WO2014171353A1 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
WO2014171353A1
WO2014171353A1 PCT/JP2014/059995 JP2014059995W WO2014171353A1 WO 2014171353 A1 WO2014171353 A1 WO 2014171353A1 JP 2014059995 W JP2014059995 W JP 2014059995W WO 2014171353 A1 WO2014171353 A1 WO 2014171353A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
tire
region
tread
circumferential
Prior art date
Application number
PCT/JP2014/059995
Other languages
French (fr)
Japanese (ja)
Inventor
直人 蒲
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to JP2014515946A priority Critical patent/JP6292117B2/en
Publication of WO2014171353A1 publication Critical patent/WO2014171353A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/04Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0304Asymmetric patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/032Patterns comprising isolated recesses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1376Three dimensional block surfaces departing from the enveloping tread contour
    • B60C11/1392Three dimensional block surfaces departing from the enveloping tread contour with chamfered block edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0348Narrow grooves, i.e. having a width of less than 4 mm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0381Blind or isolated grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0381Blind or isolated grooves
    • B60C2011/0383Blind or isolated grooves at the centre of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0386Continuous ribs
    • B60C2011/0388Continuous ribs provided at the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0386Continuous ribs
    • B60C2011/039Continuous ribs provided at the shoulder portion

Definitions

  • the present invention relates to a pneumatic tire.
  • a pneumatic tire for competition with a tread pattern specifically, a high-performance tire that can run at high speed and has excellent handling stability is allowed to run on public roads without changing the tire after the competition.
  • Pneumatic tires (S tires) that are used are being sought among competitors.
  • the pneumatic tire for competition emphasizes handling stability, particularly dry handling stability, and therefore has a large noise outside the vehicle.
  • One example of such a pneumatic tire is characterized by a low flatness (for example, 35% or less) and a large rim diameter (for example, 18 inches or more) to be mounted.
  • the tire speed range is the Y range.
  • a cornering limit performance and a convergence tire after the tire starts to slide after exceeding the cornering limit are fully exhibited, and a pneumatic tire excellent in handling stability is known (patent) Reference 1).
  • this pneumatic tire is mounted on a standard rim described in JATMA and filled with air pressure of 90 kPa to make it unloaded, the position of the tread surface that intersects the tire center line in the tire meridian cross-sectional shape is A, If the position of the tread surface intersecting with the straight line P orthogonal to the tire axis from the edge of the innermost belt layer is B, a straight line X connecting the positions A and B and a straight line Y drawn perpendicularly to the tire center line from the position A Is set to 8 ° to 15 °.
  • the pneumatic tire described above is a slick tire that is not provided with a tread pattern, even if a tread pattern is provided on the tire, wet steering stability is not necessarily improved. Furthermore, if the circumferential main grooves and lug grooves that have been conventionally used as tread patterns are provided without any ingenuity, the passing noise outside the vehicle due to the rolling of the pneumatic tire increases, and it cannot be used on public roads. . Further, even when the pneumatic tire described above is applied to a tire having a low flatness ratio of 55% or less and a rim diameter to be mounted of 16 inches or more, sufficient wet steering stability cannot be obtained. Specifically, the height of the lateral acceleration of the vehicle running on a wet road surface and the ease of controlling the vehicle behavior at the start of slipping on the road surface of the tire are not sufficient.
  • the present invention is a high-performance pneumatic tire such as a pneumatic tire with a tread pattern in which a rim diameter of a rim to be mounted is 16 inches or more with a low flatness of 55% or less, and wet steering stability.
  • An object of the present invention is to provide a pneumatic tire that is excellent in reducing the passing noise outside the vehicle.
  • One embodiment of the present invention is a pneumatic tire.
  • the pneumatic tire A first half-tread region of a tread pattern disposed on the first side in the tire width direction with the tire center line as a boundary, and a tread pattern disposed on the second side in the tire width direction with the tire center line as a boundary.
  • the first half tread region and the second half tread region of the tread portion are: In a tire profile under a no-load condition with a regular rim and an air pressure of 180 kPa, the position A on the surface of the tread portion on the tire center line and the edge of the belt layer are parallel to the tire radial direction.
  • a first lug groove and a second land portion extending from the second circumferential main groove and in contact with a second side of the second circumferential main groove and closing in a tire circumferential direction.
  • the tread profile line crosses the tire center line and is connected to a first profile region having a first radius of curvature and both ends of the first profile region, each having a second radius of curvature.
  • Two second profile regions The ratio TW1 of the tire width direction length TW from the tire center line to the position B and the tire width direction length TW1 from the tire center line to the connection position of the first profile region and the second profile region / TW is preferably 0.5 to 0.65.
  • an angle formed between the straight line Y connecting the position A and the connection position and the straight line Y is 0.5 to 2.0 degrees.
  • the profile line crosses the tire center line and is connected to a first profile region having a first radius of curvature and both ends of the first profile region, and each of the second second regions having a second radius of curvature.
  • Profile area The circumferential main groove group of the tread pattern is further provided on the second side of the third circumferential main groove, extends in the tire circumferential direction, and has a groove width of the three circumferential main grooves. It has a circumferential narrow groove with a narrower groove width,
  • the connection positions of the first profile region and the second profile region are the edge of the first circumferential main groove or the first circumferential main groove, and the circumferential narrow groove or the circumferential narrow groove. It is preferably located at the edge of the groove.
  • the tread pattern further includes a plurality of third lug grooves provided at intervals in the tire circumferential direction, intersecting with the circumferential narrow grooves, The both ends of the third lug groove in the tire width direction are not connected to the groove extending in the tire circumferential direction, and the third lug groove is formed between the land portions on both sides of the circumferential narrow groove in the tire width direction. It is preferable to occlude in the region.
  • the third lug groove is preferably a first curved groove that is convex in the tire circumferential direction and curved in the tread surface.
  • the first lug groove is inclined in the tire circumferential direction from the tire width direction, It is preferable that the convex direction of the first curved groove is opposite to the inclination direction of the first lug groove with respect to the tire width direction.
  • the ratio TW / (SW / 2) of half of the total width SW of the pneumatic tire and the length TW in the tire width direction from the tire center line to the position B is preferably 0.75 to 0.95. .
  • the pneumatic tire is mounted on a regular rim and the air pressure is 180 kPa, and the pneumatic tire is obtained under no-load conditions.
  • the pneumatic tire is mounted on a regular rim and the air pressure is 180 kPa, and 55% of the maximum load load.
  • the ratio CP / SW between the road surface obtained under load conditions and the ground contact width CP to be grounded is preferably 0.75 to 0.85.
  • the groove area ratio Sin of the first half-tread region is preferably 24 to 28%, and the groove area ratio Sout of the second half-tread region is preferably 12 to 16%.
  • the tread pattern further has one end opened at the tire ground contact end and the other end on the second side in the region of the first shoulder land portion located on the first side of the first circumferential main groove.
  • a plurality of first shoulder lug grooves provided at intervals in the tire circumferential direction, extending in the region of the first shoulder land portion, The first lug groove and the second lug groove are more inclined with respect to the tire width direction than the first shoulder lug groove, and are inclined toward the same side in the tire circumferential direction from the tire width direction.
  • the second lug groove has a larger inclination angle with respect to the tire width direction than the first lug groove.
  • the tread pattern further includes a plurality of fourth lug grooves provided at intervals in the tire circumferential direction, intersecting the third circumferential main groove, The both ends of the fourth lug groove in the tire width direction are not connected to the groove extending in the tire circumferential direction, and the fourth lug groove is land on both sides in the tire width direction of the third circumferential narrow groove. It is preferable to block within the region of the part.
  • the fourth lug groove is a second curved groove that is convex in the tire circumferential direction and curved in the tread surface.
  • the first lug groove is inclined in the tire circumferential direction from the tire width direction, It is preferable that the convex direction of the second curved groove is the same as the inclination direction of the first lug groove with the tire width direction as a boundary.
  • the groove wall facing the groove wall having the opening of the first lug groove does not have an opening, and is linear over the entire circumference in the tire circumferential direction.
  • the groove wall facing the groove wall having the opening of the second lug groove does not have an opening, and is linear over the entire circumference in the tire circumferential direction. Preferably it extends.
  • the pneumatic tire of the above aspect is excellent in wet steering stability and can reduce vehicle outside noise.
  • the tire width direction is a direction parallel to the rotation axis of the pneumatic tire.
  • the outer side in the tire width direction is a direction away from the tire center line representing the tire equatorial plane in the tire width direction.
  • the inner side in the tire width direction is the side closer to the tire center line in the tire width direction.
  • the tire circumferential direction is a direction that rotates around the rotation axis of the pneumatic tire as the center of rotation.
  • the tire radial direction is a direction orthogonal to the rotation axis of the pneumatic tire.
  • the outer side in the tire radial direction refers to the side away from the rotation axis.
  • the inner side in the tire radial direction refers to the side approaching the rotation axis.
  • the regular rim described below refers to a “standard rim” defined in JATMA, a “Design Rim” defined in TRA, or a “Measuring Rim” defined in ETRTO.
  • the normal internal pressure is a “maximum air pressure” defined by JATMA. Alternatively, it may be the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined in TRA or “INFLATION PRESSURES” defined in ETRTO.
  • the maximum load is defined with respect to the normal internal pressure, and is defined in ETRTO.
  • the contact width described below refers to the maximum value of the linear distance in the tire width direction on the contact surface formed on the flat plate.
  • FIG. 1 shows a pneumatic tire (hereinafter simply referred to as a tire) 1 of the present embodiment.
  • the tire 1 is a competition pneumatic tire (S tire) having a tread pattern 2, and has a low flatness ratio of 55% or less and a rim diameter (tire inner diameter) of a rim to be mounted is 16 inches or more.
  • the numerical value (tire size) described on a tire as a tire width is 195 or more.
  • the tan ⁇ of the tread rubber is 0.30 or more at a temperature of 20 ° C.
  • FIG. 2 is a diagram of the profile of the tire 1 when the tire 1 is cut at a cut surface including the tire rotation axis of the tire 1 of the present embodiment.
  • the tire 1 has a carcass ply layer 3, a belt layer 4, and a pair of bead cores 5 as a skeleton material, and a tread rubber 6, a side rubber 7, and a bead filler rubber 8 around these skeleton materials.
  • the inner liner rubber 9 is mainly included.
  • the tire 1 includes a belt cover layer 10.
  • the first shoulder lug groove 41, the first lug groove 45, the second lug groove 47, the curved groove 51, the third lug groove 49, Two shoulder lug grooves 43 are shown in a state in which each includes them.
  • the carcass ply layer 3 is composed of two layers of an inner ply layer 3a and an outer ply layer 3b in which organic fibers are covered with rubber, which are wound between a pair of annular bead cores 5 to form a toroidal shape.
  • the organic fibers disposed on the inner ply layer 3a and the outer ply layer 3b extend in a different direction with respect to the tire width direction, and the inclination angle of the organic fibers is set so as to intersect between the two layers. Yes. This inclination angle is within a range of ⁇ 30 degrees with respect to the tire width direction.
  • an inner ply layer 3a disposed on the inner side in the tire radial direction on the tire center line CL and an outer ply layer 3b disposed on the outer side in the tire radial direction extend toward the inner side in the tire radial direction. It is wound around the bead core 5 and extends outward in the tire radial direction.
  • the inner ply layer 3a has an end portion at a position in the tire radial direction that is the same as the position in the tire radial direction at the front end of the bead filler 5 in the tire radial direction.
  • the outer ply layer 3 b is wound around the bead core 5, extends toward the outer side in the tire radial direction with respect to the end portion of the inner ply layer 3 a, and ends near the end of the belt layer 4.
  • a belt layer 4 including an inner belt layer 4a and an outer belt layer 4b is provided outside the carcass ply layer 3 in the tire radial direction.
  • the inner belt layer 4a and the outer belt layer 4b are coated with rubber on steel cords that are disposed at a predetermined angle, for example, 20 to 30 degrees, within the surface in which the belt layer 4 extends with respect to the tire circumferential direction. It is a member.
  • the width of the inner belt layer 4a in the tire width direction is wider than the width of the outer belt layer 4b in the tire width direction.
  • the inclination directions of the steel cords of the inner belt layer 4a and the outer belt layer 4b with respect to the tire circumferential direction are opposite to each other.
  • the inner side belt layer material 4a and the outer side belt layer 4b are crossing layers, and suppress the expansion of the carcass ply layer 3 due to the filled air pressure.
  • the inclination direction of the steel cord of the inner belt layer 4a with respect to the tire width direction is the same as the inclination direction of the organic fibers of the outer ply layer 3b adjacent to the inner belt layer 4a.
  • the belt cover layers 10 On the outer side in the tire radial direction of the belt layer 4, there are provided three belt cover layers 10 that cover the belt layer 4 from the outer side in the tire radial direction of the belt layer 4 and are coated with rubber on organic fibers extending in the tire circumferential direction. .
  • the two belt cover layers on the inner side in the tire radial direction are provided so as to cover the entire width of the outer belt layer 4b along the tire width direction.
  • the outermost layer located on the outer side in the tire radial direction is provided so as to cover the shoulder region including the end portion of the belt layer 4 in the tire width direction, and in the center region including the tire center line CL. Is not provided.
  • a tread rubber 6 is provided on the outer side of the belt cover layer 10 in the tire radial direction.
  • a portion where the tread rubber 6 of the tire 1 is provided is a tread portion.
  • Side rubber 7 is connected to both ends of the tread rubber 6 in the tire width direction to form side portions.
  • a rim cushion rubber member is provided at the inner end in the tire radial direction of the side rubber 7 and is in contact with a rim on which the tire 1 is mounted.
  • the bead core 5 is sandwiched between the portion of the carcass ply layer 3 before being wound around the bead core 5 and the portion of the carcass ply layer 5 after being wound around the bead core 5 on the outer side in the tire radial direction of the bead core 5.
  • a bead filler rubber 8 is provided.
  • An inner liner rubber 9 is provided on the inner surface of the tire 1 facing the tire cavity region filled with air surrounded by the tire 1 and the rim.
  • the tire 1 includes an inner bead reinforcing material 11 a sandwiched between the carcass ply layer 3 wound around the bead core 5 and the bead filler rubber 8, and a carcass ply layer 3 wound around the bead core 5.
  • the outer bead reinforcement 11b is provided.
  • the structure of the tire 1 shown in FIG. 2 is an example, and the tire 1 of the present embodiment may have a structure other than the structure shown in FIG.
  • the maximum thickness of the tread rubber 6 of the tire 1 which is the S tire of the present embodiment is preferably 3.5 to 8.5 mm, more preferably 4.5 to 6.5 mm.
  • FIG. 3 is a plan development view of the tread pattern 2 of the tire 1 of the present embodiment in an easy-to-understand manner.
  • the tire 1 having the tread pattern 2 can be suitably used as a competition tire.
  • the tire 1 of the present embodiment has the tread pattern 2 shown in FIG. 3 arranged in the tire circumferential direction.
  • a pitch variation may be applied to the tread pattern.
  • the tire 1 having the tread pattern 20 is designated in the tire width direction when the vehicle is mounted.
  • a portion of the tread pattern 2 arranged on the first side (indicated by IN in FIG. 3) inside the vehicle with the tire center line CL as a boundary is referred to as an inner region (first half-tread region) 20a.
  • a portion of the tread pattern 2 arranged on the second side (the side indicated by OUT in FIG. 3) that is the vehicle outer side is referred to as an outer region (second half-tread region) 20b.
  • the first side is simply referred to as the inner side
  • the second side is also referred to as the outer side.
  • the tire according to the present embodiment has an asymmetric position with respect to the tire center line CL in the tire width direction of the circumferential main groove.
  • Information on the direction of the direction that is, information on whether the first half-tread region faces inward or outward is preferably displayed, for example, by letters, symbols, or the like on the tire surface or the sidewall surface.
  • the tire 1 shown in FIG. 3 is mounted on the right wheel of the vehicle.
  • the tread pattern of the tire mounted on the left wheel of the vehicle has a mirror image relationship with the tread pattern 2 shown in FIG.
  • the tread pattern 2 mainly includes a circumferential main groove group, a first shoulder lug groove 41 and a second shoulder lug groove 43, and a plurality of first lug grooves 45 and a plurality of second lug grooves 47.
  • a circumferential main groove group mainly includes a circumferential main groove group, a first shoulder lug groove 41 and a second shoulder lug groove 43, and a plurality of first lug grooves 45 and a plurality of second lug grooves 47.
  • the circumferential main groove group includes three circumferential main grooves extending in the tire circumferential direction, that is, a first circumferential main groove 21, a second circumferential main groove 23, and a third circumferential main groove 25 ( Hereinafter, it simply includes the main groove 21, the main groove 23, and the main groove 25).
  • the first circumferential main groove 21 is provided in the inner region 20a
  • the second circumferential main groove 23 is located on the second side in the tire width direction with respect to the first circumferential main groove 21,
  • the inner circumferential region 20a or the tire center line CL is provided in the region
  • the third circumferential main groove 25 is provided in the outer region 20b.
  • the number of the circumferential grooves arranged in the outer region 20b is equal to or less than the number of the circumferential main grooves arranged in the inner region 20a, thereby suppressing outside-passing noise.
  • the second circumferential main groove 23 is provided in the inner region 20a, and the number of circumferential main grooves in the outer region 20b is smaller than the number of circumferential main grooves in the inner region 20a.
  • region 20b is equal to the number of the circumferential direction main grooves of the inner side area
  • the second circumferential main groove 23 being provided in the region of the tire center line CL means that the tire center line CL is on the region of the second circumferential main groove 23 or the second circumferential main groove 23. It means passing through the edge of the groove 23.
  • the groove wall facing the groove wall having the opening of the first lug groove 45 described later has an opening. It does not have and extends linearly over the entire circumference in the tire circumferential direction, and is opposed to a groove wall having an opening of a second lug groove 47 described later, out of a pair of groove walls of the second circumferential main groove 23. It is preferable that the groove wall to be formed does not have an opening and extends linearly over the entire circumference in the tire circumferential direction.
  • an average groove width Win that is an average of the groove widths W21 and W23 of the first circumferential main groove 21 and the second circumferential main groove 23, and a groove width Wout of the third circumferential main groove 25.
  • the ratio Wout / Win is 0.45 to 0.75.
  • the groove width of the circumferential groove is the length of the circumferential groove on the tread surface in the tire width direction, and is the groove width when the tire is new. When the ratio Wout / Win is less than 0.45, the drainage performance of the tire on the outer wheel side during wet turning is lowered, and wet steering stability is lowered.
  • the outer wheel tire is a tire mounted on the right side of the vehicle when the vehicle turns left, for example. Further, when the ratio Wout / Win exceeds 0.75, the vehicle outside noise becomes worse.
  • the ratio Wout / Win is preferably 0.5 to 0.7, particularly preferably 0.6.
  • the groove width W21 of the first circumferential main groove 21 and the groove width W23 of the second circumferential main groove 23 may be equal to or different from each other.
  • the groove depths in the first circumferential main groove 21, the second circumferential direction 23, and the third circumferential direction 25 are each preferably 3.0 to 6.5 mm.
  • the groove depth is less than 3.0 mm, the block rigidity of the tread rubber becomes excessively high, the sound generated when the tread rubber contacts the ground is increased, and the wet handling stability is further deteriorated.
  • the groove depth exceeds 6.5 mm, the block rigidity of the tread rubber is lowered, and the dry steering stability and the wet steering stability are lowered.
  • the groove depths in the first circumferential main groove 21, the second circumferential direction 23, and the third circumferential direction 25 are more preferably 3.5 to 6.5 mm, for example, 5.5 mm.
  • the groove widths W21 and W23 are 7.0 to 12.0 mm, and the groove width W25 is 3.8 to 8.0 mm.
  • the first circumferential main groove 21, the second circumferential direction with respect to the groove widths W21, W23, W25 of the first circumferential main groove 21, the second circumferential main groove 23, and the third circumferential main groove 25 The ratio of the groove depth of each of the main groove 23 and the third circumferential main groove 25 (groove width groove depth ratio) is preferably 70 to 130%, more preferably 90 to 110%. .
  • the circumferential main groove group preferably further includes a circumferential narrow groove 27 as shown in FIG.
  • the circumferential narrow groove 27 is located on the second side with respect to the third circumferential main groove 25 and is provided on the outer side in the tire width direction with respect to the third circumferential main groove 25. It extends in the circumferential direction.
  • the groove width W27 of the circumferential narrow groove 27 is narrower than the respective groove widths of the first circumferential main groove 21, the second circumferential main groove 23, and the third circumferential main groove 25, and is 2.5 mm or less. is there.
  • the outer region 20b may have a narrower groove width extending in the tire circumferential direction and a smaller number of grooves extending in the tire circumferential direction, and the groove area ratio may be smaller than the inner region 20a. For this reason, block rigidity tends to be high.
  • the circumferential narrow groove 27 is positioned in the region on the second side with respect to the third circumferential main groove 25, so that the block rigidity of the outer region 20b is optimized, and the inner region 20a and the outer region 20 The difference in block rigidity from the region 20b is kept small.
  • the groove width of the circumferential narrow groove 27 is preferably 3.0 mm or less, for example, 1.5 mm, from the viewpoint of improving tire noise performance. Further, the groove width of the circumferential narrow groove 27 is preferably 1.0 mm or more, for example, 1.5 mm, from the viewpoint of reducing the difference from the block rigidity of the inner region 20b.
  • W25, W27 are smaller in order of the first circumferential main groove 21 or the second circumferential main groove 23, the third circumferential main groove 25, and the circumferential narrow groove 27 from the viewpoint of improving tire noise performance. It is preferable.
  • the groove widths W21 and W23 are 7.0 to 12.0 mm
  • the groove width W25 is 3.8 to 8.0 mm
  • the groove width W27 is 2.0 to 3.0 mm.
  • the first shoulder land portion is provided on the first side with respect to the first circumferential main groove 21.
  • the plurality of first shoulder lug grooves 41 are provided at intervals in the tire circumferential direction.
