WO2014175521A1 - Accelerometer using piezoresistor - Google Patents

Accelerometer using piezoresistor Download PDF

Info

Publication number
WO2014175521A1
WO2014175521A1 PCT/KR2013/009675 KR2013009675W WO2014175521A1 WO 2014175521 A1 WO2014175521 A1 WO 2014175521A1 KR 2013009675 W KR2013009675 W KR 2013009675W WO 2014175521 A1 WO2014175521 A1 WO 2014175521A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer support
mass
accelerometer
piezoresistor
impact
Prior art date
Application number
PCT/KR2013/009675
Other languages
French (fr)
Korean (ko)
Inventor
고종수
배공명
이재민
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130045322A external-priority patent/KR101454112B1/en
Priority claimed from KR1020130053658A external-priority patent/KR101462781B1/en
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Publication of WO2014175521A1 publication Critical patent/WO2014175521A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
    • G01P15/123Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges

Definitions

  • Embodiments of the present invention relate to an accelerometer for shock detection, and more particularly, to an accelerometer for shock detection of a piezoresistive sensing method using a silicon material.
  • Conventional acceleration sensors are generally made using an elastic system.
  • FIG. 1 the basic structure of a piezoresistive accelerometer is shown in FIG. 1.
  • the piezoresistive accelerometer includes a spring 102 having a cantilever shape fixed at one end thereof to a fixed end 101, and a mass 103 connected to the elastic body 102.
  • the piezoresistor 104 is formed on one surface of the elastic body 102.
  • the cantilever plays a role of a mass and a spring (ie, an elastic body).
  • the magnitude of acceleration that is, the magnitude of impact
  • the accelerometer can determine the explosion by measuring the magnitude of the impact.
  • an object of the present invention can provide an accelerometer suitable for high impact detection.
  • Another object of the present invention is to provide an accelerometer that is more stable against high impact, excellent in linearity, and capable of minimizing the effects of electromagnetic interference.
  • an accelerometer may include: an outer support having a shape of an opening having a vertical opening; A mass located inside the outer support and surrounded by the outer support; Four hinges that connect the outer support and the mass and serve as springs; And four piezoresistors connected between the outer supporter and the mass body, and measuring the magnitude of the impact through a resistance change of the piezoresistor according to the movement of the mass body when the external body is impacted. can do.
  • the accelerometer is made of a silicon material, it may be manufactured through a MEMS (Micro Electro Mechanical Systems) process using the silicon material.
  • MEMS Micro Electro Mechanical Systems
  • the outer support has a rectangular structure
  • the size of the outer support may be 1 ⁇ 10 mm in width and length and 0.1 ⁇ 1.0 mm in thickness.
  • the thickness of the mass and the hinge is equal to the thickness of the outer support.
  • the outer support may have a rectangular structure, and the mass may have a rectangular structure smaller than the outer support.
  • two hinges may be formed on both sides of the mass which are symmetrical to each other.
  • the piezoresistors may be located two on each side of the mass body symmetrical to each other.
  • the piezoresistors are located on each of the two symmetrical sides of the mass body, each of the two piezoresistors may be formed on both the outer support and one surface of the mass body.
  • the piezoresistors are located on each of the two symmetrical sides of the mass body, each of the two piezoresistors may be formed one on the other surface and one surface of the outer support and the mass body. .
  • the piezoresistor may be formed in a structure equivalent to a Wheatstone Bridge circuit.
  • the piezoresistor may be formed in a thin film form between the outer support and the mass.
  • the piezoresistor may be formed in a thin film form of 0.1 ⁇ 10.0 ⁇ m between the outer support and the mass.
  • the piezoresistor may be manufactured in a thin film form through a CMOS (complementary metal oxide semiconductor) process.
  • CMOS complementary metal oxide semiconductor
  • an apparatus including an accelerometer according to an embodiment may be provided, and a device for performing a predefined operation based on an impact magnitude measured through the accelerometer may be provided.
  • a piezoresistive accelerometer may include: an outer support having an opening formed in a vertical direction thereof; A rigid body fixed inside the outer supporter; A mass connected to the rigid body in a state surrounded by the outer support; And four piezoresistors connected between the outer support body and the mass body, wherein the impact size is changed by the resistance change of the piezoresistor according to the movement of the mass body when the external body is impacted. Can be measured.
  • the outer support, the rectangular structure has a horizontal and vertical length of 0.5 ⁇ 10.0mm and the thickness of the vertical direction may be made of 0.1 ⁇ 1.0 mm.
  • the rigid body can act as a spring (spring) to the movement of the mass.
  • the rigid body and the mass are formed in the vertical direction in the interior of the outer support, the rigid body is fixed to both sides of the bottom of the interior of the outer support, respectively, the mass is a lower surface It is connected to the upper end of the rigid body may be located in the upper portion of the inside of the outer support.
  • the rigid body, part or all of each side may be fixed to the inside of the outer support.
  • the rigid body may be fixed to the inside of the outer support corresponding to the position perpendicular to the direction in which the impact.
  • the piezoresistor may be located in the direction of the impact on the upper surface of the mass.
  • the piezoresistors may be located in the direction of the impact on the upper surface of the mass body, but may be located two on each side that are symmetrical to each other.
  • the piezoresistor may be formed in a thin film form between the upper surface of the mass and the outer support.
  • the piezoresistor may be formed in a thin film form of 0.1 ⁇ 50.0 ⁇ m between the upper surface of the mass and the outer support.
  • an accelerometer suitable for shock detection capable of measuring high accelerations from low acceleration to hundreds of thousands of g class.
  • the accelerometer by providing an accelerometer made of silicon based on semiconductor integrated circuit technology, the accelerometer can be miniaturized, reduced in cost, and refined, relatively high in reliability, and relatively easy in maintenance. have.
  • a piezoresistive sensing accelerometer having a stable advantage against external impact, it is not only stable against external impact, but also has excellent linearity and minimizes the influence of electromagnetic interference, thereby providing a reliable accelerometer. Can provide.
  • FIG. 1 illustrates a basic structure of a piezoresistive accelerometer according to an example of the prior art.
  • Figure 2 is a perspective view for explaining the structure of a piezoresistive accelerometer using a silicon material in an embodiment of the present invention.
  • FIG. 3 is a perspective view for explaining another structure of a piezoresistive accelerometer using a silicon material according to an embodiment of the present invention.
  • FIG 4 and 5 are diagrams for explaining the operating principle of the piezoresistive accelerometer according to an embodiment of the present invention.
  • FIG. 6 is a perspective view for explaining the structure of a piezoresistive accelerometer for impact measurement according to an embodiment of the present invention.
  • FIG. 7 and 8 are cross-sectional views taken along the line A-A 'in FIG. 6 to explain the structure of a piezoresistive accelerometer for impact measurement according to an embodiment of the present invention.
  • FIG. 9 is a view for explaining the operation principle of the piezoresistive accelerometer for impact measurement according to an embodiment of the present invention.
  • This embodiment relates to an accelerometer that is fixed to an object and can measure the magnitude of an impact the object receives.
  • the accelerometer according to the present embodiment may be used in various fields that require acceleration measurement due to shock and vibration, such as various industrial devices and facilities including military vehicles and oil fields, military, aerospace, and the like.
  • the accelerometer according to the present embodiment is applied to a control system such as an automobile airbag device, factory automation, and a robot, as well as a multi-layered structure of a fuse cover of a bunker, which is a through bomb capable of attacking underground facilities. If present, it can be applied to hard target smart fuze (HTSF) system that detects and penetrates the multilayer structure and explodes.
  • a control system such as an automobile airbag device, factory automation, and a robot
  • HTSF hard target smart fuze
  • the accelerometer according to an embodiment of the present invention may be made of a silicon material, and may be manufactured using a MEMS (Micro Electro Mechanical Systems) process, which is a semiconductor processing technology.
  • MEMS Micro Electro Mechanical Systems
  • Accelerometers manufactured using MEMS technology using silicon have almost no hysteresis due to the excellent mechanical properties of silicon used as a material, and are highly reliable and mass-produced due to the use of semiconductor integrated circuit processes. .
  • accelerometers made of silicon MEMS technology based on semiconductor integrated circuit technology can be miniaturized, inexpensive, and refined, and because they are inherently extremely shock-resistant due to the fine mass, they can be applied from low acceleration to tens of thousands of g (gravity acceleration). It can have very ideal features for the high impact given the above, it ensures a relatively high reliability and maintenance is also relatively easy.
  • MEMS-based accelerometer detection methods mainly use piezoresistive, piezoelectric and capacitive.
  • Table 1 compares the characteristics of piezoresistive type, piezoelectric type, and capacitive type in the accelerometer sensing method.
  • the piezoelectric type has a wide operating temperature range, but has a disadvantage in that the output signal in a stationary state is unstable and low in linearity, and the output signal is shifted by shock due to the limited sensing frequency range.
  • the capacitive type has excellent sensitivity, but the manufacturing technology for forming the electrode, the external circuit and the connection structure are complicated, and a large nonlinear error occurs when a large acceleration input is applied.
  • the piezoresistive sensing method has the advantages of being stable against a stationary state and an impact and relatively simple to fabrication process, compared to the piezoelectric and capacitive types.
  • a piezoresistive sensing method is used for a more stable and suitable accelerometer with high impact.
  • the present embodiment can provide an accelerometer for shock detection of a piezoresistive sensing method using a silicon material as an accelerometer having suitable characteristics even for high impacts from low acceleration to tens of thousands of g or more.
  • Figure 2 is a perspective view for explaining the structure of a piezoresistive accelerometer using a silicon material in an embodiment of the present invention.
  • the remaining portions 120a to 120d (hereinafter, referred to as 'slit') except for the portions that become the mass body 130 and the hinges 140a to 140d in a silicon material having a predetermined size may be referred to as 'slit'. It is drilled vertically.
  • the accelerometer 100 includes an outer support 110 having an opening shape vertically formed therein, a mass body 130 positioned inside the outer support 110 and surrounded by the outer support 110. It may be composed of four hinges 140a to 140d connecting the outer support 110 and the mass body 130.
  • the structure of the accelerometer 100 is formed by the slit (120a ⁇ 120d) as shown in Figure 2 in the upper / lower / left / right of the silicon material through the MEMS process, the outer support 110, the mass body 130, and 4 Hinges 140a to 140d may be distinguished.
  • the outer support 110 may have a rectangular structure of a predetermined standard.
  • the mass body 130 may have the same shape as that of the outer support 110 so that a gap with the outer support 110 is constant, but may have a rectangular structure having a smaller size than the outer support 110.
  • the mass body 130 has a gap with the outer support 110, but has a structure independent of the shape of the outer support 110 according to the formation conditions of the hinge (140a ⁇ 140d) or piezo resistors (150a ⁇ 150d). Can be done.
  • the outer support 110 may be manufactured in the horizontal (W) and vertical (H) of about 1 ⁇ 10 mm, the thickness is 0.1 ⁇ 1.0 mm to ensure the strength of the accelerometer 100 It can be done to a degree.
  • the outer support 110 may be manufactured to have a width (W) and a length (H) within 3 mm, and may have a thickness of about 0.5 mm.
  • the thickness of the mass body 130 and the hinge (140a ⁇ 140d) is made of the same thickness as the outer support (110).
  • each of the mass 130 may be formed on each of two symmetrical to each other.
  • two hinges 140a to 140d are formed at the left and right sides of the mass body 130 to connect the outer support 110 and the mass body 130.
  • the four hinges (140a ⁇ 140d) is preferably formed at a position that can minimize the movement of the mass body 130 in a direction other than the direction in which the accelerometer 100 is impacted.
  • two hinges 140a to 140d may be formed on the left side and the right side of the mass body 130, respectively.
  • the four hinges (140a ⁇ 140d) can smoothly move the mass 130 in the impact direction received by the accelerometer 100, and moreover against the impact transmitted to the upper side of the accelerometer 100
  • the impact detection error can be prevented by minimizing the left / right side shift of the mass body 130.
  • the thickness of the hinge (140a ⁇ 140d) is formed to the same thickness as the outer support 110 to give a considerable thickness for the hinge (140a ⁇ 140d) to minimize the distortion of the mass body 130 against external impact It can prevent and can ensure the strength of the accelerometer 100.
  • piezoresistors 150a to 150d may be connected between the outer support 110 and the mass body 130.
  • four piezoresistors 150a to 150d may be formed on each of two mass bodies 130, which are symmetrical to each other.
  • two piezoresistors 150a to 150d may be formed at upper and lower sides of the mass body 130, respectively, and may be connected between the outer support 110 and the mass body 130.
  • the four piezoresistors 150a to 150d may be configured to be equivalent to the Wheatstone bridge circuit.
