WO2014173043A1 - Procédé d'antigivrage au cristal de carbone et système d'antigivrage de générateur éolien utilisant celui-ci - Google Patents

Procédé d'antigivrage au cristal de carbone et système d'antigivrage de générateur éolien utilisant celui-ci Download PDF

Info

Publication number
WO2014173043A1
WO2014173043A1 PCT/CN2013/081515 CN2013081515W WO2014173043A1 WO 2014173043 A1 WO2014173043 A1 WO 2014173043A1 CN 2013081515 W CN2013081515 W CN 2013081515W WO 2014173043 A1 WO2014173043 A1 WO 2014173043A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
carbon crystal
icing
blade
crystal electric
Prior art date
Application number
PCT/CN2013/081515
Other languages
English (en)
Chinese (zh)
Inventor
彭斌
乔海祥
汪奕
徐新华
杨琼
Original Assignee
湘电新能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湘电新能源有限公司 filed Critical 湘电新能源有限公司
Priority to RU2015149493A priority Critical patent/RU2627743C2/ru
Priority to CA2910331A priority patent/CA2910331C/fr
Publication of WO2014173043A1 publication Critical patent/WO2014173043A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/267Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an organic material, e.g. plastic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/40Ice detection; De-icing means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/02Heaters specially designed for de-icing or protection against icing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to a method for preventing ice on the surface of an outdoor device, in particular to a method for electrically heating and preventing ice or melting ice by using a carbon crystal heating material for a wind power generator, and an ice protection system for a wind power generator using the same, belonging to wind power Power generation equipment technology field.
  • Chinese invention patent application publication specification CN 102878036 A discloses a wind turbine rotor blade with an electric ice melting device, which is attached to the surface, the inner surface and the interlayer of the blade by an electric ice melting device.
  • the material of the fan blade is generally a composite material with poor thermal conductivity, and the electric heating and melting
  • the ice device is attached to the inner surface of the blade and the interlayer is prone to overheating of the blade.
  • the heat conduction rate is slow, and a large temperature gradient is formed inside the blade, which shortens the service life of the blade.
  • the ice melting device includes an insulation layer.
  • the electric heating element and the insulating layer comprises a zinc white copper low temperature soft wire or a nickel chromium alloy electric heating wire or a chrome aluminum alloy electric heating wire electric heating chip, the process is complicated when the electric heating wire is arranged, the heating wire is body heat, and the heat is concentrated.
  • the core is easy to cause local overheating of the inside or the surface of the blade.
  • the blade adopts direct heating and melting ice. There is no temperature online monitoring during the heating process. It belongs to the open loop control mode, and the blade has a hidden danger of local high temperature ignition. At the same time, the electric hot ice melting device described in the patent The thickness is 2-4 The arrangement process of mm attached to the blade is complicated.
  • the insulating heat dissipation layer is PVC engineering plastic.
  • the surface attached to the blade is prone to fall off. Attaching to the inner surface of the blade and the interlayer will reduce the structural force of the blade; the blade is in a general frozen environment. Under conditions, the power required to prevent ice or melt ice at rest is usually greater than 400. W/m2, and the maximum power set by the invention is only 400 W/m2. During the rotation of the blade, the blade melts with convective heat loss, and the tip convective heat loss is the largest, and the maximum energy can exceed 2000. W/m2, it can be seen that the patent is out of the actual situation, and it is difficult to achieve the effect of its online melting ice.
  • Chinese utility model patent 201220245659.X discloses an automatic anti-icing and deicing device for a fan blade, which adopts a coating method on a surface of a blade to coat a conductive coating or a conductive film, and is exposed to heat during the use process, and the local contact is poorly fired.
  • the patent describes the measurement of the surface temperature of a certain position of the leeward surface and the windward surface of the blade by using the infrared temperature measuring component. It does not represent the temperature of the entire blade, and the infrared temperature measuring component is easily damaged in the external freezing environment and the measurement error. Large, and the device control system is complex, low reliability, and it is difficult to achieve its anti-icing purpose.
  • the present invention provides a method for on-line heating and anti-icing of a blade of a wind power generator by using a carbon crystal electrothermal material with uniform surface temperature rise and low energy consumption, and a simple structure and stable performance by using the method.
