WO2014168237A1 - Structure replication method, localized surface plasmon resonance sensor chip manufacturing method including this replication method, structure, localized surface plasmon resonance sensor chip, and localized surface plasmon resonance sensor - Google Patents

Structure replication method, localized surface plasmon resonance sensor chip manufacturing method including this replication method, structure, localized surface plasmon resonance sensor chip, and localized surface plasmon resonance sensor Download PDF

Info

Publication number
WO2014168237A1
WO2014168237A1 PCT/JP2014/060481 JP2014060481W WO2014168237A1 WO 2014168237 A1 WO2014168237 A1 WO 2014168237A1 JP 2014060481 W JP2014060481 W JP 2014060481W WO 2014168237 A1 WO2014168237 A1 WO 2014168237A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
plasmon resonance
surface plasmon
sensor chip
thermosetting resin
Prior art date
Application number
PCT/JP2014/060481
Other languages
French (fr)
Japanese (ja)
Inventor
瀬崎 文康
祐介 兼▲崎▼
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2014168237A1 publication Critical patent/WO2014168237A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/005Compensating volume or shape change during moulding, in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0067Using separating agents during or after moulding; Applying separating agents on preforms or articles, e.g. to prevent sticking to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00111Tips, pillars, i.e. raised structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0147Film patterning
    • B81C2201/015Imprinting
    • B81C2201/0153Imprinting techniques not provided for in B81C2201/0152

Definitions

  • the present invention relates to a method for replicating a structure that can provide a highly sensitive surface plasmon resonance sensor, and a method for manufacturing a chip for a localized surface plasmon resonance sensor including a step of manufacturing a structure by the replication method. Furthermore, the present invention relates to a structure manufactured by the above replication method or manufacturing method, a localized surface plasmon resonance sensor chip, and a localized surface plasmon resonance sensor.
  • a specific protein Presence / absence, amount, etc. of a specific protein
  • dozens of proteins are correlated with the disease. ing.
  • a biomolecule that increases with the progression of a tumor is called a tumor marker, and different tumor markers are specified depending on the site of tumor occurrence.
  • biomolecules such as proteins, DNA, and sugar chains in living organisms are often directly related to the occurrence of diseases, so the mechanism of disease is elucidated by analyzing the interactions between these biomolecules.
  • biosensor as a tool for easily and accurately measuring the presence or amount of a specific protein including the above tumor marker, and is expected to be applied to misdiagnosis prevention, early diagnosis, preventive medicine, etc. in the future.
  • SPR surface plasmon resonance
  • Surface plasmon resonance is a resonance phenomenon caused by the interaction between free electrons on the metal surface and electromagnetic waves (light). Compared to the fluorescence detection method, the sample does not need to be labeled with a fluorescent substance, and is a simple technique. Attention has been paid.
  • Sensors using surface plasmon resonance include a propagation surface plasmon resonance sensor and a localized surface plasmon resonance sensor.
  • the propagation surface plasmon resonance sensor 11 is formed by forming a metal film 13 of Au, Ag or the like having a thickness of about 50 nm on the surface of a glass substrate 12.
  • the propagation surface plasmon resonance sensor 11 irradiates light from the glass substrate 12 side and totally reflects light at the interface between the glass substrate 12 and the metal film 13. Biomolecules are sensed by receiving the totally reflected light and measuring the reflectance of the light.
  • the reflection angle is greatly attenuated at a certain incident angle (resonance incident angle) ⁇ 1, as shown in FIG.
  • the evanescent light near-field light generated at the interface interacts with the surface plasmon wave of the metal. It is. Specifically, at a specific wavelength and a specific incident angle, light energy is absorbed into the metal film 13 and is changed to vibrational energy of free electrons in the metal film 13 so that the light reflectance is significantly reduced. Because it does.
  • this resonance condition depends on the dielectric constant (refractive index) of the surrounding material of the metal film 13, such a phenomenon is used as a technique for detecting a change in physical properties of the surrounding material with high sensitivity.
  • an antibody 14 probe
  • a specific protein antigen
  • the antigen 16 specifically binds to the antibody 14 as shown in FIG.
  • the refractive index around the metal film 13 changes, and the resonance wavelength and the resonance incident angle change.
  • the antigen 16 is contained in the test sample by measuring the change in the resonance wavelength before and after the test sample is introduced, the change in the resonance incident angle, or the temporal change in the resonance wavelength and the resonance incident angle. Can be inspected. It is also possible to examine the concentration of the antigen 16 contained.
  • FIG. 28 (d) shows an example of the result of measuring the dependence of the reflectance on the incident angle ⁇ .
  • the broken line shows the reflectance spectrum 17 a before the test sample is introduced
  • the solid line shows the reflectance spectrum 17 b after the test sample is introduced and the antigen 16 is bound to the antibody 14.
  • the concentration of the antigen 16 can be examined, and the presence or absence of a specific pathogen or the presence or absence of a disease can be examined.
  • a prism is used to introduce light into a glass substrate. For this reason, the optical system of the sensor is complicated and large, and the sensor chip (glass substrate) and the prism must be brought into close contact with the matching oil.
  • the sensing area is several hundred nm from the surface of the glass substrate, which is larger than the protein size (around 10 nm). Therefore, this sensor is easily affected by temperature changes in the test sample and contaminants in the test sample (for example, proteins other than the test target).
  • the antigen that is not bound to the antibody and is suspended in the test sample Will also have sensitivity.
  • the localized surface plasmon resonance sensor In contrast, in the localized surface plasmon resonance sensor, the near field generated on the surface of the metal fine particle (metal nanoparticle) becomes the sensing region, and therefore, a sensitivity region of several tens of nm below the diffraction limit can be realized. As a result, the localized surface plasmon resonance sensor has no sensitivity to the inspection object floating in the region away from the metal fine particles, and only the inspection object attached to a very narrow region on the surface of the metal fine particles. There is a possibility that a sensor with higher sensitivity can be realized.
  • a localized surface plasmon resonance sensor using metal fine particles has no sensitivity to the test object floating away from the metal fine particles, and therefore has less noise components. In that sense, compared to a propagation type surface plasmon resonance sensor. High sensitivity. However, in a sensor using surface plasmon resonance generated in metal fine particles such as Au and Ag, the intensity of the signal obtained from the inspection object attached to the surface of the metal fine particles is small, and in that sense, the sensitivity is still low. Or the sensitivity was not enough.
  • the localized surface plasmon resonance sensor has a substrate 19 having a structure in which depressions (recesses) formed by nanoimprinting are regularly arranged, and is deposited or sputtered from above the recesses.
  • the metal layer 20 obtained by laminating the metal materials by reflecting the shape below.
  • FIG. 30 in this localized surface plasmon resonance sensor 18, when the linearly polarized light 21 is irradiated from the metal layer 20 side of the substrate 19, a strong electric field 22 is concentrated in the recess.
  • the present inventors can realize a structure capable of providing a highly sensitive localized surface plasmon resonance sensor, a localized surface plasmon resonance sensor chip, and a localized surface plasmon resonance sensor obtained therefrom.
  • the patent application has already been filed (see Patent Documents 2 and 3).
  • the structure described in Patent Document 2 includes a flat portion and a barnacle body including a concave portion and a convex portion.
  • the structure described in Patent Document 3 includes a flat portion and a cylindrical body.
  • a polymer replica method can be used as a method for mass-producing the structures described in Patent Documents 2 and 3.
  • a resin is applied to the structure and cured to produce a second structure serving as a mold of the structure (first structure). Further, a resin can be applied to the portion of the second structure that becomes the mold of the first structure and cured to obtain a third structure that is a duplicate of the first structure.
  • the nanoimprint method is different from the polymer replica method in that the mold is pressed against the resin and the shape of the mold is transferred to the resin.
  • the mold 201 used in the technique described in Patent Document 4 has a concave portion 205A and a convex portion 205B (FIG. 31 (a)).
  • the recess 205A is provided so as to gradually expand in the depth direction.
  • the pattern surface 201a of the mold 201 and the substrate 203 are opposed to each other, and the substrate resist 202 is pressed (FIG. 31B).
  • the substrate resist 202 is in a state of being erected and gradually expanded from the substrate 3 side toward the mold 201 side in accordance with the shape of the recess 205A (FIG. 31C).
  • the substrate resist 202 is cured while maintaining this pressed state. At this time, the front end side of the substrate resist 202 in the recess 205A shrinks and hardens more than the substrate 3 side (FIG. 31D). Therefore, a transfer pattern 208 as shown in FIG.
  • the inner diameter of the barnacle body or the cylindrical body sometimes has a shape that increases from the opening in the depth direction.
  • the shape of the cross section parallel to the depth direction of the concave portion of the barnacle body or the cylindrical body may be a reverse taper type.
  • the structure having such a complicated shape has a problem that it is difficult to mass-produce it by the nanoimprint method.
  • the completed mold is pressed against the resin, the resin is cured, and then the resin is peeled from the mold to produce a replica. Also in this step, since the structure has a reverse-tapered concave portion and a circularly closed opening, it is difficult to peel the resin from the mold as in the case of manufacturing the mold described above. It was.
  • the recess 205A is provided so as to gradually expand in the depth direction.
  • the mold 201 used in the nanoimprint method described in Patent Document 4 adopts the concave portion having the above shape in consideration of the shrinkage of the substrate resist 202 after curing. As shown in FIGS. 31D and 31E, the substrate resist 202 that has flowed into the recess 205A contracts after being cured, and is in a columnar shape (in a state where it is erected with the same cross-sectional area in a direction perpendicular to the substrate 203) ) Therefore, in the nanoimprint method described in Patent Document 4, the cured substrate resist 202 can be easily peeled from the mold 201.
  • Patent Document 4 does not cure and peel the resin that has flowed into the inverted taper-shaped recess in the same shape.
  • paragraph [0239] of Patent Document 2 and paragraph [0199] of Patent Document 3 it is difficult to produce a complicated shape by the nanoimprint method because the release property from a stamper is poor at a submicron size. Is ". Therefore, the technique described in Patent Document 4 cannot be applied to the structure replication described in Patent Documents 2 and 3.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a method for easily replicating a structure capable of providing a highly sensitive localized surface plasmon resonance sensor by a nanoimprint method. It is in.
  • the present inventors have made extensive studies on the method for duplicating the structure, and as a result, the conventional technique is applied to the structure having the complicated shape as described above. It has been found that the replication of the structure can be realized by using a nanoimprint method that has been considered difficult to do.
  • a structure replication method is a structure replication method, comprising: (i) introducing a fluorine group on the surface of the first structure; ii) Applying the first thermosetting resin or photocurable resin so as to cover the surface of the first structure, curing the first thermosetting resin or photocurable resin, (Ii) applying a second thermosetting resin or photocurable resin on the substrate, and a step of producing a second structure to be a mold of the first structure by peeling from the structure.
  • the first structure includes a flat portion, a convex portion projecting with respect to the flat portion, and a concave portion recessed with respect to the apex of the convex portion or the flat portion.
  • Projecting continuously along the outer periphery of the concave portion, and the average inner diameter of the shape formed by the apex of the convex portion continuously projecting along the outer periphery of the concave portion is within the range of 5 nm to 2,000 nm
  • the inner diameter of the shape formed by the apex of the convex portion continuously projecting along the outer periphery of the concave portion is the shape of the convex portion continuously projecting along the outer periphery of the concave portion and the concave portion. It is characterized by being smaller than the maximum inner diameter.
  • the present invention relates to a structure duplication method, wherein (i) a step of introducing a fluorine group into the surface of the first structure, and (ii) a second structure that is a mold of the first structure. And (iii) pressing the second structure against the second thermosetting resin or photocurable resin, and forming a third structure that is a replica of the first structure.
  • the first structure includes a flat portion, a convex portion projecting with respect to the flat portion, and a concave portion recessed with respect to the apex of the convex portion or the flat portion.
  • the inner diameter of a structure that is smaller than the maximum value of the inner diameter of the shape of the convex portion continuously projecting along the periphery of the recess and the recess is formed.
  • FIG. (A) is a planar SEM image of the 1st structure produced in Example 2
  • (b) is a planar SEM image of the 3rd structure produced in Example 2.
  • FIG. (A) is a plane SEM image of the sensor chip using the third structure produced in Example 3, and (b) is the stress at the time of imprint when manufacturing the third structure. It is a figure which shows a log
  • (A) is the cross-sectional SEM image of the sensor chip using the 3rd structure produced in Example 3
  • (b) is the cross-sectional TEM image of the sensor chip using the 1st structure. is there.
  • (A) is a planar SEM image of the sensor chip using the third structure produced in the comparative example
  • (b) is a sensor chip using the third structure produced in Example 4. It is a plane SEM image. It is a figure which shows the transmission spectrum of the chip for sensors using the 3rd structure produced from the same 2nd structure in Example 5.
  • FIG. 10 is a planar SEM image of a sensor chip using a third structure manufactured in Example 8.
  • FIG. 10 It is a figure which shows distribution of the peak position of the transmission spectrum of the sensor chip using the 3rd structure produced from the same 2nd structure in Example 8.
  • FIG. (A), (c) and (e) are sensor chips (second generation) using a third structure derived from a plurality of second structures produced from the third structure in Example 9. ) Plane SEM image.
  • (B), (d) and (f) are diagrams showing transmission spectra corresponding to the sensor chips shown in (a), (c) and (e), respectively.
  • (A), (c), and (e) are diagrams showing stress histories during imprinting in Examples 11-13, respectively.
  • (B), (d), and (f) are (a), It is a top view of the chip for sensors manufactured by the stress history shown in (c) and (e).
  • (A) is a figure which shows the transmission spectrum of the chip
  • (b) is a figure which shows the positional relationship of a measurement area
  • (A) is a figure which shows the transmission spectrum of the chip
  • (b) is a figure which shows the positional relationship of a measurement area
  • (A) And (b) is a figure which shows the result of the biosensing by the sensor chip using the 1st structure in Example 16, and the sensor chip using the 3rd structure, respectively. It is drawing which shows typically the principle of the conventional propagation type surface plasmon resonance sensor. It is sectional drawing which shows schematic structure of the conventional localized surface plasmon resonance sensor. It is sectional drawing which shows that a strong electric field concentrates on a recessed part in the conventional localized surface plasmon resonance sensor. It is drawing which shows the conventional nanoimprint method typically.
  • a to B indicating a range means A or more and B or less, and various physical properties mentioned in this specification are described in Examples described later unless otherwise specified. Means the value measured by the method. Further, in this specification, the method for duplicating a structure according to the present invention is appropriately referred to as “the duplication method of the present invention”.
  • the first structure includes a flat part, a convex part protruding with respect to the flat part, and a concave part recessed with respect to the apex of the convex part or the flat part.
  • the convex part in the structure is continuously projected along the outer periphery of the concave part.
  • the structure has both a convex portion protruding above the flat portion and a concave portion recessed below the top of the convex portion or the flat portion, and the convex portion is a closed shape such as a circle. It is preferable that it has a shape similar to a barnacle of marine organisms.
  • a portion having a shape like a barnacle formed from the concave portion and a convex portion continuously projecting along the outer periphery of the concave portion is also referred to as a “barnacle body”.
  • the expression “barnacle body” in this specification is an expression that expresses the appearance of the structure formed by the concave portion and the convex portion for convenience, and the internal shape of the structure body is a marine organism. It is not intended to be similar to barnacles.
  • FIG. 1 is an example of a planar SEM image of the first structure.
  • FIG. 1B is an enlarged view of FIG.
  • FIG. 2 is a cross-sectional view schematically showing the first structure.
  • the first structure has a barnacle body 45 on the surface.
  • the barnacle body 45 is formed of a convex portion 45a and a concave portion 45b.
  • the average inner diameter of the shape formed by the apexes of the protrusions that continuously protrude along the outer periphery of the recess is in the range of 5 nm to 2,000 nm.
  • a structure formed by “the apex of the convex portion protruding continuously along the outer periphery of the concave portion” may be referred to as an “opening portion”.
  • the (average) inner diameter of the shape formed by the vertices of the protrusions continuously projecting along the outer periphery of the recess is simply referred to as “the (average) inner diameter of the opening” and “ The “shape formed by the vertices of the convex portions protruding continuously” may be simply referred to as “the shape of the opening”.
  • a in FIG. 2 represents the inner diameter of the opening.
  • the shape of the opening may be circular, oval or square.
  • the average inner diameter of the opening of the barnacle body is to observe the opening of the barnacle body from above with an atomic force microscope (AFM), scanning electron microscope (SEM), laser microscope, etc., and measure the inner diameter of the opening. It can be grasped by.
  • the “inner diameter of the opening” is intended to be the diameter of the largest inscribed circle with respect to the shape of the opening.
  • the diameter of the circle is intended and substantially In the case of an ellipse shape, the minor axis of the ellipse is intended, in the case of a substantially square shape, the length of the side of the square is intended, and in the case of a substantially rectangular shape, the short side of the rectangle is intended. Length is intended.
  • the inner diameter of the opening is measured for a plurality of (preferably 10 or more, more preferably 20 or more, more preferably 50 or more) barnacle bodies, and the average value is obtained as “the average inner diameter of the barnacle body openings”. do it.
  • the structure can be preferably used for manufacturing a chip for a localized surface plasmon resonance sensor. Therefore, a replica of the structure can also be preferably used for the manufacture of a localized surface plasmon resonance sensor chip.
  • the average inner diameter of the opening of the barnacle body is more preferably in the range of 300 nm to 1000 nm. When the average inner diameter of the opening of the barnacle body is in the range of 300 nm to 1000 nm, the incident light can be more strongly localized.
