WO2014175350A1 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
WO2014175350A1
WO2014175350A1 PCT/JP2014/061471 JP2014061471W WO2014175350A1 WO 2014175350 A1 WO2014175350 A1 WO 2014175350A1 JP 2014061471 W JP2014061471 W JP 2014061471W WO 2014175350 A1 WO2014175350 A1 WO 2014175350A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
lithium
secondary battery
Prior art date
Application number
PCT/JP2014/061471
Other languages
French (fr)
Japanese (ja)
Inventor
貴洋 松山
西村 直人
智寿 吉江
功 浅子
正悟 江▲崎▼
俊平 西中
雄一 上村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014175350A1 publication Critical patent/WO2014175350A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • lithium iron phosphate LiFePO 4
  • derivatives thereof having an olivine type structure that is stable and does not release oxygen when abnormal and is cheaper than LiCoO 2 are expected.
  • Patent Document 1 describes LiFe 1-x Zr x P 1-y Si y O in which the Fe site is substituted by Zr and the P site is substituted by Si. 4 has been reported.
  • the present invention can provide a lithium ion secondary battery with improved output characteristics at low temperatures.
  • the following requirement (1)
  • the difference in porosity between the separator and the positive electrode active material layer is in the range of 0 to 40%.
  • the separator and the positive electrode active material layer are 40 to 75% and 35%.
  • the lithium ion secondary battery of this invention is equipped with the positive electrode, the negative electrode, and the separator located between a positive electrode and a negative electrode.
  • Positive electrode The positive electrode is equipped with the positive electrode active material layer containing the lithium containing metal oxide as a positive electrode active material.
  • Lactones such as ⁇ -butyrolactone (GBL) and ⁇ -valerolactone, furans such as tetrahydrofuran and 2-methyltetrahydrofuran, diethyl ether, 1,2-dimethoxyethane, 1,2-diethoxyethane, ethoxymethoxyethane, Examples include ethers such as dioxane, dimethyl sulfoxide, sulfolane, methyl sulfolane, acetonitrile, methyl formate, and methyl acetate. One or more of these can be used in combination.
  • a microporous membrane S1 having a porosity of 55% manufactured by Polypore
  • a microporous membrane S2 having a porosity of 44% made of polyolefin of 30 mm (length) ⁇ 30 mm (width) ⁇ 25 ⁇ m (thickness) Manufactured
  • a microporous membrane S3 having a porosity of 74% manufactured by Japan Vilene Co., Ltd.
  • a microporous membrane S4 having a porosity adjusted to 33% by roll pressing S3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

A lithium ion secondary battery which is provided with a positive electrode, a negative electrode, and a separator that is arranged between the positive electrode and the negative electrode. The positive electrode is provided with a positive electrode active material layer that contains a positive electrode active material, and the positive electrode active material is a lithium-containing metal oxide having a unit lattice represented by general formula (1) LiFe1-xZrxP1-ySiyO4 (wherein 0 < x < 1 and 0 < y < 1). The unit lattice has lattice constants of 10.326 ≤ a ≤ 10.335, 6.006 ≤ b ≤ 6.012 and 4.685 ≤ c ≤ 4.714. The separator has a void fraction that is equal to or larger than that of the positive electrode active material layer.

Description

リチウムイオン二次電池Lithium ion secondary battery
 本発明は、リチウムイオン二次電池に関する。更に詳しくは、本発明は、低温での出力特性に優れたリチウムイオン二次電池に関する。 The present invention relates to a lithium ion secondary battery. More specifically, the present invention relates to a lithium ion secondary battery excellent in output characteristics at a low temperature.
 リチウムイオン二次電池は、ポータブル電子機器用の小型のものだけでなく、車載用や電力貯蔵用等の大容量のデバイスとしても注目されている。そのため、安全性やコスト、寿命等の要求がより高くなっている。
 リチウムイオン二次電池は、その主たる構成要素として正極、負極、電解液、セパレータ及び外装材を有する。また、上記正極は、正極活物質、導電材、集電体及びバインダー(結着剤)により構成される。
Lithium ion secondary batteries are attracting attention not only as small-sized batteries for portable electronic devices, but also as large-capacity devices for in-vehicle use and power storage. Therefore, demands for safety, cost, life, etc. are higher.
A lithium ion secondary battery has a positive electrode, a negative electrode, an electrolyte solution, a separator, and an exterior material as its main components. The positive electrode includes a positive electrode active material, a conductive material, a current collector, and a binder (binder).
 一般に、正極活物質としては、LiCoO2に代表される層状遷移金属酸化物が用いられている。しかしながら、層状遷移金属酸化物は、満充電状態において、150℃前後の比較的低温で酸素脱離を起こし易く、当該酸素脱離により電池の熱暴走反応が起こり得る。従って、このような正極活物質を有する電池をポータブル電子機器に用いる場合、電池の発熱、発火等の事故が発生することがある。 In general, a layered transition metal oxide typified by LiCoO 2 is used as the positive electrode active material. However, the layered transition metal oxide easily causes oxygen desorption at a relatively low temperature of about 150 ° C. in a fully charged state, and the thermal desorption reaction of the battery can occur due to the oxygen desorption. Therefore, when a battery having such a positive electrode active material is used in a portable electronic device, accidents such as heat generation and ignition of the battery may occur.
 このため、構造が安定し異常時に酸素を放出せず、LiCoO2より安価なオリビン型構造を有するリン酸鉄リチウム(LiFePO4)及びその誘導体が期待されている。リン酸鉄リチウムの誘導体として、特開2008-166207号公報(特許文献1)では、FeサイトをZrで、PサイトをSiで、それぞれ置換したLiFe1-xZrx1-ySiy4が報告されている。 For this reason, lithium iron phosphate (LiFePO 4 ) and derivatives thereof having an olivine type structure that is stable and does not release oxygen when abnormal and is cheaper than LiCoO 2 are expected. As a derivative of lithium iron phosphate, Japanese Patent Application Laid-Open No. 2008-166207 (Patent Document 1) describes LiFe 1-x Zr x P 1-y Si y O in which the Fe site is substituted by Zr and the P site is substituted by Si. 4 has been reported.
特開2008-166207号公報JP 2008-166207 A
 しかしながら、上記公報に記載された正極活物質においても、低温での出力特性に改善の余地があった。 However, even the positive electrode active material described in the above publication has room for improvement in output characteristics at low temperatures.
 本発明の発明者等は、検討の結果、
(i)正極活物質としてのリチウム含有金属酸化物の単位格子の格子定数a、b及びcが、特定の範囲であること
(ii)セパレータが正極活物質層と同じか又は大きい空隙率を有すること
で、低温での出力特性を改善できることを見出し、本発明に至った。
The inventors of the present invention have studied,
(I) The lattice constants a, b and c of the unit cell of the lithium-containing metal oxide as the positive electrode active material are in a specific range. (Ii) The separator has the same or larger porosity as the positive electrode active material layer. As a result, it was found that the output characteristics at a low temperature can be improved, and the present invention has been achieved.
 かくして本発明によれば、正極及び負極と、前記正極と前記負極との間に位置するセパレータとを備え、
 前記正極が、正極活物質を含む正極活物質層を備え、
 前記正極活物質が、下記一般式(1)
LiFe1-xZrx1-ySiy4  (1)
(但し、0<x<1であり、0<y<1である)
で表される単位格子を有するリチウム含有金属酸化物であり、
 前記単位格子が、10.326≦a≦10.335、6.006≦b≦6.012、4.685≦c≦4.714の格子定数を有し、
 前記セパレータが、前記正極活物質層と同じか又は大きい空隙率を有するリチウムイオン二次電池が提供される。
Thus, according to the present invention, comprising a positive electrode and a negative electrode, and a separator positioned between the positive electrode and the negative electrode,
The positive electrode includes a positive electrode active material layer containing a positive electrode active material,
The positive electrode active material has the following general formula (1)
LiFe 1-x Zr x P 1-y Si y O 4 (1)
(However, 0 <x <1 and 0 <y <1)
A lithium-containing metal oxide having a unit cell represented by
The unit cell has a lattice constant of 10.326 ≦ a ≦ 10.335, 6.006 ≦ b ≦ 6.012, 4.685 ≦ c ≦ 4.714,
A lithium ion secondary battery is provided in which the separator has the same or larger porosity as the positive electrode active material layer.
 本発明では、低温での出力特性が改善されたリチウムイオン二次電池を提供できる。
 本発明では、更に、下記要件
(1)セパレータと正極活物質層との空隙率の差が、0~40%の範囲である
(2)セパレータ及び正極活物質層が、40~75%及び35~55%の範囲の空隙率を有する
(3)正極活物質層は更に導電材、バインダーと増粘剤を含み、導電材はアセチレンブラックであり、バインダーはアクリル系樹脂であり、増粘剤はカルボキシメチルセルロースである
(4)x及びyが、0.015≦x≦0.095及び0.025≦y≦0.19の範囲である
(5)x及びyが、1:1~2未満の比を有する
(6)リチウム含有金属酸化物は、LiFePOに対して表面に微量なZr由来の酸化物を有する
(7)リチウム含有金属酸化物は、炭素被覆量が0.8重量%以上である
のいずれかを備える場合、低温での出力特性がより改善されたリチウムイオン二次電池を提供できる。
The present invention can provide a lithium ion secondary battery with improved output characteristics at low temperatures.