  • a carbon crystal anti-icing method comprising the steps of: setting different power carbon crystal electric heating plates on the surface of the blade according to the change of the linear velocity of the fan blade at different radial positions during operation; Or subsurface layer, forming a heating layer, dividing the heating layer at different positions on the blade into at least one heating zone, and the carbon crystal electric heating plate of each heating zone adopts parallel or series or serial combination wiring mode and corresponding power output of the heating controller
  • the end connection is provided with a temperature sensor on the surface of the carbon crystal electric heating plate and the heating area, and the carbon crystal electric heating plate, the temperature sensor and other constituent layers are cast into a whole in the blade mold by a resin vacuum infusion process, and the temperature sensor of each heating zone is used.
  • the measuring instrument for detecting the temperature, humidity and wind speed of the environment is connected with the signal collecting input end of the heating controller, and the heating controller is based on the ambient temperature, humidity, wind speed signal and heating.
  • the temperature of the zone controls the operation of the carbon crystal electric heating plate in each heating zone Maintaining the heated anti-icing region is greater than the outer surface temperature close to 0 degrees Celsius and 0 degrees Celsius.
  • a wind turbine anti-icing system using carbon crystal anti-icing comprising an anti-icing blade and an anti-icing control system, the anti-icing control system comprising a power source, a hub slip ring, a heating controller, and the anti-icing blade comprises an outer Mongolian
  • the inner surface of the inner skin is a cavity
  • the inner body of the inner skin is provided with a web bonded to the inner skin
  • the outer layer of the inner skin is a core material.
  • the outer layer of the core material is an outer skin
  • the utility model is characterized in that: the surface layer or the sub-surface layer of the outer skin is provided with a carbon crystal electric heating plate to form a heating layer, and the heating layer at different positions on the blade is divided into at least one heating region, and the power of the carbon crystal electric heating plate in the heating region is according to the radius
  • the maximum power required for positional anti-icing is set.
  • the carbon crystal electric heating plates of each heating zone are connected in parallel or in series or in series and in combination with the power output end of the heating controller corresponding to the area, on the surface of the carbon crystal electric heating plate.
  • the surface of the heating zone and the surface of the non-heating zone are provided with temperature sensors, and the temperature sensor of each heating zone is connected with the signal input end of the heating controller corresponding to the zone, and the sensor and the heating controller for detecting the ambient temperature, humidity and wind speed are provided.
  • the signal acquisition end is connected, and the heating controller comprehensively analyzes the ambient temperature, the humidity, the wind speed, and the signal of the temperature sensor of each heating zone, thereby controlling the operation of the carbon crystal electric heating plate of each heating zone, and maintaining the outer surface temperature of the blade to be greater than 0 degrees Celsius. And close to 0 degrees Celsius for automatic anti-icing or melting ice.
  • the power setting of the carbon crystal electric heating plate is set according to the heating power of the fan blade to maintain the blade surface temperature greater than 0 degrees Celsius at the rated rotational speed under the most severe freezing conditions in winter.
  • the power of the crystal hot plate is 400 W/m2 ⁇ 4000 W / m2 range.
  • all or part of the surface layer or the sub-surface layer of the outer skin of the blade is a carbon crystal electric heating plate to form a heating layer.
  • the carbon crystal electric heating plate is provided with a hole or a groove, the diameter of the hole is 1 to 10 mm, or the width of the groove is 1 to 10 Mm.
  • the carbon crystal electric heating plate comprises a carrier and a carbon crystal adhered to the carrier, and the carrier is made of a material of the same system as the outer skin material of the blade.
  • the carbon crystal electric heating plate has a thickness ranging from 0.2 mm to 1 mm.
  • the surface of the blade is coated with a coating.
  • the carbon crystal electric heating plate comprises a carrier and a carbon crystal adhered to the carrier, and the carrier is made of a material of the same system as the outer skin material of the blade, which is convenient for The blade is fused into a whole body.
  • the carbon crystal is an electrothermal material with pure resistance characteristics. It is also convenient for printing carbon crystal electric heating plates of different power.
  • the carbon crystal electric heating plate is surface heating, the temperature rise is rapid and uniform, the thermal anti-aging ability is strong, and the conductor is overcome. The heat source is concentrated, the heating is uneven, and the surface temperature rise is complicated to control.