  • the first shoulder lug groove 41 has one end 41a in the first shoulder land portion region 31 located on the first side which is the vehicle inner side with respect to the first circumferential main groove 21 in the inner region 20a. Opens at the tire ground contact end 22a, and the other end 41b extends toward the tire center line CL, that is, toward the second side, and closes in the region 31 of the first shoulder land portion.
  • the region 31 of the first shoulder land portion is a region extending in the tire circumferential direction defined by the first circumferential main groove 21 and the ground contact end 22a in the tire width direction in the tread pattern 2.
  • the second shoulder land portion is provided on the second side with respect to the third circumferential main groove 25.
  • the plurality of second shoulder lug grooves 43 are provided at intervals in the tire circumferential direction.
  • the second shoulder lug groove 43 is a tire on the one end 43b side in the region 33 of the second shoulder land portion located on the second side with respect to the third circumferential main groove 25 in the outer region 20b. It opens at the ground contact end 22b and extends toward the center line CL, that is, the first side on the other end 43a side, and closes in the region 33 of the second shoulder land portion.
  • the region 33 of the second shoulder land portion is a region extending in the tire circumferential direction defined by the third circumferential main groove 25 and the tire ground contact edge 22b in the tire width direction in the tread pattern 2. .
  • the first shoulder lug groove 41 and the second shoulder lug groove 43 at the end portions 41b and 43a opposite to the grounding ends 22a and 22b of the first shoulder lug groove 41 and the second shoulder lug groove 43, The sound emitted by the discharge of air in the first circumferential main groove 21 and the circumferential narrow groove 27 by being blocked in the first shoulder land region 31 and the second shoulder land region 33.
  • the grounding terminals 22a and 22b are determined as follows.
  • the ground contact ends 22a and 22b are end portions in the tire width direction of the ground contact surface when the tire 1 is assembled to a regular rim, filled with a regular internal pressure, and grounded on a horizontal plane under the condition that 88% of the regular load is a load load.
  • the normal load means “maximum load capacity” defined in JATMA, “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined in TRA, or “LOAD CAPACITY” defined in ETRTO.
  • the plurality of first lug grooves 45 are provided at intervals in the tire circumferential direction.
  • a lug groove including a shoulder lug groove refers to a groove having a groove width of 3.5 to 9.0 mm and a groove depth of 2.5 to 5.0 mm.
  • the first lug groove 45 has one end 45 a in the first circumferential main groove 21 in the first land portion region 35 defined by the first circumferential main groove 21 and the second circumferential main groove 23. It opens and the other end 45b is located in the area
  • first lug groove 45 extends from the first circumferential main groove 21 toward the second circumferential main groove 23 without being connected to the second circumferential main groove 23.
  • the plurality of second lug grooves 47 are provided at intervals in the tire circumferential direction.
  • the second lug groove 47 has one end 47 a at the second circumferential main groove 23 in the second land portion region 37 defined by the second circumferential main groove 23 and the third circumferential main groove 25.
  • the other end 47b is located in the region 37 of the second land portion. That is, the second lug groove 47 extends from the second circumferential main groove 23 toward the third circumferential main groove 25 without being connected to the third circumferential main groove 25. Blocks in the land region 37.
  • 23 and the second circumferential main groove 25 are not connected to the first land portion region 35 and the second land portion region 37, so that the first land portion region 35, the second land portion region 35, and the second land portion region 35.
  • a continuous land portion (rib) continuous in the tire circumferential direction is formed. Since the first lug groove 45 and the second lug groove 47 are not lug grooves that connect adjacent main grooves, the air column that causes the generation of sound formed in the lug grooves that connect adjacent main grooves. In comparison, the air column is shorter and the sound pressure is reduced, so that the noise of passing tires outside the vehicle is reduced.
  • the plurality of first lug grooves 45 and the plurality of second lug grooves 47 are provided so as to extend from one edge of the circumferential main groove edge to the land portion area on one side as described above. However, it may be provided so as to extend from both edges of the edge of the circumferential main groove to the region of the land portion on both sides.
  • a lug groove extending into the first land region 35 is provided in addition to the second lug groove 47 extending from the second circumferential main groove 23 into the second land region 37.
  • the lug groove may be provided so as to intersect with the second circumferential main groove 23 and both ends thereof are located in the first land portion region 35 and the second land portion region 37.
  • these aspects may be combined.
  • the lug grooves provided in the region of the land portion on the same side with respect to the circumferential main groove are preferably provided so as to be inclined in the same direction with respect to the tire width direction.
  • the lug groove is preferably curved or bent on either side in the tire circumferential direction.
  • it is preferable to determine the curved shape of the lug groove so as not to cause a so-called line contact state in which the entire edge of the lug groove contacts the road surface simultaneously when turning left and right.
  • the 1st lug groove 45 and the 2nd lug groove 47 incline largely with respect to a tire width direction rather than the 1st shoulder lug groove 41, and incline toward the same side of a tire peripheral direction from a tire width direction.
  • the second lug groove 47 preferably has a larger inclination angle (acute angle) with respect to the tire width direction than the first lug groove 45. That is, the direction of the second lug groove 47 is closer to the tire circumferential direction than the direction of the first lug groove 45.
  • the inclination angle of the first shoulder lug groove 41 is such that the center point of the portion where the first shoulder lug groove 41 intersects the ground contact end 22a and the outer side (second side) of the first shoulder lug groove 41.
  • the first shoulder lug groove 41 may be inclined with respect to the tire width direction or may not be inclined.
  • the inclination angle of the first lug groove 45 and the second lug groove 47 is an angle formed by a straight line connecting the center points of both ends in the extending direction of each groove and the tire width direction.
  • the pitch of the first shoulder lug groove 41, the first lug groove 45, and the second lug groove 47 is such that the inclination angle increases as the distance (pitch length) between the lug grooves adjacent in the tire circumferential direction increases. It is determined according to the length.
  • the first shoulder lug groove 41, the first lug groove 45, and the second lug groove 47 may each be inclined clockwise or counterclockwise with respect to the tire width direction. .
  • the lug grooves adjacent in the tire width direction are preferably formed to have different inclination angles.
  • a steering angle may be generated such that the lug grooves are simultaneously in line contact with the road surface.
  • the inclining direction is the same between the lug grooves adjacent to each other in the tire width direction, that is, either the clockwise direction or the counterclockwise direction with respect to the tire width direction.
  • the inclination angle of the first shoulder lug groove 41 is preferably 0 to 7 degrees with respect to the tire width direction, and the inclination angle of the first lug groove 45 is preferably 15 to 50 degrees, respectively.
  • the inclination angles of the first shoulder lug groove 41, the first lug groove 45, and the second lug groove 47 are the same as those of the first shoulder lug groove 41, the first lug groove 45, and the second lug groove 47. Smaller in order is preferred.
  • the inclination angle of the first shoulder lug groove 41 is the smallest and the inclination angle of the second lug groove 47 is the largest.
  • the slope angle is steeper as the lug groove is closer to the ground contact end, and the drainage performance is deteriorated.
  • the inclination angle of the second lug groove 47 is preferably 30 to 60 degrees. Thereby, wet steering stability improves.
  • the direction in which the first shoulder lug groove 41 is inclined may be different from the first lug groove 45 and the second lug groove 47.
  • the inclination angles of the first shoulder lug groove 41, the first lug groove 45, and the second lug groove 47 are, for example, 5 degrees and 45 degrees in the counterclockwise direction with respect to the tire width direction, respectively. Degree, 50 degrees.
  • the tread pattern 2 further includes a plurality of third lug grooves 49.
  • the plurality of third lug grooves 49 intersect with the circumferential narrow grooves 27 and are provided at intervals in the tire circumferential direction.
  • the maximum groove width Rin among the groove widths R41, R45, and R47 of the first shoulder lug groove 41, the first lug groove 45, and the second lug groove 47 is the third lug groove 49 and the second lug groove 49. It is preferable that it is larger than or equal to the maximum groove width Rout of the groove widths R49 and R43 of the shoulder lug grooves.
  • the groove widths R41, R43, R45, R47, and R49 are the lengths on the tread surface in the direction orthogonal to the extending direction of the lug grooves 41, 43, 45, 47, and 49. Say.
  • the groove widths R41, R45, and R47 may be equal to each other or different from each other.
  • the groove widths R49 and R43 may be equal to or different from each other.
  • the third lug groove 49 intersects the circumferential narrow groove 27, and both ends 49a and 49b are located in the third land region 39 and the second shoulder land region 33, respectively.
  • the third lug groove 49 is not connected to the groove extending in the tire circumferential direction at each end 49a, 49b in the tire width direction of the third lug groove 49. Block in the land area on both sides.
  • the third land region 39 is a region extending in the tire circumferential direction defined by the third circumferential main groove 25 and the circumferential narrow groove 27. More specifically, the third lug groove 49 is a curved groove that is convexly curved toward one side in the tire circumferential direction with respect to both ends thereof at a portion intersecting with the circumferential narrow groove 27.
  • the convex direction of the third lug groove (first curved groove) 49 is the inclination of the first lug groove 45 inclined from the tire width direction to the tire circumferential direction with the tire width direction as a boundary. This is the opposite direction. That is, the 3rd lug groove 49 is curving so that it may become convex toward the paper surface lower side of FIG. This prevents a so-called line contact state in which the entire edge of the lug groove contacts the road surface at the same time when turning left and right.
  • the groove depth of the third lug groove 49 may be different from or equal to the groove depth of the circumferential narrow groove 27.
  • the tread pattern 2 further has a plurality of fourth lug grooves 51.
  • the plurality of fourth lug grooves 51 are provided at intervals in the tire circumferential direction and intersect with the third circumferential main groove 25. Both ends of the fourth lug groove 51 in the tire width direction are not connected to the grooves extending in the tire circumferential direction, and the fourth lug groove 51 is located on both sides of the third circumferential main groove 25 in the tire width direction. It is preferable to block in the regions 37 and 39 of the part.
  • the fourth lug groove 51 is a curved groove (second curved groove) that is convex in the tire circumferential direction and is curved in the tread surface, but may not be a curved groove.
  • the convex direction of the second curved groove is the first lug groove inclined from the tire width direction to the tire circumferential direction with the tire width direction as a boundary. It is preferable that the direction of the inclination of 45 is the same. This makes it difficult for a so-called line contact state in which the entire edge of the lug groove simultaneously contacts the road surface when turning left and right. Note that only one of the third lug groove (first curved groove) 49 and the fourth lug groove (second curved groove) 51 may be curved and the other may not be curved.
  • the third lug groove (first curved groove) 49 and the fourth lug groove (second curved groove) 51 may not be provided in the tread pattern 2.
  • the third lug groove (first curved groove) 49 and the fourth lug groove (second curved groove) 51 are respectively connected at both ends 49a, 49b and both ends 51a, 51b with other adjacent circumferential grooves. It is preferable that it is located in the area
  • both ends 51 a and 51 b of the fourth lug groove (second curved groove) 51 are not connected to the second circumferential main groove 23 and the circumferential narrow groove 27, respectively, and the region of the second land portion 37, preferably located in the region 33 of the second shoulder land portion, and the fourth lug groove (second curved groove) is closed in the region of the land portion.
  • the third lug groove (first curved groove) 49 and the fourth lug groove (second curved groove) 51 have the same groove depth as the third circumferential main groove 25 and the circumferential narrow groove 27, respectively. It is preferable. Further, the groove widths R49 and R51 of the third lug groove (first curved groove) 49 and the fourth lug groove (second curved groove) 51 are the third circumferential main groove 25 and the circumferential thin line, respectively.
  • the groove 27 is preferably wider than the groove widths W25 and W27.
  • the groove area ratio Sin of the inner region 22a of the tread pattern 2 is 24 to 28%
  • the groove area ratio Sout of the outer region 20b is 12 to 16%, and preferably Sin> Sout.
  • the groove area ratios Sout and Sin are different when the pitch length, which is the distance between the lug grooves adjacent in the tire circumferential direction in the tread pattern 2, is different on the tire circumference, that is, in the tread pattern 2.
  • pitch variation it is represented by a groove area ratio in the entire circumference of the tire.
  • the groove area ratio refers to the ratio of the area of all the grooves included in the inner region 20a or the outer region 20b in the area of the inner region 20a or the outer region 20b when the tire is new.
  • the groove here includes a circumferential main groove, a circumferential narrow groove, a shoulder lug groove, and a lug groove, and is provided in a recessed region other than the groove (for example, in the shoulder land portion where the ground contact ends 20a and 20b are located). For example, a plurality of holes such as dimple holes).
  • the first circumferential main groove 21 and the second circumferential main groove 23 may be chamfered at the edge to which the first lug groove 45 and the second lug groove 47 are connected. In the case of chamfering, the groove area ratios Sin and Sout are calculated by including the chamfered tread surface region in the groove region.
  • ⁇ Passage outside noise can be suppressed because the groove area ratio Sout is smaller than Sin.
  • the groove area ratio Sin is less than 24% or the groove area ratio Sout is less than 12%, the wet steering stability is deteriorated and the hydroplaning performance is also deteriorated.
  • the groove area ratio Sin exceeds 28% or the groove area ratio Sout exceeds 16%, the cornering force on the dry road surface cannot be obtained, and the steering stability on the dry road surface is sufficiently improved. Can not.
  • the tire 1 of the present embodiment is attached to the vehicle while the tire 1 is inclined toward the vehicle side when the ground camber angle when the vehicle is stationary is in the range of ⁇ 1.5 to ⁇ 4.5 degrees.
  • the contact length in the tire circumferential direction at the edge of the circumferential main groove closer to the tire center line CL in the second circumferential main groove 23 and the third circumferential main groove 25 is the maximum contact length L. Is preferably 90% or more, more preferably 95% or more.
  • a rubber material is selected that has a high coefficient of friction with respect to the road surface because the tire 1 generates heat during traveling.
  • the exothermic property is evaluated using, for example, tan ⁇ of 60 ° C. by dynamic viscoelasticity measurement.
  • tan ⁇ at 60 ° C. is preferably 0.2 or more.
  • FIG. 4 is a diagram for explaining the details of the tire profile of the tire 1.
  • the tire profile is a tire cross section when the tire 1 is cut along a plane including the tire rotation axis.
  • the position of the tread surface that intersects the tire center line CL that is, the position of the tread surface on the tire center line CL, in the tire profile in a no-load condition where the tire 1 is mounted on a regular rim and the air pressure is 180 kPa is A.
  • B is the position of the tread surface that passes through the end (edge) of the belt layer 4, more specifically, the end of the inner belt layer 4a having a long belt width and intersects with the straight line P parallel to the tire radial direction.
  • the tire profile in the first half tread region and the second half tread region of the tread portion is formed by a straight line X connecting the positions A and B and a straight line Y drawn parallel to the tire width direction from the position A.
  • the tread profile line has an angle ⁇ of 3 degrees or more and 7 degrees or less.
  • the angle ⁇ is smaller than 3 degrees, the amount of depression of the tread profile of the shoulder region including the position B from the straight line Y, for example, the distance D in FIG. 4 at the position B becomes excessively small. The change is likely to increase with respect to the change in the slip angle.
  • the angle ⁇ exceeds 7 degrees, the amount of depression of the tread profile of the shoulder region including the position B from the straight line Y, for example, the distance D in FIG.
  • the angle formed between the straight line Y connecting the position A and the connection position C and the straight line Y is preferably 0.5 to 2.0 degrees.
  • the tire 1 is connected to the first profile region having the first curvature radius R1 across the tire center line CL on the tread surface and both ends of the first profile region. , Two second profile regions each having a second radius of curvature R2.
  • the tire width direction length TW from the tire center line CL to the position B, and the tire width direction length TW1 from the tire center line CL to the connection position C between the first profile area and the second profile area is preferably 0.5 to 0.65.
  • the first profile region and the second profile region are smoothly connected.
  • the first radius of curvature R1 is, for example, 1000 to 3000 mm
  • the second radius of curvature R2 is, for example, 100 to 350 mm.
  • the first radius of curvature R1 is larger than the second radius of curvature R2.
  • the first radius of curvature R1 is preferably 5.0 to 10.0 times the second radius of curvature R2. .
  • the boundary position C between the first profile region and the second profile region in the tread profile line is on the edge of the first circumferential main groove 21 or the first circumferential main groove 21; It is preferable to be on the circumferential narrow groove 27 or on the edge of the circumferential narrow groove 27.
  • the connection position C by arranging the connection position C, the change in the contact shape changes smoothly instead of abruptly at the connection position C where the radius of curvature on the tread surface changes. It can contribute to improvement of property.
  • a ratio TW / (SW / 2) between half of the total width SW of the tire 1 and the length TW in the tire width direction from the tire center line CL to the position B is 0.75 to 0.95.
  • the total width SW is the total width of the tire 1 that is attached to a regular rim and has an air pressure of 180 kPa under no-load conditions.
  • SW / 2 which is half of the total width SW is shown.
  • the ratio CP / SW between the road surface obtained by mounting on a regular rim, the air pressure of 180 kPa, and the load condition of 55% of the maximum load load and the ground contact width CP is 0.75 to 0.85.
  • the ratio CP / SW is smaller than 0.75, the wet steering stability is lowered, and when the ratio CP / SW is larger than 0.85, the vehicle outside noise increases.
  • the tire 1 has the tread pattern 2 and has an excellent wet handling stability as can be seen from the examples described later by setting the angle ⁇ shown in FIG. 4 to 3 degrees or more and 7 degrees or less. Passing noise can be reduced.
  • the ground contact width is widened to increase the dry maneuvering stability and the wet maneuvering stability, but on the other hand, the vehicle outside noise is extremely large.
  • the present applicant increases the angle ⁇ in order to reduce the vehicle outside noise in a racing tire having a low flatness ratio of 55% or less and a rim diameter to be mounted of 16 inches or more.
  • the inventors have found that by making the ground contact width relatively narrow, it is possible to reduce outside-passage noise and improve wet steering stability, and have conceived the pneumatic tire of the present invention.
  • Example ⁇ In order to confirm the effect of the tire 1 of this embodiment, various tires were produced.
  • the tire size of the produced tire is 325 / 30ZR20 102Y, and the used rim is 20 ⁇ 11.5JJ.
  • the air pressure was 180 kPa.
  • the rim-assembled tire was mounted on a vehicle with a high road index that can run on public roads and the following test was conducted.
  • As the manufactured tire structure the structure shown in FIG. 2 was used. The evaluation was made based on the magnitude of sound passing through the vehicle measured according to the tire noise test method defined in ECE R117-02 (ECE Regulation No. 117 Revision 2).
  • the maximum noise value (dB) (frequency range of 800 to 1200 Hz) in the noise measurement section when the test vehicle is run sufficiently before the noise measurement section, the engine is stopped in front of the section and coasting is performed.
  • dB the maximum noise value
  • the maximum noise value dB is the sound measured through the A characteristic frequency correction circuit using a stationary microphone installed at a height of 7.5 m laterally from the running center line and 1.2 m from the road surface at the midpoint in the noise measurement section. Pressure [dB (A)].
  • the driver performed a sensory evaluation while driving the test vehicle on a wet road surface having a water depth of 1 mm at an outdoor tire test site.
  • a difference from the vehicle exterior noise value of each example was obtained with reference to Comparative Example 1 described later.
  • the wet steering stability was expressed as a relative evaluation with respect to Comparative Example 1, with the evaluation of Comparative Example 1 described later as 100. The higher the value, the better the steering stability.
  • the evaluation items for wet steering stability are the height of lateral acceleration (cornering limit performance) and the ease of control of vehicle behavior at the start of slipping on the road surface of the tire (after the tire starts slipping after exceeding the cornering limit) Special emphasis was placed on convergence.
  • Table 1 below shows the specifications of Comparative Examples 1 to 3 and Examples 1 to 3.
  • Table 2 below shows the specifications of Comparative Examples 4 to 6 and Examples 5 to 7.
  • “the presence or absence of closing of the lug groove end portion” means that the first shoulder lug groove 41, the end portions 41b of the first lug groove 45 and the second lug groove 47, and the end portions 45b and 47b are closed ends. Indicates whether or not. In the case of absence, the end portions 41b, 45b, and 47b are open to the first circumferential groove 21, the second circumferential main groove 23, and the third circumferential main groove 25, respectively.
  • “groove depth (mm)” in Tables 1 and 2 represents the groove depths of the first circumferential main groove 21, the second circumferential main groove 23, and the third circumferential main groove 25. .
  • the first circumferential main groove 21, the second circumferential main groove 23, and the third circumferential main groove 25 have the same groove depth.
  • “Lug groove inclination angle (IN ⁇ OUT)” in Tables 1 and 2 represents the inclination angles of the first shoulder lug groove 41, the first lug groove 45, and the second lug groove 47 with respect to the tire width direction in order. .
  • the ratio Wout / Win is 0.4, which does not correspond to the tire 1 of the present embodiment.
  • the angle ⁇ is 2 degrees and does not correspond to the tire 1 of the present embodiment.
  • the angle ⁇ is 9 degrees and does not correspond to the tire 1 of the present embodiment.
  • the ends of the lug grooves (the first lug groove 45 and the second lug groove 47) are not closed. For this reason, the comparative example 3 does not correspond to the tire 1 of this embodiment.
  • the first shoulder lug groove 41, the first lug groove 45, and the end portions 41 b, the end portions 45 b and the end portions 47 b of the second lug grooves 47 are the first circumferential main groove 21, the second lug groove 47.
  • the circumferential main groove 23 and the third circumferential main groove 25 are opened.
  • the comparative example 4 does not correspond to the tire 1 of this embodiment.
  • Comparative Examples 5 and 6 do not correspond to the tire 1 of the present embodiment because the ratio Wout / Win is 0.4 and 0.8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

A pneumatic tire is provided with: a tread profile line such that, when mounted on a regular rim and in a tire profile in a no-load state condition with the air pressure at 180 kPa, an angle (β) formed by a line (X) connecting a position (A) and a position (B) and a line (Y) drawn from the position (A) in parallel with the tire width direction is not less than 3 degrees and not more than 7 degrees, where the position (A) is on a surface of the tread portion intersecting a tire center line, and the position (B) is on the tread surface passing an edge of the belt layer and intersecting with a line (P) parallel with the tire radius direction; and a tread pattern including a group of circumferential main grooves including three circumferential main grooves extending in a tire circumferential direction and each having a groove depth of 3 to 6.5 mm, where the orientation of the tire width direction when mounted on a vehicle is designated.