In the present invention, the following requirement (1) The difference in porosity between the separator and the positive electrode active material layer is in the range of 0 to 40%. (2) The separator and the positive electrode active material layer are 40 to 75% and 35%. (3) The positive electrode active material layer having a porosity in the range of ~ 55% further contains a conductive material, a binder and a thickener, the conductive material is acetylene black, the binder is an acrylic resin, and the thickener is Carboxymethylcellulose (4) x and y are in the range of 0.015 ≦ x ≦ 0.095 and 0.025 ≦ y ≦ 0.19 (5) x and y are less than 1: 1 to 2 (6) The lithium-containing metal oxide having a ratio has a small amount of Zr-derived oxide on the surface with respect to LiFePO 4. (7) The lithium-containing metal oxide has a carbon coating amount of 0.8% by weight or more. If you have any of them, A lithium ion secondary battery with improved power characteristics can be provided.
実施例のリチウムイオン二次電池の概略図である。It is the schematic of the lithium ion secondary battery of an Example.
 以下、本発明について詳しく説明する。
 本発明のリチウムイオン二次電池は、正極及び負極と、正極と負極との間に位置するセパレータとを備えている。
 (I)正極
 正極は、正極活物質としてのリチウム含有金属酸化物を含む正極活物質層を備えている。
The present invention will be described in detail below.
The lithium ion secondary battery of this invention is equipped with the positive electrode, the negative electrode, and the separator located between a positive electrode and a negative electrode.
(I) Positive electrode The positive electrode is equipped with the positive electrode active material layer containing the lithium containing metal oxide as a positive electrode active material.
  (a)リチウム含有金属酸化物
 リチウム含有金属酸化物は、下記一般式(1)
LiFe1-xZrx1-ySiy4  (1)
(但し、0<x<1であり、0<y<1である)
で表される単位格子を有している。Zrの置換量x及びSiの置換量yはICP質量分析(ICP-MS)にて定量した値である。
 Fe及びZrの価数は、特に限定されない。具体的には、Feは2~4価及び6価を、Zrは2~4価を取り得る。Fe及びZrは、単一の価数の金属元素を使用することもでき、複数の価数の金属元素の混合物も使用できる。なお、混合物を使用する場合、便宜上一般式(1)中のxを規定するための価数は、平均値を意味する。Feは、Liの挿入及び脱離性を向上させる観点から、2価のものを使用することが好ましい。Zrは、リチウム含有金属酸化物の製造時及び充放電時に価数の変化が少ないという観点から、4価のものを使用することが好ましい。
 上記リチウム含有金属酸化物は、LiFePO4に対し表面に微量なZr由来の酸化物が存在する。このZr由来の酸化物は、正極活物質と電解液との相互作用性を向上できるため、正極活物質層での電解液の保持性が向上する。ところで、セパレータの空隙率が大きいと、電解液がセパレータ内に保持されることで、正極活物質層内の電解液が不足するという問題が生じるが、上記リチウム含有金属酸化物ではこの問題を抑制できる。
(A) Lithium-containing metal oxide The lithium-containing metal oxide has the following general formula (1):
LiFe 1-x Zr x P 1-y Si y O 4 (1)
(However, 0 <x <1 and 0 <y <1)
It has a unit cell represented by The substitution amount x of Zr and the substitution amount y of Si are values determined by ICP mass spectrometry (ICP-MS).
The valences of Fe and Zr are not particularly limited. Specifically, Fe can take 2 to 4 and 6 valences, and Zr can take 2 to 4 valences. Fe and Zr can use a metal element having a single valence, and a mixture of metal elements having a plurality of valences can also be used. In addition, when using a mixture, the valence for prescribing x in General formula (1) means an average value for convenience. From the viewpoint of improving the insertion and desorption properties of Li, it is preferable to use a bivalent Fe. Zr is preferably tetravalent from the viewpoint of little change in valence during the production of the lithium-containing metal oxide and during charge and discharge.
The lithium-containing metal oxide has a small amount of Zr-derived oxide on the surface of LiFePO 4 . Since this Zr-derived oxide can improve the interaction between the positive electrode active material and the electrolytic solution, the retention of the electrolytic solution in the positive electrode active material layer is improved. By the way, when the porosity of the separator is large, there is a problem that the electrolyte is held in the separator, and thus the electrolyte in the positive electrode active material layer is insufficient. However, the lithium-containing metal oxide suppresses this problem. it can.
 xは0<x<1の範囲を、yは0<y<1の範囲を取り得る。低温での出力特性をより改善する観点から、xは0.015≦x≦0.095の範囲及び/又はyは0.025≦y≦0.19の範囲であることが好ましく、0.025≦x≦0.05の範囲及び/又は0.025≦y≦0.10の範囲であることがより好ましい。x及びyがこの範囲にあることで正極活物質の充放電時の体積変化率が小さくなり、充電時の空隙減少により生じる電解液がセパレータ内に保持され、正極活物質層内の電解液不足がおこる問題を抑制することができる。
 また、x及びyは、低温での出力特性をより改善する観点から、1:1~2未満の比を有することが好ましい。1:1~2未満とすることで活物質表面にZr由来の酸化物が生じやすくなり電解液との相互作用を更に向上することができる。なお、1:1~2未満とは、xを1としたとき、yが1以上、2未満であることを意味する。
 一般式(1)の組成を有するほとんどのリチウム含有金属酸化物はオリビン型構造を有するが、オリビン型構造を有さない構成であってもよい。
x can take a range of 0 <x <1, and y can take a range of 0 <y <1. From the viewpoint of further improving the output characteristics at a low temperature, x is preferably in the range of 0.015 ≦ x ≦ 0.095 and / or y is preferably in the range of 0.025 ≦ y ≦ 0.19. It is more preferable that ≦ x ≦ 0.05 and / or 0.025 ≦ y ≦ 0.10. When x and y are within this range, the volume change rate during charging / discharging of the positive electrode active material is reduced, and the electrolyte generated due to the decrease in voids during charging is retained in the separator, resulting in insufficient electrolyte in the positive electrode active material layer. Can be suppressed.
Also, x and y preferably have a ratio of 1: 1 to less than 2 from the viewpoint of further improving the output characteristics at low temperatures. By setting the ratio to 1: 1 to less than 2, an oxide derived from Zr is easily generated on the active material surface, and the interaction with the electrolytic solution can be further improved. Note that 1: 1 to less than 2 means that y is 1 or more and less than 2 when x is 1.
Most lithium-containing metal oxides having the composition of the general formula (1) have an olivine type structure, but may have a configuration not having an olivine type structure.
 次に、リチウム含有金属酸化物の単位格子は、10.326≦a≦10.335、6.006≦b≦6.012、4.685≦c≦4.714の格子定数を有している。これら範囲の格子定数を有することで、本発明の発明者等は、低温での出力特性を改善できることを見出している。より好ましい格子定数は、10.326≦a≦10.330、6.006≦b≦6.010、4.685≦c≦4.700である。更に好ましい格子定数は、10.326≦a≦10.330、6.006≦b≦6.008、4.685≦c≦4.694である。 Next, the unit cell of the lithium-containing metal oxide has a lattice constant of 10.326 ≦ a ≦ 10.335, 6.006 ≦ b ≦ 6.012, 4.685 ≦ c ≦ 4.714. . By having a lattice constant in these ranges, the inventors of the present invention have found that the output characteristics at low temperatures can be improved. More preferable lattice constants are 10.326 ≦ a ≦ 10.330, 6.006 ≦ b ≦ 6.010, 4.685 ≦ c ≦ 4.700. Further preferred lattice constants are 10.326 ≦ a ≦ 10.330, 6.006 ≦ b ≦ 6.008, 4.685 ≦ c ≦ 4.694.
