 34. The prism film is used to diffuse light emitted from the diffusion plate 36, or to increase the brightness of the light or to improve the uniformity of the light.
  • the light propagation process differs from Embodiment 1 in the following:
  • the light emitted from 31 passes through the array substrate 2, the liquid crystal 4 and the color filter substrate 1 from bottom to top.
  • the reflection and transmission of the auxiliary filter layer 13 to different color components in the light are the same as in the first and second embodiments, and will not be described again here.
  • the auxiliary filter layer that reflects light of a specific wavelength in the color filter substrate and the photoexcited layer of the backlight module that emit light of a specific wavelength by energy excitation are first used.
  • the light of the color is excited by the photoexcited layer to obtain light of a plurality of colors, and then the auxiliary filter layer is used to selectively pass the relatively long wavelength light through the color filter substrate before the light reaches the color film layer, and a part of the light is The relatively short wavelength light that may be absorbed by the color film layer is reflected back to the backlight module.
  • the liquid crystal display device not only ensures good display chromaticity, but also improves the light utilization efficiency of the backlight module.

Abstract

A liquid crystal display device, comprising a colour film substrate (1), an array substrate (2) and a backlight module (3), wherein the backlight module (3) comprises a light source (31) , an auxiliary filter layer (13) is provided in the colour film substrate (1), and an optical excitation layer (34) is provided in the backlight module (3); the optical excitation layer (34) is excited by exciting light emitted by the light source (31) and generates excited light of a specific wavelength; and the auxiliary filter layer (13) enables the excited light to selectively penetrate through the colour film substrate (1), thereby reflecting the exciting light back to the backlight module (3). The liquid crystal display device not only guarantees good display chrominance, but also improves the light ray utilization rate of the backlight module (3).