  • the average inner diameter of the opening of the barnacle body is more preferably in the range of 400 nm to 800 nm. When the average inner diameter of the opening of the barnacle body is in the range of 400 nm to 800 nm, it is possible to enhance the localized incident light.
  • the inner diameter of the opening is smaller than the maximum value of the inner diameter of the concave portion and the shape of the convex portion continuously projecting along the outer periphery of the concave portion.
  • FIG. 2A represents the inner diameter of the opening.
  • B of FIG. 2 represents the maximum inner diameter in the shape formed by the concave portion and the convex portion continuously projecting along the outer periphery of the concave portion.
  • A ⁇ B.
  • the inner diameter A and the inner diameter B can be grasped by cross-sectional observation of the barnacle body using a scanning electron microscope (SEM) or a transmission electron microscope (TEM).
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the internal diameter of the structure after gold vapor deposition was measured in the below-mentioned Example, the structure before gold vapor deposition is measurable similarly.
  • the shape formed by the concave portion and the convex portion continuously projecting along the outer periphery of the concave portion is also referred to as “inside the barnacle body”.
  • the inner diameter increases from the opening toward the bottom of the recess.
  • at least a part of the inside of the barnacle body is a reverse taper type.
  • the inner diameter of the barnacle body may be consistently increased from the opening to the bottom surface of the recess, or the inner diameter increases to a certain depth from the opening inside the barnacle body, and then toward the bottom surface in the middle. The inner diameter may be reduced.
  • the depth the sum of the height of the convex portion and the depth of the concave portion
  • the bottom surface of the recess is a portion located on the side opposite to the opening in the barnacle body.
  • the average value of the depth from the opening of the barnacle body (the sum of the height of the convex portion and the depth of the concave portion) is in the range of 10 nm or more and 2 ⁇ m or less. It is preferable that it is in the range of 30 nm or more and 500 nm or less.
  • the depth is measured for a plurality of (preferably 10 or more, more preferably 20 or more, and still more preferably 50 or more) barnacle bodies, and the average value is obtained as “average value of depth from opening of barnacle bodies” "And it is sufficient.
  • the structure can be localized, the structure can be preferably used for manufacturing a chip for a localized surface plasmon resonance sensor.
  • the dispersion density in the plane portion of the barnacle body is preferably in the range of 1 to 500,000 per 100 ⁇ m square, more preferably in the range of 10 to 300,000 per 100 ⁇ m square. preferable. Moreover, it is most preferable that it is in the range of 50 to 200,000 per 100 ⁇ m square.
  • the dispersion density may be calculated by measuring the number of barnacles existing in an arbitrary range by AFM or SEM observation, and calculating the number per 100 ⁇ m square.
  • a third structure having the same shape as the first structure can be manufactured regardless of the material of the first structure. Accordingly, the material and manufacturing method of the first structure body according to the present embodiment are not particularly limited, but an example thereof is shown below.
  • the material constituting the first structure is not particularly limited, and may be an inorganic material, an organic material, or a mixture thereof. Furthermore, the structure according to the present embodiment may be made of a stimulus-responsive material (for example, a light-responsive material, a heat-responsive material, or the like).
  • inorganic material examples include dielectrics such as silicon (crystal, polycrystal, amorphous), carbon (crystal, amorphous), nitride, oxide (titanium oxide, silicon dioxide (SiO 2 )), and semiconductor materials. . These inorganic materials may be those obtained by sintering fine particles.
  • Organic material examples include general-purpose polymers, engineering plastics, super engineering plastics, and liquid crystal compounds (a mixture may be used, or a secondary structure or a tertiary structure may be controlled such as having a crosslinked structure).
  • organic materials there is a stimulus-responsive material that changes physical properties and shape in response to an external stimulus.
  • the stimulus-responsive material is a material in which a molecular chain has mobility in response to an external stimulus, and specifically includes a heat-responsive material and a photo-responsive material.
  • the heat-responsive material is a material in which the molecular chain constituting the material is intensely moved by thermal stimulation.
  • a material that exhibits fluidity, softens or deforms in response to thermal stimulation Specifically, amorphous materials such as acrylic materials such as polystyrene and polymethyl methacrylate, crystalline materials such as polyethylene, polypropylene, polyethylene terephthalate and isotactic polystyrene, urethane resins, urea resins, melamine Resin, phenol resin, etc. can be used.
  • a copolymer such as a styrene-methacrylate copolymer (block copolymer, random copolymer, etc.) can also be used. These materials may be used in combination.
  • the photoresponsive material is a material that causes mass transfer by light irradiation, and more specifically, is a material that causes a mass transfer phenomenon along the bright and dark portions of the light of the irradiated portion.
  • the photoresponsive material is not particularly limited as long as it is a material capable of causing photodeformation and exhibits mass transfer according to the light and dark part of the light irradiation part.
  • ablation, photochromism examples include organic or inorganic materials that contain a component (photoreactive component) that causes photo-induced alignment of molecules in the matrix material, and whose volume, density, free volume, and the like are changed by light irradiation.
  • the photoresponsive material has a structure in which any element selected from the group consisting of sulfur, selenium, and tellurium is bonded to any element selected from the group consisting of germanium, arsenic, and antimony. Examples thereof include inorganic materials generically called chalcogenite glass.
  • the photoreactive component examples include a photoisomerization component and a photopolymerizable component, which are components capable of causing an anisotropic photoreaction accompanied by a change in material shape.
  • the photoisomerization component examples include components that cause trans-cis photoisomerization, particularly typically a dye structure having an azo group (—N ⁇ N—), particularly a chemical structure of azobenzene or a derivative thereof. Ingredients.
  • the isomerization component is a material containing a dye structure having an azo group
  • the dye structure has one or more electron-withdrawing functional groups (electron-withdrawing substituents) and / or one or two or more.
  • electron donating functional groups are preferably provided, and it is particularly preferred to have both of these electron withdrawing functional groups and electron donating functional groups.
  • the electron-withdrawing functional group is preferably a functional group having a positive value for the substituent constant ⁇ in Hammett's rule, and the electron-donating functional group is a functional group having a negative value for the substituent constant ⁇ in Hammett's rule. preferable.
  • the isomerization component is represented by the following formula (1) ⁇
  • is a substituent constant in Hammett's rule
  • ⁇ 1 is a cyano group substituent constant
  • ⁇ 2 is an amino group substituent constant.
  • the above-mentioned electron donating substituent and electron withdrawing substituent are provided under the condition that is established.
  • the dye structure controlled so that the cut-off wavelength on the long wavelength side of the light absorption wavelength is in the wavelength range shorter than the fluorescence peak wavelength in the fluorescent dye for fluorescence analysis can be included. Thereby, an accurate measurement can be performed.
  • the type of the dye structure is not particularly limited.
  • a dye structure having an azo group particularly a chemical structure of azobenzene or a derivative thereof is preferable. That is, the photoresponsive material preferably contains an azopolymer derivative, and more preferably an azopolymer derivative having an azobenzene group in the main chain and / or side chain.
  • the photoresponsive component may be simply dispersed, or may be chemically bonded to the constituent molecules of the matrix material. From the point of view that the distribution density of the photoreactive component in the matrix material can be almost completely controlled and the heat resistance or stability over time of the material, the photoresponsive component is chemically connected to the molecules constituting the matrix material. It is particularly preferred that they are bonded together.
  • an organic material such as a normal polymer material or an inorganic material such as glass can be used.
  • an organic material particularly a polymer material.
  • the type of the polymer material constituting the matrix material is not particularly limited, but it is preferable that the repeating structural unit of the polymer has a urethane group, a urea group, or an amide group, and further the main chain of the polymer. It preferably has a ring structure such as a phenylene group from the viewpoint of heat resistance.
  • the molecular weight and the degree of polymerization of the polymer material constituting the matrix material are not particularly limited as long as it can be molded into a required shape.
  • the polymerization form may be any form such as linear, branched, ladder, or star shape, and may be a homopolymer or a copolymer.
  • the glass transition temperature of the polymer material is preferably high, for example, 100 ° C. or higher, but it can be used even when the glass transition temperature is about room temperature or lower. is there.
  • the method for manufacturing the first structure is not particularly limited, and for example, a known photolithography technique, electron beam lithography technique, nanoimprint technique, dry and wet etching technique may be used.
  • a manufacturing method including (i) a light-responsive material film forming step, (ii) a liquid application step, and (iii) a light irradiation step will be described with reference to FIG.
  • the photoresponsive material film forming step is performed on the surface of a substrate 46 (for example, a substrate made of glass, acrylic resin, amorphous carbon, crystalline silicon, polycrystalline silicon, amorphous silicon, or the like). This is a step of forming a film of photoresponsive material (photoresponsive material layer 48).
  • a substrate 46 for example, a substrate made of glass, acrylic resin, amorphous carbon, crystalline silicon, polycrystalline silicon, amorphous silicon, or the like.
  • the same materials as those exemplified in “(I) Structure” can be used.
  • a solution obtained by dissolving a photoresponsive material in an appropriate organic solvent an organic solvent capable of dissolving a photoresponsive material such as tetrahydrofuran (THF), chloroform, cyclohexanone, or acetone
  • an organic solvent capable of dissolving a photoresponsive material such as tetrahydrofuran (THF), chloroform, cyclohexanone, or acetone
  • THF tetrahydrofuran
  • chloroform chloroform
  • cyclohexanone cyclohexanone
  • acetone acetone
  • the film of the photoresponsive material formed by the above method may be annealed.
  • the “annealing” is a process of volatilizing the solvent (residual solvent) contained in the film of the photoresponsive material by heating. Annealing is also a process of relaxing the physical history (molecular orientation) received during the film formation process of the film constituent material (for example, polymer).
  • the annealing heating temperature preferable conditions can be adopted as appropriate.
  • the heating temperature for annealing may be, for example, around the glass transition point of the photoresponsive material, or may be around room temperature.
  • the annealing may be performed under atmospheric pressure conditions or under reduced pressure conditions.
  • the film of the photoresponsive material formed as described above may be immediately subjected to the liquid application process, or may be left for a while and then the liquid application process may be performed.
  • the ambient temperature when left standing may be room temperature, room temperature or higher, or room temperature or lower. Further, it may be left under a condition in which the humidity is controlled as necessary.
  • the liquid application step is a step of applying the liquid 54 on the photoresponsive material layer 48 as shown in FIG.
  • the liquid 54 may be a liquid containing no particulate matter or a liquid containing a particulate matter.
  • articulate-substance-free liquid means a liquid that does not substantially contain a particulate substance.
  • “Particulate matter” means a particulate solid in a liquid. In particular, it may mean a substance having an average particle diameter in the range of 1 nm to 100 ⁇ m.
  • the “average particle diameter” means an average particle diameter of primary particle diameters and can be measured by a BET method (specific surface area method).
  • substantially free means that the substance is not detected by a detection means (for example, a particle size distribution measuring device) capable of detecting a substance of 1 nm to 100 ⁇ m.
  • the “particulate substance” is not particularly limited as long as it is a substance that exists as a particulate solid in a liquid.
  • a rigid body such as a metal particle or a very flexible object such as an animal cell is used. means.
  • the above “particulate substance” is a particulate substance, metal particles, or metal oxide particles made of at least one material selected from the group consisting of inorganic materials, metal materials, and polymer materials.
  • the particulate material include semiconductor particles, ceramic particles, plastic particles, or a mixture of two or more of these materials (for example, a mixture of two materials or a multilayer structure).
  • Examples of the metal particles include gold, silver, copper, aluminum, and platinum.
  • Examples of the metal oxide particles include silica, titanium oxide, tin oxide, and zinc oxide.
  • Examples of the plastic particles include polystyrene particles and acrylic particles.
  • liquid used in this step, water, an organic solvent such as methanol or ethanol, an organic solvent capable of dissolving a photoresponsive material such as tetrahydrofuran (THF), chloroform, cyclohexanone or acetone, water and the above organic solvent Of the mixture.
  • organic solvent such as methanol or ethanol
  • organic solvent capable of dissolving a photoresponsive material such as tetrahydrofuran (THF), chloroform, cyclohexanone or acetone
  • the liquid application method is not particularly limited, and may be simply added with a dropper or the like, and a known method such as a spin coating method, a spray method, or a dip coating method may be used.
  • the first method for producing a structure after applying a liquid, an operation of keeping a thickness of the liquid constant by placing a film or a plate-like substance on the liquid may be performed.
  • the film or plate-like substance may be transparent or opaque.
  • the light irradiation step is a step of irradiating light to the photoresponsive material layer 48 to which the liquid 54 has been applied by the liquid application step. In other words, it is a step of performing light irradiation after the liquid is applied to the surface of the photoresponsive material and before the liquid dries.
  • the photoresponsive material after the liquid application step may be dried after the applied liquid is dried to such an extent that the applied liquid is not completely evaporated.
  • the drying method is not particularly limited, and the photoresponsive material after the liquid application step may be heated in a drying furnace, or may be air-dried with a dryer (nitrogen gas or air). Etc.), drying under reduced pressure, or natural drying may be performed.
  • the light irradiation time may be appropriately adjusted according to the shape of the structure to be obtained and the type and intensity of light. Also, the direction of light irradiation is not particularly limited, and light may be irradiated from the back surface (the side where the liquid is not applied) of the photoresponsive material, or light may be irradiated from the side where the liquid is applied. Good.
  • any irradiation light such as propagating light, near-field light, or evanescent light can be used as long as there is no mismatch in combination with a material that causes optical deformation. Natural light, laser light, or the like can be used as the propagating light.
  • the polarization characteristics can be used as propagating light, near-field light, or evanescent light.
  • the wavelength of the irradiation light and the light source are not limited, but the wavelength is preferably a wavelength with high absorption efficiency of the material that causes optical deformation. Therefore, it is preferable to select light including a wavelength with high absorption efficiency from ultraviolet light (wavelength 300 to 400 nm) and visible light (wavelength 400 to 700 nm). In the case of irradiation with visible light, it is preferable to use a photoresponsive material capable of fixing the solid light by irradiation with visible light. In addition, pulsed light having a high peak output can be used.
  • the light irradiation step may be performed immediately after the liquid application step, or may be performed after being left for a while.
  • the ambient temperature at the time of leaving may be below room temperature, above room temperature, or below room temperature. Further, it may be left under a condition in which the humidity is controlled as necessary.
  • the first structure 49 can be obtained as shown in FIG.
  • the drying method is not particularly limited, and the photoresponsive material after the liquid application step may be heated in a drying furnace, or may be air-dried with a dryer, or may be dried under reduced pressure. It may be carried out or may be naturally dried.
  • the manufacturing method of the first structure may include a step of performing a corona discharge treatment (corona discharge treatment step) after the light irradiation step.
  • a desired structure can be obtained by performing a corona discharge treatment.
  • the height of the raised portion of the barnacle can be increased by corona discharge treatment.
  • a corona discharge treatment method a general corona discharge treatment method can be used (for example, Optics Letters, Vol. 26, No. 1, January 1, 2001, “Diffraction efficiency increase by corona discharge in photoinduced surface relief gratings on an azo polymer film ”).
  • what is necessary is just to adjust the intensity
  • the corona discharge treatment process itself may be performed if necessary in order to obtain a desired structure, and may not be performed if it is not necessary to perform the corona discharge treatment.
  • the structure replication method according to the present invention includes (i) a mold release process, (ii) a structure mold manufacturing process, and (iii) a structure replication process using the mold. .
  • the replica of a 1st structure can be mass-produced easily irrespective of the material of a 1st structure.
  • the manufacturing method of the first structure will be described with reference to FIGS.
  • the mold release treatment step is a step of introducing a fluorine group into the surface of the first structure. Since the duplication method of the present invention includes a mold release process, the second structure which becomes the mold of the first structure from the first structure having the complicated shape as described above. Can be easily peeled off.
  • FIG. 4 is a cross-sectional view illustrating a second structure manufacturing method in the structure replication method according to the present embodiment. As shown in FIG. 4A, first, a mold release process is performed on the surface of the first structure 49.
  • introducing a fluorine group means that a fluorine group is present on at least a part of the surface of the first structure.
  • the fluorine group may be directly chemically bonded to the surface of the first structure, or may be introduced by covering the first structure with a fluorine-containing compound.
  • the said hydrophobic group exists between the 1st structure and the 1st thermosetting resin or photocurable resin apply
  • a method for introducing the fluorine group for example, a method in which a fluorine-based silane coupling agent or a fluorine coating agent is attached to the surface of the first structure, or a fluorine gas is brought into contact with the surface of the first structure. And a method of forming an organic nano thin film containing fluorine on the surface of the first structure.
  • the fluorine-based silane coupling agent include OPTOOL (registered trademark) DSX, HD-1100TH manufactured by Daikin Industries, Ltd.
  • the rinsing agent after the mold release treatment include OPTOOL (registered trademark) HD-TH manufactured by Daikin Industries, Ltd.
  • Examples of the fluorine coating agent include XINT-333QA, XINT-333QF, and WOP-019XQA manufactured by Noda Screen Co., Ltd.
  • Examples of the method of bringing the fluorine gas into contact include the technology of Takamatsu Teic acid Co., Ltd.
  • As a method of forming an organic nano thin film containing fluorine for example, NANOS (registered trademark) manufactured by T & K Corporation may be mentioned.
  • Examples of the method for attaching the fluorine-based silane coupling agent to the surface of the first structure include a method of immersing the first structure in a fluorine-based silane coupling agent solution (wet treatment). Alternatively, a method (dry treatment) in which a fluorine-based silane coupling agent is attached in a gas phase under heating and reduced pressure may be used.