  (b)リチウム含有金属酸化物の製造方法
 リチウム含有金属酸化物は、原料として、各元素の炭酸塩、水酸化物、塩化物、硫酸塩、酢酸塩、酸化物、シュウ酸塩、硝酸塩、アルコキシド等の組合せを用いることにより製造できる。原料には水和水が含まれていてもよい。製造方法としては、焼成法、固相法、ゾルゲル法、溶融急冷法、メカノケミカル法、共沈法、水熱法、噴霧熱分解法等の方法を用いることができる。これら方法の内、不活性雰囲気(例えば、窒素雰囲気)下での焼成法(焼成条件は、400~650℃で1~24時間)が簡便である。
(B) Method for Producing Lithium-Containing Metal Oxide Lithium-containing metal oxide is prepared by using carbonate, hydroxide, chloride, sulfate, acetate, oxide, oxalate, nitrate, alkoxide of each element as a raw material. It can manufacture by using the combination of these. The raw material may contain hydration water. As the production method, methods such as a firing method, a solid phase method, a sol-gel method, a melt quench method, a mechanochemical method, a coprecipitation method, a hydrothermal method, and a spray pyrolysis method can be used. Among these methods, a firing method under an inert atmosphere (for example, a nitrogen atmosphere) (firing conditions are 400 to 650 ° C. for 1 to 24 hours) is convenient.
 格子定数a~cの上記範囲内への調製は、例えば次のように行うことができる。即ち、上限近くのaは、Zrの原料(Zr源)の仕込量を多くすることで、下限近くのaは、Zr源の仕込量を少なくすることで行うことができる。また、上限近くのbは、Zr源の仕込量を多くすることで、下限近くのbは、Zr源の仕込量を少なくすることで行うことができる。更に、上限近くのcは、Zr源の仕込量を多くすることで、下限近くのcは、Zr源の仕込量を少なくとすることで行うことができる。 Preparation of the lattice constants a to c within the above range can be performed, for example, as follows. That is, a near the upper limit can be achieved by increasing the amount of Zr raw material (Zr source), and a near the lower limit can be achieved by decreasing the amount of Zr source charged. Further, b near the upper limit can be achieved by increasing the amount of Zr source charged, and b near the lower limit can be achieved by decreasing the amount of Zr source charged. Furthermore, c near the upper limit can be achieved by increasing the amount of Zr source charged, and c near the lower limit can be achieved by decreasing the amount of Zr source charged.
  (c)その他
 リチウム含有金属酸化物は、導電性を向上するために、その表面が炭素で被覆されていてもよい。被覆は、リチウム含有金属酸化物全面でもよく、一部でもよい。
 炭素の被覆方法は、特に限定されず、公知の方法を利用できる。例えば、リチウム含有金属酸化物の原料に、炭素源となる化合物を混合し、得られた混合物を不活性雰囲気下で焼成することにより被覆する方法が挙げられる。炭素源となる化合物は、原料がリチウム含有金属酸化物に変化することを妨げない化合物を使用する必要がある。そのような化合物としては、糖類では、スクロース、フルクトース等が挙げられる。あるいはポリエーテル類ではポリエチレングリコールやポリプロピレングリコール等が挙げられる。また、ポリビニルアルコールやポリアクリルアミド、カルボキシメチルセルロース、ポリ酢酸ビニル等の炭素を含有する高分子であれば使用することができる。
 炭素源となる化合物は、リチウム含有金属酸化物の原料との合計に対して、5~30重量%の範囲で使用することが好ましい。この範囲で炭素源となる化合物を使用すると、リチウム含有金属酸化物の炭素被覆量は0.5~5重量%となる。
 また、セパレータと正極活物質層の空隙率の差が5%以上の場合には、電解液がセパレータ内に保持されやすくなり、正極活物質層内の電解液不足がおこりやすくなる。ここで、炭素被覆量を0.8重量%以上とすれば、正極活物質層の電解液の濡れ性を向上できるため、電解液が正極活物質層内に保持されやすくなり、かつリチウムイオン二次電池(セル)内で均一に保持されることになる。その結果、空隙率の差が5%以上であっても低温での出力特性を改善できる。
(C) Others The surface of the lithium-containing metal oxide may be coated with carbon in order to improve conductivity. The coating may be the entire surface of the lithium-containing metal oxide or a part thereof.
The carbon coating method is not particularly limited, and a known method can be used. For example, the raw material of a lithium containing metal oxide can mix the compound used as a carbon source, and can coat | cover by baking the obtained mixture in inert atmosphere. As the compound serving as the carbon source, it is necessary to use a compound that does not prevent the raw material from changing to a lithium-containing metal oxide. Examples of such compounds include sucrose, fructose and the like for saccharides. Alternatively, examples of polyethers include polyethylene glycol and polypropylene glycol. Further, any polymer containing carbon such as polyvinyl alcohol, polyacrylamide, carboxymethyl cellulose, polyvinyl acetate, etc. can be used.
The carbon source compound is preferably used in the range of 5 to 30% by weight with respect to the total of the lithium-containing metal oxide raw material. When a compound serving as a carbon source in this range is used, the carbon coating amount of the lithium-containing metal oxide is 0.5 to 5% by weight.
In addition, when the difference in porosity between the separator and the positive electrode active material layer is 5% or more, the electrolytic solution is easily held in the separator, and shortage of the electrolytic solution in the positive electrode active material layer is likely to occur. Here, when the carbon coating amount is 0.8% by weight or more, the wettability of the electrolyte solution of the positive electrode active material layer can be improved. It is held uniformly in the secondary battery (cell). As a result, the output characteristics at low temperatures can be improved even if the difference in porosity is 5% or more.
  (d)正極活物質層
 正極活物質層は、以下で説明するセパレータと同じか又は小さい空隙率を有する限り、その構成は特に限定されない。
 正極活物質層は、上記リチウム含有金属酸化物と、任意に導電材とバインダーと増粘剤とを含む。正極活物質層は、例えば、リチウム含有金属酸化物と導電材とバインダーとを有機溶剤に混合したスラリーを集電体に塗布する等の公知の方法によって作製できる。
 導電材としては、アセチレンブラック、カーボン、グラファイト、天然黒鉛、人造黒鉛、ニードルコークス等を用いることができる。
(D) Positive electrode active material layer The structure of the positive electrode active material layer is not particularly limited as long as the positive electrode active material layer has the same or lower porosity as the separator described below.
The positive electrode active material layer includes the lithium-containing metal oxide, and optionally a conductive material, a binder, and a thickener. The positive electrode active material layer can be produced, for example, by a known method such as applying a slurry in which a lithium-containing metal oxide, a conductive material, and a binder are mixed in an organic solvent to a current collector.
As the conductive material, acetylene black, carbon, graphite, natural graphite, artificial graphite, needle coke, or the like can be used.
 バインダー(結着剤)としては、(メタ)アクリル系樹脂、ポリテトラフルオロエチレン、ポリビニリデンフルオライド、ポリビニルクロライド、エチレンプロピレンジエンポリマー、スチレンブタジエンゴム、アクリロニトリル-ブタジエンゴム、フッ素ゴム、ポリ酢酸ビニル、ポリエチレン、ニトロセルロース等を用いることができる。
 増粘剤としては、カルボキシメチルセルロース、ポリビニルアルコール、ポリビニルピロリドン等を用いることができる。
 また、電解液の保液バランスから導電材にアセチレンブラック、バインダーにアクリル系樹脂、増粘剤にカルボキシメチルセルロースを用いることが好ましい。
Binders (binders) include (meth) acrylic resins, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, ethylene propylene diene polymer, styrene butadiene rubber, acrylonitrile-butadiene rubber, fluoro rubber, polyvinyl acetate, Polyethylene, nitrocellulose, etc. can be used.
As the thickener, carboxymethyl cellulose, polyvinyl alcohol, polyvinyl pyrrolidone and the like can be used.
Moreover, it is preferable to use acetylene black as a conductive material, an acrylic resin as a binder, and carboxymethylcellulose as a thickener from the balance of electrolyte solution.
 溶媒には水や、N-メチル-2-ピロリドン、トルエン、シクロヘキサン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N-N-ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等の有機溶媒を用いることができる。
 集電体としては、連続孔を持つ発泡(多孔質)金属、ハニカム状に形成された金属、焼結金属、エキスパンドメタル、不織布、板、箔、孔開きの板、箔等を用いることができる。
 正極活物質層の厚さは、0.01~2mm程度が好ましい。厚すぎると導電性が低下し、薄すぎると単位面積当たりの容量が低下するので好ましくない。なお、塗布並びに乾燥によって得られた正極活物質層は、リチウム含有金属酸化物の充填密度を高めるためプレス等により所定の空隙率とする。
Solvents include water, N-methyl-2-pyrrolidone, toluene, cyclohexane, dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, methyl acrylate, diethyltriamine, NN-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran, etc. Organic solvents can be used.
As the current collector, foamed (porous) metal having continuous pores, metal formed in a honeycomb shape, sintered metal, expanded metal, non-woven fabric, plate, foil, perforated plate, foil, and the like can be used. .
The thickness of the positive electrode active material layer is preferably about 0.01 to 2 mm. If it is too thick, the conductivity is lowered, and if it is too thin, the capacity per unit area is lowered. The positive electrode active material layer obtained by coating and drying has a predetermined porosity by a press or the like in order to increase the packing density of the lithium-containing metal oxide.