Description

液晶显示装置 技术领域  Liquid crystal display device
本发明的实施例涉及显示技术领域, 涉及一种液晶显示装置。 背景技术  Embodiments of the present invention relate to the field of display technologies, and relate to a liquid crystal display device. Background technique
液晶显示装置(LCD: Liquid Crystal Display ) 因其体积小、 功耗低、 无 辐射等特点已成为目前平板显示器中的主流产品。 随着显示技术的发展, 高 透过率、 大尺寸、 低功耗、 低成本的显示装置成为未来的发展方向。  Liquid crystal display (LCD) has become a mainstream product in flat panel displays due to its small size, low power consumption, and no radiation. With the development of display technology, high transmittance, large size, low power consumption, low cost display devices have become the future development direction.
现有的液晶面板包括彩膜(Color Filer )基板、 阵列 (Array )基板以及 背光模组(Back Light Module ), 液晶设置在彩膜基板和阵列基板之间。 液晶 本身不发光, 因此, 在液晶显示装置中采用背光模组为液晶面板提供均匀、 高亮度的光源。 一般来说, 根据背光模组中光源分布位置的不同可将背光模 组分为侧入式背光模组和直下式背光模组。 其中, 侧入式背光模组中的光源 位于背光模组侧面, 直下式背光模组中的光源位于背光模组的底部。  The existing liquid crystal panel includes a color filer substrate, an array substrate, and a backlight module, and the liquid crystal is disposed between the color filter substrate and the array substrate. The liquid crystal itself does not emit light. Therefore, a backlight module is used in the liquid crystal display device to provide a uniform, high-intensity light source for the liquid crystal panel. Generally, the backlight module can be a side-in backlight module and a direct-lit backlight module according to the position of the light source in the backlight module. The light source in the side-lit backlight module is located on the side of the backlight module, and the light source in the direct-lit backlight module is located at the bottom of the backlight module.
彩膜基板上设置有彩膜层 (又称彩色滤光片), 彩膜层是显示装置能够彩 色化的关键部件。 通常, 彩膜层包括红、 绿、 蓝等多个子彩膜层, 背光模组 发出的白光经过彩膜层, 利用彩膜层的彩色光阻分别产生红、绿、蓝三基色。 在实现彩色化的同时, 光源发出的光线受彩膜层的阻碍, 使得背光模组发出 的光线不能完全透过彩膜层, 即光线经过彩膜层之后部分光线被吸收, 导致 光线利用率降低; 同时也影响显示色度,进而影响液晶显示装置的显示效果。 发明内容  A color film layer (also referred to as a color filter) is disposed on the color filter substrate, and the color film layer is a key component capable of coloring the display device. Generally, the color film layer includes a plurality of sub-color film layers such as red, green, and blue, and the white light emitted by the backlight module passes through the color film layer, and the color lights of the color film layer respectively generate red, green, and blue primary colors. At the same time of colorization, the light emitted by the light source is hindered by the color film layer, so that the light emitted by the backlight module cannot completely pass through the color film layer, that is, part of the light is absorbed after the light passes through the color film layer, resulting in a decrease in light utilization efficiency. At the same time, it also affects the display chromaticity, which in turn affects the display effect of the liquid crystal display device. Summary of the invention
本发明的目的是提供一种液晶显示装置, 该液晶显示装置既保证了良好 的显示色度, 又提高了背光模组的光线利用率。  SUMMARY OF THE INVENTION An object of the present invention is to provide a liquid crystal display device which not only ensures good display chromaticity but also improves light utilization efficiency of a backlight module.
为了实现上述目的, 根据本发明, 提供一种液晶显示装置, 包括彩膜基 板、 阵列基板以及背光模组, 所述背光模组包括光源, 所述彩膜基板中设置 有辅助滤光层, 所述背光模组中设置有光激发层, 所述光激发层受所述光源 发出的主激光激发而产生特定波长的受激光, 所述辅助滤光层能使所述受激 光选择性地透过所述彩膜基板, 而将主激光反射回所述背光模组。 在一个示例中, 所述彩膜基板还包括彩膜层, 所述彩膜层包括能透过不 同波长光线的多个子彩膜层, 所述辅助滤光层设置为对应着能透过波长大于 所述主激光的波长的子彩膜层, 且相对所述彩膜层更靠近所述背光模组。 In order to achieve the above object, according to the present invention, a liquid crystal display device includes a color filter substrate, an array substrate, and a backlight module, wherein the backlight module includes a light source, and the auxiliary filter layer is disposed in the color filter substrate. a light excitation layer is disposed in the backlight module, and the light excitation layer is excited by a main laser emitted by the light source to generate a laser beam of a specific wavelength, and the auxiliary filter layer enables the excitation Light selectively passes through the color filter substrate to reflect the main laser light back to the backlight module. In one example, the color filter substrate further includes a color film layer, the color film layer includes a plurality of sub-color film layers capable of transmitting light of different wavelengths, and the auxiliary filter layer is disposed to correspond to a transmission wavelength greater than The sub-color film layer of the wavelength of the main laser is closer to the backlight module than the color film layer.
在一个示例中, 所述彩膜层包括红色子彩膜层、 绿色子彩膜层、 蓝色子 彩膜层, 所述辅助滤光层设置为对应着所述红色子彩膜层和绿色子彩膜层中 的至少一个;  In one example, the color film layer includes a red sub-color film layer, a green sub-color film layer, and a blue sub-color film layer, and the auxiliary filter layer is disposed to correspond to the red sub-color film layer and the green sub-layer At least one of the color film layers;
在一个示例中, 所述彩膜层包括红色子彩膜层、 黄色子彩膜层、 绿色子 彩膜层和蓝色子彩膜层, 所述辅助滤光层设置为对应着红色子彩膜层、 绿色 子彩膜层和黄色子彩膜层中的至少一个。  In one example, the color film layer includes a red sub-color film layer, a yellow sub-color film layer, a green sub-color film layer, and a blue sub-color film layer, and the auxiliary filter layer is disposed to correspond to a red sub-color film. At least one of a layer, a green sub-color film layer, and a yellow sub-color film layer.
在一个示例中, 所述辅助滤光层包括交替设置的高折射子层和低折射子 层,其中由高折射率材料形成高折射子层, 由低折射率材料形成低折射子层。  In one example, the auxiliary filter layer includes alternating high refractive sub-layers and low refractive sub-layers, wherein a high refractive index layer is formed of a high refractive index material and a low refractive sub-layer is formed of a low refractive index material.
在一个示例中, 所述高折射子层采用二氧化钛材料形成, 厚度为八分之 一截止带中心波长; 所述低折射层采用二氧化硅材料形成, 厚度为四分之一 截止带中心波长。  In one example, the high refractive sub-layer is formed of a titanium dioxide material having a thickness of one eighth of a cutoff center wavelength; the low refractive layer is formed of a silicon dioxide material having a thickness of a quarter of a cutoff center wavelength.
在一个示例中,所述光激发层中含有量子点,所述量子点为红色量子点、 绿色量子点或黄色量子点中的至少一种。  In one example, the photoexcited layer contains quantum dots, and the quantum dots are at least one of red quantum dots, green quantum dots, or yellow quantum dots.
在一个示例中, 所述光源采用蓝光光源, 所述量子点受蓝光光源激发而 发出的光线包括红光、 绿光或黄光。  In one example, the light source employs a blue light source, and the quantum dots are excited by the blue light source to emit light including red light, green light, or yellow light.
在一个示例中, 所述彩膜基板还包括与所述彩膜层层叠设置的保护层、 透明电极层以及取向层, 所述辅助滤光层设置在所述彩膜层与所述保护层之 间, 或者设置在所述保护层与所述透明电极层之间, 或者设置在所述透明电 极层与所述取向层之间。  In one example, the color filter substrate further includes a protective layer, a transparent electrode layer, and an alignment layer disposed on the color film layer, wherein the auxiliary filter layer is disposed on the color film layer and the protective layer Or between the protective layer and the transparent electrode layer, or between the transparent electrode layer and the alignment layer.
在一个示例中, 所述背光模组为侧入式背光模组, 所述侧入式背光模组 还包括层叠设置的反射片、 导光板和棱镜膜, 所述光源设置在所述反射片、 所述导光板和所述棱镜膜的侧面, 所述光激发层设置在所述导光板与所述棱 镜膜之间。  In one example, the backlight module is a side-lit backlight module, and the edge-lit backlight module further includes a reflective sheet, a light guide plate, and a prism film, and the light source is disposed on the reflective sheet. The light guide plate and the side surface of the prism film are disposed between the light guide plate and the prism film.
在一个示例中, 所述背光模组为直下式背光模组, 所述直下式背光模组 还包括层叠设置的反射片和扩散板, 所述光源设置在所述反射片与所述扩散 板之间, 所述光激发层设置在所述扩散板的上方。 本发明的有益效果是: 通过彩膜基板中辅助滤光层与背光模组中光激发 层的配合, 在光线到达彩膜层之前, 选择性地让波长相对较长的光线透过彩 膜基板, 而将一部分本可能被彩膜层吸收的、 波长相对较短的光线反射回背 光模组再次利用, 使得该液晶显示装置既保证了良好的显示色度, 又提高了 背光模组的光线利用率。 附图说明 In one example, the backlight module is a direct-lit backlight module, and the direct-lit backlight module further includes a reflective sheet and a diffusing plate, and the light source is disposed on the reflective sheet and the diffusing plate. The photoexcitation layer is disposed above the diffusion plate. The beneficial effects of the invention are: selectively, through the cooperation of the auxiliary filter layer in the color filter substrate and the photoexcited layer in the backlight module, the light having a relatively long wavelength is transmitted through the color filter substrate before the light reaches the color film layer. And a part of the relatively short-wavelength light that may be absorbed by the color film layer is reflected back to the backlight module for reuse, so that the liquid crystal display device not only ensures good display chromaticity, but also improves light utilization of the backlight module. rate. DRAWINGS