  • the carbon crystal electric heating plate with different powers is arranged on the surface layer or the sub-surface layer of the blade according to the change of the linear velocity at different radial position of the fan blade during operation, forming a heating layer, and dividing the heating layer into at least one heating region respectively
  • the control ensures that the heat provided by the heating layer of the anti-icing blade can satisfy the surface heat loss under various freezing weather conditions, and the surface temperature of the anti-icing blade can be maintained above 0 degrees Celsius.
  • the invention has the advantages of simple structure, good anti-icing effect and low energy consumption, and realizes that the wind power generator automatically prevents ice or melt ice during the rotation process.
  • Figure 1 is a block diagram showing the principle of the anti-icing system of the present invention.
  • Fig. 2 is a schematic cross-sectional view showing an anti-icing blade of the present invention.
  • Fig. 3 is a schematic view showing the layered structure at A in Fig. 2.
  • Fig. 4 is a structural schematic view showing the arrangement of a heating layer in the subsurface layer of the anti-icing blade of the present invention.
  • Fig. 5 is a structural schematic view showing that the anti-icing blade of the present invention adopts a full-area heating layer and is divided into seven heating regions.
  • Fig. 6 is a schematic view showing the structure of a carbon crystal electric heating plate in the present invention.
  • Fig. 7 is a schematic cross-sectional view showing a carbon crystal electric heating plate of the present invention.
  • 1-7 1 - outer skin, 2 - core material, 3 - inner skin, 4 - paint, 5 - heating layer, 6 - leaf tip, 7 - leaf root, 8 - trailing edge, 9 - front Edge, 10-electrode, 11-groove, 12-carrier, 13-carbon crystal, 14-web, 15-cavity, 16-temperature sensor.
  • a carbon crystal anti-icing method of the present invention comprises the steps of: printing a nano-scale conductive carbon crystal 13 on a carrier 12, and forming a thinner two by a curing and hot pressing process.
  • a copper strip or a carbon crystal electric heating plate having a silver electrode 10 and a carbon crystal electric heating plate as a layer of the blade layer, as the heating layer 5, in the fan blade manufacturing process, according to the different radius of the fan blade during operation The change of the linear velocity of the position is set by the carbon crystal electric heating plate of different power, and is disposed on the surface layer or the sub-surface layer of the blade, for example, according to the direction from the blade root 7 to the tip 6 increasing the heat loss of the convection with increasing linear velocity,
  • the power per unit area required for anti-icing increases, and the convective heat loss in the direction from the trailing edge 8 to the leading edge 9 of the blade is also different.
  • a carbon crystal electric heating plate with appropriate power is appropriately arranged to form The heating layer 5 of the anti-icing blade, the heating layer 5 is divided into at least one heating zone, and FIG. 5 is an embodiment in which the heating zone is divided into seven heating zones, and the carbon crystal electric heating plates of each heating zone are connected in parallel or in series or in series.
  • the combined wiring mode is connected with the power output end of the corresponding heating controller, and the temperature sensor 16 is disposed on the outer surface of the carbon crystal electric heating plate and the heating area, and the carbon crystal electric heating plate, the temperature sensor and other components are formed by the resin vacuum infusion process.
  • the layer is cast into a whole in the blade mold, and the temperature sensor of each heating zone is connected with the signal input end of the corresponding area of the heating controller, and is used for detecting the temperature, humidity, wind speed of the environment and the signal acquisition input of the heating controller.
  • the heating controller comprehensively analyzes the ambient temperature, humidity, and wind speed signals according to the preset model to judge and control the start and stop of the anti-icing system.
  • the anti-icing system starts, and the electric energy is sent to the heating controller through the hub slip ring, and the heating control is performed.
  • the heating controller controls the heating power of the corresponding carbon crystal electric heating plate, and the heating controller can control each heating zone to operate simultaneously or alternately to perform automatic anti-icing or melting. ice.
  • the wind crystal anti-icing system of the carbon crystal anti-icing method comprises an anti-icing blade and an anti-icing control system
  • the anti-icing control system comprises a power source, a hub slip ring, a heating controller
  • the anti-icing blade comprises an outer skin 1 , the core material 2, the inner skin 3, the inner surface of the inner skin 3 is a cavity 15, the cavity is provided with a web 14 bonded to the inner skin, and the inner skin of the inner skin is a core material 2
  • the outer layer of the core material 2 is an outer skin 1, and the surface layer or the sub-surface layer of the outer skin 1 is provided with a carbon crystal electric heating plate. As shown in FIG. 3, a carbon crystal electric heating plate is arranged on the subsurface layer of the outer skin 1 to constitute heating.