 (II)負極
 負極は、負極活物質層を備えている。
 負極活物質層は公知の方法により作製できる。具体的には、正極活物質層の作製法で説明した方法と同様にして作製できる。つまり、正極活物質層の作製法で説明した結着剤と導電材と増粘剤と、負極活物質とを混合した後、この混合粉末をシート状に成形し、当該成形体をステンレス、銅等の導電体網(集電体)に圧着すればよい。また、上記混合粉末を正極活物質層の作製法で説明した公知の溶媒と混合して得られたスラリーを銅等の集電体上に塗布することにより作製することもできる。
(II) Negative Electrode The negative electrode includes a negative electrode active material layer.
The negative electrode active material layer can be produced by a known method. Specifically, it can be produced in the same manner as described in the method for producing the positive electrode active material layer. That is, after the binder, the conductive material, the thickener, and the negative electrode active material described in the method for preparing the positive electrode active material layer are mixed, the mixed powder is formed into a sheet shape, and the formed body is made of stainless steel, copper What is necessary is just to crimp | bond to a conductor net | network (current collector). Moreover, it can also produce by apply | coating the slurry obtained by mixing the said mixed powder with the well-known solvent demonstrated by the preparation method of a positive electrode active material layer on collectors, such as copper.
 負極活物質としては公知の材料を用いることができる。高エネルギー密度電池を構成するためには、リチウムの挿入/脱離電位が金属リチウムの析出/溶解電位に近いものが好ましい。その典型例は、粒子状(鱗片状、塊状、繊維状、ウィスカー状、球状、粉砕粒子状等)の天然もしくは人造黒鉛のような炭素材料である。 A known material can be used as the negative electrode active material. In order to constitute a high energy density battery, it is preferable that the insertion / extraction potential of lithium is close to the deposition / dissolution potential of metallic lithium. A typical example is a carbon material such as natural or artificial graphite in the form of particles (scale-like, lump-like, fibrous, whisker-like, spherical, pulverized particles, etc.).
 人造黒鉛としては、メソカーボンマイクロビーズ、メソフェーズピッチ粉末、等方性ピッチ粉末等を黒鉛化して得られる黒鉛が挙げられる。また、非晶質炭素を表面に付着させた黒鉛粒子も使用できる。これらの中で、天然黒鉛は、安価でかつリチウムの酸化還元電位に近く、高エネルギー密度電池が構成できるためより好ましい。
 また、リチウム遷移金属酸化物、リチウム遷移金属窒化物、遷移金属酸化物、酸化シリコン等も負極活物質として使用可能である。これらの中で、Li4Ti512は電位の平坦性が高く、かつ充放電による体積変化が小さいためより好ましい。
Examples of the artificial graphite include graphite obtained by graphitizing mesocarbon microbeads, mesophase pitch powder, isotropic pitch powder, and the like. Also, graphite particles having amorphous carbon attached to the surface can be used. Among these, natural graphite is more preferable because it is inexpensive, close to the redox potential of lithium, and can constitute a high energy density battery.
Further, lithium transition metal oxide, lithium transition metal nitride, transition metal oxide, silicon oxide, and the like can be used as the negative electrode active material. Among these, Li 4 Ti 5 O 12 is more preferable because of high potential flatness and small volume change due to charge and discharge.
 (III)非水電解質
 リチウムイオン二次電池は、通常、正極と負極間に非水電解質を備えている。非水電解質としては、例えば、有機電解液、ゲル状電解質、高分子固体電解質、無機固体電解質、溶融塩等を用いることができる。この内、有機電解液が、電池の製造容易性の観点から一般に使用されている。
 有機電解液は、電解質塩と有機溶媒とを含む。
(III) Non-aqueous electrolyte A lithium ion secondary battery usually includes a non-aqueous electrolyte between a positive electrode and a negative electrode. As the non-aqueous electrolyte, for example, an organic electrolyte, a gel electrolyte, a polymer solid electrolyte, an inorganic solid electrolyte, a molten salt, or the like can be used. Of these, organic electrolytes are generally used from the viewpoint of battery manufacturability.
The organic electrolyte contains an electrolyte salt and an organic solvent.
 有機溶媒としては、プロピレンカーボネート(PC)とエチレンカーボネート(EC)、ブチレンカーボネート等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート類、γ-ブチロラクトン(GBL)、γ-バレロラクトン等のラクトン類、テトラヒドロフラン、2-メチルテトラヒドロフラン等のフラン類、ジエチルエーテル、1,2-ジメトキシエタン、1,2-ジエトキシエタン、エトキシメトキシエタン、ジオキサン等のエーテル類、ジメチルスルホキシド、スルホラン、メチルスルホラン、アセトニトリル、ギ酸メチル、酢酸メチル等が挙げられ、これらの1種以上を混合して用いることができる。 Examples of organic solvents include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC) and butylene carbonate, and chain carbonates such as dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate, and dipropyl carbonate. Lactones such as γ-butyrolactone (GBL) and γ-valerolactone, furans such as tetrahydrofuran and 2-methyltetrahydrofuran, diethyl ether, 1,2-dimethoxyethane, 1,2-diethoxyethane, ethoxymethoxyethane, Examples include ethers such as dioxane, dimethyl sulfoxide, sulfolane, methyl sulfolane, acetonitrile, methyl formate, and methyl acetate. One or more of these can be used in combination.
 電解質塩としては、ホウフッ化リチウム(LiBF4)、六フッ化リン酸リチウム(LiPF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、トリフルオロ酢酸リチウム(LiCF3COO)、リチウムビス(トリフルオロメタンスルホン)イミド(LiN(CF3SO22)等のリチウム塩が挙げられ、これらの1種以上を混合して用いることができる。電解液の塩濃度は、0.5~3mol/lが好適である。 Examples of the electrolyte salt include lithium borofluoride (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium trifluoroacetate (LiCF 3 COO), lithium bis (trifluoro) Examples thereof include lithium salts such as romethanesulfone) imide (LiN (CF 3 SO 2 ) 2 ), and one or more of these may be used in combination. The salt concentration of the electrolytic solution is preferably 0.5 to 3 mol / l.
 (IV)セパレータ
 セパレータとしては、多孔質材料又は不織布等を単一もしくは複合で用いることができる。セパレータの材質としては、上述した、電解質中に含まれる有機溶媒に対して溶解したり膨潤したりしないものが好ましい。具体的には、ポリエステル系ポリマー、ポリオレフィン系ポリマー(例えば、ポリエチレン、ポリプロピレン)、エーテル系ポリマー、アラミド系ポリマー、ガラスのような無機材料等が挙げられる。
(IV) Separator As the separator, a porous material or a nonwoven fabric can be used singly or in combination. As the material of the separator, the above-described one that does not dissolve or swell in the organic solvent contained in the electrolyte is preferable. Specific examples include polyester polymers, polyolefin polymers (for example, polyethylene and polypropylene), ether polymers, aramid polymers, and inorganic materials such as glass.
 (V)空隙率
 セパレータは、正極活物質層と同じか又は大きい空隙率を有している。この空隙率の関係を有することで、低温でもリチウムイオンの移動を妨げることを防ぐことができ、その結果、低温での出力特性を改善できる。
 セパレータと正極活物質層との空隙率の差(セパレータの空隙率-正極活物質層の空隙率)は、0~40%の範囲であることが好ましい。差が0%未満の場合、電解液が正極活物質層内に保持されやすくなり、セパレータ内の電解液が不足することで低温での出力特性の改善が不十分となることがある。差が40%より大きい場合、電解液がセパレータ内に保持されやすくなり、正極活物質層内の電解液が不足することで低温での出力特性の改善が不十分となることがある。
(V) Porosity The separator has the same or larger porosity as the positive electrode active material layer. By having this porosity relationship, it is possible to prevent the movement of lithium ions even at low temperatures, and as a result, the output characteristics at low temperatures can be improved.
The difference in porosity between the separator and the positive electrode active material layer (the porosity of the separator−the porosity of the positive electrode active material layer) is preferably in the range of 0 to 40%. When the difference is less than 0%, the electrolytic solution is easily retained in the positive electrode active material layer, and the improvement of output characteristics at low temperatures may be insufficient due to insufficient electrolytic solution in the separator. When the difference is larger than 40%, the electrolytic solution is easily held in the separator, and the improvement of output characteristics at low temperatures may be insufficient due to the lack of the electrolytic solution in the positive electrode active material layer.
 セパレータは、40~75%の範囲の空隙率を有することが好ましい。空隙率が40%未満の場合、電解液の保持性が下がり、低温での出力特性の改善が不十分となることがある。75%より大きい場合、短絡が生じやすくなることがある。
 正極活物質層は、35~55%の範囲の空隙率を有することが好ましい。空隙率が35%未満の場合、電解液の保持性が下がり、低温での出力特性の改善が不十分となることがある。55%より大きい場合、導電性が下がり容量が低下することがある。
 正極活物質層の空隙率は、例えば、次の方法により調整できる。空隙率を上げる場合は、プレス加工時のプレス間隔を大きくすることで、下げる場合は、プレス加工時のプレス間隔を小さくすることで、調整できる。
The separator preferably has a porosity in the range of 40 to 75%. When the porosity is less than 40%, the retention of the electrolytic solution is lowered, and the improvement of output characteristics at low temperatures may be insufficient. When it is larger than 75%, a short circuit may easily occur.