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 筒单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。  In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the drawings of the embodiments will be briefly described below. It is obvious that the drawings in the following description relate only to some embodiments of the present invention, rather than to the present invention. limit.
图 1为本发明实施例 1中液晶显示装置的结构示意图;  1 is a schematic structural view of a liquid crystal display device according to Embodiment 1 of the present invention;
图 2为图 1中辅助滤光层的工作原理示意图;  2 is a schematic view showing the working principle of the auxiliary filter layer in FIG. 1;
图 3为图 2中辅助滤光层的结构示意图;  3 is a schematic structural view of the auxiliary filter layer of FIG. 2;
图 4为本发明实施例 1中液晶显示装置的光路示意图;  4 is a schematic view showing an optical path of a liquid crystal display device according to Embodiment 1 of the present invention;
图 5为本发明实施例 2中液晶显示装置的光路示意图;  5 is a schematic diagram of an optical path of a liquid crystal display device according to Embodiment 2 of the present invention;
图 6为本发明实施例 3中液晶显示装置的光路示意图;  6 is a schematic diagram of an optical path of a liquid crystal display device according to Embodiment 3 of the present invention;
附图标记说明:  Description of the reference signs:
1 -彩膜基板; 10-基板; 12-彩膜层; 13-辅助滤光层; 14-保护层; 15-透 明电极层; 16-上取向层; 17-上偏光片; 18-透明层; 121-蓝色子彩膜层; 122- 绿色子彩膜层; 123-黄色子彩膜层; 124-红色子彩膜层;  1 - color film substrate; 10-substrate; 12-color film layer; 13-auxiliary filter layer; 14-protective layer; 15-transparent electrode layer; 16-upper alignment layer; 17-upper polarizer; ; 121-blue color film layer; 122- green color film layer; 123-yellow color film layer; 124-red color film layer;
2 - P车歹 ij基板; 20-基板; 21-TFT; 22-下取向层; 23-下偏光片;  2 - P rudder ij substrate; 20-substrate; 21-TFT; 22-lower alignment layer; 23-lower polarizer;
3 -背光模组; 31 -光源; 32-反射片; 33-导光板; 34-光激发层; 35-棱 镜膜; 36-扩散板;  3 - backlight module; 31 - light source; 32 - reflective sheet; 33 - light guide plate; 34 - photoexcited layer; 35 - prism mirror film; 36 - diffuser;
4-液晶。 具体实施方式  4-liquid crystal. detailed description
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围 实施例 1: The technical solutions of the embodiments of the present invention will be clearly and completely described in the following with reference to the accompanying drawings. It is apparent that the described embodiments are part of the embodiments of the invention, rather than all of the embodiments. Based on the described embodiments of the present invention, those of ordinary skill in the art can obtain without the need for creative labor. All other embodiments obtained belong to the scope of protection of the present invention:
一种液晶显示装置, 如图 1所示, 包括彩膜基板 1、 阵列基板 2以及背 光模组 3, 液晶 4设置在彩膜基板 1和阵列基板 2之间。 其中, 所述背光模 组包括光源 31 , 所述彩膜基板 1 中设置有辅助滤光层 13, 所述背光模组 3 中设置有光激发层 34 (见图 4 ) ,所述光激发层 34受所述光源 31发出的主激 光激发而产生特定波长的受激光,所述辅助滤光层 13使所述受激光选择性地 透过所述彩膜基板 1 , 而将主激光反射回所述背光模组 3。  A liquid crystal display device, as shown in FIG. 1, includes a color filter substrate 1, an array substrate 2, and a backlight module 3, and the liquid crystal 4 is disposed between the color filter substrate 1 and the array substrate 2. The backlight module includes a light source 31. The color filter substrate 1 is provided with an auxiliary filter layer 13, and the backlight module 3 is provided with a photoexcited layer 34 (see FIG. 4). 34 is excited by a main laser emitted from the light source 31 to generate a laser beam of a specific wavelength, and the auxiliary filter layer 13 selectively transmits the laser light to the color filter substrate 1 to reflect the main laser light back. The backlight module 3 is described.
在本发明中, 所述主激光指的是光源主动发出的光线, 而受激光指的是 受能量激发而被动发出的光线。  In the present invention, the main laser refers to the light that the light source actively emits, and the laser light refers to the light that is passively emitted by the energy.
图 1示出了以 TN型 TFT-LCD为示例的液晶显示装置的完整结构。如图 1所示, 所述彩膜基板 1包括基板 10、 黑矩阵(图 1中未具体示出)、 彩膜层 12、辅助滤光层 13、保护层 14、透明电极层 15、上取向层 16和上偏光片 17。 所述阵列基板 2包括基板 20、 TFT (薄膜晶体管) 21、 下取向层 22以及下 偏光片 23。  Fig. 1 shows the complete structure of a liquid crystal display device exemplified by a TN type TFT-LCD. As shown in FIG. 1, the color filter substrate 1 includes a substrate 10, a black matrix (not specifically shown in FIG. 1), a color film layer 12, an auxiliary filter layer 13, a protective layer 14, a transparent electrode layer 15, and an upper orientation. Layer 16 and upper polarizer 17. The array substrate 2 includes a substrate 20, a TFT (Thin Film Transistor) 21, a lower alignment layer 22, and a lower polarizer 23.
其中,所述辅助滤光层 13设置在所述彩膜层 12与所述保护层 14之间(即 图 1所示的结构 ),或者设置在所述保护层 14与所述透明电极层 15之间,或 者设置在所述透明电极层 15与所述上取向层 16之间。  The auxiliary filter layer 13 is disposed between the color film layer 12 and the protective layer 14 (ie, the structure shown in FIG. 1 ) or the protective layer 14 and the transparent electrode layer 15 . Between or between the transparent electrode layer 15 and the upper alignment layer 16.
根据工艺条件, 所述彩膜基板 1 中可以不设置保护层 14; 同时, 根据 According to the process conditions, the protective layer 14 may not be disposed in the color filter substrate 1;
TFT-LCD类型的不同, 透明电极层 15也可设置在阵列基板 2中, 例如: 在 ADS型( ADvanced Super Dimension Switch, 高级超维场转换技术) TFT-LCD 中, 透明电极层 15与像素电极(与 TFT的漏极电连接, 图 1中未示出)均 设置在阵列基板 2中。在上述结构中, 可灵活设置辅助滤光层 13的位置, 只 要使得辅助滤光层 13相对彩膜层 12更靠近背光模组 3即可,这里不做限定。 The transparent electrode layer 15 may also be disposed in the array substrate 2, for example: in an ADS type (ADvanced Super Dimension Switch) TFT-LCD, the transparent electrode layer 15 and the pixel electrode are different in TFT-LCD type. (Electrically connected to the drain of the TFT, not shown in FIG. 1) are disposed in the array substrate 2. In the above structure, the position of the auxiliary filter layer 13 can be flexibly set, as long as the auxiliary filter layer 13 is closer to the backlight module 3 than the color filter layer 12, which is not limited herein.
其中,所述彩膜层 12包括能透过不同波长光线的多个子彩膜层,所述辅 助滤光层 13设置为对应着能透过波长大于所述主激光的波长的光线的子彩 膜层, 且相对所述彩膜层 12更靠近所述背光模组 3。 在本实施例中, 所述彩 膜层 12包括红色子彩膜层 124、 绿色子彩膜层 122、 蓝色子彩膜层 121 , 所 述辅助滤光层 13设置为对应着所述红色子彩膜层 124、绿色子彩膜层 122中 的至少一个。 即: 所述辅助滤光层 13设置为对应于所述红色子彩膜层 124, 或设置为对应着绿色子彩膜层 122,或设置为对应着红色子彩膜层 124、绿色 子彩膜层 122二者。 Wherein, the color film layer 12 includes a plurality of sub-color film layers capable of transmitting light of different wavelengths, and the auxiliary filter layer 13 is disposed to correspond to a sub-color film capable of transmitting light having a wavelength greater than a wavelength of the main laser light. The layer is closer to the backlight module 3 than the color film layer 12. In this embodiment, the color film layer 12 includes a red sub-color film layer 124, a green sub-color film layer 122, and a blue sub-color film layer 121. The auxiliary filter layer 13 is disposed to correspond to the red sub-layer. Color film layer 124, green color color film layer 122 At least one of them. That is, the auxiliary filter layer 13 is disposed to correspond to the red sub-color film layer 124, or is disposed to correspond to the green sub-color film layer 122, or is disposed to correspond to the red sub-color film layer 124 and the green sub-color film. Both layers 122.
这里应该理解的是, 考虑到减小彩膜基板 1中各层的段差, 可以在与所 述辅助滤光层 13处于同一层的、对应着蓝色子彩膜层 121的区域设置一层具 有完全透过性的透明层 18, 比如采用玻璃形成的透明层等; 更进一步的, 如 果工艺条件允许,可将对应着蓝色子彩膜层 121的区域不设置任何填充材料, 以节省成本。  It should be understood here that, in consideration of reducing the step difference of each layer in the color filter substrate 1, a layer having a layer corresponding to the auxiliary filter layer 13 corresponding to the blue sub-color film layer 121 may be provided. The fully transparent transparent layer 18, such as a transparent layer formed of glass, etc.; further, if the process conditions permit, the area corresponding to the blue sub-color film layer 121 may not be provided with any filling material to save cost.