  • the four piezoresistors 150a to 150d may be directly disposed in the impact direction of the accelerometer 100 in order to effectively detect the movement of the mass body 130 due to an external impact.
  • two piezoresistive elements 150a to 150d may be formed on the upper side and the lower side of the mass body 130, respectively, in order to detect an impact received by the upper and lower sides of the accelerometer 100.
  • piezoresistors 150a to 150d are formed on each side of the mass body 130 to be symmetrical with each other, and two piezoresistors are formed on one surface between the outer support body 110 and the mass body 130. All can be formed.
  • two piezoresistors 150a and 150d positioned above the mass body 130 and two piezoresistors 150b and 150c positioned below the mass body 130 are both included in the outer support 110. And the front surface between the mass 130.
  • piezoresistors 150a to 150d are formed on each side of the mass body 130, each of which is symmetrical with each other, and two piezoresistors are formed on one surface between the outer support 110 and the mass body 130. It can be formed one on the other surface.
  • FIG. 3 ((a) is a front side perspective view of the accelerometer 100, (b) is a rear side perspective view of the accelerometer 100) two piezoresistors 150a and 150d positioned above the mass body 130.
  • One 150a may be formed at the front surface between the outer support 110 and the mass 130, and the other 150d may be formed at the rear surface, and two pressures may be located below the mass 130.
  • One of the resistors 150b and 150c may be formed on the front surface between the outer support 110 and the mass body 130, and the other 150c may be formed on the rear surface.
  • two piezoresistors 150a and 150b are positioned on the front surface between the outer support 110 and the mass body 130 as shown in FIG. 3A and the outer support 110 as shown in FIG.
  • two piezoresistors 150c and 150d may be located on the rear surface between the mass 130 and the mass 130.
  • the two piezoresistors 150a, 150d, 150b, 150c positioned on the front surface and the rear surface between the outer support 110 and the mass body 130 may be formed at positions facing each other.
  • the four piezoresistors 150a to 150d may be connected between the outer support 110 and the mass 130, and may be formed in a very thin film form between the outer support 110 and the mass 130.
  • the piezo resistors 150a to 150d have a thickness of about 0.1 to 10.0 ⁇ m, and the piezo resistors 150a to 150d may be connected in a thin bridge form between the mass body 130 and the outer support 110. have.
  • CMOS complementary metal oxide semiconductor
  • the four piezoresistors 150a to 150d are formed to be symmetrical with respect to the mass body 130 and have the same length, width, and the like, and thus have the same resistance change due to external temperature influence, and thus signal drift.
  • a stable signal can be obtained by preventing drift.
  • the accelerometer 100 may measure the magnitude of the impact received by the object from the resistance change of the piezoresistors 150a to 150d according to the movement of the mass body 130 when the object is impacted. .
  • the accelerometer 100 may move the mass 130 up and down when an impact comes from the outside.
  • the mass body 130 moves upward, the two piezoresistors 150a and 150d connected to the upper side of the mass body 130 are reduced in length due to the compression force, so that the corresponding resistances R1 and R4 increase.
  • the two piezoresistors 150b and 150c connected to the lower side of the mass body 130 increase in length due to the tension, so that the corresponding resistances R2 and R3 decrease.
  • the equivalent circuit for the four piezoresistors 150a to 150d may be represented by a Wheatstone bridge circuit composed of four resistors R1 to R4 as shown in FIG. 5. Accordingly, by arranging signal lines (not shown) for four piezoresistors 150a to 150d as shown in FIG. 5, corresponding voltage values may be obtained according to the magnitude of the impact according to the above-described operating principle.
  • the piezo resistors 150a to 150d located on both sides of the mass body 130 are subjected to tension and compression, and the change in resistance of the piezo resistors 150a to 150d generated by the whistle bridge is measured by a whistle bridge. That is, acceleration is sensed.
  • FIG. 6 is a perspective view illustrating a structure of a piezoresistive accelerometer for impact measurement according to an exemplary embodiment of the present invention
  • FIGS. 7 and 8 are views illustrating a structure of a piezoresistive accelerometer for impact measurement according to an embodiment of the present invention. The cross section of AA 'part is shown.
  • the shock direction received by the accelerometer is expressed in the left / right direction based on the x-axis
  • the vertical direction according to the height is expressed in the up / down direction based on the z-axis.
  • the accelerometer 200 may be made of a silicon material of a predetermined standard, except for the parts of the outer support 210, the rigid body 220, and the mass body 230 in the silicon material. The rest is drilled vertically.
  • the accelerometer 200 includes an outer support 210 having an opening formed therein, a rigid body 220 fixed inside the outer support 210, and an outer support 210. It may be made of a mass body 230 connected to the rigid body 220 in a state surrounded by.
  • the structure of the accelerometer 200 is formed by forming a slit in the silicon material through the MEMS process in the form shown in FIGS. 6 to 8, respectively, to distinguish the outer support 210, the rigid body 220, and the mass body 230. Can be.
  • the rigid body 220 and the mass body 230 may be formed by being stacked in a vertical direction in which an opening is formed in the outer support 210. At this time, the rigid body 220 may be fixed to the bottom of the opening formed on both sides of the outer support 210, respectively.
  • the rigid body 220 as shown in Figure 7, the lower portion of each side, that is, the bottom 220a may be fixed to the inside of the outer support 210, ' ⁇ ' together with the bottom (220a) It may be formed in the form such as.
  • the rigid body 220 may be fixed to the bottom of the opening formed in the inner side of the outer support 210 as a whole of each side as shown in FIG. As shown in FIG. 8, when the whole side surface of the rigid body 220 is fixed to the inside of the outer supporter 210, the strength of the accelerometer 200 may be increased and may be more suitable for a model that senses a very high impact.
  • the mass body 230 may have a lower surface connected to an upper end of the rigid body 220 so that the mass body 230 may be positioned above the opening formed in the outer support 210.
  • the rigid body 220 may serve as a spring when the mass body 230 moves.
  • the rigid body 220 is preferably fixed to a position perpendicular to the direction of the impact in the interior of the outer support (210).
  • both sides of the rigid body 220 in the outer support 210 corresponding to a position on the y axis perpendicular to the impact direction (x axis) received by the accelerometer 200. Can be fixed.
  • the longitudinal directions of the rigid body 220 and the mass body 230 may be formed perpendicular to each other or may be formed in the same direction.
  • the longitudinal direction of the mass body 230 is formed in the x-axis direction, which is the impact direction
  • the longitudinal direction of the rigid body 220 is the impact direction. It can be formed in the y-axis direction perpendicular to the.
  • the mass body 230 may have a size larger than the rigid body 220 in at least one size of the x-axis, the y-axis, and the z-axis, rather than having a specific shape with respect to the rigid body 220.
  • the rigid body 220 may act as a spring for the movement of the mass body 230 according to the impact direction received by the accelerometer 200, and the rigid body 220 to the outer support 210 Since the mass 230 is hardly moved in a direction other than the shock direction received by the accelerometer 200 as it is fixed, a shock detection signal is not generated when an impact is applied in an undesired direction, thereby preventing a shock detection error. Can be.
  • the outer support 210 may have a rectangular structure of a predetermined standard.
  • the mass body 230 may have the same shape as the outer support 210 so that a gap with the outer support 210 is constant, but may have a rectangular structure having a smaller size than the outer support 210.
  • the mass body 230 may have a gap with the outer support 210, but may have a structure independent of the shape of the outer support 210.
  • the outer support 210 as shown in Figure 6, the width (W) and the length (L) can be manufactured to about 0.5 ⁇ 10.0mm, to ensure the strength of the accelerometer 200
  • the thickness H may be about 0.1 mm to 1.0 mm.
  • the entire thickness of the rigid body 220 and the mass body 230 stacked in the outer support 210 is made of the same thickness as the outer support (210).
  • the accelerometer 200 may have four piezoresistors 250a, 250b, 250c, and 250d connected between the outer support body 210 and the mass body 230.
  • piezoresistors 250a, 250b, 250c, and 250d may be formed in a direction in which an impact is applied on the upper surface of the mass body 230.
  • four piezoresistors 250a, 250b, 250c, and 250d may be formed on each of two symmetrical surfaces on the upper surface of the mass body 230.
  • two piezoresistors 250a, 250b, 250c, and 250d are formed at the front of the left end and the right end of the upper surface of the mass body 230, respectively, to form the upper surface and the outer supporter of the mass body 230.
  • 210 may be connected between.
  • the four piezoresistors 250a, 250b, 250c, and 250d may be directly disposed in the impact direction of the accelerometer 200 in order to effectively detect the movement of the mass body 230 due to an external impact.
  • the piezoresistors 250a, 250b, 250c, and 250d may be connected to the end of the movement surface of the mass 230 with respect to the impact direction of the accelerometer 200, that is, at the end of the upper surface.
  • two piezoresistors 250a, 250b, 250c, and 250d are formed on the left and right sides of the mass body 230, respectively. can do.
  • the four piezoresistors 250a, 250b, 250c, and 250d are connected between the outer support body 210 and the mass body 230, and have a very thin thin film between the upper surface of the mass body 230 and the outer support body 210. It may be formed in the form.
  • the piezo resistors 250a, 250b, 250c, and 250d have an extremely thin thickness of about 0.1 to 50.0 ⁇ m, and the piezo resistors 250a, 250b, 250c, and 250d are formed on the upper surface and the outer support of the mass body 230. It may be connected in the form of a thin bridge between the (210).
  • CMOS complementary metal oxide semiconductor
  • the four piezoresistors 250a, 250b, 250c, and 250d are formed to be symmetrical with respect to the mass body 230 and have the same length, width, and the like, the resistance change according to the external temperature influence is the same, and thus the signal A stable signal can be obtained by preventing drift.
  • the four piezoresistors 250a, 250b, 250c, and 250d may be configured to be equivalent to the Wheatstone bridge circuit.
  • the signal lines 240 are disposed on the four piezoresistors 250a, 250b, 250c, and 250d to correspond to resistance changes of the piezoresistors 250a, 250b, 250c, and 250d according to the magnitude of the impact of the accelerometer 200. The voltage value can be obtained.
  • the accelerometer 200 measures the impact magnitude received by the object from the resistance change of the piezoresistors 250a, 250b, 250c, and 250d according to the movement of the mass body 230 when the object is impacted. It can be measured.
  • the accelerometer 200 may move the mass 230 to the left / right when an impact from the outside comes.
  • the mass body 230 moves in the left direction
  • the two piezoresistors 250a and 250d connected to the left side of the upper surface of the mass body 230 are reduced in length due to the compression force, and thus the corresponding resistances R1 'and R4'.
  • the two piezoresistors 250b and 250c connected to the right side of the upper surface of the mass body 230 increase in length due to the tension, and thus the corresponding resistances R2 'and R3' decrease.
  • the equivalent circuit for the four piezoresistors 150a to 150d may be represented by a Wheatstone bridge circuit including four resistors R1 ', R2', R3 ', and R4' as shown in FIG. Accordingly, the signal lines 240 for the four piezoresistors 250a, 250b, 250c, and 250d are arranged to obtain corresponding voltage values according to the magnitude of the impact according to the above-described operating principle.
  • the piezo resistors 250a, 250b, 250c, and 250d located on both sides of the mass body 230 are subjected to tension and compression, thereby bending the resistance change of the piezo resistors 250a, 250b, 250c, and 250d. Measurements made with stone bridges detect the magnitude of the impact, or acceleration.
  • the accelerometers 100 and 200 according to the present invention described above may be used in various fields such as automobiles, oil field exploration, military use, aerospace industry.
  • An apparatus including the accelerometers 100 and 200 of the present invention includes at least one processing device, a memory, and at least one program, wherein the program is configured to be stored in the memory and executed by the processor. It may include code for performing a predetermined operation (eg, airbag operation, explosion ignition, etc.) for the impact above the threshold based on the impact magnitude measured by the accelerometer (100, 200).
  • a predetermined operation eg, airbag operation, explosion ignition, etc.
  • the accelerometers 100 and 200 according to the present invention may be applied to a control system such as an automobile airbag device or a factory automation and a robot, a fuse cover system of a bunker, a intelligent fuse system for robust target penetration, and the like.
  • a control system such as an automobile airbag device or a factory automation and a robot, a fuse cover system of a bunker, a intelligent fuse system for robust target penetration, and the like.
  • an accelerometer suitable for high impact detection capable of measuring high accelerations from low accelerations to tens of thousands of g or more.
  • an accelerometer made of silicon based on semiconductor integrated circuit technology it is possible to miniaturize, reduce the cost, precision of the accelerometer, and ensure a relatively high reliability Maintenance is also relatively easy.
  • a piezoresistive sensing accelerometer having a stable advantage against high impact it is not only stable against high impact, but also excellent in linearity and minimizes the influence of electromagnetic interference, thereby providing excellent reliability. Accelerometers can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)