The positive electrode active material layer preferably has a porosity in the range of 35 to 55%. When the porosity is less than 35%, the electrolyte retainability may be lowered, and the output characteristics at low temperatures may be insufficiently improved. If it is greater than 55%, the conductivity may decrease and the capacity may decrease.
The porosity of the positive electrode active material layer can be adjusted by, for example, the following method. When increasing the porosity, it can be adjusted by increasing the press interval during pressing, and when decreasing, it can be adjusted by decreasing the pressing interval during pressing.
 (VI)他の部材
 電池容器のような他の部材についても従来公知のリチウムイオン二次電池に使用される各種材料を使用でき、特に制限はない。
(VI) Other members Various materials used in a conventionally known lithium ion secondary battery can be used for other members such as a battery container, and there is no particular limitation.
 (VII)リチウムイオン二次電池の製造方法
 リチウムイオン二次電池は、例えば、正極と負極と、それらの間に挟まれたセパレータとからなる積層体を備えている。積層体は、例えば短冊状の平面形状を有していてもよい。また、円筒型や扁平型の電池を作製する場合は、積層体を巻き取ってもよい。
 積層体は、その1つ又は複数が電池容器の内部に挿入される。通常、正極及び負極は電池の外部導電端子に接続される。その後に、正極、負極及びセパレータを外気より遮断するために電池容器を密閉する。
(VII) Method for Producing Lithium Ion Secondary Battery A lithium ion secondary battery includes a laminate including, for example, a positive electrode, a negative electrode, and a separator sandwiched between them. The laminate may have, for example, a strip-like planar shape. Moreover, when producing a cylindrical or flat battery, the laminate may be wound.
One or more of the laminates are inserted into the battery container. Usually, the positive electrode and the negative electrode are connected to the external conductive terminal of the battery. Thereafter, the battery container is sealed to block the positive electrode, the negative electrode, and the separator from the outside air.
 密封の方法は、円筒電池の場合、電池容器の開口部に樹脂製のパッキンを有する蓋をはめ込み、電池容器と蓋とをかしめる方法が一般的である。また、角型電池の場合、金属性の封口板と呼ばれる蓋を開口部に取りつけ、溶接を行う方法を使用できる。これらの方法以外に、結着剤で密封する方法、ガスケットを介してボルトで固定する方法も使用できる。
 更に、金属箔に熱可塑性樹脂を貼り付けたラミネート膜で密封する方法も使用できる。
 なお、密封時に電解質注入用の開口部を設けてもよい。
In the case of a cylindrical battery, the sealing method is generally a method in which a lid having a resin packing is fitted into the opening of the battery container and the battery container and the lid are caulked. In the case of a square battery, a method of attaching a lid called a metallic sealing plate to the opening and performing welding can be used. In addition to these methods, a method of sealing with a binder and a method of fixing with a bolt via a gasket can also be used.
Furthermore, a method of sealing with a laminate film in which a thermoplastic resin is attached to a metal foil can also be used.
An opening for electrolyte injection may be provided at the time of sealing.
 以下、実施例に基づいて本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例で使用した試薬等は、特に断りのない限りキシダ化学社製の特級試薬を用いた。
 (正極活物質の合成)
  (1)正極活物質A1
 出発原料にリチウム源としてLiCH3COO、鉄源としてFe(NO33・9H2O、ジルコニウム源としてZrCl4、リン源としてH3PO4(85%)、シリコン源としてSi(OC254とを使用した。リチウム源であるLiCH3COOを131.96gとして、Li:Fe:Zr:P:Siがモル比で1:0.974:0.026:0.974:0.026となるように上記各原料を秤量した。これらを3LのC25OH(溶媒)に溶解させ、溶液を室温でスターラーにて48時間攪拌した。その後、40℃の恒温槽内にて溶液から溶媒を除去し、茶褐色の粉末を得た。
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to a following example. The reagents used in the examples were special grade reagents manufactured by Kishida Chemical Co. unless otherwise specified.
(Synthesis of positive electrode active material)
(1) Positive electrode active material A1
The starting materials are LiCH 3 COO as the lithium source, Fe (NO 3 ) 3 · 9H 2 O as the iron source, ZrCl 4 as the zirconium source, H 3 PO 4 (85%) as the phosphorus source, and Si (OC 2 H) as the silicon source. 5 ) Used with 4 . Each of the above raw materials was prepared by setting 131.96 g of LiCH 3 COO as a lithium source so that the molar ratio of Li: Fe: Zr: P: Si was 1: 0.974: 0.026: 0.974: 0.026. Was weighed. These were dissolved in 3 L of C 2 H 5 OH (solvent) and the solution was stirred at room temperature with a stirrer for 48 hours. Thereafter, the solvent was removed from the solution in a constant temperature bath at 40 ° C. to obtain a brown powder.
 得られた粉末に対して15重量%のスクロースの水溶液を添加した後に、メノウ乳鉢でよく混合し、ペレット状に加圧成形した。これを500℃12時間、窒素雰囲気下で焼成を行い、分級処理により0.4~80μmの範囲の粒子径かつ平均粒子径15μmの単相粉末状の正極活物質A1を合成した。得られた正極活物質A1のZrの置換量xは0.025、Siの置換量yは0.025であり、格子定数は(a,b,c)=(10.330,6.008,4.694)であった。x、yはICP質量分析装置(Agilent Technologies 社製 ICP-MS 7500CS)を用い、検量線法により得られた結果である。
 単相粉末の平均粒子径は、粒子体積の累積度が50%となる値を意味し、レーザー回折・散乱式粒度分布測定装置(セイシン企業社製 LMS-2000e)を用いて測定された値である。
After adding an aqueous solution of 15% by weight of sucrose to the obtained powder, it was mixed well in an agate mortar and pressed into a pellet. This was fired in a nitrogen atmosphere at 500 ° C. for 12 hours, and a single-phase powdered positive electrode active material A1 having a particle size in the range of 0.4 to 80 μm and an average particle size of 15 μm was synthesized by classification. In the obtained positive electrode active material A1, the substitution amount x of Zr is 0.025, the substitution amount y of Si is 0.025, and the lattice constants are (a, b, c) = (10.330, 6.008, 4.694). x and y are results obtained by a calibration curve method using an ICP mass spectrometer (ICP-MS 7500CS manufactured by Agilent Technologies).
The average particle size of the single-phase powder means a value at which the cumulative volume of particles is 50%, and is a value measured using a laser diffraction / scattering type particle size distribution measuring device (LMS-2000e manufactured by Seishin Enterprise Co., Ltd.). is there.
 また、格子定数は以下の手順で求めた。
 正極活物質A1をメノウ乳鉢にて粉砕し、理学社製X線解析装置MiniFlexIIにより粉末X線回折パターンを得た。測定条件は電圧30kV、電流15mA、発散スリット1.25°、受光スリット0.3mm、散乱スリット1.25°、2θの範囲が10°~90°、1ステップ0.02°に設定し、最大ピークの強度が800~1500になるようにステップ毎の計測時間を調整した。次に、得られた粉末X線回折パターンについて、「RIETAN-FP」(F. Izumi and K. Momma, "Three-dimensional visualization in powder diffraction," Solid State Phenom., 130, 15-20 (2007))を用いて、表1に示すパラメータを初期値として「ins」ファイルを作成し、「DD3.bat」を使用してリートベルト解析による構造解析を行い、「.lst」ファイルより、各パラメータを読み取り、格子定数を決定した(S値(収束度合)は1.1~1.3)
The lattice constant was determined by the following procedure.
The positive electrode active material A1 was pulverized in an agate mortar, and a powder X-ray diffraction pattern was obtained using an X-ray analyzer MiniFlexII manufactured by Rigaku Corporation. The measurement conditions were set at a voltage of 30 kV, a current of 15 mA, a divergence slit of 1.25 °, a light receiving slit of 0.3 mm, a scattering slit of 1.25 °, a range of 2θ of 10 ° to 90 °, and a step of 0.02 ° The measurement time for each step was adjusted so that the peak intensity was 800-1500. Next, regarding the obtained powder X-ray diffraction pattern, “RIETA-FP” (F. Izumi and K. Momma, “Three-dimensional visualization in powder diffraction,” Solid State Phenom., 130, 15-20 (2007) ), An “ins” file is created with the parameters shown in Table 1 as initial values, a structure analysis is performed by Rietveld analysis using “DD3.bat”, and each parameter is obtained from the “.lst” file. Reading and determining the lattice constant (S value (degree of convergence) is 1.1 to 1.3)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
表1中、*はICP質量分析から得られたモル比で割り振ることを意味する。正極活物質A1の場合、上から、0.975、0.025、0.975及び0.025の値となる。 In Table 1, * means allocation by the molar ratio obtained from ICP mass spectrometry. In the case of the positive electrode active material A1, the values are 0.975, 0.025, 0.975, and 0.025 from the top.
