WO2014173344A1 - 一种网络拓扑的方法及*** - Google Patents

一种网络拓扑的方法及*** Download PDF

Info

Publication number
WO2014173344A1
WO2014173344A1 PCT/CN2014/077858 CN2014077858W WO2014173344A1 WO 2014173344 A1 WO2014173344 A1 WO 2014173344A1 CN 2014077858 W CN2014077858 W CN 2014077858W WO 2014173344 A1 WO2014173344 A1 WO 2014173344A1
Authority
WO
WIPO (PCT)
Prior art keywords
shortest path
open shortest
label switching
sub
area
Prior art date
Application number
PCT/CN2014/077858
Other languages
English (en)
French (fr)
Inventor
罗春
王志宏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US14/904,106 priority Critical patent/US20160156523A1/en
Publication of WO2014173344A1 publication Critical patent/WO2014173344A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • H04L12/6418Hybrid transport
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/085Retrieval of network configuration; Tracking network configuration history
    • H04L41/0853Retrieval of network configuration; Tracking network configuration history by actively collecting configuration information or by backing up configuration information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and system for network topology.
  • MPLS-TE Multi-Protocol Label Switching-Traffic Engineer
  • GMPLS Generalized Multi-Protocol Label Switching
  • IP Internet Protocol
  • Wavelength switching and space switching such as fiber switching and port switching
  • the resource information of the traffic engineering is flooded to all the label switching routers (LSRs) in the control domain through the routing protocol.
  • LSR label switching routers
  • Each LSR can form a network topology in the control domain, and the path is calculated according to the needs of the service establishment.
  • the signaling protocol is used to establish services.
  • the routing protocol and the signaling protocol run on a Data Communications Network (DCN), and the corresponding services run on the data plane or the transport plane.
  • DCN Data Communications Network
  • the DCN generally uses the in-band mode and the data plane to maintain the same topology.
  • the DCN is generally out-of-band, independent of the data plane.
  • the network scale expansion of a single control domain is mainly limited by the path computation capability and the speed of resource flooding convergence.
  • the Path Computation Element (PCE) can be used as a separate functional entity to break through the limitation.
  • resource flooding is caused by flooding the entire network in a single control domain. When there are many network resources, convergence The speed will be affected, and there is no relevant means to improve it.
  • the standard OSPF (Open Shortest Path First) protocol is used to exchange routing information in the control domain.
  • OSPF Open Shortest Path First
  • the route flooding protocol is generally OSPF-TE (Open Shortest Path First-Traffic Engineer).
  • OSPF-TE Open Shortest Path First-Traffic Engineer
  • the port number of each LSR running OSPF-TE protocol is called OSPF-TE (Open Shortest Path First-Traffic Engineer).
  • OSPF-TE Open Shortest Path First-Traffic Engineer
  • the traffic information of the traffic engineering is flooded to other LSRs through the control interface.
  • the Opaque Link State Advertisements (LSA) flooding is used.
  • the flooding scope is limited to an OSPF area and cannot be flooded to the entire autonomous domain. Therefore, a control domain generally has only one OSPF area, and the OSPF area id is 0. There is no way to solve the flooding convergence speed by dividing the area. Slow question.
  • the invention provides a method and system for network topology, which accelerates the convergence speed of resources flooding.
  • the present invention provides a method for network topology, including:
  • the foregoing method further has the following features: acquiring traffic engineering resource information on each of the sub-domains, summarizing traffic engineering resource information on all sub-domains, and generating a network topology diagram in the single control domain, including :
  • the traffic engineering resource information on each of the sub-domains is obtained by the path calculation unit, and the traffic engineering resource information on all the sub-domains is aggregated to generate a network topology map in the single control domain.
  • the above method has the following features:
  • the label switching router constitutes the open shortest path first neighbor, including:
  • each open shortest path first area is assigned a separate open shortest path first area identifier greater than 0, and the open shortest path first area identifier is identified Configured on the control interface of the corresponding label switching router.
  • the foregoing method further has the following features: Before the obtaining, by the path calculation unit, the traffic engineering resource information on each of the sub-domains, the method further includes:
  • each control interface is configured with a corresponding open shortest path priority area identifier, so that the control interface and the corresponding open shortest path priority area are
  • the label switching router forms a neighbor.
  • the above method has the following features:
  • the label switching router in a single control domain is divided into multiple sub-domains, and the label switching routers in each sub-domain constitute an open shortest path first-order neighbor, including:
  • the method further includes:
  • An open shortest path priority protocol processing instance is initiated on the path calculation unit for each of the divided sub-areas, and each open shortest path first protocol processing instance configures one control interface to form a neighbor with the label switching router in the corresponding sub-area.
  • the invention also provides a network topology system, comprising:
  • a first module configured to divide a label switching router within a single control domain into a plurality of subdomains, the label switching routers in each subdomain forming an open shortest path first neighbor;
  • a second module configured to obtain traffic engineering resource information on each of the sub-domains, and summarize traffic engineering resource information on all sub-domains to generate a network topology map in the single control domain.
  • the above system also has the following features:
  • the first module is configured to divide a label switching router in a single control domain into multiple The shortest path priority area is allocated, and each open shortest path priority area is assigned a separate open shortest path priority area identifier greater than 0, and the open shortest path priority area identifier is configured to the control interface of the corresponding label switching router.
  • the above system also has the following features:
  • the second module is further configured to configure a control interface for each of the open shortest path priority areas, and each control interface is configured with a corresponding open shortest path priority area identifier, so that the control interface and the corresponding open shortest path priority area are The label switching router in the middle forms a neighbor.
  • the above system also has the following features:
  • the first module is configured to divide a label switching router in a single control domain into a plurality of sub-areas, and the label switching routers in each sub-area constitute an open shortest path first neighbor;
  • the second module is further configured to start, on the path calculation unit, an open shortest path first protocol processing instance for each divided sub-area, and each open shortest path first protocol processing instance configures a control interface and a corresponding sub-area
  • the label switching router forms a neighbor.
  • the embodiments of the present invention provide a method and system for network topology, which speed up the flooding and convergence of resources, break through the limitation of the network size of a single control domain, and ensure the rich functions of user services.
  • FIG. 1 is a flowchart of a method for network topology according to an embodiment of the present invention
  • FIG. 2 is a networking diagram of a network topology according to Embodiment 1 of the present invention.
  • FIG. 3 is a networking diagram of a network topology according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram of a network topology system according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for network topology according to an embodiment of the present invention, including the following steps: Step S1: Divide an LSR in a single control domain into multiple sub-domains, and an LSR in each sub-domain Form an OSPF neighbor;
  • Step S12 Obtain traffic engineering resource information on each of the sub-domains, and summarize traffic engineering resource information on all sub-domains to generate a network topology map in the single control domain.
  • the method in this embodiment divides a single control domain into multiple sub-domains, and each LSR belongs to only one sub-domain, and the flooding information is limited to only the sub-domain, and the method of introducing the PCE in the entire control domain is used.
  • the resource information of all the sub-domains is obtained by the PCE, which limits the amount of information flooded by the resources, and improves the convergence speed of the flooding.
  • the various operations of the service are still performed according to the situation of the single control domain, providing a single control domain for the user service. Rich and flexible operation functions.
  • Step 101 The LSRs in the control domain are divided into different OSPF areas, and each area is assigned a separate OSPF Area id greater than 0, and the OSPF Area id is configured on the LSR control interface.
  • the LSRs in the same OSPF area can form a neighbor.
  • the traffic engineering resource information on the LSR is flooded with the Opaque LSA of type 10 and flooded to the control interfaces of other LSRs that form neighbors. , that is, it will only flood in each sub-area, and will not flood to other OSPF Areas.
  • control interfaces of OSPF Areal, LSR5, LSR6, LSR7, and LSR8 are configured on the control interfaces of LSR1, LSR2, LSR3, and LSR4.
  • OSPF Area3 is configured on the control interfaces of OSPF Area2, LSR9, LSR10, LSR11, and LSR12.
  • Step 102 Introduce a PCE in the entire control domain, and configure a control interface for each OSPF area that is divided on the PCE.
  • Each control interface is configured with an OSPF area id, so that the control interface on the PCE and the LSR in the corresponding OSPF area are formed. neighbor. In this way, the PCE can obtain the traffic engineering resource information corresponding to the OSPF area through different control interfaces.
  • control interface 1 As shown in Figure 2, three control interfaces are configured on the PCE, and the OSPF Area id of the control interface 1 is
  • the OSPF area id of control interface 2 is 2.
  • the OSPF area id of control interface 3 is 3.
  • Control interface 1 forms an OSPF neighbor with the LSR in OSPF Areal.
  • Control interface 2 forms an OSPF neighbor relationship with the LSR in OSPF Area2.
  • Control interface 3 forms an OSPF with the LSR in OSPF Area3. neighbor.
  • Step 103 The PCE aggregates the traffic engineering resource information acquired by all the control interfaces to generate a network topology map in a single control domain, and forms a network topology of the entire control domain.
  • the PCE collects the OSPF Area1 resource information from the control interface 1, collects the OSPF Area 2 resource information from the control interface 2, and collects the OSPF Area 3 resource information from the control interface 3.
  • Resource information which constitutes the traffic engineering database under the control domain, forms a network topology.
  • Step 104 When performing the traffic engineering path calculation in the control domain, if the path can be determined on the LSR, determine whether to request the path from the PCE according to the corresponding policy; if the LSR cannot determine the path, directly request the path from the PCE.
  • LSR1 can obtain the resource information of LSR4. Therefore, LSR1 can calculate a path from the resource database of the node according to the policy, and establish a service.
  • the path calculation request can be sent to the PCE, and after the path is calculated by the PCE and returned, the service establishment is performed.
  • the LSR1 cannot obtain the LSR11 resource information, and the path calculation request is sent to the PCE.
  • the PCE can calculate the path to the LSR11 and return it to the LSR1 for service. set up.
  • Step 201 The LSRs in the control domain are divided into different sub-areas, and the LSRs in each sub-area form an OSPF neighbor, and the LSRs in different sub-areas cannot form an OSPF neighbor.
  • control interfaces of LSR1, LSR2, LSR3, and LSR4 belong to sub-area 1
  • control interfaces of LSR5, LSR6, LSR7, and LSR8 belong to sub-area 2.
  • the control interfaces of LSR9, LSR10, LSR11, and LSR12 belong to sub-area 3.
  • the neighbors are formed, and the LSRs in the sub-areas can be configured as neighbors, but the LSRs in the sub-areas cannot be configured as neighbors.
  • Step 202 Introducing a PCE in the entire control domain, and mapping each sub-region on the PCE A 0SPF protocol processing instance is started.
  • Each 0SPF instance is configured with a control interface to form a neighbor with the LSR in the corresponding sub-area, so that the PCE can obtain the traffic engineering resource information of the corresponding sub-area through different 0SPF instances.
  • the instance 1 corresponds to the sub-area 1 and forms a neighbor with the LSR in the sub-area 1.
  • the instance 2 corresponds to the sub-area 2 and forms a neighbor with the LSR in the sub-area 2.
  • a neighbor is formed with the LSR in the sub-area 3.
  • Step 203 The OSPF instance on the PCE shares the traffic engineering database, and summarizes the traffic engineering resource information obtained by all the sub-areas to generate a network topology map in a single control domain, forming a network topology of the entire control domain.
  • the PCE collects the resource information of the sub-area 1 from the instance 1, collects the resource information of the sub-area 2 from the instance 2, and collects the resource information of the sub-area 3 from the instance 3, and summarizes all the resources.
  • Resource information which constitutes the traffic engineering database under the control domain, forms a network topology.
  • Step 204 Perform a traffic engineering path calculation in the control domain. If the path can be determined on the LSR, determine whether to request a path from the PCE according to the corresponding policy. If the LSR cannot determine the path, directly request the path from the PCE.
  • LSR1 can obtain the resource information of LSR4. Therefore, LSR1 can calculate a path from the resource database of the node according to the policy, and establish a service.
  • the path calculation request can be sent to the PCE, and after the path is calculated by the PCE and returned, the service establishment is performed.
  • the LSR1 cannot obtain the LSR11 resource information, and the path calculation request is sent to the PCE.
  • the PCE can calculate the path to the LSR11 and return it to the LSR1 for service. set up.
  • the single control domain is divided into sub-areas, and the resource information flooding scope of the traffic engineering is restricted to the sub-area, and the PCE is introduced, and the resource information of all the sub-areas is obtained through the PCE, and the whole network extension of the single control domain is summarized. Park.
  • FIG. 4 is a schematic diagram of a network topology system 40 according to an embodiment of the present invention.
  • the system in this embodiment includes:
  • the first module 41 is configured to divide the label switching router in the single control domain into multiple sub-domains, and the label switching router in each sub-domain constitutes an open shortest path first neighbor;
  • the second module 42 is configured to obtain traffic engineering resource information on each of the sub-domains, and summarize traffic engineering resource information on all sub-domains to form a full-network topology of the entire single control domain.
  • the second module is a path calculation unit.
  • the first module is configured to divide a label switching router in a single control domain into a plurality of open shortest path priority areas, and each open shortest path priority area is assigned a single open minimum of greater than 0.
  • the path priority area identifier is configured to be configured on the control interface of the corresponding label switching router.
  • the path calculation unit is further configured to configure a control interface for each of the open shortest path priority areas, and each control interface configures a corresponding open shortest path priority area identifier, so that the control interface and the corresponding open shortest path priority area are The label switching router in the middle forms a neighbor.
  • the first module is configured to divide a label switching router in a single control domain into a plurality of sub-areas, and the label switching router in each sub-area constitutes an open shortest path priority neighbor;
  • the path calculation unit is further configured to start, on the path calculation unit, an open shortest path first protocol processing instance for each divided sub-area, and each open shortest path first protocol processing instance configures a control interface and a corresponding sub-area
  • the label switching router forms a neighbor.
  • the embodiment of the invention provides a method and a system for network topology, which speeds up resource flooding convergence, breaks through the limitation of network size of a single control domain, and ensures rich functions of user services.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种网络拓扑的方法及***,该方法包括:将单个控制域内的标签交换路由器划分为多个子域,每个子域内的标签交换路由器构成开放最短路径优先邻居;获取各个所述子域上的流量工程资源信息,将所有子域上的流量工程资源信息进行汇总,生成所述单个控制域内的网络拓扑图。

Description

一种网络拓朴的方法及***
技术领域
本发明涉及通信技术领域, 尤其涉及一种网络拓朴的方法及***。
背景技术
MPLS-TE ( Multi-Protocol Label Switching-Traffic Engineer, 多协议标签交 换的流量工程) 结合了多协议标签交换技术和流量工程技术的优势, 在分组 交换和 2 层交换中实现了网络带宽资源的动态调整和优化配置, GMPLS ( Generalized Multi-Protocol Label Switching, 通用多协议标签交换)是对 MPLS-TE的进一步扩展, 不但可以支持 IP ( Internet Protocol, 网络协议 )分 组交换, 还可以支持时隙交换、 波长交换和空间交换(如光纤交换和端*** 换) 。
流量工程的资源信息通过路由协议洪泛到控制域中的所有标签交换路由 器(Label Switching Router, 简称 LSR, 每个 LSR都可以形成控制域内的全 网拓朴, 根据业务建立的需要计算路径, 通过信令协议进行业务的建立。
路由协议和信令协议运行在数据通信网络 ( Data Communications Network, 简称 DCN )上, 相应的业务运行在数据平面或者传送平面上。 在 MPLS-TE 网络中, DCN—般釆用带内方式和数据平面保持相同的拓朴, 而 在 GMPLS网络中, DCN—般是带外方式, 独立于数据平面。
单个控制域的网络规模扩大主要受到路径计算能力和资源洪泛收敛速度 的限制。 对于路径计算能力, 通过引入路径计算单元 (Path Computation Element, 简称 PCE )作为单独的功能实体, 可以突破该限制, 但资源洪泛由 于是单控制域内全网洪泛, 当网络资源较多时, 收敛的速度将会受到影响, 目前没有相关的手段可以得到改善。
在 IP路由网络中, 使用标准的 OSPF ( Open Shortest Path First, 开放最 短路径优先)协议在控制域内交换路由信息, 当网络规模扩大时, 往往釆用 划分 Area (区域, 指 OSPF中控制接口组成的区段) 的方法解决洪泛收敛速 度慢的问题。 而在 MPLS-TE 或者 GMPLS 网络中路由洪泛协议一般釆用 OSPF-TE ( Open Shortest Path First-Traffic Engineer, 基于流量工程的开发最短 路径优先 )协议, 每个 LSR运行 OSPF-TE协议的端口称为控制接口, 流量工 程的资源信息通过控制接口洪泛到其它 LSR, 按照 OSPF-TE的规定, 釆用类 型为 10的不透明 ( Opaque )链路状态通告( Link State Advertisements, 简称 LSA ) 洪泛, 洪泛的范围限定在一个 OSPF的 Area内, 而不能洪泛到整个自 治域, 因此一个控制域一般只有一个 OSPF Area, 且 OSPF Area id为 0, 没有 办法通过划分 Area的方法解决洪泛收敛速度慢的问题。
由于单个控制域的规模受到限制, 当单个控制域内 LSR数目增大到一定 程度时, 目前业界一般的做法是对控制域进行拆分, 控制域间通过 EN I ( External Network-Network Interface , 夕卜部网络-网络接口)链路连接。 由于 资源信息在控制域间相互隔离, 域间洪泛的资源信息只是一些抽象的内容, 一些单控制域内业务上具备的功能在跨域业务上面难以实现。 发明内容
本发明提供一种网络拓朴的方法及***, 从加快资源洪泛收敛速度。 本发明提供了一种网络拓朴的方法, 包括:
将单个控制域内的标签交换路由器划分为多个子域, 每个子域内的标签 交换路由器构成开放最短路径优先邻居; 以及
获取各个所述子域上的流量工程资源信息, 将所有子域上的流量工程资 源信息进行汇总, 生成所述单个控制域内的网络拓朴图。
可选地, 上述方法还具有下面特点: 获取各个所述子域上的流量工程资 源信息, 将所有子域上的流量工程资源信息进行汇总, 生成所述单个控制域 内的网络拓朴图, 包括:
由路径计算单元获取各个所述子域上的流量工程资源信息, 将所有子域 上的流量工程资源信息进行汇总, 生成所述单个控制域内的网络拓朴图。
可选地, 上述方法还具有下面特点:
所述将单个控制域内的标签交换路由器划分为多个子域, 每个子域内的 标签交换路由器构成开放最短路径优先邻居, 包括:
将所述单个控制域内的标签交换路由器划分为多个开放最短路径优先区 域, 每个开放最短路径优先区域分配一个单独的大于 0的开放最短路径优先 区域标识, 将所述开放最短路径优先区域标识配置到对应的标签交换路由器 的控制接口上。
可选地, 上述方法还具有下面特点: 所述由路径计算单元获取各个所述 子域上的流量工程资源信息之前, 还包括:
在所述路径计算单元上针对划分的每个开放最短路径优先区域配置一个 控制接口, 每个控制接口配置对应的开放最短路径优先区域标识, 使所述控 制接口与相应的开放最短路径优先区域中的标签交换路由器形成邻居。
可选地, 上述方法还具有下面特点:
所述将单个控制域内的标签交换路由器划分为多个子域, 每个子域内的 标签交换路由器构成开放最短路径优先邻居, 包括:
将单控制域内的标签交换路由器划分为多个子区域, 每个子区域内的标 签交换路由器构成开放最短路径优先邻居; 以及
所述由路径计算单元获取各个所述子域上的流量工程资源信息之前, 还 包括:
在所述路径计算单元上针对划分的每个子区域启动一个开放最短路径优 先协议处理实例, 每个开放最短路径优先协议处理实例配置一个控制接口与 对应子区域中的标签交换路由器形成邻居。
本发明还提供了一种网络拓朴***, 包括:
第一模块,其设置成将单个控制域内的标签交换路由器划分为多个子域, 每个子域内的标签交换路由器构成开放最短路径优先邻居; 以及
第二模块, 其设置成获取各个所述子域上的流量工程资源信息, 将所有 子域上的流量工程资源信息进行汇总,生成所述单个控制域内的网络拓朴图。
可选地, 上述***还具有下面特点:
所述第一模块是设置成将单个控制域内的标签交换路由器划分为多个开 放最短路径优先区域, 每个开放最短路径优先区域分配一个单独的大于 0的 开放最短路径优先区域标识, 将所述开放最短路径优先区域标识配置到对应 的标签交换路由器的控制接口上。
可选地, 上述***还具有下面特点:
所述第二模块还设置成针对划分的每个开放最短路径优先区域配置一个 控制接口, 每个控制接口配置对应的开放最短路径优先区域标识, 使所述控 制接口与相应的开放最短路径优先区域中的标签交换路由器形成邻居。
可选地, 上述***还具有下面特点:
所述第一模块是设置成将单控制域内的标签交换路由器划分为多个子区 域, 每个子区域内的标签交换路由器构成开放最短路径优先邻居; 以及
所述第二模块还设置成在所述路径计算单元上针对划分的每个子区域启 动一个开放最短路径优先协议处理实例, 每个开放最短路径优先协议处理实 例配置一个控制接口与对应子区域中的标签交换路由器形成邻居。
综上, 本发明实施例提供一种网络拓朴的方法及***, 加快资源洪泛收 敛速度, 突破单个控制域的网络规模的限制, 保证用户业务的丰富功能。
附图概述
图 1为本发明实施例的一种网络拓朴的方法的流程图;
图 2是本发明实施例一的网络拓朴的组网图;
图 3 是本发明实施例二的网络拓朴的组网图;
图 4为本发明实施例的一种网络拓朴***的示意图。
本发明的较佳实施方式
下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。
图 1为本发明实施例的一种网络拓朴的方法的流程图, 包括以下步骤: 步骤 Sl l、 将单个控制域内的 LSR划分为多个子域, 每个子域内的 LSR 构成 OSPF邻居;
步骤 S12、 获取各个所述子域上的流量工程资源信息, 将所有子域上的 流量工程资源信息进行汇总, 生成所述单个控制域内的网络拓朴图。
本实施例的方法通过将单个控制域划分成多个子域, 每个 LSR只属于一 个子域中, 将洪泛信息仅限定在子域中, 并釆用在整个控制域中引入 PCE的 方法, 通过 PCE获取所有子域的资源信息, 限定了资源洪泛的信息量, 提高 了洪泛的收敛速度, 而对于业务的各种操作仍然按照单控制域的情况进行, 为用户业务提供单个控制域下丰富灵活的操作功能。
实施例一
下面结合图 2说明本发明实施方案, 所有 LSR上的流量工程资源信息已 经事先配置完成, 包括步骤:
步骤 101、 将控制域内的 LSR分成不同的 OSPF Area, 每个区域分配一 个单独的大于 0的 OSPF Area id,将 OSPF Area id配置到 LSR的控制接口上。
根据 OSPF-TE的洪泛规定, 同一 OSPF Area内的 LSR才能形成邻居, LSR上的流量工程资源信息通过类型为 10的 Opaque LSA洪泛, 只会洪泛到 形成邻居的其它 LSR的控制接口上, 即只会在每个子区域内洪泛, 而不会洪 泛到其它的 OSPF Area。
如图 2所示, LSR1、 LSR2、 LSR3、 LSR4的控制接口配置 OSPF Areal , LSR5、 LSR6、 LSR7、 LSR8的控制接口配置 OSPF Area2, LSR9、 LSR10、 LSR11、 LSR12的控制接口配置 OSPF Area3。
步骤 102、 整个控制域中引入 PCE, 在 PCE上面针对划分的每个 OSPF Area配置一个控制接口, 每个控制接口配置对应的 OSPF Area id, 使 PCE上 的控制接口与相应 OSPF Area中的 LSR形成邻居。这样 PCE就可以通过不同 的控制接口获取对应 OSPF Area的流量工程资源信息。
如图 2所示, PCE上配置三个控制接口, 控制接口 1的 OSPF Area id为
1 , 控制接口 2的 OSPF Area id为 2, 控制接口 3的 OSPF Area id为 3。 控制 接口 1与 OSPF Areal中的 LSR形成 OSPF邻居, 控制接口 2与 OSPF Area2 中的 LSR形成 OSPF邻居, 控制接口 3与 OSPF Area3中的 LSR形成 OSPF 邻居。
步骤 103、 PCE将所有控制接口获取的流量工程资源信息汇总, 生成单 个控制域内的网络拓朴图, 形成整个控制域的全网拓朴。
上述配置完成后, 经过流量工程的资源信息洪泛, PCE从控制接口 1收 集 OSPF Areal的资源信息, 从控制接口 2收集 OSPF Area2的资源信息, 从 控制接口 3收集 OSPF Area3的资源信息, 汇总所有资源信息, 构成控制域下 的流量工程数据库, 形成全网拓朴。
步骤 104、进行控制域内流量工程路径计算时, 若 LSR上可以确定路径, 则根据相应策略决定是否向 PCE请求路径; 若 LSR不能确定路径, 则直接向 PCE请求路径。
如需建立一个从 LSR1到 LSR4的业务, LSR1上发起路径计算请求时, 由于 LSR1可以获取 LSR4的资源信息, 因此 LSR1可以根据策略从本节点的 资源数据库中计算出一条路径, 进行业务建立, 也可以发送路径计算请求给 PCE, 由 PCE计算路径并返回后, 进行业务建立。
如需建立一个从 LSR1到 LSR11的业务时, 由于 LSR1无法获取 LSR11 的资源信息, 将路径计算请求发送给 PCE, PCE通过全网拓朴信息, 可以计 算出到 LSR11的路径, 返回给 LSR1进行业务建立。
实施例二
下面结合图 3说明本发明实施方案。 所有 LSR上的流量工程资源信息已 经事先配置完成, 开始如下步骤:
步骤 201、 将控制域内的 LSR分成不同的子区域, 每个子区域内的 LSR 构成 OSPF的邻居, 不同子区域间的 LSR不能构成 OSPF邻居。
如图 3所示, LSR1、LSR2、LSR3、LSR4的控制接口属于子区域 1 , LSR5、 LSR6、 LSR7、 LSR8的控制接口属于子区域 2, LSR9、 LSR10、 LSR11、 LSR12 的控制接口属于子区域 3。根据 DCN网络状况,形成邻居,各子区域中的 LSR 可配置成邻居, 但子区域间的 LSR不能配置成邻居。
步骤 202、 整个控制域中引入 PCE, 在 PCE上面针对划分的每个子区域 启动一个 0SPF协议处理实例,每个 0SPF实例配置一个控制接口与对应子区 域中的 LSR形成邻居,这样 PCE就可以通过不同的 0SPF实例获取对应子区 域上的流量工程资源信息。
如图 3所示, PCE上启动三个 0SPF实例, 实例 1对应子区域 1 , 与子区 域 1中的 LSR形成邻居; 实例 2对应子区域 2, 与子区域 2中的 LSR形成邻 居; 实例 3对应子区域 3 , 与子区域 3中的 LSR形成邻居。
步骤 203、 PCE上各 OSPF实例共享流量工程数据库,将所有子区域获取 的流量工程资源信息汇总, 生成单个控制域内的网络拓朴图, 形成整个控制 域的全网拓朴。
上述配置完成后, 经过流量工程的资源信息洪泛, PCE从实例 1收集子 区域 1的资源信息, 从实例 2收集子区域 2的资源信息, 从实例 3收集子区 域 3的资源信息, 汇总所有资源信息, 构成控制域下的流量工程数据库, 形 成全网拓朴。
步骤 204、进行控制域内流量工程路径计算时, 若 LSR上可以确定路径, 则根据相应策略决定是否向 PCE请求路径; 若 LSR不能确定路径, 则直接向 PCE请求路径。
如需建立一个从 LSR1到 LSR4的业务, LSR1上发起路径计算请求时, 由于 LSR1可以获取 LSR4的资源信息, 因此 LSR1可以根据策略从本节点的 资源数据库中计算出一条路径, 进行业务建立, 也可以发送路径计算请求给 PCE, 由 PCE计算路径并返回后, 进行业务建立。
如需建立一个从 LSR1到 LSR1的业务时, 由于 LSR1无法获取 LSR11 的资源信息, 将路径计算请求发送给 PCE, PCE通过全网拓朴信息, 可以计 算出到 LSR11的路径, 返回给 LSR1进行业务建立。
本实施例的方法将单控制域划分子区域, 将流量工程的资源信息洪泛范 围限制在子区域中, 引入 PCE, 通过 PCE获取所有子区域的资源信息, 汇总 成单控制域的全网拓朴。
图 4为本发明实施例的一种网络拓朴*** 40的示意图, 如图 4所示, 本 实施例的***包括: 第一模块 41 ,其设置成将单控制域内的标签交换路由器划分为多个子域, 每个子域内的标签交换路由器构成开放最短路径优先邻居;
第二模块 42, 其设置成获取各个所述子域上的流量工程资源信息, 将所 有子域上的流量工程资源信息进行汇总, 形成整个单控制域的全网拓朴。
在一较佳实施例中, 所述第二模块为路径计算单元。
在一较佳实施例中, 所述第一模块是设置成将单控制域内的标签交换路 由器划分为多个开放最短路径优先区域, 每个开放最短路径优先区域分配一 个单独的大于 0的开放最短路径优先区域标识, 将所述开放最短路径优先区 域标识配置到对应的标签交换路由器的控制接口上。
所述路径计算单元还设置成针对划分的每个开放最短路径优先区域配置 一个控制接口, 每个控制接口配置对应的开放最短路径优先区域标识, 使所 述控制接口与相应的开放最短路径优先区域中的标签交换路由器形成邻居。
在一较佳实施例中, 所述第一模块是设置成将单控制域内的标签交换路 由器划分为多个子区域, 每个子区域内的标签交换路由器构成开放最短路径 优先邻居;
所述路径计算单元还设置成在所述路径计算单元上针对划分的每个子区 域启动一个开放最短路径优先协议处理实例, 每个开放最短路径优先协议处 理实例配置一个控制接口与对应子区域中的标签交换路由器形成邻居。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
以上仅为本发明的较佳实施例, 当然, 本发明还可有其他多种实施例, 在不背离本发明精神及其实质的情况下, 熟悉本领域的技术人员当可根据本 发明作出各种相应的改变和变形, 但这些相应的改变和变形都应属于本发明 所附的权利要求的保护范围。
工业实用性
本发明实施例提供一种网络拓朴的方法及***,加快资源洪泛收敛速度, 突破单个控制域的网络规模的限制, 保证用户业务的丰富功能。

Claims

权 利 要 求 书
1、 一种网络拓朴的方法, 包括:
将单个控制域内的标签交换路由器划分为多个子域, 每个子域内的标签 交换路由器构成开放最短路径优先邻居; 以及
获取各个所述子域上的流量工程资源信息, 将所有子域上的流量工程资 源信息进行汇总, 生成所述单个控制域内的网络拓朴图。
2、 如权利要求 1的方法, 其中: 获取各个所述子域上的流量工程资源信 息, 将所有子域上的流量工程资源信息进行汇总, 生成所述单个控制域内的 网络拓朴图, 包括:
由路径计算单元获取各个所述子域上的流量工程资源信息, 将所有子域 上的流量工程资源信息进行汇总, 生成所述单个控制域内的网络拓朴图。
3、 如权利要求 2的方法, 其中:
所述将单个控制域内的标签交换路由器划分为多个子域, 每个子域内的 标签交换路由器构成开放最短路径优先邻居, 包括:
将所述单个控制域内的标签交换路由器划分为多个开放最短路径优先区 域, 每个开放最短路径优先区域分配一个单独的大于 0的开放最短路径优先 区域标识, 将所述开放最短路径优先区域标识配置到对应的标签交换路由器 的控制接口上。
4、 如权利要求 3的方法, 其中: 所述由路径计算单元获取各个所述子域 上的流量工程资源信息之前, 还包括:
在所述路径计算单元上针对划分的每个开放最短路径优先区域配置一个 控制接口, 每个控制接口配置对应的开放最短路径优先区域标识, 使所述控 制接口与相应的开放最短路径优先区域中的标签交换路由器形成邻居。
5、 如权利要求 2的方法, 其中:
所述将单个控制域内的标签交换路由器划分为多个子域, 每个子域内的 标签交换路由器构成开放最短路径优先邻居, 包括:
将单控制域内的标签交换路由器划分为多个子区域, 每个子区域内的标 签交换路由器构成开放最短路径优先邻居; 以及
所述由路径计算单元获取各个所述子域上的流量工程资源信息之前, 还 包括:
在所述路径计算单元上针对划分的每个子区域启动一个开放最短路径优 先协议处理实例, 每个开放最短路径优先协议处理实例配置一个控制接口与 对应子区域中的标签交换路由器形成邻居。
6、 一种网络拓朴***, 包括:
第一模块,其设置成将单个控制域内的标签交换路由器划分为多个子域, 每个子域内的标签交换路由器构成开放最短路径优先邻居; 以及
第二模块, 其设置成获取各个所述子域上的流量工程资源信息, 将所有 子域上的流量工程资源信息进行汇总,生成所述单个控制域内的网络拓朴图。
7、 如权利要求 6的***, 其中:
所述第一模块是设置成将单个控制域内的标签交换路由器划分为多个开 放最短路径优先区域, 每个开放最短路径优先区域分配一个单独的大于 0的 开放最短路径优先区域标识, 将所述开放最短路径优先区域标识配置到对应 的标签交换路由器的控制接口上。
8、 如权利要求 7的***, 其中:
所述第二模块还设置成针对划分的每个开放最短路径优先区域配置一个 控制接口, 每个控制接口配置对应的开放最短路径优先区域标识, 使所述控 制接口与相应的开放最短路径优先区域中的标签交换路由器形成邻居。
9、 如权利要求 6的***, 其中:
所述第一模块是设置成将单控制域内的标签交换路由器划分为多个子区 域, 每个子区域内的标签交换路由器构成开放最短路径优先邻居; 以及
所述第二模块还设置成在所述路径计算单元上针对划分的每个子区域启 动一个开放最短路径优先协议处理实例, 每个开放最短路径优先协议处理实 例配置一个控制接口与对应子区域中的标签交换路由器形成邻居。
PCT/CN2014/077858 2013-07-15 2014-05-20 一种网络拓扑的方法及*** WO2014173344A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/904,106 US20160156523A1 (en) 2013-07-15 2014-05-20 Method and System for Network Topology