  • the temperature after immersion in the wet treatment is preferably 20 ° C. or higher and 100 ° C. or lower, and more preferably 25 ° C. or higher and 80 ° C. or lower.
  • the humidity (relative humidity) after immersion in the wet treatment is preferably 10 RH% to 100 RH%, and more preferably 50 RH% to 100 RH%.
  • the fluorinated silane coupling agent can be adhered to the first structure more firmly and in a shorter time.
  • the reaction time of the mold release treatment with the fluorine-based silane coupling agent may be left overnight, but since the coupling reaction is promoted at the temperature and humidity, the reaction can be completed in about 1 hour.
  • the mold release treatment step it is preferable to perform a surface activation treatment on the surface of the first structure before attaching the fluorine-based silane coupling agent to the surface of the first structure.
  • the surface activation treatment include treatment with plasma or ultraviolet rays.
  • the surface of the first structure can be hydrophilized by introducing a hydroxyl group (—OH) on the surface of the first structure, and the fluorine-based silane coupling agent can be introduced via the hydroxyl group. Can be more firmly attached to the first structure.
  • a high-frequency plasma processing machine such as a low-frequency plasma processing machine or an RIE apparatus (reactive ion etching apparatus) may be used.
  • light having a wavelength in the ultraviolet region may be irradiated.
  • the wavelength in the ultraviolet region a wavelength range of 150 nm to 400 nm is preferable, and a wavelength range of 160 nm to 300 nm is more preferable.
  • FIG. 5 is a cross-sectional view showing an example of a mold release processing method for the first structure in the structure duplication method according to the present embodiment.
  • surface activation is performed on the first structure 49 by, for example, plasma treatment, and hydroxyl groups are introduced (FIGS. 5A and 5B).
  • the first structure 49 subjected to the surface activation treatment is immersed in the fluorine-based silane coupling agent solution 60 to introduce fluorine groups on the surface of the first structure 49, and to release the mold. Processing can be performed (FIG. 5C).
  • the manufacturing process of the structure mold means that the first thermosetting resin or photocurable resin is applied so as to cover the surface of the first structure, and the first thermosetting resin or photocurable resin is applied. This is a step of manufacturing a second structure which becomes a mold of the first structure by peeling the resin from the first structure after curing.
  • a structure serving as a mold of the first structure may be referred to as a “second structure” or a “negative replica”.
  • the first thermosetting resin or photocurable resin 50a is applied so as to cover the surface of the first structure 49.
  • thermosetting resin or photocurable resin generally used resins can be used.
  • a photoresponsive material as a material of a 1st structure
  • silicone resin particularly polydimethylsiloxane, phenol resin, urea resin, melamine resin, unsaturated polyester resin, epoxy resin, direal phthalate resin, polyurethane, polyimide and the like can be used.
  • photocurable resin silicone resin, polyimide resin, acrylic resin, and the like can be used.
  • the photocurable resin includes not only a resin that absorbs and cures light, but also includes a resin that absorbs light and plasticizes and cures by blocking light, such as an azobenzene polymer. is there. Therefore, an azobenzene polymer can also be used in this step.
  • an azobenzene polymer since the refractive index in the visible light wavelength region is high, there is an advantage that the amplification effect of the localized surface plasmon resonance electric field when the metal is deposited becomes larger.
  • thermosetting resin or photocurable resin examples include known methods such as spin coating, spraying, dip coating, and injection molding.
  • the first thermosetting resin or photocurable resin is cured by heating, light irradiation, or light blocking according to the properties of the resin, and then peeled from the first structure. Thereby, as shown in FIG.4 (c), the 2nd structure 50 is obtained.
  • the curing temperature when a thermosetting resin is used as the material of the second structure depends on the type of resin, but may be, for example, room temperature or 150 ° C. or lower.
  • the curing condition may be 150 ° C. ⁇ 30 minutes.
  • the obtained second structure 50 is a mold of the first structure. That is, the second structure has a convex portion corresponding to the inside of the barnacle body of the first structure.
  • the convex part in the second structure has a shape in which the diameter of the cross section perpendicular to the direction in which the convex part protrudes increases toward the tip. Since the shape of the first structure and the second structure is a fitting shape, it is difficult to peel off by the conventional technique. According to the replication method of the present invention, since the fluorinated silane coupling agent exists between the first structure and the second structure, the second structure can be easily peeled from the first structure. can do.
  • this step may be repeated a plurality of times. That is, after peeling the second structure from the first structure, the first thermosetting resin or the photocurable resin is applied and cured again on the same first structure, You may repeat the process of obtaining a structure. According to the above configuration, a plurality of second structures can be obtained using the same first structure.
  • thermosetting resin or photocurable resin it is preferable to perform a defoaming step before the first thermosetting resin or photocurable resin is cured. According to the said structure, removing the bubble which generate
  • thermosetting resin or the photocurable resin is applied before the first thermosetting resin or the photocurable resin is cured.
  • the structure By disposing the structure under reduced pressure conditions, it is continuous along the outer periphery of the concave portion and the concave portion as compared with the inner diameter of the shape formed by the apex of the convex portion continuously projecting along the outer periphery of the concave portion. It is preferable to perform a resin filling step in which the first thermosetting resin or the photocurable resin is filled into a region having a large inner diameter formed by the protruding portion.
  • the first structure has a barnacle structure having a portion where the inner diameter increases from the opening in the depth direction.
  • the resin may not spread to every corner of the barnacle body, and an air layer (gap) may remain in a region having an inner diameter larger than the opening.
  • the air remaining in the barnacle body is obtained by setting the environment in which the first structure coated with the first thermosetting resin or the photocurable resin is disposed under a reduced pressure condition. It is preferable to remove the layer.
  • resin can be filled to every corner (especially area
  • the resin filling step is preferably performed by placing the first structure having the surface coated with the first thermosetting resin or the photocurable resin under reduced pressure.
  • the pressure under the above reduced pressure condition is preferably 10 Pa or more and 90 kPa or less, and more preferably 100 Pa or more and 30 kPa or less.
  • the temperature in the said resin filling process is 20 to 150 degreeC, and it is more preferable that it is 25 to 100 degreeC.
  • the time for performing the resin filling step is preferably 1 minute or more and 3 hours or less, more preferably 1 minute or more and 2 hours or less, and further preferably 5 minutes or more and 1 hour or less. According to the above configuration, the inside of the barnacle body can be more efficiently filled with resin.
  • the decompression condition may be realized by, for example, an aspirator (a decompression device using a water flow).
  • the resin filling step may be repeated stepwise. That is, the first thermosetting resin or photocurable resin is applied so as to cover the surface of the first structure, the resin filling step is performed, and the first thermosetting resin or photocurable resin is again applied. You may apply
  • the process of replicating a structure using a mold is a method in which a second thermosetting resin or a photocurable resin is applied onto a substrate, and the second thermosetting resin or the photocurable resin is applied to the second thermosetting resin.
  • the third structure which is a replica of the first structure by pressing the structure and then peeling the second thermosetting resin or photocurable resin from the second structure. Is a process of manufacturing.
  • a structure that is a duplicate of the first structure may be referred to as a “third structure” or a “positive replica”.
  • the step of pressing the second structure against the second thermosetting resin or photocurable resin may be referred to as “imprint”.
  • thermosetting resin or photocurable resin 61 is applied on a substrate 62, and the second thermosetting resin or photocurable resin 61 is applied to the second thermosetting resin or photocurable resin 61.
  • the second structure 50 is pressed. By the pressing step, the same shape as the first structure can be transferred to the second thermosetting resin or photocurable resin.
  • the second thermosetting resin or photocurable resin 61 is cured.
  • a third structure 51 is obtained.
  • the substrate examples include substrates made of glass, acrylic resin, polyester resin such as polyethylene terephthalate (PET), olefin and cyclic olefin resin, amorphous carbon, crystalline silicon, polycrystalline silicon, amorphous silicon, and the like.
  • the substrate may be in the form of a plate, a film, or the like.
  • substrate is a board
  • the second thermosetting resin or photocurable resin a commonly used resin can be used in the same manner as the first thermosetting resin or photocurable resin.
  • the second thermosetting resin or the photocurable resin includes a resin having a refractive index adjusted (for example, a polymer material containing inorganic nanoparticles, organic nanoparticles, or metal nanoparticles, or an element having a high polarizability). Polymer materials that are molecularly designed to contain atomic groups containing (phosphorus, sulfur, selenium, etc.) can also be used.
  • the resin having the adjusted refractive index there is a merit that the amplification effect of the localized surface plasmon resonance electric field when the metal is deposited becomes larger (in a tendency).
  • thermosetting resin or photocurable resin examples include known methods such as a spin coating method, a spray method, and a dip coating method.
  • the second thermosetting resin or photocurable resin may be cured by heating, light irradiation, or light blocking depending on the properties of the resin, and then peeled off from the second structure.
  • the first structure to be duplicated in the duplication method of the present invention has a barnacle body having an inverted taper inside.
  • the third structure obtained by curing the second thermosetting resin or photocurable resin is a duplicate of the first structure, and therefore has the same shape as the first structure. Yes. Therefore, the third structure also has a structure that is difficult to peel from the second structure. Therefore, when a force is applied to peel the second structure from the third structure, the second structure and the third structure are not separated from each other, and the third structure is formed.
  • substrate may peel. Therefore, it is preferable that the second thermosetting resin or the photocurable resin is firmly bonded to the substrate.
  • the substrate is a film made of glass or a polyester resin such as polyethylene terephthalate (PET), an acrylic resin, or an olefin or a cyclic olefin resin
  • the resin that is firmly bonded to the substrate is, for example, acrylic silicon Resin.
  • an acrylic silicon resin is used as the second thermosetting resin or photocurable resin, the glass substrate and the acrylic silicon resin are firmly bonded to each other, so there is no possibility that the substrate and the acrylic silicon resin are peeled off.
  • the second structure can be easily peeled from the third structure.
  • acrylic silicon resins include siloxane cross-linked acrylic silicon resins.
  • Specific examples of the siloxane crosslinked acrylic silicone resin include Zemlac (registered trademark) manufactured by Kaneka Corporation, Saimak (registered trademark) and Reseda (registered trademark) manufactured by Toagosei Co., Ltd., and Ares Silicon manufactured by Kansai Paint Co., Ltd. Etc.
  • the second thermosetting resin or the photocurable resin may be an epoxy resin.
  • the epoxy resin does not have a property of being firmly bonded to the glass substrate. Therefore, when the substrate is glass and an epoxy resin is used, it is preferable to apply the epoxy resin after introducing an epoxy group into the glass substrate. If an epoxy group is introduced to the surface of the glass substrate before the second thermosetting resin or photocurable resin is applied to the glass substrate, the glass substrate and the epoxy resin are firmly bonded via the epoxy group. To join. Therefore, there is no possibility that the glass substrate and the epoxy resin are peeled off, and the second structure can be easily peeled from the third structure.
  • “introducing an epoxy group” means that an epoxy group is present on at least a part of the substrate surface.
  • the epoxy group may be directly chemically bonded to the surface of the first structure via a covalent bond or the like, and is introduced by covering the first structure with a compound containing an epoxy group. Also good.
  • Examples of the epoxy resin include polyfunctional epoxy resins.
  • Specific examples of the polyfunctional epoxy resin include SU-8 manufactured by Nippon Kayaku Co., Ltd., Denatite (registered trademark) manufactured by Nagase ChemteX Corporation, jER (registered trademark) manufactured by Mitsubishi Chemical Corporation.
  • an epoxy silane coupling agent for example, a method of attaching an epoxy silane coupling agent to the glass substrate surface can be mentioned.
  • the epoxy silane coupling agent include KBM-402 and KBE-402 manufactured by Shin-Etsu Chemical Co., Ltd.
  • the stress when pressing the second structure against the second thermosetting resin or the photocurable resin is preferably 1 N / cm 2 or more and 300 N / cm 2 or less, and preferably 2 N / cm 2 or more and 200 N / More preferably, it is cm 2 or less. If the stress is 1 N / cm 2 or more, the shape of the second structure can be more reliably transferred to the second thermosetting resin or photocurable resin. Moreover, if the said stress is 300 N / cm ⁇ 2 > or less, the failure
  • the stress may be constant or may change while the second structure is pressed against the second thermosetting resin or the photocurable resin.
  • the stress may be constant or may change while the second structure is pressed against the second thermosetting resin or the photocurable resin.
  • the stress is constant because generation of wrinkles on the second thermosetting resin or the photocurable resin can be suppressed.
  • this step may be repeated a plurality of times. That is, after peeling the second structure from the third structure, the same second structure is pressed again against the second thermosetting resin or photocurable resin, and the resin is cured, You may repeat the process of obtaining a 3rd structure. According to the above configuration, a plurality of third structures can be obtained using the same second structure.
  • the second thermosetting resin or photocurable resin is preferably a resin that cures at room temperature. According to the said structure, it can prevent having a bad influence on the shape of a 2nd structure body (for example, the shape of a 2nd structure body collapse
  • the replication method of the present invention may include a step of regenerating the second structure from the third structure. That is, after the step of manufacturing the third structure, the first thermosetting resin or the photocurable resin is applied so as to cover the surface of the third structure, and the first thermosetting is performed. After the resin or photocurable resin is cured, it may include a step of producing a second structure to be a mold of the third structure by peeling from the third structure. According to the above configuration, even if the first structure or the second structure is damaged, the second structure can be manufactured again. Before applying the first thermosetting resin or photocurable resin so as to cover the surface of the third structure, the above-described mold release treatment is performed on the surface of the third structure. May be.
  • the duplication method of the present invention is the case where the second structure is pressed once against the second thermosetting resin or photocurable resin in the step of manufacturing the third structure.
  • Two or more measurement regions having the third structure body may be formed on the substrate.
  • region which has the 1st structure of this invention may be formed in the several location (for example, 2 or more and 9 or less) on a board
  • a second structure that reflects the shape of the measurement region of the first structure is produced, and imprinting is performed using the second structure, thereby providing a measurement region having the third structure.
  • a plurality of measurement regions can be transferred more precisely by keeping the stress constant during imprinting.
  • a manufacturing method of a localized surface plasmon resonance sensor chip according to the present embodiment includes a step of manufacturing a structure by the replication method of the present embodiment, and the surface of the structure obtained in the above step is covered with metal And forming a metal layer having a shape reflecting the shape of the structure.
  • the step of forming a metal layer is a step of forming a metal layer having a shape reflecting the shape of the structure by coating the surface of the structure obtained in the step of manufacturing the structure with a metal. . Formation of a metal layer can be performed by well-known methods, such as sputtering method and a vapor deposition method, for example.
  • the metal layer deposited by sputtering or vapor deposition is thin, the metal layer may not be formed on the entire surface of the sensor chip.
  • the localized surface plasmon resonance sensor according to the present embodiment Even in such a case, the localized surface plasmon resonance phenomenon is induced in the chip.
  • the localized surface plasmon resonance sensor chip according to the present embodiment is manufactured by the above-described manufacturing method of the localized surface plasmon resonance sensor chip. That is, in the localized surface plasmon resonance sensor chip according to the present embodiment, the third structure manufactured by the structure replication method described above is formed on the substrate, and the surface of the structure is A metal layer is formed so as to cover at least a part and reflect the structure of the structure.
  • the localized surface plasmon resonance sensor chip includes a flat portion, a convex portion protruding from the flat portion, and an apex of the convex portion or a depression with respect to the flat portion.
  • the convex portion continuously protrudes along the outer periphery of the concave portion, and the average inner diameter of the shape formed by the apex of the convex portion continuously protruded along the outer periphery of the concave portion is The inner diameter of the shape formed by the vertices of the protrusions that are in the range of 5 nm to 2,000 nm and that protrudes continuously along the outer periphery of the recesses is continuous along the outer periphery of the recesses and the recesses A structure smaller than the maximum value of the inner diameter of the shape formed by the protrusion protruding above is formed on the substrate so as to cover at least a part of the surface of the structure and reflect the structure of the structure.
  • the substrate constituting the localized surface plasmon resonance sensor chip As the substrate constituting the localized surface plasmon resonance sensor chip according to the present embodiment, glass, acrylic resin, amorphous carbon, crystalline silicon, polycrystalline silicon, amorphous silicon, or the like is preferably used.
  • the substrate for use in the transmission type localized surface plasmon resonance method is preferably a substrate having high light transmittance (total light transmittance is 60% or more (in terms of thickness 1 mm)).
  • the localized surface plasmon resonance sensor chip according to the present embodiment has the shape of the above structure, coupling between free electrons and incident light in the metal inside the barnacle body and around the opening is performed. As a result, the electric field concentrates inside the barnacle body and around the opening, and extremely strong localized surface plasmon resonance is generated.
  • the “local resonance electric field” refers to an electric field in which the resonance electric field does not propagate along the metal surface and the region of the electric field enhanced by resonance is smaller than the diffraction limit of incident light.
  • the localized surface plasmon resonance sensor chip according to the present embodiment has the “barnacle body” described above. If it is the said structure, a coupling
  • the average inner diameter of the opening of the barnacle structure is in the range of 5 nm to 2,000 nm.
  • the average inner diameter of the opening of the cylindrical structure is more preferably in the range of 20 nm to 1,000 nm. preferable.
  • the average value of the depth from the opening of the barnacle body is preferably in the range of 10 nm to 2 ⁇ m, preferably 30 nm to 500 nm. More preferably within the following range. If the depth of the barnacle is within the above range, the localized surface plasmon resonance phenomenon can be satisfactorily generated with high sensor sensitivity.
  • the distance between the barnacle bodies is not limited, but the dispersion density in the planar portion of the barnacle bodies is 1 to 500,000 per 100 ⁇ m square. It is preferably within the range, and more preferably within the range of 10 to 300,000 per 100 ⁇ m square. Moreover, it is most preferable that it is in the range of 50 to 200,000 per 100 ⁇ m square.
  • the thickness of the metal layer is preferably in the range of 10 nm to 500 nm. If the thickness of the metal layer is within the above range, a sufficient amount of light can be secured for the reflected light, and a sufficient amount of light can be secured for the amount of transmitted light, resulting in high measurement accuracy.
  • the metal layer is preferably made of Au, Ag, or an alloy thereof. If the material of the metal layer is Au, Ag, or an alloy thereof, strong localized surface plasmon resonance can be generated.
  • an inorganic material layer may be further formed on the metal layer. This is because oxidative deterioration of the metal layer can be prevented and molecules such as proteins to be measured can be prevented from being deactivated.
  • materials such as silicon dioxide, zinc oxide, tin oxide, and titanium oxide are suitable.
  • an organic molecular layer for immobilizing biomolecules is preferably formed on the surface of the metal layer.
  • the surface area for forming the organic molecular layer can be increased, and the sensor sensitivity can be improved.
  • the organic molecular layer has a length of 50 nm to 200 nm from the metal layer surface and a length of 1 nm from the metal layer surface. It is preferable that the molecular weight is less than 50 nm.
  • the organic molecular layer has molecules as described above, molecules having a length of 1 nm or more and less than 50 nm bind to biomolecules in the vicinity of the metal layer, and molecules having a length of 50 nm or more and 200 nm or less are separated from the metal layer. It binds to biomolecules at the moment. And when the molecule
  • Examples of the molecules constituting the organic molecular layer include biotin-modified polyethylene glycol, ORLA18 (trade name, ORLA PROTEIN, manufactured by TECHNOLOGY), dextran, and the like.
  • the molecular chain length of the molecule can be measured by a dynamic light scattering method.
  • the third structure 51 is produced by the above-described structure duplication method (FIG. 7A).
  • a metal layer 52 is deposited so as to reflect the shape of the barnacle body by depositing a metal such as Au or Ag by a resistance heating vacuum vapor deposition machine.
  • a substrate portion of the sensor chip 53 as shown in FIG. 7B can be obtained.
  • a biosensor chip can be manufactured by binding an antibody and a blocking molecule on the metal layer 52.
  • an adhesion layer such as Ti or Cr is provided between the third structure 51 and the metal layer 52. May be.
  • the thickness of the metal layer 52 is desirably 10 nm or more. However, if the metal layer 52 is too thick, incident light cannot be transmitted, and the cost and production throughput are not good. Therefore, a film thickness of about 10 to 150 nm is practically desirable.
  • the localized surface plasmon resonance sensor chip since the third structure is used, the localized surface plasmon resonance sensor chip can be easily mass-produced. Moreover, since the manufacturing method of the localized surface plasmon resonance sensor chip according to the present embodiment is excellent in mass productivity, a highly accurate sensor chip can be produced at low cost.
  • the substrate surface In order to immobilize the metal nanoparticles on the substrate, the substrate surface must be chemically modified, and the metal nanoparticle immobilization process is complicated and efficient. Manufacturing was difficult.
  • the metal layer can be formed continuously, so that it can be manufactured efficiently. In other words, a liquid is dropped onto a photoresponsive material, and vapor deposition is performed on a substrate having a planar portion and a cylindrical body obtained by irradiating light having a wavelength that induces mass transfer accompanying photoisomerization.
  • a process such as sputtering, the shape including the flat portion and the cylindrical body can be efficiently formed.
  • the localized surface plasmon resonance sensor according to the present embodiment includes the above-described localized surface plasmon resonance sensor chip according to the present embodiment and a light source that emits light to the localized surface plasmon resonance sensor chip. And a photodetector for receiving light reflected or transmitted by the localized surface plasmon resonance sensor chip.
  • the localized surface plasmon resonance sensor generates a localized resonance electric field on the surface of the metal layer in the above-described localized surface plasmon resonance sensor chip, and emits it from the light source to be used for the sensor.
  • Light incident on the surface of the chip and reflected or transmitted in a region where a resonance electric field is generated on the surface of the metal layer is received by the photodetector. Then, the reflectance, transmittance, or light intensity received by the photodetector in the sensor chip is measured.
  • the localized surface plasmon resonance sensor In the localized surface plasmon resonance sensor according to the present embodiment, light of two or more wavelengths is incident on the sensor chip perpendicularly to the sensor chip surface and reflected by the sensor chip. Alternatively, the reflectance or transmittance of the transmitted light of each wavelength, or the light intensity of the light of each wavelength may be measured by the photodetector.
  • a change in resonance wavelength can be evaluated by comparing reflectance or transmittance and light intensity at two or more specific wavelengths. Therefore, it is desirable for an application for inspecting the presence or absence of a known specific substance.
  • the energy of the irradiated light is absorbed by the surface plasmon wave of the metal layer. ), The light reflectance or transmittance and the light intensity received by the photodetector are reduced.
  • this resonance wavelength changes depending on the refractive index of the medium inside the barnacle body and around the opening, according to such a localized surface plasmon sensor, the dielectric material has adhered to the region and the amount of adhesion has changed. Etc. can be detected. In particular, it can be preferably used as a biosensor for the detection of specific proteins.
  • the localized surface plasmon resonance sensor since a large electric field enhancement is observed inside the barnacle body and around the opening, extremely strong surface plasmon resonance can be caused, and the conventional propagation surface plasmon resonance can be caused. Sensing with very high sensitivity can be performed as compared with a resonance sensor or a localized surface plasmon resonance sensor.
  • the localized surface plasmon resonance sensor includes the above-mentioned barnacle body. Therefore, when light is incident on the surface in the region where the barnacle body is formed, the inner wall of the barnacle body Coupling occurs between free electrons and incident light on the metal side surface, and a strong electric field concentrates in the barnacle body, thereby generating a stronger localized surface plasmon resonance.
  • the localized surface plasmon resonance sensor according to the present embodiment has sensitivity in a narrow region of about several tens of nanometers from the surface of the metal layer, noise due to a substance in a region away from the metal layer is small, and S / A localized surface plasmon resonance sensor having a good N ratio can be manufactured.
  • FIG. 8 is a plan view showing the outline of the basic configuration of the reflective optical system of the localized SPR sensor 24 according to the present embodiment.
  • the localized SPR sensor 24 includes a light source 25, a collimator lens 26, a collimator plate 27 having a pinhole, a beam splitter (may be a half mirror) 28, a spectroscope 29, a light A detector 33, a localized SPR sensor chip 30, and a data processing device 31 are provided.
  • the light emitted from the light source 25 is guided to the collimator lens 26.
  • the collimator lens 26 collimates the light emitted from the light source 25 and passes it as a parallel beam.
  • the light collimated by the collimator lens 26 becomes a collimated beam that is narrowed down by passing through the pinhole of the collimator plate 27.
  • the light that has passed through the pinhole of the collimator plate 27 enters the beam splitter 28, and only about 1 ⁇ 2 of the amount of incident light passes straight through the beam splitter 28.
  • the parallel beam that has passed through the beam splitter 28 is applied to the measurement region (region where the barnacle body is formed) 32.
  • the light irradiated to the measurement region 32 is reflected by the measurement region 32 and returns to the original direction.
  • the measurement light that has returned to the original direction enters the beam splitter 28.
  • the measurement light incident on the beam splitter 28 only about 1 ⁇ 2 of the amount of light is reflected by the bonding surface in the beam splitter 28 in the direction of 90 degrees.
  • the light reflected by the beam splitter 28 passes through the spectroscope 29, is split into light of each wavelength, and is received by the photodetector 33. Therefore, the light intensity of each wavelength can be detected by receiving the light separated by the spectroscope 29 by the photodetector 33.
  • the data processing device 31 is given in advance as data the light intensity of each wavelength of light irradiated in a state where there is no specimen in the measurement region 32. Therefore, the data processor 31 compares the data given in advance with the light intensity of each wavelength detected by the light detector 33, so that the spectral characteristic (reflectance spectrum) of the reflectance of each wavelength in the measurement region 32 is obtained. ) And the like.
  • FIG. 9 is a plan view showing the outline of the basic configuration of the transmission optical system of the localized SPR sensor 34 according to the present embodiment.
  • the localized SPR sensor 34 includes a light source 25, a collimator lens 26, a collimator plate 27 having a pinhole, a localized SPR sensor chip 30 including a measurement region 32, a spectrometer 29, a photodetector 33, A data processing device 31.
  • the light emitted from the light source 25 is guided to the collimator lens 26.
  • the collimator lens 26 collimates the light emitted from the light source 25 and passes it as a parallel beam.
  • the light collimated by the collimator lens 26 becomes a collimated beam that is narrowed down by passing through the pinhole of the collimator plate 27.
  • the light that has passed through the pinhole of the collimator plate 27 is irradiated to the measurement region (region where the barnacle body is formed) 32.
  • the light irradiated on the measurement region 32 passes through the measurement region 32.
  • the transmitted measurement light passes through the spectroscope 29 and is split into light of each wavelength and received by the photodetector 33.
  • the data processing device 31 is given in advance as data the light intensity of each wavelength of light irradiated in a state where there is no specimen in the measurement region 32. Therefore, the data processing device 31 compares the data given in advance with the light intensity of each wavelength detected by the photodetector 33, so that the spectral characteristic (transmittance spectrum) of the reflectance of each wavelength in the measurement region 32 is obtained. ) And the like.
  • the light source 25 is preferably one that emits white light such as a halogen lamp or an LED, but may be any one that includes light in the wavelength region used for measurement.
  • the parallel beam that has passed through the pinhole may be linearly polarized light, elliptically polarized light, circularly polarized light or the like having a certain polarization plane.
  • the optical components for example, a ⁇ / 2 plate
  • the vibration plane of the electric field of light is defined as the polarization plane
  • the direction of the electric field is defined as the polarization direction.
  • the photodetector 33 can be constituted by a photodiode array having a plurality of light receiving surfaces, a CCD, a CMOS, a light receiver utilizing a plasmon phenomenon, or the like.
  • barnacle bodies (barnacle bodies made of a metal thin film) are formed on the surface of the metal layer.
  • the reflectance or transmittance obtained from the light received by the photodetector 33 becomes smaller at a specific wavelength (resonance wavelength). Since this specific wavelength changes depending on the refractive index of the test sample solution, the refractive index and the type of the dielectric substance contained in the test sample solution can be determined by examining the wavelength of the minimum point of the reflectance or transmittance or the change thereof. Can be inspected.
  • FIGS. 8 and 9 are merely examples, and for example, a configuration without the collimator lens 26 and the collimator plate 27 may be used.
  • the diameter and depth of the barnacle body may be uniform or non-uniform.
  • the localized surface plasmon resonance sensor can be manufactured by a known method using the above-mentioned localized surface plasmon resonance sensor chip.
  • the present invention can also be configured as follows.
  • a structure replication method is a structure replication method, comprising: (i) introducing a fluorine group on the surface of the first structure; ii) Applying the first thermosetting resin or photocurable resin so as to cover the surface of the first structure, curing the first thermosetting resin or photocurable resin, (Ii) applying a second thermosetting resin or photocurable resin on the substrate, and a step of producing a second structure to be a mold of the first structure by peeling from the structure.
  • the first structure includes a flat portion, a convex portion projecting with respect to the flat portion, and a concave portion recessed with respect to the apex of the convex portion or the flat portion.
  • Projecting continuously along the outer periphery of the concave portion, and the average inner diameter of the shape formed by the apex of the convex portion continuously projecting along the outer periphery of the concave portion is within the range of 5 nm to 2,000 nm
  • the inner diameter of the shape formed by the apex of the convex portion continuously projecting along the outer periphery of the concave portion is the shape of the convex portion continuously projecting along the outer periphery of the concave portion and the concave portion. It is characterized by being smaller than the maximum inner diameter.
  • the mold release treatment is performed by introducing a fluorine group on the surface of the first structure. Therefore, “the diameter of the shape formed by the apex of the convex portion protruding continuously along the outer periphery of the concave portion is the inner diameter of the shape of the convex portion continuously protruding along the outer periphery of the concave portion and the concave portion.
  • the second structure as the mold of the first structure can be easily peeled from the first structure having a complicated shape “smaller than the maximum value of”.
  • the second structure can be easily formed regardless of the material of the first structure.
  • the first thermosetting resin is cured before the first thermosetting resin or the photocurable resin is cured.
  • a resin filling step in which the first thermosetting resin or the photocurable resin is filled into a region having a large inner diameter of the shape formed by the convex portion continuously projecting along the outer periphery of the concave portion and the concave portion; It may be included.
  • the resin filling step may be performed in a period of 1 minute to 3 hours.
  • the first thermosetting resin or the photocurable resin is applied so as to cover the surface of the first structure.
  • the resin filling step may be performed by applying the first thermosetting resin or the photocurable resin again.
  • the substrate may be glass or film
  • the second thermosetting resin or photocurable resin may be an acrylic silicon resin
  • the substrate is glass or a film
  • the second thermosetting resin or the photocurable resin is an epoxy resin
  • the third structure is obtained.
  • an epoxy group may be introduced to the surface of the substrate before the second thermosetting resin or photocurable resin is applied to the substrate.
  • the step of manufacturing the second structure may be repeated.
  • the step of manufacturing the third structure may be repeated.
  • the first thermosetting resin or the photocurable resin is applied so as to cover the surface of the third structure. And, after curing the first thermosetting resin or photo-curing resin, peeling from the third structure to produce a second structure that becomes the mold of the third structure May be included.
  • the second structure in the step of manufacturing the third structure, is pressed once against the second thermosetting resin or the photocurable resin. In some cases, two or more measurement regions having the third structure may be formed on the substrate.
  • the step of introducing the fluorine group may be performed at a temperature of 20 ° C. or higher and 100 ° C. or lower.
  • a method for manufacturing a localized surface plasmon resonance sensor chip according to the present invention was obtained by the steps of manufacturing a structure by the method for replicating a structure according to the present invention and the above steps. And forming a metal layer having a shape reflecting the shape of the structure by coating the surface of the structure with a metal.
  • the present invention provides a structure manufactured by the method for replicating a structure according to the present invention, a localized surface plasmon resonance sensor chip manufactured by the method for manufacturing a localized surface plasmon resonance sensor chip according to the present invention, And a localized surface plasmon resonance sensor chip according to the present invention, a light source for irradiating light to the localized surface plasmon resonance sensor degree chip, and reflection or transmission in the localized surface plasmon resonance sensor chip. And a local surface plasmon resonance sensor characterized by comprising a photodetector for receiving the emitted light.
  • Example 1 Duplication of structure-1
  • POT1 was used as a photoresponsive material, and the azo polymer derivative thin film (thickness 50 nm) was formed on a glass substrate by spin coating.
  • the master substrate was subjected to a plasma treatment and then immersed in a fluorine-based silane coupling agent (OPTOOL HD-1100TH, Daikin Industries, Ltd.) solution to perform a release treatment. After the immersion, the reaction was carried out under conditions of a temperature of 60 ° C. and a humidity of 90% RH, and then the master substrate surface was washed with a rinse solution (OPTOOL HD-TH, Daikin Industries, Ltd.) to complete the reaction. .
  • a fluorine-based silane coupling agent OPTOOL HD-1100TH, Daikin Industries, Ltd.
  • a silicone resin (X32-3095 (one-part curable type), Shin-Etsu Chemical Co., Ltd.), which is a thermosetting resin, was dropped onto the master substrate subjected to the release treatment.
  • the master substrate to which the silicone resin was dropped was placed under reduced pressure conditions (3,000 Pa), and a resin filling step was performed at room temperature for 45 minutes. And the silicone resin was hardened at 130 degreeC. Thereafter, the silicone resin was peeled off from the master substrate to obtain a negative replica.
  • a glass substrate coated with an epoxy silane coupling agent was coated with SU-8 (Nippon Kayaku Co., Ltd.), which is an ultraviolet curable resin and epoxy resin, and was softened by heating at 100 ° C.
  • the negative replica was pressed against SU-8 while applying a stress of 30 N / cm 2 .
  • the negative replica was peeled off to obtain a positive replica.
  • gold having a thickness of 100 nm was vapor-deposited by vacuum vapor deposition to produce a sensor chip.
  • the planar SEM image is shown in FIG.
  • the circle in the figure indicates a circle having a diameter of 1 ⁇ m. It can be seen that there are many barnacle bodies having openings having an inner diameter of less than 1 ⁇ m on the surface of the positive replica.
  • a 100 nm thick gold was deposited on the surface of the obtained positive replica by vacuum deposition to produce a sensor chip.
  • Transmission spectrum measurement was performed when nothing was dropped on the sensor chip (when air was present) and when water was dropped. The measurement results are shown in FIG. An absorption peak derived from plasmon resonance was observed, and a peak shift was observed when nothing was dropped and when water was dropped. Therefore, it was found that the sensor chip according to this example is a transmission type and a highly sensitive plasmon resonance sensor.
  • Example 2 Duplication of structure-2
  • POT1 was used as a photoresponsive material, and the azo polymer derivative thin film (thickness 45 nm) was formed on a glass substrate by a spin coating method.
  • a planar SEM image of the obtained master substrate is shown in FIG.
  • the circle in the figure indicates a circle having a diameter of 1 ⁇ m.
  • the above-mentioned master substrate was subjected to a mold release process in the same manner as in Example 1.
  • a silicone resin (X32-3095 (one-part curable type), Shin-Etsu Chemical Co., Ltd.), which is a thermosetting resin, was dropped onto the master substrate subjected to the release treatment.
  • the master substrate to which the silicone resin was dropped was placed under reduced pressure conditions (3,000 Pa), and a resin filling step was performed at room temperature for 45 minutes. And the silicone resin was hardened at 130 degreeC. Thereafter, the silicone resin was peeled off from the master substrate to obtain a negative replica.
  • FIG. 12A A planar SEM image of the obtained positive replica is shown in FIG.
  • the circle in the figure indicates a circle having a diameter of 1 ⁇ m.
  • a barnacle body (arrow in the figure) having an opening with an inner diameter of about 400 to 600 nm is present on the surface of the positive replica according to the present embodiment, and the shape of the master substrate (FIG. 12A) is well transferred. I understand that.
  • Example 3 Duplicate structure-3
  • POT1 was used as a photoresponsive material, and the azopolymer derivative thin film (thickness 48 nm) was formed on a glass substrate by spin coating.
  • the above-mentioned master substrate was subjected to a mold release process in the same manner as in Example 1.
  • a silicone resin (X32-3095 (one-part curable type), Shin-Etsu Chemical Co., Ltd.), which is a thermosetting resin, was dropped onto the master substrate subjected to the release treatment.
  • the master substrate to which the silicone resin was dropped was placed under reduced pressure conditions (3,000 Pa), and a resin filling step was performed at room temperature for 45 minutes. And the silicone resin was hardened at 130 degreeC. Thereafter, the silicone resin was peeled off from the master substrate to obtain a negative replica.
  • FIG. 13B shows a stress history. Then, after curing SU-8 by ultraviolet irradiation and heating (100 ° C.), the negative replica was peeled off to obtain a positive replica.
  • a 100 nm thick gold was deposited on the surface of the obtained positive replica by vacuum deposition to produce a sensor chip.
  • FIG. 13A shows a planar SEM image of a sensor chip derived from a positive replica.
  • the circle in the figure indicates a circle having a diameter of 1 ⁇ m.
  • a transmission spectrum in air was measured.
  • the measurement results are shown in FIG.
  • FIG. 13C shows an absorption peak derived from plasmon resonance.
  • FIG. 14A shows a cross-sectional SEM image of a sensor chip derived from a positive replica.
  • FIG. 14B shows a cross-sectional TEM image of a sensor chip derived from a master substrate produced in another experiment. Both of the sensor chips had an inner diameter of 600 nm and a depth of 150 nm. It can be seen that the sensor chip derived from the positive replica according to this example has the same shape as the sensor chip derived from the master substrate.
  • Example 4 The master substrate was subjected to release treatment (Example 4) by the same method as in Example 1 and the master substrate not subjected to release treatment (Comparative Example) was prepared.
  • a silicone resin (X32-3095 (one-part curable type), Shin-Etsu Chemical Co., Ltd.), which is a thermosetting resin, was dropped onto the two master substrates.
  • the master substrate to which the silicone resin was dropped was placed under reduced pressure conditions (3,000 Pa), and a resin filling step was performed at room temperature for 45 minutes. And the silicone resin was hardened at 130 degreeC. Thereafter, the silicone resin was peeled off from the master substrate to obtain a negative replica.
  • SU-8 (Nippon Kayaku Co., Ltd.) was applied to a glass substrate coated with an epoxy silane coupling agent and softened by heating at 100 ° C.
  • the negative replica derived from the master substrate subjected to the release treatment and the negative replica derived from the master substrate not subjected to the release treatment were respectively pressed against SU-8 with a stress of 30 N / cm 2 . .
  • the negative replica was peeled off to obtain a positive replica.
  • 100 nm-thick gold was vapor-deposited on the surfaces of the positive replicas of the comparative example and the example 4 to produce a sensor chip.
  • FIG. 15A shows a planar SEM image of the sensor chip derived from the positive type replica of the comparative example
  • FIG. 15B shows a planar SEM image of the sensor chip derived from the positive type replica of Example 4.
  • the positive replica derived from the master substrate that has not been subjected to the mold release treatment has been deformed compared to the master substrate that has been subjected to the mold release treatment.
  • Example 5 Durability of structure mold-1
  • POT1 was used as a photoresponsive material, and the azo polymer derivative thin film (thickness 50 nm) was formed on a glass substrate by spin coating.
  • the above-mentioned master substrate was subjected to a mold release process in the same manner as in Example 1.
  • a silicone resin (X32-3095 (one-part curable type), Shin-Etsu Chemical Co., Ltd.), which is a thermosetting resin, was dropped onto the master substrate subjected to the release treatment.
  • the master substrate to which the silicone resin was dropped was placed under reduced pressure conditions (3,000 Pa), and a resin filling step was performed at room temperature for 45 minutes. And the silicone resin was hardened at 130 degreeC. Thereafter, the silicone resin was peeled off from the master substrate to obtain a negative replica.
  • SU-8 (Nippon Kayaku Co., Ltd.) was applied to a glass substrate coated with an epoxy silane coupling agent and softened by heating at 100 ° C.
  • the negative replica was pressed against SU-8 while applying a stress of 30 N / cm 2 .
  • the negative replica was peeled off to obtain a positive replica.
  • a plurality of positive replicas were obtained using the same negative replica.
  • a 100 nm thick gold was deposited on the surface of the obtained positive replica by vacuum deposition to produce a sensor chip.
  • a transmission spectrum was measured using the sensor chip.
  • the measurement result in the air is shown in FIG. Table 1 shows the peak wavelength in the air and the refractive index responsiveness obtained from the measurement results in the air and at the time of dropping the water as described later.
  • shaft of FIG. 16 has shown the light absorbency. An absorption peak derived from plasmon resonance is observed, and the dispersion of the absorption peak is within ⁇ 12 nm. Therefore, it was found that a high-sensitivity plasmon resonance sensor chip can be mass-produced using the same negative replica in this example.
  • the “refractive index responsiveness” in the right column of Table 1 will be described below.
  • the plasmon resonance sensor according to the present invention is a refractive index sensor, and a change in the refractive index on the surface of the sensor chip is expressed by a peak shift amount.
  • the refractive index responsiveness is an index representing how sensitive the sensor is to a change in the refractive index of the sensor chip surface.
  • the calculation method of the refractive index response is as shown in the following (a) to (c).
  • (A) A transmission spectrum in air is measured.
  • (B) The transmission spectrum at the time of water dripping is measured.
  • (C) The difference between the peak positions of the two transmission spectra is calculated (for example, 60 nm).
  • the refractive index difference is 0.33.
  • Refractive index responsiveness is simply expressed as “peak shift amount per unit refractive index change”.
  • the calculation method is a value obtained by dividing the difference between the peak positions of the transmission spectrum in the air and when the water is dropped by the refractive index change amount (refractive index difference).
  • Example 6-8 Durability of structure mold-2
  • POT1 was used as a photoresponsive material, and the azo polymer derivative thin film (thickness 50 nm) was formed on a glass substrate by spin coating.
  • the above-mentioned master substrate was subjected to a mold release process in the same manner as in Example 1.
  • a silicone resin (X32-3095 (one-part curable type), Shin-Etsu Chemical Co., Ltd.), which is a thermosetting resin, was dropped onto the master substrate subjected to the release treatment.
  • the master substrate to which the silicone resin was dropped was placed under reduced pressure conditions (3,000 Pa), and a resin filling step was performed at room temperature for 45 minutes. And the silicone resin was hardened at 130 degreeC. Thereafter, the silicone resin was peeled off from the master substrate to obtain a negative replica.
  • SU-8 (Nippon Kayaku Co., Ltd.) was applied to a glass substrate coated with an epoxy-based silane coupling agent, and softened by heating at 100 ° C.
  • the negative replica was pressed against SU-8.
  • Examples imprinted with the stress history shown in FIGS. 17A and 17B were designated as Examples 6 and 7, respectively.
  • the negative replica was peeled off to obtain a positive replica.
  • a plurality of positive replicas were obtained using the same negative replica.
  • a 100 nm thick gold was deposited on the surface of the obtained positive replica by vacuum deposition to produce a sensor chip.
  • a transmission spectrum in air was measured.
  • the measurement results in Examples 6 and 7 are shown in FIGS. 17 (a) and 17 (b), respectively.
  • an absorption peak derived from plasmon resonance was observed.
  • the peak position of the sensor chip has a tendency to become longer with repeated imprinting, any chip can be used as the sensor chip. Therefore, it was found that a high-sensitivity plasmon resonance sensor chip can be mass-produced using the same negative replica in this example.
  • Example 8 In the same manner as in Examples 6 and 7, a master substrate was produced and subjected to a release treatment, and then a negative replica was produced.
  • Zemlac (containing a curing agent) (Kaneka Corporation), which is an ultraviolet curable resin and an acrylic silicon resin, was applied to a glass substrate (50 wt%, solvent: butyl acetate).
  • the spin coating conditions for application were 2,000 rpm ⁇ 20 sec (thickness 4.5 ⁇ m).
  • the negative replica was pressed against Zemlack at room temperature (25 ° C.).
  • FIG. 18 shows the stress history during imprinting in Example 8. Then, after the Zemlac was cured by ultraviolet irradiation, the negative replica was peeled off to obtain a positive replica. A plurality of positive replicas were obtained using the same negative replica.
  • a 100 nm thick gold was deposited on the surface of the obtained positive replica by vacuum deposition to produce a sensor chip.
  • a planar SEM image and a cross-sectional view of the sensor chip are shown in FIG.
  • the barnacle body in the portion surrounded by the dotted line had an inner diameter of the opening of 556 nm and a depth of 94 nm.
  • FIG. 21 shows the transmission spectrum of the sensor chip in Examples 7 and 8.
  • an absorption peak derived from plasmon resonance is observed, but in Example 8, even when imprinting is repeated, variation in the peak position of the sensor chip is within ⁇ 10 nm. .
  • Zemlac can be imprinted at room temperature, it is considered that deterioration of the negative replica was suppressed.
  • Example 9 Regeneration of mold using replicated structure-1
  • POT1 was used as a photoresponsive material, and the azo polymer derivative thin film (thickness 50 nm) was formed on a glass substrate by spin coating.
  • the above-mentioned master substrate was subjected to a mold release process in the same manner as in Example 1.
  • a silicone resin (X32-3095 (one-part curable type), Shin-Etsu Chemical Co., Ltd.), which is a thermosetting resin, was dropped onto the master substrate subjected to the release treatment.
  • the master substrate to which the silicone resin was dropped was placed under reduced pressure conditions (3,000 Pa), and a resin filling step was performed at room temperature for 45 minutes. And the silicone resin was hardened at 130 degreeC. Thereafter, the silicone resin was peeled off from the master substrate to obtain a negative replica.
  • SU-8 (Nippon Kayaku Co., Ltd.) was applied to a glass substrate coated with an epoxy silane coupling agent and softened by heating at 100 ° C.
  • the negative replica was pressed against SU-8 while applying a stress of 30 N / cm 2 .
  • the negative replica was peeled off to obtain a positive replica.
  • the obtained positive replica was subjected to the same mold release treatment as that for the master substrate, and then a process of applying and curing a silicone resin was repeated to obtain three negative replicas.
  • a positive replica was obtained from each negative replica by the same production method as the positive replica.
  • the obtained positive replica is referred to as a second generation replica.
  • FIGS. 22 (a), (c) and (e) The planar SEM images of the obtained three second-generation replica sensor chips are shown in FIGS. 22 (a), (c) and (e). It can be seen that the barnacle structure is well transferred in any of the second generation replica sensor chips. Transmission spectrum measurement was performed when nothing was dropped on the sensor chip (when air was present) and when water was dropped.
  • the measurement results of the respective second generation replica sensor chips shown in FIGS. 22A, 22C and 22E are shown in FIGS. 22B, 22D and 22F. 22B, 22D, and 22F, the horizontal axis indicates the wavelength (nm) and the vertical axis indicates the absorbance.
  • the second generation replica sensor chip according to the present example is a transmissive and high-sensitivity plasmon resonance sensor.
  • Example 10 Regeneration of mold using replicated structure-2
  • a negative replica was further produced from the second generation replica produced in Example 9, and a positive replica was produced from the negative replica.
  • the positive type replica is referred to as a third generation replica.
  • gold having a thickness of 100 nm was deposited by a vacuum deposition method to produce a sensor chip.
  • FIG. 23 shows a planar SEM image of the obtained third generation replica sensor chip. It was found that the barnacle structure was well transferred even in the third generation replica sensor chip.
  • Example 11-13 Duplication of a plurality of measurement areas by one imprint] POT1 was used as a photoresponsive material, and the azo polymer derivative thin film (thickness 50 nm) was formed on a 17 mm square glass substrate by spin coating.
  • the above-mentioned master substrate was subjected to a mold release process in the same manner as in Example 1.
  • a silicone resin (X32-3095 (one-part curable type), Shin-Etsu Chemical Co., Ltd.), which is a thermosetting resin, was dropped onto the master substrate subjected to the release treatment.
  • the master substrate to which the silicone resin was dropped was placed under reduced pressure conditions (3,000 Pa), and a resin filling step was performed at room temperature for 45 minutes. And the silicone resin was hardened at 130 degreeC. Thereafter, the silicone resin was peeled off from the master substrate to obtain a negative replica.
  • SU-8 (Nippon Kayaku Co., Ltd.) was applied to a glass substrate coated with an epoxy silane coupling agent and softened by heating at 100 ° C.
  • the negative replica was pressed against SU-8 while applying stress. Examples imprinted with the stress histories shown in FIGS. 24 (a), (c) and (e) were designated as Examples 11, 12, and 13, respectively. Then, after curing SU-8 by ultraviolet irradiation and heating (100 ° C.), the negative replica was peeled off to obtain a positive replica. Plan views of the positive replicas obtained in Examples 11, 12, and 13 are shown in FIGS. 24B, 24D, and 24F, respectively.
  • Example 11 there is a portion (arrow in the figure) where wrinkles are seen, but in Example 13 where the stress of 30 N / cm 2 was maintained, wrinkles were not seen and the measurement area of 9 spots was precisely defined. I was able to transcribe.
  • Example 14 Duplication of a plurality of measurement areas by one imprint] POT1 was used as a photoresponsive material, and the azo polymer derivative thin film (thickness 50 nm) was formed on a 17 mm square glass substrate by spin coating.
  • the above-mentioned master substrate was subjected to a mold release process in the same manner as in Example 1.
  • a silicone resin (X32-3095 (one-part curable type), Shin-Etsu Chemical Co., Ltd.), which is a thermosetting resin, was dropped onto the master substrate subjected to the release treatment.
  • the master substrate to which the silicone resin was dropped was placed under reduced pressure conditions (3,000 Pa), and a resin filling step was performed at room temperature for 45 minutes. And the silicone resin was hardened at 130 degreeC. Thereafter, the silicone resin was peeled off from the master substrate to obtain a negative replica.
  • SU-8 (Nippon Kayaku Co., Ltd.) was applied to a glass substrate coated with an epoxy silane coupling agent and softened by heating at 100 ° C.
  • the negative replica was pressed against SU-8 while applying a stress of 30 N / cm 2 .
  • the negative replica was peeled off to obtain a positive replica.
  • a 100 nm thick gold was deposited on the surface of the obtained positive replica by vacuum deposition to produce a sensor chip.
  • the transmission spectrum in air was measured. The measurement results are shown in FIG.
  • the positional relationship of each spot is shown in FIG.25 (b). In any spot, an absorption peak derived from plasmon resonance was observed, and it was confirmed that it functions as a sensor chip.
  • Example 15 Duplication of a plurality of measurement areas by one imprint] POT1 was used as a photoresponsive material, and the azo polymer derivative thin film (thickness 50 nm) was formed on a 17 mm square glass substrate by spin coating.
  • the above-mentioned master substrate was subjected to a mold release process in the same manner as in Example 1.
  • a silicone resin (X32-3095 (one-part curable type), Shin-Etsu Chemical Co., Ltd.), which is a thermosetting resin, was dropped onto the master substrate subjected to the release treatment.
  • the master substrate to which the silicone resin was dropped was placed under reduced pressure conditions (3,000 Pa), and a resin filling step was performed at room temperature for 45 minutes. And the silicone resin was hardened at 130 degreeC. Thereafter, the silicone resin was peeled off from the master substrate to obtain a negative replica.
  • SU-8 (Nippon Kayaku Co., Ltd.) was applied to a glass substrate coated with an epoxy silane coupling agent and softened by heating at 100 ° C.
  • the negative replica was pressed against SU-8 while applying a stress of 30 N / cm 2 .
  • the negative replica was peeled off to obtain a positive replica.
  • a 100 nm thick gold was deposited on the surface of the obtained positive replica by vacuum deposition to produce a sensor chip.
  • the transmission spectrum in air was measured. The measurement results are shown in FIG.
  • the positional relationship of each spot is shown in FIG.26 (b). In any spot, an absorption peak derived from plasmon resonance was observed, and it was confirmed that it functions as a sensor chip.
  • Example 16 Biosensing using sensor chip
  • influenza virus inactivation reagent influenza virus concentration: 1 pg / ml to 1 ⁇ g / ml was dropped onto the sensor chip and detected by antigen-antibody reaction. For comparison, a similar experiment was performed using a sensor chip derived from the master substrate.
  • Measurement results of sensor chips derived from the master substrate and the positive replica are shown in FIGS. It was possible to detect 1 pg / ml influenza virus in the sensor chip derived from either the master substrate or the positive replica. Therefore, it was found that the sensor chip derived from the positive replica according to the present example can detect an extremely low concentration of influenza virus.
  • the present invention has an effect that it is possible to provide a structure duplication method that can be preferably used for a highly sensitive localized surface plasmon resonance sensor chip or the like.
  • the present invention can be preferably used in, for example, an industry using a biosensor.
  • Second Structure 50a First thermosetting resin or photocurable resin 51 Third structure 52 Metal layer 53 Sensor chip 61 Second thermosetting resin or photocurable resin 62 Substrate

Abstract

In order to easily replicate a structure, by which a high-sensitivity localized surface plasmon resonance sensor can be provided, by a nanoimprint method, this replication method comprises: (i) a step for performing mold release treatment on a first structure; (ii) a step for manufacturing a second structure that becomes a mold for the first structure; and (iii) a step for pressing the second structure against resin to manufacture a third structure that is a replica of the first structure.

Description

構造体の複製方法及び当該複製方法を含む局在型表面プラズモン共鳴センサ用チップの製造方法、並びに、構造体、局在型表面プラズモン共鳴センサ用チップ及び局在型表面プラズモン共鳴センサMethod of replicating structure, manufacturing method of chip for localized surface plasmon resonance sensor including the replicating method, structure, chip for localized surface plasmon resonance sensor, and localized surface plasmon resonance sensor
 本発明は、高感度の表面プラズモン共鳴センサを提供し得る、構造体の複製方法、及び当該複製方法により構造体を製造する工程を含む局在型表面プラズモン共鳴センサ用チップの製造方法に関する。さらに本発明は、上記複製方法または製造方法によって製造された構造体、局在型表面プラズモン共鳴センサ用チップ、及び、局在型表面プラズモン共鳴センサに関する。 The present invention relates to a method for replicating a structure that can provide a highly sensitive surface plasmon resonance sensor, and a method for manufacturing a chip for a localized surface plasmon resonance sensor including a step of manufacturing a structure by the replication method. Furthermore, the present invention relates to a structure manufactured by the above replication method or manufacturing method, a localized surface plasmon resonance sensor chip, and a localized surface plasmon resonance sensor.
 人体の60%は水分で構成され、残り40%のうち半分はタンパク質で構成されており、人体の細胞、筋肉、皮膚の大部分はタンパク質からなる。そのため、病気は、タンパク質の変異と相関が認められる場合が多く、癌、インフルエンザその他の病気では、病気の進行に伴って体内(血液中等)において特定のタンパク質が増加する。 60% of the human body is made up of water, and half of the remaining 40% is made up of protein. Most of the cells, muscles and skin of the human body are made of protein. For this reason, diseases are often correlated with protein mutations. In cancer, influenza and other diseases, specific proteins increase in the body (in the blood, etc.) as the disease progresses.
 従って、特定のタンパク質の状態(特定のタンパク質の有無、量等)をモニターすることで病気の罹患、進行状況を知ることができ、現在では、数十種類のタンパク質について病気との相関が確認されている。例えば、腫瘍(癌)の進行とともに増加する生体分子は腫瘍マーカーと呼ばれ、腫瘍の発生部位に応じてそれぞれ異なる腫瘍マーカーが特定されている。 Therefore, by monitoring the state of a specific protein (presence / absence, amount, etc. of a specific protein), it is possible to know the morbidity and progress of the disease. Currently, dozens of proteins are correlated with the disease. ing. For example, a biomolecule that increases with the progression of a tumor (cancer) is called a tumor marker, and different tumor markers are specified depending on the site of tumor occurrence.
 また、生体内のタンパク質、DNA、糖鎖といった生体分子は、疾患の発生と直接的に関係していることが多いので、それら生体分子間の相互作用を解析することにより、病気のメカニズムを解明し、特効薬の開発を行うことが可能になりつつある。 In addition, biomolecules such as proteins, DNA, and sugar chains in living organisms are often directly related to the occurrence of diseases, so the mechanism of disease is elucidated by analyzing the interactions between these biomolecules. However, it is becoming possible to develop a magic bullet.
 上記腫瘍マーカーを含め、特定のタンパク質の有無や量を簡便且つ高精度に測定するツールとしてバイオセンサがあり、将来的には誤診防止、早期診断、予防医療等への応用が期待されている。 There is a biosensor as a tool for easily and accurately measuring the presence or amount of a specific protein including the above tumor marker, and is expected to be applied to misdiagnosis prevention, early diagnosis, preventive medicine, etc. in the future.
 ここで、タンパク質等生体分子の相互作用を検出する方法としては、表面プラズモン共鳴(SPR:Surface Plasmon Resonance)が利用されている。表面プラズモン共鳴とは、金属表面の自由電子と電磁波(光)との相互作用によって生じる共鳴現象であって、蛍光検出方式に比べると、試料を蛍光物質で標識する必要が無いため簡便な手法として注目されている。表面プラズモン共鳴を利用したセンサには、伝搬型表面プラズモン共鳴センサと局在型表面プラズモン共鳴センサとがある。 Here, as a method for detecting the interaction of biomolecules such as proteins, surface plasmon resonance (SPR) is used. Surface plasmon resonance is a resonance phenomenon caused by the interaction between free electrons on the metal surface and electromagnetic waves (light). Compared to the fluorescence detection method, the sample does not need to be labeled with a fluorescent substance, and is a simple technique. Attention has been paid. Sensors using surface plasmon resonance include a propagation surface plasmon resonance sensor and a localized surface plasmon resonance sensor.
 伝搬型表面プラズモン共鳴センサの原理を図28(a)~(d)により簡単に説明する。伝搬型表面プラズモン共鳴センサ11は、図28(a)及び図28(c)に示すように、ガラス基板12の表面に厚み50nm程度のAu、Ag等の金属膜13を形成したものである。 The principle of the propagation type surface plasmon resonance sensor will be briefly described with reference to FIGS. As shown in FIGS. 28A and 28C, the propagation surface plasmon resonance sensor 11 is formed by forming a metal film 13 of Au, Ag or the like having a thickness of about 50 nm on the surface of a glass substrate 12.
 この伝搬型表面プラズモン共鳴センサ11は、ガラス基板12側から光を照射し、ガラス基板12と金属膜13との界面において光を全反射させる。全反射した光を受光し、光の反射率を測定することによって生体分子等がセンシングされる。 The propagation surface plasmon resonance sensor 11 irradiates light from the glass substrate 12 side and totally reflects light at the interface between the glass substrate 12 and the metal film 13. Biomolecules are sensed by receiving the totally reflected light and measuring the reflectance of the light.
 即ち、この反射率測定を光の入射角θを変化させることによって行うと、図28(b)に示すように、ある入射角(共鳴入射角)θ1で反射角が大きく減衰する。これは、ガラス基板12と金属膜13との界面に入射した光が当該界面で全反射するとき、当該界面で発生するエバネッセント光(近接場光)と金属の表面プラズモン波とが相互作用するからである。具体的には、ある特定の波長や特定の入射角においては、光のエネルギーが金属膜13中に吸収され、金属膜13中の自由電子の振動エネルギーに変化し、光の反射率が著しく低下するからである。 That is, when this reflectance measurement is performed by changing the incident angle θ of light, the reflection angle is greatly attenuated at a certain incident angle (resonance incident angle) θ1, as shown in FIG. This is because when light incident on the interface between the glass substrate 12 and the metal film 13 is totally reflected at the interface, the evanescent light (near-field light) generated at the interface interacts with the surface plasmon wave of the metal. It is. Specifically, at a specific wavelength and a specific incident angle, light energy is absorbed into the metal film 13 and is changed to vibrational energy of free electrons in the metal film 13 so that the light reflectance is significantly reduced. Because it does.
 この共鳴条件は金属膜13の周辺物質の誘電率(屈折率)に依存するため、このような現象は周辺物質の物性変化を高感度に検出する手法として用いられる。特に、バイオセンサとして用いる場合には、図28(a)に示すように、特定のタンパク質(抗原)と特異的に結合する抗体14(プローブ)を予め金属膜13の表面に固定化しておく。そこに、導入された検査試料にターゲットとなる抗原16が存在すると、図28(c)に示すように抗原16が抗体14と特異的に結合する。そして、抗原16が抗体14と結合することで金属膜13の周辺の屈折率が変化し、共鳴波長や共鳴入射角が変化する。 Since this resonance condition depends on the dielectric constant (refractive index) of the surrounding material of the metal film 13, such a phenomenon is used as a technique for detecting a change in physical properties of the surrounding material with high sensitivity. In particular, when used as a biosensor, an antibody 14 (probe) that specifically binds to a specific protein (antigen) is immobilized on the surface of the metal film 13 in advance as shown in FIG. If the target antigen 16 is present in the introduced test sample, the antigen 16 specifically binds to the antibody 14 as shown in FIG. Then, when the antigen 16 binds to the antibody 14, the refractive index around the metal film 13 changes, and the resonance wavelength and the resonance incident angle change.
 従って、検査試料を導入する前後における共鳴波長の変化、共鳴入射角の変化、あるいは共鳴波長や共鳴入射角の時間的変化を測定することにより、検査試料中に抗原16が含まれているかどうかを検査できる。また、どの程度の濃度で抗原16が含まれているかも検査することができる。 Therefore, whether or not the antigen 16 is contained in the test sample is measured by measuring the change in the resonance wavelength before and after the test sample is introduced, the change in the resonance incident angle, or the temporal change in the resonance wavelength and the resonance incident angle. Can be inspected. It is also possible to examine the concentration of the antigen 16 contained.
 図28(d)は、入射角θに対する反射率の依存性を測定した結果の一例を表している。図28(d)において、破線は検査試料を導入する前の反射率スペクトル17aを示し、実線は検査試料が導入されて抗体14に抗原16が結合した後の反射率スペクトル17bを示す。 FIG. 28 (d) shows an example of the result of measuring the dependence of the reflectance on the incident angle θ. In FIG. 28 (d), the broken line shows the reflectance spectrum 17 a before the test sample is introduced, and the solid line shows the reflectance spectrum 17 b after the test sample is introduced and the antigen 16 is bound to the antibody 14.
 このように検査試料を導入する前後における共鳴入射角の変化Δθを測定すると、検査試料が抗原16を含んでいるかどうかを検査できる。また、抗原16の濃度も検査することができ、特定の病原体の有無や疾患の有無等を検査することができる。 Thus, by measuring the change Δθ in the resonance incident angle before and after introducing the test sample, it is possible to test whether the test sample contains the antigen 16 or not. In addition, the concentration of the antigen 16 can be examined, and the presence or absence of a specific pathogen or the presence or absence of a disease can be examined.
 尚、一般的な伝搬型表面プラズモン共鳴センサでは、ガラス基板に光を導入するためにプリズムを用いている。そのため、センサの光学系が複雑且つ大型化し、またセンサ用チップ(ガラス基板)とプリズムとをマッチングオイルで密着させる必要がある。 In general propagation type surface plasmon resonance sensors, a prism is used to introduce light into a glass substrate. For this reason, the optical system of the sensor is complicated and large, and the sensor chip (glass substrate) and the prism must be brought into close contact with the matching oil.
 しかしながら、伝搬型表面プラズモン共鳴センサでは、センシングエリアがガラス基板表面から数百nmとタンパク質のサイズ(十nm前後)に比べて大きい。そのため、このセンサは検査試料の温度変化や検査試料中の夾雑物(例えば、検査対象以外のタンパク質)の影響を受け易く、バイオセンサでは、抗体に結合されず検査試料中に浮遊している抗原にも感度を持ってしまう。 However, in the propagation surface plasmon resonance sensor, the sensing area is several hundred nm from the surface of the glass substrate, which is larger than the protein size (around 10 nm). Therefore, this sensor is easily affected by temperature changes in the test sample and contaminants in the test sample (for example, proteins other than the test target). In the biosensor, the antigen that is not bound to the antibody and is suspended in the test sample. Will also have sensitivity.
 これらはノイズの原因となるため、信号雑音比(S/N比)が小さくて高感度のセンサを作製することが難しい。また、高感度のセンサを作製するためには、ノイズの原因となる夾雑物を取り除く工程や、検査試料の温度を一定に保つための厳密な温度制御手段を必要とし、装置が大型になったり、装置コストが高価になったりする。 Since these cause noise, it is difficult to produce a highly sensitive sensor with a small signal-to-noise ratio (S / N ratio). In addition, in order to produce a highly sensitive sensor, a process for removing impurities that cause noise and a strict temperature control means for keeping the temperature of the inspection sample constant are required. The equipment cost becomes expensive.
 これに対し、局在型表面プラズモン共鳴センサでは、金属微粒子(金属ナノ微粒子)の表面に発生する近接場がセンシング領域となるため、回折限界以下の数十nmの感度領域を実現できる。その結果、局在型表面プラズモン共鳴センサでは、金属微粒子から離れた領域に浮遊する検査対象物には感度を持たず、金属微粒子表面の非常に狭い領域に付着した検査対象物にのみ感度を持たせることができ、より高感度のセンサを実現できる可能性がある。 In contrast, in the localized surface plasmon resonance sensor, the near field generated on the surface of the metal fine particle (metal nanoparticle) becomes the sensing region, and therefore, a sensitivity region of several tens of nm below the diffraction limit can be realized. As a result, the localized surface plasmon resonance sensor has no sensitivity to the inspection object floating in the region away from the metal fine particles, and only the inspection object attached to a very narrow region on the surface of the metal fine particles. There is a possibility that a sensor with higher sensitivity can be realized.
 金属微粒子を用いた局在表面プラズモン共鳴センサでは、金属微粒子から離れて浮遊している検査対象物に感度を持たないので、ノイズ成分が少なくなり、その意味では伝搬型表面プラズモン共鳴センサに比べて高感度である。しかし、Au、Ag等の金属微粒子において発生する表面プラズモン共鳴を利用したセンサでは、金属微粒子の表面に付着している検査対象物から得られる信号の強度が小さく、その意味では感度がまだ低く、あるいは感度が十分でなかった。 A localized surface plasmon resonance sensor using metal fine particles has no sensitivity to the test object floating away from the metal fine particles, and therefore has less noise components. In that sense, compared to a propagation type surface plasmon resonance sensor. High sensitivity. However, in a sensor using surface plasmon resonance generated in metal fine particles such as Au and Ag, the intensity of the signal obtained from the inspection object attached to the surface of the metal fine particles is small, and in that sense, the sensitivity is still low. Or the sensitivity was not enough.
 このような取り扱い難さを解消するために、複数の凹部を有する回折格子類似の局在型表面プラズモン共鳴センサが開示されている(例えば、特許文献1参照)。 In order to eliminate such difficulty in handling, a localized surface plasmon resonance sensor similar to a diffraction grating having a plurality of recesses is disclosed (for example, see Patent Document 1).
 上記局在型表面プラズモン共鳴センサは、図29に示すように、ナノインプリントにより賦形された窪み(凹部)が規則的に配置された構造を有する基板19を有し、凹部の上から蒸着又はスパッタ等により金属材料を積層し、得られる金属層20はその下の形状を反映している。そして、図30に示すように、この局在型表面プラズモン共鳴センサ18では、基板19の金属層20側から直線偏光21を照射すると、凹部に強い電界22が集中する。 As shown in FIG. 29, the localized surface plasmon resonance sensor has a substrate 19 having a structure in which depressions (recesses) formed by nanoimprinting are regularly arranged, and is deposited or sputtered from above the recesses. The metal layer 20 obtained by laminating the metal materials by reflecting the shape below. As shown in FIG. 30, in this localized surface plasmon resonance sensor 18, when the linearly polarized light 21 is irradiated from the metal layer 20 side of the substrate 19, a strong electric field 22 is concentrated in the recess.
 本発明者らは、さらに高感度の局在型表面プラズモン共鳴センサを提供し得る構造体、局在型表面プラズモン共鳴センサ用チップ、及びこれらから得られる局在型表面プラズモン共鳴センサを実現できることを見出し、既に特許出願を行っている(特許文献2および3参照)。特許文献2に記載の構造体は、平坦部、および、凹部と凸部とからなるフジツボ体を備えている。また、特許文献3に記載の構造体は、平面部と筒状体とを備えている。これらの構造体を用いた局在型表面プラズモン共鳴センサ用チップでは、フジツボ体または筒状体がなす凹部内部および開口部周辺の金属における自由電子と入射光との間で結合が起こり、フジツボ体または筒状体がなす凹部内部および開口部周辺に電界が集中して極めて強い局在型表面プラズモン共鳴が発生する。従って、当該チップを用いることにより、より高感度の局在型表面プラズモン共鳴センサを提供できる。 The present inventors can realize a structure capable of providing a highly sensitive localized surface plasmon resonance sensor, a localized surface plasmon resonance sensor chip, and a localized surface plasmon resonance sensor obtained therefrom. The patent application has already been filed (see Patent Documents 2 and 3). The structure described in Patent Document 2 includes a flat portion and a barnacle body including a concave portion and a convex portion. Moreover, the structure described in Patent Document 3 includes a flat portion and a cylindrical body. In the localized surface plasmon resonance sensor chip using these structures, coupling occurs between free electrons and incident light in the metal inside the recess and the periphery of the opening formed by the barnacle body or cylindrical body, and the barnacle body Alternatively, an extremely strong localized surface plasmon resonance occurs due to the concentration of the electric field inside the recess and the periphery of the opening formed by the cylindrical body. Therefore, a highly sensitive localized surface plasmon resonance sensor can be provided by using the chip.
 特許文献2および3に記載の構造体を量産する方法としては、ポリマーレプリカ法を使用することができる。ポリマーレプリカ法では、まず上記構造体に樹脂を塗布して硬化させ、上記構造体(第一の構造体)の型となる第二の構造体を製造する。さらに当該第二の構造体における第一の構造体の型となる部分に樹脂を塗布して硬化させ、上記第一の構造体の複製物である第三の構造体を得ることができる。 As a method for mass-producing the structures described in Patent Documents 2 and 3, a polymer replica method can be used. In the polymer replica method, first, a resin is applied to the structure and cured to produce a second structure serving as a mold of the structure (first structure). Further, a resin can be applied to the portion of the second structure that becomes the mold of the first structure and cured to obtain a third structure that is a duplicate of the first structure.
 しかしながら、上記構造体をより効率的に量産するために、ナノインプリント法によって上記構造体を複製する技術が求められている。ナノインプリント法は、型を樹脂に押し付けて、型の形状を樹脂に転写する点において、ポリマーレプリカ法とは異なる。 However, in order to mass-produce the structure more efficiently, a technique for replicating the structure by a nanoimprint method is required. The nanoimprint method is different from the polymer replica method in that the mold is pressed against the resin and the shape of the mold is transferred to the resin.
 ナノインプリント法としては、例えば、特許文献4に記載の技術がある。特許文献4に記載の技術において用いられるモールド201は、凹部205Aと凸部205Bとを有している(図31(a))。ここで、凹部205Aは、深さ方向に漸次拡開して設けられている。そしてモールド201のパターン面201aと基板203とを対向させ、基板用レジスト202を加圧する(図31(b))。このとき、基板用レジスト202は、凹部205Aの形状に合わせて基板3側からモールド201側に向かって漸次拡開して立設した状態となる(図31(c))。この押圧状態を維持しながら、基板用レジスト202を硬化させる。この際、凹部205A内の基板用レジスト202の先端側が基板3側よりも収縮して硬化する(図31(d))。よって、図31(e)に示すような転写パターン208が基板203に形成される。 As the nanoimprint method, for example, there is a technique described in Patent Document 4. The mold 201 used in the technique described in Patent Document 4 has a concave portion 205A and a convex portion 205B (FIG. 31 (a)). Here, the recess 205A is provided so as to gradually expand in the depth direction. Then, the pattern surface 201a of the mold 201 and the substrate 203 are opposed to each other, and the substrate resist 202 is pressed (FIG. 31B). At this time, the substrate resist 202 is in a state of being erected and gradually expanded from the substrate 3 side toward the mold 201 side in accordance with the shape of the recess 205A (FIG. 31C). The substrate resist 202 is cured while maintaining this pressed state. At this time, the front end side of the substrate resist 202 in the recess 205A shrinks and hardens more than the substrate 3 side (FIG. 31D). Therefore, a transfer pattern 208 as shown in FIG.
日本国公開特許公報「特開2008-216055号(2008年9月18日公開)」Japanese Patent Publication “JP 2008-216055 (published on September 18, 2008)” 国際公開第2010/140616号パンフレット(2010年12月9日公開)International Publication No. 2010/140616 pamphlet (released on December 9, 2010) 国際公開第2011/121857号パンフレット(2011年10月6日公開)International Publication No. 2011-121857 Pamphlet (released on October 6, 2011) 日本国特許公報「特許第4867423号(2012年2月1日発行)」Japanese Patent Gazette "Patent No. 4867423 (issued February 1, 2012)"
 ここで、特許文献2および3に記載の構造体では、フジツボ体または筒状体の内径が開口部から深さ方向に向かって増加する形状となる場合があった。つまり、上記構造体では、フジツボ体または筒状体の凹部の深さ方向に平行な断面の形状が逆テーパー型となる場合があった。このような複雑な形状を有する構造体は、ナノインプリント法によって量産することが難しいという問題があった。 Here, in the structures described in Patent Documents 2 and 3, the inner diameter of the barnacle body or the cylindrical body sometimes has a shape that increases from the opening in the depth direction. In other words, in the above structure, the shape of the cross section parallel to the depth direction of the concave portion of the barnacle body or the cylindrical body may be a reverse taper type. The structure having such a complicated shape has a problem that it is difficult to mass-produce it by the nanoimprint method.
 具体的には、まず、型を製造する場合に、フジツボ体または筒状体の凹部の隅々に樹脂を流し込む必要がある。さらに型を構造体から剥離する際に、逆テーパー型の凹部内で硬化した樹脂を、形状を維持したまま、内径が小さく且つ円形に閉じている開口部から引き抜かなければならない。そのため、型を製造することが困難であった。 Specifically, first, when manufacturing a mold, it is necessary to pour resin into every corner of the concave portion of the barnacle body or the cylindrical body. Further, when the mold is peeled from the structure, the resin cured in the concave portion of the reverse taper mold must be pulled out from the opening having a small inner diameter and closed in a circular shape while maintaining the shape. Therefore, it was difficult to manufacture a mold.
 さらに、ナノインプリント法では、完成した型を樹脂に押し付け、樹脂を硬化させた後、樹脂を型から剥離することで複製物を製造する。この工程においても、構造体が、逆テーパー型の凹部及び円形に閉じている開口部を有しているため、上述した型の製造時と同様に、樹脂を型から剥離することが困難であった。 Furthermore, in the nanoimprint method, the completed mold is pressed against the resin, the resin is cured, and then the resin is peeled from the mold to produce a replica. Also in this step, since the structure has a reverse-tapered concave portion and a circularly closed opening, it is difficult to peel the resin from the mold as in the case of manufacturing the mold described above. It was.
 ここで、特許文献4に記載のナノインプリント法では、凹部205Aは、深さ方向に漸次拡開して設けられている。しかしながら、特許文献4に記載のナノインプリント法において用いられるモールド201は、基板用レジスト202が硬化後に収縮することを考慮して上記形状の凹部を採用している。図31(d)および(e)に示すように、凹部205Aに流れ込んだ基板用レジスト202は、硬化後に収縮して、柱状(基板203に対して垂直方向に同一断面積に立設された状態)となる。そのため、特許文献4に記載のナノインプリント法では、硬化した基板用レジスト202をモールド201から容易に剥離することができる。つまり、特許文献4に記載の技術は、逆テーパー型の凹部に流れ込んだ樹脂をそのままの形状で硬化させて剥離するものではない。また特許文献2の段落〔0239〕および特許文献3の段落〔0199〕には「サブミクロン程度のサイズになるとスタンパからの離型性が悪いため、ナノインプリント法では複雑な形状を生産することは困難である」と記載されている。よって、特許文献4に記載の技術を、特許文献2および3に記載の構造体の複製に適用することはできない。 Here, in the nanoimprint method described in Patent Document 4, the recess 205A is provided so as to gradually expand in the depth direction. However, the mold 201 used in the nanoimprint method described in Patent Document 4 adopts the concave portion having the above shape in consideration of the shrinkage of the substrate resist 202 after curing. As shown in FIGS. 31D and 31E, the substrate resist 202 that has flowed into the recess 205A contracts after being cured, and is in a columnar shape (in a state where it is erected with the same cross-sectional area in a direction perpendicular to the substrate 203) ) Therefore, in the nanoimprint method described in Patent Document 4, the cured substrate resist 202 can be easily peeled from the mold 201. That is, the technique described in Patent Document 4 does not cure and peel the resin that has flowed into the inverted taper-shaped recess in the same shape. In addition, in paragraph [0239] of Patent Document 2 and paragraph [0199] of Patent Document 3, it is difficult to produce a complicated shape by the nanoimprint method because the release property from a stamper is poor at a submicron size. Is ". Therefore, the technique described in Patent Document 4 cannot be applied to the structure replication described in Patent Documents 2 and 3.
 本発明は、上記問題点に鑑みてなされたものであり、その目的は、高感度の局在型表面プラズモン共鳴センサを提供し得る構造体を、ナノインプリント法によって容易に複製する方法を提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to provide a method for easily replicating a structure capable of providing a highly sensitive localized surface plasmon resonance sensor by a nanoimprint method. It is in.
 上記の課題を解決するために、本発明者らは、上記構造体の複製方法について、鋭意検討を重ねた結果、従来の技術では、上述のような複雑な形状を有する構造体に対して適用することは困難であると考えられていたナノインプリント法を用いて、上記構造体の複製を実現できることを見出した。 In order to solve the above problems, the present inventors have made extensive studies on the method for duplicating the structure, and as a result, the conventional technique is applied to the structure having the complicated shape as described above. It has been found that the replication of the structure can be realized by using a nanoimprint method that has been considered difficult to do.
 すなわち、上記課題を解決するために、本発明に係る構造体の複製方法は、構造体の複製方法であって、(i)第一の構造体の表面にフッ素基を導入する工程と、(ii)上記第一の構造体の表面を覆うように第一の熱硬化性樹脂または光硬化性樹脂を塗布し、当該第一の熱硬化性樹脂または光硬化性樹脂を硬化後、上記第一の構造体から剥離することによって、第一の構造体の型となる第二の構造体を製造する工程と、(iii)第二の熱硬化性樹脂または光硬化性樹脂を基板上に塗布し、当該第二の熱硬化性樹脂または光硬化性樹脂に対して上記第二の構造体を押し付け、当該第二の熱硬化性樹脂または光硬化性樹脂を硬化後、上記第二の構造体から剥離することによって、第一の構造体の複製物である第三の構造体を製造する工程と、を含んでおり、上記第一の構造体は、平面部と、当該平面部に対して突出した凸部と、当該凸部の頂点または当該平面部に対して窪んだ凹部とを備え、上記凸部は、上記凹部の外周に沿って連続的に突起しており、上記凹部の外周に沿って連続的に突起した上記凸部の頂点が成す形状の平均内径が5nm以上2,000nm以下の範囲内であり、且つ、上記凹部の外周に沿って連続的に突起した上記凸部の頂点が成す形状の内径は、上記凹部および上記凹部の外周に沿って連続的に突起した上記凸部が成す形状の内径の最大値に比べて小さいことを特徴としている。 That is, in order to solve the above-mentioned problem, a structure replication method according to the present invention is a structure replication method, comprising: (i) introducing a fluorine group on the surface of the first structure; ii) Applying the first thermosetting resin or photocurable resin so as to cover the surface of the first structure, curing the first thermosetting resin or photocurable resin, (Ii) applying a second thermosetting resin or photocurable resin on the substrate, and a step of producing a second structure to be a mold of the first structure by peeling from the structure. From the second structure after pressing the second structure against the second thermosetting resin or photocurable resin, and curing the second thermosetting resin or photocurable resin A step of producing a third structure that is a replica of the first structure by peeling. The first structure includes a flat portion, a convex portion projecting with respect to the flat portion, and a concave portion recessed with respect to the apex of the convex portion or the flat portion. , Projecting continuously along the outer periphery of the concave portion, and the average inner diameter of the shape formed by the apex of the convex portion continuously projecting along the outer periphery of the concave portion is within the range of 5 nm to 2,000 nm In addition, the inner diameter of the shape formed by the apex of the convex portion continuously projecting along the outer periphery of the concave portion is the shape of the convex portion continuously projecting along the outer periphery of the concave portion and the concave portion. It is characterized by being smaller than the maximum inner diameter.
 本発明は、構造体の複製方法であって、(i)第一の構造体の表面にフッ素基を導入する工程と、(ii)上記第一の構造体の型となる第二の構造体を製造する工程と、(iii)第二の熱硬化性樹脂または光硬化性樹脂に対して上記第二の構造体を押し付け、上記第一の構造体の複製物である第三の構造体を製造する工程と、を含んでおり、上記第一の構造体は、平面部と、当該平面部に対して突出した凸部と、当該凸部の頂点または当該平面部に対して窪んだ凹部とを備え、上記凸部は、上記凹部の外周に沿って連続的に突起しており、上記凹部の外周に沿って連続的に突起した上記凸部の頂点が成す形状の平均内径が5nm以上2,000nm以下の範囲内であり、且つ、上記凹部の外周に沿って連続的に突起した上記凸部の頂点が成す形状の内径は、上記凹部および上記凹部の外周に沿って連続的に突起した上記凸部が成す形状の内径の最大値に比べて小さいという構成である。 The present invention relates to a structure duplication method, wherein (i) a step of introducing a fluorine group into the surface of the first structure, and (ii) a second structure that is a mold of the first structure. And (iii) pressing the second structure against the second thermosetting resin or photocurable resin, and forming a third structure that is a replica of the first structure. The first structure includes a flat portion, a convex portion projecting with respect to the flat portion, and a concave portion recessed with respect to the apex of the convex portion or the flat portion. The convex portion continuously protrudes along the outer periphery of the concave portion, and the average inner diameter of the shape formed by the apex of the convex portion continuously protruded along the outer periphery of the concave portion is 5 nm or more 2 A shape formed by the apex of the convex portion continuously projecting along the outer periphery of the concave portion within a range of 1,000 nm or less The inner diameter of a structure that is smaller than the maximum value of the inner diameter of the shape of the convex portion continuously projecting along the periphery of the recess and the recess is formed.
 そのため、高感度の局在型表面プラズモン共鳴センサを提供し得る構造体を、ナノインプリント法によって容易に複製することができるという効果を奏する。 Therefore, there is an effect that a structure capable of providing a highly sensitive localized surface plasmon resonance sensor can be easily replicated by the nanoimprint method.
本実施の形態に係る構造体の複製方法に使用される第一の構造体の平面SEM像である。It is a plane SEM image of the 1st structure used for the replication method of the structure concerning this embodiment. 本実施の形態に係る構造体の複製方法に使用される第一の構造体を模式的に示す断面図である。It is sectional drawing which shows typically the 1st structure used for the replication method of the structure which concerns on this Embodiment. 本実施の形態に係る構造体の複製方法に使用される第一の構造体の製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the 1st structure used for the replication method of the structure which concerns on this Embodiment. 本実施の形態に係る構造体の複製方法における第二の構造体の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the 2nd structure in the replication method of the structure which concerns on this Embodiment. 本実施の形態に係る構造体の複製方法における、第一の構造体に対する離型処理の方法の一例を示す断面図である。It is sectional drawing which shows an example of the method of the mold release process with respect to the 1st structure in the replication method of the structure which concerns on this Embodiment. 本実施の形態に係る構造体の複製方法における第三の構造体の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the 3rd structure in the replication method of the structure which concerns on this Embodiment. 本実施の形態に係る局在型表面プラズモン共鳴センサ用チップの製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the chip | tip for localized type surface plasmon resonance sensors concerning this Embodiment. 本実施の形態に係る局在型表面プラズモン共鳴センサの反射光学系の基本的構成の一例を示す平面図である。It is a top view which shows an example of the fundamental structure of the reflective optical system of the localized surface plasmon resonance sensor which concerns on this Embodiment. 本実施の形態に係る局在型表面プラズモン共鳴センサの透過光学系の基本的構成の一例を示す平面図である。It is a top view which shows an example of the fundamental structure of the transmission optical system of the localized surface plasmon resonance sensor which concerns on this Embodiment. 実施例1において作製した第三の構造体を用いたセンサ用チップの平面SEM像である。6 is a planar SEM image of a sensor chip using the third structure produced in Example 1. FIG. 実施例1において作製した第三の構造体を用いたセンサ用チップの透過スペクトルを表す図である。It is a figure showing the transmission spectrum of the chip | tip for sensors using the 3rd structure produced in Example 1. FIG. (a)は、実施例2において作製した第一の構造体の平面SEM像であり、(b)は、実施例2において作製した第三の構造体の平面SEM像である。(A) is a planar SEM image of the 1st structure produced in Example 2, (b) is a planar SEM image of the 3rd structure produced in Example 2. FIG. (a)は、実施例3において作製した第三の構造体を用いたセンサ用チップの平面SEM像であり、(b)は、上記第三の構造体を製造する際のインプリント時の応力履歴を示す図であり、(c)は、上記センサ用チップの透過スペクトルを示す図である。(A) is a plane SEM image of the sensor chip using the third structure produced in Example 3, and (b) is the stress at the time of imprint when manufacturing the third structure. It is a figure which shows a log | history, (c) is a figure which shows the transmission spectrum of the said chip | tip for sensors. (a)は、実施例3において作製した第三の構造体を用いたセンサ用チップの断面SEM像であり、(b)は、第一の構造体を用いたセンサ用チップの断面TEM像である。(A) is the cross-sectional SEM image of the sensor chip using the 3rd structure produced in Example 3, (b) is the cross-sectional TEM image of the sensor chip using the 1st structure. is there. (a)は、比較例において作製した第三の構造体を用いたセンサ用チップの平面SEM像であり、(b)は、実施例4において作製した第三の構造体を用いたセンサ用チップの平面SEM像である。(A) is a planar SEM image of the sensor chip using the third structure produced in the comparative example, and (b) is a sensor chip using the third structure produced in Example 4. It is a plane SEM image. 実施例5において同一の第二の構造体から作製した第三の構造体を用いたセンサ用チップの透過スペクトルを示す図である。It is a figure which shows the transmission spectrum of the chip for sensors using the 3rd structure produced from the same 2nd structure in Example 5. FIG. (a)は、実施例6において同一の第二の構造体から作製した第三の構造体を用いたセンサ用チップの透過スペクトルのピーク位置の分布、および、インプリント時の応力履歴を示す図であり、(b)は、実施例7において同一の第二の構造体から作製した第三の構造体を用いたセンサ用チップの透過スペクトルのピーク位置の分布、および、インプリント時の応力履歴を示す図である。(A) is a figure which shows the distribution of the peak position of the transmission spectrum of the chip for sensors using the 3rd structure produced from the same 2nd structure in Example 6, and the stress history at the time of imprinting (B) is the distribution of the peak position of the transmission spectrum of the sensor chip using the third structure manufactured from the same second structure in Example 7, and the stress history during imprinting. FIG. 実施例8におけるインプリント時の応力履歴を示す図である。It is a figure which shows the stress log | history at the time of the imprint in Example 8. FIG. 実施例8において製造された第三の構造体を用いたセンサ用チップの平面SEM像である。10 is a planar SEM image of a sensor chip using a third structure manufactured in Example 8. FIG. 実施例8において同一の第二の構造体から作製した第三の構造体を用いたセンサ用チップの透過スペクトルのピーク位置の分布を示す図である。It is a figure which shows distribution of the peak position of the transmission spectrum of the sensor chip using the 3rd structure produced from the same 2nd structure in Example 8. FIG. 実施例7および8において製造されたセンサ用チップの透過スペクトルを示す図である。It is a figure which shows the transmission spectrum of the chip | tip for sensors manufactured in Example 7 and 8. FIG. (a)、(c)および(e)は、実施例9において第三の構造体から作製した複数の第二の構造体に由来する第三の構造体を用いたセンサ用チップ(第二世代)の平面SEM像である。(b)、(d)および(f)は、それぞれ(a)、(c)および(e)に示されるセンサ用チップに対応する透過スペクトルを示す図である。(A), (c) and (e) are sensor chips (second generation) using a third structure derived from a plurality of second structures produced from the third structure in Example 9. ) Plane SEM image. (B), (d) and (f) are diagrams showing transmission spectra corresponding to the sensor chips shown in (a), (c) and (e), respectively. 実施例10における、実施例9で作製された第三の構造体(第二世代)から作製した第二の構造体に由来する第三の構造体を用いたセンサ用チップ(第三世代)の平面SEM像である。Example 10 of sensor chip (third generation) using the third structure derived from the second structure produced from the third structure (second generation) produced in Example 9 It is a plane SEM image. (a)、(c)および(e)は、それぞれ実施例11-13におけるインプリント時の応力履歴を示す図であり、(b)、(d)および(f)は、それぞれ(a)、(c)および(e)に示される応力履歴によって製造されたセンサ用チップの平面図である。(A), (c), and (e) are diagrams showing stress histories during imprinting in Examples 11-13, respectively. (B), (d), and (f) are (a), It is a top view of the chip for sensors manufactured by the stress history shown in (c) and (e). (a)は、実施例14における5スポットの測定領域を有するセンサ用チップの透過スペクトルを示す図であり、(b)は測定領域の位置関係を示す図である。(A) is a figure which shows the transmission spectrum of the chip | tip for a sensor which has the measurement area | region of 5 spots in Example 14, (b) is a figure which shows the positional relationship of a measurement area | region. (a)は、実施例15における9スポットの測定領域を有するセンサ用チップの透過スペクトルを示す図であり、(b)は測定領域の位置関係を示す図である。(A) is a figure which shows the transmission spectrum of the chip | tip for a sensor which has the measurement area | region of 9 spots in Example 15, (b) is a figure which shows the positional relationship of a measurement area | region. (a)および(b)はそれぞれ、実施例16における、第一の構造体を用いたセンサ用チップおよび第三の構造体を用いたセンサ用チップによるバイオセンシングの結果を示す図である。(A) And (b) is a figure which shows the result of the biosensing by the sensor chip using the 1st structure in Example 16, and the sensor chip using the 3rd structure, respectively. 従来の伝搬型表面プラズモン共鳴センサの原理を模式的に示す図面である。It is drawing which shows typically the principle of the conventional propagation type surface plasmon resonance sensor. 従来の局在型表面プラズモン共鳴センサの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the conventional localized surface plasmon resonance sensor. 従来の局在型表面プラズモン共鳴センサにおいて、凹部に強い電界が集中することを示す断面図である。It is sectional drawing which shows that a strong electric field concentrates on a recessed part in the conventional localized surface plasmon resonance sensor. 従来のナノインプリント法を模式的に示す図面である。It is drawing which shows the conventional nanoimprint method typically.