  • the heating layer 5 is divided into seven heating regions, and the power of the carbon crystal electric heating plate in the heating region is set according to the maximum power required for anti-icing at the radial position, and the carbon crystal electric heating plate of each heating region is adopted.
  • the parallel wiring mode is connected to the power output end of the heating controller corresponding to the area, and the surface of the carbon crystal layer 13, the surface of the heating area and the surface of the non-heating area are provided with a plurality of temperature sensors 16, and the temperature sensors of each heating area correspond to each other.
  • the signal input end of the heating controller of the area is connected.
  • the average value measured by multiple temperature sensors in the same area is used to detect the signal of the ambient temperature, humidity, wind speed sensor and the heating controller.
  • the input terminal is connected, and the heating controller comprehensively analyzes the ambient temperature, humidity, and wind speed signals according to the preset model to judge and control the start and stop of the anti-icing system, the anti-icing system starts, and the heating controller analyzes the temperature signals collected in each heating area.
  • the heating controller adjusts the heating power of the carbon crystal electric heating plate in time to maintain the appearance of the heating area
  • the temperature is greater than 0 degrees Celsius and close to 0 degrees Celsius.
  • the heating controller can control each heating zone to operate in simultaneous or alternating mode for automatic anti-icing or ice melting.
  • the heating controller transmits the current working status information to the host communication, and then communicates with the host. Transfer to host monitoring, so that the operating personnel can monitor the running status of the system in a centralized manner, and the operating personnel can set or operate the anti-icing system through host monitoring.
  • the power setting of the carbon crystal electric heating plate of the heating layer is set according to the heating power of the fan blade to maintain the blade surface temperature greater than 0 degrees Celsius at the rated rotational speed under the most severe freezing conditions in winter, according to the blade anti-icing simulation calculation.
  • the power of carbon crystal electric heating plate is 400 W/m2 ⁇ 4000 W / m2 range.
  • the outer skin layers of the outer skin of the blade are all carbon crystal electric heating plates, which constitute the heating layer 5.
  • all the surface layers are selected as carbon crystal electric heating plates or surface layers.
  • Part of the carbon crystal electric heating plate or the sub-surface layer is a carbon crystal electric heating plate, which constitutes the heating layer 5.
  • the partial or sub-surface layer of the outer skin of the anti-icing blade is carbon.
  • the crystal electric heating plate constitutes a heating layer, which reduces the production cost of the product and can also achieve the ideal anti-icing effect.
  • the carbon crystal electric heating plate is further provided with a groove 11 having a width ranging from 1 to 10 Mm, the power of the carbon crystal electric heating plate is adjusted by the change of the width and the spacing of the groove, and the groove on the carbon crystal electric heating plate is favorable for the uniformity of the resin flow in the resin vacuum infusion process during the blade production, and the structural strength of the blade is improved.
  • the carbon crystal electric heating plate comprises a carrier 12 and a carbon crystal 13 adhered to the carrier, and the carrier is made of a material of the same system as the outer skin material of the blade, so as to be integrated with the blade as a whole, the carbon crystal It is an electrothermal material with pure resistance characteristics, and it is also convenient to print carbon crystal electric heating plates with different powers.
  • the carbon crystal electric heating plate is surface heating, the temperature rise is rapid and uniform, and the heat aging resistance is strong, which overcomes the heat concentration of the conductor heat source and uneven heating. Surface temperature rise controls complex problems.
  • the thickness of the carbon crystal electric heating plate ranges from 0.2 mm to 1 mm, which facilitates the arrangement of the carbon crystal electric heating plate in the blade production process.
  • the surface layer of the blade is coated with the coating 4, and the coating has anti-corrosion, anti-wear and anti-ultraviolet effects.
  • the invention has the advantages that the anti-icing system has a simple structure, the control system adopts a temperature online monitoring closed-loop control mode, and the operation is stable and safe.
  • the carbon crystal electrothermal material is used to set the heating layer on the surface layer or the sub-surface layer of the blade, and the blade production process is simple and also improved.
  • the structural strength of the blade, uniform heating against ice, rapid temperature rise, and low energy consumption enable automatic wind-proof or ice-melting of the wind turbine during the rotation process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