Description

空気入りタイヤPneumatic tire
 本発明は、空気入りタイヤに関する。 The present invention relates to a pneumatic tire.
 トレッドパターン付き競技用空気入りタイヤ、具体的には、高速走行が可能であり、操縦安定性に優れた高性能タイヤを、競技の終了後、タイヤ交換することなく、公道を走行することが許容される空気入りタイヤ(Sタイヤ)が、競技者の間で求められている。競技用空気入りタイヤは、操縦安定性、特にドライ操縦安定性を重視するため、車外通過騒音が大きい。特に、環境の点から車外通過騒音の規制が厳しくなる現状、競技用空気入りタイヤは、法的規制をクリアすることが困難になりつつある。このような空気入りタイヤの一例は、低扁平率(例えば、35%以下)で、装着すべきリムのリム径が大きいこと(例えば18インチ以上)が特徴となっている。また、タイヤの速度レンジはYレンジである。 A pneumatic tire for competition with a tread pattern, specifically, a high-performance tire that can run at high speed and has excellent handling stability is allowed to run on public roads without changing the tire after the competition. Pneumatic tires (S tires) that are used are being sought among competitors. The pneumatic tire for competition emphasizes handling stability, particularly dry handling stability, and therefore has a large noise outside the vehicle. In particular, in the current situation where regulations on vehicle outside noise are becoming stricter from the viewpoint of the environment, it is becoming difficult for pneumatic tires for competition to meet legal regulations. One example of such a pneumatic tire is characterized by a low flatness (for example, 35% or less) and a large rim diameter (for example, 18 inches or more) to be mounted. The tire speed range is the Y range.
 例えば、競技用空気入りタイヤにおいて、コーナリング限界性能及びコーナリング限界を超えてからタイヤが滑り出した後の収束性がともに十分に発揮され、操縦安定性に優れた空気入りタイヤが知られている(特許文献1)。
 この空気入りタイヤは、JATMAに記載される標準リムに装着し、空気圧を90kPa充填して無負荷状態にした際に、タイヤ子午線断面形状において、タイヤセンターラインと交差するトレッド面の位置をA、最内層のベルト層のエッジからタイヤ軸と直交する直線Pと交差するトレッド面の位置をBとすると、位置A、Bを結ぶ直線Xと位置Aからタイヤセンターラインに垂直に引いた直線Yとのなす角度βを8°以上15°以下とする。
For example, in a pneumatic tire for competition, a cornering limit performance and a convergence tire after the tire starts to slide after exceeding the cornering limit are fully exhibited, and a pneumatic tire excellent in handling stability is known (patent) Reference 1).
When this pneumatic tire is mounted on a standard rim described in JATMA and filled with air pressure of 90 kPa to make it unloaded, the position of the tread surface that intersects the tire center line in the tire meridian cross-sectional shape is A, If the position of the tread surface intersecting with the straight line P orthogonal to the tire axis from the edge of the innermost belt layer is B, a straight line X connecting the positions A and B and a straight line Y drawn perpendicularly to the tire center line from the position A Is set to 8 ° to 15 °.
特開2011-230700号公報JP 2011-230700 A
 しかし、上述の空気入りタイヤは、トレッドパターンが設けられないスリックタイヤであるため、このタイヤにトレッドパターンを設けても、ウェット操縦安定性が必ずしも向上するわけではない。さらには、トレッドパターンとして従来より用いられる周方向主溝やラグ溝を何ら工夫せずに設けると、空気入りタイヤの転動に起因する車外通過騒音が大きくなり、公道上で使用することができない。また、上述の空気入りタイヤを、55%以下の低扁平率で、装着すべきリムのリム径が16インチ以上のタイヤに適用しても、十分なウェット操縦安定性が得られない。具体的には、ウェット路面走行中の車両の横加速度の高さと、タイヤの路面に対する滑り開始時の車両挙動のコントロールのし易さも十分でない。 However, since the pneumatic tire described above is a slick tire that is not provided with a tread pattern, even if a tread pattern is provided on the tire, wet steering stability is not necessarily improved. Furthermore, if the circumferential main grooves and lug grooves that have been conventionally used as tread patterns are provided without any ingenuity, the passing noise outside the vehicle due to the rolling of the pneumatic tire increases, and it cannot be used on public roads. . Further, even when the pneumatic tire described above is applied to a tire having a low flatness ratio of 55% or less and a rim diameter to be mounted of 16 inches or more, sufficient wet steering stability cannot be obtained. Specifically, the height of the lateral acceleration of the vehicle running on a wet road surface and the ease of controlling the vehicle behavior at the start of slipping on the road surface of the tire are not sufficient.
 そこで、本発明は、55%以下の低扁平率で、装着すべきリムのリム径が16インチ以上のトレッドパターン付き空気入りタイヤのような高性能の空気入りタイヤであって、ウェット操縦安定性に優れ車外通過騒音を低下させる空気入りタイヤを提供することを目的とする。 Therefore, the present invention is a high-performance pneumatic tire such as a pneumatic tire with a tread pattern in which a rim diameter of a rim to be mounted is 16 inches or more with a low flatness of 55% or less, and wet steering stability. An object of the present invention is to provide a pneumatic tire that is excellent in reducing the passing noise outside the vehicle.
 本発明の一態様は、空気入りタイヤである。当該空気入りタイヤは、
 タイヤセンターラインを境としてタイヤ幅方向の第1の側に配されるトレッドパターンの第1の半トレッド領域と、タイヤセンターラインを境としてタイヤ幅方向の第2の側に配されるトレッドパターンの第2の半トレッド領域を有するトレッド部と、
 前記トレッド部のタイヤ径方向内側に配されるベルト層と、を有し、
 前記トレッド部の前記第1の半トレッド領域及び前記第2の半トレッド領域は、
 正規リムに装着し、空気圧を180kPaとした、無負荷状態の条件におけるタイヤプロファイルにおいて、タイヤセンターライン上の前記トレッド部の表面の位置Aと、前記ベルト層のエッジを通りタイヤ径方向に平行な直線Pがトレッド部の表面と交差するトレッド表面の位置Bとの間を結ぶ直線Xと、位置Aからタイヤ幅方向に平行に引いた直線Yとのなす角βが3度以上7度以下となるトレッドプロファイルラインと、
 前記第1の半トレッド領域に設けられたタイヤ周方向に延びる第1の周方向主溝と、前記第1の周方向主溝に対して第2の側に位置し、前記第1の半トレッド領域あるいはセンターラインの領域に設けられたタイヤ周方向に延びる第2の周方向主溝と、前記第2の半トレッド領域に設けられた第3の周方向主溝と、を含み、それぞれの溝深さが3~6.5mmであり、前記第1の周方向主溝および前記第2の周方向主溝の溝幅の平均である平均溝幅Winと、前記第3の周方向主溝の溝幅Woutとの比Wout/Winが0.45~0.75である、周方向主溝群と、
 前記第1の周方向主溝から延びて前記第1の周方向主溝の第2の側に接する第1の陸部の領域内で閉塞する、タイヤ周方向に間隔をあけて設けられた複数の第1のラグ溝と、前記第2の周方向主溝から延びて前記第2の周方向主溝の第2の側に接する第2の陸部の領域内で閉塞する、タイヤ周方向に間隔をあけて設けられた複数の第2のラグ溝と、を含むラグ溝群を有する、トレッドパターンと、を有する。
One embodiment of the present invention is a pneumatic tire. The pneumatic tire
A first half-tread region of a tread pattern disposed on the first side in the tire width direction with the tire center line as a boundary, and a tread pattern disposed on the second side in the tire width direction with the tire center line as a boundary. A tread portion having a second half-tread region;
A belt layer disposed on the inner side in the tire radial direction of the tread portion,
The first half tread region and the second half tread region of the tread portion are:
In a tire profile under a no-load condition with a regular rim and an air pressure of 180 kPa, the position A on the surface of the tread portion on the tire center line and the edge of the belt layer are parallel to the tire radial direction. The angle β formed between the straight line X connecting the straight line P and the position B of the tread surface intersecting the surface of the tread portion and the straight line Y drawn in parallel to the tire width direction from the position A is 3 degrees or more and 7 degrees or less. Tread profile line
A first circumferential main groove provided in the first half-tread region and extending in the tire circumferential direction; and located on a second side with respect to the first circumferential main groove, the first half-tread A second circumferential main groove extending in the tire circumferential direction provided in the region or the center line region, and a third circumferential main groove provided in the second half-tread region, each groove A depth of 3 to 6.5 mm, an average groove width Win that is an average of the groove widths of the first circumferential main groove and the second circumferential main groove, and the third circumferential main groove A circumferential main groove group having a ratio Wout / Win to the groove width Wout of 0.45 to 0.75;
A plurality of tires spaced from each other in the tire circumferential direction, which are closed in the region of the first land portion extending from the first circumferential main groove and contacting the second side of the first circumferential main groove. A first lug groove and a second land portion extending from the second circumferential main groove and in contact with a second side of the second circumferential main groove and closing in a tire circumferential direction. And a tread pattern having a lug groove group including a plurality of second lug grooves provided at intervals.
 ここで、前記トレッドプロファイルラインは、タイヤセンターラインを横切り、第1の曲率半径を有する第1のプロファイル領域と、前記第1のプロファイル領域の両端と接続され、それぞれ第2の曲率半径を有する2つの第2のプロファイル領域とを有し、
 タイヤセンターラインから前記位置Bまでのタイヤ幅方向長さTWと、タイヤセンターラインから前記第1のプロファイル領域と前記第2のプロファイル領域との接続位置までのタイヤ幅方向長さTW1との比TW1/TWが0.5~0.65である、ことが好ましい。
Here, the tread profile line crosses the tire center line and is connected to a first profile region having a first radius of curvature and both ends of the first profile region, each having a second radius of curvature. Two second profile regions,
The ratio TW1 of the tire width direction length TW from the tire center line to the position B and the tire width direction length TW1 from the tire center line to the connection position of the first profile region and the second profile region / TW is preferably 0.5 to 0.65.
 また、前記位置Aと前記接続位置との間を結ぶ直線と前記直線Yとのなす角度は、0.5~2.0度である、ことが好ましい。 Further, it is preferable that an angle formed between the straight line Y connecting the position A and the connection position and the straight line Y is 0.5 to 2.0 degrees.
 前記プロファイルラインは、タイヤセンターラインを横切り、第1の曲率半径を有する第1のプロファイル領域と、前記第1のプロファイル領域の両端と接続され、それぞれ第2の曲率半径を有する2つの第2のプロファイル領域とを有し、
 前記トレッドパターンの周方向主溝群は、さらに、前記第3の周方向主溝よりも第2の側に設けられ、タイヤ周方向に延在し、前記3本の周方向主溝の溝幅より溝幅が狭い周方向細溝を有し、
 前記第1のプロファイル領域と前記第2のプロファイル領域との接続位置は、前記第1の周方向主溝あるいは前記第1の周方向主溝の縁、及び前記周方向細溝あるいは前記周方向細溝の縁に位置する、ことが好ましい。
The profile line crosses the tire center line and is connected to a first profile region having a first radius of curvature and both ends of the first profile region, and each of the second second regions having a second radius of curvature. Profile area,
The circumferential main groove group of the tread pattern is further provided on the second side of the third circumferential main groove, extends in the tire circumferential direction, and has a groove width of the three circumferential main grooves. It has a circumferential narrow groove with a narrower groove width,
The connection positions of the first profile region and the second profile region are the edge of the first circumferential main groove or the first circumferential main groove, and the circumferential narrow groove or the circumferential narrow groove. It is preferably located at the edge of the groove.
 前記トレッドパターンは、さらに、前記周方向細溝と交差する、タイヤ周方向に間隔をあけて設けられた複数の第3のラグ溝を有し、
 前記第3のラグ溝のタイヤ幅方向の両端のそれぞれがタイヤ周方向に延びる溝に接続されることなく、前記第3のラグ溝は前記周方向細溝のタイヤ幅方向の両側の陸部の領域内で閉塞することが好ましい。
The tread pattern further includes a plurality of third lug grooves provided at intervals in the tire circumferential direction, intersecting with the circumferential narrow grooves,
The both ends of the third lug groove in the tire width direction are not connected to the groove extending in the tire circumferential direction, and the third lug groove is formed between the land portions on both sides of the circumferential narrow groove in the tire width direction. It is preferable to occlude in the region.
 このとき前記第3のラグ溝は、タイヤ周方向に向かって凸となってトレッド表面内で湾曲する第1の湾曲溝であることが好ましい。 At this time, the third lug groove is preferably a first curved groove that is convex in the tire circumferential direction and curved in the tread surface.
 さらに、前記第1のラグ溝は、タイヤ幅方向からタイヤ周方向に傾斜し、
 前記第1の湾曲溝の凸の向きは、前記タイヤ幅方向を境にして前記第1のラグ溝の傾斜の向きと逆であることが好ましい。
Furthermore, the first lug groove is inclined in the tire circumferential direction from the tire width direction,
It is preferable that the convex direction of the first curved groove is opposite to the inclination direction of the first lug groove with respect to the tire width direction.
 前記空気入りタイヤの総幅SWの半分と、タイヤセンターラインから前記位置Bまでのタイヤ幅方向長さTWとの比TW/(SW/2)が0.75~0.95であることが好ましい。 The ratio TW / (SW / 2) of half of the total width SW of the pneumatic tire and the length TW in the tire width direction from the tire center line to the position B is preferably 0.75 to 0.95. .
 また、正規リムに装着し、空気圧を180kPaとした、無負荷状態の条件で得られる前記空気入りタイヤの総幅SWと、正規リムに装着し、空気圧を180kPaとし、最大負荷荷重の55%の負荷状態の条件で得られる路面と接地する接地幅CPとの比CP/SWが0.75~0.85であることが好ましい。 In addition, the pneumatic tire is mounted on a regular rim and the air pressure is 180 kPa, and the pneumatic tire is obtained under no-load conditions. The pneumatic tire is mounted on a regular rim and the air pressure is 180 kPa, and 55% of the maximum load load. The ratio CP / SW between the road surface obtained under load conditions and the ground contact width CP to be grounded is preferably 0.75 to 0.85.
 前記第1の半トレッド領域の溝面積比Sinが24~28%であり、前記第2の半トレッド領域の溝面積比Soutが12~16%であることが好ましい。 The groove area ratio Sin of the first half-tread region is preferably 24 to 28%, and the groove area ratio Sout of the second half-tread region is preferably 12 to 16%.
 前記トレッドパターンは、さらに、前記第1の周方向主溝よりも第1の側に位置する第1のショルダー陸部の領域において、一端がタイヤ接地端において開口し、他端が第2の側に延びて前記第1のショルダー陸部の領域内で閉塞する、タイヤ周方向に間隔をあけて設けられた複数の第1のショルダーラグ溝を有し、
 前記第1のラグ溝および前記第2のラグ溝は、前記第1のショルダーラグ溝よりもタイヤ幅方向に対し大きく傾斜し、かつ、タイヤ幅方向からタイヤ周方向の同じ側に向かって傾斜するとともに、前記第2のラグ溝は、前記第1のラグ溝よりもタイヤ幅方向に対して傾斜角度が大きいことが好ましい。
The tread pattern further has one end opened at the tire ground contact end and the other end on the second side in the region of the first shoulder land portion located on the first side of the first circumferential main groove. A plurality of first shoulder lug grooves provided at intervals in the tire circumferential direction, extending in the region of the first shoulder land portion,
The first lug groove and the second lug groove are more inclined with respect to the tire width direction than the first shoulder lug groove, and are inclined toward the same side in the tire circumferential direction from the tire width direction. In addition, it is preferable that the second lug groove has a larger inclination angle with respect to the tire width direction than the first lug groove.
 前記トレッドパターンは、さらに、前記第3の周方向主溝と交差する、タイヤ周方向に間隔をあけて設けられた複数の第4のラグ溝を有し、
 前記第4のラグ溝のタイヤ幅方向の両端のそれぞれがタイヤ周方向に延びる溝に接続することなく、前記第4のラグ溝は前記第3の周方向細溝のタイヤ幅方向の両側の陸部の領域内で閉塞することが好ましい。
The tread pattern further includes a plurality of fourth lug grooves provided at intervals in the tire circumferential direction, intersecting the third circumferential main groove,
The both ends of the fourth lug groove in the tire width direction are not connected to the groove extending in the tire circumferential direction, and the fourth lug groove is land on both sides in the tire width direction of the third circumferential narrow groove. It is preferable to block within the region of the part.
 前記第4のラグ溝は、タイヤ周方向に向かって凸となってトレッド表面内で湾曲する第2の湾曲溝であることが好ましい。 It is preferable that the fourth lug groove is a second curved groove that is convex in the tire circumferential direction and curved in the tread surface.
 前記第1のラグ溝は、タイヤ幅方向からタイヤ周方向に傾斜し、
 前記第2の湾曲溝の凸の向きは、前記タイヤ幅方向を境にして前記第1のラグ溝の傾斜の向きと同じであることが好ましい。
The first lug groove is inclined in the tire circumferential direction from the tire width direction,
It is preferable that the convex direction of the second curved groove is the same as the inclination direction of the first lug groove with the tire width direction as a boundary.
 前記第1の周方向主溝の一対の溝壁のうち、前記第1のラグ溝の開口を有する溝壁と対向する溝壁は開口を有さず、タイヤ周方向の全周にわたって直線状に延び、
 前記第2の周方向主溝の一対の溝壁のうち、前記第2のラグ溝の開口を有する溝壁と対向する溝壁は開口を有さず、タイヤ周方向の全周にわたって直線状に延びることが好ましい。
Of the pair of groove walls of the first circumferential main groove, the groove wall facing the groove wall having the opening of the first lug groove does not have an opening, and is linear over the entire circumference in the tire circumferential direction. Elongate,
Of the pair of groove walls of the second circumferential main groove, the groove wall facing the groove wall having the opening of the second lug groove does not have an opening, and is linear over the entire circumference in the tire circumferential direction. Preferably it extends.
 さらに、前記空気入りタイヤの車両装着時に前記第1の半トレッド領域を車両内側に配し、前記第2の半トレッド領域を車両外側に配するための情報がタイヤ表面に表示されていることが好ましい。 Further, when the pneumatic tire is mounted on the vehicle, information for arranging the first half-tread region on the inside of the vehicle and arranging the second half-tread region on the outside of the vehicle is displayed on the tire surface. preferable.
 上記態様の空気入りタイヤでは、ウェット操縦安定性に優れ車外通過騒音を低下させることができる。 The pneumatic tire of the above aspect is excellent in wet steering stability and can reduce vehicle outside noise.
本実施形態の空気入りタイヤを示す外観斜視図である。It is an appearance perspective view showing a pneumatic tire of this embodiment. 本実施形態のタイヤのタイヤ回転軸を含む切断面でタイヤを切断したときのタイヤのプロファイル断面図である。It is a profile sectional view of a tire when a tire is cut with a cut surface including a tire rotation axis of a tire of this embodiment. 本実施形態のタイヤのトレッドパターンを分かりやすく平面展開視した図である。It is the figure which carried out the plane development view of the tread pattern of the tire of this embodiment intelligibly. 本実施形態のタイヤのタイヤプロファイルの詳細を説明する図である。It is a figure explaining the detail of the tire profile of the tire of this embodiment.
 本実施形態の空気入りタイヤについて説明する。
 なお、以下の説明において、タイヤ幅方向は、空気入りタイヤの回転軸と平行な方向である。タイヤ幅方向外側は、タイヤ幅方向において、タイヤ赤道面を表すタイヤセンターラインから離れる方向である。また、タイヤ幅方向内側は、タイヤ幅方向において、タイヤセンターラインに近づく側である。タイヤ周方向は、空気入りタイヤの回転軸を回転の中心として回転する方向である。タイヤ径方向は、空気入りタイヤの回転軸に直交する方向である。タイヤ径方向外側は、前記回転軸から離れる側をいう。また、タイヤ径方向内側は、前記回転軸に近づく側をいう。
 また、以降で説明する正規リムとは、JATMAに規定される「標準リム」、TRAに規定される「Design Rim」、あるいはETRTOに規定される「Measuring Rim」をいう。また、正規内圧とは、JATMAに規定される「最高空気圧」である。あるいは、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「INFLATION PRESSURES」とすることもできる。最大負荷荷重とは、正規内圧に対して規定されるものであり、ETRTOに規定されている。
 以降で説明する接地幅は、平板上に形成される接地面におけるタイヤ幅方向の直線距離の最大値をいう。
The pneumatic tire of this embodiment will be described.
In the following description, the tire width direction is a direction parallel to the rotation axis of the pneumatic tire. The outer side in the tire width direction is a direction away from the tire center line representing the tire equatorial plane in the tire width direction. The inner side in the tire width direction is the side closer to the tire center line in the tire width direction. The tire circumferential direction is a direction that rotates around the rotation axis of the pneumatic tire as the center of rotation. The tire radial direction is a direction orthogonal to the rotation axis of the pneumatic tire. The outer side in the tire radial direction refers to the side away from the rotation axis. The inner side in the tire radial direction refers to the side approaching the rotation axis.
The regular rim described below refers to a “standard rim” defined in JATMA, a “Design Rim” defined in TRA, or a “Measuring Rim” defined in ETRTO. The normal internal pressure is a “maximum air pressure” defined by JATMA. Alternatively, it may be the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined in TRA or “INFLATION PRESSURES” defined in ETRTO. The maximum load is defined with respect to the normal internal pressure, and is defined in ETRTO.
The contact width described below refers to the maximum value of the linear distance in the tire width direction on the contact surface formed on the flat plate.
 図1は、本実施形態の空気入りタイヤ(以降、単にタイヤという)1を示す。タイヤ1は、トレッドパターン2を有する競技用空気入りタイヤ(Sタイヤ)であり、低扁平率が55%以下で、装着すべきリムのリム径(タイヤ内径)が16インチ以上となっている。また、タイヤ幅としてタイヤ上に表記される数値(タイヤサイズ)は、195以上であることが好ましい。このような空気入りタイヤは、トレッドゴムのtanδが温度20℃において0.30以上である。 FIG. 1 shows a pneumatic tire (hereinafter simply referred to as a tire) 1 of the present embodiment. The tire 1 is a competition pneumatic tire (S tire) having a tread pattern 2, and has a low flatness ratio of 55% or less and a rim diameter (tire inner diameter) of a rim to be mounted is 16 inches or more. Moreover, it is preferable that the numerical value (tire size) described on a tire as a tire width is 195 or more. In such a pneumatic tire, the tan δ of the tread rubber is 0.30 or more at a temperature of 20 ° C.
[タイヤ構造]
 図2は、本実施形態のタイヤ1のタイヤ回転軸を含む切断面でタイヤ1を切断したときのタイヤ1のプロファイルの図である。タイヤ1は、骨格材として、カーカスプライ層3と、ベルト層4と、一対のビードコア5とを有し、これらの骨格材の周りに、トレッドゴム6と、サイドゴム7と、ビードフィラーゴム8と、インナーライナゴム9と、を主に有する。さらに、タイヤ1は、ベルトカバー層10も備える。図2に示す切断面では、理解のしやすさのため、第1のショルダーラグ溝41、第1のラグ溝45、第2のラグ溝47、湾曲溝51、第3のラグ溝49、第2のショルダーラグ溝43(いずれも後述)を、それぞれが含む状態で示している。
[Tire structure]
FIG. 2 is a diagram of the profile of the tire 1 when the tire 1 is cut at a cut surface including the tire rotation axis of the tire 1 of the present embodiment. The tire 1 has a carcass ply layer 3, a belt layer 4, and a pair of bead cores 5 as a skeleton material, and a tread rubber 6, a side rubber 7, and a bead filler rubber 8 around these skeleton materials. The inner liner rubber 9 is mainly included. Further, the tire 1 includes a belt cover layer 10. In the cut surface shown in FIG. 2, the first shoulder lug groove 41, the first lug groove 45, the second lug groove 47, the curved groove 51, the third lug groove 49, Two shoulder lug grooves 43 (both described later) are shown in a state in which each includes them.
 カーカスプライ層3は、一対の円環状のビードコア5の間を巻きまわしてトロイダル形状を成した、有機繊維をゴムで被覆した2層の内側プライ層3a及び外側プライ層3bで構成されている。内側プライ層3a及び外側プライ層3bに配される有機繊維は、タイヤ幅方向に対して互いに異なる方向に傾斜して延びており、2層間で交錯するように有機繊維の傾斜角度が設定されている。この傾斜角度は、タイヤ幅方向に対して±30度の範囲内である。 The carcass ply layer 3 is composed of two layers of an inner ply layer 3a and an outer ply layer 3b in which organic fibers are covered with rubber, which are wound between a pair of annular bead cores 5 to form a toroidal shape. The organic fibers disposed on the inner ply layer 3a and the outer ply layer 3b extend in a different direction with respect to the tire width direction, and the inclination angle of the organic fibers is set so as to intersect between the two layers. Yes. This inclination angle is within a range of ± 30 degrees with respect to the tire width direction.
 カーカスプライ層3のうち、タイヤセンターラインCLにおいてタイヤ径方向内側に配されている内側プライ層3a及びタイヤ径方向外側に配されている外側プライ層3bは、タイヤ径方向内側に向かって延びてビードコア5の周りに巻きまわされて、タイヤ径方向外側に向かって延びている。内側プライ層3aは、ビードフィラー5のタイヤ径方向外側の先端におけるタイヤ径方向の位置と同程度のタイヤ径方向の位置に端部を有する。一方、外側プライ層3bは、ビードコア5の周りに巻きまわされた後、内側プライ層3aの端部に対してタイヤ径方向外側に向かって延び、ベルト層4の端近傍で終了している。 Of the carcass ply layer 3, an inner ply layer 3a disposed on the inner side in the tire radial direction on the tire center line CL and an outer ply layer 3b disposed on the outer side in the tire radial direction extend toward the inner side in the tire radial direction. It is wound around the bead core 5 and extends outward in the tire radial direction. The inner ply layer 3a has an end portion at a position in the tire radial direction that is the same as the position in the tire radial direction at the front end of the bead filler 5 in the tire radial direction. On the other hand, the outer ply layer 3 b is wound around the bead core 5, extends toward the outer side in the tire radial direction with respect to the end portion of the inner ply layer 3 a, and ends near the end of the belt layer 4.