Abstract

An accelerometer using a piezoresistor is disclosed. The accelerometer comprises: an outer wall support having a shape of an opened portion of which the interior is vertically pierced; a mass body located in the outer wall support and enclosed by the outer wall support; four hinges for connecting the outer wall support and the mass body to each other and serving as a spring; and four piezoresistors connected between the outer wall support and the mass body. Further, when receiving a shock from the outside, the accelerometer can measure the size of the shock through a resistance change of the piezoresistors generated according to movement of the mass body.

Description

압저항체를 이용한 가속도계Accelerometer using piezoresistor
본 발명의 실시예들은 충격 감지를 위한 가속도계에 관한 것으로, 더욱 상세하게는 실리콘 재질을 이용한 압저항형 감지방식의 충격 감지용 가속도계에 관한 것이다.Embodiments of the present invention relate to an accelerometer for shock detection, and more particularly, to an accelerometer for shock detection of a piezoresistive sensing method using a silicon material.
종래의 가속도 센서는 일반적으로 탄성계를 이용하여 만들어지고 있다.Conventional acceleration sensors are generally made using an elastic system.
일 예로, 압저항형 가속도계의 기본 구조는 도 1과 같다.As an example, the basic structure of a piezoresistive accelerometer is shown in FIG. 1.
도 1에 도시한 바와 같이, 압저항형 가속도계는 일측이 고정단(101)에 고정된 외팔보 형태의 탄성체(spring)(102)와, 탄성체(102)에 연결된 질량체(mass)(103)로 구성될 수 있으며, 탄성체(102)의 일 표면 위에 압저항체(piezoresistor)(104)가 형성되어 있다. 여기서, 외팔보는 질량체 역할과 함께, 스프링 역할(즉, 탄성체)을 담당한다.As shown in FIG. 1, the piezoresistive accelerometer includes a spring 102 having a cantilever shape fixed at one end thereof to a fixed end 101, and a mass 103 connected to the elastic body 102. The piezoresistor 104 is formed on one surface of the elastic body 102. Here, the cantilever plays a role of a mass and a spring (ie, an elastic body).
외부에서 충격이 주어지면 질량체(103)에 힘(F)이 발생하여 외팔보의 탄성체(102)에 의해 질량체(103)가 상하로 휘어지게 된다. 이때, 압저항체(104)는 탄성체(102)의 표면에 형성되어 있기 때문에 질량체(103)가 아랫방향으로 휘어지면 압저항체(104)의 길이가 미세하게 늘어나게 되고 질량체(103)가 윗방향으로 휘어지면 압저항체(104)의 길이가 미세하게 줄어들게 된다. 압저항체(104)가 늘어나면 압저항체(104)의 저항값이 증가하는 반면, 압저항체(104)가 줄어들면 저항값이 감소한다.When an impact is applied from the outside, a force F is generated in the mass 103 so that the mass 103 is bent up and down by the elastic body 102 of the cantilever beam. At this time, since the piezoresistor 104 is formed on the surface of the elastic body 102, when the mass body 103 is bent downward, the length of the piezoresistor 104 is slightly increased, and the mass body 103 is bent upwards. The length of the ground piezoresistor 104 is reduced slightly. When the piezo resistor 104 increases, the resistance value of the piezo resistor 104 increases, while the piezo resistor 104 decreases, the resistance value decreases.
상기한 원리를 통해 압저항형 가속도계에서는 압저항체(104)의 저항 증가와 감소로 가속도의 크기, 즉 충격 크기를 측정할 수 있다. 예를 들어, 압저항형 가속도계가 통상 군용에 사용될 경우에는 포탄이 충격을 받았을 때 가속도계가 그 충격의 크기를 측정하여 폭발 여부를 결정할 수 있다.Through the above principle, in the piezoresistive accelerometer, the magnitude of acceleration, that is, the magnitude of impact, may be measured by increasing and decreasing the resistance of the piezoresistor 104. For example, when a piezoresistive accelerometer is normally used for military purposes, when the shell is impacted, the accelerometer can determine the explosion by measuring the magnitude of the impact.
그러나, 일측이 고정단(101)에 고정된 외팔보 형태로 이루어진 종래 구조의 압저항형 가속도계는 수만 g(중력가속도, 1 g = 9.81 m/s2)급 이상의 높은 가속도를 측정하는 센서로는 적합하지 못하다.However, the piezoresistive accelerometer of the conventional structure having a cantilever shape fixed to the fixed end 101 is not suitable as a sensor for measuring high acceleration of more than tens of thousands of g (gravity acceleration, 1 g = 9.81 m / s2). Can not do it.
본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 고충격 감지에 적합한 가속도계를 제공할 수 있다.The present invention has been made to solve the problems of the prior art as described above, an object of the present invention can provide an accelerometer suitable for high impact detection.
본 발명의 다른 목적은 고충격에 대해 보다 안정적이고 선형성이 우수하며 전자파 간섭의 영향을 최소화할 수 있는 가속도계를 제공할 수 있다.Another object of the present invention is to provide an accelerometer that is more stable against high impact, excellent in linearity, and capable of minimizing the effects of electromagnetic interference.
본 발명의 또 다른 목적은 높은 신뢰성을 보장하고 유지 보수가 쉬운 가속도계를 제공할 수 있다.It is another object of the present invention to provide an accelerometer that ensures high reliability and is easy to maintain.
본 발명의 실시예에 따르면, 가속도계는, 내부가 수직으로 뚫린 개구부(開口部) 형태의 외곽 지지체; 상기 외곽 지지체의 내부에 위치하여 상기 외곽 지지체에 둘러싸인 질량체(mass); 상기 외곽 지지체와 상기 질량체를 연결하고 스프링(spring) 역할을 하는 4개의 힌지(hinge); 및 상기 외곽 지지체와 상기 질량체의 사이에 연결되는 4개의 압저항체(piezoresistor)를 포함하여 이루어지고, 외부로부터 충격을 받으면 상기 질량체의 움직임에 따른 상기 압저항체의 저항 변화를 통해 상기 충격의 크기를 측정할 수 있다.According to an embodiment of the present invention, an accelerometer may include: an outer support having a shape of an opening having a vertical opening; A mass located inside the outer support and surrounded by the outer support; Four hinges that connect the outer support and the mass and serve as springs; And four piezoresistors connected between the outer supporter and the mass body, and measuring the magnitude of the impact through a resistance change of the piezoresistor according to the movement of the mass body when the external body is impacted. can do.
일 측면에 따르면, 상기 가속도계는 실리콘 재질로 이루어지며, 상기 실리콘 재질을 이용한 MEMS(Micro Electro Mechanical Systems) 공정을 통해 제작될 수 있다.According to one aspect, the accelerometer is made of a silicon material, it may be manufactured through a MEMS (Micro Electro Mechanical Systems) process using the silicon material.
다른 측면에 따르면, 상기 외곽 지지체는 사각형의 구조로, 상기 외곽 지지체의 크기는 가로와 세로가 1~10 ㎜이며 두께는 0.1~1.0 ㎜일 수 있다.According to another aspect, the outer support has a rectangular structure, the size of the outer support may be 1 ~ 10 mm in width and length and 0.1 ~ 1.0 mm in thickness.
또 다른 측면에 따르면, 상기 질량체와 상기 힌지의 두께는 상기 외곽 지지체의 두께와 같다.According to another aspect, the thickness of the mass and the hinge is equal to the thickness of the outer support.
또 다른 측면에 따르면, 상기 외곽 지지체는 사각형의 구조로 이루어지고, 상기 질량체는 상기 외곽 지지체보다 작은 사각형의 구조로 이루어질 수 있다.According to another aspect, the outer support may have a rectangular structure, and the mass may have a rectangular structure smaller than the outer support.
또 다른 측면에 따르면, 상기 힌지는 상기 질량체의 서로 대칭이 되는 양쪽에 각각 2개씩 형성될 수 있다.According to another aspect, two hinges may be formed on both sides of the mass which are symmetrical to each other.
또 다른 측면에 따르면, 상기 압저항체는 상기 질량체의 서로 대칭이 되는 양쪽에 각각 2개씩 위치할 수 있다.According to another aspect, the piezoresistors may be located two on each side of the mass body symmetrical to each other.
또 다른 측면에 따르면, 상기 압저항체는, 상기 질량체의 서로 대칭이 되는 양쪽에 각각 2개씩 위치하되, 상기 2개의 압저항체가 상기 외곽 지지체와 상기 질량체의 일 표면에 모두 형성될 수 있다.According to another aspect, the piezoresistors are located on each of the two symmetrical sides of the mass body, each of the two piezoresistors may be formed on both the outer support and one surface of the mass body.
또 다른 측면에 따르면, 상기 압저항체는, 상기 질량체의 서로 대칭이 되는 양쪽에 각각 2개씩 위치하되, 상기 2개의 압저항체가 상기 외곽 지지체와 상기 질량체의 일 표면과 다른 표면에 하나씩 형성될 수 있다.According to another aspect, the piezoresistors are located on each of the two symmetrical sides of the mass body, each of the two piezoresistors may be formed one on the other surface and one surface of the outer support and the mass body. .
또 다른 측면에 따르면, 상기 압저항체는 휘스톤브릿지(Wheatstone Bridge) 회로로 등가되는 형태의 구조로 형성될 수 있다.According to another aspect, the piezoresistor may be formed in a structure equivalent to a Wheatstone Bridge circuit.
또 다른 측면에 따르면, 상기 압저항체는 상기 외곽 지지체와 상기 질량체의 사이에 박막 형태로 형성될 수 있다.According to another aspect, the piezoresistor may be formed in a thin film form between the outer support and the mass.
또 다른 측면에 따르면, 상기 압저항체는 상기 외곽 지지체와 상기 질량체의 사이에 0.1~ 10.0 ㎛의 박막 형태로 형성될 수 있다.According to another aspect, the piezoresistor may be formed in a thin film form of 0.1 ~ 10.0 ㎛ between the outer support and the mass.
또 다른 측면에 따르면, 상기 압저항체는 CMOS(상보성금속산화물반도체) 공정을 통해 박막 형태로 제작될 수 있다.According to another aspect, the piezoresistor may be manufactured in a thin film form through a CMOS (complementary metal oxide semiconductor) process.
본 발명의 실시예에 따르면, 일 실시예에 따른 가속도계를 포함하고, 상기 가속도계를 통해 측정된 충격 크기를 기준으로 기 정의된 동작을 수행하는 장치를 제공할 수 있다.According to an embodiment of the present invention, an apparatus including an accelerometer according to an embodiment may be provided, and a device for performing a predefined operation based on an impact magnitude measured through the accelerometer may be provided.
본 발명의 실시예에 따르면, 압저항형의 가속도계는, 내부가 수직으로 뚫린 개구부(開口部) 형태의 외곽 지지체; 상기 외곽 지지체의 내부에 고정되는 강성체; 상기 외곽 지지체에 둘러싸인 상태에서 상기 강성체에 연결되는 질량체(mass); 및 상기 외곽 지지체와 상기 질량체의 사이에 연결되는 4개의 압저항체(piezoresistor)를 포함하여 이루어질 수 있으며, 이때 외부로부터 충격을 받으면 상기 질량체의 움직임에 따른 상기 압저항체의 저항 변화를 통해 상기 충격의 크기를 측정할 수 있다.According to an embodiment of the present invention, a piezoresistive accelerometer may include: an outer support having an opening formed in a vertical direction thereof; A rigid body fixed inside the outer supporter; A mass connected to the rigid body in a state surrounded by the outer support; And four piezoresistors connected between the outer support body and the mass body, wherein the impact size is changed by the resistance change of the piezoresistor according to the movement of the mass body when the external body is impacted. Can be measured.
다른 측면에 따르면, 상기 외곽 지지체는, 사각형의 구조로 가로와 세로가 0.5~10.0㎜이며 상기 수직 방향의 길이인 두께는 0.1~1.0 ㎜로 이루어질 수 있다.According to another aspect, the outer support, the rectangular structure has a horizontal and vertical length of 0.5 ~ 10.0mm and the thickness of the vertical direction may be made of 0.1 ~ 1.0 mm.
또 다른 측면에 따르면, 상기 강성체는, 상기 질량체의 움직임에 대하여 스프링(spring) 역할을 할 수 있다.According to another aspect, the rigid body can act as a spring (spring) to the movement of the mass.
또 다른 측면에 따르면, 상기 강성체와 상기 질량체는 상기 외곽 지지체의 내부에 상기 수직 방향으로 형성되고, 상기 강성체는 양쪽 측면이 상기 외곽 지지체의 내부의 저부에 각각 고정되며, 상기 질량체는 하부 면이 상기 강성체의 상단에 연결되어 상기 외곽 지지체의 내부의 상부에 위치할 수 있다.According to another aspect, the rigid body and the mass are formed in the vertical direction in the interior of the outer support, the rigid body is fixed to both sides of the bottom of the interior of the outer support, respectively, the mass is a lower surface It is connected to the upper end of the rigid body may be located in the upper portion of the inside of the outer support.
또 다른 측면에 따르면, 상기 강성체는, 각 측면의 일부 또는 전체가 상기 외곽 지지체의 내부에 고정될 수 있다.According to another aspect, the rigid body, part or all of each side may be fixed to the inside of the outer support.
또 다른 측면에 따르면, 상기 강성체는, 상기 충격을 받는 방향과 수직을 이루는 위치에 해당되는 상기 외곽 지지체의 내부에 고정될 수 있다.According to another aspect, the rigid body may be fixed to the inside of the outer support corresponding to the position perpendicular to the direction in which the impact.
또 다른 측면에 따르면, 상기 압저항체는, 상기 질량체의 상부 표면에서 상기 충격을 받는 방향에 위치할 수 있다.According to another aspect, the piezoresistor may be located in the direction of the impact on the upper surface of the mass.
또 다른 측면에 따르면, 상기 압저항체는, 상기 질량체의 상부 표면에서 상기 충격을 받는 방향에 위치하되, 서로 대칭이 되는 양쪽에 각각 2개씩 위치할 수 있다.According to yet another aspect, the piezoresistors may be located in the direction of the impact on the upper surface of the mass body, but may be located two on each side that are symmetrical to each other.
또 다른 측면에 따르면, 상기 압저항체는, 상기 질량체의 상부 표면과 상기 외곽 지지체의 사이에 박막 형태로 형성될 수 있다.According to another aspect, the piezoresistor may be formed in a thin film form between the upper surface of the mass and the outer support.
또 다른 측면에 따르면, 상기 압저항체는, 상기 질량체의 상부 표면과 상기 외곽 지지체의 사이에 0.1~50.0 ㎛의 박막 형태로 형성될 수 있다.According to another aspect, the piezoresistor may be formed in a thin film form of 0.1 ~ 50.0 ㎛ between the upper surface of the mass and the outer support.
본 발명의 실시예에 따르면, 낮은 가속도에서부터 수 십만 g급의 높은 가속도를 측정할 수 있는 충격 감지에 적합한 가속도계를 제공할 수 있다.According to an embodiment of the present invention, it is possible to provide an accelerometer suitable for shock detection capable of measuring high accelerations from low acceleration to hundreds of thousands of g class.
본 발명의 실시예에 따르면, 반도체 집적회로 기술에 근간한 실리콘 재질의 가속도계를 제공함으로써 가속도계의 소형화, 저가화, 정밀화가 가능하며, 상대적으로 높은 신뢰성을 보장할 수 있으며 유지보수 또한 상대적으로 쉬운 장점이 있다.According to an embodiment of the present invention, by providing an accelerometer made of silicon based on semiconductor integrated circuit technology, the accelerometer can be miniaturized, reduced in cost, and refined, relatively high in reliability, and relatively easy in maintenance. have.
본 발명의 실시예에 따르면, 외부 충격에 대해 안정한 장점을 가진 압저항형 감지 방식의 가속도계를 제공함으로써 외부 충격에 대해 안정적인 것은 물론, 선형성이 우수하고 전자파 간섭의 영향을 최소화 하여 신뢰성이 뛰어난 가속도계를 제공할 수 있다.According to an embodiment of the present invention, by providing a piezoresistive sensing accelerometer having a stable advantage against external impact, it is not only stable against external impact, but also has excellent linearity and minimizes the influence of electromagnetic interference, thereby providing a reliable accelerometer. Can provide.
도 1은 종래 기술의 일 예에 따른 압저항형 가속도계의 기본 구조를 도시한 것이다.1 illustrates a basic structure of a piezoresistive accelerometer according to an example of the prior art.