L'invention concerne un procédé d'antigivrage au cristal de carbone. Le procédé comporte : l'étape consistant à imprimer du cristal de carbone conducteur nanométrique sur un support, l'étape consistant à préparer une fine plaque chauffante électrique en cristal de carbone à deux électrodes par le biais de technologies de durcissement et de compression à chaud, l'étape consistant à poser la plaque chauffante électrique en cristal de carbone sur une couche de surface ou une couche de surface secondaire d'une pale pour former une couche chauffante (5), l'étape consistant à diviser la couche chauffante (5) en une pluralité de zones chauffantes, l'étape consistant à effectuer une commande d'augmentation de température dans chaque zone chauffante en utilisant un dispositif de commande de chauffage par une surveillance de la température en ligne, et l'étape consistant à maintenir une température d'une surface extérieure de la zone chauffante d'antigivrage supérieure à et approximativement de 0 degré Celsius. Le dispositif de commande de chauffage peut ordonner aux zones de chauffage de fonctionner simultanément ou de manière alternée, pour effectuer automatiquement la fonte de la glace ou la prévention de formation de la glace. L'invention concerne en outre un système d'antigivrage de générateur éolien employant le procédé. Une plaque chauffante électrique en cristal de carbone est utilisée pour servir de matériau de chauffage électrique d'une pale d'antigivrage, de sorte qu'une technologie de fabrication du système d'antigivrage est simple, le chauffage d'antigivrage est uniforme, et la résistance de structure de la pale est également améliorée; de plus, une commande en circuit fermé de surveillance de température en ligne est effectuée, de sorte que le système d'antigivrage est stable, sûr, et économe en énergie.
PCT/CN2013/081515 2013-04-26 2013-08-15 Procédé d'antigivrage au cristal de carbone et système d'antigivrage de générateur éolien utilisant celui-ci WO2014173043A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2015149493A RU2627743C2 (ru) 2013-04-26 2013-08-15 Способ защиты от обледенения с использованием углеродного волокна и противообледенительная система для ветрогенераторов, основанная на использовании данного способа
CA2910331A CA2910331C (fr) 2013-04-26 2013-08-15 Procede d'antigivrage au cristal de carbone et systeme d'antigivrage de generateur eolien utilisant celui-ci