 タイヤセンターラインCLを含むトレッド領域において、カーカスプライ層3のタイヤ径方向外側には、内側ベルト層4a及び外側ベルト層4bで構成されるベルト層4が設けられている。内側ベルト層4a及び外側ベルト層4bは、タイヤ周方向に対して、ベルト層4の延在する面内で、所定の角度、例えば20~30度傾斜して配されたスチールコードにゴムを被覆した部材である。内側ベルト層4aのタイヤ幅方向の幅は外側ベルト層4bのタイヤ幅方向の幅に比べて広い。内側ベルト層4a及び外側ベルト層4bのスチールコードのタイヤ周方向に対する傾斜方向は互いに逆方向である。このため、内側ベルト層材4a及び外側ベルト層4bは、交錯層となっており、充填された空気圧によるカーカスプライ層3の膨張を抑制する。内側ベルト層4aのスチールコードのタイヤ幅方向に対する傾斜方向は、内側ベルト層4aと隣り合う外側プライ層3bの有機繊維の傾斜方向と同じである。 In the tread region including the tire center line CL, a belt layer 4 including an inner belt layer 4a and an outer belt layer 4b is provided outside the carcass ply layer 3 in the tire radial direction. The inner belt layer 4a and the outer belt layer 4b are coated with rubber on steel cords that are disposed at a predetermined angle, for example, 20 to 30 degrees, within the surface in which the belt layer 4 extends with respect to the tire circumferential direction. It is a member. The width of the inner belt layer 4a in the tire width direction is wider than the width of the outer belt layer 4b in the tire width direction. The inclination directions of the steel cords of the inner belt layer 4a and the outer belt layer 4b with respect to the tire circumferential direction are opposite to each other. For this reason, the inner side belt layer material 4a and the outer side belt layer 4b are crossing layers, and suppress the expansion of the carcass ply layer 3 due to the filled air pressure. The inclination direction of the steel cord of the inner belt layer 4a with respect to the tire width direction is the same as the inclination direction of the organic fibers of the outer ply layer 3b adjacent to the inner belt layer 4a.
 ベルト層4のタイヤ径方向外側には、ベルト層4のタイヤ径方向外側からベルト層4を覆う、タイヤ周方向に延びる有機繊維をゴムで被覆した3層のベルトカバー層10が設けられている。3層のベルトカバー層10のうち、タイヤ径方向内側にある2層のベルトカバー層は、外側ベルト層4bのタイヤ幅方向に沿った幅全体を覆うように設けられている。3層のベルトカバー層10のうちタイヤ径方向外側に位置する最外層は、ベルト層4のタイヤ幅方向の端部を含むショルダー領域を覆うように設けられ、タイヤセンターラインCLを含むセンター領域には設けられていない。ベルトカバー層10のタイヤ径方向外側には、トレッドゴム6が設けられている。タイヤ1のトレッドゴム6が設けられた部分がトレッド部である。トレッドゴム6のタイヤ幅方向の両端部には、サイドゴム7が接続されてサイド部を形成している。サイドゴム7のタイヤ径方向内側の端には、リムクッションゴム部材が設けられ、タイヤ1を装着するリムと接触する。ビードコア5のタイヤ径方向外側には、ビードコア5の周りに巻きまわされる前のカーカスプライ層3の部分と、ビードコア5の周りに巻きまわされた後のカーカスプライ層5の部分との間に挟まれるようにビードフィラーゴム8が設けられている。タイヤ1とリムとで囲まれる空気を充填するタイヤ空洞領域に面するタイヤ1の内表面には、インナーライナゴム9が設けられている。 On the outer side in the tire radial direction of the belt layer 4, there are provided three belt cover layers 10 that cover the belt layer 4 from the outer side in the tire radial direction of the belt layer 4 and are coated with rubber on organic fibers extending in the tire circumferential direction. . Of the three belt cover layers 10, the two belt cover layers on the inner side in the tire radial direction are provided so as to cover the entire width of the outer belt layer 4b along the tire width direction. Of the three belt cover layers 10, the outermost layer located on the outer side in the tire radial direction is provided so as to cover the shoulder region including the end portion of the belt layer 4 in the tire width direction, and in the center region including the tire center line CL. Is not provided. A tread rubber 6 is provided on the outer side of the belt cover layer 10 in the tire radial direction. A portion where the tread rubber 6 of the tire 1 is provided is a tread portion. Side rubber 7 is connected to both ends of the tread rubber 6 in the tire width direction to form side portions. A rim cushion rubber member is provided at the inner end in the tire radial direction of the side rubber 7 and is in contact with a rim on which the tire 1 is mounted. The bead core 5 is sandwiched between the portion of the carcass ply layer 3 before being wound around the bead core 5 and the portion of the carcass ply layer 5 after being wound around the bead core 5 on the outer side in the tire radial direction of the bead core 5. As shown, a bead filler rubber 8 is provided. An inner liner rubber 9 is provided on the inner surface of the tire 1 facing the tire cavity region filled with air surrounded by the tire 1 and the rim.
 この他に、タイヤ1は、ビードコア5の周りに巻きまわしたカーカスプライ層3とビードフィラーゴム8との間に挟む内側ビード補強材11a、及びビードコア5の周りに巻きまわされるカーカスプライ層3を包む外側ビード補強材11bを備える。
 なお、図2に示すタイヤ1の構造は一例であって、本実施形態のタイヤ1は、図2に示す構造以外の構造を有してもよい。
 なお、本実施形態のSタイヤであるタイヤ1のトレッドゴム6の最大厚さは、3.5~8.5mmであることが好ましく、より好ましくは4.5~6.5mmである。
In addition to this, the tire 1 includes an inner bead reinforcing material 11 a sandwiched between the carcass ply layer 3 wound around the bead core 5 and the bead filler rubber 8, and a carcass ply layer 3 wound around the bead core 5. The outer bead reinforcement 11b is provided.
The structure of the tire 1 shown in FIG. 2 is an example, and the tire 1 of the present embodiment may have a structure other than the structure shown in FIG.
Note that the maximum thickness of the tread rubber 6 of the tire 1 which is the S tire of the present embodiment is preferably 3.5 to 8.5 mm, more preferably 4.5 to 6.5 mm.
[トレッドパターン]
 図3は、本実施形態のタイヤ1のトレッドパターン2を分かりやすく平面展開視した図である。トレッドパターン2を有するタイヤ1は、競技用タイヤに好適に用いることができる。
[Tread pattern]
FIG. 3 is a plan development view of the tread pattern 2 of the tire 1 of the present embodiment in an easy-to-understand manner. The tire 1 having the tread pattern 2 can be suitably used as a competition tire.
 本実施形態のタイヤ1は、図3に示すトレッドパターン2をタイヤ周方向に並べたものであるが、タイヤ周方向にトレッドパターンを並べるとき、トレッドパターンにピッチバリエーションを施してもよい。 The tire 1 of the present embodiment has the tread pattern 2 shown in FIG. 3 arranged in the tire circumferential direction. However, when the tread pattern is arranged in the tire circumferential direction, a pitch variation may be applied to the tread pattern.
 トレッドパターン20を有するタイヤ1は、車両装着時のタイヤ幅方向の向きが指定されている。タイヤセンターラインCLを境として車両装着時に車両内側である第1の側(図3においてINで示す側)に配されるトレッドパターン2の部分を内側領域(第1の半トレッド領域)20aと呼び、車両外側である第2の側(図3においてOUTで示す側)に配されるトレッドパターン2の部分を外側領域(第2の半トレッド領域)20bと呼ぶ。なお、以下の説明では、簡単に、第1の側を内側と呼び、第2の側を外側とも呼ぶ。
 このように、本実施形態のタイヤは、後述するように、周方向主溝のタイヤ幅方向の位置がタイヤセンターラインCLに対して非対称の位置にあるので、車両装着時のトレッドパターンのタイヤ幅方向の向きに関する情報、すなわち、第1の半トレッド領域が内側を向くか、外側を向くかに関する情報は、例えば、タイヤ表面、サイドウォール表面に文字、記号等により表示されていることが好ましい。図3に示されるタイヤ1は、車両の右輪に装着される。車両の左輪に装着されるタイヤのトレッドパターンは、図3に示すトレッドパターン2と鏡像関係にある。
The tire 1 having the tread pattern 20 is designated in the tire width direction when the vehicle is mounted. A portion of the tread pattern 2 arranged on the first side (indicated by IN in FIG. 3) inside the vehicle with the tire center line CL as a boundary is referred to as an inner region (first half-tread region) 20a. A portion of the tread pattern 2 arranged on the second side (the side indicated by OUT in FIG. 3) that is the vehicle outer side is referred to as an outer region (second half-tread region) 20b. In the following description, the first side is simply referred to as the inner side, and the second side is also referred to as the outer side.
Thus, as described later, the tire according to the present embodiment has an asymmetric position with respect to the tire center line CL in the tire width direction of the circumferential main groove. Information on the direction of the direction, that is, information on whether the first half-tread region faces inward or outward is preferably displayed, for example, by letters, symbols, or the like on the tire surface or the sidewall surface. The tire 1 shown in FIG. 3 is mounted on the right wheel of the vehicle. The tread pattern of the tire mounted on the left wheel of the vehicle has a mirror image relationship with the tread pattern 2 shown in FIG.
 トレッドパターン2は、周方向主溝群と、第1のショルダーラグ溝41および第2のショルダーラグ溝43と、複数の第1のラグ溝45および複数の第2のラグ溝47と、を主に有する。 The tread pattern 2 mainly includes a circumferential main groove group, a first shoulder lug groove 41 and a second shoulder lug groove 43, and a plurality of first lug grooves 45 and a plurality of second lug grooves 47. Have.
(周方向主溝群)
 周方向主溝群は、タイヤ周方向に延在する3本の周方向主溝、すなわち第1の周方向主溝21、第2の周方向主溝23、第3の周方向主溝25(以下、単に、主溝21、主溝23、主溝25ともいう)を含む。第1の周方向主溝21は、内側領域20aに設けられ、第2の周方向主溝23は、第1の周方向主溝21に対してタイヤ幅方向における第2の側に位置し、内側領域20aまたはタイヤセンターラインCLの領域に設けられ、さらに、第3の周方向主溝25は外側領域20bに設けられている。このように外側領域20bに配される周方向溝の本数が、内側領域20aに配される周方向主溝の本数と等しいまたは少ないことによって、車外通過騒音が抑制される。第2の周方向主溝23は、本実施形態では、内側領域20aに設けられており、外側領域20bの周方向主溝の本数は、内側領域20aの周方向主溝の本数より少ない。なお、第2の周方向主溝23がタイヤセンターラインCLの領域に設けられている場合は、外側領域20bの周方向主溝の本数が内側領域20aの周方向主溝の本数と等しい。ここで、第2の周方向主溝23がタイヤセンターラインCLの領域に設けられているとは、タイヤセンターラインCLが、第2の周方向主溝23の領域上あるいは第2の周方向主溝23の縁を通ることをいう。
 なお、図1あるいは図3に示すように、第1の周方向主溝21の一対の溝壁のうち、後述する第1のラグ溝45の開口を有する溝壁と対向する溝壁は開口を有さず、タイヤ周方向の全周にわたって直線状に延びており、第2の周方向主溝23の一対の溝壁のうち、後述する第2のラグ溝47の開口を有する溝壁と対向する溝壁は開口を有さず、タイヤ周方向の全周にわたって直線状に延びていることが好ましい。
(Circumferential groove group)
The circumferential main groove group includes three circumferential main grooves extending in the tire circumferential direction, that is, a first circumferential main groove 21, a second circumferential main groove 23, and a third circumferential main groove 25 ( Hereinafter, it simply includes the main groove 21, the main groove 23, and the main groove 25). The first circumferential main groove 21 is provided in the inner region 20a, and the second circumferential main groove 23 is located on the second side in the tire width direction with respect to the first circumferential main groove 21, The inner circumferential region 20a or the tire center line CL is provided in the region, and the third circumferential main groove 25 is provided in the outer region 20b. As described above, the number of the circumferential grooves arranged in the outer region 20b is equal to or less than the number of the circumferential main grooves arranged in the inner region 20a, thereby suppressing outside-passing noise. In the present embodiment, the second circumferential main groove 23 is provided in the inner region 20a, and the number of circumferential main grooves in the outer region 20b is smaller than the number of circumferential main grooves in the inner region 20a. In addition, when the 2nd circumferential direction main groove 23 is provided in the area | region of the tire center line CL, the number of the circumferential direction main grooves of the outer side area | region 20b is equal to the number of the circumferential direction main grooves of the inner side area | region 20a. Here, the second circumferential main groove 23 being provided in the region of the tire center line CL means that the tire center line CL is on the region of the second circumferential main groove 23 or the second circumferential main groove 23. It means passing through the edge of the groove 23.
As shown in FIG. 1 or FIG. 3, of the pair of groove walls of the first circumferential main groove 21, the groove wall facing the groove wall having the opening of the first lug groove 45 described later has an opening. It does not have and extends linearly over the entire circumference in the tire circumferential direction, and is opposed to a groove wall having an opening of a second lug groove 47 described later, out of a pair of groove walls of the second circumferential main groove 23. It is preferable that the groove wall to be formed does not have an opening and extends linearly over the entire circumference in the tire circumferential direction.
 トレッドパターン2において、第1の周方向主溝21および第2の周方向主溝23の溝幅W21,W23の平均である平均溝幅Winと、第3の周方向主溝25の溝幅Woutとの比Wout/Winは0.45~0.75である。なお、周方向溝の溝幅は、当該周方向溝のタイヤ幅方向のトレッド表面での長さであり、タイヤ新品時の溝幅である。比Wout/Winが0.45を下回ると、ウェット旋回時の外輪側のタイヤでの排水性能が低下し、ウェット操縦安定性が低下する。また、Woutが大きくなって比Wout/Winが0.45を下回ると、外側領域20bにおけるトレッドゴムのブロック剛性が高くなって、トレッドゴムが路面を打撃する音が大きくなり車外通過騒音を大きくする。外輪のタイヤとは、車両が例えば左旋回する際の車両右側に装着されたタイヤをいう。また、比Wout/Winが0.75を上回ると、車外通過騒音が悪化する。比Wout/Winは好ましくは0.5~0.7であり、特に好ましくは0.6である。なお、第1の周方向主溝21の溝幅W21と、第2の周方向主溝23の溝幅W23は、互いに等しくてもよく、異なってもよい。 In the tread pattern 2, an average groove width Win that is an average of the groove widths W21 and W23 of the first circumferential main groove 21 and the second circumferential main groove 23, and a groove width Wout of the third circumferential main groove 25. The ratio Wout / Win is 0.45 to 0.75. The groove width of the circumferential groove is the length of the circumferential groove on the tread surface in the tire width direction, and is the groove width when the tire is new. When the ratio Wout / Win is less than 0.45, the drainage performance of the tire on the outer wheel side during wet turning is lowered, and wet steering stability is lowered. Further, when Wout increases and the ratio Wout / Win is less than 0.45, the block rigidity of the tread rubber in the outer region 20b increases, and the sound of the tread rubber striking the road surface increases, increasing the vehicle outside noise. . The outer wheel tire is a tire mounted on the right side of the vehicle when the vehicle turns left, for example. Further, when the ratio Wout / Win exceeds 0.75, the vehicle outside noise becomes worse. The ratio Wout / Win is preferably 0.5 to 0.7, particularly preferably 0.6. The groove width W21 of the first circumferential main groove 21 and the groove width W23 of the second circumferential main groove 23 may be equal to or different from each other.
 トレッドパターン2において、第1の周方向主溝21、第2の周方向23、及び第3の周方向25の溝深さはそれぞれ3.0~6.5mmであることが好ましい。溝深さが3.0mm未満であると、トレッドゴムのブロック剛性が過剰に高くなり、トレッドゴムが地面に接するときに発する音が大きくなり、さらに、ウェット操縦安定性が低下する。溝深さが6.5mmを超えると、トレッドゴムのブロック剛性が低下してドライ操縦安定性及びウェット操縦安定性が低下する。第1の周方向主溝21、第2の周方向23、及び第3の周方向25の溝深さは、より好ましくは3.5~6.5mmであり、例えば、5.5mmである。例えば、溝幅W21,W23は7.0~12.0mm、溝幅W25は3.8~8.0mmである。第1の周方向主溝21、第2の周方向主溝23、及び第3の周方向主溝25の溝幅W21,W23,W25に対する第1の周方向主溝21、第2の周方向主溝23、及び第3の周方向主溝25の溝深さの割合(溝幅溝深さ比)はそれぞれ、70~130%であることが好ましく、より好ましくは、90~110%である。 In the tread pattern 2, the groove depths in the first circumferential main groove 21, the second circumferential direction 23, and the third circumferential direction 25 are each preferably 3.0 to 6.5 mm. When the groove depth is less than 3.0 mm, the block rigidity of the tread rubber becomes excessively high, the sound generated when the tread rubber contacts the ground is increased, and the wet handling stability is further deteriorated. When the groove depth exceeds 6.5 mm, the block rigidity of the tread rubber is lowered, and the dry steering stability and the wet steering stability are lowered. The groove depths in the first circumferential main groove 21, the second circumferential direction 23, and the third circumferential direction 25 are more preferably 3.5 to 6.5 mm, for example, 5.5 mm. For example, the groove widths W21 and W23 are 7.0 to 12.0 mm, and the groove width W25 is 3.8 to 8.0 mm. The first circumferential main groove 21, the second circumferential direction with respect to the groove widths W21, W23, W25 of the first circumferential main groove 21, the second circumferential main groove 23, and the third circumferential main groove 25 The ratio of the groove depth of each of the main groove 23 and the third circumferential main groove 25 (groove width groove depth ratio) is preferably 70 to 130%, more preferably 90 to 110%. .
 周方向主溝群は、さらに、図3に示すように、周方向細溝27を含むことが好ましい。この場合、周方向細溝27は、第3の周方向主溝25に対して第2の側に位置し、第3の周方向主溝25に対してタイヤ幅方向の外側に設けられ、タイヤ周方向に延在する。周方向細溝27の溝幅W27は、第1の周方向主溝21、第2の周方向主溝23、及び第3の周方向主溝25の各溝幅より狭く、2.5mm以下である。ここで、外側領域20bは、内側領域20aと比べ、タイヤ周方向に延びる溝の溝幅が狭いとともに、タイヤ周方向に延びる溝の本数が少なく、溝面積比が小さくなる場合がある。このため、ブロック剛性が高くなりやすい。外側領域20bと内側領域20aとの間でブロック剛性の差が大きくなると、ドライ操縦安定性及びウェット操縦安定性が悪化する。本実施形態では、周方向細溝27が第3の周方向主溝25に対して第2の側の領域に位置することで、外側領域20bのブロック剛性が適正化され、内側領域20aと外側領域20bとのブロック剛性の差が小さく抑えられている。これにより左右旋回時のドライ操縦安定性及びウェット操縦安定性が確保される。
 周方向細溝27の溝幅は、タイヤ騒音性能を向上させる観点から、3.0mm以下であることが好ましく、例えば1.5mmである。また、周方向細溝27の溝幅は、内側領域20bのブロック剛性との差を小さくする観点から、1.0mm以上であることが好ましく、例えば1.5mmである。
The circumferential main groove group preferably further includes a circumferential narrow groove 27 as shown in FIG. In this case, the circumferential narrow groove 27 is located on the second side with respect to the third circumferential main groove 25 and is provided on the outer side in the tire width direction with respect to the third circumferential main groove 25. It extends in the circumferential direction. The groove width W27 of the circumferential narrow groove 27 is narrower than the respective groove widths of the first circumferential main groove 21, the second circumferential main groove 23, and the third circumferential main groove 25, and is 2.5 mm or less. is there. Here, the outer region 20b may have a narrower groove width extending in the tire circumferential direction and a smaller number of grooves extending in the tire circumferential direction, and the groove area ratio may be smaller than the inner region 20a. For this reason, block rigidity tends to be high. When the difference in block rigidity between the outer region 20b and the inner region 20a increases, the dry steering stability and the wet steering stability deteriorate. In the present embodiment, the circumferential narrow groove 27 is positioned in the region on the second side with respect to the third circumferential main groove 25, so that the block rigidity of the outer region 20b is optimized, and the inner region 20a and the outer region 20 The difference in block rigidity from the region 20b is kept small. As a result, dry steering stability and wet steering stability when turning left and right are ensured.
The groove width of the circumferential narrow groove 27 is preferably 3.0 mm or less, for example, 1.5 mm, from the viewpoint of improving tire noise performance. Further, the groove width of the circumferential narrow groove 27 is preferably 1.0 mm or more, for example, 1.5 mm, from the viewpoint of reducing the difference from the block rigidity of the inner region 20b.
 周方向主溝群に含まれる4本の第1の周方向主溝21、第2の周方向主溝23、第3の周方向主溝25、及び周方向細溝27の溝幅W21,W23,W25,W27は、タイヤ騒音性能を向上させる観点から、第1の周方向主溝21または第2の周方向主溝23、第3の周方向主溝25、周方向細溝27の順に小さいことが好ましい。例えば、溝幅W21,W23は7.0~12.0mm、溝幅W25は3.8~8.0mm、溝幅W27は2.0~3.0mmである。 The groove widths W21 and W23 of the four first circumferential main grooves 21, the second circumferential main grooves 23, the third circumferential main grooves 25, and the circumferential narrow grooves 27 included in the circumferential main groove group. , W25, W27 are smaller in order of the first circumferential main groove 21 or the second circumferential main groove 23, the third circumferential main groove 25, and the circumferential narrow groove 27 from the viewpoint of improving tire noise performance. It is preferable. For example, the groove widths W21 and W23 are 7.0 to 12.0 mm, the groove width W25 is 3.8 to 8.0 mm, and the groove width W27 is 2.0 to 3.0 mm.
(ショルダーラグ溝)
 第1のショルダー陸部は、第1の周方向主溝21に対して第1の側に設けられている。
 複数の第1のショルダーラグ溝41は、タイヤ周方向に間隔をあけて設けられている。第1のショルダーラグ溝41は、内側領域20aのうち、第1の周方向主溝21に対して車両内側である第1の側に位置する第1のショルダー陸部の領域31において、一端41aがタイヤ接地端22aにおいて開口し、他の端部41bがタイヤセンターラインCL側、すなわち、第2の側に向かって延びて第1のショルダー陸部の領域31内で閉塞する。なお、第1のショルダー陸部の領域31は、トレッドパターン2のうち、第1の周方向主溝21とタイヤ幅方向における接地端22aとにより画される、タイヤ周方向に延びる領域である。
(Shoulder lug groove)
The first shoulder land portion is provided on the first side with respect to the first circumferential main groove 21.
The plurality of first shoulder lug grooves 41 are provided at intervals in the tire circumferential direction. The first shoulder lug groove 41 has one end 41a in the first shoulder land portion region 31 located on the first side which is the vehicle inner side with respect to the first circumferential main groove 21 in the inner region 20a. Opens at the tire ground contact end 22a, and the other end 41b extends toward the tire center line CL, that is, toward the second side, and closes in the region 31 of the first shoulder land portion. The region 31 of the first shoulder land portion is a region extending in the tire circumferential direction defined by the first circumferential main groove 21 and the ground contact end 22a in the tire width direction in the tread pattern 2.
 第2のショルダー陸部は、第3の周方向主溝25に対して第2の側に設けられている。
 複数の第2のショルダーラグ溝43は、タイヤ周方向に間隔をあけて設けられている。第2のショルダーラグ溝43は、外側領域20bのうち、第3の周方向主溝25に対して第2の側に位置する第2のショルダー陸部の領域33において、一端43bの側ではタイヤ接地端22bで開口し、他端43aの側ではセンターラインCLの側、すなわち、第1の側に向かって延びて第2のショルダー陸部の領域33内で閉塞する。なお、第2のショルダー陸部の領域33は、トレッドパターン2のうち、第3の周方向主溝25とタイヤ幅方向におけるタイヤ接地端22bとにより画される、タイヤ周方向に延びる領域である。
 第1のショルダーラグ溝41、第2のショルダーラグ溝43それぞれの接地端22a,22bと反対側の端部41b,43aにおいて、第1のショルダーラグ溝41、第2のショルダーラグ溝43が、第1のショルダー陸部の領域31、第2のショルダー陸部の領域33内で閉塞していることで、第1の周方向主溝21及び周方向細溝27内の空気の排出による放射音が接地端22a,22bにおいて生じないので、第1のショルダーラグ溝41及び第2のショルダーラグ溝43が第1の周方向主溝21及び周方向細溝27に接続されている場合に比べて、地面に接して発生するポンピング音が小さくタイヤの車外通過騒音は低下する。また、第1のショルダーラグ溝41及び第2のショルダーラグ溝43が、第1のショルダー陸部の領域31及び第2のショルダー陸部の領域33内で閉塞しているので、トレッドゴムのブロック剛性の低下を抑制することができ、コーナリング特性を安定させる。ここで、接地端22a,22bは以下のように定められる。接地端22a,22bは、タイヤ1を正規リムに組み付け、正規内圧を充填し、正規荷重の88%を負荷荷重とした条件において水平面に接地させたときの接地面のタイヤ幅方向端部である。正規荷重とは、JATMAに規定される「最大負荷能力」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「LOAD CAPACITY」をいう。
The second shoulder land portion is provided on the second side with respect to the third circumferential main groove 25.
The plurality of second shoulder lug grooves 43 are provided at intervals in the tire circumferential direction. The second shoulder lug groove 43 is a tire on the one end 43b side in the region 33 of the second shoulder land portion located on the second side with respect to the third circumferential main groove 25 in the outer region 20b. It opens at the ground contact end 22b and extends toward the center line CL, that is, the first side on the other end 43a side, and closes in the region 33 of the second shoulder land portion. The region 33 of the second shoulder land portion is a region extending in the tire circumferential direction defined by the third circumferential main groove 25 and the tire ground contact edge 22b in the tire width direction in the tread pattern 2. .