도 2는 본 발명의 일 실시예에 있어서, 실리콘 재질을 이용한 압저항형 가속도계의 구조를 설명하기 위한 사시도이다.Figure 2 is a perspective view for explaining the structure of a piezoresistive accelerometer using a silicon material in an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 있어서, 실리콘 재질을 이용한 압저항형 가속도계의 다른 구조를 설명하기 위한 사시도이다.3 is a perspective view for explaining another structure of a piezoresistive accelerometer using a silicon material according to an embodiment of the present invention.
도 4와 도 5는 본 발명의 일 실시예에 따른 압저항형 가속도계의 작동 원리를 설명하기 위한 도면이다.4 and 5 are diagrams for explaining the operating principle of the piezoresistive accelerometer according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 있어서, 충격 측정용 압저항형 가속도계의 구조를 설명하기 위한 사시도이다.6 is a perspective view for explaining the structure of a piezoresistive accelerometer for impact measurement according to an embodiment of the present invention.
도 7 및 도 8은 본 발명의 일 실시예에 있어서, 충격 측정용 압저항형 가속도계의 구조를 설명하기 위하여 도 6에서 A-A'부분의 단면을 도시한 것이다.7 and 8 are cross-sectional views taken along the line A-A 'in FIG. 6 to explain the structure of a piezoresistive accelerometer for impact measurement according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 충격 측정용 압저항형 가속도계의 작동 원리를 설명하기 위한 도면이다.9 is a view for explaining the operation principle of the piezoresistive accelerometer for impact measurement according to an embodiment of the present invention.
이하, 본 발명의 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 실시예는 물체에 고정되어 물체가 받는 충격의 크기를 측정할 수 있는 가속도계에 관한 것이다.This embodiment relates to an accelerometer that is fixed to an object and can measure the magnitude of an impact the object receives.
본 실시예에 따른 가속도계는 자동차, 유전 탐사를 포함한 각종 산업용 장치와 설비, 군수용, 항공우주산업 등 충격, 진동으로 인한 가속도 측정이 필요한 다양한 분야에서 사용될 수 있다.The accelerometer according to the present embodiment may be used in various fields that require acceleration measurement due to shock and vibration, such as various industrial devices and facilities including military vehicles and oil fields, military, aerospace, and the like.
일 예로, 본 실시예에 따른 가속도계는 자동차 에어백 장치, 공장 자동화 및 로봇 등의 제어 시스템에 적용하는 것은 물론, 지하 시설물을 공격할 수 있는 관통 폭탄인 벙커버스터의 신관, 지하 시설물이 다층 구조로 이루어져 있을 경우에 다층 구조를 감지하여 관통한 후에 폭발시킬 수 있는 견고표적 침투용 지능신관(hard target smart fuze, HTSF) 시스템 등에 적용될 수 있다.For example, the accelerometer according to the present embodiment is applied to a control system such as an automobile airbag device, factory automation, and a robot, as well as a multi-layered structure of a fuse cover of a bunker, which is a through bomb capable of attacking underground facilities. If present, it can be applied to hard target smart fuze (HTSF) system that detects and penetrates the multilayer structure and explodes.
본 발명의 일 실시예에 따른 가속도계는 실리콘 재질로 이루어질 수 있으며, 반도체 가공 기술인 MEMS(Micro Electro Mechanical Systems) 공정을 이용하여 제작할 수 있다.The accelerometer according to an embodiment of the present invention may be made of a silicon material, and may be manufactured using a MEMS (Micro Electro Mechanical Systems) process, which is a semiconductor processing technology.
실리콘을 이용하여 MEMS 기술로 제작된 가속도계는 재료로 사용되는 실리콘의 기계적 성질이 기본적으로 우수하기 때문에 히스테리시스(hysteresis) 현상이 거의 없으며, 반도체 집적회로 공정을 이용하기 때문에 신뢰성이 높고 대량생산이 가능하다.Accelerometers manufactured using MEMS technology using silicon have almost no hysteresis due to the excellent mechanical properties of silicon used as a material, and are highly reliable and mass-produced due to the use of semiconductor integrated circuit processes. .
따라서, 반도체 집적회로기술을 근간으로 한 실리콘 MEMS 기술로 제작된 가속도계는 소형화, 저가화, 정밀화가 가능할 뿐만 아니라, 미세 질량체로 인하여 본질적으로 충격에 매우 강인하기 때문에 낮은 가속도에서부터 수만 g(중력가속도)급 이상이 주어지는 고충격에 대해 매우 이상적인 특징을 가질 수 있으며, 상대적으로 높은 신뢰성을 보장하며 유지 보수 또한 상대적으로 쉬운 이점이 있다.Therefore, accelerometers made of silicon MEMS technology based on semiconductor integrated circuit technology can be miniaturized, inexpensive, and refined, and because they are inherently extremely shock-resistant due to the fine mass, they can be applied from low acceleration to tens of thousands of g (gravity acceleration). It can have very ideal features for the high impact given the above, it ensures a relatively high reliability and maintenance is also relatively easy.
MEMS 기반의 가속도계 감지방식은 주로 압저항형(Piezoresistive), 압전형(Piezoelectric)과 정전용량형(Capacitive)이 이용되고 있다.MEMS-based accelerometer detection methods mainly use piezoresistive, piezoelectric and capacitive.
표 1은 가속도계의 감지방식에 있어 압저항형, 압전형, 정전용량형의 특성을 비교한 것이다.Table 1 compares the characteristics of piezoresistive type, piezoelectric type, and capacitive type in the accelerometer sensing method.
Figure PCTKR2013009675-appb-I000001
Figure PCTKR2013009675-appb-I000001
압전형은 동작온도범위가 넓은 장점이 있으나, 정지상태의 출력신호가 불안정하고 선형성이 낮으며, 제한된 감지주파수범위로 인해 충격에 의해 출력신호가 시프트(shift)되는 단점을 지니고 있다.The piezoelectric type has a wide operating temperature range, but has a disadvantage in that the output signal in a stationary state is unstable and low in linearity, and the output signal is shifted by shock due to the limited sensing frequency range.
정전용량형은 감도는 뛰어나지만 전극을 형성하는 제작기술과 외부회로와 연결구조가 복잡하고, 큰 가속도 입력이 가해질 경우에 비선형 오차가 크게 나타나는 문제가 있다.The capacitive type has excellent sensitivity, but the manufacturing technology for forming the electrode, the external circuit and the connection structure are complicated, and a large nonlinear error occurs when a large acceleration input is applied.
표 1에서 알 수 있듯이, 압저항형 감지방식은 상기한 압전형과 정전용량형에 비해 정지상태와 충격에 대해 안정적이고 제작 공정 또한 상대적으로 간단하다는 장점을 가지고 있다.As can be seen in Table 1, the piezoresistive sensing method has the advantages of being stable against a stationary state and an impact and relatively simple to fabrication process, compared to the piezoelectric and capacitive types.
본 실시예에서는 고충격에 대해 보다 안정적이고 적합한 가속도계를 위하여 압저항형의 감지 방식을 이용한다.In this embodiment, a piezoresistive sensing method is used for a more stable and suitable accelerometer with high impact.
따라서, 본 실시예에서는 낮은 가속도에서부터 수만 g급 이상의 고충격에 대해서도 적합한 특징을 가지는 가속도계로서, 실리콘 재질을 이용한 압저항형 감지방식의 충격 감지용 가속도계를 제공할 수 있다.Therefore, the present embodiment can provide an accelerometer for shock detection of a piezoresistive sensing method using a silicon material as an accelerometer having suitable characteristics even for high impacts from low acceleration to tens of thousands of g or more.
도 2는 본 발명의 일 실시예에 있어서, 실리콘 재질을 이용한 압저항형 가속도계의 구조를 설명하기 위한 사시도이다.Figure 2 is a perspective view for explaining the structure of a piezoresistive accelerometer using a silicon material in an embodiment of the present invention.
이하의 설명에서 상, 하, 좌, 우, 앞, 뒤의 방향 표현은 설명의 편의를 위해 도 2에 도시한 도면을 기준으로 한 것이다.In the following description, up, down, left, right, front, and rear direction representations are based on the drawings illustrated in FIG. 2 for convenience of description.
도 2에 도시된 바와 같이, 소정 규격의 실리콘 재질에서 질량체(130)와 힌지(140a~140d)가 되는 부분을 제외한 나머지 부분(120a~120d)(이하, ‘슬릿(slit)’이라 칭함)은 수직으로 뚫려 있다.As shown in FIG. 2, the remaining portions 120a to 120d (hereinafter, referred to as 'slit') except for the portions that become the mass body 130 and the hinges 140a to 140d in a silicon material having a predetermined size may be referred to as 'slit'. It is drilled vertically.
다시 말해, 일 실시예에 따른 가속도계(100)는 내부가 수직으로 뚫린 개구부 형태의 외곽 지지체(110)와, 외곽 지지체(110)의 내부에 위치하여 외곽 지지체(110)에 둘러싸인 질량체(130)와, 외곽 지지체(110)와 질량체(130)를 연결하는 4개의 힌지(140a~140d)로 이루어질 수 있다.In other words, the accelerometer 100 according to the exemplary embodiment includes an outer support 110 having an opening shape vertically formed therein, a mass body 130 positioned inside the outer support 110 and surrounded by the outer support 110. It may be composed of four hinges 140a to 140d connecting the outer support 110 and the mass body 130.
상기한 가속도계(100)의 구조는 MEMS 공정을 통해 실리콘 재질의 상/하/좌/우에 도 2와 같이 슬릿(120a~120d)을 형성함으로써 외곽 지지체(110)와, 질량체(130), 그리고 4개의 힌지(140a~140d)가 구분될 수 있다.The structure of the accelerometer 100 is formed by the slit (120a ~ 120d) as shown in Figure 2 in the upper / lower / left / right of the silicon material through the MEMS process, the outer support 110, the mass body 130, and 4 Hinges 140a to 140d may be distinguished.
일 예로, 외곽 지지체(110)는 소정 규격의 사각형 구조로 이루어질 수 있다.For example, the outer support 110 may have a rectangular structure of a predetermined standard.
그리고, 질량체(130)는 외곽 지지체(110)와의 간극이 일정하도록 외곽 지지체(110)와 형태가 동일하되 외곽 지지체(110)보다 작은 크기의 사각형 구조로 이루어질 수 있다. 다른 예로, 질량체(130)는 외곽 지지체(110)와의 간극이 존재하되, 힌지(140a~140d) 또는 압저항체(150a~150d)의 형성 조건에 따라 외곽 지지체(110)의 형태와 무관한 구조로 이루어질 수 있다.In addition, the mass body 130 may have the same shape as that of the outer support 110 so that a gap with the outer support 110 is constant, but may have a rectangular structure having a smaller size than the outer support 110. As another example, the mass body 130 has a gap with the outer support 110, but has a structure independent of the shape of the outer support 110 according to the formation conditions of the hinge (140a ~ 140d) or piezo resistors (150a ~ 150d). Can be done.
본 발명의 일 실시예에서, 외곽 지지체(110)는 가로(W)와 세로(H)가 1~10 ㎜ 정도로 제작될 수 있으며, 가속도계(100)의 강도를 보장하기 위하여 두께가 0.1~1.0 ㎜ 정도로 이루어질 수 있다. 예를 들면, 외곽 지지체(110)는 가로(W)와 세로(H)가 3 ㎜ 이내로 제작될 수 있으며, 두께가 0.5 ㎜ 정도로 이루어질 수 있다. 이때, 질량체(130)와 힌지(140a~140d)의 두께는 외곽 지지체(110)와 같은 두께로 이루어지게 된다.In one embodiment of the present invention, the outer support 110 may be manufactured in the horizontal (W) and vertical (H) of about 1 ~ 10 mm, the thickness is 0.1 ~ 1.0 mm to ensure the strength of the accelerometer 100 It can be done to a degree. For example, the outer support 110 may be manufactured to have a width (W) and a length (H) within 3 mm, and may have a thickness of about 0.5 mm. At this time, the thickness of the mass body 130 and the hinge (140a ~ 140d) is made of the same thickness as the outer support (110).
이때, 4개의 힌지(140a~140d)는 스프링 역할을 담당하는 것으로, 질량체(130)의 서로 대칭이 되는 양쪽에 각각 2개씩 형성될 수 있다. 예를 들어, 도 2와 같이 힌지(140a~140d)는 질량체(130)의 좌측과 우측에 각각 2개씩 형성되어 외곽 지지체(110)와 질량체(130)를 연결할 수 있다.At this time, the four hinges (140a ~ 140d) to play a role of a spring, each of the mass 130 may be formed on each of two symmetrical to each other. For example, as shown in FIG. 2, two hinges 140a to 140d are formed at the left and right sides of the mass body 130 to connect the outer support 110 and the mass body 130.
특히, 4개의 힌지(140a~140d)는 가속도계(100)가 충격을 받는 방향 이외의 방향에 대하여 질량체(130)의 움직임을 최소화 할 수 있는 위치에 형성되는 것이 바람직하다. 예컨대, 도 2에서 가속도계(100)의 상/하측이 받는 충격을 감지하고자 하는 경우에는 힌지(140a~140d)를 질량체(130)의 좌측과 우측에 각각 2개씩 형성할 수 있다.In particular, the four hinges (140a ~ 140d) is preferably formed at a position that can minimize the movement of the mass body 130 in a direction other than the direction in which the accelerometer 100 is impacted. For example, in FIG. 2, in order to detect an impact received by the upper / lower side of the accelerometer 100, two hinges 140a to 140d may be formed on the left side and the right side of the mass body 130, respectively.
이러한 구조에 의해, 4개의 힌지(140a~140d)는 가속도계(100)가 받는 충격 방향에 대해 질량체(130)의 움직임을 원활하게 할 수 있으며, 더욱이 가속도계(100)의 상측으로 전달되는 충격에 대하여 질량체(130)의 좌/우 변이를 최소화 함으로써 충격 감지 오류를 방지할 수 있다.By this structure, the four hinges (140a ~ 140d) can smoothly move the mass 130 in the impact direction received by the accelerometer 100, and moreover against the impact transmitted to the upper side of the accelerometer 100 The impact detection error can be prevented by minimizing the left / right side shift of the mass body 130.
또한, 본 실시예에서 힌지(140a~140d)의 두께를 외곽 지지체(110)와 같은 두께로 형성하여 힌지(140a~140d)에 대해 상당한 두께를 줌으로써 외부 충격에 대한 질량체(130)의 뒤틀림을 최대한 방지할 수 있으며 가속도계(100)의 강도를 보장할 수 있다.In addition, in the present embodiment, by forming the thickness of the hinge (140a ~ 140d) to the same thickness as the outer support 110 to give a considerable thickness for the hinge (140a ~ 140d) to minimize the distortion of the mass body 130 against external impact It can prevent and can ensure the strength of the accelerometer 100.
더욱이, 일 실시예에 따른 가속도계(100)는 외곽 지지체(110)와 질량체(130) 사이에 4개의 압저항체(150a~150d)가 연결될 수 있다.Furthermore, in the accelerometer 100 according to an embodiment, four piezoresistors 150a to 150d may be connected between the outer support 110 and the mass body 130.
이때, 4개의 압저항체(150a~150d)는 질량체(130)의 서로 대칭이 되는 양쪽에 각각 2개씩 형성될 수 있다. 예를 들어, 도 2와 같이 압저항체(150a~150d)는 질량체(130)의 상측과 하측에 각각 2개씩 형성되어 외곽 지지체(110)와 질량체(130) 사이에 연결될 수 있다. 본 실시예에서, 4개의 압저항체(150a~150d)는 휘스톤브릿지 회로로 등가되는 형태로 구성될 수 있다.In this case, four piezoresistors 150a to 150d may be formed on each of two mass bodies 130, which are symmetrical to each other. For example, as shown in FIG. 2, two piezoresistors 150a to 150d may be formed at upper and lower sides of the mass body 130, respectively, and may be connected between the outer support 110 and the mass body 130. In the present embodiment, the four piezoresistors 150a to 150d may be configured to be equivalent to the Wheatstone bridge circuit.
