WO2014172942A1 - 基于LaB6纳米材料场发射的X射线管及移动CT扫描仪 - Google Patents

基于LaB6纳米材料场发射的X射线管及移动CT扫描仪 Download PDF

Info

Publication number
WO2014172942A1
WO2014172942A1 PCT/CN2013/076046 CN2013076046W WO2014172942A1 WO 2014172942 A1 WO2014172942 A1 WO 2014172942A1 CN 2013076046 W CN2013076046 W CN 2013076046W WO 2014172942 A1 WO2014172942 A1 WO 2014172942A1
Authority
WO
WIPO (PCT)
Prior art keywords
lab6
field emission
ray tube
anode
cathode
Prior art date
Application number
PCT/CN2013/076046
Other languages
English (en)
French (fr)
Inventor
徐如祥
林祖伦
代秋声
高枫
张涛
Original Assignee
中国人民解放军北京军区总医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49245580&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014172942(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 中国人民解放军北京军区总医院 filed Critical 中国人民解放军北京军区总医院
Publication of WO2014172942A1 publication Critical patent/WO2014172942A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/065Field emission, photo emission or secondary emission cathodes

Definitions

  • the present invention claims the priority of a Chinese patent application filed on April 27, 2013, to the Chinese National Intellectual Property No. 201310151759.5, entitled "X-ray Tube and Mobile CT Scanner Based on LaB6 Nanomaterial Field Emission”.
  • the invention relates to the field of medical instruments, in particular to an X-ray tube and a mobile CT scanner based on field emission of lanthanum hexaboride (LaB6) nanomaterials.
  • LaB6 lanthanum hexaboride
  • the X-ray tube is a key component of a small medical CT device.
  • the cathode is the core component of the X-ray tube and directly determines the performance of the X-ray tube, the quality of the image such as resolution and contrast, and the efficiency of the whole machine.
  • the X-ray tube is usually an X-ray tube based on tungsten (W) wire thermal emission, that is, a cathode made of a tungsten (W) wire to form an X-ray tube, and the working principle is that the tungsten (W) wire is heated to its working temperature. When electrons are emitted, the electrons that are emitted by the heat bombard the anode, thereby generating X-rays.
  • W tungsten
  • the prior art X-ray tube based on tungsten (W) wire thermal emission has at least the following disadvantages:
  • the cathode in the existing X-ray tube adopts tungsten with high electron emission work ((
  • )w 4.52 eV), emission The current density is small.
  • the pure tungsten material has a thermal emission current density of only 0.3 A/cm 2 at 2200 ° C. If a larger total emission current is to be obtained, the cathode temperature is usually increased, but the cathode temperature is increased to cause the cathode material.
  • the evaporation rate increases, the evaporation of the cathode material causes the tungsten filament to become thinner, and the thinned tungsten cathode increases the cathode temperature and the cathode evaporation is intensified, thereby forming a vicious cycle; in addition, the evaporated tungsten cathode material is deposited on the On the shell, a continuous or intermittent tungsten conductive film is formed, which destroys the insulation strength of the X-ray tube, reduces the tube pressure, and the tube is scrapped, thereby reducing the life of the X-ray tube; at the same time, the tungsten conductive film blocks the output.
  • the X-ray intensity of the window reduces the imaging sensitivity.
  • the invention provides an X-ray tube and a mobile CT scanner based on LaB6 nanomaterial field emission, which is used for improving the overall performance of the X-ray tube, and can meet the application requirements of medical testing and the like.
  • the present invention provides an X-ray tube based on LaB6 nanomaterial field emission, comprising: an anode and a cathode; the cathode includes a LaB6 tip cone field emission array, and the field emission is generated by the external electric field Electrons bombard the anode to produce X-rays.
  • the invention also provides a mobile CT scanner comprising an X-ray tube based on LaB6 nanofield emission as described above.
  • the technical solution provided by the invention uses LaB6 nanomaterial as the tip material of the X-ray tube field emission cathode, and the LaB6 cusp field emission array thus obtained can generate a large amount of electrons generated by field emission under the electric field, thereby improving the beam current intensity.
  • the X-rays generated by the electron bombardment anode are very stable, which makes the X-rays generated by these electron bombardment anodes uniform, which is beneficial to improve the definition and resolution of X-ray imaging, reduce the radiation dose to the measured object, and facilitate the realization of X.
  • the miniaturization of the ray tube can meet the design requirements for miniaturization of portable devices such as mobile CT scanners and industrial inspection.
  • LaB6 nanomaterials have strong resistance to ion bombardment and high chemical stability, X-ray tubes based on LaB6 nanomaterial field emission have longer working life and more stable and reliable performance than other X-ray tubes.
  • FIG. 1 is a schematic structural view of an X-ray tube based on LaB6 nanomaterial field emission according to an embodiment of the present invention
  • 2A-2C are SEM photographs and field emission characteristics of an optional diode LaB6 cusp field emission array according to an embodiment of the present invention.
  • 3A-3C are SEM photographs and field emission characteristics of an optional triode LaB6 cusp field emission array according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another X-ray tube based on LaB6 nanomaterial field emission according to an embodiment of the present invention
  • FIG. 5 is an example of an X-ray tube anode model according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of another X-ray tube based on LaB6 nanomaterial field emission according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of an embodiment of the present invention.
  • An example of a relationship between an electron beam incident angle (or a target tilt angle) and a photon yield is provided.
  • FIG. 9 is a schematic diagram of an imaging principle of an X-ray tube in a medical examination such as a CT scan of a head according to an embodiment of the present invention
  • An example of a distribution curve of photon areal angles different from the target surface when the target surface angle is 5 degrees according to the embodiment of the present invention
  • FIG. 11 is perpendicular to the incident direction of the electron beam at different target tilt angles according to an embodiment of the present invention.
  • FIG. 12 is an example of a relationship between a target tilt angle and an X-photon number usable for imaging according to an embodiment of the present invention.
  • the elements in the figures are only shown for simplicity and clarity and are not necessarily drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements in order to help improve the scope of the embodiments of the invention. - -
  • FIG. 1 is a schematic structural diagram of an X-ray tube based on LaB6 nanomaterial field emission according to an embodiment of the present invention.
  • the X-ray tube based on LaB6 nanomaterial field emission provided in this embodiment has a two-pole structure.
  • the X-ray tube comprises: an anode 1 and a cathode 2, the cathode 2 includes a LaB6 cone-cone field emission array, and the cathode 2 The electrons generated by the field emission under the action of the first electric field bombard the anode 1 to generate X-rays.
  • a cathode comprising a LaB6 tip cone field emission array made of one of LaB6 nanomaterials as a cathode material is a cold cathode relative to a prior art hot tungsten (W) filament cathode, including X-rays of the cold cathode
  • the principle of X-ray generation by the tube is as follows: LaB6 nanomaterial is used as the tip material of the cathode field emission. Under the action of the applied electric field, the field material emits electrons, and the electrons accelerate the bombardment of the anode under the high voltage electric field to generate X-rays.
  • LaB6 nanomaterials have the best physical and chemical properties and electron emission properties.
  • a large number of experimental results show that the LaB6 nanomaterials have a work function of 2.4-2.8 eV, which is much lower than that of a pure tungsten cathode of 4.52 eV. It has the advantages of strong anti-poisoning ability, strong anti-ion bombardment ability, stable chemical property and long service life, which can meet the material selection requirements of field emission cathode.
  • the LaB6 nanomaterial is used as the tip material of the X-ray field emission field (FEAs) cathode, and the LaB6 conical field emission array thus obtained can generate a large amount of electrons generated by field emission under the electric field, thereby improving
  • the intensity of the electron beam, the X-rays generated by the electron bombardment anode are very stable, so that the X-rays generated by these electron bombardment anodes are consistent, which is beneficial to improve the definition and resolution of X-ray imaging, and reduce the radiation dose to the measured object.
  • LaB6 cone field emission array in the X-ray tube is operated under vacuum, an absolute vacuum cannot be achieved in the X-ray tube and a small amount of air molecules are still present. After being ionized by the high-energy electron beam, these air molecules will accelerate toward the cathode under the strong electric field in the tube, and may bombard the cathode, thereby causing radiation damage of the cathode. Because LaB6 nanomaterials have strong resistance to ion bombardment and high chemical stability, X-ray tubes based on LaB6 nanomaterial field emission have longer working life and stable and reliable performance compared with other X-ray tubes.
  • the LaB6 cone field emission array comprises: a diode LaB6 cone field emission array, or a triode LaB6 cone field emission array. These LaB6 conical field emission arrays are easy to mass produce and cost less.
  • the diode LaB6 tip cone field emission array comprises: a silicon tip diode array and a LaB6 nano material film layer covering the surface of the silicon tip cone.
  • a Scanning Electron Microscope (SEM) image of an optional diode LaB6 tip cone field emission array is shown in Figure 2A and Figure 2B.
  • the field emission characteristics are shown in Figure 2C.
  • SEM Scanning Electron Microscope
  • the diode array as a field emission cone LaB6 cathode X-ray tube having a low threshold electric field, i.e., to achieve the required stability when the X-ray emission is small applied electric field, it can be an ordinary high vacuum ( ⁇ 10- 5 P a ) Long-term stable operation, it is easy to achieve high-frequency pulse emission of electron beam, fast response, long service life, and is beneficial to reduce power consumption, reduce radiation dose to the object under test, and have environmental protection and health benefits. Can better meet the practical needs of medical testing and other applications.