The first shoulder lug groove 41 and the second shoulder lug groove 43 at the end portions 41b and 43a opposite to the grounding ends 22a and 22b of the first shoulder lug groove 41 and the second shoulder lug groove 43, The sound emitted by the discharge of air in the first circumferential main groove 21 and the circumferential narrow groove 27 by being blocked in the first shoulder land region 31 and the second shoulder land region 33. Does not occur at the grounding ends 22a and 22b, compared to the case where the first shoulder lug groove 41 and the second shoulder lug groove 43 are connected to the first circumferential main groove 21 and the circumferential narrow groove 27. The pumping sound generated in contact with the ground is small, and the noise of passing tires outside the vehicle is reduced. Further, since the first shoulder lug groove 41 and the second shoulder lug groove 43 are closed in the first shoulder land portion region 31 and the second shoulder land portion region 33, the tread rubber block It is possible to suppress a decrease in rigidity and to stabilize cornering characteristics. Here, the grounding terminals 22a and 22b are determined as follows. The ground contact ends 22a and 22b are end portions in the tire width direction of the ground contact surface when the tire 1 is assembled to a regular rim, filled with a regular internal pressure, and grounded on a horizontal plane under the condition that 88% of the regular load is a load load. . The normal load means “maximum load capacity” defined in JATMA, “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined in TRA, or “LOAD CAPACITY” defined in ETRTO.
(ラグ溝)
 複数の第1のラグ溝45は、タイヤ周方向に間隔をあけて設けられている。本明細書において、ショルダーラグ溝を含め、ラグ溝は、溝幅が3.5~9.0mmであり、溝深さが2.5~5.0mmである溝をいう。第1のラグ溝45は、第1の周方向主溝21および第2周方向主溝23によって画された第1の陸部の領域35において、一端45aが第1の周方向主溝21に開口し、他端45bが第1の陸部の領域35内に位置する。すなわち、第1のラグ溝45は、第1の周方向主溝21から第2の周方向主溝23に向かって延びて、第2の周方向主溝23と接続することなく、第1の陸部の領域35内で閉塞する。
 複数の第2のラグ溝47は、タイヤ周方向に間隔をあけて設けられている。第2のラグ溝47は、第2の周方向主溝23および第3の周方向主溝25によって画された第2の陸部の領域37において、一端47aが第2の周方向主溝23に開口し、他端47bが第2の陸部の領域37内に位置する。すなわち、第2のラグ溝47は、第2の周方向主溝23から第3の周方向主溝25に向かって延びて、第3の周方向主溝25と接続することなく、第2の陸部の領域37内で閉塞する。
(Lug groove)
The plurality of first lug grooves 45 are provided at intervals in the tire circumferential direction. In the present specification, a lug groove including a shoulder lug groove refers to a groove having a groove width of 3.5 to 9.0 mm and a groove depth of 2.5 to 5.0 mm. The first lug groove 45 has one end 45 a in the first circumferential main groove 21 in the first land portion region 35 defined by the first circumferential main groove 21 and the second circumferential main groove 23. It opens and the other end 45b is located in the area | region 35 of a 1st land part. That is, the first lug groove 45 extends from the first circumferential main groove 21 toward the second circumferential main groove 23 without being connected to the second circumferential main groove 23. Blocks in the land region 35.
The plurality of second lug grooves 47 are provided at intervals in the tire circumferential direction. The second lug groove 47 has one end 47 a at the second circumferential main groove 23 in the second land portion region 37 defined by the second circumferential main groove 23 and the third circumferential main groove 25. The other end 47b is located in the region 37 of the second land portion. That is, the second lug groove 47 extends from the second circumferential main groove 23 toward the third circumferential main groove 25 without being connected to the third circumferential main groove 25. Blocks in the land region 37.
 このように第1のラグ溝45、第2のラグ溝47の端45b,47bが、第1の陸部の領域35、第2の陸部の領域37を画する第1の周方向主溝23及び第2の周方向主溝25と接続されずに第1の陸部の領域35、第2の陸部の領域37内に位置することで、第1の陸部の領域35、第2の陸部の領域37において、タイヤ周方向に連続する連続陸部(リブ)が形成される。第1のラグ溝45、第2のラグ溝47は、隣り合う主溝間をつなぐラグ溝ではないので、隣り合う主溝間をつなぐラグ溝において形成される音の発生原因となる気柱に比べて気柱は短く音圧が低減するので、タイヤの車外通過騒音が低減される。 In this way, the first circumferential main groove in which the ends 45b and 47b of the first lug groove 45 and the second lug groove 47 define the first land portion region 35 and the second land portion region 37 as described above. 23 and the second circumferential main groove 25 are not connected to the first land portion region 35 and the second land portion region 37, so that the first land portion region 35, the second land portion region 35, and the second land portion region 35. In the land portion region 37, a continuous land portion (rib) continuous in the tire circumferential direction is formed. Since the first lug groove 45 and the second lug groove 47 are not lug grooves that connect adjacent main grooves, the air column that causes the generation of sound formed in the lug grooves that connect adjacent main grooves. In comparison, the air column is shorter and the sound pressure is reduced, so that the noise of passing tires outside the vehicle is reduced.
 なお、複数の第1のラグ溝45、複数の第2のラグ溝47は、上述のように周方向主溝の縁のうち一方の縁から一方の側の陸部の領域に延びるように設けられるが、当該周方向主溝の縁のうち両方の縁から両方の側の陸部の領域に延びるように設けられてもよい。例えば、第2の周方向主溝23から、第2の陸部の領域37内に延びる第2のラグ溝47の他に、第1の陸部の領域35内に延びるラグ溝が設けられてもよく、ラグ溝が、第2の周方向主溝23と交差し、その両端が第1の陸部の領域35及び第2の陸部の領域37に位置するよう設けられてもよい。また、これらの態様が組み合わせられてもよい。この場合に、周方向主溝に対して同じ側の陸部の領域に設けられたラグ溝同士は、タイヤ幅方向に対し同じ方向に傾斜するよう延びて設けられることが好ましい。また、ラグ溝が周方向主溝と交差する場合は、当該ラグ溝が、タイヤ周方向のいずれかの側に湾曲または屈曲していることが好ましい。ラグ溝が湾曲している場合は、左右旋回時にラグ溝のエッジ全体が路面に対して同時に接触する、いわゆる線接触の状態が起きないように、ラグ溝の湾曲形状を定めるとよい。このようなラグ溝を形成することにより、耐摩耗性を確保でき、タイヤ騒音を抑制できる。 The plurality of first lug grooves 45 and the plurality of second lug grooves 47 are provided so as to extend from one edge of the circumferential main groove edge to the land portion area on one side as described above. However, it may be provided so as to extend from both edges of the edge of the circumferential main groove to the region of the land portion on both sides. For example, in addition to the second lug groove 47 extending from the second circumferential main groove 23 into the second land region 37, a lug groove extending into the first land region 35 is provided. Alternatively, the lug groove may be provided so as to intersect with the second circumferential main groove 23 and both ends thereof are located in the first land portion region 35 and the second land portion region 37. Moreover, these aspects may be combined. In this case, the lug grooves provided in the region of the land portion on the same side with respect to the circumferential main groove are preferably provided so as to be inclined in the same direction with respect to the tire width direction. Further, when the lug groove intersects with the circumferential main groove, the lug groove is preferably curved or bent on either side in the tire circumferential direction. When the lug groove is curved, it is preferable to determine the curved shape of the lug groove so as not to cause a so-called line contact state in which the entire edge of the lug groove contacts the road surface simultaneously when turning left and right. By forming such lug grooves, wear resistance can be ensured and tire noise can be suppressed.
 第1のラグ溝45および第2のラグ溝47は、第1のショルダーラグ溝41よりもタイヤ幅方向に対し大きく傾斜し、かつ、タイヤ幅方向からタイヤ周方向の同じ側に向かって傾斜するとともに、第2のラグ溝47は第1のラグ溝45よりも、タイヤ幅方向に対する傾斜角度(鋭角)が大きいことが好ましい。すなわち、第2のラグ溝47の向きは、第1のラグ溝45の向きに比べてタイヤ周方向に近い。ここで、第1のショルダーラグ溝41の傾斜角度は、第1のショルダーラグ溝41が接地端22aと交わる部分の中心点と第1のショルダーラグ溝41の外側(第2の側)の端部の中心点とを結ぶ直線と、タイヤ幅方向とがなす角の角度であり、第1のショルダーラグ溝41は、タイヤ幅方向に対し傾斜していてもよく、傾斜していなくてもよい。また、第1のラグ溝45、第2のラグ溝47の傾斜角度は、それぞれの溝の延在方向の両端の中心点を結ぶ直線とタイヤ幅方向とのなす角の角度である。第1のショルダーラグ溝41、第1のラグ溝45及び第2のラグ溝47の傾斜角度は、タイヤ周方向に隣り合うラグ溝間の距離(ピッチ長さ)が長くなるほど大きくなるよう、ピッチ長さの大きさに応じて定められる。第1のショルダーラグ溝41、第1のラグ溝45、第2のラグ溝47はそれぞれ、タイヤ幅方向に対し、時計回り方向に傾斜してもよく、反時計回り方向に傾斜してもよい。 The 1st lug groove 45 and the 2nd lug groove 47 incline largely with respect to a tire width direction rather than the 1st shoulder lug groove 41, and incline toward the same side of a tire peripheral direction from a tire width direction. In addition, the second lug groove 47 preferably has a larger inclination angle (acute angle) with respect to the tire width direction than the first lug groove 45. That is, the direction of the second lug groove 47 is closer to the tire circumferential direction than the direction of the first lug groove 45. Here, the inclination angle of the first shoulder lug groove 41 is such that the center point of the portion where the first shoulder lug groove 41 intersects the ground contact end 22a and the outer side (second side) of the first shoulder lug groove 41. The first shoulder lug groove 41 may be inclined with respect to the tire width direction or may not be inclined. . The inclination angle of the first lug groove 45 and the second lug groove 47 is an angle formed by a straight line connecting the center points of both ends in the extending direction of each groove and the tire width direction. The pitch of the first shoulder lug groove 41, the first lug groove 45, and the second lug groove 47 is such that the inclination angle increases as the distance (pitch length) between the lug grooves adjacent in the tire circumferential direction increases. It is determined according to the length. The first shoulder lug groove 41, the first lug groove 45, and the second lug groove 47 may each be inclined clockwise or counterclockwise with respect to the tire width direction. .
 競技用タイヤは、直進、および、微小舵角~大舵角での旋回に加え、高いシビアリティを持つサーキット走行が行われるが、特に、微小舵角~大舵角での旋回が頻繁に行われる。このことを考慮して、タイヤ幅方向に隣接するラグ溝は、互いに異なる傾斜角度を有するよう形成されることが好ましい。タイヤ幅方向に隣接するラグ溝同士が同じ傾斜角度を有している場合は、ラグ溝同士が路面に対して同時に線接触するような舵角が生じることがある。この場合、線接触するラグ溝の延在方向と同じ方向に延びるラグ溝の縁を同時に捲る摩耗、いわゆる捲れ摩耗が発生し、捲れ摩耗が発生した部分を起点にして摩耗が進展し、早期摩耗に至るおそれがある。また、後述するように車両静止時の対地キャンバー角が負の角度範囲にあるネガティブキャンバーである場合は、車両内側に傾斜するように向いて装着される内側領域20aでの排水性を促進するために、タイヤ幅方向に隣接するラグ溝間で、傾斜する方向が同じであること、すなわち、タイヤ幅方向に対しいずれも時計回り方向またはいずれも反時計回り方向であることが好ましい。
 このような観点から、第1のショルダーラグ溝41の傾斜角度は、タイヤ幅方向に対し0~7度であり、第1のラグ溝45の傾斜角度はそれぞれ15~50度であることが好ましい。さらに、第1のショルダーラグ溝41、第1のラグ溝45、第2のラグ溝47の傾斜角度は、第1のショルダーラグ溝41、第1のラグ溝45、第2のラグ溝47の順に小さいことが好ましい。すなわち、第1のショルダーラグ溝41の傾斜角度が最も小さく、第2のラグ溝47の傾斜角度が最も大きいことが好ましい。これらの傾斜角度の大きさの順が逆である場合は、接地端に近いラグ溝であるほど傾斜角度が急であるため、排水性が悪くなる。上記した順に傾斜角度が大きい場合に、第2のラグ溝47の傾斜角度は、30~60度であることが好ましい。これにより、ウェット操縦安定性が向上する。なお、第1のショルダーラグ溝41の傾斜する方向は、第1のラグ溝45、第2のラグ溝47と異なる方向であってもよい。以上の観点から、第1のショルダーラグ溝41、第1のラグ溝45、第2のラグ溝47の傾斜角度は、例えば、タイヤ幅方向に対して反時計回り方向に、それぞれ5度、45度、50度である。
In racing tires, in addition to going straight and turning from a small rudder angle to a large rudder angle, circuit driving with high severity is performed, but in particular, turning from a small rudder angle to a large rudder angle is frequently performed. Is called. In consideration of this, the lug grooves adjacent in the tire width direction are preferably formed to have different inclination angles. When the lug grooves adjacent to each other in the tire width direction have the same inclination angle, a steering angle may be generated such that the lug grooves are simultaneously in line contact with the road surface. In this case, wear occurs at the same time as the edge of the lug groove extending in the same direction as the extending direction of the lug groove that makes line contact, so-called drowning wear, and the wear progresses starting from the portion where the drowning wear has occurred, and the early wear There is a risk of reaching. Further, as described later, in the case of a negative camber with a ground camber angle in a negative angle range when the vehicle is stationary, in order to promote drainage performance in the inner region 20a that is mounted so as to incline toward the inner side of the vehicle. In addition, it is preferable that the inclining direction is the same between the lug grooves adjacent to each other in the tire width direction, that is, either the clockwise direction or the counterclockwise direction with respect to the tire width direction.
From such a viewpoint, the inclination angle of the first shoulder lug groove 41 is preferably 0 to 7 degrees with respect to the tire width direction, and the inclination angle of the first lug groove 45 is preferably 15 to 50 degrees, respectively. . Furthermore, the inclination angles of the first shoulder lug groove 41, the first lug groove 45, and the second lug groove 47 are the same as those of the first shoulder lug groove 41, the first lug groove 45, and the second lug groove 47. Smaller in order is preferred. That is, it is preferable that the inclination angle of the first shoulder lug groove 41 is the smallest and the inclination angle of the second lug groove 47 is the largest. When the order of these inclination angles is reversed, the slope angle is steeper as the lug groove is closer to the ground contact end, and the drainage performance is deteriorated. When the inclination angle is large in the above order, the inclination angle of the second lug groove 47 is preferably 30 to 60 degrees. Thereby, wet steering stability improves. The direction in which the first shoulder lug groove 41 is inclined may be different from the first lug groove 45 and the second lug groove 47. From the above viewpoint, the inclination angles of the first shoulder lug groove 41, the first lug groove 45, and the second lug groove 47 are, for example, 5 degrees and 45 degrees in the counterclockwise direction with respect to the tire width direction, respectively. Degree, 50 degrees.
 トレッドパターン2は、さらに、複数の第3のラグ溝49を有する。複数の第3のラグ溝49は、周方向細溝27と交差し、タイヤ周方向に間隔をあけて設けられている。なお、第1のショルダーラグ溝41、第1のラグ溝45、及び第2のラグ溝47の溝幅R41,R45,R47のうちの最大溝幅Rinが、第3のラグ溝49及び第2のショルダーラグ溝の溝幅R49、R43のうちの最大溝幅Routよりも大きいまたは等しいことが好ましい。溝幅R41,R43,R45,R47,R49は、それぞれのラグ溝41,43,45,47,49の延在方向と直交する方向のトレッド表面での長さであり、タイヤ新品時のものをいう。溝幅R41,R45,R47は、互いに等しくてもよく、異なってもよい。溝幅R49,R43は、互いに等しくてもよく、異なってもよい。最大溝幅Rinが最大溝幅Routよりも大きいまたは等しいことにより、タイヤ1の車外通過騒音の発生が抑制される。最大溝幅Routと最大溝幅Rinとの比Rout/Rinは0.65~1を満たすことがより好ましい。 The tread pattern 2 further includes a plurality of third lug grooves 49. The plurality of third lug grooves 49 intersect with the circumferential narrow grooves 27 and are provided at intervals in the tire circumferential direction. The maximum groove width Rin among the groove widths R41, R45, and R47 of the first shoulder lug groove 41, the first lug groove 45, and the second lug groove 47 is the third lug groove 49 and the second lug groove 49. It is preferable that it is larger than or equal to the maximum groove width Rout of the groove widths R49 and R43 of the shoulder lug grooves. The groove widths R41, R43, R45, R47, and R49 are the lengths on the tread surface in the direction orthogonal to the extending direction of the lug grooves 41, 43, 45, 47, and 49. Say. The groove widths R41, R45, and R47 may be equal to each other or different from each other. The groove widths R49 and R43 may be equal to or different from each other. When the maximum groove width Rin is greater than or equal to the maximum groove width Rout, the occurrence of outside-vehicle passing noise of the tire 1 is suppressed. The ratio Rout / Rin between the maximum groove width Rout and the maximum groove width Rin preferably satisfies 0.65 to 1.
 第3のラグ溝49は、具体的には、周方向細溝27と交差し、両端49a,49bがそれぞれ、第3の陸部の領域39、第2のショルダー陸部の領域33内で位置し、第3のラグ溝49のタイヤ幅方向の両端49a,49bのそれぞれがタイヤ周方向に延びる溝に接続されることなく、第3のラグ溝49は周方向細溝27のタイヤ幅方向の両側の陸部の領域内で閉塞する。なお、第3の陸部の領域39は、第3の周方向主溝25と周方向細溝27とにより画されるタイヤ周方向に延びる領域である。第3のラグ溝49は、より具体的には、周方向細溝27と交差する部分において、その両端に対してタイヤ周方向の一方の側に凸状に湾曲した湾曲溝となっている。本実施形態では、第3のラグ溝(第1の湾曲溝)49の凸の向きは、タイヤ幅方向を境にして、タイヤ幅方向からタイヤ周方向に傾斜する第1のラグ溝45の傾斜の向きと逆である。すなわち、第3のラグ溝49は、図3の紙面下方に向かって凸となるよう湾曲している。これにより、左右旋回時にラグ溝のエッジ全体が路面に対して同時に接触する、いわゆる線接触の状態が起きない。第3のラグ溝49の溝深さは、周方向細溝27の溝深さと異なってもよく、等しくてもよい。 Specifically, the third lug groove 49 intersects the circumferential narrow groove 27, and both ends 49a and 49b are located in the third land region 39 and the second shoulder land region 33, respectively. The third lug groove 49 is not connected to the groove extending in the tire circumferential direction at each end 49a, 49b in the tire width direction of the third lug groove 49. Block in the land area on both sides. Note that the third land region 39 is a region extending in the tire circumferential direction defined by the third circumferential main groove 25 and the circumferential narrow groove 27. More specifically, the third lug groove 49 is a curved groove that is convexly curved toward one side in the tire circumferential direction with respect to both ends thereof at a portion intersecting with the circumferential narrow groove 27. In the present embodiment, the convex direction of the third lug groove (first curved groove) 49 is the inclination of the first lug groove 45 inclined from the tire width direction to the tire circumferential direction with the tire width direction as a boundary. This is the opposite direction. That is, the 3rd lug groove 49 is curving so that it may become convex toward the paper surface lower side of FIG. This prevents a so-called line contact state in which the entire edge of the lug groove contacts the road surface at the same time when turning left and right. The groove depth of the third lug groove 49 may be different from or equal to the groove depth of the circumferential narrow groove 27.
 トレッドパターン2は、さらに、複数の第4のラグ溝51を有している。複数の第4のラグ溝51は、タイヤ周方向に間隔をあけて設けられ、第3の周方向主溝25と交差する。第4のラグ溝51のタイヤ幅方向の両端のそれぞれがタイヤ周方向に延びる溝に接続することなく、第4のラグ溝51は第3の周方向主溝25のタイヤ幅方向の両側の陸部の領域37,39内で閉塞することが好ましい。第4のラグ溝51は、タイヤ周方向に向かって凸となってトレッド表面内で湾曲する湾曲溝(第2の湾曲溝)であるが、湾曲溝でなくてもよい。第4のラグ溝51が第2の湾曲溝である場合、第2の湾曲溝の凸の向きは、タイヤ幅方向を境にして、タイヤ幅方向からタイヤ周方向に傾斜した第1のラグ溝45の傾斜の向きと同じであることが好ましい。これにより、左右旋回時にラグ溝のエッジ全体が路面に対して同時に接触する、いわゆる線接触の状態が起き難くなる。
 なお、第3のラグ溝(第1の湾曲溝)49および第4のラグ溝(第2の湾曲溝)51は、いずれか一方のみが湾曲し、他方が湾曲していなくてもよい。湾曲していない態様としては、例えば、当該溝の一端から他端に向かって一直線状に延びる態様、当該溝が第3の周方向主溝25と交差する部分において屈曲するくの字形状に延びる態様がある。また、第3のラグ溝(第1の湾曲溝)49および第4のラグ溝(第2の湾曲溝)51は、トレッドパターン2に設けられていなくてもよい。
 第3のラグ溝(第1の湾曲溝)49および第4のラグ溝(第2の湾曲溝)51はそれぞれ、両端49a,49b、両端51a,51bが、隣接する他の周方向溝と接続されずに陸部内の領域に位置することが好ましい。例えば、第4のラグ溝(第2の湾曲溝)51の両端51a,51bがそれぞれ、第2の周方向主溝23、周方向細溝27と接続されずに、第2の陸部の領域37、第2のショルダー陸部の領域33内に位置し、第4のラグ溝(第2の湾曲溝)が陸部内の領域内で閉塞することが好ましい。
The tread pattern 2 further has a plurality of fourth lug grooves 51. The plurality of fourth lug grooves 51 are provided at intervals in the tire circumferential direction and intersect with the third circumferential main groove 25. Both ends of the fourth lug groove 51 in the tire width direction are not connected to the grooves extending in the tire circumferential direction, and the fourth lug groove 51 is located on both sides of the third circumferential main groove 25 in the tire width direction. It is preferable to block in the regions 37 and 39 of the part. The fourth lug groove 51 is a curved groove (second curved groove) that is convex in the tire circumferential direction and is curved in the tread surface, but may not be a curved groove. When the fourth lug groove 51 is the second curved groove, the convex direction of the second curved groove is the first lug groove inclined from the tire width direction to the tire circumferential direction with the tire width direction as a boundary. It is preferable that the direction of the inclination of 45 is the same. This makes it difficult for a so-called line contact state in which the entire edge of the lug groove simultaneously contacts the road surface when turning left and right.
Note that only one of the third lug groove (first curved groove) 49 and the fourth lug groove (second curved groove) 51 may be curved and the other may not be curved. As an aspect which is not curved, for example, an aspect extending linearly from one end to the other end of the groove, or a groove shape that is bent at a portion where the groove intersects the third circumferential main groove 25 is provided. There are aspects. Further, the third lug groove (first curved groove) 49 and the fourth lug groove (second curved groove) 51 may not be provided in the tread pattern 2.
The third lug groove (first curved groove) 49 and the fourth lug groove (second curved groove) 51 are respectively connected at both ends 49a, 49b and both ends 51a, 51b with other adjacent circumferential grooves. It is preferable that it is located in the area | region in a land part without being. For example, both ends 51 a and 51 b of the fourth lug groove (second curved groove) 51 are not connected to the second circumferential main groove 23 and the circumferential narrow groove 27, respectively, and the region of the second land portion 37, preferably located in the region 33 of the second shoulder land portion, and the fourth lug groove (second curved groove) is closed in the region of the land portion.
 第3のラグ溝(第1の湾曲溝)49および第4のラグ溝(第2の湾曲溝)51はそれぞれ、第3の周方向主溝25、周方向細溝27と溝深さが等しいことが好ましい。また、第3のラグ溝(第1の湾曲溝)49および第4のラグ溝(第2の湾曲溝)51の溝幅R49,R51はそれぞれ、第3の周方向主溝25、周方向細溝27の溝幅W25、W27より広いことが好ましい。 The third lug groove (first curved groove) 49 and the fourth lug groove (second curved groove) 51 have the same groove depth as the third circumferential main groove 25 and the circumferential narrow groove 27, respectively. It is preferable. Further, the groove widths R49 and R51 of the third lug groove (first curved groove) 49 and the fourth lug groove (second curved groove) 51 are the third circumferential main groove 25 and the circumferential thin line, respectively. The groove 27 is preferably wider than the groove widths W25 and W27.
(溝面積比)
 トレッドパターン2の内側領域22aの溝面積比Sinは24~28%であり、外側領域20bの溝面積比Soutは12~16%であり、Sin>Soutであることが好ましい。なお、上記した条件において溝面積比Sout、Sinは、トレッドパターン2におけるタイヤ周方向に隣り合うラグ溝間の距離であるピッチ長さがタイヤ周上で異なっている場合、すなわち、トレッドパターン2においてピッチバリエーションが施されている場合、タイヤ全周における溝面積比で表される。また、溝面積比は、タイヤ新品時における、内側領域20aまたは外側領域20bの面積に占める、内側領域20aまたは外側領域20bに含まれる全ての溝の面積の割合をいう。ここでいう溝は、周方向主溝、周方向細溝、ショルダーラグ溝、ラグ溝を含み、溝以外の凹部領域(例えば、接地端20a,20bが位置するショルダー陸部の領域に設けられた、例えばディンプル状の孔等の複数の孔)は含まない。また、第1の周方向主溝21、第2の周方向主溝23には、第1のラグ溝45、第2のラグ溝47が接続される側のエッジが面取りされていてもよい。面取りされている場合は、面取りされたトレッド表面の領域も溝領域に含めて上記溝面積比Sin、Soutは算出される。
(Groove area ratio)