특히, 4개의 압저항체(150a~150d)는 외부 충격에 의한 질량체(130)의 움직임을 효과적으로 감지하기 위하여 가속도계(100)의 충격 방향에 직접 배치될 수 있다. 예컨대, 도 2에서 가속도계(100)의 상/하측이 받는 충격을 감지하고자 하는 경우에는 압저항체(150a~150d)를 질량체(130)의 상측과 하측에 각각 2개씩 형성할 수 있다.In particular, the four piezoresistors 150a to 150d may be directly disposed in the impact direction of the accelerometer 100 in order to effectively detect the movement of the mass body 130 due to an external impact. For example, in FIG. 2, two piezoresistive elements 150a to 150d may be formed on the upper side and the lower side of the mass body 130, respectively, in order to detect an impact received by the upper and lower sides of the accelerometer 100.
일 예로, 4개의 압저항체(150a~150d)는 질량체(130)의 서로 대칭이 되는 양쪽에 각각 2개씩 형성되되, 2개의 압저항체가 외곽 지지체(110)와 질량체(130) 사이의 일 표면에 모두 형성될 수 있다. 예컨대, 도 2와 같이 질량체(130)의 상측에 위치하는 두 개의 압저항체(150a, 150d)와 질량체(130)의 하측에 위치하는 두 개의 압저항체(150b, 150c)가 모두 외곽 지지체(110)와 질량체(130) 사이의 앞쪽 표면에 형성될 수 있다.As an example, four piezoresistors 150a to 150d are formed on each side of the mass body 130 to be symmetrical with each other, and two piezoresistors are formed on one surface between the outer support body 110 and the mass body 130. All can be formed. For example, as shown in FIG. 2, two piezoresistors 150a and 150d positioned above the mass body 130 and two piezoresistors 150b and 150c positioned below the mass body 130 are both included in the outer support 110. And the front surface between the mass 130.
다른 예로, 4개의 압저항체(150a~150d)는 질량체(130)의 서로 대칭이 되는 양쪽에 각각 2개씩 형성되되, 2개의 압저항체가 외곽 지지체(110)와 질량체(130) 사이의 일 표면과 다른 표면에 하나씩 형성될 수 있다. 예컨대, 도 3((a)는 가속도계(100)의 전면 측 사시도, (b)는 가속도계(100)의 배면 측 사시도)과 같이 질량체(130)의 상측에 위치하는 두 개의 압저항체(150a, 150d) 중 하나(150a)는 외곽 지지체(110)와 질량체(130) 사이의 앞쪽 표면에, 다른 하나(150d)는 뒤쪽 표면에 형성될 수 있고, 아울러 질량체(130)의 하측에 위치하는 두 개의 압저항체(150b, 150c) 중 하나(150b)는 외곽 지지체(110)와 질량체(130) 사이의 앞쪽 표면에, 다른 하나(150c)는 뒤쪽 표면에 형성될 수 있다. 다시 말해, 도 3의 (a)와 같이 외곽 지지체(110)와 질량체(130) 사이의 앞쪽 표면에 두 개의 압저항체(150a, 150b)가 위치하고 도 3의 (b)와 같이 외곽 지지체(110)와 질량체(130) 사이의 뒤쪽 표면에 두 개의 압저항체(150c, 150d)가 위치할 수 있다. 이때, 외곽 지지체(110)와 질량체(130) 사이의 앞쪽 표면과 뒤쪽 표면에 위치하는 두 개의 압저항체(150a, 150d)(150b, 150c)는 서로 대향되는 위치에 형성될 수 있다.As another example, four piezoresistors 150a to 150d are formed on each side of the mass body 130, each of which is symmetrical with each other, and two piezoresistors are formed on one surface between the outer support 110 and the mass body 130. It can be formed one on the other surface. For example, as shown in FIG. 3 ((a) is a front side perspective view of the accelerometer 100, (b) is a rear side perspective view of the accelerometer 100) two piezoresistors 150a and 150d positioned above the mass body 130. One 150a may be formed at the front surface between the outer support 110 and the mass 130, and the other 150d may be formed at the rear surface, and two pressures may be located below the mass 130. One of the resistors 150b and 150c may be formed on the front surface between the outer support 110 and the mass body 130, and the other 150c may be formed on the rear surface. In other words, two piezoresistors 150a and 150b are positioned on the front surface between the outer support 110 and the mass body 130 as shown in FIG. 3A and the outer support 110 as shown in FIG. And two piezoresistors 150c and 150d may be located on the rear surface between the mass 130 and the mass 130. In this case, the two piezoresistors 150a, 150d, 150b, 150c positioned on the front surface and the rear surface between the outer support 110 and the mass body 130 may be formed at positions facing each other.
그리고, 4개의 압저항체(150a~150d)는 외곽 지지체(110)와 질량체(130) 사이에 연결되되, 외곽 지지체(110)와 질량체(130)의 사이에 아주 얇은 박막 형태로 형성될 수 있다. 이때, 압저항체(150a~150d)의 두께는 0.1~10.0 ㎛ 정도의 극도로 얇은 상태로, 압저항체(150a~150d)는 질량체(130)와 외곽 지지체(110) 사이에 얇은 브릿지 형태로 연결될 수 있다.The four piezoresistors 150a to 150d may be connected between the outer support 110 and the mass 130, and may be formed in a very thin film form between the outer support 110 and the mass 130. In this case, the piezo resistors 150a to 150d have a thickness of about 0.1 to 10.0 μm, and the piezo resistors 150a to 150d may be connected in a thin bridge form between the mass body 130 and the outer support 110. have.
일 예로, 가속도계(100)의 압저항체(150a~150d)를 극도로 얇은 박막 형태로 제작하기 위해서는 그에 적합하도록 CMOS(상보성 금속 산화물 반도체) 공정을 이용할 수 있다.For example, in order to fabricate the piezoresistors 150a to 150d of the accelerometer 100 in the form of an extremely thin film, a CMOS (complementary metal oxide semiconductor) process may be used to suit them.
본 실시예에서, 4개의 압저항체(150a~150d)는 질량체(130)에 대하여 서로 대칭되도록 형성되고 길이, 폭 등이 동일한 조건으로 형성되므로 외부 온도 영향에 따른 저항 변화가 동일하며 이에 따라 신호 드리프트(drift) 현상을 방지하여 안정적인 신호를 얻을 수 있다.In the present embodiment, the four piezoresistors 150a to 150d are formed to be symmetrical with respect to the mass body 130 and have the same length, width, and the like, and thus have the same resistance change due to external temperature influence, and thus signal drift. A stable signal can be obtained by preventing drift.
상기한 구조에 의하면, 일 실시예에 따른 가속도계(100)는 물체가 충격을 받으면 질량체(130)의 움직임에 따른 압저항체(150a~150d)의 저항 변화로부터 물체가 받은 충격 크기를 측정할 수 있다.According to the above structure, the accelerometer 100 according to an embodiment may measure the magnitude of the impact received by the object from the resistance change of the piezoresistors 150a to 150d according to the movement of the mass body 130 when the object is impacted. .
도 4를 참조하면, 일 실시예에 따른 가속도계(100)는 외부에서 충격이 올 경우 질량체(130)가 상하로 움직이게 된다. 이때, 질량체(130)가 윗방향으로 움직이면 질량체(130)의 상측에 연결된 두 개의 압저항체(150a, 150d)는 수축력(compression)으로 인해 그 길이가 줄어 해당 저항(R1, R4)이 증가하는 반면에, 질량체(130)의 하측에 연결된 두 개의 압저항체(150b, 150c)는 인장력(tension)으로 인해 그 길이가 늘어나서 해당 저항(R2, R3)이 감소한다.Referring to FIG. 4, the accelerometer 100 according to an exemplary embodiment may move the mass 130 up and down when an impact comes from the outside. At this time, when the mass body 130 moves upward, the two piezoresistors 150a and 150d connected to the upper side of the mass body 130 are reduced in length due to the compression force, so that the corresponding resistances R1 and R4 increase. For example, the two piezoresistors 150b and 150c connected to the lower side of the mass body 130 increase in length due to the tension, so that the corresponding resistances R2 and R3 decrease.
본 실시예에서 4개의 압저항체(150a~150d)에 대한 등가 회로는 도 5와 같이 4개의 저항(R1~R4)로 이루어진 휘스톤브릿지 회로로 나타낼 수 있다. 이에, 4개의 압저항체(150a~150d)에 대한 신호선(미도시)를 도 5와 같이 배치하여 상기한 동작 원리로 충격의 크기에 따라서 그에 상응하는 전압 값을 얻을 수 있다. 다시 말해, 질량체(130)의 양쪽에 위치하고 있는 압저항체(150a~150d)가 인장과 압축을 받게 되고 그로 인해 발생하는 압저항체(150a~150d)의 저항 변화를 휘스톤브릿지로 측정하여 충격의 크기, 즉 가속도를 감지하게 된다.In the present embodiment, the equivalent circuit for the four piezoresistors 150a to 150d may be represented by a Wheatstone bridge circuit composed of four resistors R1 to R4 as shown in FIG. 5. Accordingly, by arranging signal lines (not shown) for four piezoresistors 150a to 150d as shown in FIG. 5, corresponding voltage values may be obtained according to the magnitude of the impact according to the above-described operating principle. In other words, the piezo resistors 150a to 150d located on both sides of the mass body 130 are subjected to tension and compression, and the change in resistance of the piezo resistors 150a to 150d generated by the whistle bridge is measured by a whistle bridge. That is, acceleration is sensed.
도 6은 본 발명의 일 실시예에 있어서, 충격 측정용 압저항형 가속도계의 구조를 설명하기 위한 사시도이고, 도 7 및 도 8은 충격 측정용 압저항형 가속도계의 구조를 설명하기 위하여 도 6에서 A-A' 부분의 단면을 도시한 것이다.FIG. 6 is a perspective view illustrating a structure of a piezoresistive accelerometer for impact measurement according to an exemplary embodiment of the present invention, and FIGS. 7 and 8 are views illustrating a structure of a piezoresistive accelerometer for impact measurement according to an embodiment of the present invention. The cross section of AA 'part is shown.
이하의 설명에서는 설명의 편의를 위해 가속도계가 받는 충격 방향을 x축을 기준으로 한 좌/우 방향으로 표현하고 높이에 따른 수직 방향을 z축을 기준으로 한 상/하 방향으로 표현하기로 한다.In the following description, for the convenience of explanation, the shock direction received by the accelerometer is expressed in the left / right direction based on the x-axis, and the vertical direction according to the height is expressed in the up / down direction based on the z-axis.
도 6 내지 도 8을 참조하면, 가속도계(200)는 소정 규격의 실리콘 재질로 이루어질 수 있으며, 실리콘 재질에서 외곽 지지체(210)와, 강성체(220), 그리고 질량체(230)가 되는 부분을 제외한 나머지 부분은 수직으로 뚫려 있다.6 to 8, the accelerometer 200 may be made of a silicon material of a predetermined standard, except for the parts of the outer support 210, the rigid body 220, and the mass body 230 in the silicon material. The rest is drilled vertically.
다시 말해, 일 실시예에 따른 가속도계(200)는 내부가 수직으로 뚫린 개구부 형태의 외곽 지지체(210)와, 외곽 지지체(210)의 내부에 고정된 강성체(220)와, 외곽 지지체(210)에 둘러싸인 상태에서 강성체(220)에 연결되는 질량체(230)로 이루어질 수 있다.In other words, the accelerometer 200 according to the exemplary embodiment includes an outer support 210 having an opening formed therein, a rigid body 220 fixed inside the outer support 210, and an outer support 210. It may be made of a mass body 230 connected to the rigid body 220 in a state surrounded by.
상기한 가속도계(200)의 구조는 MEMS 공정을 통해 실리콘 재질에 도 6 내지 도 8과 같은 형태로 각각 슬릿을 형성함으로써 외곽 지지체(210)와, 강성체(220), 그리고 질량체(230)가 구분될 수 있다.The structure of the accelerometer 200 is formed by forming a slit in the silicon material through the MEMS process in the form shown in FIGS. 6 to 8, respectively, to distinguish the outer support 210, the rigid body 220, and the mass body 230. Can be.
본 실시예에서, 강성체(220)와 질량체(230)는 외곽 지지체(210)의 내부에 개구부가 형성된 수직 방향으로 적층되어 형성될 수 있다. 이때, 강성체(220)는 양쪽 측면이 외곽 지지체(210)의 내부에 형성된 개구부의 저부에 각각 고정될 수 있다.In the present exemplary embodiment, the rigid body 220 and the mass body 230 may be formed by being stacked in a vertical direction in which an opening is formed in the outer support 210. At this time, the rigid body 220 may be fixed to the bottom of the opening formed on both sides of the outer support 210, respectively.
일 예로, 강성체(220)는 도 7에 도시한 바와 같이 각 측면의 하단 일부, 즉 밑단(220a)이 외곽 지지체(210)의 내부에 고정될 수 있으며, 밑단(220a)과 함께 ‘┸’와 같은 형태로 형성될 수 있다. 다른 예로, 강성체(220)는 도 8에 도시한 바와 같이 각 측면 전체가 외곽 지지체(210)의 내부에 형성된 개구부의 저부에 고정될 수 있다. 도 8과 같이, 강성체(220)의 측면 전체가 외곽 지지체(210)의 내부에 고정될 경우 가속도계(200)의 강도를 보다 높일 수 있고 아주 높은 충격을 감지하는 모델에 더욱 적합할 수 있다.For example, the rigid body 220, as shown in Figure 7, the lower portion of each side, that is, the bottom 220a may be fixed to the inside of the outer support 210, '┸' together with the bottom (220a) It may be formed in the form such as. As another example, the rigid body 220 may be fixed to the bottom of the opening formed in the inner side of the outer support 210 as a whole of each side as shown in FIG. As shown in FIG. 8, when the whole side surface of the rigid body 220 is fixed to the inside of the outer supporter 210, the strength of the accelerometer 200 may be increased and may be more suitable for a model that senses a very high impact.
또한, 질량체(230)는 외곽 지지체(210)의 내부에 형성된 개구부의 상부에 위치할 수 있도록 하부 면이 강성체(220)의 상단에 연결될 수 있다. 다시 말해, 질량체(230)가 외곽 지지체(210)에 고정되어 있는 강성체(220)와 연결됨에 따라 강성체(220)는 질량체(230)가 움직일 때 스프링(spring) 역할을 할 수 있다.In addition, the mass body 230 may have a lower surface connected to an upper end of the rigid body 220 so that the mass body 230 may be positioned above the opening formed in the outer support 210. In other words, as the mass body 230 is connected to the rigid body 220 fixed to the outer supporter 210, the rigid body 220 may serve as a spring when the mass body 230 moves.
특히, 강성체(220)는 외곽 지지체(210)의 내부에서 충격을 받는 방향과 수직을 이루는 위치에 고정되는 것이 바람직하다. 예컨대, 도 7과 도 8에 도시한 바와 같이 가속도계(200)가 받는 충격 방향(x축)과 수직인 y축 상의 위치에 해당되는 외곽 지지체(210)의 내부에 강성체(220)의 양 측면이 고정될 수 있다.In particular, the rigid body 220 is preferably fixed to a position perpendicular to the direction of the impact in the interior of the outer support (210). For example, as shown in FIGS. 7 and 8, both sides of the rigid body 220 in the outer support 210 corresponding to a position on the y axis perpendicular to the impact direction (x axis) received by the accelerometer 200. Can be fixed.
그리고, x축과 y축 중 길이가 긴 방향을 길이 방향으로 정의할 때 강성체(220)와 질량체(230)의 길이 방향은 서로 수직으로 형성되거나 같은 일 방향으로 형성될 수 있다. 예컨대, 도 7에서 가속도계(200)의 좌/우측이 받는 충격을 감지하고자 하는 경우에는 질량체(230)의 길이 방향을 충격 방향인 x축 방향으로 형성하고 강성체(220)의 길이 방향을 충격 방향과 수직인 y축 방향으로 형성할 수 있다. 이때, 질량체(230)는 강성체(220)에 대하여 특정 형상을 가지기 보다는 x축, y축, z축 중 적어도 하나 이상의 사이즈가 강성체(220)보다 크게 제작되는 것이 바람직하다.In addition, when defining a long direction of the x-axis and the y-axis in the longitudinal direction, the longitudinal directions of the rigid body 220 and the mass body 230 may be formed perpendicular to each other or may be formed in the same direction. For example, in FIG. 7, when the left / right side of the accelerometer 200 is to detect an impact, the longitudinal direction of the mass body 230 is formed in the x-axis direction, which is the impact direction, and the longitudinal direction of the rigid body 220 is the impact direction. It can be formed in the y-axis direction perpendicular to the. In this case, the mass body 230 may have a size larger than the rigid body 220 in at least one size of the x-axis, the y-axis, and the z-axis, rather than having a specific shape with respect to the rigid body 220.