  • the triode LaB6 tip cone field emission array comprises: a silicon base, an array of cavities formed on the silicon base, an array of molybdenum tip cones distributed in each cavity, and a surface covering each molybdenum tip cone LaB6 nanomaterial film layer.
  • An SEM photograph of an optional triode LaB6 tip cone field emission array prepared by a conventional process such as the Spindt method is shown in Figure 3A.
  • An optional triode LaB6 tip prepared by mask oxidation technique (LOCOS method) is used.
  • the SEM photograph of the cone-field emission array is shown in Fig. 3B.
  • the field emission characteristics are shown in Fig. 3C.
  • the emission current density of the X-ray tube is 0.6 A/cm 2 , which is equivalent to the average emission current of the single-point ⁇ . 0.24 ⁇ .
  • the X-ray tube using the triode LaB6 cone-cone field emission array as the cathode has a low field emission on-field strength and a high field emission current density, and can be stably stabilized under ordinary high vacuum ( ⁇ 10- 5 Pa).
  • the X-ray tube based on the LaB6 nanomaterial field emission provided in this embodiment has a three-pole structure. As shown in FIG. 4, the X-ray tube includes: an anode 1, a cathode 2, and a gate disposed between the anode 1 and the cathode 2. 3. Applying a first electric field between the cathode 2 and the gate 3 to cause the cathode field emission to generate electrons, and applying a second electric field between the gate 3 and the anode 1 to accelerate electrons passing through the gate 3 to bombard the anode 1 to generate X-rays.
  • the X-ray tube based on LaB6 nanomaterial field emission provided in this embodiment has a gate between the anode and the cathode. Due to the protection of the grid, most of the air ions cannot directly hit the cathode, thereby reducing the radiation damage of the cathode. Probability; In addition, through the voltage control applied to the gate, the on or off control of the cone emission can also be realized, and the pulse emission of the electron beam can be easily realized, and the response speed is fast and the service life is long. When working with pulse exposure imaging mode, the number of projection angles and radiation dose of the sample can be significantly reduced, and the rotation artifact can be effectively suppressed, thereby better meeting the practical application requirements such as medical detection.
  • the gate may be a metal mesh gate made of a metal mesh.
  • the anode 1 includes an anode body 11 and a target surface 12 disposed on the anode body 11.
  • the anode material By reasonably selecting the anode material, the maximum beam intensity that it is subjected to can be effectively increased.
  • the anode body is a copper anode body
  • the target surface is a tungsten alloy target surface.
  • electrons emitted from the cathode are accelerated by an electric field and then impinged on the anode target to generate X-rays, wherein more than 99% of the energy of the electron beam is converted into heat deposited in the anode, and less than about 1% of the energy is converted into X. Rays.
  • the X-ray tube can be designed using a fixed anode scheme, that is, the anode in the X-ray tube based on LaB6 nanomaterial field emission is a fixed anode. The advantage of this solution is to effectively reduce the weight and volume of the X-ray source and to reduce the difficulty in manufacturing and using the X-ray tube.
  • tungsten has a high melting point but poor thermal conductivity; copper has good thermal conductivity but low melting point. Although graphite has higher melting point and specific heat than tungsten and copper, its atomic number is low and X-ray generation efficiency is low. Therefore, copper can be used as the anode body to take advantage of its good thermal conductivity, and a tungsten alloy sheet is used as a target surface to utilize its high melting point performance. Due to the inconsistent properties of copper and tungsten, the thickness of the tungsten alloy sheet is a key parameter for anode design.
  • the thickness of the tungsten alloy sheet needs to be selected to an optimum value.
  • thermal analysis software can be used to simulate the temperature rise curve of the tungsten alloy sheet with different thicknesses under different electron beam pulse bombardment, tungsten alloy sheet and adjacent metal copper, and heat at the anode. In the transfer process, the relationship between material thickness, electron beam intensity and temperature is studied.
  • the physical model of the anode is shown in Figure 5:
  • the copper anode body has a geometry of 040x50mm, the target surface material is tungsten, the tungsten alloy sheet has a diameter of 01Omm, the focal diameter is 01mm, and the thickness of the tungsten alloy sheet ranges from 20 ⁇ to 2 ⁇ , X.
  • the tube voltage is 140kV and the current range is 2mA ⁇ 10mA.
  • the ANSYS12 can be used to establish an X-ray tube anode finite element model for thermal analysis calculations.
  • the temperature distribution on the anode can be calculated by changing the thickness and current intensity of the tungsten alloy sheet.
  • the electron beam is struck on the surface of tungsten with a focal diameter of 01 mm.
  • the average depth of electrons entering the surface of tungsten is 5 ⁇ m.
  • the electrons generate heat within this tiny volume.
  • One is a simplified method of applying a load, applying a load to the surface, that is, at the center of tungsten. - -
  • a thermal load is applied to the surface of 01, and the amount of heat flow applied to the surface can be calculated according to the voltage and current; the other method is to apply a load to the actual situation, and apply a thermal load to the body, that is, a cylinder of 01x0.005 mm. on.
  • the heat transfer rate is proportional to the area.
  • 100 is the radiation force, the unit is W/m 2 ; s is the emissivity of the object; c is the black body emissivity, 5.67W / (m 2 'K 4 ); - -
  • is the surface temperature of the object.
  • the following is a simulation result that ignores the radiation heat dissipation and the conduction heat dissipation of the insulating oil.
  • the maximum time for completing a CT scan is 30s, so the X-ray tube must be able to work continuously for 30s during scanning.
  • the optimal tungsten alloy sheet thickness and the maximum constant current that can be tolerated are calculated. value. It can be seen from Fig. 6 that in the case of continuous incident electrons, when the thickness of the tungsten alloy sheet is 400 to 500 ⁇ m, the maximum withstand current is 7.5 mA. On the left side of the highest point of the curve in the figure, the copper will melt first, and on the right, the tungsten alloy sheet will melt first. For the pulse mode of operation, the maximum pulse current that a tungsten alloy sheet of the same thickness can withstand at different duty cycles increases as the duty cycle decreases.
  • the embodiment of the present invention will select a tungsten alloy target surface having a thickness of 400-500 um, for example, preferably 0.5 mm, as a preferred thickness value of the tungsten alloy sheet.
  • the anode 10 of the X-ray tube includes an anode body 101 and a target surface 102.
  • the target surface 102 is formed with a predetermined target plane tilt angle ⁇ with respect to the reference direction, and the reference direction is perpendicular to the electron incident direction, as shown in FIG.
  • the target tilt angle ⁇ is a key parameter that directly affects the light yield, effective focus size, heat distribution and transfer of the X-ray tube.
  • Monte Carlo method can be used to simulate the calculation.
  • EGS software was used to simulate lxlO 7 140keV electrons bombarding tungsten targets with different dip angles, and the spatial distribution of light yield and photons was counted.
  • the relationship between the target tilt angle and the photon yield is shown in Fig. 8.
  • the smaller the target tilt angle the higher the X-photon yield.
  • - - the smaller the target angle, the better, which requires careful analysis.
  • the X-ray photons in the fan beam which are approximately perpendicular to the incident direction of the electron beam are used.
  • This part of the X-ray photo is actually contributing to the CT mission (as shown in Fig. 9), so this angle range The more X-rays inside, the better.
  • the figure below shows the photon areal density at an angle different from the target surface at a target angle of 5 degrees.
  • the areal density of photons becomes smaller and smaller, and the number of X-photons that can be used for imaging becomes less and less. Therefore, although the total photon yield at a target angle of 5 degrees is high, the photon surface density at an angle of 85 degrees from the target surface is low.
  • the number of X-photons in the exit plane perpendicular to the incident direction of the electron beam at different target inclination angles is counted.
  • the statistical results are shown in Fig. 11. As can be seen from Fig. 11, as the target tilt angle increases, the number of photons on the exit surface increases, but reaches a maximum at about 45 degrees and then begins to decrease.
  • the resolution of the tomographic image is the effective focus of the X-ray tube, not the actual focus.
  • the relationship between the actual focus size L and the projected effective focus size d is as follows:
  • the size d of the effective focus can be controlled by reducing the target tilt angle ⁇ . If the density of the cross-sectional area of the incident electron beam cannot be increased, it can be seen from the following equation that increasing the electron beam width h by decreasing the target tilt angle ⁇ may increase the total number of imageable X-photons.
  • the target tilt angle is preferably 11 degrees.
  • the total length of the X-ray tube in the above embodiment is less than or equal to 120 mm, so as to fully ensure the compact shape of the X-ray tube, which can be easily carried, and is convenient for special environments such as shipboard, vehicle, and battlefield hospitals.
  • the maximum diameter in the above embodiment is less than or equal to 60 mm.
  • the distance between the anode and the tip of the tip of the cathode in the above embodiment is less than or equal to 10 um. This ensures excellent performance of the X-ray tube.
  • the present invention also provides a mobile CT scanner comprising the X-ray tube based on LaB6 nanomaterial field emission provided by any of the above embodiments, through which X-rays are generated to the brain Wait for the body part to be medically tested.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing storage device includes the following steps:
  • the foregoing storage medium includes: a Read-Only Memory (ROM), a Random Access Memory (RAM), a magnetic disk, or an optical disk.
  • ROM Read-Only Memory
  • RAM Random Access Memory