The groove area ratio Sin of the inner region 22a of the tread pattern 2 is 24 to 28%, the groove area ratio Sout of the outer region 20b is 12 to 16%, and preferably Sin> Sout. In the above-described conditions, the groove area ratios Sout and Sin are different when the pitch length, which is the distance between the lug grooves adjacent in the tire circumferential direction in the tread pattern 2, is different on the tire circumference, that is, in the tread pattern 2. When pitch variation is applied, it is represented by a groove area ratio in the entire circumference of the tire. The groove area ratio refers to the ratio of the area of all the grooves included in the inner region 20a or the outer region 20b in the area of the inner region 20a or the outer region 20b when the tire is new. The groove here includes a circumferential main groove, a circumferential narrow groove, a shoulder lug groove, and a lug groove, and is provided in a recessed region other than the groove (for example, in the shoulder land portion where the ground contact ends 20a and 20b are located). For example, a plurality of holes such as dimple holes). Further, the first circumferential main groove 21 and the second circumferential main groove 23 may be chamfered at the edge to which the first lug groove 45 and the second lug groove 47 are connected. In the case of chamfering, the groove area ratios Sin and Sout are calculated by including the chamfered tread surface region in the groove region.
 溝面積比SoutがSinより小さいことで、車外通過騒音を抑制することができる。溝面積比Sinが24%未満、または、溝面積比Soutが12%を未満の場合は、ウェット操縦安定性が悪化し、ハイドロプレーニング性能も悪化する。一方、溝面積比Sinが28%を超える場合、または、溝面積比Soutが16%を超える場合は、ドライ路面でのコーナリング力を稼ぐことができず、ドライ路面における操縦安定性を十分に改良できない。 外 Passage outside noise can be suppressed because the groove area ratio Sout is smaller than Sin. When the groove area ratio Sin is less than 24% or the groove area ratio Sout is less than 12%, the wet steering stability is deteriorated and the hydroplaning performance is also deteriorated. On the other hand, when the groove area ratio Sin exceeds 28% or the groove area ratio Sout exceeds 16%, the cornering force on the dry road surface cannot be obtained, and the steering stability on the dry road surface is sufficiently improved. Can not.
(接地長)
 本実施形態のタイヤ1は、車両静止時の対地キャンバー角が-1.5~-4.5度の範囲でタイヤ1が車両側に傾斜して車両に装着される。この場合において、第2の周方向主溝23および第3の周方向主溝25のうちタイヤセンターラインCLに近い方の周方向主溝の縁におけるタイヤ周方向の接地長は、最大接地長Lの90%以上であることが好ましく、さらには95%以上であることが好ましい。
(Grounding length)
The tire 1 of the present embodiment is attached to the vehicle while the tire 1 is inclined toward the vehicle side when the ground camber angle when the vehicle is stationary is in the range of −1.5 to −4.5 degrees. In this case, the contact length in the tire circumferential direction at the edge of the circumferential main groove closer to the tire center line CL in the second circumferential main groove 23 and the third circumferential main groove 25 is the maximum contact length L. Is preferably 90% or more, more preferably 95% or more.
 本実施形態のトレッドパターン2が形成されるトレッドゴムは、タイヤ1が走行中発熱して路面に対して高い摩擦係数を有するゴム材料が選択される。発熱性は、例えば、動的粘弾性測定による60℃のtanδを用いて評価され、ゴム材料のtanδ(60℃)が大きいほどタイヤ1における走行中の発熱は大きくなる。この点で、60℃のtanδは、0.2以上であることが好ましい。
 以上が、本実施形態のタイヤ1のトレッドパターン2の説明である。
As the tread rubber on which the tread pattern 2 of the present embodiment is formed, a rubber material is selected that has a high coefficient of friction with respect to the road surface because the tire 1 generates heat during traveling. The exothermic property is evaluated using, for example, tan δ of 60 ° C. by dynamic viscoelasticity measurement. The larger the tan δ (60 ° C.) of the rubber material, the larger the heat generation during running in the tire 1. In this respect, tan δ at 60 ° C. is preferably 0.2 or more.
The above is description of the tread pattern 2 of the tire 1 of this embodiment.
[タイヤプロファイル]
 図4は、タイヤ1のタイヤプロファイルの詳細を説明する図である。タイヤプロファイルは、タイヤ1を、タイヤ回転軸を含む平面で切断したときのタイヤ断面である。タイヤ1を正規リムに装着し、空気圧を180kPaとした、無負荷状態の条件におけるタイヤプロファイルにおいて、タイヤセンターラインCLと交差するトレッド表面の位置、すなわちタイヤセンターラインCL上のトレッド表面の位置をAとし、ベルト層4の端(エッジ)、より具体的には、ベルト幅の長い内側ベルト層4aの端を通りタイヤ径方向に平行な直線Pと交差するトレッド表面の位置をBとする。このとき、トレッド部の第1の半トレッド領域及び第2の半トレッド領域におけるタイヤプロファイルは、位置A,Bを結ぶ直線Xと、位置Aからタイヤ幅方向に平行に引いた直線Yとのなす角βが3度以上7度以下となるトレッドプロファイルラインを有する。
[Tire profile]
FIG. 4 is a diagram for explaining the details of the tire profile of the tire 1. The tire profile is a tire cross section when the tire 1 is cut along a plane including the tire rotation axis. The position of the tread surface that intersects the tire center line CL, that is, the position of the tread surface on the tire center line CL, in the tire profile in a no-load condition where the tire 1 is mounted on a regular rim and the air pressure is 180 kPa is A. And B is the position of the tread surface that passes through the end (edge) of the belt layer 4, more specifically, the end of the inner belt layer 4a having a long belt width and intersects with the straight line P parallel to the tire radial direction. At this time, the tire profile in the first half tread region and the second half tread region of the tread portion is formed by a straight line X connecting the positions A and B and a straight line Y drawn parallel to the tire width direction from the position A. The tread profile line has an angle β of 3 degrees or more and 7 degrees or less.
 このように上記角βを3度以上7度以下とすることにより、ウェット操縦安定性に優れ車外通過騒音を低下させることができる。上記角βが3度より小さいと、位置Bを含むショルダー領域のトレッドプロファイルの直線Yからの落ち込み量、例えば位置Bにおける図4中の距離Dが過剰に小さくなるので、コーナリング中の接地形状の変化が、スリップ角の変化に対して大きくなり易い。一方、上記角βが7度を超えると、位置Bを含むショルダー領域のトレッドプロファイルの直線Yからの落ち込み量、例えば位置Bにおける図4中の距離Dが過剰に大きくなるので、スリップ角の変化に対する、タイヤ1の路面に垂直方向の撓み量が大きくなり易い。このためウェット操縦安定性を向上させることは難しい。
 さらに、位置Aと接続位置Cとの間を結んだ直線と直線Yとのなす角度は、0.5~2.0度であることが好ましい。
In this way, by setting the angle β to 3 degrees or more and 7 degrees or less, it is excellent in wet steering stability, and the outside-passing noise can be reduced. If the angle β is smaller than 3 degrees, the amount of depression of the tread profile of the shoulder region including the position B from the straight line Y, for example, the distance D in FIG. 4 at the position B becomes excessively small. The change is likely to increase with respect to the change in the slip angle. On the other hand, if the angle β exceeds 7 degrees, the amount of depression of the tread profile of the shoulder region including the position B from the straight line Y, for example, the distance D in FIG. In contrast, the amount of deflection in the direction perpendicular to the road surface of the tire 1 tends to increase. For this reason, it is difficult to improve wet steering stability.
Further, the angle formed between the straight line Y connecting the position A and the connection position C and the straight line Y is preferably 0.5 to 2.0 degrees.
 ここで、プロファイルラインの好ましい一形態として、以下の態様があげられる。
 すなわち、タイヤ1は、図4に示すように、トレッド表面において、タイヤセンターラインCLを横切り、第1の曲率半径R1を有する第1のプロファイル領域と、この第1のプロファイル領域の両端と接続され、それぞれ第2の曲率半径R2を有する2つの第2のプロファイル領域とを有する。このとき、タイヤセンターラインCLから位置Bまでのタイヤ幅方向長さTWと、タイヤセンターラインCLから第1のプロファイル領域と第2のプロファイル領域との接続位置Cまでのタイヤ幅方向長さTW1との比TW1/TWが0.5~0.65である、ことが好ましい。この場合、第1のプロファイル領域と第2のプロファイル領域とは、滑らかに接続されている。比TW1/TWが0.5より小さい場合、接地圧力が接地面のタイヤ幅方向の中央部に集中し、比TW1/TWが0.65より大きい場合、接地圧力がショルダー領域に集中する。このため、接地圧力の分布が偏り適正な分布とならず、車外通過騒音が大きくなる。
 なお、第1の曲率半径R1は、例えば1000~3000mmであり、第2の曲率半径R2は、例えば100~350mmである。好ましくは、第1の曲率半径R1は、第2の曲率半径R2より大きく、例えば、第1の曲率半径R1は、第2の曲率半径R2の5.0~10.0倍であることが好ましい。
Here, as a preferred form of the profile line, the following aspects can be mentioned.
That is, as shown in FIG. 4, the tire 1 is connected to the first profile region having the first curvature radius R1 across the tire center line CL on the tread surface and both ends of the first profile region. , Two second profile regions each having a second radius of curvature R2. At this time, the tire width direction length TW from the tire center line CL to the position B, and the tire width direction length TW1 from the tire center line CL to the connection position C between the first profile area and the second profile area, The ratio TW1 / TW is preferably 0.5 to 0.65. In this case, the first profile region and the second profile region are smoothly connected. When the ratio TW1 / TW is smaller than 0.5, the contact pressure is concentrated on the center portion of the contact surface in the tire width direction, and when the ratio TW1 / TW is greater than 0.65, the contact pressure is concentrated on the shoulder region. For this reason, the distribution of the ground pressure is biased and is not an appropriate distribution, and the vehicle outside noise increases.
The first radius of curvature R1 is, for example, 1000 to 3000 mm, and the second radius of curvature R2 is, for example, 100 to 350 mm. Preferably, the first radius of curvature R1 is larger than the second radius of curvature R2. For example, the first radius of curvature R1 is preferably 5.0 to 10.0 times the second radius of curvature R2. .
 また、好ましい一形態として、トレッドプロファイルラインにおける第1のプロファイル領域と第2のプロファイル領域の境界位置Cは、第1の周方向主溝21あるいは第1の周方向主溝21の縁上、及び周方向細溝27上あるいは周方向細溝27の縁上にあることが好ましい。このように、接続位置Cが配置されることにより、トレッド表面における曲率半径が変化する接続位置Cにおいて、接地形状の変化が急激にならず滑らかに変化するので、ドライ操縦安定性及びウェット操縦安定性の向上に寄与することができる。 As a preferred embodiment, the boundary position C between the first profile region and the second profile region in the tread profile line is on the edge of the first circumferential main groove 21 or the first circumferential main groove 21; It is preferable to be on the circumferential narrow groove 27 or on the edge of the circumferential narrow groove 27. As described above, by arranging the connection position C, the change in the contact shape changes smoothly instead of abruptly at the connection position C where the radius of curvature on the tread surface changes. It can contribute to improvement of property.
 また、好ましい一形態として、タイヤ1の総幅SWの半分と、タイヤセンターラインCLから位置Bまでのタイヤ幅方向長さTWとの比TW/(SW/2)が0.75~0.95である。ここで、総幅SWとは、正規リムに装着し、空気圧を180kPaとした、無負荷状態の条件におけるタイヤ1の総幅である。図4では、総幅SWの半分であるSW/2が示されている。比TW/(SW/2)が0.75~0.95であることにより、ウェット操縦安定性により優れ、車外通過騒音をより大きく低下させることができる。
 また、好ましい一形態として、正規リムに装着し、空気圧を180kPaとし、最大負荷荷重の55%の負荷状態の条件で得られる路面と接地する接地幅CPとの比CP/SWが0.75~0.85である。比CP/SWが0.75より小さい場合、ウェット操縦安定性が低下し、比CP/SWが0.85より大きい場合、車外通過騒音が大きくなる。
Further, as a preferable embodiment, a ratio TW / (SW / 2) between half of the total width SW of the tire 1 and the length TW in the tire width direction from the tire center line CL to the position B is 0.75 to 0.95. It is. Here, the total width SW is the total width of the tire 1 that is attached to a regular rim and has an air pressure of 180 kPa under no-load conditions. In FIG. 4, SW / 2 which is half of the total width SW is shown. When the ratio TW / (SW / 2) is 0.75 to 0.95, the wet handling stability is excellent, and the vehicle outside noise can be further reduced.
Further, as a preferred form, the ratio CP / SW between the road surface obtained by mounting on a regular rim, the air pressure of 180 kPa, and the load condition of 55% of the maximum load load and the ground contact width CP is 0.75 to 0.85. When the ratio CP / SW is smaller than 0.75, the wet steering stability is lowered, and when the ratio CP / SW is larger than 0.85, the vehicle outside noise increases.
 以上のように、タイヤ1は、トレッドパターン2を有し、図4に示す角βを3度以上7度以下とすることにより、後述する実施例からわかるように、ウェット操縦安定性に優れ車外通過騒音を低下させることができる。従来、競技用空気入りタイヤの場合、接地幅を広くしてドライ操縦安定性及びウェット操縦安定性を大きくしていたが、一方において、車外通過騒音が極めて大きくなっていた。このため、本出願人は、55%以下の低扁平率で、装着すべきリムのリム径が16インチ以上の競技用タイヤにおいて、車外通過騒音を低減するために、上記角度βを大きくして、接地幅を比較的狭くすることにより、車外通過騒音を小さくすることができ、かつ、ウェット操縦安定性を向上することができることを知見し、本発明の空気入りタイヤを想到した。 As described above, the tire 1 has the tread pattern 2 and has an excellent wet handling stability as can be seen from the examples described later by setting the angle β shown in FIG. 4 to 3 degrees or more and 7 degrees or less. Passing noise can be reduced. Conventionally, in the case of a pneumatic tire for competition, the ground contact width is widened to increase the dry maneuvering stability and the wet maneuvering stability, but on the other hand, the vehicle outside noise is extremely large. For this reason, the present applicant increases the angle β in order to reduce the vehicle outside noise in a racing tire having a low flatness ratio of 55% or less and a rim diameter to be mounted of 16 inches or more. The inventors have found that by making the ground contact width relatively narrow, it is possible to reduce outside-passage noise and improve wet steering stability, and have conceived the pneumatic tire of the present invention.
 〔実施例〕
 本実施形態のタイヤ1の効果を確認するために、種々のタイヤを作製した。作製したタイヤのタイヤサイズは、325/30ZR20 102Yであり、使用したリムは、20×11.5JJある。空気圧は180kPaとした。リム組みしたタイヤは、公道を走行可能な高ロードインデックスの車両に装着して下記試験を行った。作製したタイヤ構造は、図2に示す構造を用いた。
 ECE R117-02(ECE Regulation No.117 Revision 2)に定めるタイヤ騒音試験法に従って測定した車外通過音の大きさによって評価した。この試験では、試験車両を騒音測定区間の十分前から走行させ、当該区間の手前でエンジンを停止し、惰行走行させた時の騒音測定区間における最大騒音値(dB)(周波数800~1200Hzの範囲の騒音値)を、基準速度に対し±10km/時の速度範囲をほぼ等間隔に8以上に区切った複数の速度で測定し、平均を車外通過騒音とした。最大騒音値dBは、騒音測定区間内の中間点において走行中心線から側方に7.5mかつ路面から1.2mの高さに設置した定置マイクロフォンを用いてA特性周波数補正回路を通して測定した音圧〔dB(A)〕である。
 一方、ウェット操縦安定性では、屋外のタイヤ試験場の水深1mmであるウェット路面においてドライバーが試験車両を運転しつつ、官能評価をした。
 車外通過騒音の計測結果として、後述する比較例1を基準にして各例の車外通過騒音の値との差分を求めた。数値がマイナスで絶対値が大きいほど車外通過騒音は低いことを示す。一方、ウェット操縦安定性については、後述する比較例1の評価を100として、比較例1に対する相対評価で表した。値が高いほど、操縦安定性が優れていることを示す。ウェット操縦安定性における評価項目は、横加速度の高さ(コーナリング限界性能)と、タイヤの路面に対する滑り開始時の車両挙動のコントロールのしやすさ(コーナリング限界を超えてからタイヤが滑り出した後の収束性)を特に重視した。
〔Example〕
In order to confirm the effect of the tire 1 of this embodiment, various tires were produced. The tire size of the produced tire is 325 / 30ZR20 102Y, and the used rim is 20 × 11.5JJ. The air pressure was 180 kPa. The rim-assembled tire was mounted on a vehicle with a high road index that can run on public roads and the following test was conducted. As the manufactured tire structure, the structure shown in FIG. 2 was used.
The evaluation was made based on the magnitude of sound passing through the vehicle measured according to the tire noise test method defined in ECE R117-02 (ECE Regulation No. 117 Revision 2). In this test, the maximum noise value (dB) (frequency range of 800 to 1200 Hz) in the noise measurement section when the test vehicle is run sufficiently before the noise measurement section, the engine is stopped in front of the section and coasting is performed. Was measured at a plurality of speeds obtained by dividing a speed range of ± 10 km / hour with respect to the reference speed into 8 or more at substantially equal intervals, and the average was defined as vehicle outside noise. The maximum noise value dB is the sound measured through the A characteristic frequency correction circuit using a stationary microphone installed at a height of 7.5 m laterally from the running center line and 1.2 m from the road surface at the midpoint in the noise measurement section. Pressure [dB (A)].
On the other hand, for wet steering stability, the driver performed a sensory evaluation while driving the test vehicle on a wet road surface having a water depth of 1 mm at an outdoor tire test site.
As a measurement result of the vehicle exterior noise, a difference from the vehicle exterior noise value of each example was obtained with reference to Comparative Example 1 described later. As the value is negative and the absolute value is larger, the vehicle outside noise is lower. On the other hand, the wet steering stability was expressed as a relative evaluation with respect to Comparative Example 1, with the evaluation of Comparative Example 1 described later as 100. The higher the value, the better the steering stability. The evaluation items for wet steering stability are the height of lateral acceleration (cornering limit performance) and the ease of control of vehicle behavior at the start of slipping on the road surface of the tire (after the tire starts slipping after exceeding the cornering limit) Special emphasis was placed on convergence.
 下記表1には、比較例1~3及び実施例1~3の仕様を示す。下記表2には、比較例4~6、及び実施例5~7の仕様を示す。
 表1,2における「ラグ溝端部の閉塞の有無」は、第1のショルダーラグ溝41、第1のラグ溝45および第2のラグ溝47の端部41b、端部45b及び47bが閉塞端か否かを表す。無しの場合、端部41b,45b及び47bが第1の周方向溝21、第2の周方向主溝23及び第3の周方向主溝25に開口していることを表す。また、表1,2における「溝深さ(mm)」は、第1の周方向主溝21、第2の周方向主溝23、及び第3の周方向主溝25の溝深さを表す。なお、第1の周方向主溝21、第2の周方向主溝23、及び第3の周方向主溝25の溝深さは同じである。
 表1,2における「ラグ溝傾斜角(IN→OUT)」は、第1のショルダーラグ溝41、第1のラグ溝45および第2のラグ溝47のタイヤ幅方向に対する傾斜角度を順番に表す。
Table 1 below shows the specifications of Comparative Examples 1 to 3 and Examples 1 to 3. Table 2 below shows the specifications of Comparative Examples 4 to 6 and Examples 5 to 7.
In Tables 1 and 2, “the presence or absence of closing of the lug groove end portion” means that the first shoulder lug groove 41, the end portions 41b of the first lug groove 45 and the second lug groove 47, and the end portions 45b and 47b are closed ends. Indicates whether or not. In the case of absence, the end portions 41b, 45b, and 47b are open to the first circumferential groove 21, the second circumferential main groove 23, and the third circumferential main groove 25, respectively. Further, “groove depth (mm)” in Tables 1 and 2 represents the groove depths of the first circumferential main groove 21, the second circumferential main groove 23, and the third circumferential main groove 25. . The first circumferential main groove 21, the second circumferential main groove 23, and the third circumferential main groove 25 have the same groove depth.
“Lug groove inclination angle (IN → OUT)” in Tables 1 and 2 represents the inclination angles of the first shoulder lug groove 41, the first lug groove 45, and the second lug groove 47 with respect to the tire width direction in order. .
 比較例1では、比Wout/Winが0.4であり、本実施形態のタイヤ1に該当しない。比較例2では、角度βが2度であり、本実施形態のタイヤ1に該当しない。比較例3では、角度βが9度であり、本実施形態のタイヤ1に該当しない。比較例3では、ラグ溝(第1のラグ溝45,第2のラグ溝47)端部がいずれも閉塞しない。このため、比較例3は、本実施形態のタイヤ1に該当しない。比較例4では、第1のショルダーラグ溝41、第1のラグ溝45および第2のラグ溝47の端部41b、端部45b及び端部47bが第1の周方向主溝21、第2の周方向主溝23及び第3の周方向主溝25に開口している。このため、比較例4は本実施形態のタイヤ1に該当しない。比較例5,6は、比Wout/Winが0.4及び0.8であるため、本実施形態のタイヤ1に該当しない。 In Comparative Example 1, the ratio Wout / Win is 0.4, which does not correspond to the tire 1 of the present embodiment. In Comparative Example 2, the angle β is 2 degrees and does not correspond to the tire 1 of the present embodiment. In Comparative Example 3, the angle β is 9 degrees and does not correspond to the tire 1 of the present embodiment. In Comparative Example 3, the ends of the lug grooves (the first lug groove 45 and the second lug groove 47) are not closed. For this reason, the comparative example 3 does not correspond to the tire 1 of this embodiment. In Comparative Example 4, the first shoulder lug groove 41, the first lug groove 45, and the end portions 41 b, the end portions 45 b and the end portions 47 b of the second lug grooves 47 are the first circumferential main groove 21, the second lug groove 47. The circumferential main groove 23 and the third circumferential main groove 25 are opened. For this reason, the comparative example 4 does not correspond to the tire 1 of this embodiment. Comparative Examples 5 and 6 do not correspond to the tire 1 of the present embodiment because the ratio Wout / Win is 0.4 and 0.8.
 表1,2の車外通過騒音の差及びウェット操縦安定性の評価結果によると、これらの性能について、実施例1~7が比較例1~6対比いずれも優れていることがわかる。これより、第1の周方向主溝21、第2の周方向主溝23、及び第3の周方向主溝25の溝深さが3~6.5mmである空気入りタイヤにおいて、角度βが3度以上7度以下であり、第1のショルダーラグ溝41、第1のラグ溝45および第2のラグ溝47の端部がいずれも閉塞しており、比Wout/Winが0.45~0.75であるとき、ウェット操縦安定性に優れ車外通過騒音を低下させることができる、ことがわかった。これより、本実施形態のタイヤ1の効果が確認できた。
 また、実施例2,6,7の比較より、溝面積比Sinが24~28%であり、溝面積比Soutが12~16%である場合、十分な性能(バランスのとれた性能)が発揮されることもわかった。
According to the difference in vehicle exterior noise and the evaluation results of wet steering stability in Tables 1 and 2, it can be seen that Examples 1 to 7 are superior to Comparative Examples 1 to 6 in terms of these performances. Accordingly, in the pneumatic tire in which the groove depths of the first circumferential main groove 21, the second circumferential main groove 23, and the third circumferential main groove 25 are 3 to 6.5 mm, the angle β is 3 degrees or more and 7 degrees or less, and the end portions of the first shoulder lug groove 41, the first lug groove 45, and the second lug groove 47 are all closed, and the ratio Wout / Win is 0.45 to When it was 0.75, it turned out that it is excellent in wet steering stability and can reduce a vehicle exterior noise. From this, the effect of the tire 1 of this embodiment has been confirmed.
Further, from comparison between Examples 2, 6, and 7, when the groove area ratio Sin is 24 to 28% and the groove area ratio Sout is 12 to 16%, sufficient performance (balanced performance) is exhibited. I also found out that
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上、本発明の空気入りタイヤについて詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。 As mentioned above, although the pneumatic tire of this invention was demonstrated in detail, this invention is not limited to the said embodiment, Of course, in the range which does not deviate from the main point of this invention, you may make a various improvement and change. is there.
1 空気入りタイヤ
2 トレッドパターン
3 カーカスプライ層
3a 内側プライ層
3b 外側プライ層
4 ベルト層
4a 内側ベルト層
4b 外側ベルト層
5 ビードコア
6 トレッドゴム
7 サイドゴム
8 ビードフィラーゴム
9 インナーライナゴム
10 ベルトカバー層
20a 内側領域
20b 外側領域
21 第1の周方向主溝
23 第2の周方向主溝
25 第3の周方向主溝
27 周方向細溝
31,35,37,39 領域
41 第1のショルダーラグ溝
43 第2のショルダーラグ溝
45 第1のラグ溝
47 第2のラグ溝
49 第3のラグ溝(第1の湾曲溝)
51 第4のラグ溝(第2の湾曲溝)
DESCRIPTION OF SYMBOLS 1 Pneumatic tire 2 Tread pattern 3 Carcass ply layer 3a Inner ply layer 3b Outer ply layer 4 Belt layer 4a Inner belt layer 4b Outer belt layer 5 Bead core 6 Tread rubber 7 Side rubber 8 Bead filler rubber 9 Inner liner rubber 10 Belt cover layer 20a Inner region 20b Outer region 21 First circumferential main groove 23 Second circumferential main groove 25 Third circumferential main groove 27 Thin circumferential grooves 31, 35, 37, 39 Region 41 First shoulder lug groove 43 Second shoulder lug groove 45 First lug groove 47 Second lug groove 49 Third lug groove (first curved groove)
51 4th lug groove (2nd curved groove)

Claims (16)

  1.  空気入りタイヤであって、
     タイヤセンターラインを境としてタイヤ幅方向の第1の側に配されるトレッドパターンの第1の半トレッド領域と、タイヤセンターラインを境としてタイヤ幅方向の第2の側に配されるトレッドパターンの第2の半トレッド領域を有するトレッド部と、
     前記トレッド部のタイヤ径方向内側に配されるベルト層と、を有し、
     前記トレッド部の前記第1の半トレッド領域及び前記第2の半トレッド領域は、
     正規リムに装着し、空気圧を180kPaとした、無負荷状態の条件におけるタイヤプロファイルにおいて、タイヤセンターライン上の前記トレッド部の表面の位置Aと前記ベルト層のエッジを通りタイヤ径方向に平行な直線Pがトレッド部の表面と交差するトレッド表面の位置Bとの間を結ぶ直線Xと、位置Aからタイヤ幅方向に平行に引いた直線Yとのなす角βが3度以上7度以下となるトレッドプロファイルラインと、
     前記第1の半トレッド領域に設けられたタイヤ周方向に延びる第1の周方向主溝と、前記第1の周方向主溝に対して第2の側に位置し、前記第1の半トレッド領域あるいはセンターラインの領域に設けられたタイヤ周方向に延びる第2の周方向主溝と、前記第2の半トレッド領域に設けられた第3の周方向主溝と、を含み、それぞれの溝深さが3~6.5mmであり、前記第1の周方向主溝および前記第2の周方向主溝の溝幅の平均である平均溝幅Winと、前記第3の周方向主溝の溝幅Woutとの比Wout/Winが0.45~0.75である、周方向主溝群と、
     前記第1の周方向主溝から延びて前記第1の周方向主溝の第2の側に接する第1の陸部の領域内で閉塞する、タイヤ周方向に間隔をあけて設けられた複数の第1のラグ溝と、前記第2の周方向主溝から延びて前記第2の周方向主溝の第2の側に接する第2の陸部の領域内で閉塞する、タイヤ周方向に間隔をあけて設けられた複数の第2のラグ溝と、を含むラグ溝群を有する、トレッドパターンと、
     を有することを特徴とする空気入りタイヤ。
    A pneumatic tire,
    A first half-tread region of a tread pattern disposed on the first side in the tire width direction with the tire center line as a boundary, and a tread pattern disposed on the second side in the tire width direction with the tire center line as a boundary. A tread portion having a second half-tread region;
    A belt layer disposed on the inner side in the tire radial direction of the tread portion,
    The first half tread region and the second half tread region of the tread portion are:
    A straight line parallel to the tire radial direction passing through the position A of the surface of the tread portion on the tire center line and the edge of the belt layer in a tire profile under a no-load condition with a regular rim and an air pressure of 180 kPa. An angle β formed by a straight line X connecting the position B of the tread surface where P intersects the surface of the tread portion and a straight line Y drawn in parallel to the tire width direction from the position A is 3 degrees or more and 7 degrees or less. Tread profile line,
    A first circumferential main groove provided in the first half-tread region and extending in the tire circumferential direction; and located on a second side with respect to the first circumferential main groove, the first half-tread A second circumferential main groove extending in the tire circumferential direction provided in the region or the center line region, and a third circumferential main groove provided in the second half-tread region, each groove A depth of 3 to 6.5 mm, an average groove width Win that is an average of the groove widths of the first circumferential main groove and the second circumferential main groove, and the third circumferential main groove A circumferential main groove group having a ratio Wout / Win to the groove width Wout of 0.45 to 0.75;
    A plurality of tires spaced from each other in the tire circumferential direction, which are closed in the region of the first land portion extending from the first circumferential main groove and contacting the second side of the first circumferential main groove. A first lug groove and a second land portion extending from the second circumferential main groove and in contact with a second side of the second circumferential main groove and closing in a tire circumferential direction. A tread pattern having a lug groove group including a plurality of second lug grooves provided at intervals;
    A pneumatic tire characterized by comprising:
  2.  前記トレッドプロファイルラインは、タイヤセンターラインを横切り、第1の曲率半径を有する第1のプロファイル領域と、前記第1のプロファイル領域の両端と接続され、それぞれ第2の曲率半径を有する2つの第2のプロファイル領域とを有し、
     タイヤセンターラインから前記位置Bまでのタイヤ幅方向長さTWと、タイヤセンターラインから前記第1のプロファイル領域と前記第2のプロファイル領域との接続位置までのタイヤ幅方向長さTW1との比TW1/TWが0.5~0.65である、請求項1に記載の空気入りタイヤ。
    The tread profile line crosses the tire center line and is connected to a first profile region having a first radius of curvature and two ends of the first profile region, each having a second radius of curvature. And a profile area of
    The ratio TW1 of the tire width direction length TW from the tire center line to the position B and the tire width direction length TW1 from the tire center line to the connection position of the first profile region and the second profile region The pneumatic tire according to claim 1, wherein / TW is 0.5 to 0.65.
  3.  前記位置Aと前記接続位置との間を結ぶ直線と前記直線Yとのなす角度は、0.5~2.0度である、請求項2に記載の空気入りタイヤ。 The pneumatic tire according to claim 2, wherein an angle formed between a straight line connecting the position A and the connection position and the straight line Y is 0.5 to 2.0 degrees.
  4.  前記プロファイルラインは、タイヤセンターラインを横切り、第1の曲率半径を有する第1のプロファイル領域と、前記第1のプロファイル領域の両端と接続され、それぞれ第2の曲率半径を有する2つの第2のプロファイル領域とを有し、
     前記トレッドパターンの周方向主溝群は、さらに、前記第3の周方向主溝よりも第2の側に設けられ、タイヤ周方向に延在し、前記3本の周方向主溝の溝幅より溝幅が狭い周方向細溝を有し、
     前記第1のプロファイル領域と前記第2のプロファイル領域との接続位置は、前記第1の周方向主溝あるいは前記第1の周方向主溝の縁、及び前記周方向細溝あるいは前記周方向細溝の縁に位置する、請求項1~3のいずれか1項に記載の空気入りタイヤ。
    The profile line crosses the tire center line and is connected to a first profile region having a first radius of curvature and both ends of the first profile region, and each of the second second regions having a second radius of curvature. Profile area,
    The circumferential main groove group of the tread pattern is further provided on the second side of the third circumferential main groove, extends in the tire circumferential direction, and has a groove width of the three circumferential main grooves. It has a circumferential narrow groove with a narrower groove width,
    The connection positions of the first profile region and the second profile region are the edge of the first circumferential main groove or the first circumferential main groove, and the circumferential narrow groove or the circumferential narrow groove. The pneumatic tire according to any one of claims 1 to 3, which is located at an edge of the groove.
  5.  前記トレッドパターンは、さらに、前記周方向細溝と交差する、タイヤ周方向に間隔をあけて設けられた複数の第3のラグ溝を有し、
     前記第3のラグ溝のタイヤ幅方向の両端のそれぞれが、タイヤ周方向に延びる溝に接続されることなく前記第3のラグ溝は前記周方向細溝のタイヤ幅方向の両側の陸部の領域内で閉塞する、請求項4に記載の空気入りタイヤ。
    The tread pattern further includes a plurality of third lug grooves provided at intervals in the tire circumferential direction, intersecting with the circumferential narrow grooves,
    Each end of the third lug groove in the tire width direction is not connected to a groove extending in the tire circumferential direction, and the third lug groove is formed between the land portions on both sides of the circumferential narrow groove in the tire width direction. The pneumatic tire according to claim 4 which closes up in a field.
  6.  前記第3のラグ溝は、タイヤ周方向に向かって凸となってトレッド表面内で湾曲する第1の湾曲溝である、請求項5に記載の空気入りタイヤ。 The pneumatic tire according to claim 5, wherein the third lug groove is a first curved groove that is convex in the tire circumferential direction and curved in the tread surface.
  7.  前記第1のラグ溝は、タイヤ幅方向からタイヤ周方向に傾斜し、
     前記第1の湾曲溝の凸の向きは、前記タイヤ幅方向を境にして前記第1のラグ溝の傾斜の向きと逆である、請求項6に記載の空気入りタイヤ。
    The first lug groove is inclined in the tire circumferential direction from the tire width direction,
    The pneumatic tire according to claim 6, wherein a convex direction of the first curved groove is opposite to an inclination direction of the first lug groove with respect to the tire width direction.
  8.  前記空気入りタイヤの総幅SWの半分と、タイヤセンターラインから前記位置Bまでのタイヤ幅方向長さTWとの比TW/(SW/2)が0.75~0.95である、請求項1から7のいずれか1項に記載の空気入りタイヤ。 The ratio TW / (SW / 2) between half of the total width SW of the pneumatic tire and a length TW in the tire width direction from the tire center line to the position B is 0.75 to 0.95. The pneumatic tire according to any one of 1 to 7.
  9.  正規リムに装着し、空気圧を180kPaとした、無負荷状態の条件で得られる前記空気入りタイヤの総幅SWと、正規リムに装着し、空気圧を180kPaとし、最大負荷荷重の55%の負荷状態の条件で得られる路面と接地する接地幅CPとの比CP/SWが0.75~0.85である、請求項1から8のいずれか1項に記載の空気入りタイヤ。 Mounted on the regular rim and the air pressure is 180 kPa, the total width SW of the pneumatic tire obtained under no-load conditions, and mounted on the regular rim, the air pressure is 180 kPa and a load state of 55% of the maximum load load The pneumatic tire according to any one of claims 1 to 8, wherein a ratio CP / SW between a road surface obtained under the condition of the above and a ground contact width CP to be grounded is 0.75 to 0.85.
  10.  前記第1の半トレッド領域の溝面積比Sinが24~28%であり、前記第2の半トレッド領域の溝面積比Soutが12~16%である、請求項1から9のいずれか1項に記載の空気入りタイヤ。 The groove area ratio Sin of the first half-tread region is 24 to 28%, and the groove area ratio Sout of the second half-tread region is 12 to 16%. Pneumatic tire described in 2.
  11.  前記トレッドパターンは、さらに、前記第1の周方向主溝よりも第1の側に位置する第1のショルダー陸部の領域において、一端がタイヤ接地端において開口し、他端が第2の側に延びて前記第1のショルダー陸部の領域内で閉塞する、タイヤ周方向に間隔をあけて設けられた複数の第1のショルダーラグ溝を有し、
     前記第1のラグ溝および前記第2のラグ溝は、前記第1のショルダーラグ溝よりもタイヤ幅方向に対し大きく傾斜し、かつ、タイヤ幅方向からタイヤ周方向の同じ側に向かって傾斜するとともに、前記第2のラグ溝は、前記第1のラグ溝よりもタイヤ幅方向に対する傾斜角度が大きい、請求項1から10のいずれか1項に記載の空気入りタイヤ。
    The tread pattern further has one end opened at the tire ground contact end and the other end on the second side in the region of the first shoulder land portion located on the first side of the first circumferential main groove. A plurality of first shoulder lug grooves provided at intervals in the tire circumferential direction, extending in the region of the first shoulder land portion,
    The first lug groove and the second lug groove are more inclined with respect to the tire width direction than the first shoulder lug groove, and are inclined toward the same side in the tire circumferential direction from the tire width direction. The pneumatic tire according to any one of claims 1 to 10, wherein the second lug groove has a larger inclination angle with respect to a tire width direction than the first lug groove.
  12.  前記トレッドパターンは、さらに、前記第3の周方向主溝と交差する、タイヤ周方向に間隔をあけて設けられた複数の第4のラグ溝を有し、
     前記第4のラグ溝のタイヤ幅方向の両端のそれぞれが、タイヤ周方向に延びる溝に接続することなく、前記第4のラグ溝は前記第3の周方向主溝のタイヤ幅方向の両側の陸部の領域内で閉塞する、請求項1から11のいずれか1項に記載の空気入りタイヤ。
    The tread pattern further includes a plurality of fourth lug grooves provided at intervals in the tire circumferential direction, intersecting the third circumferential main groove,
    Each end of the fourth lug groove in the tire width direction is not connected to a groove extending in the tire circumferential direction, and the fourth lug groove is located on both sides of the third circumferential main groove in the tire width direction. The pneumatic tire according to any one of claims 1 to 11, wherein the pneumatic tire is closed in a region of a land portion.
  13.  前記第4のラグ溝は、タイヤ周方向に向かって凸となってトレッド表面内で湾曲する第2の湾曲溝である、請求項12に記載の空気入りタイヤ。 The pneumatic tire according to claim 12, wherein the fourth lug groove is a second curved groove that is convex in the tire circumferential direction and curved in the tread surface.
  14.  前記第1のラグ溝は、タイヤ幅方向からタイヤ周方向に傾斜し、
     前記第2の湾曲溝の凸の向きは、前記タイヤ幅方向を境にして前記第1のラグ溝の傾斜の向きと同じである、請求項13に記載の空気入りタイヤ。
    The first lug groove is inclined in the tire circumferential direction from the tire width direction,
    The pneumatic tire according to claim 13, wherein the convex direction of the second curved groove is the same as the inclination direction of the first lug groove with the tire width direction as a boundary.
  15.  前記第1の周方向主溝の一対の溝壁のうち、前記第1のラグ溝の開口を有する溝壁と対向する溝壁は開口を有さず、タイヤ周方向の全周にわたって直線状に延び、
     前記第2の周方向主溝の一対の溝壁のうち、前記第2のラグ溝の開口を有する溝壁と対向する溝壁は開口を有さず、タイヤ周方向の全周にわたって直線状に延びる、請求項1から14のいずれか1項に記載の空気入りタイヤ。
    Of the pair of groove walls of the first circumferential main groove, the groove wall facing the groove wall having the opening of the first lug groove does not have an opening, and is linear over the entire circumference in the tire circumferential direction. Elongate,
    Of the pair of groove walls of the second circumferential main groove, the groove wall facing the groove wall having the opening of the second lug groove does not have an opening, and is linear over the entire circumference in the tire circumferential direction. The pneumatic tire according to claim 1, which extends.
  16.  前記空気入りタイヤの車両装着時に前記第1の半トレッド領域を車両内側に配し、前記第2の半トレッド領域を車両外側に配するための情報がタイヤ表面に表示されている、請求項1から15のいずれか1項に記載の空気入りタイヤ。
     
    The information for arranging the first half-tread region on the inner side of the vehicle and the second half-tread region on the outer side of the vehicle when the pneumatic tire is mounted on the vehicle is displayed on the tire surface. The pneumatic tire of any one of 15 to 15.
PCT/JP2014/059995 2013-04-18 2014-04-04 Pneumatic tire WO2014171353A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014515946A JP6292117B2 (en) 2013-04-18 2014-04-04 Pneumatic tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-087786 2013-04-18
JP2013087786 2013-04-18

Publications (1)

Publication Number Publication Date
WO2014171353A1 true WO2014171353A1 (en) 2014-10-23

Family

ID=51731298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059995 WO2014171353A1 (en) 2013-04-18 2014-04-04 Pneumatic tire

Country Status (2)

Country Link
JP (1) JP6292117B2 (en)
WO (1) WO2014171353A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056506A1 (en) * 2014-10-09 2016-04-14 横浜ゴム株式会社 Pneumatic tire
WO2016056505A1 (en) * 2014-10-09 2016-04-14 横浜ゴム株式会社 Pneumatic tire
JP2017043207A (en) * 2015-08-26 2017-03-02 住友ゴム工業株式会社 Pneumatic tire
EP3290235A1 (en) * 2016-09-01 2018-03-07 Sumitomo Rubber Industries, Ltd. Pneumatic tire
CN108501622A (en) * 2018-06-13 2018-09-07 安徽佳通乘用子午线轮胎有限公司 A kind of UHP tires promoting wetland performance
JP2019093760A (en) * 2017-11-17 2019-06-20 Toyo Tire株式会社 Pneumatic tire
JP2019093759A (en) * 2017-11-17 2019-06-20 Toyo Tire株式会社 Pneumatic tire
JP2019093757A (en) * 2017-11-17 2019-06-20 Toyo Tire株式会社 Pneumatic tire
JP2020172152A (en) * 2019-04-09 2020-10-22 横浜ゴム株式会社 Pneumatic tire
JP2020196347A (en) * 2019-06-03 2020-12-10 横浜ゴム株式会社 Pneumatic tire
CN112078307A (en) * 2020-07-30 2020-12-15 北京多贝力轮胎有限公司 Special giant tire precuring annular tire crown and preparation method and application thereof
US20210276370A1 (en) * 2018-07-03 2021-09-09 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP2022013351A (en) * 2020-07-03 2022-01-18 住友ゴム工業株式会社 tire

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004090763A (en) * 2002-08-30 2004-03-25 Bridgestone Corp Tire having asymmetric tread pattern and its installation method
JP2010095061A (en) * 2008-10-14 2010-04-30 Yokohama Rubber Co Ltd:The Pneumatic radial tire for passenger car
JP2010215221A (en) * 2009-02-20 2010-09-30 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2012056479A (en) * 2010-09-09 2012-03-22 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2012096656A (en) * 2010-11-02 2012-05-24 Yokohama Rubber Co Ltd:The Pneumatic run flat tire
JP2013063738A (en) * 2011-09-20 2013-04-11 Yokohama Rubber Co Ltd:The Pneumatic tire
JP5182453B1 (en) * 2012-07-13 2013-04-17 横浜ゴム株式会社 Pneumatic tire

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4918921B2 (en) * 2008-05-08 2012-04-18 横浜ゴム株式会社 Pneumatic tire
JP5454336B2 (en) * 2010-04-28 2014-03-26 横浜ゴム株式会社 Pneumatic tire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004090763A (en) * 2002-08-30 2004-03-25 Bridgestone Corp Tire having asymmetric tread pattern and its installation method
JP2010095061A (en) * 2008-10-14 2010-04-30 Yokohama Rubber Co Ltd:The Pneumatic radial tire for passenger car
JP2010215221A (en) * 2009-02-20 2010-09-30 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2012056479A (en) * 2010-09-09 2012-03-22 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2012096656A (en) * 2010-11-02 2012-05-24 Yokohama Rubber Co Ltd:The Pneumatic run flat tire
JP2013063738A (en) * 2011-09-20 2013-04-11 Yokohama Rubber Co Ltd:The Pneumatic tire
JP5182453B1 (en) * 2012-07-13 2013-04-17 横浜ゴム株式会社 Pneumatic tire

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056505A1 (en) * 2014-10-09 2016-04-14 横浜ゴム株式会社 Pneumatic tire
WO2016056506A1 (en) * 2014-10-09 2016-04-14 横浜ゴム株式会社 Pneumatic tire
JP2017043207A (en) * 2015-08-26 2017-03-02 住友ゴム工業株式会社 Pneumatic tire
US10894445B2 (en) 2016-09-01 2021-01-19 Sumitomo Rubber Industries, Ltd. Pneumatic tire
EP3290235A1 (en) * 2016-09-01 2018-03-07 Sumitomo Rubber Industries, Ltd. Pneumatic tire
JP2019093760A (en) * 2017-11-17 2019-06-20 Toyo Tire株式会社 Pneumatic tire
JP2019093759A (en) * 2017-11-17 2019-06-20 Toyo Tire株式会社 Pneumatic tire
JP2019093757A (en) * 2017-11-17 2019-06-20 Toyo Tire株式会社 Pneumatic tire
CN108501622A (en) * 2018-06-13 2018-09-07 安徽佳通乘用子午线轮胎有限公司 A kind of UHP tires promoting wetland performance
US20210276370A1 (en) * 2018-07-03 2021-09-09 The Yokohama Rubber Co., Ltd. Pneumatic tire
US11945263B2 (en) * 2018-07-03 2024-04-02 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP2020172152A (en) * 2019-04-09 2020-10-22 横浜ゴム株式会社 Pneumatic tire
JP7283193B2 (en) 2019-04-09 2023-05-30 横浜ゴム株式会社 pneumatic tire
JP2020196347A (en) * 2019-06-03 2020-12-10 横浜ゴム株式会社 Pneumatic tire
JP7306071B2 (en) 2019-06-03 2023-07-11 横浜ゴム株式会社 pneumatic tire
JP2022013351A (en) * 2020-07-03 2022-01-18 住友ゴム工業株式会社 tire
JP7024824B2 (en) 2020-07-03 2022-02-24 住友ゴム工業株式会社 tire
CN112078307A (en) * 2020-07-30 2020-12-15 北京多贝力轮胎有限公司 Special giant tire precuring annular tire crown and preparation method and application thereof

Also Published As

Publication number Publication date
JP6292117B2 (en) 2018-03-14
JPWO2014171353A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6292117B2 (en) Pneumatic tire
US8770241B2 (en) Pneumatic tire with tread having wave shaped circumferential groove
JP5146564B2 (en) Pneumatic tire
WO2014167990A1 (en) Pneumatic tire
JP5062344B1 (en) Pneumatic tire
JP5123980B2 (en) Pneumatic tire
WO2018016302A1 (en) Pneumatic tire
WO2013141261A1 (en) Pneumatic tire
WO2013136947A1 (en) Pneumatic tire
WO2014136883A1 (en) Pneumatic tire
WO2016056505A1 (en) Pneumatic tire
JP6992533B2 (en) Pneumatic tires
JP6930241B2 (en) Pneumatic tires
WO2019098307A1 (en) Pneumatic tire
JP2013071633A (en) Pneumatic tire
WO2019131837A1 (en) Pneumatic tire
JP2018024420A (en) Pneumatic tire
JP2011143891A (en) Pneumatic tire
WO2016143477A1 (en) Pneumatic tire
JP2016112926A (en) Pneumatic tire
JP2019137340A (en) Pneumatic tire
WO2020129549A1 (en) Pneumatic tire
JP7035550B2 (en) Pneumatic tires
JP6085930B2 (en) Pneumatic tire
JP6624231B2 (en) Pneumatic tire

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014515946

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14785546

Country of ref document: EP

Kind code of ref document: A1