이러한 구조에 의해, 강성체(220)는 가속도계(200)가 받는 충격 방향에 따른 질량체(230)의 움직임에 대해 스프링 역할을 할 수 있으며, 이와 아울러 강성체(220)가 외곽 지지체(210)에 고정됨에 따라 가속도계(200)가 받는 충격 방향 이외에 다른 방향으로는 질량체(230)가 거의 움직이지 않기 때문에 원하지 않는 방향으로 충격이 가해졌을 때 충격에 대한 감지 신호가 발생하지 않아 충격 감지 오류를 방지할 수 있다.By such a structure, the rigid body 220 may act as a spring for the movement of the mass body 230 according to the impact direction received by the accelerometer 200, and the rigid body 220 to the outer support 210 Since the mass 230 is hardly moved in a direction other than the shock direction received by the accelerometer 200 as it is fixed, a shock detection signal is not generated when an impact is applied in an undesired direction, thereby preventing a shock detection error. Can be.
그리고, 외곽 지지체(210)는 소정 규격의 사각형 구조로 이루어질 수 있다. 이때, 질량체(230)는 외곽 지지체(210)와의 간극이 일정하도록 외곽 지지체(210)와 형태가 동일하되 외곽 지지체(210)보다 작은 크기의 사각형 구조로 이루어질 수 있다. 다른 예로, 질량체(230)는 외곽 지지체(210)와의 간극이 존재하되, 외곽 지지체(210)의 형태와 무관한 구조로 이루어질 수 있다.The outer support 210 may have a rectangular structure of a predetermined standard. In this case, the mass body 230 may have the same shape as the outer support 210 so that a gap with the outer support 210 is constant, but may have a rectangular structure having a smaller size than the outer support 210. As another example, the mass body 230 may have a gap with the outer support 210, but may have a structure independent of the shape of the outer support 210.
본 발명의 일 실시예에서, 외곽 지지체(210)는 도 6에 도시한 바와 같이 가로(W)와 세로(L)가 0.5~10.0㎜ 정도로 제작될 수 있으며, 가속도계(200)의 강도를 보장하기 위하여 개구부가 형성된 수직 방향의 길이인 두께(H)가 0.1~1.0 ㎜ 정도로 이루어질 수 있다. 이때, 외곽 지지체(210)의 내부에 적층된 강성체(220)와 질량체(230)의 전체 두께는 외곽 지지체(210)와 같은 두께로 이루어지게 된다. 결과적으로, 가속도계(200)의 전체 두께에 대해 상당한 수치를 줌으로써 외부 충격에 대한 질량체(230)의 뒤틀림을 최대한 방지할 수 있으며 가속도계(200)의 강도를 보장할 수 있다.In one embodiment of the present invention, the outer support 210, as shown in Figure 6, the width (W) and the length (L) can be manufactured to about 0.5 ~ 10.0mm, to ensure the strength of the accelerometer 200 In order to achieve the thickness H of the vertical direction in which the opening is formed, the thickness H may be about 0.1 mm to 1.0 mm. At this time, the entire thickness of the rigid body 220 and the mass body 230 stacked in the outer support 210 is made of the same thickness as the outer support (210). As a result, by giving a considerable value to the overall thickness of the accelerometer 200, it is possible to prevent the distortion of the mass body 230 against external impact as much as possible and to ensure the strength of the accelerometer 200.
더욱이, 일 실시예에 따른 가속도계(200)는 외곽 지지체(210)와 질량체(230) 사이에 4개의 압저항체(250a, 250b, 250c, 250d)가 연결될 수 있다.In addition, the accelerometer 200 according to an embodiment may have four piezoresistors 250a, 250b, 250c, and 250d connected between the outer support body 210 and the mass body 230.
일 예로, 4개의 압저항체(250a, 250b, 250c, 250d)는 질량체(230)의 상부 표면에서 충격을 받는 방향에 형성할 수 있다. 이때, 4개의 압저항체(250a, 250b, 250c, 250d)는 질량체(230)의 상부 표면에서 서로 대칭이 되는 양쪽에 각각 2개씩 형성될 수 있다. 예를 들어, 도 7과 같이 압저항체(250a, 250b, 250c, 250d)는 질량체(230)의 상부 표면 중 좌측 끝전과 우측 끝전에 각각 2개씩 형성되어 질량체(230)의 상부 표면과 외곽 지지체(210)의 사이에 연결될 수 있다.For example, four piezoresistors 250a, 250b, 250c, and 250d may be formed in a direction in which an impact is applied on the upper surface of the mass body 230. In this case, four piezoresistors 250a, 250b, 250c, and 250d may be formed on each of two symmetrical surfaces on the upper surface of the mass body 230. For example, as shown in FIG. 7, two piezoresistors 250a, 250b, 250c, and 250d are formed at the front of the left end and the right end of the upper surface of the mass body 230, respectively, to form the upper surface and the outer supporter of the mass body 230. 210 may be connected between.
특히, 4개의 압저항체(250a, 250b, 250c, 250d)는 외부 충격에 의한 질량체(230)의 움직임을 효과적으로 감지하기 위하여 가속도계(200)의 충격 방향에 직접 배치될 수 있다. 다시 말해, 가속도계(200)의 충격 방향에 대하여 질량체(230)의 이동 변이가 가장 큰 끝전, 즉 상부 표면의 끝전에 압저항체(250a, 250b, 250c, 250d)가 연결될 수 있다. 예컨대, 도 7에서 가속도계(200)의 좌/우측으로 받는 충격을 감지하고자 하는 경우에는 압저항체(250a, 250b, 250c, 250d)를 질량체(230)의 상부 표면에서 좌측과 우측에 각각 2개씩 형성할 수 있다.In particular, the four piezoresistors 250a, 250b, 250c, and 250d may be directly disposed in the impact direction of the accelerometer 200 in order to effectively detect the movement of the mass body 230 due to an external impact. In other words, the piezoresistors 250a, 250b, 250c, and 250d may be connected to the end of the movement surface of the mass 230 with respect to the impact direction of the accelerometer 200, that is, at the end of the upper surface. For example, in FIG. 7, in order to detect an impact received from the left / right side of the accelerometer 200, two piezoresistors 250a, 250b, 250c, and 250d are formed on the left and right sides of the mass body 230, respectively. can do.
그리고, 4개의 압저항체(250a, 250b, 250c, 250d)는 외곽 지지체(210)와 질량체(230) 사이에 연결되되, 질량체(230)의 상부 표면과 외곽 지지체(210)의 사이에 아주 얇은 박막 형태로 형성될 수 있다. 이때, 압저항체(250a, 250b, 250c, 250d)의 두께는 0.1~50.0 ㎛ 정도의 극도로 얇은 상태로, 압저항체(250a, 250b, 250c, 250d)는 질량체(230)의 상부 표면과 외곽 지지체(210)의 사이에 얇은 브릿지 형태로 연결될 수 있다.In addition, the four piezoresistors 250a, 250b, 250c, and 250d are connected between the outer support body 210 and the mass body 230, and have a very thin thin film between the upper surface of the mass body 230 and the outer support body 210. It may be formed in the form. At this time, the piezo resistors 250a, 250b, 250c, and 250d have an extremely thin thickness of about 0.1 to 50.0 μm, and the piezo resistors 250a, 250b, 250c, and 250d are formed on the upper surface and the outer support of the mass body 230. It may be connected in the form of a thin bridge between the (210).
일 예로, 가속도계(200)의 압저항체(250a, 250b, 250c, 250d)를 극도로 얇은 박막 형태로 제작하기 위해서는 그에 적합하도록 CMOS(상보성 금속 산화물 반도체) 공정을 이용할 수 있다.As an example, in order to fabricate the piezoresistors 250a, 250b, 250c, and 250d of the accelerometer 200 in an extremely thin film form, a CMOS (complementary metal oxide semiconductor) process may be used to suit this purpose.
더욱이, 4개의 압저항체(250a, 250b, 250c, 250d)는 질량체(230)에 대하여 서로 대칭되도록 형성되고 길이, 폭 등이 동일한 조건으로 형성되므로 외부 온도 영향에 따른 저항 변화가 동일하며 이에 따라 신호 드리프트(drift) 현상을 방지하여 안정적인 신호를 얻을 수 있다.Furthermore, since the four piezoresistors 250a, 250b, 250c, and 250d are formed to be symmetrical with respect to the mass body 230 and have the same length, width, and the like, the resistance change according to the external temperature influence is the same, and thus the signal A stable signal can be obtained by preventing drift.
본 실시예에서, 4개의 압저항체(250a, 250b, 250c, 250d)는 휘스톤브릿지 회로로 등가되는 형태로 구성될 수 있다. 그리고, 4개의 압저항체(250a, 250b, 250c, 250d)에 대하여 신호선(240)을 배치하여 가속도계(200)의 충격 크기에 따른 압저항체(250a, 250b, 250c, 250d)의 저항 변화에 상응하는 전압 값을 얻을 수 있다.In the present embodiment, the four piezoresistors 250a, 250b, 250c, and 250d may be configured to be equivalent to the Wheatstone bridge circuit. In addition, the signal lines 240 are disposed on the four piezoresistors 250a, 250b, 250c, and 250d to correspond to resistance changes of the piezoresistors 250a, 250b, 250c, and 250d according to the magnitude of the impact of the accelerometer 200. The voltage value can be obtained.
상기한 구조에 의하면, 일 실시예에 따른 가속도계(200)는 물체가 충격을 받으면 질량체(230)의 움직임에 따른 압저항체(250a, 250b, 250c, 250d)의 저항 변화로부터 물체가 받은 충격 크기를 측정할 수 있다.According to the above structure, the accelerometer 200 according to an embodiment measures the impact magnitude received by the object from the resistance change of the piezoresistors 250a, 250b, 250c, and 250d according to the movement of the mass body 230 when the object is impacted. It can be measured.
도 7 또는 도 8을 참조하면, 일 실시예에 따른 가속도계(200)는 외부에서 충격이 올 경우 질량체(230)가 좌/우로 움직이게 된다. 이때, 질량체(230)가 좌측 방향으로 움직이면 질량체(230)의 상부면 좌측에 연결된 두 개의 압저항체(250a, 250d)는 수축력(compression)으로 인해 그 길이가 줄어 해당 저항(R1', R4')이 증가하는 반면에, 질량체(230)의 상부면 우측에 연결된 두 개의 압저항체(250b, 250c)는 인장력(tension)으로 인해 그 길이가 늘어나서 해당 저항(R2', R3')이 감소한다.Referring to FIG. 7 or 8, the accelerometer 200 according to an embodiment may move the mass 230 to the left / right when an impact from the outside comes. At this time, when the mass body 230 moves in the left direction, the two piezoresistors 250a and 250d connected to the left side of the upper surface of the mass body 230 are reduced in length due to the compression force, and thus the corresponding resistances R1 'and R4'. On the other hand, the two piezoresistors 250b and 250c connected to the right side of the upper surface of the mass body 230 increase in length due to the tension, and thus the corresponding resistances R2 'and R3' decrease.
본 실시예에서 4개의 압저항체(150a~150d)에 대한 등가 회로는 도 9와 같이 4개의 저항(R1', R2', R3', R4')로 이루어진 휘스톤브릿지 회로로 나타낼 수 있다. 이에, 4개의 압저항체(250a, 250b, 250c, 250d)에 대한 신호선(240)이 배치되어 상기한 동작 원리로 충격의 크기에 따라서 그에 상응하는 전압 값을 얻을 수 있다. 다시 말해, 질량체(230)의 양쪽에 위치하고 있는 압저항체(250a, 250b, 250c, 250d)가 인장과 압축을 받게 되고 그로 인해 발생하는 압저항체(250a, 250b, 250c, 250d)의 저항 변화를 휘스톤브릿지로 측정하여 충격의 크기, 즉 가속도를 감지하게 된다.In the present embodiment, the equivalent circuit for the four piezoresistors 150a to 150d may be represented by a Wheatstone bridge circuit including four resistors R1 ', R2', R3 ', and R4' as shown in FIG. Accordingly, the signal lines 240 for the four piezoresistors 250a, 250b, 250c, and 250d are arranged to obtain corresponding voltage values according to the magnitude of the impact according to the above-described operating principle. In other words, the piezo resistors 250a, 250b, 250c, and 250d located on both sides of the mass body 230 are subjected to tension and compression, thereby bending the resistance change of the piezo resistors 250a, 250b, 250c, and 250d. Measurements made with stone bridges detect the magnitude of the impact, or acceleration.
상기에서 설명한 본 발명에 따른 가속도계(100, 200)는 자동차, 유전 탐사, 군수용, 항공우주산업 등 다양한 분야에서 사용될 수 있다.The accelerometers 100 and 200 according to the present invention described above may be used in various fields such as automobiles, oil field exploration, military use, aerospace industry.
본 발명의 가속도계(100, 200)를 포함하는 장치는 적어도 하나의 처리 장치와, 메모리와, 적어도 하나의 프로그램을 포함하고, 상기 프로그램은 상기 메모리에 저장되어 상기 프로세서에 의해 실행되도록 구성되는 것으로, 가속도계(100, 200)를 통해 측정된 충격 크기를 기준으로 임계치 이상의 충격에 대하여 기 정의된 동작(예컨대, 에어백 작동, 폭발 점화 등)을 실행하기 위한 코드를 포함할 수 있다.An apparatus including the accelerometers 100 and 200 of the present invention includes at least one processing device, a memory, and at least one program, wherein the program is configured to be stored in the memory and executed by the processor. It may include code for performing a predetermined operation (eg, airbag operation, explosion ignition, etc.) for the impact above the threshold based on the impact magnitude measured by the accelerometer (100, 200).
따라서, 본 발명에 따른 가속도계(100, 200)는 자동차 에어백 장치나 공장 자동화 및 로봇 등의 제어 시스템, 벙커버스터의 신관 시스템, 견고표적 침투용 지능신관 시스템 등에 적용될 수 있다.Therefore, the accelerometers 100 and 200 according to the present invention may be applied to a control system such as an automobile airbag device or a factory automation and a robot, a fuse cover system of a bunker, a intelligent fuse system for robust target penetration, and the like.
이와 같이, 본 실시예에 따르면, 낮은 가속도에서부터 수만 g급 이상의 높은 가속도를 측정할 수 있는 고충격 감지에 적합한 가속도계를 제공할 수 있다. 또한, 본 발명의 실시예에 따르면, 본 발명의 실시예에 따르면, 반도체 집적회로 기술에 근간한 실리콘 재질의 가속도계를 제공함으로써 가속도계의 소형화, 저가화, 정밀화가 가능하며, 상대적으로 높은 신뢰성을 보장할 수 있으며 유지보수 또한 상대적으로 쉬운 장점이 있다. 그리고, 본 발명의 실시예에 따르면, 고충격에 대해 안정한 장점을 가진 압저항형 감지 방식의 가속도계를 제공함으로써 고충격에 대해 안정적인 것은 물론, 선형성이 우수하고 전자파 간섭의 영향을 최소화 하여 신뢰성이 뛰어난 가속도계를 제공할 수 있다.As described above, according to the present embodiment, it is possible to provide an accelerometer suitable for high impact detection capable of measuring high accelerations from low accelerations to tens of thousands of g or more. In addition, according to an embodiment of the present invention, according to the embodiment of the present invention, by providing an accelerometer made of silicon based on semiconductor integrated circuit technology, it is possible to miniaturize, reduce the cost, precision of the accelerometer, and ensure a relatively high reliability Maintenance is also relatively easy. In addition, according to an embodiment of the present invention, by providing a piezoresistive sensing accelerometer having a stable advantage against high impact, it is not only stable against high impact, but also excellent in linearity and minimizes the influence of electromagnetic interference, thereby providing excellent reliability. Accelerometers can be provided.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.Although the embodiments have been described by the limited embodiments and the drawings as described above, various modifications and variations are possible to those skilled in the art from the above description. For example, the described techniques may be performed in a different order than the described method, and / or components of the described systems, structures, devices, circuits, etc. may be combined or combined in a different form than the described method, or other components. Or even if replaced or substituted by equivalents, an appropriate result can be achieved.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.Therefore, other implementations, other embodiments, and equivalents to the claims are within the scope of the claims that follow.