优选的是, 所述辅助滤光层 13 包括交替设置的高折射子层和低折射子 层, 由高折射率材料形成高折射子层, 由低折射率材料形成低折射子层。 其 中, 优选的, 所述高折射子层采用二氧化钛材料形成, 厚度为八分之一截止 带中心波长; 所述低折射层采用二氧化硅材料形成, 厚度为四分之一截止带 中心波长。  Preferably, the auxiliary filter layer 13 includes alternating high refractive sub-layers and low refractive sub-layers, a high refractive index layer formed of a high refractive index material, and a low refractive sub-layer formed of a low refractive index material. Preferably, the high refractive sub-layer is formed of a titanium dioxide material having a thickness of one eighth of a cutoff center wavelength; and the low refractive layer is formed of a silicon dioxide material having a thickness of a quarter of a cutoff center wavelength.
显示技术领域中常利用的可见光的波长范围为:红色光波长范围 620-770 nm (在本发明实施例的图中以 R标识红光),黄色光波长范围 560-590 nm (在 本发明实施例的图中以 Y标识黄光), 绿色光波长范围 500-530 nm (在本发 明实施例的图中以 G标识绿光), 蓝色光波长范围 430-470 nm (在本发明实 施例的图中以 B标识蓝光), 可知, 当将所述辅助滤光层 13设置在对应着红 色子彩膜层 124以及绿色子彩膜层 122的区域时, 即实现该对应两个区域的 蓝光的反射以提高蓝光的利用率时,可以将该所述辅助滤光层 13可透过的光 线的波长数值范围设置为 500-770nm, 比如: 当优选将该数值设置为 580nm 时, 波长大于 580nm的光线可以透过辅助滤光层 13, 而波长小于 580nm的 光线将被反射回背光模组 3。  The wavelength range of visible light commonly used in the display technology is: red light wavelength range 620-770 nm (in the figure of the embodiment of the invention, R is marked with red light), yellow light wavelength range 560-590 nm (in the embodiment of the invention) In the figure, the yellow light is marked with Y), the green light has a wavelength range of 500-530 nm (in the figure of the embodiment of the present invention, G is used to identify green light), and the blue light has a wavelength range of 430-470 nm (in the embodiment of the present invention). In the figure, B is used to identify blue light. It can be seen that when the auxiliary filter layer 13 is disposed in a region corresponding to the red sub-color film layer 124 and the green sub-color film layer 122, the blue light corresponding to the two regions is realized. When the reflection is performed to increase the utilization of the blue light, the wavelength range of the light permeable to the auxiliary filter layer 13 may be set to 500-770 nm, for example, when the value is preferably set to 580 nm, the wavelength is greater than 580 nm. Light can pass through the auxiliary filter layer 13, and light having a wavelength of less than 580 nm will be reflected back to the backlight module 3.
在背光模组 3中,所述光激发层 34中含有至少一种量子点,其中的量子 点受入射的蓝光激发而发出其他颜色的可见光。 量子点 ( Quantum Dot,QD ) 是一种准零维 ((quasi-zero-dimensional)纳米半导体发光材料,由少量的原子所 构成, 其在吸收一定能量后受激发可以发出可见光, 激发该量子点的能量包 括光激发能量和电激发能量。光激发能量即采用光激发的方式使量子点发光, 相比荧光粉发光, 量子点发光具有量子效率高、 发射光谱半峰宽窄, 只需通 过更换量子点的化学组成或通过调整量子点的尺寸就能精确控制激发出不同 波长的光线, 从而得到不同颜色的可见光。 In the backlight module 3, the photoexcited layer 34 contains at least one quantum dot, wherein the quantum dots are excited by the incident blue light to emit visible light of other colors. Quantum Dot (QD) is a quasi-zero-dimensional nano-semiconductor luminescent material composed of a small number of atoms that are excited to absorb visible light and emit visible light to excite the quantum dots. The energy includes photoexcitation energy and electric excitation energy. Photoexcitation energy uses photoexcitation to illuminate quantum dots. Compared to phosphor luminescence, quantum dot luminescence has high quantum efficiency and narrow half-peak width of emission spectrum. The chemical composition of the point or by adjusting the size of the quantum dots allows precise control of the excitation The wavelength of light, resulting in visible light of different colors.
为了保证量子点能被有效地激发,所述光源 31发出的主激光的波长小于 所述量子点受激发发出的受激光的波长。在本实施例中,所述光源 31采用蓝 光光源, 所述量子点至少包括红色量子点和绿色量子点, 所述量子点受蓝光 光源激发而发出的受激光包括红光和绿光。  In order to ensure that the quantum dots can be efficiently excited, the wavelength of the main laser emitted by the light source 31 is smaller than the wavelength of the laser light emitted by the quantum dots. In this embodiment, the light source 31 adopts a blue light source, and the quantum dots include at least red quantum dots and green quantum dots, and the received laser light emitted by the blue light source is red and green.
量子点的一个突出优点在于, 即使是同一种材料, 仅通过调整量子点的 尺寸, 就可以精确控制量子点的发光波长, 从而得到不同颜色的可见光。 根 据用户不同需求, 针对同一种材料的量子点可以通过调节它的尺寸来得到不 同颜色的可见光; 或者针对同一种尺寸的量子点可以通过调节它的化学组成 来得到不同颜色的可见光。 因此, 在实际应用中, 可根据量子点的发光特性, 例如: 发光光语半峰宽、 发光波峰及发光波长等, 通过调节不同材料的量子 点的配比, 或者, 调节不同尺寸的量子点的配比来得到不同颜色的光。 一般 的, 量子点发光光谱半峰宽越窄, 色纯度越高, 液晶显示装置的色彩显示效 果越好; 同时, 量子点发光波峰, 根据彩膜基板中绿色子彩膜层 122、 红色 子彩膜层 124的透过光线的波长范围来进行调整, 此时可采取调整量子点的 尺寸大小的方式来控制波峰位置, 以使其尽量靠近相应子彩膜层的透过光线 的波长范围;通过调整量子点的分布率,可以改变量子点发出光的波幅大小。  One of the outstanding advantages of quantum dots is that even with the same material, the quantum wavelength of the quantum dots can be precisely controlled by adjusting the size of the quantum dots, thereby obtaining visible light of different colors. Depending on the user's needs, quantum dots for the same material can be sized to obtain visible light of different colors; or for quantum dots of the same size, different colors of visible light can be obtained by adjusting its chemical composition. Therefore, in practical applications, according to the luminescent properties of the quantum dots, such as: half-width of the illuminating optical language, illuminating peaks and illuminating wavelengths, etc., by adjusting the ratio of quantum dots of different materials, or adjusting quantum dots of different sizes The ratio is to get different colors of light. In general, the narrower the half-width of the quantum dot luminescence spectrum, the higher the color purity, the better the color display effect of the liquid crystal display device; at the same time, the quantum dot luminescence peak, according to the green sub-color film layer 122 in the color film substrate, the red sub-color The wavelength of the transmitted light of the film layer 124 is adjusted. In this case, the size of the quantum dot can be adjusted to control the peak position so as to be as close as possible to the wavelength range of the transmitted light of the corresponding sub-color film layer; Adjusting the distribution rate of quantum dots can change the amplitude of the light emitted by the quantum dots.
所述蓝光光源可以是 LED, CCFL或 EEFL(External Electrode Fluorescent Lamp, 外置电极荧光灯)等。 目前, 量产的蓝光 LED波长集中在 440-455nm 范围, 蓝光光源发出的光线波长越短, 激发量子点的效率越高。  The blue light source may be an LED, a CCFL or an EEFL (External Electrode Fluorescent Lamp) or the like. At present, the mass-produced blue LED wavelengths are concentrated in the range of 440-455 nm, and the shorter the wavelength of light emitted by the blue light source, the higher the efficiency of exciting quantum dots.
本实施例中, 所述背光模组 3为侧入式背光模组。 如图 4所示, 所述侧 入式背光模组还包括层叠设置的反射片 32、 导光板 33和棱镜膜 35, 所述光 源 31设置在所述反射片 32、 所述导光板 33和所述棱镜膜 35的侧面, 所述 光激发层 34设置在所述导光板 33与所述棱镜膜 35之间。 其中, 反射片 32 用于将进入导光板 33的光线反射至导光板 33的出光面并射出, 棱镜膜 35 用于使从导光板 33出光面射出的光线扩散,或者使其光线亮度提高,或者使 光线的均匀性提高。  In this embodiment, the backlight module 3 is a side-entry backlight module. As shown in FIG. 4, the side-lit backlight module further includes a reflective sheet 32, a light guide plate 33, and a prism film 35, which are disposed on the reflective sheet 32, the light guide plate 33, and the The side surface of the prism film 35 is disposed between the light guide plate 33 and the prism film 35. The reflective sheet 32 is configured to reflect the light entering the light guide plate 33 to the light exit surface of the light guide plate 33, and the prism film 35 is used to diffuse the light emitted from the light exit surface of the light guide plate 33, or to increase the brightness of the light, or Improve the uniformity of light.
在本实施例中, 辅助滤光层 13的主膜系(main film system)的表达式为: 公式(1 ) 中, L代表具有低折射率且厚度为 1/4截止带中心波长的低折 射子层的厚度, H代表具有高折射率且厚度为 1/4截止带中心波长的高折射 子层的厚度, H/2则代表具有高折射率且厚度为 1/8截止带中心波长的高折 射子层的厚度, M 为周期数。 辅助滤光层 13为对称膜系, 以中间子层为中 心, 两边对称, 子层的总数为 2M+1 , 如图 3所示。 In the present embodiment, the expression of the main film system of the auxiliary filter layer 13 is: In the formula (1), L represents the thickness of the low refractive sub-layer having a low refractive index and a thickness of 1/4 of the cut-off center wavelength, and H represents a high refractive index having a high refractive index and a thickness of 1/4 of the center wavelength of the cutoff band. The thickness of the layer, H/2, represents the thickness of the high refractive sub-layer having a high refractive index and a thickness of 1/8 of the cut-off center wavelength, and M is the number of cycles. The auxiliary filter layer 13 is a symmetric film system, centered on the intermediate sub-layer, and bilaterally symmetric, and the total number of sub-layers is 2M+1, as shown in FIG.