  (2)正極活物質A2
 Li:Fe:Zr:P:Siがモル比で1:0.984:0.016:0.968:0.032となるように各原料を秤量したこと以外は正極活物質A1と同様にして正極活物質A2(0.4~80μmの範囲の粒子径かつ平均粒子径15μm)を得た。得られた正極活物質A2のZrの置換量xは0.015、Siの置換量yは0.03であり、格子定数は(a,b,c)=(10.326,6.006,4.685)であった。
(2) Positive electrode active material A2
Except that each raw material was weighed so that the molar ratio of Li: Fe: Zr: P: Si was 1: 0.984: 0.016: 0.968: 0.032, the same as the positive electrode active material A1. A positive electrode active material A2 (particle diameter in the range of 0.4 to 80 μm and average particle diameter of 15 μm) was obtained. In the obtained positive electrode active material A2, the Zr substitution amount x was 0.015, the Si substitution amount y was 0.03, and the lattice constant was (a, b, c) = (10.326, 6.006). 4.685).
  (3)正極活物質A3
 Li:Fe:Zr:P:Siがモル比で1:0.900:0.100:0.800:0.200となるように各原料を秤量したこと以外は正極活物質A1と同様にして正極活物質A3(0.4~80μmの範囲の粒子径かつ平均粒子径15μm)を得た。得られた正極活物質A3のZrの置換量xは0.095、Siの置換量yは0.19であり、格子定数は(a,b,c)=(10.335,6.012,4.714)であった。
(3) Positive electrode active material A3
Except that each raw material was weighed so that the molar ratio of Li: Fe: Zr: P: Si was 1: 0.900: 0.100: 0.800: 0.200, it was the same as the positive electrode active material A1. A positive electrode active material A3 (particle diameter in the range of 0.4 to 80 μm and average particle diameter of 15 μm) was obtained. In the obtained positive electrode active material A3, the substitution amount x of Zr was 0.095, the substitution amount y of Si was 0.19, and the lattice constant was (a, b, c) = (10.335, 6.012, 4.714).
  (4)正極活物質A4
 Li:Fe:Zr:P:Siがモル比で1:0.895:0.105:0.790:0.210となるように各原料を秤量したこと以外は正極活物質A1と同様にして正極活物質A4(0.4~80μmの範囲の粒子径かつ平均粒子径15μm)を得た。得られた正極活物質A4のZrの置換量xは0.10、Siの置換量yは0.20であり、格子定数は(a,b,c)=(10.337,6.015,4.720)であった。
(4) Positive electrode active material A4
Except that each raw material was weighed so that the molar ratio of Li: Fe: Zr: P: Si was 1: 0.895: 0.105: 0.790: 0.210, it was the same as that of the positive electrode active material A1. A positive electrode active material A4 (particle diameter in the range of 0.4 to 80 μm and average particle diameter of 15 μm) was obtained. In the obtained positive electrode active material A4, the substitution amount x of Zr was 0.10, the substitution amount y of Si was 0.20, and the lattice constant was (a, b, c) = (10.337, 6.0015, 4.720).
  (5)正極活物質A5
 Li:Fe:Zr:P:Siがモル比で1:0.921:0.079:0.842:0.158となるように各原料を秤量したこと以外は正極活物質A1と同様にして正極活物質A5(0.4~80μmの範囲の粒子径かつ平均粒子径15μm)を得た。得られた正極活物質A5のZrの置換量xは0.075、Siの置換量yは0.15であり、格子定数は(a,b,c)=(10.338,6.005,4.691)であった。
(5) Positive electrode active material A5
Except that each raw material was weighed so that the molar ratio of Li: Fe: Zr: P: Si was 1: 0.921: 0.079: 0.842: 0.158, the same as the positive electrode active material A1. A positive electrode active material A5 (particle diameter in the range of 0.4 to 80 μm and average particle diameter of 15 μm) was obtained. In the obtained positive electrode active material A5, the Zr substitution amount x was 0.075, the Si substitution amount y was 0.15, and the lattice constant was (a, b, c) = (10.338, 6.005). 4.691).
  (6)正極活物質A6
 Li:Fe:Zr:P:Siがモル比で1:0.963:0.037:0.963:0.037となるように各原料を秤量したこと以外は正極活物質A1と同様にして正極活物質A6(0.4~80μmの範囲の粒子径かつ平均粒子径15μm)を得た。得られた正極活物質A6のZrの置換量xは0.035、Siの置換量yは0.035であり、格子定数は(a,b,c)=(10.326,6.007,4.693)であった。
(6) Positive electrode active material A6
Except that each raw material was weighed so that the molar ratio of Li: Fe: Zr: P: Si was 1: 0.963: 0.037: 0.963: 0.037, it was the same as that of the positive electrode active material A1. A positive electrode active material A6 (particle diameter in the range of 0.4 to 80 μm and average particle diameter of 15 μm) was obtained. In the obtained positive electrode active material A6, the Zr substitution amount x was 0.035, the Si substitution amount y was 0.035, and the lattice constants were (a, b, c) = (10.326, 6.007, 4.693).
  (7)正極活物質A7
 Li:Fe:Zr:P:Siがモル比で1:0.947:0.053:0.947:0.053となるように各原料を秤量したこと以外は正極活物質A1と同様にして正極活物質A7(0.4~80μmの範囲の粒子径かつ平均粒子径15μm)を得た。得られた正極活物質A7のZrの置換量xは0.05、Siの置換量yは0.05であり、格子定数は(a,b,c)=(10.328,6.008,4.694)であった。
(7) Positive electrode active material A7
Except that each raw material was weighed so that the molar ratio of Li: Fe: Zr: P: Si was 1: 0.947: 0.053: 0.947: 0.053, the same as the positive electrode active material A1. A positive electrode active material A7 (particle diameter in the range of 0.4 to 80 μm and average particle diameter of 15 μm) was obtained. In the obtained positive electrode active material A7, the substitution amount x of Zr was 0.05, the substitution amount y of Si was 0.05, and the lattice constants were (a, b, c) = (10.328, 6.008, 4.694).
 (正極の作製)
  (1)正極P1
 上記正極活物質、アセチレンブラック(導電材、電気化学工業社製)、アクリル系樹脂(バインダー、JSR社製)、カルボキシメチルセルロース(増粘剤、第一工業製薬社製)を、100:5:6:1.2の重量比率で、フィルミックス80-50型(プライミクス社製)を用いて室温下で攪拌混合することで、水性の正極ペーストを得た。この正極ペーストを、圧延アルミニウム箔(厚さ:20μm)の片面上にダイコーターを用いて塗布した。得られた塗膜を、空気中100℃で10分間乾燥し(乾燥時厚さ47μm)、プレス加工することで、集電体上に厚さ28μmの正極活物質層を備えた正極P1(塗工面サイズ:28mm(縦)×28mm(横))を得た。正極活物質層の空隙率は38%であった。
(Preparation of positive electrode)
(1) Positive electrode P1
The above positive electrode active material, acetylene black (conductive material, manufactured by Denki Kagaku Kogyo), acrylic resin (binder, manufactured by JSR), carboxymethylcellulose (thickener, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), 100: 5: 6 The aqueous positive electrode paste was obtained by stirring and mixing at room temperature using Fillmix 80-50 (manufactured by Primics) at a weight ratio of 1.2. This positive electrode paste was applied on one side of a rolled aluminum foil (thickness: 20 μm) using a die coater. The obtained coating film was dried in air at 100 ° C. for 10 minutes (dry thickness: 47 μm) and pressed to provide a positive electrode P1 having a positive electrode active material layer having a thickness of 28 μm on the current collector (coating Work surface size: 28 mm (length) × 28 mm (width)) was obtained. The porosity of the positive electrode active material layer was 38%.
 なお、空隙率は、以下の手順で求めた。
 乾燥した電極をエチレンカーボネート(EC)とジエチルカーボネート(DEC)を体積比1:2で混合した溶媒に浸漬し、浸漬前後の重量差を出す。
 重量を溶媒の比重で割ることで空隙体積を出す。
 空隙体積を、電極体積(電極の縦×横×厚み)で割ることで空隙率とする。
The porosity was determined by the following procedure.
The dried electrode is immersed in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 1: 2, and the weight difference before and after the immersion is obtained.
The void volume is obtained by dividing the weight by the specific gravity of the solvent.
The porosity is determined by dividing the void volume by the electrode volume (length x width x thickness of the electrode).