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310149085.5 2013-04-26
CN2013101490855A CN103291560A (zh) 2013-04-26 2013-04-26 一种碳晶防冰的方法和采用该方法的风力发电机防冰***

Publications (1)

Publication Number Publication Date
WO2014173043A1 true WO2014173043A1 (fr) 2014-10-30

Family

ID=49092966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081515 WO2014173043A1 (fr) 2013-04-26 2013-08-15 Procédé d'antigivrage au cristal de carbone et système d'antigivrage de générateur éolien utilisant celui-ci

Country Status (4)

Country Link
CN (1) CN103291560A (fr)
CA (1) CA2910331C (fr)
RU (1) RU2627743C2 (fr)
WO (1) WO2014173043A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106351790A (zh) * 2016-11-23 2017-01-25 四川大学 风力发电机的横向加热融冰叶片和融冰设备及其融冰方法
CN106762392A (zh) * 2017-01-17 2017-05-31 河北工业大学 一种风力机叶片及防覆冰除覆冰方法
CN108267972A (zh) * 2016-12-30 2018-07-10 北京小米移动软件有限公司 电子设备控制方法和装置
WO2019129363A1 (fr) * 2017-12-29 2019-07-04 I-OHM Entwicklungsgesellschaft für angewandte Widerstandssysteme e.U. Système de chauffage, pale de rotor avec un tel dispositif de chauffage et installation d'énergie éolienne avec une telle pale de rotor ainsi que procédé de fabrication d'un tel dispositif de chauffage
CN112727712A (zh) * 2020-12-31 2021-04-30 大唐贵州新能源开发有限公司 一种风机叶片防除冰加热控制***及方法
CN113187676A (zh) * 2021-04-27 2021-07-30 昆明理工大学 一种风机叶片分区电热除冰装置
CN114153249A (zh) * 2022-02-07 2022-03-08 中国空气动力研究与发展中心低速空气动力研究所 一种高精度的光纤结冰传感器、***和方法
CN114526205A (zh) * 2022-03-04 2022-05-24 湖南风创能源科技有限公司 一种除冰控制器及其控制方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104018997B (zh) * 2014-06-13 2017-01-18 连云港中复连众复合材料集团有限公司 风电叶片防结冰控制***及其具有防结冰性能的风电叶片的制备方法
DE102014115883A1 (de) 2014-10-31 2016-05-25 Senvion Gmbh Windenergieanlage und Verfahren zum Enteisen einer Windenergieanlage
CN108884813A (zh) 2016-03-31 2018-11-23 维斯塔斯风力***集团公司 控制风力涡轮机***中的加热元件
CN106468246A (zh) * 2016-11-23 2017-03-01 四川大学 风力发电机的径向加热融冰叶片和融冰设备及其融冰方法
CN106793200A (zh) * 2016-12-23 2017-05-31 芜湖桑乐金电子科技有限公司 可控发热区域发热板
CN108252878B (zh) * 2016-12-28 2020-06-26 北京金风科创风电设备有限公司 用于风力发电机组的叶片除冰设备和方法
CN107401486A (zh) * 2017-09-12 2017-11-28 无锡风电设计研究院有限公司 一种用于风力发电机转子叶片的电加热除冰装置
CN107829889B (zh) * 2017-11-20 2023-08-29 浙江运达风电股份有限公司 一种用于风力发电机组的除冰控制方法及***
CN108457816A (zh) * 2018-02-06 2018-08-28 中科国风科技有限公司 一种风电叶片外表面膜结构加热除冰***
CN108692832B (zh) * 2018-05-24 2020-05-19 博为远方电气(北京)有限公司 一种直接空冷***散热器管内流体温度的间接测量方法
CN112096577A (zh) * 2020-08-31 2020-12-18 昆明理工大学 一种风机叶片除冰装置
CN112879249B (zh) * 2021-01-14 2022-05-31 泰安市中研复合材料科技有限公司 一种风电叶片的碳纳米管-石墨烯复合防冰除冰***的制备方法
CN113086156B (zh) * 2021-04-08 2022-05-17 南京航空航天大学 一种具有除冰功能的翼型前缘及翼型前缘的制备方法
CN113653591A (zh) * 2021-09-15 2021-11-16 昆明理工大学 一种具有电热防冰功能的可伸缩式风机叶片
CN113931812A (zh) * 2021-10-28 2022-01-14 浙江大学包头工业技术研究院 实现自控温的风力发电机叶片除冰装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004042423A1 (de) * 2004-09-02 2006-03-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. Aerodynamisches Bauteil mit einer Flächenheizung und Verfahren zu seiner Herstellung
WO2010028653A2 (fr) * 2008-09-11 2010-03-18 Vestas Wind Systems A/S Chauffage de faible puissance
CN102213191A (zh) * 2011-05-20 2011-10-12 叶卫 风力发电机转子叶片防结冰设备及方法
CN102374137A (zh) * 2011-09-22 2012-03-14 邓长明 一种防结冰的风力发电机叶片及其制备方法
CN202612005U (zh) * 2012-05-25 2012-12-19 长沙理工大学 用于风电机组的风速仪智能除冰装置
CN102889185A (zh) * 2012-10-22 2013-01-23 保定华翼风电叶片研究开发有限公司 一种风力发电机的风轮叶片及其加工工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1746057A1 (ru) * 1990-02-09 1992-07-07 Рижский Краснознаменный Институт Инженеров Гражданской Авиации Им.Ленинского Комсомола Ветроэлектроустановка
EP2523856A4 (fr) * 2010-01-14 2015-01-28 Saab Ab Système de dégivrage/antigivrage multifonctionnel pour éolienne
FI20110232L (fi) * 2011-07-05 2013-01-11 Hafmex Oy Lämmitettävä tuulivoimalan roottori
RU112955U1 (ru) * 2011-08-10 2012-01-27 Общество с ограниченной ответственностью "ГРЦ-Вертикаль" Устройство обогрева лопасти ветроэнергетической установки на основе энергопитания от солнечного модуля
CN203362411U (zh) * 2013-04-26 2013-12-25 湘电新能源有限公司 一种风力发电机的碳晶防冰***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004042423A1 (de) * 2004-09-02 2006-03-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. Aerodynamisches Bauteil mit einer Flächenheizung und Verfahren zu seiner Herstellung
WO2010028653A2 (fr) * 2008-09-11 2010-03-18 Vestas Wind Systems A/S Chauffage de faible puissance
CN102213191A (zh) * 2011-05-20 2011-10-12 叶卫 风力发电机转子叶片防结冰设备及方法
CN102374137A (zh) * 2011-09-22 2012-03-14 邓长明 一种防结冰的风力发电机叶片及其制备方法
CN202612005U (zh) * 2012-05-25 2012-12-19 长沙理工大学 用于风电机组的风速仪智能除冰装置
CN102889185A (zh) * 2012-10-22 2013-01-23 保定华翼风电叶片研究开发有限公司 一种风力发电机的风轮叶片及其加工工艺

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106351790A (zh) * 2016-11-23 2017-01-25 四川大学 风力发电机的横向加热融冰叶片和融冰设备及其融冰方法
CN108267972A (zh) * 2016-12-30 2018-07-10 北京小米移动软件有限公司 电子设备控制方法和装置
CN108267972B (zh) * 2016-12-30 2021-08-03 北京小米移动软件有限公司 电子设备控制方法和装置
CN106762392A (zh) * 2017-01-17 2017-05-31 河北工业大学 一种风力机叶片及防覆冰除覆冰方法
CN106762392B (zh) * 2017-01-17 2023-06-06 河北工业大学 一种风力机叶片及防覆冰除覆冰方法
WO2019129363A1 (fr) * 2017-12-29 2019-07-04 I-OHM Entwicklungsgesellschaft für angewandte Widerstandssysteme e.U. Système de chauffage, pale de rotor avec un tel dispositif de chauffage et installation d'énergie éolienne avec une telle pale de rotor ainsi que procédé de fabrication d'un tel dispositif de chauffage
CN112727712A (zh) * 2020-12-31 2021-04-30 大唐贵州新能源开发有限公司 一种风机叶片防除冰加热控制***及方法
CN113187676A (zh) * 2021-04-27 2021-07-30 昆明理工大学 一种风机叶片分区电热除冰装置
CN114153249A (zh) * 2022-02-07 2022-03-08 中国空气动力研究与发展中心低速空气动力研究所 一种高精度的光纤结冰传感器、***和方法
CN114153249B (zh) * 2022-02-07 2022-04-26 中国空气动力研究与发展中心低速空气动力研究所 一种高精度的光纤结冰传感器、***和方法
CN114526205A (zh) * 2022-03-04 2022-05-24 湖南风创能源科技有限公司 一种除冰控制器及其控制方法

Also Published As

Publication number Publication date
RU2015149493A (ru) 2017-05-22
CA2910331A1 (fr) 2014-10-30
CN103291560A (zh) 2013-09-11
CA2910331C (fr) 2019-04-23
RU2627743C2 (ru) 2017-08-11

Similar Documents

Publication Publication Date Title
WO2014173043A1 (fr) Procédé d'antigivrage au cristal de carbone et système d'antigivrage de générateur éolien utilisant celui-ci
CN203362411U (zh) 一种风力发电机的碳晶防冰***
CN103410680B (zh) 用于风力发电机叶片的等离子体控制装置和方法
CN104018997B (zh) 风电叶片防结冰控制***及其具有防结冰性能的风电叶片的制备方法
CN107084100B (zh) 一种基于石墨烯加热膜的风电叶片加热融冰***及该叶片的制作方法
CN108061015A (zh) 一种风机叶片除冰无人机
CN202718816U (zh) 风机叶片自动防冰除冰装置
CN203357839U (zh) 一种红外纳米节能电热圈
CN107120243B (zh) 一种基于石墨烯加热融冰的风电叶片制作方法
CN206625943U (zh) 一种用于风力发电机的叶片防冰除冰装置
CN102644559A (zh) 一种设有除冰装置的风力发电机及其除冰方法
CN111645865A (zh) 一种机翼蒙皮除冰装置
CN114876747A (zh) 一种基于dts***的风机叶片自反馈防冰除冰方法
CN106762392A (zh) 一种风力机叶片及防覆冰除覆冰方法
CN106438226B (zh) 用于风力发电机叶片的循环电加热融防冰装置
CN110098793B (zh) 基于发热碳纤维的光伏电池板自融冰装置及控制方法
CN206830388U (zh) 一种风机叶片除冰无人机
CN107894402B (zh) 一种基于光纤光栅和石墨烯薄膜的结冰监测与融冰***
CN107117318A (zh) 一种防∕除冰复合材料功能单元的制备方法
CN206513504U (zh) 一种风力机叶片
CN204773507U (zh) 一种医用管材挤塑机的加热装置
CN212921989U (zh) 一种用于飞行器的除冰装置
CN204591592U (zh) 一种用于风力发电机的叶片防冰除冰装置
CN112572808B (zh) 一种双层防除冰电加热结构及采用该结构的机翼
CN203570505U (zh) 风力发电机叶片、风力发电机以及叶片除冰***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883304

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2910331

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015149493

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13883304

Country of ref document: EP

Kind code of ref document: A1