辅助滤光层 13中高折射子层、低折射子层的厚度以及膜系周期数可根据 公式( 2 )和公式(
Figure imgf000008_0001
The thickness of the high refractive sublayer, the low refractive sublayer, and the number of film cycles in the auxiliary filter layer 13 can be according to formula (2) and formula (
Figure imgf000008_0001
公式(2 ) 中, △ λ为截止带的宽度 , λ θ为截止带中心波长 ,ηΗ和 nL 别为高折射率材料、 低折射率材料的折射率。  In the formula (2), Δ λ is the width of the cutoff band, λ θ is the center wavelength of the cutoff band, and η Η and nL are the refractive indices of the high refractive index material and the low refractive index material.
Figure imgf000008_0002
公式(3 ) 中: TR为截止带中心波长处的透过率 ,ηθ 为上基底(即所述 辅助滤光层 13相对远离液晶 4一侧 ) 的折射率, ng为下基底 (即所述辅助 滤光层 13相对靠近液晶 4一侧 ) 的折射率, nH和 nL分别为高、 低折射率 材料的折射率, M为周期数。
Figure imgf000008_0002
In the formula (3): TR is the transmittance at the center wavelength of the cutoff band, ηθ is the refractive index of the upper substrate (ie, the side of the auxiliary filter layer 13 relatively far from the liquid crystal 4), and ng is the lower substrate (ie, the The refractive index of the auxiliary filter layer 13 is relatively close to the liquid crystal 4 side, nH and nL are the refractive indices of the high and low refractive index materials, respectively, and M is the number of cycles.
在已知高折射率材料、 低折射率材料的折射率的情况下, 例如: 二氧化 钛( Ή02 )的折射率为: nH =2.1 ; 二氧化硅( Si02 )的折射率为: nL =1.46, 则根据公式(2 )有:
Figure imgf000008_0003
In the case where the refractive index of the high refractive index material and the low refractive index material is known, for example, the refractive index of titanium dioxide (Ή02) is: nH = 2.1; the refractive index of silicon dioxide (SiO2) is: nL = 1.46, then According to formula (2) there are:
Figure imgf000008_0003
同时, 由公式(2 )有:  At the same time, by formula (2) there are:
Δ/l = 2Ag/l。 = 0.2302 /10 ( 4 ) Δ/l = 2Ag/l. = 0.2302 /1 0 ( 4 )
例如: 对应着绿色子彩膜层 122区域设置的辅助滤光层 13 , 应设置为能 使波长大于 500nm 的光线能透过并传播至绿色子彩膜层 122 , 波长小于 500nm的光线则被反射回背光模组 3中。 那么有: + 0 = 500 ( 5 ) 联合公式(4 )与公式(5 )得:For example, the auxiliary filter layer 13 corresponding to the area of the green sub-color film layer 122 should be disposed such that light having a wavelength greater than 500 nm can transmit and propagate to the green sub-color film layer 122, and light having a wavelength of less than 500 nm is reflected. Back to the backlight module 3. Then there are: + 0 = 500 ( 5 ) Combining the formula (4) with the formula (5):
0 = 448 .6腿 , Αλ = 103 .2腿  0 = 448 .6 legs, Αλ = 103 .2 legs
那么单层折射子层的厚度为:  Then the thickness of the single-layer refractive sub-layer is:
L = Η = ^ = 112 . 1扁 L = Η = ^ = 112 . 1 flat
4  4
由于高折射子层的折射率以及低折射子层的折射率都为已知, 因此, 只 需要设定中心波长处的透过率, 通过公式( 3 )就可以计算得到主膜系基本周 期数 Μ,考虑到实际镀制过程中的误差及每层膜参数稳定性的影响,选定基本 周期数可以适当增加。  Since the refractive index of the high refractive sub-layer and the refractive index of the low refractive sub-layer are both known, it is only necessary to set the transmittance at the central wavelength, and the basic period number of the main film system can be calculated by the formula (3). Μ, considering the error in the actual plating process and the stability of the film parameters of each layer, the number of selected basic cycles can be appropriately increased.
在上述设置参数下, 如图 2所示, 辅助滤光层 13能将波长小于 500nm 的蓝色可见光(波长 430-470 nm)反射回到背光模组 3内部,又通过背光模组 3 内部的反射片 32 重新反射到液晶面板上被再次重新利用。 而波长大于 500nm的绿色可见光、 红色可见光(绿色可见光波长 500-530 nm, 红色可见 光波长 620-770 nm)透过该所述辅助滤光层 13到达对应的彩膜层 12。  Under the above setting parameters, as shown in FIG. 2, the auxiliary filter layer 13 can reflect blue visible light (wavelength 430-470 nm) having a wavelength of less than 500 nm back into the backlight module 3, and pass through the interior of the backlight module 3. The reflection sheet 32 is re-reflected onto the liquid crystal panel and reused again. The green visible light having a wavelength greater than 500 nm, red visible light (green visible light wavelength 500-530 nm, red visible light wavelength 620-770 nm) is transmitted through the auxiliary filter layer 13 to the corresponding color film layer 12.
如图 4所示,该液晶显示装置中光线的传播过程为: 光源 31发出蓝光光 线, 蓝光光线从导光板 33的入光面 (即侧面)入射导光板 33 , 经反射片 32 反射后通过导光板 33的出光面 (即正面)传播到光激发层 34, 在射到光激 发层 34的蓝光光线中,一部分蓝光光线被量子点吸收,从而激发出红色可见 光(即红光)或绿色可见光(即绿光); 另一部分蓝光光线穿过光激发层 34 与受激发出的红色可见光或绿色可见光一同传播到棱镜膜 35混合成白光(白 光光谱分解为 R、 G、 B三个波峰), 经阵列基板 2、 液晶 4传播到彩膜基板 1中。 在彩膜基板 1中, 对应着蓝色子彩膜层 121区域的白光中的蓝光分量, 直接透射到彩膜层 12中的蓝色子彩膜层 121 , 最终穿过彩膜基板 1 , 而对应 着蓝色子彩膜层 121的绿光分量和红色分量被蓝色子彩膜层 121吸收; 对应 着红色子彩膜层 124的红光分量、 对应着绿色子彩膜层 122区域的绿光分量 经辅助滤光层 13透射到彩膜层 12中的相应红色子彩膜层 124和绿色子彩膜 层 122上, 并最终穿过彩膜基板 1 , 使液晶面板能正常显示影像, 而对应着 红色子彩膜层 124的绿光分量经辅助滤光层 13透射后,被红色子彩膜层 124 吸收;对应着绿色子彩膜层 122区域的红光分量经对应的辅助滤光层 13透射 后,被绿色子彩膜层 122吸收;对应着红色子彩膜层 124和绿色子彩膜层 122 的蓝光分量被辅助滤光层 13反射回背光模组 3中, 经反射片 32再次被反射 回彩膜基板 1 , 最终从对应着蓝色子彩膜层 121区域透射到彩膜基板 1中的 蓝色子彩膜层 121 , 大大提高了背光模组 3的光线利用率, 并使液晶面板达 到更好的彩色显示的效果。 As shown in FIG. 4, the light propagation process in the liquid crystal display device is as follows: The light source 31 emits blue light, and the blue light is incident on the light guide plate 33 from the light incident surface (ie, the side surface) of the light guide plate 33, and is reflected by the reflection sheet 32. The light exiting surface (ie, the front surface) of the light plate 33 is propagated to the light excitation layer 34. In the blue light rays incident on the light excitation layer 34, a part of the blue light is absorbed by the quantum dots, thereby exciting red visible light (ie, red light) or green visible light ( That is, green light); another part of the blue light rays propagate through the photoexcited layer 34 together with the excited red visible light or green visible light to the prism film 35 to be mixed into white light (the white light spectrum is decomposed into three peaks of R, G, and B), The array substrate 2 and the liquid crystal 4 are propagated into the color filter substrate 1. In the color filter substrate 1, the blue light component in the white light corresponding to the blue sub-color film layer 121 region is directly transmitted to the blue sub-color film layer 121 in the color film layer 12, and finally passes through the color filter substrate 1, and The green light component and the red component corresponding to the blue sub-color film layer 121 are absorbed by the blue sub-color film layer 121; the red light component corresponding to the red sub-color film layer 124 and the green color corresponding to the green sub-color film layer 122 region The light component is transmitted through the auxiliary filter layer 13 to the corresponding red sub-color film layer 124 and the green sub-color film layer 122 in the color film layer 12, and finally passes through the color film substrate 1 so that the liquid crystal panel can display the image normally. corresponding After the green component of the red sub-color film layer 124 is transmitted through the auxiliary filter layer 13, it is absorbed by the red sub-color film layer 124; the red light component corresponding to the green sub-color film layer 122 region is transmitted through the corresponding auxiliary filter layer 13 After being absorbed by the green sub-color film layer 122, the blue component corresponding to the red sub-color film layer 124 and the green sub-color film layer 122 is reflected back into the backlight module 3 by the auxiliary filter layer 13, and is reflected again by the reflection sheet 32. The color filter film substrate 1 is finally transmitted from the region corresponding to the blue sub-color film layer 121 to the blue sub-color film layer 121 in the color filter substrate 1, which greatly improves the light utilization efficiency of the backlight module 3 and enables the liquid crystal panel Achieve better color display.
这里应该理解的是, 本实施例中辅助滤光层也可以分区设置, 此时对应 分区的辅助滤光层设置为: 仅对应着所述子彩膜层中能透过的相应颜色的光 线分量透过, 而其他颜色的光线分量均被反射回背光模组, 以进一步提高所 述背光模组的光线利用率。 即: 辅助滤光层在对应着绿色子彩膜层的区域, 可以设置为仅能够使得绿光分量透过, 而红光分量和蓝光分量被反射回背光 模组; 同样, 在对应着红色子彩膜层的区域, 可以设置为仅能够使得红光分 量透过, 而蓝光分量和绿光分量均被反射回背光模组。 相应的, 此时辅助滤 光层对应着分区的各子层应根据公式( 2 )和公式( 3 )重新计算高折射子层、 低折射子层的厚度以及膜系周期数,并可分区制备在彩膜基板不同的层上(例 如, 将辅助滤光层的绿光分区设置在保护层上, 而将红光分区设置在透明电 极层上)。 实施例 2:  It should be understood that, in this embodiment, the auxiliary filter layer may also be partitioned, and the auxiliary filter layer of the corresponding partition is set to: only correspond to the light component of the corresponding color that can be transmitted through the sub-color film layer. Through, the light components of other colors are reflected back to the backlight module to further improve the light utilization efficiency of the backlight module. That is: the auxiliary filter layer in the region corresponding to the green sub-color film layer can be set to only enable the green light component to pass, and the red light component and the blue light component are reflected back to the backlight module; likewise, corresponding to the red color The area of the color film layer can be set such that only the red light component can be transmitted, and both the blue light component and the green light component are reflected back to the backlight module. Correspondingly, at this time, the auxiliary filter layer corresponding to each sub-layer of the partition should recalculate the thickness of the high-refractive sub-layer, the low-refractive sub-layer and the number of membrane cycles according to formula (2) and formula (3), and can be prepared by partitioning. On a different layer of the color filter substrate (for example, the green light partition of the auxiliary filter layer is disposed on the protective layer, and the red light partition is disposed on the transparent electrode layer). Example 2:
本实施例与实施例 1的区别在于, 该液晶显示装置中, 彩膜基板 1中设 置的彩膜层 12、 辅助滤光层 13与实施例 1 中的彩膜层 12、 辅助滤光层 13 的结构不同; 相应的, 背光模组 3中光激发层 34与实施例 1 中的光激发层 34的结构不同, 如图 5所示。  The difference between the present embodiment and the embodiment 1 is that the color film layer 12 and the auxiliary filter layer 13 provided in the color filter substrate 1 and the color film layer 12 and the auxiliary filter layer 13 in the embodiment 1 are different in the liquid crystal display device. The structure of the photoexcitation layer 34 in the backlight module 3 is different from that of the photoexcitation layer 34 in the embodiment 1, as shown in FIG.
在本实施例中,所述彩膜层 12包括红色子彩膜层 124、黄色子彩膜层 123、 绿色子彩膜层 122和蓝色子彩膜层 121 ,所述辅助滤光层 13设置为对应着红 色子彩膜层 124、 黄色子彩膜层 123和绿色子彩膜层 122中的至少一个。 根 据需要, 所述量子点受蓝光光源激发而发出的特定波长的光线包括红光、 黄 光或绿光中的至少一种。 相应的, 实施例中, 在所述量子点为红色量子点、 黄色量子点、绿色量子点或蓝色量子点。所述辅助滤光层 13中对应着所述彩 膜层 12中各子彩膜层的区域的透过特性设置为使得对应颜色的光线能透过。 辅助滤光层 13中高折射子层、低折射子层的厚度以及膜系周期数可根据实施 例 1中公式(2 )和公式(3 )进行计算, 这里不再赘述。 In this embodiment, the color filter layer 12 includes a red sub-color film layer 124, a yellow sub-color film layer 123, a green sub-color film layer 122, and a blue sub-color film layer 121. The auxiliary filter layer 13 is disposed. It corresponds to at least one of the red sub-color film layer 124, the yellow sub-color film layer 123, and the green sub-color film layer 122. The light of a specific wavelength emitted by the quantum dot excited by the blue light source includes at least one of red light, yellow light, or green light, as needed. Correspondingly, in the embodiment, the quantum dot is a red quantum dot, a yellow quantum dot, a green quantum dot or a blue quantum dot. The auxiliary filter layer 13 corresponds to the color The transmission characteristics of the regions of the respective sub-color film layers in the film layer 12 are set such that light of a corresponding color can be transmitted. The thickness of the high refractive sub-layer, the low refractive sub-layer and the number of film period in the auxiliary filter layer 13 can be calculated according to the formula (2) and the formula (3) in the embodiment 1, and will not be described again.
推而广之, 当彩膜基板中的彩膜层 12的显示颜色不相同时,在背光模组 3中光激发层 34中设置的量子点也不相同, 即, 为了使液晶显示面板实现设 定颜色的显示,应该使彩膜层 12滤光透过的颜色与量子点所发出的可见光的 颜色相配合。 当液晶显示装置中彩膜基板的彩膜层 12发生改变时, 例如: 当 液晶显示装置彩膜为红、 绿、 蓝、 白四个色彩时, 则光激发层 34中应包含有 受激发能发出红色可见光、 绿色可见光的量子点。 依据此原理, 若液晶显示 装置的彩膜层 12为其他多个颜色的色彩时, 则根据实际情况在光激发层 34 中掺杂受激发能发出不同颜色的量子点。  In general, when the color of the color filter layer 12 in the color filter substrate is different, the quantum dots disposed in the photoexcited layer 34 in the backlight module 3 are different, that is, in order to realize the liquid crystal display panel. The color display should match the color of the color filter layer 12 through the color of the visible light emitted by the quantum dots. When the color filter layer 12 of the color filter substrate in the liquid crystal display device is changed, for example, when the color film of the liquid crystal display device is four colors of red, green, blue, and white, the photoexcited layer 34 should include the excited energy. A quantum dot that emits red visible light and green visible light. According to this principle, if the color filter layer 12 of the liquid crystal display device is a color of a plurality of other colors, the photoexcited layer 34 is doped with the excitation energy to emit quantum dots of different colors according to actual conditions.
本实施例中液晶显示装置的其他结构与实施例 1相同, 光线的传播过程 与实施例 1类似, 这里不再赘述。 实施例 3:  Other structures of the liquid crystal display device in this embodiment are the same as those in the first embodiment, and the propagation process of the light is similar to that of the embodiment 1, and details are not described herein again. Example 3:
本实施例与实施例 1、 2 的不同在于, 该液晶显示装置中, 背光模组 3 与实施例 1中的背光模组 3的结构不同。  The difference between this embodiment and the first and second embodiments is that the backlight module 3 is different from the backlight module 3 of the first embodiment in the liquid crystal display device.
在本实施例中, 如图 6所示, 所述背光模组 3为直下式背光模组, 所述 直下式背光模组 3还包括层叠设置的反射片 32和扩散板 36,所述光源 31设 置在所述反射片 32与所述扩散板 36之间,所述光激发层 34设置在所述扩散 板 36的上方。为了获得更好的光源效果,本实施例中的背光模组还可以包括 棱镜膜(图 6中未示出), 所述棱镜膜可设置在所述光激发层 34的上方。 棱 镜膜用于使从扩散板 36射出的光线扩散,或者使其光线亮度提高,或者使光 线的均匀性提高。  In this embodiment, as shown in FIG. 6 , the backlight module 3 is a direct type backlight module, and the direct type backlight module 3 further includes a reflective sheet 32 and a diffusion plate 36 , which are stacked. Provided between the reflection sheet 32 and the diffusion plate 36, the photo excitation layer 34 is disposed above the diffusion plate 36. In order to obtain a better light source effect, the backlight module in this embodiment may further include a prism film (not shown in FIG. 6), and the prism film may be disposed above the photoexcited layer 34. The prism film is used to diffuse light emitted from the diffusion plate 36, or to increase the brightness of the light or to improve the uniformity of the light.
在本实施例中, 光线传播过程与实施例 1的区别在于: 本实施例中光源 In this embodiment, the light propagation process differs from Embodiment 1 in the following:
31发出的光线从下至上穿过所述阵列基板 2、 液晶 4与彩膜基板 1。 辅助滤 光层 13对光线中不同颜色分量的反射与透射与实施例 1、 2相同, 这里不再 赘述。 The light emitted from 31 passes through the array substrate 2, the liquid crystal 4 and the color filter substrate 1 from bottom to top. The reflection and transmission of the auxiliary filter layer 13 to different color components in the light are the same as in the first and second embodiments, and will not be described again here.
本实施例中液晶显示装置的其他结构与实施例 1、 2相同,这里不再赘述。 本发明的液晶显示装置中, 通过彩膜基板中对特定波长的光线能进行反 射的辅助滤光层与背光模组中受能量激发能发出特定波长的光线的光激发层 的配合, 先利用单一颜色的光线通过光激发层而激发得到多种颜色的光线, 然后在光线到达彩膜层之前, 利用辅助滤光层选择性地让波长相对较长的光 线透过彩膜基板, 而将一部分本可能被彩膜层吸收的、 波长相对较短的光线 反射回背光模组。 该液晶显示装置既保证了良好的显示色度, 又提高了背光 模组的光线利用率。 以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。 Other structures of the liquid crystal display device in this embodiment are the same as those in the first embodiment and the second embodiment, and are not described herein again. In the liquid crystal display device of the present invention, the auxiliary filter layer that reflects light of a specific wavelength in the color filter substrate and the photoexcited layer of the backlight module that emit light of a specific wavelength by energy excitation are first used. The light of the color is excited by the photoexcited layer to obtain light of a plurality of colors, and then the auxiliary filter layer is used to selectively pass the relatively long wavelength light through the color filter substrate before the light reaches the color film layer, and a part of the light is The relatively short wavelength light that may be absorbed by the color film layer is reflected back to the backlight module. The liquid crystal display device not only ensures good display chromaticity, but also improves the light utilization efficiency of the backlight module. The above is only an exemplary embodiment of the present invention, and is not intended to limit the scope of the present invention. The scope of the present invention is defined by the appended claims.