  (2)正極P2
 プレス加工後の厚さを37μmとすること以外は正極P1と同様にして正極P2を得た。正極活物質層の空隙率は54%であった。
  (3)正極P3
 乾燥時の厚さを187μm、プレス加工後の厚さを112μmとすること以外は正極P1と同様にして正極P3を得た。正極活物質層の空隙率は38%であった。
(2) Positive electrode P2
A positive electrode P2 was obtained in the same manner as the positive electrode P1, except that the thickness after press working was 37 μm. The porosity of the positive electrode active material layer was 54%.
(3) Positive electrode P3
A positive electrode P3 was obtained in the same manner as the positive electrode P1, except that the thickness during drying was 187 μm and the thickness after press working was 112 μm. The porosity of the positive electrode active material layer was 38%.
 (負極の作製)
  (1)負極N1
 天然黒鉛、スチレンブタジエンゴム(バインダー、日本ゼオン社製)、カルボキシメチルセルロース(増粘剤、ダイセルファインケム社製)を、98:2:1の重量比率で、2軸遊星プラネタリミキサー(プライミクス社製)を用いて室温下で攪拌混練することで、水性の負極ペーストを得た。この負極ペーストを、圧延銅箔(厚さ:10μm)の片面上にダイコーターを用いて塗布した。得られた塗膜を、空気中100℃で10分間乾燥し(乾燥時厚さ29μm)、プレス加工することで、集電体上に厚さ19μmの負極活物質層を備えた負極N1(塗工面サイズ:30mm(縦)×30mm(横))を得た。正極活物質層と同様にして求めた負極活物質層の空隙率は36%であった。
(Preparation of negative electrode)
(1) Negative electrode N1
Natural graphite, styrene butadiene rubber (binder, manufactured by Nippon Zeon Co., Ltd.), carboxymethyl cellulose (thickener, manufactured by Daicel Finechem Co., Ltd.) at a weight ratio of 98: 2: 1 The mixture was stirred and kneaded at room temperature to obtain an aqueous negative electrode paste. This negative electrode paste was applied on one side of a rolled copper foil (thickness: 10 μm) using a die coater. The obtained coating film was dried in air at 100 ° C. for 10 minutes (29 μm thickness when dried) and pressed to form a negative electrode N1 (coated) having a negative electrode active material layer having a thickness of 19 μm on the current collector. Work surface size: 30 mm (length) × 30 mm (width)) was obtained. The porosity of the negative electrode active material layer obtained in the same manner as in the positive electrode active material layer was 36%.
  (2)負極N2
 プレス加工後の厚さを26μmとすること以外は負極N1と同様にして負極N2を得た。負極活物質層の空隙率は53%であった。
  (3)負極N3
 乾燥時の厚さを145μm、プレス加工後の厚さを97μmとすること以外は負極N1と同様にして負極N3を得た。負極活物質層の空隙率は36%であった。
(2) Negative electrode N2
A negative electrode N2 was obtained in the same manner as the negative electrode N1, except that the thickness after pressing was 26 μm. The porosity of the negative electrode active material layer was 53%.
(3) Negative electrode N3
A negative electrode N3 was obtained in the same manner as the negative electrode N1, except that the thickness when dried was 145 μm and the thickness after press working was 97 μm. The porosity of the negative electrode active material layer was 36%.
 (セパレータ)
 セパレータとして、30mm(縦)×30mm(横)×25μm(厚さ)のポリオレフィン製の、空隙率55%の微多孔膜S1(ポリポア社製)、空隙率44%の微多孔膜S2(旭化成社製)、空隙率74%の微多孔膜S3(日本バイリーン社製)、S3をロールプレスし空隙率33%に調整した微多孔膜S4を用いた。セパレータの空隙率は以下の式(a)で算出される。
空隙率={(1-セパレータの密度/セパレータ材質の真密度}×100・・(a)
(Separator)
As a separator, a microporous membrane S1 having a porosity of 55% (manufactured by Polypore) and a microporous membrane S2 having a porosity of 44% (Asahi Kasei Co., Ltd.) made of polyolefin of 30 mm (length) × 30 mm (width) × 25 μm (thickness) Manufactured), a microporous membrane S3 having a porosity of 74% (manufactured by Japan Vilene Co., Ltd.), and a microporous membrane S4 having a porosity adjusted to 33% by roll pressing S3. The porosity of the separator is calculated by the following formula (a).
Porosity = {(1-separator density / separator material true density) × 100 (a)
 実施例1~7及び比較例1~5
 表2に示す組み合わせで正極、負極及びセパレータを用いて、以下の図1(a)に示す手順で図1(b)に示す電池を作製した。
 まず、正極1及び負極2を130℃で24時間減圧乾燥した後に、ドライAr雰囲気下のグローボックス内に入れた。次に、正極1に接着フィルム3付きのアルミニウム製タブリード4を、負極2に接着フィルム5付きのニッケル製のタブリード6をそれぞれ超音波溶接した。グローボックス内で、負極2の塗工面7が隠れるようにセパレータ9を積載し、塗工面が中心に重なるように正極1を重ね単セル10を作製した。8は正極1の塗工面を意味する。
Examples 1 to 7 and Comparative Examples 1 to 5
Using the positive electrode, the negative electrode, and the separator in the combinations shown in Table 2, the battery shown in FIG. 1 (b) was manufactured according to the procedure shown in FIG. 1 (a) below.
First, the positive electrode 1 and the negative electrode 2 were dried under reduced pressure at 130 ° C. for 24 hours, and then placed in a glow box in a dry Ar atmosphere. Next, an aluminum tab lead 4 with an adhesive film 3 was ultrasonically welded to the positive electrode 1, and a nickel tab lead 6 with an adhesive film 5 was ultrasonically welded to the negative electrode 2. In the glow box, a separator 9 was loaded so that the coated surface 7 of the negative electrode 2 was hidden, and the positive electrode 1 was stacked so that the coated surface overlapped with the center to produce a single cell 10. 8 represents the coated surface of the positive electrode 1.
 更に、アルミラミネートフィルム11及び12で単セル11をはさみ、タブリード4及び6の接着フィルム3及び5を挟むようにアルミラミネートフィルム11及び12の3辺を熱溶着した。未溶着の1辺から、エチレンカーボネート(EC)とジエチルカーボネート(DEC)を体積比1:2で混合した溶媒に1mol/LになるようにLiPF6を溶解させた電解液を単セル10へ注液した。注液後、アルミラミネートフィルム11及び12袋の最後の1辺を10kPaの減圧下で熱融着して電池14を得た。13は熱融着部を意味する。
 なお、電解液の注液量は、各電池で使用する電極の厚さ(正極と負極の合計値)に準じて適宜決定しており、実際に作製した電池の正極、負極及びセパレータに電解液が十分浸透する量とした。
Further, the single cell 11 was sandwiched between the aluminum laminate films 11 and 12, and the three sides of the aluminum laminate films 11 and 12 were thermally welded so as to sandwich the adhesive films 3 and 5 of the tab leads 4 and 6. An electrolyte solution in which LiPF 6 is dissolved to a concentration of 1 mol / L in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 1: 2 is poured into the single cell 10 from one side of the unwelded side. Liquid. After the injection, the last side of the aluminum laminate film 11 and 12 bags was heat-sealed under a reduced pressure of 10 kPa to obtain a battery 14. Reference numeral 13 denotes a heat fusion part.
In addition, the amount of the electrolyte solution injected is appropriately determined according to the thickness of the electrode used in each battery (total value of the positive electrode and the negative electrode), and the electrolyte solution is added to the positive electrode, the negative electrode, and the separator of the actually fabricated battery. The amount was sufficient to penetrate.
 (電池の評価)
 作製した電池を0℃環境下で0.1Cで3.6Vまで充電し、0.1Cで2.0Vまで放電したときの電池容量を0.1C容量、0℃環境下で0.1Cで3.6Vまで充電し、1Cで2.0Vまで放電したときの電池容量を1C容量とすることで、低温での出力特性(1C/0.1C)を測定した。なお、正極の理論容量から算出される容量を1時間で充電又は放電する電流を1Cとした。
 得られた結果を、表2に示す。
(Battery evaluation)
The produced battery was charged to 3.6 V at 0.1 C in a 0 ° C. environment and discharged to 0.1 V at 0.1 C, and the battery capacity was 3 C at 0.1 C in a 0 ° C. environment. The battery capacity when charging to 6 V and discharging to 2.0 V at 1 C was taken as 1 C capacity, and the output characteristics at low temperature (1 C / 0.1 C) were measured. In addition, the capacity | capacitance calculated from the theoretical capacity | capacitance of a positive electrode was set to 1C the electric current which charges or discharges in 1 hour.