Landscapes

  • X-Ray Techniques (AREA)

Abstract

一种基于LaB6纳米材料场发射的X射线管及移动CT扫描仪,该X射线管包括:阳极(1)和阴极(2);所述阴极(2)包括LaB6尖锥场发射阵列,且所述阴极(2)在外加电场的作用下场致发射产生的电子轰击所述阳极(1)以产生X射线。阳极(1)和阴极(2)之间还可设置栅极(3)。该X射线管提高了电子束流强度,产生的X射线稳定、可靠,工作寿命较长,有利于提高X射线成像的清晰度和分辨率,降低对被测物的辐射剂量,并便于实现X射线管的小型化,可满足如移动CT扫描仪等便携式设备小型化的设计需求。

Description

- -
基于 LaB6纳米材料场发射的 X射线管及移动 CT扫描仪
本发明要求 2013年 4月 27日向中国国家知识产^ ^提交的、申请号 为 201310151759.5、 名称为 "基于 LaB6纳米材料场发射的 X射线管 及移动 CT扫描仪" 的中国专利申请的优先权。
技术领域
本发明涉及医疗器械领域, 特别涉及一种基于六硼化镧 ( LaB6 ) 纳米材料场发射的 X射线管及移动 CT扫描仪。
背景技术
随着医学科学技术的发展,涌现出了各种各样的医用计算机断层扫描 仪(Computer tomography; CT )设备。 其中 X射线管为一种小型医用 CT设备的关键部件。 阴极是 X射线管的核心部件,直接决定着 X射线管 的性能、 成像的质量如分辨率和对比度, 以及整机的工作效率。
现有技术中 X射线管通常是基于钨( W )丝热发射的 X射线管, 即 采用钨(W )丝制作 X射线管的阴极, 其工作原理是钨 ( W )丝加热至 其工作温度时发射电子, 热发射的电子轰击阳极, 从而产生 X射线。
现有技术基于钨(W )丝热发射的 X射线管中至少存在如下缺点: 现 有的 X射线管中的阴极采用的钨的电子逸出功高 ((|)w=4.52eV ), 发射电流 密度小, 纯钨材料在 2200 "C时, 其热发射电流密度只有 0.3A/cm2。 如果要 想获得较大的总发射电流, 通常采用提高阴极温度, 但是提高阴极温度会 使阴极材料的蒸发率增加, 阴极材料蒸发会使钨丝变细, 变细后的钨丝阴 极又会使阴极温度升高, 阴极蒸发加剧, 从而形成恶性循环; 此外, 被蒸 发的钨阴极材料会沉积在管壳上, 形成连续或断续的钨导电薄膜, 破坏了 X射线管的绝缘强度, 使管压降低、 管子报废, 降低了 X射线管的寿命; 同 时, 这种钨导电薄膜还阻挡了输出窗口的 X射线强度, 降低了成像灵敏度。 因此现有技术的基于钨(W )丝热发射的 X射线管的整体性能较差, 迫切 需要研究一种新型的冷阴极 X射线管以代替现有基于热钨( W )丝的 X射线 管。 - -
发明内容
在下文中给出关于本发明的简要概述,以便提供关于本发明的某些方 面的基本理解。应当理解, 这个概述并不是关于本发明的穷举性概述。 它 并不是意图确定本发明的关键或重要部分, 也不是意图限定本发明的范 围。其目的仅仅是以简化的形式给出某些概念, 以此作为稍后论述的更详 细描述的前序。
本发明提供一种基于 LaB6纳米材料场发射的 X射线管及移动 CT 扫描仪, 用以提高 X射线管的整体性能, 可满足医学检测等应用需 求。
一方面, 本发明了提供一种基于 LaB6纳米材料场发射的 X射线管, 包括: 阳极和阴极; 所述阴极包括 LaB6尖锥场发射阵列, 且所述阴 外加电场的作用下场致发射产生的电子轰击所述阳极以产生 X射线。
另一方面, 本发明还提供了一种移动 CT扫描仪, 包括如上所述的基 于 LaB6纳米场发射的 X射线管。
本发明提供的技术方案将 LaB6纳米材料作为 X射线管场发射阴极的 尖端材料, 由此制得的 LaB6尖雉场发射阵列在电场作用下可场致发射产 生的大量电子, 提高电子束流强度, 电子轰击阳极产生的 X射线非常稳 定, 使得这些电子轰击阳极产生的 X射线具有一致性, 有利于提高 X射 线成像的清晰度和分辨率, 降低对被测物的辐射剂量, 并便于实现 X射 线管的小型化, 可满足如移动 CT扫描仪、 工业检测等便携式设备小型化 的设计需求。 此外, 由于 LaB6纳米材料抗离子轰击的能力强, 化学稳定 性高, 故基于 LaB6纳米材料场发射的 X射线管相对其他 X射线管而言, 工作寿命较长, 性能也较为稳定和可靠。
通过以下结合附图对本发明的最佳实施例的详细说明,本发明的这些 以及其它的优点将更加明显。
附图说明
本发明可以通过参考下文中结合附图所给出的描述而得到更好的理 解,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似 的部件。所述附图连同下面的详细说明一起包含在本说明书中并且形成本 - - 说明书的一部分,而且用来进一步举例说明本发明的优选实施例和解释本 发明的原理和优点。 在附图中:
图 1为本发明实施例提供的一种基于 LaB6纳米材料场发射的 X射线 管的结构示意图;
图 2A-图 2C为本发明实施例提供的一种可选的二极管 LaB6尖雉场 发射阵列的 SEM照片、 场发射特性;
图 3A-图 3C为本发明实施例提供的一种可选的三极管 LaB6尖雉场 发射阵列的 SEM照片、 场发射特性;
图 4为本发明实施例提供的另一种基于 LaB6纳米材料场发射的 X射 线管的结构示意图; 图 5为本发明实施例提供的一种 X射线管阳极模型示例; 图 6 为本发明实施例提供的阳极最大耐受电流随钨合金片厚度变化 曲线示例; 图 7为本发明实施例提供的又一种基于 LaB6纳米材料场发射的 X射 线管的结构示意图; 图 8为本发明实施例提供的电子束入射角(或者靶面倾角)与光子产 额的关系曲线示例; 图 9为本发明实施例提供的 X射线管在如头部 CT扫描成像等医学检 测的成像原理示意图; 图 10为本发明实施例提供的靶面倾角 5度时, 与靶面不同夹角的光 子面密度的分布曲线示例; 图 11为本发明实施例提供的不同靶面倾角下与电子束入射方向垂直 的出射面内 X光子的数量的分布曲线示例; 图 12为本发明实施例提供的靶面倾角与可用于成像的 X光子数的关 系曲线示例。 本领域技术人员应当理解, 附图中的元件仅仅是为了简单和清楚起 见而示出的, 而且不一定是按比例绘制的。 例如, 附图中某些元件的尺 寸可能相对于其他元件放大了, 以便有助于提高对本发明实施例的理 - -
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描 述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。 在本发明的一个附图或一种实施方式中描述的元素和特征可以与一个或 更多个其它附图或实施方式中示出的元素和特征相结合。应当注意, 为了 清楚的目的, 附图和说明中省略了与本发明无关的、本领域普通技术人员 已知的部件和处理的表示和描述。基于本发明中的实施例,本领域普通技 术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于 本发明保护的范围。
图 1为本发明实施例提供的一种基于 LaB6纳米材料场发射的 X射线 管的结构示意图。本实施例提供的基于 LaB6纳米材料场发射的 X射线管 为两极结构, 如图 1所示, 该 X射线管包括: 阳极 1和阴极 2, 阴极 2包 括 LaB6尖锥场发射阵列,且阴极 2在外加第一电场的作用下场致发射产 生的电子轰击阳极 1以产生 X射线。
将 LaB6纳米材料作为阴极材料之一制成的包括 LaB6尖锥场发射阵 列的阴极, 相对现有技术中的热钨(W )灯丝阴极而言是一种冷阴极, 包 括该冷阴极的 X射线管产生 X射线的原理是: 将 LaB6纳米材料作为阴 极场发射的尖端材料,在外加电场的作用下尖端材料发生场致发射产生电 子, 电子在高压电场下加速轰击阳极, 从而产生 X射线。
在所有的六硼化物中, LaB6纳米材料具有最优良的理化性能和电子 发射性能, 大量的实验结果表明, LaB6纳米材料的逸出功为 2.4-2.8eV远 低于纯钨阴极为 4.52 eV, 具有抗中毒能力强、 抗离子轰击能力强、 化学 性质稳定、 寿命长等优点, 可满足场发射阴极的选材要求。
本实施例将 LaB6 纳米材料作为 X射线管场发射 ( Field Emission Arrays, FEAs ) 阴极的尖端材料, 由此制得的 LaB6 尖锥场发射阵列在 电场作用下可场致发射产生的大量电子,提高电子束流强度, 电子轰击阳 极产生的 X射线非常稳定, 使得这些电子轰击阳极产生的 X射线具有一 致性, 有利于提高 X射线成像的清晰度和分辨率, 降低对被测物的辐射 剂量, 并便于实现 X射线管的小型化, 可满足如移动 CT扫描仪、 工业检 测等便携式设备小型化的设计需求。 - - 虽然 X射线管中 LaB6尖锥场发射阵列是在真空状态下工作,但是 X 射线管内无法实现绝对真空,依然存在少量空气分子。这些空气分子被高 能电子束电离后,在管内的强电场作用下会向阴极方向加速,有可能轰击 到阴极, 从而造成阴极的辐射损伤。 由于 LaB6纳米材料抗离子轰击的能 力强,化学稳定性高,故基于 LaB6纳米材料场发射的 X射线管相对其他 X射线管而言, 工作寿命较长, 性能也较为稳定和可靠。
上述技术方案中, 可选的, 所述 LaB6尖锥场发射阵列包括: 二极管 LaB6尖锥场发射阵列, 或者, 三极管 LaB6尖锥场发射阵列。 这些 LaB6 尖锥场发射阵列都易于实现大规模生产, 成本较低。
可选的, 二极管 LaB6尖锥场发射阵列包括: 硅尖锥二极管阵列和覆 盖在硅尖锥表面上的 LaB6纳米材料薄膜层。 一种可选的二极管 LaB6 尖 锥场发射阵列的扫描电子显微镜 ( Scanning Electron Microscope, SEM ) 照片如图 2A和图 2B所示,其场发射特性如图 2C所示,在阳极电压 1500V 时, X射线管的发射电流 32mA, 折合单尖锥的平均发射电流为 Ο.ΙμΑ, 阈值电场为 8.0ν/μιη。 可见, 采用二极管 LaB6尖锥场发射阵列作为阴极 的 X射线管具有较低的阈值电场, 即达到 X射线稳定发射时所需的外加电 场较小, 可在普通高真空度(~ 10—5Pa)下长期稳定工作, 可以很容易实现 电子束的高频脉冲发射, 响应速度快, 使用寿命长, 且有利于降低功耗, 减少对被测物的辐射剂量, 具有环保、健康等优点, 可更好满足医学检测 等实际应用需求。
可选的, 三极管 LaB6尖锥场发射阵列包括: 硅基、 形成在所述硅基 上的孔腔阵列、分布在各孔腔中的钼尖锥阵列、以及覆盖在各钼尖锥表面 上的 LaB6纳米材料薄膜层。 采用传统工艺 (如 Spindt法)制备的一种可 选的三极管 LaB6尖锥场发射阵列的 SEM照片如图 3A所示, 采用掩模氧 化技术(LOCOS法)制备的一种可选的三极管 LaB6 尖锥场发射阵列的 SEM照片如图 3B所示, 其场发射特性如图 3C所示, 在阳极电压 1500V 时, X射线管的发射电流密度为 0.6A/cm2, 折合单尖雉平均发射电流 0.24μΑ。 可见, 采用三极管 LaB6 尖锥场发射阵列作为阴极的 X射线管具 有很低的场发射开启电场强度和很高的场发射电流密度,可在普通高真空 度(~ 10-5Pa)下长期稳定工作, 可以很容易实现电子束的高频脉冲发射, 响应速度快,使用寿命长,且有利于降低功耗,减少对被测物的辐射剂量, 具有环保、 健康等优点, 可更好满足医学检测等实际应用需求。
图 4为本发明实施例提供的另一种基于 LaB6纳米材料场发射的 X射 - - 线管的结构示意图。本实施例提供的基于 LaB6纳米材料场发射的 X射线 管为三极结构, 如图 4所示, 该 X射线管包括: 阳极 1、 阴极 2以及设于 阳极 1和阴极 2之间的栅极 3, 在阴极 2和栅极 3之间外加第一电场以使 阴极场致发射产生电子,在栅极 3和阳极 1之间外加第二电场以加速穿过 栅极 3的电子使之轰击阳极 1以产生 X射线。
本实施例提供的基于 LaB6纳米材料场发射的 X射线管,在阳极和阴 极之间设有栅极, 由于栅极的保护, 大部分空气离子无法直接撞击阴极, 因此能够降低阴极被辐射损伤的概率;此外,通过对栅极施加的电压控制, 还可实现尖锥发射的导通或截止控制, 可以 4艮容易实现电子束的脉冲发 射, 响应速度快, 使用寿命长。 当采用脉冲曝光成像方式工作时, 可以显 著降低采样的投影角度数和辐射剂量,并能有效抑制旋转伪影,进而更好 满足医学检测等实际应用需求。
为了对阴极形成更好的保护, 可选的,栅极可为采用金属网制成的金 属网栅极。
可选的,所述阳极 1包括:阳极体 11以及设于阳极体 11上的靶面 12。 通过合理选择阳极材料, 可有效提高其承受的最大束流强度, 优选的, 所 述阳极体为铜阳极体, 所述靶面为钨合金靶面。 在 X射线管中, 阴极发射的电子经电场加速后撞击到阳极靶上产生 X 射线, 其中电子束 99%以上的能量转化成热量沉积在阳极内, 只有不到 1%左右的能量转变成 X射线。 如果电子在阳极靶上产生的大量热量得不 到及时有效的散失, 阳极靶表面的温升很快, 在很短的时间内, 阳极靶的 表面材料就会融化, 导致 X射线管损坏。 因此, 阳极靶的耐热和散热性 能直接影响了 X射线管的使用。 可选的, 可采用固定阳极方案设计 X射线管, 即基于 LaB6纳米材料 场发射的 X射线管中阳极为固定阳极。该方案的优点是有效降低 X射线源 的重量和体积, 并降低 X射线管的制造和使用难度。
X射线管的研制过程中一般涉及到以下几种材料: 表 1: 材料特性参数 材料 密 度 比 热 导 热 系 数 熔点 辐 射
(kg/m3) (J/kg K) (W/m K) 率 钨 19350 130 174 3380 0.3 铜 8960 380 401 1080 0.88 石墨 2000 710 129 3652 0.98 绝缘油 800 2000 0.2 0.46
从材料的性能可知, 钨的熔点高, 但是导热性能差; 铜的导热性能好, 但是熔点低。 石墨虽然熔点和比热都比钨、 铜高, 但是其原子序数低, X 射线的产生效率低。 因此, 可以采用铜做阳极体, 以利用其良好的导热性 能, 采用钨合金片做靶面, 以利用其高熔点性能。 由于铜和钨的性能不一致, 钨合金片的厚度是阳极设计的一个关键参 数。 如果钨合金片太厚, 热量来不及传递, 则钨合金片可能先熔化; 如果 钨合金片太薄, 热量立刻传递给铜, 则铜可能先熔化。无论哪种情况出现, 都会影响到 X射线管的正常工作。因此,钨合金片的厚度需要选择最优值。 为了计算钨合金片的最优厚度值, 可使用热分析软件模拟不同厚度的 钨合金片在不同强度的电子束脉冲轰击下, 钨合金片与相邻金属铜的温度 上升曲线, 以及热量在阳极中的传递过程, 研究材料厚度、 电子束流强度 与温度之间的关系。 由于脉冲状态下电子束的热量生成比同强度下恒流状 态下的低, 为了给设计留有余量, 我们主要模拟恒流状态下的参数。 阳极的物理模型如下图 5所示: 铜阳极体的几何尺寸为 040x50mm, 靶面材料为钨, 钨合金片的直径为 01Omm, 焦点直径为 01mm, 钨合金 片的厚度范围为 20μιη~2ιηιη, X 射线管电压为 140kV, 电流范围为 2mA~10mA。 可使用 ANSYS12建立 X射线管阳极有限元模型, 进行热分析计算, 通过更改钨合金片的厚度及电流强度来计算分析阳极上的温度分布。 电子束打在钨表面上, 其焦点直径为 01mm, 电子进入钨的表层平均 深度为 5μιη, 电子是在这段微小的体积内生热。 施加热载荷的方法有两 种: 一种是简化了的施加载荷方法, 将载荷施加在面上, 即在钨的中心 - -
01的表面上施加热载荷, 根据电压和电流可以计算出施加在面上的热流 量大小; 另外一种方法是一局实际情况施加载荷, 将热载荷施加到体上, 即 01x0.005mm的圆柱上。传热率与面积成正比,
Figure imgf000010_0001
Figure imgf000010_0002
=0.8007 mm2, 如果将载荷以面载 二者误差 = H / = 0 019 , 可以忽略。 为了建模求解方便, 在此使用面载荷的施 加方法, 计算公式如下:
Q KA{Thot - Tcold )
t d 上式中: Q——时间 ί内的传热量或者热流量。 κ一一为热传导率。 τ——温度。
Α ^触面积。 d——两平面之间的 ii巨离。 在 X射线管工作中, 由于传导散热和辐射散热同时发生, 故可计算它 们对阳极温度上升的影响。 在实际使用过程中, 整个 X射线管都被放入油中绝缘、 冷却。 由于油 的导热系数很小, 因此在 X射线管工作的时候, 热量主要存储在阳极上。 扫描结束后, 经过一段时间才能冷却下来。 故在建模时, 可以先忽略油的 冷却效果。可通过热仿真来计算阳极上的温度分布,进而估算整个阳极的 辐射散热。 阳极温度分布中高温区域很小, 主要集中在电子束焦点, 绝大 部分表面的温度低于 468 eC。 根据斯蒂芬-波尔兹曼定理:
E = c(—)4
100 为辐射力, 单位为 W/m2; s为物体的辐射率; c为黑体辐射系数, 5.67W/(m2'K4); - -
Γ为物体表面温度。 按照电子束焦点温度 3300摄氏度, 其他表面温度为 400°C进行估算, 则阳极的辐射功率为: 福射 =A钨 锅 铜 E
Figure imgf000011_0001