Claims (28)

  1. 내부가 수직으로 뚫린 개구부(開口部) 형태의 외곽 지지체;Outer support in the form of an opening (開口 部) vertically drilled inside;
    상기 외곽 지지체의 내부에 위치하여 상기 외곽 지지체에 둘러싸인 질량체(mass);A mass located inside the outer support and surrounded by the outer support;
    상기 외곽 지지체와 상기 질량체를 연결하고 스프링(spring) 역할을 하는 4개의 힌지(hinge); 및Four hinges that connect the outer support and the mass and serve as springs; And
    상기 외곽 지지체와 상기 질량체의 사이에 연결되는 4개의 압저항체(piezoresistor)Four piezoresistors connected between the outer support and the mass;
    를 포함하여 이루어지고,It is made, including
    외부로부터 충격을 받으면 상기 질량체의 움직임에 따른 상기 압저항체의 저항 변화를 통해 상기 충격의 크기를 측정하는 것Measuring the magnitude of the impact through a change in resistance of the piezoresistor according to the movement of the mass when subjected to an impact from the outside
    을 특징으로 하는 압저항형의 가속도계.Piezoresistive accelerometer, characterized in that.
  2. 제1항에 있어서,The method of claim 1,
    상기 가속도계는,The accelerometer is,
    실리콘 재질로 이루어지며, 상기 실리콘 재질을 이용한 MEMS(Micro Electro Mechanical Systems) 공정을 통해 제작되는 것It is made of a silicon material, which is manufactured through the MEMS (Micro Electro Mechanical Systems) process using the silicon material
    을 특징으로 하는 압저항형의 가속도계.Piezoresistive accelerometer, characterized in that.
  3. 제1항에 있어서,The method of claim 1,
    상기 외곽 지지체는,The outer support,
    사각형의 구조로, 상기 외곽 지지체의 크기는 가로와 세로가 1~10 ㎜이며 두께는 0.1~1.0 ㎜인 것In the rectangular structure, the outer support is 1 to 10 mm in width and length and 0.1 to 1.0 mm in thickness.
    을 특징으로 하는 압저항형의 가속도계.Piezoresistive accelerometer, characterized in that.
  4. 제1항에 있어서,The method of claim 1,
    상기 질량체와 상기 힌지의 두께는 상기 외곽 지지체의 두께와 같은 것The thickness of the mass and the hinge is equal to the thickness of the outer support
    을 특징으로 하는 압저항형의 가속도계.Piezoresistive accelerometer, characterized in that.
  5. 제1항에 있어서,The method of claim 1,
    상기 외곽 지지체는 사각형의 구조로 이루어지고,The outer support is made of a rectangular structure,
    상기 질량체는 상기 외곽 지지체보다 작은 사각형의 구조로 이루어지는 것The mass is made of a rectangular structure smaller than the outer support
    을 특징으로 하는 압저항형의 가속도계.Piezoresistive accelerometer, characterized in that.
  6. 제5항에 있어서,The method of claim 5,
    상기 힌지는,The hinge is
    상기 질량체의 서로 대칭이 되는 양쪽에 각각 2개씩 형성되는 것Two formed on each side of the mass that are symmetrical to each other
    을 특징으로 하는 압저항형의 가속도계.Piezoresistive accelerometer, characterized in that.
  7. 제1항에 있어서,The method of claim 1,
    상기 압저항체는,The piezoresistor is
    상기 질량체의 서로 대칭이 되는 양쪽에 각각 2개씩 위치하는 것Two positioned on each side of the mass that are symmetrical to each other
    을 특징으로 하는 압저항형의 가속도계.Piezoresistive accelerometer, characterized in that.
  8. 제1항에 있어서,The method of claim 1,
    상기 압저항체는,The piezoresistor is
    상기 질량체의 서로 대칭이 되는 양쪽에 각각 2개씩 위치하되, 상기 2개의 압저항체가 상기 외곽 지지체와 상기 질량체의 일 표면에 모두 형성되는 것Two each positioned on both sides of the mass to be symmetrical with each other, wherein the two piezoresistors are formed on both the outer support and one surface of the mass;
    을 특징으로 하는 압저항형의 가속도계.Piezoresistive accelerometer, characterized in that.
  9. 제1항에 있어서,The method of claim 1,
    상기 압저항체는,The piezoresistor is
    상기 질량체의 서로 대칭이 되는 양쪽에 각각 2개씩 위치하되, 상기 2개의 압저항체가 상기 외곽 지지체와 상기 질량체의 일 표면과 다른 표면에 하나씩 형성되는 것Two each positioned on both sides of the mass to be symmetrical with each other, wherein the two piezoresistors are formed on the outer support and one surface of the mass body one by one
    을 특징으로 하는 압저항형의 가속도계.Piezoresistive accelerometer, characterized in that.
  10. 제1항에 있어서,The method of claim 1,
    상기 압저항체는,The piezoresistor is
    휘스톤브릿지(Wheatstone Bridge) 회로로 등가되는 형태의 구조로 형성되는 것Formed in a structure equivalent to a Wheatstone Bridge circuit
    을 특징으로 하는 압저항형의 가속도계.Piezoresistive accelerometer, characterized in that.
  11. 제1항에 있어서,The method of claim 1,
    상기 압저항체는,The piezoresistor is
    상기 외곽 지지체와 상기 질량체의 사이에 박막 형태로 형성되는 것It is formed in the form of a thin film between the outer support and the mass body
    을 특징으로 하는 압저항형의 가속도계.Piezoresistive accelerometer, characterized in that.
  12. 제1항에 있어서,The method of claim 1,
    상기 압저항체는,The piezoresistor is
    상기 외곽 지지체와 상기 질량체의 사이에 0.1~10.0 ㎛의 박막 형태로 형성되는 것It is formed in the form of a thin film of 0.1 ~ 10.0 ㎛ between the outer support and the mass
    을 특징으로 하는 압저항형의 가속도계.Piezoresistive accelerometer, characterized in that.
  13. 제1항에 있어서,The method of claim 1,
    상기 압저항체는,The piezoresistor is
    CMOS(상보성 금속 산화물 반도체) 공정을 통해 박막 형태로 제작되는 것Manufactured in thin film form through a complementary metal oxide semiconductor (CMOS) process
    을 특징으로 하는 압저항형의 가속도계.Piezoresistive accelerometer, characterized in that.
  14. 제1항 내지 제13항 중 어느 한 항의 가속도계를 포함하고,A accelerometer according to any one of claims 1 to 13,
    상기 가속도계를 통해 측정된 충격 크기를 기준으로 기 정의된 동작을 수행하는 것Performing a predefined operation based on the impact magnitude measured by the accelerometer
    을 특징으로 하는 장치.Device characterized in that.
  15. 내부가 수직으로 뚫린 개구부(開口部) 형태의 외곽 지지체;Outer support in the form of an opening (開口 部) vertically drilled inside;
    상기 외곽 지지체의 내부에 고정되는 강성체;A rigid body fixed inside the outer supporter;
    상기 외곽 지지체에 둘러싸인 상태에서 상기 강성체에 연결되는 질량체(mass); 및A mass connected to the rigid body in a state surrounded by the outer support; And
    상기 외곽 지지체와 상기 질량체의 사이에 연결되는 4개의 압저항체(piezoresistor)Four piezoresistors connected between the outer support and the mass;
    를 포함하여 이루어지고,It is made, including
    외부로부터 충격을 받으면 상기 질량체의 움직임에 따른 상기 압저항체의 저항 변화를 통해 상기 충격의 크기를 측정하는 것Measuring the magnitude of the impact through a change in resistance of the piezoresistor according to the movement of the mass when subjected to an impact from the outside
    을 특징으로 하는 압저항형의 가속도계.Piezoresistive accelerometer, characterized in that.
  16. 제15항에 있어서,The method of claim 15,
    상기 가속도계는,The accelerometer is,
    실리콘 재질로 이루어지며, 상기 실리콘 재질을 이용한 MEMS(Micro Electro Mechanical Systems) 공정을 통해 제작되는 것It is made of a silicon material, which is manufactured through the MEMS (Micro Electro Mechanical Systems) process using the silicon material
    을 특징으로 하는 압저항형의 가속도계.Piezoresistive accelerometer, characterized in that.
  17. 제15항에 있어서,The method of claim 15,
    상기 외곽 지지체는,The outer support,
    사각형의 구조로 가로와 세로가 0.5~10.0 ㎜이며 상기 수직 방향의 길이인 두께는 0.1~1.0 ㎜인 것Horizontal and vertical in the structure of a rectangle 0.5 to 10.0 mm and the thickness of the vertical direction is 0.1 to 1.0 mm
    을 특징으로 하는 압저항형의 가속도계.Piezoresistive accelerometer, characterized in that.
  18. 제15항에 있어서,The method of claim 15,
    상기 강성체는,The rigid body,
    상기 질량체의 움직임에 대하여 스프링(spring) 역할을 하는 것Acting as a spring for the movement of the mass
    을 특징으로 하는 압저항형의 가속도계.Piezoresistive accelerometer, characterized in that.
  19. 제15항에 있어서,The method of claim 15,
    상기 강성체와 상기 질량체는 상기 외곽 지지체의 내부에 상기 수직 방향으로 형성되고,The rigid body and the mass are formed in the vertical direction inside the outer support,
    상기 강성체는 양쪽 측면이 상기 외곽 지지체의 내부의 저부에 각각 고정되며,The rigid body is fixed to both sides of the bottom of the inside of the outer support, respectively,
    상기 질량체는 하부 면이 상기 강성체의 상단에 연결되어 상기 외곽 지지체의 내부의 상부에 위치하는 것Wherein the mass is a lower surface is connected to the upper end of the rigid body is located in the upper portion of the inside of the outer support
    을 특징으로 하는 압저항형의 가속도계.Piezoresistive accelerometer, characterized in that.
  20. 제19항에 있어서,The method of claim 19,
    상기 강성체는,The rigid body,
    각 측면의 일부 또는 전체가 상기 외곽 지지체의 내부에 고정되는 것Some or all of each side being fixed to the inside of the outer support
    을 특징으로 하는 압저항형의 가속도계.Piezoresistive accelerometer, characterized in that.
  21. 제19항에 있어서,The method of claim 19,
    상기 강성체는,The rigid body,
    상기 충격을 받는 방향과 수직을 이루는 위치에 해당되는 상기 외곽 지지체의 내부에 고정되는 것Being fixed to the inside of the outer support corresponding to a position perpendicular to the direction of impact
    을 특징으로 하는 압저항형의 가속도계.Piezoresistive accelerometer, characterized in that.
  22. 제15항에 있어서,The method of claim 15,
    상기 압저항체는,The piezoresistor is
    상기 질량체의 상부 표면에서 상기 충격을 받는 방향에 위치하는 것Located in the direction of impact on the upper surface of the mass
    을 특징으로 하는 압저항형의 가속도계.Piezoresistive accelerometer, characterized in that.
  23. 제15항에 있어서,The method of claim 15,
    상기 압저항체는,The piezoresistor is
    상기 질량체의 상부 표면에서 상기 충격을 받는 방향에 위치하되, 서로 대칭이 되는 양쪽에 각각 2개씩 위치하는 것Located in the direction of the impact on the upper surface of the mass, two each located on both sides symmetrical to each other
    을 특징으로 하는 압저항형의 가속도계.Piezoresistive accelerometer, characterized in that.
  24. 제15항에 있어서,The method of claim 15,
    상기 압저항체는,The piezoresistor is
    휘스톤브릿지(Wheatstone Bridge) 회로로 등가되는 형태의 구조로 형성되는 것Formed in a structure equivalent to a Wheatstone Bridge circuit
    을 특징으로 하는 압저항형의 가속도계.Piezoresistive accelerometer, characterized in that.
  25. 제15항에 있어서,The method of claim 15,
    상기 압저항체는,The piezoresistor is
    상기 질량체의 상부 표면과 상기 외곽 지지체의 사이에 박막 형태로 형성되는 것It is formed in the form of a thin film between the upper surface of the mass and the outer support
    을 특징으로 하는 압저항형의 가속도계.Piezoresistive accelerometer, characterized in that.
  26. 제15항에 있어서,The method of claim 15,
    상기 압저항체는,The piezoresistor is
    상기 질량체의 상부 표면과 상기 외곽 지지체의 사이에 0.1~50.0 ㎛의 박막 형태로 형성되는 것It is formed in the form of a thin film of 0.1 ~ 50.0 ㎛ between the upper surface of the mass and the outer support
    을 특징으로 하는 압저항형의 가속도계.Piezoresistive accelerometer, characterized in that.
  27. 제15항에 있어서,The method of claim 15,
    상기 압저항체는,The piezoresistor is
    CMOS(상보성 금속 산화물 반도체) 공정을 통해 박막 형태로 제작되는 것Manufactured in thin film form through a complementary metal oxide semiconductor (CMOS) process
    을 특징으로 하는 압저항형의 가속도계.Piezoresistive accelerometer, characterized in that.
  28. 제15항 내지 제27항 중 어느 한 항의 가속도계를 포함하고,28. An accelerometer as claimed in any one of claims 15 to 27,
    상기 가속도계를 통해 측정된 충격 크기를 기준으로 기 정의된 동작을 수행하는 것Performing a predefined operation based on the impact magnitude measured by the accelerometer
    을 특징으로 하는 장치.Device characterized in that.
PCT/KR2013/009675 2013-04-24 2013-10-29 Accelerometer using piezoresistor WO2014175521A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0045322 2013-04-24
KR1020130045322A KR101454112B1 (en) 2013-04-24 2013-04-24 Accelerometer using piezoresistor
KR1020130053658A KR101462781B1 (en) 2013-05-13 2013-05-13 Accelerometer for measurement of impact using piezoresistor
KR10-2013-0053658 2013-05-13