The results obtained are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から、以下のことが分かる。
(1)実施例1、2及び3と比較例1、実施例6と比較例4、実施例7と比較例5とをそれぞれ比較すると、セパレータの空隙率が、正極の空隙率以上である場合、出力特性が向上していることが分かる。
(2)実施例4及び5と比較例2とから、10.326≦a≦10.335、6.006≦b≦6.012及び4.685≦c≦4.714である場合、出力特性が向上していることが分かる。
Table 2 shows the following.
(1) When Examples 1, 2 and 3 are compared with Comparative Example 1, Example 6 and Comparative Example 4, Example 7 and Comparative Example 5 are compared, and the porosity of the separator is greater than or equal to the porosity of the positive electrode It can be seen that the output characteristics are improved.
(2) From Examples 4 and 5 and Comparative Example 2, when 10.326 ≦ a ≦ 10.335, 6.006 ≦ b ≦ 6.012 and 4.685 ≦ c ≦ 4.714, the output characteristics It can be seen that is improved.
1 正極、2 負極、3及び5 接着フィルム、4及び6 タブリード、7及び8 塗工面、9 セパレータ、10 単セル、11及び12 アルミラミネートフィルム、13 熱融着部、14 電池 1 positive electrode, 2 negative electrode, 3 and 5 adhesive film, 4 and 6 tab lead, 7 and 8 coated surface, 9 separator, 10 single cell, 11 and 12 aluminum laminate film, 13 heat fusion part, 14 battery

Claims (8)

  1.  正極及び負極と、前記正極と前記負極との間に位置するセパレータとを備え、
     前記正極が、正極活物質を含む正極活物質層を備え、
     前記正極活物質が、下記一般式(1)
    LiFe1-xZrx1-ySiy4  (1)
    (但し、0<x<1であり、0<y<1である)
    で表される単位格子を有するリチウム含有金属酸化物であり、
     前記単位格子が、10.326≦a≦10.335、6.006≦b≦6.012、4.685≦c≦4.714の格子定数を有し、
     前記セパレータが、前記正極活物質層と同じか又は大きい空隙率を有するリチウムイオン二次電池。
    A positive electrode and a negative electrode, and a separator located between the positive electrode and the negative electrode,
    The positive electrode includes a positive electrode active material layer containing a positive electrode active material,
    The positive electrode active material has the following general formula (1)
    LiFe 1-x Zr x P 1-y Si y O 4 (1)
    (However, 0 <x <1 and 0 <y <1)
    A lithium-containing metal oxide having a unit cell represented by
    The unit cell has a lattice constant of 10.326 ≦ a ≦ 10.335, 6.006 ≦ b ≦ 6.012, 4.685 ≦ c ≦ 4.714,
    The lithium ion secondary battery in which the separator has the same or larger porosity as the positive electrode active material layer.
  2.  前記セパレータと前記正極活物質層との空隙率の差が、0~40%の範囲である請求項1に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1, wherein a difference in porosity between the separator and the positive electrode active material layer is in a range of 0 to 40%.
  3.  前記セパレータ及び前記正極活物質層が、40~75%及び35~55%の範囲の空隙率を有する請求項1又は2に記載のリチウムイオン二次電池。 3. The lithium ion secondary battery according to claim 1, wherein the separator and the positive electrode active material layer have a porosity in the range of 40 to 75% and 35 to 55%.
  4.  前記正極活物質層は更に導電材、バインダーと増粘剤を含み、前記導電材はアセチレンブラックであり、前記バインダーはアクリル系樹脂であり、前記増粘剤はカルボキシメチルセルロースである請求項1~3のいずれか1つに記載のリチウムイオン二次電池。 The positive electrode active material layer further includes a conductive material, a binder and a thickener, wherein the conductive material is acetylene black, the binder is an acrylic resin, and the thickener is carboxymethylcellulose. The lithium ion secondary battery as described in any one of these.
  5.  前記x及びyが、0.015≦x≦0.095及び0.025≦y≦0.19の範囲である請求項1~4のいずれか1つに記載のリチウムイオン二次電池。 5. The lithium ion secondary battery according to claim 1, wherein x and y are in a range of 0.015 ≦ x ≦ 0.095 and 0.025 ≦ y ≦ 0.19.
  6.  前記x及びyが、1:1~2未満の比を有する請求項1~5のいずれか1つに記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 5, wherein the x and y have a ratio of 1: 1 to less than 2.
  7.  前記リチウム含有金属酸化物は、LiFePO4に対して表面に微量なZr由来の酸化物を有する請求項5又は6に記載のリチウムイオン二次電池。 7. The lithium ion secondary battery according to claim 5, wherein the lithium-containing metal oxide has a trace amount of an oxide derived from Zr on the surface of LiFePO 4 .
  8.  前記リチウム含有金属酸化物は、炭素被覆量が0.8重量%以上である請求項1~7のいずれか1つに記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 7, wherein the lithium-containing metal oxide has a carbon coating amount of 0.8% by weight or more.
PCT/JP2014/061471 2013-04-26 2014-04-23 Lithium ion secondary battery WO2014175350A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-094444 2013-04-26
JP2013094444 2013-04-26

Publications (1)

Publication Number Publication Date
WO2014175350A1 true WO2014175350A1 (en) 2014-10-30

Family

ID=51791917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061471 WO2014175350A1 (en) 2013-04-26 2014-04-23 Lithium ion secondary battery

Country Status (1)

Country Link
WO (1) WO2014175350A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219148A (en) * 2015-05-15 2016-12-22 株式会社Gsユアサ Power storage element
WO2019239924A1 (en) * 2018-06-13 2019-12-19 株式会社村田製作所 Lithium ion secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223029A (en) * 2000-02-09 2001-08-17 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2003303625A (en) * 2002-04-08 2003-10-24 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JP2011029079A (en) * 2009-07-28 2011-02-10 Sharp Corp Nonaqueous electrolyte secondary battery
JP2011253629A (en) * 2010-05-31 2011-12-15 Sharp Corp Positive electrode active material, positive electrode and nonaqueous electrolyte secondary battery
JP2012014987A (en) * 2010-07-01 2012-01-19 Sharp Corp Positive active material, positive electrode, and nonaqueous electrolyte secondary battery
JP2012204003A (en) * 2011-03-23 2012-10-22 Sharp Corp Positive electrode active material, positive electrode, and nonaqueous secondary battery
WO2014010526A1 (en) * 2012-07-11 2014-01-16 シャープ株式会社 Non-aqueous electrolyte secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223029A (en) * 2000-02-09 2001-08-17 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2003303625A (en) * 2002-04-08 2003-10-24 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JP2011029079A (en) * 2009-07-28 2011-02-10 Sharp Corp Nonaqueous electrolyte secondary battery
JP2011253629A (en) * 2010-05-31 2011-12-15 Sharp Corp Positive electrode active material, positive electrode and nonaqueous electrolyte secondary battery
JP2012014987A (en) * 2010-07-01 2012-01-19 Sharp Corp Positive active material, positive electrode, and nonaqueous electrolyte secondary battery
JP2012204003A (en) * 2011-03-23 2012-10-22 Sharp Corp Positive electrode active material, positive electrode, and nonaqueous secondary battery
WO2014010526A1 (en) * 2012-07-11 2014-01-16 シャープ株式会社 Non-aqueous electrolyte secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219148A (en) * 2015-05-15 2016-12-22 株式会社Gsユアサ Power storage element
WO2019239924A1 (en) * 2018-06-13 2019-12-19 株式会社村田製作所 Lithium ion secondary battery
JPWO2019239924A1 (en) * 2018-06-13 2021-02-12 株式会社村田製作所 Lithium ion secondary battery
JP7078112B2 (en) 2018-06-13 2022-05-31 株式会社村田製作所 Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP5843766B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
CN104022258B (en) Anode active material, anode and nonaqueous secondary battery
JP5271975B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
JP2015167065A (en) Nonaqueous electrolyte secondary battery
JP2014017199A (en) Electrode for lithium secondary battery and method for manufacturing the same, and lithium secondary battery and method for manufacturing the same
JP5683890B2 (en) Positive electrode material, manufacturing method thereof, positive electrode and non-aqueous electrolyte secondary battery
WO2011118302A1 (en) Active material for battery, and battery
US20140011083A1 (en) Electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery including the same
JP2012022791A (en) Positive electrode active material, positive electrode and nonaqueous electrolyte secondary battery
JP5451681B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
JP5463208B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
JP5482115B2 (en) Non-aqueous secondary battery active material and non-aqueous secondary battery
JP5957536B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
WO2014175350A1 (en) Lithium ion secondary battery
US20150017538A1 (en) Cathode active material, cathode, and nonaqueous secondary battery
JP5463222B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
WO2015019851A1 (en) Positive electrode active material, positive electrode and lithium ion secondary battery
WO2014021395A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries
JP5539802B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, cathode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6416082B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery including the same
JP5463207B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
JP5826653B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP5698929B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
WO2015107839A1 (en) Positive electrode active material
WO2015107822A1 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14788010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP