WO2014169511A1 - 二次内反射式透镜及采用该透镜的led灯具 - Google Patents

二次内反射式透镜及采用该透镜的led灯具 Download PDF

Info

Publication number
WO2014169511A1
WO2014169511A1 PCT/CN2013/077122 CN2013077122W WO2014169511A1 WO 2014169511 A1 WO2014169511 A1 WO 2014169511A1 CN 2013077122 W CN2013077122 W CN 2013077122W WO 2014169511 A1 WO2014169511 A1 WO 2014169511A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light
reflective
reflective surface
led lamp
Prior art date
Application number
PCT/CN2013/077122
Other languages
English (en)
French (fr)
Inventor
王海军
Original Assignee
Wang Haijun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Haijun filed Critical Wang Haijun
Publication of WO2014169511A1 publication Critical patent/WO2014169511A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0091Reflectors for light sources using total internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • G02B19/0023Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors) at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • G02B19/0066Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED in the form of an LED array
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates generally to the field of luminaires, and in particular, the present invention relates to secondary internal reflection lenses and LED luminaires employing the same.
  • LED lamps are lighting fixtures that use light-emitting diode (LED) chips as the primary source of illumination.
  • An LED chip also referred to as an LED light-emitting chip or directly as an LED
  • Electron holes combine two carriers to produce photon emission, and different kinds of LEDs can emit light of different wavelengths.
  • the light intensity distribution of the light-emitting diode (LED) is strong in the middle and weak in the periphery.
  • the luminous intensity in the middle is about 70% ⁇ 80% of the total luminous intensity, and the luminous intensity around the circumference is about 20% ⁇ 30% of the total luminous intensity.
  • the direct light from the LED is too glaring, and people look too glaring and dazzle.
  • Most of the LED lamps in the prior art are provided with a light-distributing lens on the surface of the LED chip, and the light emitted by the LED chip directly propagates through the lens, so that the light is dazzling.
  • LED lamps in the prior art that add a reflector on the surface of the LED chip, but the central light path in the light has no way to obtain a very uniform spot effect.
  • a lens of the present invention includes: a light incident surface, a first reflecting surface opposite to a portion of the incident surface, and a first reflecting surface opposite to the first reflecting surface a secondary reflecting surface and a light emitting surface opposite to the second reflecting surface, wherein the incident light is incident on the light incident surface a mirror, and then projected onto the first reflecting surface, the first reflecting surface reflecting light rays projected thereon to the second reflecting surface, the second reflecting surface will be projected thereon The upper light is reflected to the light exit surface, and the light projected on the light exit surface is emitted from the lens by the light exit surface.
  • the first reflection surface is: a total reflection surface formed on a surface of the lens due to a refractive index of the lens or a reflection film covered on a surface of the lens; and /
  • the second reflection surface is a total reflection surface formed on a surface of the lens due to a refractive index of the lens, or a reflection film covered on a surface of the lens.
  • the reflective film forming the first reflecting surface is a plating film, and a protective coating is coated on the outside of the reflective film forming the first reflecting surface as a reflective film of the second reflecting surface Electroplated total reflection film or sprayed diffuse film.
  • the first reflecting surface and/or the second reflecting surface are provided with a micro-curved structure.
  • the lens has a first surface formed on a first side of the lens and a second surface formed on a second side of the lens, a portion of the first surface serving as a light incident surface, A portion of the second surface that is longitudinally opposed to the light incident surface serves as a first reflection surface, and another portion of the second surface serves as a second reflection surface, and another portion of the first surface that is longitudinally opposite to the second reflection surface As the light-emitting surface, the first-order reflection surface and the second-order reflection surface are laterally shifted from each other.
  • the lens is an axially symmetric structure
  • the longitudinal direction is an axial direction of the lens
  • the lateral direction is perpendicular to the longitudinal direction
  • a center of the lens is provided with a through hole.
  • an LED lamp comprising: a heat sink; a plurality of LED chips for emitting light fixed on a surface of the heat sink; and a lens located in front of the LED chip
  • the lens includes a light incident surface, a first reflection surface opposite to a portion of the incident surface, a second reflection surface opposite to the first reflection surface, and a light exit surface opposite to the second reflection surface.
  • the LED light fixture further includes a fixing screw, and a middle portion of the lens is provided with a through hole, and one end of the fixing screw passes through the through hole Fixing on the heat sink, the other end of the fixing screw abuts against the lens, and the lens and the heat dissipation are fixed by the fixing screw
  • the fixtures are fixed together.
  • the LED lamp further includes a fixing frame, and the heat sink and the lens are fixed together by the fixing frame.
  • the LED lamp further includes a fixing screw and a lamp cover, wherein a central portion of the lens is provided with a through hole, and one end of the fixing screw passes through the through hole and is fixed to the heat sink.
  • the other end of the fixing screw abuts against the lens, the lens is fixed to the heat sink by the fixing screw, and the lamp cover is fixed with the lens and the heat sink,
  • the lamp cover includes a side wall surrounding the lens, and the LED lamp further includes a plurality of LED chips mounted on the inner side of the side wall of the lamp cover, and the inner side of the side wall is provided with a light reflecting layer.
  • the present invention utilizes the lens to perform secondary reflection on the incident light, thereby making the incident light more uniform to a large extent, and reducing the glare of the LED lamp using the lens. degree.
  • FIG. 1 is a schematic structural view of an LED luminaire according to the present invention in one embodiment
  • FIG. 2 is a schematic structural view of another embodiment of an LED luminaire according to the present invention
  • FIG. 3 is a view of the present invention.
  • one embodiment or “an embodiment” as used herein refers to a particular feature, structure, or characteristic that can be included in at least one implementation of the invention.
  • the appearances of the "in one embodiment” are not intended to refer to the same embodiment, and are not a single or alternative embodiment that is mutually exclusive.
  • FIG. 1 is a block diagram showing the structure of an LED lamp in accordance with an embodiment of the present invention.
  • the LED lamp includes a heat sink 110, and a plurality of LED chips 120 and lenses 130 for light-emitting fixed on the surface of the heat sink 110.
  • the lens 130 includes a light incident surface 131 and a first time opposite to a portion of the incident surface 131
  • the reflecting surface 132 has a second reflecting surface 133 opposite to the first reflecting surface 132 and a light emitting surface 134 opposite to the second reflecting surface 133. At least a portion of the center of the illuminating beam of the LED chip 131 is aligned with the first reflecting surface, and a portion of the light emitted by the LED chip 120 (indicated by a broken line 150 in FIG. 1) is incident on the lens 130 from the light incident surface 131.
  • the first reflecting surface 132 reflects the light incident thereon to the second reflecting surface 133, and the second reflecting surface 133 will The light projected thereon is reflected to the light exit surface 134, and the light projected on the light exit surface 134 is emitted from the light exit surface 134 to the lens 130.
  • the light intensity emitted by the LED chip 120 is relatively thin. Most of the high light will be reflected by the first reflecting surface, so that the light with higher light intensity is prevented from being directly emitted through the light emitting surface 134.
  • the light emitted by the LED chip 120 is subjected to secondary reflection in the lens 130, and the lens 130 is illuminated during repeated reflection of the light in the lens 130, thereby converting the light-emitting point of the LED chip into the
  • the emitting surface of the lens 130 can also be considered to form an emitter of light, thereby reducing glare and beautifying the overall structure.
  • the lens 130 has a first surface formed on a first side of the lens (on a side close to the heat sink 110) and a second side formed on the lens a second surface (away from the side of the heat sink 110).
  • a portion of the first surface serves as the light incident surface 131
  • a portion of the second surface that is longitudinally opposed to the light incident surface 131 serves as a first reflection surface 132
  • another portion of the second surface serves as a second reflection surface 133
  • Another portion of the surface that is longitudinally opposed to the second reflecting surface 133 serves as a light emitting surface 134
  • the first reflecting surface 132 and the second reflecting surface 133 are laterally offset from each other.
  • the lens 130 has an axially symmetric structure as a whole, the longitudinal direction is the direction of the axis 135 of the lens, and the lateral direction is perpendicular to the longitudinal direction, and the LED chips 120 are arranged in a circle.
  • the adjacent two LED chips 120 are spaced apart by a distance, for example, they may be axially symmetrical, 4-sided, 6-sided, and 8-sided.
  • the lens 130 may also be an asymmetric structure, for example, the lens body is asymmetric in four directions of up, down, left, and right.
  • the first reflecting surface 132 of the lens 130 has various implementations, one is a total reflection surface formed on the surface of the lens 130 by using the refractive index of the lens, and the other is at the lens
  • the reflective film covered by the surface, at this time, the first reflective surface 132 performs reflection with high reflection efficiency, and of course, any other implementation in the prior art can be employed.
  • the reflective film forming the first reflecting surface is a plating film, and the plating film may be a plating film of aluminum, silver, copper, and/or gold.
  • a protective coating is applied on the outside of the reflective film forming the first reflecting surface to protect the reflective film forming the first reflecting surface.
  • the second reflecting surface 133 of the lens 130 also has various implementations.
  • One is a total reflection surface formed on the surface of the lens 130 due to the refractive index of the lens, at which time a part of the light may be transmitted from the second reflection surface 133; the other is in the
  • the surface of the lens is plated to form a total reflection film, where the reflection efficiency is high, and the reflected light energy is large; the other is a diffuse reflection film formed by spraying a diffuse reflection material on the surface of the lens to maximize the light.
  • the diffuse diffusion of the lens can reduce the glare of the lamp.
  • the first reflecting surface is provided with a micro-curved structure, so that the light can be more accurately distributed.
  • the second reflecting surface is also provided with a micro-curved structure, which can also more accurately distribute the light and beautify the structure.
  • the LED lamp includes a fixing screw 140 , and a central portion of the lens 130 is provided with a through hole.
  • One end of the fixing screw 140 passes through the through hole and is fixed to the heat sink 110 .
  • the other end of the fixing screw 140 abuts against the lens 130, and the lens 130 and the heat sink 110 are fixed together by the fixing screw 140.
  • the LED luminaire shown in Figure 1 can be referred to as an open luminaire.
  • Fig. 2 is a block diagram showing the structure of an LED lamp according to another embodiment of the present invention.
  • the LED lamp includes a heat sink 210, and a plurality of LED chips 220 and lenses 230 for fixing on the surface of the heat sink 210.
  • the lens 230 includes a light incident surface 231, a first secondary reflecting surface 232 opposite to a portion of the incident surface 231, a second secondary reflecting surface 233 opposite to the first secondary reflecting surface 232, and a second secondary reflecting surface 233.
  • the LED luminaire of Fig. 2 differs from the LED luminaire of Fig. 1 in that the LED luminaire further includes a fixed frame 240 through which the heat sink 210 and the lens 230 are fixed together.
  • the LED luminaire shown in Figure 2 can be referred to as a closed luminaire.
  • Fig. 3 is a block diagram showing the structure of an LED lamp according to another embodiment of the present invention.
  • the LED lamp includes a heat sink 310, and a plurality of LED chips 320 and lenses 330 for fixing on the surface of the heat sink 310.
  • the lens 330 includes a light incident surface 331 , a first reflection surface 332 opposite to a portion of the incident surface 331 , a second reflection surface 333 opposite to the first reflection surface 332 , and a second reflection surface 333 .
  • the opposite light exiting surface 334 is a light incident surface 331 , a first reflection surface 332 opposite to a portion of the incident surface 331 , a second reflection surface 333 opposite to the first reflection surface 332 , and a second reflection surface 333 .
  • the LED lamp of FIG. 3 differs from the LED lamp of FIG. 1 in that the LED lamp of FIG. 3 includes a fixing screw 340 and a lamp cover 360, and a central portion of the lens 330 is provided with a through hole, and one end of the fixing screw 340 After the through hole is passed through the through hole, the other end of the fixing screw 340 abuts against the lens 330, and the lens 330 and the heat sink 310 are fixed by the fixing screw 340. Fixed together.
  • the lamp cover 360 can also be fixed to the lens 330 and the heat sink 310 by the fixing screw 340.
  • the lamp cover 360 includes a side wall 361, the side wall surrounds the lens 330, and the lamp cover 360 can be used.
  • the diffusing material sprayed on the second reflecting surface of the lens 330 is protected.
  • a ring of LED chips 370 may be added to the inner edge of the lampshade, and the LED chips emit light to the inner side of the side wall 361 of the lampshade, and the inner side of the side wall 361 is provided with a reflective layer. The light projected onto it is reflected so that the lamp cover 360 can be illuminated.
  • the LED chip 320 mounted on the heat sink 310 serves as a main light source
  • the LED chip 370 mounted on the lamp cover 360 serves as an auxiliary light source, thereby forming a semi-open type lamp.
  • the lenses of the present invention can also be combined with other light sources to form other luminaires.
  • the invention also provides a new type of lens as in the several embodiments above, which lens can be used with a light source to form various luminaires.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种二次内反射式透镜及采用该透镜的LED灯具,该透镜(130)包括:入光面(131)、与所述入光面(131)的一部分相对的第一次反射面(132)、与第一次反射面(132)相对的第二次反射面(133)和与第二次反射面(133)相对的出光面(134)。入射光由所述入射面射入所述透镜(130),并随后被投射于所述第一次反射面(132),所述第一次反射面(132)将投射于其上的光线反射至所述第二次反射面(133),所述第二次反射面(133)将投射于其上的光线反射至所述出光面(134),投射于所述出光面(134)的光线由所述出光面射出所述透镜(130)。本灯具利用所述透镜对入射的灯光进行二次反射,从而使得入射的灯光更为均匀,降低了采用该透镜的LED灯具的炫目度。

Description

二次内反射式透镜及采用该透镜的 LED灯具
【技术领域】
本发明通常涉及灯具领域,特别地, 本发明涉及二次内反射式透镜及采用该 透镜的 LED灯具。
【背景技术】
目前 LED(light-emitting diode, 简称)灯具的应用已经越来越广泛。 LED灯 具, 顾名思义, 其为采用发光二极管 (LED)芯片作为主要发光源的照明器具。 发 光二极管芯片 (也可称为 LED发光芯片或直接成为 LED)是一种固态的半导体元 件, 其利用电流顺向流通到半导体 P-N 结耦合处, 再由半导体中分离的带负电 的电子与带正电的空穴两种载子相互结合后,而产生光子发射,不同种类的 LED 能够发出不同波长的光线。
发光二极管(LED) 的光强分布是中间强, 四周弱, 中间的发光强度约占总 发光强度的 70%~80%左右, 四周的发光强度约占总发光强度 20%~30%左右。 LED 的光线直射出来太过刺眼, 人们直视太过刺眼, 会形成眩目。 现有技术中 的 LED灯具多是在 LED芯片表面加装一个配光作用的透镜, LED芯片发出的光 直接透过所述透镜向外传播, 这样光线很眩目。 现有技术中也有的 LED灯具在 LED 芯片上表面加一个反光杯, 但光线中的中心光路没有办法得到一个很均匀 的光斑效果。
因此, 有必要提出一种改进的 LED灯具来克服上述技术问题。
【本发明内容】
本部分的目的在于概述本发明的实施例的一些方面以及简要介绍一些较佳 实施例。在本部分以及本申请的说明书摘要和发明名称中可能会做些简化或省略 以避免使本部分、说明书摘要和发明名称的目的模糊, 而这种简化或省略不能用 于限制本发明的范围。
本发明的目的在于提供一种新型的透镜及采用该新型的透镜的 LED灯具, 其可以投射出较为均匀的灯光, 从而具有较低的眩目度。
为实现上述目的, 根据本发明的一个方面, 本发明提供一种透镜, 其包括: 入光面、与所述入射面的一部分相对的第一次反射面、与第一次反射面相对的第 二次反射面和与第二次反射面相对的出光面, 入射光由所述入光面射入所述透 镜, 并随后被投射于所述第一次反射面, 所述第一次反射面将投射于其上的光线 反射至所述第二次反射面,所述第二次反射面将投射于其上的光线反射至所述出 光面, 投射于所述出光面的光线由所述出光面射出所述透镜。
作为本发明的一个实施例, 所述第一次反射面是: 由于所述透镜的折射率而 在所述透镜的表面形成的全反射面或在所述透镜的表面覆盖的反射膜; 和 /或, 所述第二次反射面是:由于所述透镜的折射率而在所述透镜的表面形成的全反射 面, 或在所述透镜的表面覆盖的反射膜。优选的, 形成所述第一次反射面的反射 膜为电镀膜,在形成所述第一次反射面的反射膜外涂覆有一层保护涂层, 作为所 述第二次反射面的反射膜电镀全反射膜或喷洒漫反射膜。
作为本发明的一个实施例, 所述第一次反射面和 /或所述第二次反射面设置 有微曲面结构。
作为本发明的一个实施例,所述透镜具有形成于所述透镜的第一侧的第一表 面和形成于所述透镜的第二侧的第二表面,第一表面的一部分作为入光面, 第二 表面中的与所述入光面纵向相对的部分作为第一次反射面,第二表面的另一部分 作为第二次反射面, 第一表面上与第二次反射面纵向相对的另一部分作为出光 面, 所述第一次反射面与所述第二次反射面在横向上相互错开。
作为本发明的一个实施例, 所述透镜为轴心对称结构, 所述纵向为所述透镜 的轴心方向, 所述横向与所述纵向相垂直, 所述透镜的中心设置有通孔。
根据本发明的另一个方面, 本发明提供一种 LED灯具, 其包括: 散热器; 固定于所述散热器的表面上的多个用于发光的 LED芯片;位于所述 LED芯片的 前方的透镜,所述透镜包括入光面、与所述入射面的一部分相对的第一次反射面、 与第一次反射面相对的第二次反射面和与第二次反射面相对的出光面。其中至少 部分 LED芯片的发光束的中心对准所述第一次反射面,所述 LED芯片发出的光 经过入射面进入所述透镜, 并被投射于所述第一次反射面上, 所述第一次反射面 将投射于其上的光线反射至所述第二次反射面,所述第二次反射面将投射于其上 的光线反射至所述出光面, 投射于所述出光面的光线由所述出光面射出所述透 作为本发明的一个实施例, 所述 LED灯具还包括固定螺杆, 所述透镜的中 部设置有通孔, 所述固定螺杆的一端穿过所述通孔后固定于所述散热器上, 所述 固定螺杆的另一端抵靠于所述透镜上,借助所述固定螺杆将所述透镜与所述散热 器固定在一起。
作为本发明的一个实施例, 所述 LED灯具还包括固定框, 通过所述固定框 将所述散热器和所述透镜固定在一起。
作为本发明的一个实施例, 所述 LED灯具还包括有固定螺杆和灯罩, 所述 透镜的中部设置有通孔,所述固定螺杆的一端穿过所述通孔后固定于所述散热器 上, 所述固定螺杆的另一端抵靠于所述透镜上,借助所述固定螺杆将所述透镜与 所述散热器固定在一起, 所述灯罩与所述透镜和散热器固定在一起, 所述灯罩包 括有侧壁, 该侧壁环绕所述透镜, 所述 LED灯具还包括安装于所述灯罩的侧壁 内侧的多个 LED芯片, 所述侧壁的内侧设有反光层。
与现有技术相比, 本发明中利用了所述透镜对入射的灯光进行二次反射, 从 而可以从很大程度上使得入射的灯光更为均匀, 降低了采用这种透镜的 LED灯 具的炫目度。
【附图说明】
接下来的具体实施方式、后面的权利要求以及附图将有助于了解本发明的具 体特征, 各实施例以及优点, 其中:
图 1示出了根据本发明中的 LED灯具在一个实施例的结构示意图; 图 2示出了根据本发明中的 LED灯具在另一个实施例的结构示意图; 图 3示出了根据本发明中的 LED灯具在再一个实施例的结构示意图。
【具体实施方式】
本发明所称的 "一个实施例 "或"实施例 "是指可包含于本发明至少一个实现方 式中的特定特征、 结构或特性。 在本说明书中不同地方出现的"在一个实施例中" 并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施 例。
下面参考图 1 -图 2来介绍本发明的各个实施例。 然而, 所属领域内的普通 技术人员容易理解的是这里根据这些附图列出的细节描述仅仅是解释性的,本发 明并不仅限于这些实施例。
图 1示出了根据本发明中的 LED灯具在一个实施例的结构示意图。 图 1所 示, 所述 LED灯具包括散热器 1 10、 固定于所述固定于所述散热器 1 10的表面 上的多个用于发光的 LED芯片 120和透镜 130。
所述透镜 130包括入光面 131、 与所述入射面 131 的一部分相对的第一次 反射面 132、 与第一次反射面 132相对的第二次反射面 133和与第二次反射面 133相对的出光面 134。 至少部分 LED芯片 131 的发光束的中心对准所述第一 次反射面, LED芯片 120发出的部分光线 (由图 1 中的虚线 150表示)由所述入 光面 131射入所述透镜 130, 并随后被投射于所述第一次反射面 132, 所述第一 次反射面 132将投射于其上的光线反射至所述第二次反射面 133,所述第二次反 射面 133将投射于其上的光线反射至所述出光面 134, 投射于所述出光面 134 的光线由所述出光面 134射出所述透镜 130。
由于所述 LED芯片 120的发光束的中心对准所述第一次反射面, 并且 LED 芯片的发出的光线的光强分布是中间强, 四周弱, 因此所述 LED芯片 120发出 的光强较高的光线大部分会第一次反射面进行反射,从而避免了光强较高的光线 直接通过所述出光面 134发射出去。 LED芯片 120发出的光线在所述透镜 130 中完成二次反射, 光线在所述透镜 130 中反复反射的过程中会将所述透镜 130 点亮, 从而将 LED芯片的发光点转换成了所述透镜 130的发射面, 也可以认为 所述透镜 130形成了光线的发射体, 从而降低了眩目度, 美化了整体结构。
在如图 1所示的实施例中, 所述透镜 130具有形成于所述透镜的第一侧 (靠 近所述散热器 110的一侧)的第一表面和形成于所述透镜的第二侧 (远离所述散热 器 110的一侧)的第二表面。 第一表面的一部分作为入光面 131, 第二表面中的 与所述入光面 131纵向相对的部分作为第一次反射面 132,第二表面的另一部分 作为第二次反射面 133,第一表面上与第二次反射面 133纵向相对的另一部分作 为出光面 134, 所述第一次反射面 132与所述第二次反射面 133在横向上相互 错开。 如图 1 所示, 所述透镜 130整体为轴心对称结构, 所述纵向为所述透镜 的轴心 135方向,所述横向与所述纵向相垂直,所述 LED芯片 120排布成一圈, 相邻的两个 LED芯片 120之间间隔一段距离, 比如可以是轴心对称的 4边、 6 边、 8边形状。 当然在其他实施例中, 所述透镜 130也可以是非对称结构, 比如 透镜本体在上下左右 4个方向不对称。
所述透镜 130的第一次反射面 132具有多种实现方式, 一种是利用所述透 镜的折射率而在所述透镜 130 的表面形成的全反射面, 另一种是在所述透镜的 表面覆盖的反射膜, 此时第一反射面 132进行反射效率较高的反射, 当然还可 以采用现有技术中的其他任何实现方式。在一个优先的实施例中, 形成所述第一 次反射面的反射膜为电镀膜, 所述电镀膜可以是铝、 银、 铜和 /或金的电镀膜。 在另一个优选的实施例中,在形成所述第一次反射面的反射膜外涂覆有一层保护 涂层, 以对形成所述第一次反射面的反射膜进行保护。
所述透镜 130的第二次反射面 133也具有多种实现方式。 一种是由于所述 透镜的折射率而在所述透镜 130 的表面形成的全反射面, 此时有一部分光线可 能会从所述第二反射面 133 处透射出来; 另一种是在所述透镜的表面电镀形成 的全反射膜, 这时反射效率较高, 反射后的光线能量较大; 再一种是在所述透镜 的表面喷洒漫反射材料而形成的漫反射膜,使光线得到最大化的漫射扩散, 可以 很好的降低灯具的炫目度。
在一个具体的实施例中, 所述第一次反射面设置微曲面结构, 这样能够更有 效的精密分布光线。 同样的, 第二次反射面也设置微曲面结构, 同样能够更有效 的精密分布光线, 并美化结构。
再次参看图 1所示, 所述 LED灯具包括有固定螺杆 140, 所述透镜 130的 中部设置有通孔, 所述固定螺杆 140 的一端穿过所述通孔后固定于所述散热器 110上, 所述固定螺杆 140的另一端抵靠于所述透镜 130上, 借助所述固定螺 杆 140将所述透镜 130与所述散热器 110固定在一起。图 1所示的 LED灯具可 以被称为开放式灯具。
图 2示出了根据本发明中的 LED灯具在另一个实施例的结构示意图。 如图 2所示, 所述 LED灯具包括散热器 210、 固定于所述固定于所述散热器 210的 表面上的多个用于发光的 LED芯片 220和透镜 230。
所述透镜 230包括入光面 231、 与所述入射面 231 的一部分相对的第一次 反射面 232、 与第一次反射面 232相对的第二次反射面 233和与第二次反射面 233相对的出光面 234。
除了特别说明的结构外, 图 2中的 LED灯具中的工作原理与图 1 中的 LED 灯具的相同, 这里就不再重复描述了。 图 2中的 LED灯具与图 1 中的 LED灯具 的区别在于, 所述 LED灯具还包括固定框 240, 通过所述固定框 240将所述散 热器 210和所述透镜 230固定在一起。图 2所示的 LED灯具可以被称为封闭式 灯具。
图 3示出了根据本发明中的 LED灯具在再一个实施例的结构示意图。 如图 3所示, 所述 LED灯具包括散热器 310、 固定于所述固定于所述散热器 310的 表面上的多个用于发光的 LED芯片 320和透镜 330。 所述透镜 330包括入光面 331、 与所述入射面 331 的一部分相对的第一次 反射面 332、 与第一次反射面 332相对的第二次反射面 333和与第二次反射面 333相对的出光面 334。
除了特别说明的结构外, 图 3中的 LED灯具中的实现方式和工作原理与图 1 中的 LED灯具的相同, 这里就不再重复描述了。 图 3中的 LED灯具与图 1 中 的 LED灯具的区别在于, 图 3中的 LED灯具包括有固定螺杆 340和灯罩 360, 所述透镜 330的中部设置有通孔, 所述固定螺杆 340的一端穿过所述通孔后固 定于所述散热器 310上, 所述固定螺杆 340的另一端抵靠于所述透镜 330上, 借助所述固定螺杆 340将所述透镜 330与所述散热器 310固定在一起。
所述灯罩 360也可以通过所述固定螺杆 340与所述透镜 330和散热器 310 固定在一起, 所述灯罩 360包括有侧壁 361, 该侧壁环绕所述透镜 330, 所述灯 罩 360可以用来防护喷洒在透镜 330的第二次反射面的漫射材料。 在一个实施 例中, 可以在所述灯罩的内部边沿加装一圈 LED芯片 370, 这些 LED芯片向所 述灯罩的侧壁 361 的内侧发射灯光, 所述侧壁 361 的内侧设有反光层, 反射投 射于上的光线,这样所述灯罩 360就可以被点亮。由安装于散热器 310上的 LED 芯片 320作为主光源,由安装于所述灯罩 360上的 LED芯片 370作为辅助光源, 从而形成一个半开放式的灯具。
很显然, 所属领域内的普通技术人员能够理解的是, 本发明中的透镜也可以 配合其他光源形成其他灯具。从本发明的一个方面来讲, 本发明也提供了一种新 型的如上面几个实施例中的透镜, 该透镜可以配合光源形成各种灯具。
上述说明已经充分揭露了本发明的具体实施方式。需要指出的是, 熟悉该领 域的技术人员对本发明的具体实施方式所做的任何改动均不脱离本发明的权利 要求书的范围。相应地, 本发明的权利要求的范围也并不仅仅局限于前述具体实 施方式。

Claims

权利要求书
1、 一种透镜, 其特征在于, 其包括:
入光面、 与所述入射面的一部分相对的第一次反射面、 与第一次反射面相 对的第二次反射面和与第二次反射面相对的出光面,
入射光由所述入光面射入所述透镜, 并随后被投射于所述第一次反射面, 所述第一次反射面将投射于其上的光线反射至所述第二次反射面, 所述第二次 反射面将投射于其上的光线反射至所述出光面, 投射于所述出光面的光线由所 述出光面射出所述透镜。
2、 根据权利要求 1所述的透镜, 其特征在于: 所述第一次反射面是: 由于 所述透镜的折射率而在所述透镜的表面形成的全反射面或在所述透镜的表面覆 盖的反射膜; 和 /或
所述第二次反射面是: 由于所述透镜的折射率而在所述透镜的表面形成的 全反射面, 或在所述透镜的表面覆盖的反射膜。
3、 根据权利要求 2所述的透镜, 其特征在于: 形成所述第一次反射面的反 射膜为电镀膜, 在形成所述第一次反射面的反射膜外涂覆有一层保护涂层, 作 为所述第二次反射面的反射膜电镀全反射膜或喷洒漫反射膜。
4、根据权利要求 1所述的透镜, 其特征在于: 所述第一次反射面和 /或所述 第二次反射面设置有微曲面结构。
5、 根据权利要求 1所述的透镜, 其特征在于: 所述透镜具有形成于所述透 镜的第一侧的第一表面和形成于所述透镜的第二侧的第二表面,
第一表面的一部分作为入光面, 第二表面中的与所述入光面纵向相对的部 分作为第一次反射面, 第二表面的另一部分作为第二次反射面, 第一表面上与 第二次反射面纵向相对的另一部分作为出光面, 所述第一次反射面与所述第二 次反射面在横向上相互错开。
6、 根据权利要求 5所述的透镜, 其特征在于: 所述透镜为轴心对称结构, 所述纵向为所述透镜的轴心方向, 所述横向与所述纵向相垂直, 所述透镜的中 心设置有通孔。
7、 一种 LED灯具, 其特征在于, 其包括:
散热器; 固定于所述散热器的表面上的多个用于发光的 LED芯片;
位于所述 LED芯片的前方的透镜, 所述透镜包括入光面、 与所述入射面的 一部分相对的第一次反射面、 与第一次反射面相对的第二次反射面和与第二次 反射面相对的出光面,
至少部分 LED芯片的发光束的中心对准所述第一次反射面,
所述 LED芯片发出的光经过入射面进入所述透镜, 并被投射于所述第一次 反射面上, 所述第一次反射面将投射于其上的光线反射至所述第二次反射面, 所述第二次反射面将投射于其上的光线反射至所述出光面, 投射于所述出光面 的光线由所述出光面射出所述透镜。
8、 根据权利要求 7所述的 LED灯具, 其特征在于: 所述第一次反射面是: 由于所述透镜的折射率而在所述透镜的表面形成的全反射面或在所述透镜的表 面覆盖的反射膜; 和 /或
所述第二次反射面是: 由于所述透镜的折射率而在所述透镜的表面形成的 全反射面, 或在所述透镜的表面覆盖的反射膜。
9、 根据权利要求 8所述的 LED灯具, 其特征在于: 形成所述第一次反射 面的反射膜为电镀膜, 在形成所述第一次反射面的反射膜外涂覆有一层保护涂 层, 作为所述第二次反射面的反射膜电镀全反射膜或喷洒漫反射膜。
10、 根据权利要求 7所述的 LED灯具, 其特征在于: 所述第一次反射面和 /或所述第二次反射面设置有微曲面结构。
11、 根据权利要求 7所述的 LED灯具, 其特征在于: 所述透镜具有形成于 所述透镜的第一侧的第一表面和形成于所述透镜的第二侧的第二表面,
第一表面的一部分作为入光面, 第二表面中的与所述入光面纵向相对的部 分作为第一次反射面, 第二表面的另一部分作为第二次反射面, 第一表面上与 第二次反射面纵向相对的另一部分作为出光面, 所述第一次反射面与所述第二 次反射面在横向上相互错开。
12、 根据权利要求 11 所述的 LED灯具, 其特征在于: 所述透镜为轴心对 称结构, 所述纵向为所述透镜的轴心方向, 所述横向与所述纵向相垂直, 所述 透镜的中心设置有通孔。
13、 根据权利要求 7所述的 LED灯具, 其特征在于: 其还包括固定螺杆, 所述透镜的中部设置有通孔, 所述固定螺杆的一端穿过所述通孔后固定于 所述散热器上, 所述固定螺杆的另一端抵靠于所述透镜上, 借助所述固定螺杆 将所述透镜与所述散热器固定在一起。
14、 根据权利要求 7所述的 LED灯具, 其特征在于: 其还包括固定框, 通 过所述固定框将所述散热器和所述透镜固定在一起。
15、 根据权利要求 7所述的 LED灯具, 其特征在于: 其还包括有固定螺杆 和灯罩,
所述透镜的中部设置有通孔, 所述固定螺杆的一端穿过所述通孔后固定于 所述散热器上, 所述固定螺杆的另一端抵靠于所述透镜上, 借助所述固定螺杆 将所述透镜与所述散热器固定在一起, 所述灯罩与所述透镜和散热器固定在一 起, 所述灯罩包括有侧壁, 该侧壁环绕所述透镜, 所述 LED灯具还包括安装于 所述灯罩的侧壁内侧的多个 LED芯片, 所述侧壁的内侧设有反光层。
PCT/CN2013/077122 2013-04-16 2013-06-10 二次内反射式透镜及采用该透镜的led灯具 WO2014169511A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013201933539U CN203273698U (zh) 2013-04-16 2013-04-16 二次内反射式透镜及采用该透镜的led灯具
CN201320193353.9 2013-04-16

Publications (1)

Publication Number Publication Date
WO2014169511A1 true WO2014169511A1 (zh) 2014-10-23

Family

ID=49504099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/077122 WO2014169511A1 (zh) 2013-04-16 2013-06-10 二次内反射式透镜及采用该透镜的led灯具

Country Status (2)

Country Link
CN (1) CN203273698U (zh)
WO (1) WO2014169511A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3317582A4 (en) * 2015-06-20 2019-02-27 IQ Group Sdn Bhd LIGHTING DEVICES FOR REDUCING GLARE LIGHT EMITTING (LED) DEVOTION

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104948944B (zh) * 2014-08-11 2017-04-19 漳州立达信光电子科技有限公司 广角度led灯
TWI595189B (zh) * 2014-09-02 2017-08-11 Huan-Chiu Chou 內反射燈具
CN104296071A (zh) * 2014-09-23 2015-01-21 上海三思电子工程有限公司 全周光配光透镜的设计方法及相应的配光透镜
CN113048440A (zh) * 2021-04-16 2021-06-29 张其建 一种没有炫目感的汽车远近光大灯

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4978843A (en) * 1988-09-10 1990-12-18 Aisens Co., Ltd. Photoelectric sensor having a folded light path
EP0747744A1 (en) * 1995-06-06 1996-12-11 Hughes Missile Systems Company Single catadioptric lens
CN1250538A (zh) * 1997-11-22 2000-04-12 三星电子株式会社 反折射光学***、采用该***的光拾取器、光盘驱动器和光盘
CN1275231A (zh) * 1998-08-07 2000-11-29 索尼株式会社 折反射透镜、光学头及光记录重放装置
US6396981B1 (en) * 1999-04-29 2002-05-28 Samsung Electronics Co., Ltd. Optical device module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4978843A (en) * 1988-09-10 1990-12-18 Aisens Co., Ltd. Photoelectric sensor having a folded light path
EP0747744A1 (en) * 1995-06-06 1996-12-11 Hughes Missile Systems Company Single catadioptric lens
CN1250538A (zh) * 1997-11-22 2000-04-12 三星电子株式会社 反折射光学***、采用该***的光拾取器、光盘驱动器和光盘
CN1275231A (zh) * 1998-08-07 2000-11-29 索尼株式会社 折反射透镜、光学头及光记录重放装置
US6396981B1 (en) * 1999-04-29 2002-05-28 Samsung Electronics Co., Ltd. Optical device module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3317582A4 (en) * 2015-06-20 2019-02-27 IQ Group Sdn Bhd LIGHTING DEVICES FOR REDUCING GLARE LIGHT EMITTING (LED) DEVOTION

Also Published As

Publication number Publication date
CN203273698U (zh) 2013-11-06

Similar Documents

Publication Publication Date Title
US8106568B2 (en) Lighting device capable of suppressing occurrence of ovelap of multiple shades
US20140112003A1 (en) Methods and apparatus related to an optical lens for a led
US8833981B2 (en) Multiple-tier omnidirectional solid-state emission source
WO2014169511A1 (zh) 二次内反射式透镜及采用该透镜的led灯具
WO2017054568A1 (zh) Led射灯
US20150146429A1 (en) Lighting device with optical reflector, luminaire having such lighting device and method of manufacturing a compact optical reflector
TW201331510A (zh) 平面發光二極體照明(一)
TWI521172B (zh) 燈具
JP2014089868A (ja) 灯具
CN103672461B (zh) 发光二极管灯具
US20120314413A1 (en) Constructive occlusion lighting system and applications thereof
JP2013045530A (ja) 発光装置及び照明器具
WO2013131385A1 (zh) 发光结构及其led灯
CN107689409B (zh) 发光二极管
TW201250169A (en) Lens and illuminating device
CN202371498U (zh) 一种高光效的led筒灯
TWI443286B (zh) Led燈泡結構及增加光源廣度之方法
TWM451497U (zh) 具有大發光角度之led燈具
US20150285484A1 (en) Lighting device with uniform illumination
TWI418741B (zh) Lighting device
US11162659B2 (en) Lens, lens group and lamp
TWI573962B (zh) 燈具結構
TWM423203U (en) High-brightness LED lamp structure
TWI435024B (zh) 燈具
TWI418740B (zh) 反射架及應用其之燈具結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 13882100

Country of ref document: EP

Kind code of ref document: A1