Publications (1)

Publication Number Publication Date
WO2014175521A1 true WO2014175521A1 (en) 2014-10-30

Family

ID=51792063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009675 WO2014175521A1 (en) 2013-04-24 2013-10-29 Accelerometer using piezoresistor

Country Status (1)

Country Link
WO (1) WO2014175521A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0492986A2 (en) * 1990-12-21 1992-07-01 Texas Instruments Incorporated Accelerometer
JPH05164778A (en) * 1991-06-21 1993-06-29 Texas Instr Inc <Ti> Accelerometer
KR19990055093A (en) * 1997-12-27 1999-07-15 신현준 High Power Shear Acceleration Sensor
JP2002243450A (en) * 2001-02-16 2002-08-28 Victor Co Of Japan Ltd Angular velocity sensor, acceleration sensor and angular velocity/acceleration sensor
JP2006520897A (en) * 2003-03-14 2006-09-14 ヨーロピアン テクノロジー フォー ビジネス リミテッド MEMS accelerometer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0492986A2 (en) * 1990-12-21 1992-07-01 Texas Instruments Incorporated Accelerometer
JPH05164778A (en) * 1991-06-21 1993-06-29 Texas Instr Inc <Ti> Accelerometer
KR19990055093A (en) * 1997-12-27 1999-07-15 신현준 High Power Shear Acceleration Sensor
JP2002243450A (en) * 2001-02-16 2002-08-28 Victor Co Of Japan Ltd Angular velocity sensor, acceleration sensor and angular velocity/acceleration sensor
JP2006520897A (en) * 2003-03-14 2006-09-14 ヨーロピアン テクノロジー フォー ビジネス リミテッド MEMS accelerometer

Similar Documents

Publication Publication Date Title
US11808574B2 (en) Micromechanical detection structure of a MEMS multi-axis gyroscope, with reduced drifts of corresponding electrical parameters
CN106597014B (en) MEMS sensor device with reduced stress sensitivity
US5253510A (en) Self-testable micro-accelerometer
US5103667A (en) Self-testable micro-accelerometer and method
US10031156B2 (en) Three-axis microelectromechanical systems devices
EP2284545B1 (en) Coplanar proofmasses employable to sense acceleration along three axes
WO2013047933A1 (en) Mems resonant accelerometer
EP3951403B1 (en) Microelectromechanical sensor device with improved stability to stress
WO2018004113A1 (en) Mems-based three-axis acceleration sensor
CN112748258A (en) Triaxial accelerometer based on single mass block
EP3792638A1 (en) Low-noise multi axis mems accelerometer
WO2014175521A1 (en) Accelerometer using piezoresistor
CN109073673B (en) Micromechanical sensor and method for producing a micromechanical sensor
CN211206555U (en) Three-axis accelerometer
CN111766401A (en) Triaxial piezoresistive accelerometer
KR101454112B1 (en) Accelerometer using piezoresistor
JP2005017216A (en) Three-axes acceleration sensor
JP5292600B2 (en) Acceleration sensor
US20170219619A1 (en) Accelerometer
KR101462781B1 (en) Accelerometer for measurement of impact using piezoresistor
CN113624994A (en) Three-axis accelerometer
WO2017159979A1 (en) Piezoresistive accelerometer and method for packaging piezoresistive accelerometer
CN220063001U (en) Inertial device, circuit and electronic equipment
CN111735989A (en) Triaxial piezoresistive accelerometer
US20150059430A1 (en) Inertial force sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13883096

Country of ref document: EP

Kind code of ref document: A1