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310296782.3A CN104301219B (zh) 2013-07-15 2013-07-15 一种网络拓扑的方法及***
CN201310296782.3 2013-07-15

Publications (1)

Publication Number Publication Date
WO2014173344A1 true WO2014173344A1 (zh) 2014-10-30

Family

ID=51791074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077858 WO2014173344A1 (zh) 2013-07-15 2014-05-20 一种网络拓扑的方法及***

Country Status (3)

Country Link
US (1) US20160156523A1 (zh)
CN (1) CN104301219B (zh)
WO (1) WO2014173344A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108259357B (zh) * 2017-09-29 2021-08-24 新华三技术有限公司 一种路由收敛方法及装置
WO2020087394A1 (zh) * 2018-10-31 2020-05-07 华为技术有限公司 链路资源的传输方法及装置
CN112260847B (zh) * 2019-07-22 2023-01-13 华为技术有限公司 一种发送ospf域信息的方法、获取ospf域信息的方法和装置
CN110601985B (zh) * 2019-09-17 2022-03-29 北京东土军悦科技有限公司 一种接口配置信息切换方法、装置、设备及存储介质
CN113556796A (zh) * 2020-04-24 2021-10-26 华为技术有限公司 配置路由域标识的方法及设备
CN113824579B (zh) * 2020-06-19 2022-12-06 华为技术有限公司 园区网中设备的接口配置方法及网络设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101155134A (zh) * 2006-09-28 2008-04-02 华为技术有限公司 路径计算及网络拓扑方法、构架、***、实体及路由器
CN102932260A (zh) * 2012-10-31 2013-02-13 福建星网锐捷网络有限公司 路由计算方法、设备及***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3699837B2 (ja) * 1998-10-30 2005-09-28 株式会社東芝 ルータ装置及びラベルスイッチパス制御方法
US7860024B1 (en) * 2001-05-21 2010-12-28 At&T Intellectual Property Ii, L.P. Network monitoring method and system
CN100454841C (zh) * 2006-06-02 2009-01-21 华为技术有限公司 一种多域路由计算方法和***
CN101247322A (zh) * 2007-02-14 2008-08-20 华为技术有限公司 一种进行自治***间路径计算的方法及网络设备
CN101465788A (zh) * 2007-12-21 2009-06-24 华为技术有限公司 一种域间路由互通的方法、装置和路径计算单元

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101155134A (zh) * 2006-09-28 2008-04-02 华为技术有限公司 路径计算及网络拓扑方法、构架、***、实体及路由器
CN102932260A (zh) * 2012-10-31 2013-02-13 福建星网锐捷网络有限公司 路由计算方法、设备及***

Also Published As

Publication number Publication date
CN104301219A (zh) 2015-01-21
CN104301219B (zh) 2019-11-05
US20160156523A1 (en) 2016-06-02

Similar Documents

Publication Publication Date Title
US11606255B2 (en) Method and apparatus for creating network slices
WO2014173344A1 (zh) 一种网络拓扑的方法及***
Muñoz et al. PCE: What is it, how does it work and what are its limitations?
US9432281B2 (en) Apparatus and method for a communication network
EP2878100A1 (en) System, method and apparatus for signaling and responding to ero expansion failure in inter domain te lsp
CN110650090B (zh) 路由方法和路由器
US9843502B2 (en) Routing of point-to-multipoint services in a multi-domain network
JP2009512287A (ja) イーサネットのgmpls制御
JP5438685B2 (ja) パスの確立を要求するipネットワークにおけるルーティングの最適性の向上
CN110099002B (zh) 一种路径计算方法及装置
US9722857B2 (en) Node marking for control plane operation
US7463580B2 (en) Resource sharing among network tunnels
CN101945048B (zh) 一种标签交换路径的建立方法、***及装置
WO2015024440A1 (zh) 一种获取ip链路的链路开销值的方法及***
Farrel et al. An architecture for use of PCE and the PCE communication protocol (PCEP) in a network with central control
US8781320B2 (en) Automatically switched optical network and method for data transmission in the network
US9876734B2 (en) Method and system for processing RSVP-TE signaling
Stojanovic et al. A hybrid method for signalling transport in GMPLS control plane
Li et al. RFC 8283: An Architecture for Use of PCE and the PCE Communication Protocol (PCEP) in a Network with Central Control
KR20080073481A (ko) Mpls 네트워크 시스템 및 그 시스템의 경로설정방법
Abukhshim Intra-Area, Inter-Area and Inter-AS Traffic Engineering and Path Selection Evaluation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788989

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14904106

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14788989

Country of ref document: EP

Kind code of ref document: A1