Claims

权利要求书 Claim
1. 一种液晶显示装置, 包括彩膜基板、 阵列基板以及背光模组, 所述背 光模组包括光源, 其中所述彩膜基板中设置有辅助滤光层, 所述背光模组中 设置有光激发层, 所述光激发层受所述光源发出的主激光激发而产生特定波 长的受激光, 所述辅助滤光层能使所述受激光选择性地透过所述彩膜基板, 而将主激光反射回所述背光模组。 A liquid crystal display device, comprising a color filter substrate, an array substrate, and a backlight module, wherein the backlight module comprises a light source, wherein the color filter substrate is provided with an auxiliary filter layer, and the backlight module is provided with a photoexcited layer, wherein the photoexcited layer is excited by a main laser emitted by the light source to generate a laser of a specific wavelength, and the auxiliary filter layer enables the laser to be selectively transmitted through the color filter substrate. The main laser is reflected back to the backlight module.
2.根据权利要求 1所述的液晶显示装置,其中所述彩膜基板还包括彩膜 层, 所述彩膜层包括能透过不同波长光线的多个子彩膜层, 所述辅助滤光层 设置为对应着能透过波长大于所述主激光的波长的子彩膜层, 且相对所述彩 膜层更靠近所述背光模组。 The liquid crystal display device of claim 1 , wherein the color filter substrate further comprises a color film layer, the color film layer comprising a plurality of sub-color film layers capable of transmitting light of different wavelengths, the auxiliary filter layer And corresponding to the sub-color film layer capable of transmitting a wavelength greater than a wavelength of the main laser, and closer to the backlight module than the color film layer.
3.根据权利要求 2所述的液晶显示装置,其中所述彩膜层包括红色子彩 膜层、 绿色子彩膜层、 蓝色子彩膜层, 所述辅助滤光层设置为对应着所述红 色子彩膜层和绿色子彩膜层中的至少一个。 The liquid crystal display device according to claim 2, wherein the color film layer comprises a red sub-color film layer, a green sub-color film layer, and a blue sub-color film layer, and the auxiliary filter layer is disposed to correspond to the At least one of a red sub-color film layer and a green sub-color film layer is described.
4.根据权利要求 3所述的液晶显示装置,其中所述辅助滤光层包括交替 设置的高折射子层和低折射子层, 其中由高折射率材料形成高折射子层, 由 低折射率材料形成低折射子层。 The liquid crystal display device according to claim 3, wherein the auxiliary filter layer comprises alternating high refractive sub-layers and low refractive sub-layers, wherein a high refractive index layer is formed of a high refractive index material, and a low refractive index The material forms a low refractive sublayer.
5.根据权利要求 4所述的液晶显示装置,其中所述高折射子层采用二氧 化钛材料形成, 厚度为八分之一截止带中心波长; 所述低折射层采用二氧化 硅材料形成, 厚度为四分之一截止带中心波长。 The liquid crystal display device according to claim 4, wherein the high refractive sub-layer is formed of a titanium dioxide material having a thickness of one eighth of a cutoff center wavelength; the low refractive layer is formed of a silicon dioxide material, and the thickness is The quarter cutoff has a center wavelength.
6.根据权利要求 5所述的液晶显示装置,其中所述光激发层中含有量子 点, 所述量子点为红色量子点、 绿色量子点或黄色量子点中的至少一种。 The liquid crystal display device according to claim 5, wherein the photoexcited layer contains quantum dots, and the quantum dots are at least one of red quantum dots, green quantum dots, or yellow quantum dots.
7.根据权利要求 6所述的液晶显示装置, 其中所述光源采用蓝光光源, 所述量子点受所述蓝光光源发出的光线激发而发出的光线包括红光、 绿光或 黄光。 The liquid crystal display device according to claim 6, wherein the light source adopts a blue light source, and the light emitted by the quantum dot by the light emitted by the blue light source includes red light, green light or Huang Guang.
8.根据权利要求 2所述的液晶显示装置,其中所述彩膜层包括红色子彩 膜层、 黄色子彩膜层、 绿色子彩膜层和蓝色子彩膜层, 所述辅助滤光层设置 为对应着红色子彩膜层、 绿色子彩膜层和黄色子彩膜层中的至少一个。 The liquid crystal display device according to claim 2, wherein the color film layer comprises a red sub-color film layer, a yellow sub-color film layer, a green sub-color film layer and a blue sub-color film layer, the auxiliary filter layer The layer is disposed to correspond to at least one of a red sub-color film layer, a green sub-color film layer, and a yellow sub-color film layer.
9.根据权利要求 1-8任一项所述的液晶显示装置, 其中所述彩膜基板还 包括与所述彩膜层层叠设置的保护层、 透明电极层以及取向层, 所述辅助滤 光层设置在所述彩膜层与所述保护层之间, 或者设置在所述保护层与所述透 明电极层之间, 或者设置在所述透明电极层与所述取向层之间。 The liquid crystal display device according to any one of claims 1 to 8, wherein the color filter substrate further comprises a protective layer, a transparent electrode layer and an alignment layer laminated on the color film layer, the auxiliary filter The layer is disposed between the color film layer and the protective layer, or between the protective layer and the transparent electrode layer, or between the transparent electrode layer and the alignment layer.
10.根据权利要求 9所述的液晶显示装置, 其中所述背光模组为侧入式 背光模组,所述侧入式背光模组还包括层叠设置的反射片、导光板和棱镜膜, 所述光源设置在所述反射片、 所述导光板和所述棱镜膜的侧面, 所述光激发 层设置在所述导光板与所述棱镜膜之间。 The liquid crystal display device of claim 9 , wherein the backlight module is a side-in backlight module, and the side-in backlight module further comprises a reflective sheet, a light guide plate and a prism film. The light source is disposed on a side surface of the reflective sheet, the light guide plate, and the prism film, and the light excitation layer is disposed between the light guide plate and the prism film.
11.根据权利要求 9所述的液晶显示装置, 其中所述背光模组为直下式 背光模组, 所述直下式背光模组还包括层叠设置的反射片和扩散板, 所述光 源设置在所述反射片与所述扩散板之间, 所述光激发层设置在所述扩散板的 上方。 The liquid crystal display device according to claim 9, wherein the backlight module is a direct type backlight module, and the direct type backlight module further comprises a reflective sheet and a diffusion plate which are stacked, and the light source is disposed at the Between the reflective sheet and the diffusing plate, the photoexcited layer is disposed above the diffusing plate.
PCT/CN2013/077950 2013-04-28 2013-06-26 Liquid crystal display device WO2014176818A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310155852.3A CN103278961B (en) 2013-04-28 2013-04-28 A kind of liquid crystal indicator
CN201310155852.3 2013-04-28

Publications (1)

Publication Number Publication Date
WO2014176818A1 true WO2014176818A1 (en) 2014-11-06

Family

ID=49061529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/077950 WO2014176818A1 (en) 2013-04-28 2013-06-26 Liquid crystal display device

Country Status (2)

Country Link
CN (1) CN103278961B (en)
WO (1) WO2014176818A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019148591A1 (en) * 2018-01-31 2019-08-08 武汉华星光电技术有限公司 Direct-lit backlight module and liquid crystal display

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104654116A (en) * 2013-11-22 2015-05-27 鸿富锦精密工业(深圳)有限公司 Backlight module and manufacturing method
CN103775923B (en) * 2014-02-21 2015-12-09 深圳市华星光电技术有限公司 Lamp bar and the backlight module with this lamp bar
US20150378089A1 (en) * 2014-06-27 2015-12-31 Fujifilm Corporation Backlight unit and liquid crystal display device
CN104330918A (en) 2014-11-28 2015-02-04 京东方科技集团股份有限公司 Display panel and display device
CN105720069B (en) * 2014-12-01 2019-02-05 联想(北京)有限公司 A kind of display device and electronic equipment
CN105652513A (en) * 2014-12-01 2016-06-08 联想(北京)有限公司 Display, backlight device and electronic equipment
CN104503130B (en) * 2014-12-29 2017-11-14 厦门天马微电子有限公司 A kind of color membrane substrates, display panel and display device
CN104516149B (en) * 2015-01-16 2018-03-06 京东方科技集团股份有限公司 A kind of liquid crystal display panel and display device
CN104728779B (en) * 2015-04-21 2018-01-12 张家港康得新光电材料有限公司 luminous film layer structure and backlight module
CN104777669B (en) * 2015-04-24 2017-09-12 张家港康得新光电材料有限公司 Quantum dot film and backlight module
CN104793392B (en) * 2015-04-24 2017-10-10 武汉华星光电技术有限公司 Liquid crystal display panel and liquid crystal display
CN106292054A (en) * 2015-05-19 2017-01-04 青岛海信电器股份有限公司 A kind of liquid crystal display module and LCD TV
KR102367810B1 (en) * 2015-07-13 2022-02-28 삼성전자주식회사 A reflecting sheet, a back light unit and a display apparatus using the back light unit
CN105044974B (en) * 2015-08-28 2017-08-29 京东方科技集团股份有限公司 Chromatic filter layer, display base plate and display device
CN105158954B (en) * 2015-10-13 2019-06-11 苏州桐力光电股份有限公司 High colour gamut liquid crystal display and its manufacturing method
CN105204216A (en) * 2015-10-29 2015-12-30 深圳市华星光电技术有限公司 PDLC (polymer dispersed liquid crystal) display panel and production method thereof and liquid crystal display unit
CN105278153B (en) * 2015-11-13 2018-03-06 深圳市华星光电技术有限公司 The preparation method and quantum dot color membrane substrates of quantum dot color membrane substrates
CN105353556B (en) 2015-12-09 2017-12-29 深圳市华星光电技术有限公司 Display device
CN106154625A (en) * 2016-07-11 2016-11-23 深圳天珑无线科技有限公司 Liquid crystal display and display module, color filtering device
CN107688271A (en) * 2016-08-04 2018-02-13 青岛蓝之虹光电技术有限公司 Using the Novel light source of wavelength convert principle
CN107688269A (en) * 2016-08-04 2018-02-13 青岛蓝之虹光电技术有限公司 Using the novel straight down type backlight source device of wavelength convert principle
CN106405921B (en) * 2016-09-23 2018-06-05 京东方科技集团股份有限公司 A kind of display device
KR20180042892A (en) * 2016-10-18 2018-04-27 삼성디스플레이 주식회사 Display apparatus
CN106526964B (en) * 2016-11-30 2019-05-10 厦门天马微电子有限公司 Display panel
CN106773287A (en) * 2016-12-06 2017-05-31 青岛海信电器股份有限公司 A kind of encapsulation quanta point material display panel and the backlight module comprising the panel
CN106526965A (en) * 2016-12-06 2017-03-22 青岛海信电器股份有限公司 Encapsulated quantum dot material display panel and backlight module containing same
KR20180085854A (en) * 2017-01-19 2018-07-30 삼성디스플레이 주식회사 Display device and manufacturing method of the same
CN106842704B (en) * 2017-02-20 2021-04-09 上海大学 Ultra-clear organic laser display
CN106597753B (en) * 2017-02-28 2020-04-10 深圳市华星光电技术有限公司 Backlight module
US10268072B2 (en) 2017-02-28 2019-04-23 Shenzhen China Star Optoelectronics Technology Co., Ltd. Backlight module and liquid crystal display
CN108932910A (en) * 2017-05-26 2018-12-04 行家光电股份有限公司 Luminescence generated by light LED display and its manufacturing method
CN109212813B (en) * 2017-06-30 2020-12-25 京东方科技集团股份有限公司 Color film substrate and display device
KR102412469B1 (en) 2017-08-01 2022-06-23 삼성디스플레이 주식회사 Color conversion panel and display device including the same
CN107526214A (en) * 2017-08-21 2017-12-29 深圳市华星光电技术有限公司 Fluorescent powder film component and preparation method thereof, backlight module
KR20190082351A (en) * 2017-12-29 2019-07-10 삼성디스플레이 주식회사 Light-guide plate, backlight assembly and display device including the same
CN108107626A (en) * 2018-01-22 2018-06-01 京东方科技集团股份有限公司 Color membrane substrates and display base plate
CN108319064A (en) * 2018-02-06 2018-07-24 京东方科技集团股份有限公司 Array substrate, display panel and display device
JP7248441B2 (en) * 2018-03-02 2023-03-29 シャープ株式会社 image display element
CN108303818A (en) * 2018-03-07 2018-07-20 江苏集萃智能液晶科技有限公司 A kind of quantum stippling film liquid crystal device based on blue light polarisation backlight
CN108508654A (en) * 2018-04-08 2018-09-07 青岛海信电器股份有限公司 A kind of backlight module and liquid crystal display device
CN108761894B (en) * 2018-07-03 2022-04-15 京东方科技集团股份有限公司 Color film substrate, preparation method thereof, display panel and display device
CN108957860A (en) * 2018-08-22 2018-12-07 京东方科技集团股份有限公司 Display device and preparation method thereof
CN109801564A (en) * 2019-03-22 2019-05-24 信利半导体有限公司 A kind of display device
CN110989242A (en) * 2019-12-06 2020-04-10 Tcl华星光电技术有限公司 Backlight module and display device
CN111045250A (en) * 2019-12-06 2020-04-21 深圳市华星光电半导体显示技术有限公司 Light conversion structure and display device
CN111458936A (en) * 2020-04-26 2020-07-28 南方科技大学 Light-emitting module and display panel
CN111540281A (en) * 2020-05-19 2020-08-14 Tcl华星光电技术有限公司 Flexible color filter film, manufacturing method thereof and full-color micro light-emitting diode device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09258207A (en) * 1996-03-19 1997-10-03 Toshiba Corp Color liquid crystal display device
JP3703818B2 (en) * 2003-08-11 2005-10-05 セイコーインスツル株式会社 Liquid crystal display device
CN101743433A (en) * 2008-01-23 2010-06-16 松下电器产业株式会社 Wavelength separator, planar illumination device and liquid crystal display device using the wavelength separator
US20120223979A1 (en) * 2011-03-02 2012-09-06 Semiconductor Energy Laboratory Co., Ltd. Optical device, display device, and lighting device
CN103017027A (en) * 2012-12-04 2013-04-03 京东方科技集团股份有限公司 Surface light source device and liquid crystal display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09258207A (en) * 1996-03-19 1997-10-03 Toshiba Corp Color liquid crystal display device
JP3703818B2 (en) * 2003-08-11 2005-10-05 セイコーインスツル株式会社 Liquid crystal display device
CN101743433A (en) * 2008-01-23 2010-06-16 松下电器产业株式会社 Wavelength separator, planar illumination device and liquid crystal display device using the wavelength separator
US20120223979A1 (en) * 2011-03-02 2012-09-06 Semiconductor Energy Laboratory Co., Ltd. Optical device, display device, and lighting device
CN103017027A (en) * 2012-12-04 2013-04-03 京东方科技集团股份有限公司 Surface light source device and liquid crystal display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019148591A1 (en) * 2018-01-31 2019-08-08 武汉华星光电技术有限公司 Direct-lit backlight module and liquid crystal display
US10845641B2 (en) 2018-01-31 2020-11-24 Wuhan China Star Optoelectronics Technology Co., Ltd. Direct backlight module and liquid crystal display device

Also Published As

Publication number Publication date
CN103278961A (en) 2013-09-04
CN103278961B (en) 2015-09-30

Similar Documents

Publication Publication Date Title
WO2014176818A1 (en) Liquid crystal display device
US9146419B1 (en) Quantum rod based color pixel backlight for LCD
US8514352B2 (en) Phosphor-based display
WO2020253731A1 (en) Color filter substrate and manufacturing method thereof, liquid crystal display panel, and liquid crystal display device
JP6890470B2 (en) Photoluminescence display device and its manufacturing method
US9581860B2 (en) Illumination device with multiple phosphor layers
KR19980065367A (en) Backlight for LCD
JP2007149665A (en) Lighting system using fluorescent material distant from light source
JP2000131683A (en) Color display device
US7557876B2 (en) Anisotropic fluorescent thin crystal film and backlight system and liquid crystal display incorporating the same
US9606283B2 (en) Surface light source, backlight module and display device
WO2015081692A1 (en) Light guide plate, backlight source and liquid crystal display apparatus
JP2013235141A (en) Color liquid crystal display unit
CN107450218B (en) Photoluminescent display device and method of manufacturing the same
WO2020025055A1 (en) Led light source, surface light source display module, and preparation method for led light source
WO2018166154A1 (en) Light source device and display device
WO2017181477A1 (en) Backlight module and display device
US10642112B2 (en) Array substrate, display panel and display device
CN111240095A (en) Backlight module and display panel
CN105759504A (en) Backlight module and liquid crystal display device
WO2019127728A1 (en) Quantum dot film for backlight module, backlight module, and liquid crystal display device
CN108919558A (en) A kind of quantum dot color membrane structure of wedge-shaped substrate
WO2016155115A1 (en) Light guide plate, backlight module with same and liquid crystal display
KR101792102B1 (en) Liquid crystal display device
US20140240640A1 (en) High efficiency polarized and collimated backlight

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.03.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13883750

Country of ref document: EP

Kind code of ref document: A1