*c*(r铜 /100)4 =92.17(W) 阳极的输入功率为 1050W, 那么 ½tAP=0.0658, 辐射的功率占输入功 率的比重艮小, 可以忽略掉。 下面是忽略辐射散热和绝缘油传导散热的仿真结果。 根据设计要求, 完成一次 CT扫描的最长时间为 30s, 故在扫描时, X射线管必须可以持 续工作 30s, 此为依据, 计算最优的钨合金片厚度以及可以耐受的最大恒 流电流值。 由图 6可见,在连续入射电子的情况下,当钨合金片厚度为 400~500μιη 的时候,最大耐受电流为 7.5mA。在图中曲线最高点的左边,铜将先熔化, 右边, 钨合金片将先熔化。 对于脉冲工作模式, 不同占空比下, 同一厚度的钨合金片所能够耐受 的最大脉冲电流随着占空比的减少而增加。 考虑阳极靶的使用寿命, 以及电子束的脉冲工作模式, 本发明实施例 将选用钨合金靶面的厚度为 400-500um,例如优选 0.5mm为钨合金片的优 选厚度值。 可选的, 如图 7所示, X射线管的阳极 10包括阳极体 101和靶面 102。 靶面 102相对参考方向形成有预定的靶面倾角 α, 参考方向与电子入射方 向垂直, 如图 7所示。 靶面倾角 α是一个关键参数, 它将直接影响到 X射线管的光产额、 有效 焦点尺寸、 热量分布与传递等。 为了研究靶面倾角的变化对 X光子的产额 和角度分布的影响, 可采用蒙特卡罗方法对其进行了模拟计算。 例如使用 EGS软件模拟了 lxlO7个 140keV的电子轰击不同倾角的钨靶, 统计了光产 额和光子的空间分布。 靶面倾角与光子产额的关系见图 8。 从图 8中可以 看出, 靶面倾角越小, X光子产额越高。 - - 不过, 靶面倾角是不是越小越好, 这需要进行仔细的分析。在 CT扫描 过程中最终利用的是以电子束入射方向近似垂直的扇形束之内 X光子,这 部分 X光子才是真正为 CT成傳教出贡献的 (如图 9所示), 因此这个角 度范围内的 X光子越多越好。 下图为靶面倾角 5度时, 与靶面不同夹角的光子面密度。 从图 10中可 以看出, 随着与靶面夹角的增加, 光子的面密度越来越小, 即可用于成像 的 X光子数越来越少。 因此, 虽然靶面倾角 5度时的总光子产额很高, 但 是与靶面夹角 85度处的光子面密度却很低。 对不同靶面倾角下与电子束入射方向垂直的出射面内 X光子的数量进 行统计, 统计结果见图 11。 从图 11中可以看出, 随着靶面倾角的增加, 出射面的光子数随之增加,但是在 45度左右达到最大值,然后便开始减小。 在 CT成像中, 影响断层图像分辨率的是 X射线管的有效焦点, 而不 是实际焦点。 假设电子束平行入射, 则实际焦点尺寸 L与投影后的有效焦 点尺寸 d之间的关系如下:
¾l.™ 从上式可以看出, 如果实际焦点的尺寸 L很难减小时, 可以通过减小 靶面倾角 α来控制有效焦点的尺寸 d。 如果入射的电子束单位横截面积的密度无法提高, 根据下式可知, 增 大电子束流宽度 h减小靶面倾角 α有可能提高可成像 X光子的总数。
£|™ ¾ . 保持有效焦点尺寸和电子束单位横截面积的密度不变, 靶面倾角与可 用于成像的 X光子数之间的关系曲线见图 12。 从图 12中可以看出, 靶面倾角越小, 通过增加电子束流宽度可以有效 增加可用于成像的 X光子数量。 不过结合前图可知, 此时, 入射的电子束 流的总量显著增加, 进而增加了阳极所接受的热量, 这将给 X射线管的散 热提出了挑战。 因此, 阳极的靶面倾角的确定需要在可用于成像的 X光子 数量与入射电子的热量之间寻求一种平衡。 经过综合考虑, 靶面倾角优选 为 11度。
进一步优选地,上述实施例中的 X射线管总长度小于或等于 120mm, 以充分保证 X射线管的小巧型, 可以便于携带, 方便适用于舰载、 车载、 战地医院等特殊环境。 - - 进一步优选地, 上述实施例中的最大直径小于或等于 60mm。进一步 优选地,上述实施例中的阳极和阴极中尖锥顶部的距离小于或等于 10um。 这样可以保证 X射线管的优良性能。
此外, 本发明还提供了一种移动 CT扫描仪, 该移动 CT扫描仪包括 上述任一实施例提供的基于 LaB6纳米材料场发射的 X射线管,通过该 X 射线管产生 X射线以对脑部等人体部位进行医学检测。
在本发明上述各实施例中, 实施例的序号仅仅便于描述, 不代表实施 例的优劣。对各个实施例的描述都各有侧重, 某个实施例中没有详述的部 分, 可以参见其他实施例的相关描述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机 可读取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储介质包括: 只读存储器(Read-Only Memory, 简称 ROM )、 随才 "储器(Random Access Memory, 简称 RAM )、 磁碟或者光盘 等各种可以存储程序代码的介质。
在本发明的装置和方法等实施例中,显然,各部件或各步骤是可以分 解、 组合和 /或分解后重新组合的。 这些分解和 /或重新组合应视为本发明 的等效方案。 同时, 在上面对本发明具体实施例的描述中, 针对一种实施 方式描述和 /或示出的特征可以以相同或类似的方式在一个或更多个其它 实施方式中使用, 与其它实施方式中的特征相组合,或替代其它实施方式 中的特征。
应该强调, 术语 "包括 /包含" 在本文使用时指特征、 要素、 步骤或 组件的存在, 但并不排除一个或更多个其它特征、要素、 步骤或组件的存 在或附加。
最后应说明的是: 虽然以上已经详细说明了本发明及其优点,但 当理解在不超出由所附的权利要求所限定的本发明的精神和范围的情况 下可以进行各种改变、替代和变换。 而且, 本发明的范围不仅限于说明书 所描述的过程、 设备、 手段、 方法和步骤的具体实施例。 本领域内的普通 技术人员从本发明的公开内容将容易理解,根据本发明可以使用执行与在 此所述的相应实施例基本相同的功能或者获得与其基本相同的结果的、现 有和将来要被开发的过程、 设备、 手段、 方法或者步骤。 因此, 所附的权 利要求旨在在它们的范围内包括这样的过程、设备、手段、方法或者步骤。 . .
空白页

Claims

权利 要求 书
1、 一种基于 LaB6纳米材料场发射的 X射线管, 其特征在于, 包括: 阳极和阴极; 所述阴极包括 LaB6尖锥场发射阵列, 且所述阴 外加电 场的作用下场致发射产生的电子轰击所述阳极以产生 X射线。
2、 根据权利要求 1所述的基于 LaB6纳米材料场发射的 X射线管, 其特征在于, 所述 LaB6尖锥场发射阵列包括: 二极管 LaB6尖锥场发射 阵列, 或者, 三极管 LaB6尖锥场发射阵列。
3、 根据权利要求 2所述的基于 LaB6纳米材料场发射的 X射线管, 其特征在于,
所述二极管 LaB6尖锥场发射阵列包括: 硅尖锥二极管阵列和覆盖在 硅尖锥表面上的 LaB6纳米材料薄膜层; 或者,
所述三极管 LaB6尖锥场发射阵列包括: 硅基、 形成在所1½基上的 孔腔阵列、分布在各孔腔中的钼尖锥阵列、 以及覆盖在各钼尖锥表面上的 LaB6纳米材料薄膜层。
4、 根据权利要求 1所述的基于 LaB6纳米材料场发射的 X射线管, 其特征在于,所述阳极和所述阴极之间还设有栅极,在所述阴极和所述栅 极之间外加第一电场以使所述阴极场致发射产生电子,在所述栅极和所述 阳极之间外加第二电场以加速穿过所述栅极的电子使之轰击所述阳极以 产生 X射线。
5、 根据权利要求 1所述的基于 LaB6纳米材料场发射的 X射线管, 其特征在于, 所述阳极为固定式阳极或者旋转式阳极。
6、 根据权利要求 5所述的基于 LaB6纳米材料场发射的 X射线管, 其特征在于,所述固定式阳极包括: 固定的铜阳极体以及固定于所述铜阳 极体上的钨合金靶面。
7、 根据权利要求 6所述的基于 LaB6纳米材料场发射的 X射线管, 其特征在于,所述钨合金靶面相对参考方向形成有预定的靶面倾角, 所述 参考方向与电子入射方向垂直。
8、 根据权利要求 7所述的基于 LaB6纳米材料场发射的 X射线管, 其特征在于, 所述钨合金靶面的厚度为 400-500um, 和 /或, 所述靶面倾 角为 11度。
9、 根据权利要求 1所述的基于 LaB6纳米材料场发射的 X射线管, 其特征在于, 所述 X射线管总长度小于或等于 120mm, 和 /或, 所述 X 射线管的最大直径小于或等于 60mm, 和 /或, 所述阳极和所述阴极中尖 锥顶部的距离小于或等于 10um。
10、 一种移动 CT扫描仪, 其特征在于, 包括如权利要求 1-9任一所 述的基于 LaB6纳米材料场发射的 X射线管。
PCT/CN2013/076046 2013-04-27 2013-05-22 基于LaB6纳米材料场发射的X射线管及移动CT扫描仪 WO2014172942A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310151759.5 2013-04-27
CN201310151759.5A CN103337441B (zh) 2013-04-27 2013-04-27 基于LaB6纳米材料场发射的X射线管及移动CT扫描仪

Publications (1)

Publication Number Publication Date
WO2014172942A1 true WO2014172942A1 (zh) 2014-10-30

Family

ID=49245580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076046 WO2014172942A1 (zh) 2013-04-27 2013-05-22 基于LaB6纳米材料场发射的X射线管及移动CT扫描仪

Country Status (2)

Country Link
CN (1) CN103337441B (zh)
WO (1) WO2014172942A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103340641B (zh) * 2013-04-27 2016-06-08 中国人民解放军北京军区总医院 Ct扫描仪脉冲成像***及其脉冲成像方法
CN103337443B (zh) * 2013-04-27 2016-05-18 中国人民解放军北京军区总医院 医学检测用x射线源及移动ct扫描仪
CN103731966B (zh) * 2014-01-03 2015-12-30 中国原子能科学研究院 一体化荧光发生装置
EP3742468A1 (de) * 2019-05-20 2020-11-25 Siemens Healthcare GmbH Dosismodulation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1069438C (zh) * 1994-10-28 2001-08-08 株式会社岛津制作所 X射线管阳极及其制造方法与静止阳极x射线管
US20020053869A1 (en) * 1998-08-26 2002-05-09 Ahn Kie Y. Field emission display having reduced power requirements and method
CN1479935A (zh) * 2000-10-06 2004-03-03 北卡罗来纳-查佩尔山大学 使用电子场发射阴极的x-射线发生机构
CN101097823B (zh) * 2006-06-30 2011-01-05 鸿富锦精密工业(深圳)有限公司 微型场发射电子器件
CN102988076A (zh) * 2012-12-11 2013-03-27 苏州生物医学工程技术研究所 Ct扫描仪

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1145914C (zh) * 1996-07-08 2004-04-14 三星电管株式会社 场致发射显示装置
CN201936839U (zh) * 2011-01-10 2011-08-17 深圳市晶金电子有限公司 照相设备及其x射线发生器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1069438C (zh) * 1994-10-28 2001-08-08 株式会社岛津制作所 X射线管阳极及其制造方法与静止阳极x射线管
US20020053869A1 (en) * 1998-08-26 2002-05-09 Ahn Kie Y. Field emission display having reduced power requirements and method
CN1479935A (zh) * 2000-10-06 2004-03-03 北卡罗来纳-查佩尔山大学 使用电子场发射阴极的x-射线发生机构
CN101097823B (zh) * 2006-06-30 2011-01-05 鸿富锦精密工业(深圳)有限公司 微型场发射电子器件
CN102988076A (zh) * 2012-12-11 2013-03-27 苏州生物医学工程技术研究所 Ct扫描仪

Also Published As

Publication number Publication date
CN103337441B (zh) 2016-04-27
CN103337441A (zh) 2013-10-02

Similar Documents

Publication Publication Date Title
WO2014172932A1 (zh) 医学检测用x射线源及移动ct扫描仪
Heo et al. A vacuum-sealed miniature X-ray tube based on carbon nanotube field emitters
WO2014172941A1 (zh) Ct扫描仪脉冲成像***及其脉冲成像方法
EP2740332B1 (en) Radiation generating apparatus and radiation imaging apparatus
EP2649635B1 (en) Radiation generating apparatus and radiation imaging apparatus
EP2740331B1 (en) Radiation generating apparatus and radiation imaging apparatus
BRPI0708509B1 (pt) Gerador de raios-x múltiplos, e, aparelho de formação de imagem de raios-x múltiplos
WO2014101283A1 (zh) 阴控多阴极分布式x射线装置及具有该装置的ct设备
TW200538721A (en) Computed tomography scanning system and method using a field emission x-ray source
US9431206B2 (en) X-ray generation tube, X-ray generation device including the X-ray generation tube, and X-ray imaging system
WO2014172942A1 (zh) 基于LaB6纳米材料场发射的X射线管及移动CT扫描仪
CN104409303A (zh) 基于碳纳米管/石墨烯复合阴极结构的x射线源
CN104000616A (zh) 多放射线产生设备和放射线成像***
JP2015019987A (ja) マルチ放射線発生装置及び放射線撮影システム
TWI399780B (zh) 包含場發射陰極之x射線源
KR101325210B1 (ko) 탄소나노튜브 기반의 전자빔 에미터를 이용한 진공밀봉형 소형 엑스선 튜브
KR101092210B1 (ko) X선 발생장치 및 발생방법
Kim et al. Optimum design for the carbon nanotube based micro-focus X-ray tube
WO2014172931A1 (zh) 基于碳纳米管的x射线管及移动ct扫描仪
WO2014172936A1 (zh) 基于LaB6纳米材料热发射的X射线管及移动CT扫描仪
Tan et al. Beam and image experiment of beam deflection electron gun for distributed X-ray sources
JP2005243331A (ja) X線管
RU2676672C1 (ru) Рентгеновский острофокусный излучатель с стержневым анодом
CN106783486A (zh) 一种图案化碳纳米管阴极的反射式x射线源结构
JP5771213B2 (ja) 電子収集素子、x線発生装置及びx線システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13883185

Country of ref document: EP

Kind code of ref document: A1