 本発明の実施の一形態について説明すれば、以下の通りである。 An embodiment of the present invention will be described as follows.
 なお、本明細書では、範囲を示す「A~B」はA以上B以下であることを意味し、本明細書で挙げられている各種物性は、特に断りの無い限り後述する実施例に記載の方法により測定した値を意味する。また、本明細書において、本発明に係る構造体の複製方法を「本発明の複製方法」と適宜称する。 In the present specification, “A to B” indicating a range means A or more and B or less, and various physical properties mentioned in this specification are described in Examples described later unless otherwise specified. Means the value measured by the method. Further, in this specification, the method for duplicating a structure according to the present invention is appropriately referred to as “the duplication method of the present invention”.
 〔1.構造体〕
 <構造体の形状>
 以下では、まず、本発明の複製方法によって複製される対象となる構造体の形状について説明する。なお、本明細書において、上記複製される対象となる構造体を「第一の構造体」または「マスター基板」とも称する。
[1. Structure〕
<Shape of structure>
In the following, first, the shape of the structure to be duplicated by the duplication method of the present invention will be described. In the present specification, the structure to be duplicated is also referred to as “first structure” or “master substrate”.
 上記第一の構造体は、平面部と、当該平面部に対して突出した凸部と、当該凸部の頂点または当該平面部に対して窪んだ凹部とを備えている。 The first structure includes a flat part, a convex part protruding with respect to the flat part, and a concave part recessed with respect to the apex of the convex part or the flat part.
 ここで、上記構造体における上記凸部は、上記凹部の外周に沿って連続的に突起している。言い換えれば、上記構造体は、平面部より上部に出っ張った凸部と、凸部の頂点または平面部よりも下部に窪んだ凹部との両方とを有し、凸部分が円形等の閉じた形状になっているものであり、海洋生物のフジツボに類似した形状を有していることが好ましい。 Here, the convex part in the structure is continuously projected along the outer periphery of the concave part. In other words, the structure has both a convex portion protruding above the flat portion and a concave portion recessed below the top of the convex portion or the flat portion, and the convex portion is a closed shape such as a circle. It is preferable that it has a shape similar to a barnacle of marine organisms.
 なお、本明細書では、上記凹部と当該凹部の外周に沿って連続的に突起している凸部から形成されるフジツボのような形状を有する部分を「フジツボ体」とも称する。なお、本明細書における「フジツボ体」との表現は、上記凹部及び凸部によって形成される構造の外観を便宜的に表している表現であり、上記構造体の内部の形状までが海洋生物のフジツボに類似していることを意図しているわけではない。 In the present specification, a portion having a shape like a barnacle formed from the concave portion and a convex portion continuously projecting along the outer periphery of the concave portion is also referred to as a “barnacle body”. In addition, the expression “barnacle body” in this specification is an expression that expresses the appearance of the structure formed by the concave portion and the convex portion for convenience, and the internal shape of the structure body is a marine organism. It is not intended to be similar to barnacles.
 図1は、上記第一の構造体の平面SEM像の一例である。図1(b)は図1(a)を拡大したものである。また、図2は、上記第一の構造体を模式的に示す断面図である。図2に示す通り、上記第一の構造体は、表面においてフジツボ体45を有している。フジツボ体45は、凸部45aおよび凹部45bから形成されている。 FIG. 1 is an example of a planar SEM image of the first structure. FIG. 1B is an enlarged view of FIG. FIG. 2 is a cross-sectional view schematically showing the first structure. As shown in FIG. 2, the first structure has a barnacle body 45 on the surface. The barnacle body 45 is formed of a convex portion 45a and a concave portion 45b.
 上記第一の構造体では、上記凹部の外周に沿って連続的に突起した上記凸部の頂点が成す形状の平均内径が5nm以上2,000nm以下の範囲内である。なお、本明細書において、「上記凹部の外周に沿って連続的に突起した上記凸部の頂点」が成す構造を「開口部」と称する場合もある。また、「上記凹部の外周に沿って連続的に突起した上記凸部の頂点が成す形状の(平均)内径」を単に「開口部の(平均)内径」と称し、「上記凹部の外周に沿って連続的に突起した上記凸部の頂点が成す形状」を単に「開口部の形状」と称する場合もある。図2におけるAが開口部の内径を表している。 In the first structure, the average inner diameter of the shape formed by the apexes of the protrusions that continuously protrude along the outer periphery of the recess is in the range of 5 nm to 2,000 nm. In the present specification, a structure formed by “the apex of the convex portion protruding continuously along the outer periphery of the concave portion” may be referred to as an “opening portion”. Further, “the (average) inner diameter of the shape formed by the vertices of the protrusions continuously projecting along the outer periphery of the recess” is simply referred to as “the (average) inner diameter of the opening” and “ The “shape formed by the vertices of the convex portions protruding continuously” may be simply referred to as “the shape of the opening”. A in FIG. 2 represents the inner diameter of the opening.
 上記開口部の形状は、円形であってもよく、楕円形または方形等であってもよい。フジツボ体の開口部の平均内径は、原子間力顕微鏡(AFM)、走査型電子顕微鏡(SEM)、レーザー顕微鏡等でフジツボ体の開口部を上から観察し、その開口部の内径を測定することにより把握することができる。「開口部の内径」は、開口部の形状に対する最大内接円の直径が意図され、例えば、開口部の形状が実質的に円形状である場合はその円の直径が意図され、実質的に楕円形状である場合はその楕円の短径が意図され、実質的に正方形状である場合はその正方形の辺の長さが意図され、実質的に長方形状である場合はその長方形の短辺の長さが意図される。複数の(好ましくは10個以上、より好ましくは20個以上、さらに好ましくは50個以上)フジツボ体について開口部の内径を測定し、その平均値を求め「フジツボ体の開口部の平均内径」とすればよい。なお、本実施形態における構造体を構成するフジツボ体の開口部の平均内径が5nm以上、2,000nm以下の範囲内であれば、フジツボ体の凹部内部および開口部周辺に入射光を局在化させることが可能となるため、当該構造体は局在型表面プラズモン共鳴センサ用チップの製造に好ましく利用され得る。よって、当該構造体の複製物も局在型表面プラズモン共鳴センサ用チップの製造に好ましく利用され得る。 The shape of the opening may be circular, oval or square. The average inner diameter of the opening of the barnacle body is to observe the opening of the barnacle body from above with an atomic force microscope (AFM), scanning electron microscope (SEM), laser microscope, etc., and measure the inner diameter of the opening. It can be grasped by. The “inner diameter of the opening” is intended to be the diameter of the largest inscribed circle with respect to the shape of the opening. For example, when the shape of the opening is substantially circular, the diameter of the circle is intended and substantially In the case of an ellipse shape, the minor axis of the ellipse is intended, in the case of a substantially square shape, the length of the side of the square is intended, and in the case of a substantially rectangular shape, the short side of the rectangle is intended. Length is intended. The inner diameter of the opening is measured for a plurality of (preferably 10 or more, more preferably 20 or more, more preferably 50 or more) barnacle bodies, and the average value is obtained as “the average inner diameter of the barnacle body openings”. do it. In addition, if the average inner diameter of the opening part of the barnacle body constituting the structure in the present embodiment is in the range of 5 nm or more and 2,000 nm or less, the incident light is localized inside the recess of the barnacle body and around the opening part. Therefore, the structure can be preferably used for manufacturing a chip for a localized surface plasmon resonance sensor. Therefore, a replica of the structure can also be preferably used for the manufacture of a localized surface plasmon resonance sensor chip.
 また上記フジツボ体の開口部の平均内径は、300nm~1000nmの範囲内であることがより好ましい。上記フジツボ体の開口部の平均内径が、300nm~1000nmの範囲内であることで、より強く入射光を局在させることが可能となる。また、上記フジツボ体の開口部の平均内径は、400nm~800nmの範囲内であることがさらに好ましい。上記フジツボ体の開口部の平均内径が、400nm~800nmの範囲内であることで、局在させた入射光を増強させることが可能となる。 The average inner diameter of the opening of the barnacle body is more preferably in the range of 300 nm to 1000 nm. When the average inner diameter of the opening of the barnacle body is in the range of 300 nm to 1000 nm, the incident light can be more strongly localized. The average inner diameter of the opening of the barnacle body is more preferably in the range of 400 nm to 800 nm. When the average inner diameter of the opening of the barnacle body is in the range of 400 nm to 800 nm, it is possible to enhance the localized incident light.
 また上記第一の構造体では、上記開口部の内径は、上記凹部および上記凹部の外周に沿って連続的に突起した上記凸部が成す形状の内径の最大値に比べて小さい。上記構成によれば、局在型表面プラズモン共鳴センサ用チップを製造した場合に、より強い局在型表面プラズモン共鳴を発生させることができるため、より高感度の局在型表面プラズモン共鳴センサを提供することができる。 In the first structure, the inner diameter of the opening is smaller than the maximum value of the inner diameter of the concave portion and the shape of the convex portion continuously projecting along the outer periphery of the concave portion. According to the above configuration, since a stronger localized surface plasmon resonance can be generated when a localized surface plasmon resonance sensor chip is manufactured, a more sensitive localized surface plasmon resonance sensor is provided. can do.
 この点について、図2を参照して以下に説明する。図2のAは開口部の内径を表す。図2のBは上記凹部および上記凹部の外周に沿って連続的に突起した上記凸部が成す形状において、最大となる内径を表している。上記フジツボ体では、A<Bとなる。内径Aおよび内径Bは、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)等によるフジツボ体の断面観察により把握することができる。なお、後述の実施例では金蒸着後の構造体の内径を測定したが、金蒸着前の構造体も同様に測定可能である。また、以下では、上記凹部および上記凹部の外周に沿って連続的に突起した上記凸部が成す形状を「フジツボ体内部」とも称する。 This point will be described below with reference to FIG. 2A represents the inner diameter of the opening. B of FIG. 2 represents the maximum inner diameter in the shape formed by the concave portion and the convex portion continuously projecting along the outer periphery of the concave portion. In the barnacle body, A <B. The inner diameter A and the inner diameter B can be grasped by cross-sectional observation of the barnacle body using a scanning electron microscope (SEM) or a transmission electron microscope (TEM). In addition, although the internal diameter of the structure after gold vapor deposition was measured in the below-mentioned Example, the structure before gold vapor deposition is measurable similarly. Hereinafter, the shape formed by the concave portion and the convex portion continuously projecting along the outer periphery of the concave portion is also referred to as “inside the barnacle body”.
 換言すれば、フジツボ体内部の少なくとも一部においては、開口部から凹部の底面に向かって、内径が増加している。さらに換言すれば、フジツボ体内部の少なくとも一部は逆テーパー型である。つまり、フジツボ体内部は開口部から凹部の底面まで一貫して内径が増加していてもよいし、フジツボ体内部のうち、開口部からある程度の深さまでは内径が増加し、途中で底面に向かって内径が減少していてもよい。フジツボ体内部では、深さ(上記凸部の高さと凹部の深さとの和)を100%とした場合に、開口部から10%まで、20%まで、30%まで、40%まで、50%まで、60%まで、70%まで、80%まで、または90%までの領域において内径が増加していてもよい。ここで凹部の底面とは、フジツボ体内部において開口部と反対側に位置する部分である。 In other words, in at least a part of the inside of the barnacle body, the inner diameter increases from the opening toward the bottom of the recess. In other words, at least a part of the inside of the barnacle body is a reverse taper type. In other words, the inner diameter of the barnacle body may be consistently increased from the opening to the bottom surface of the recess, or the inner diameter increases to a certain depth from the opening inside the barnacle body, and then toward the bottom surface in the middle. The inner diameter may be reduced. Inside the barnacle body, when the depth (the sum of the height of the convex portion and the depth of the concave portion) is 100%, it is 10%, 20%, 30%, 40%, 50% from the opening. Up to 60%, up to 70%, up to 80%, or up to 90%. Here, the bottom surface of the recess is a portion located on the side opposite to the opening in the barnacle body.
 また本実施の形態に係る構造体は、上記フジツボ体の開口部からの深さ(上記凸部の高さと凹部の深さとの和)の平均値が、10nm以上、2μm以下の範囲内であることが好ましく、30nm以上、500nm以下の範囲内であることがさらに好ましい。複数(好ましくは10個以上、より好ましくは20個以上、さらに好ましくは50個以上)のフジツボ体について深さを測定し、その平均値を求め「フジツボ体の開口部からの深さの平均値」とすればよい。なお、本実施形態における構造体を構成するフジツボ体の開口部からの深さの平均値が10nm以上、2μm以下の範囲内であれば、フジツボ体の凹部内部および開口部周辺に入射光を強く局在化させることが可能であるため、当該構造体は局在型表面プラズモン共鳴センサ用チップの製造に好ましく利用され得る。 In the structure according to the present embodiment, the average value of the depth from the opening of the barnacle body (the sum of the height of the convex portion and the depth of the concave portion) is in the range of 10 nm or more and 2 μm or less. It is preferable that it is in the range of 30 nm or more and 500 nm or less. The depth is measured for a plurality of (preferably 10 or more, more preferably 20 or more, and still more preferably 50 or more) barnacle bodies, and the average value is obtained as “average value of depth from opening of barnacle bodies” "And it is sufficient. If the average depth from the opening of the barnacle body constituting the structure according to the present embodiment is within the range of 10 nm or more and 2 μm or less, the incident light is strongly applied to the inside of the recess of the barnacle body and the periphery of the opening. Since the structure can be localized, the structure can be preferably used for manufacturing a chip for a localized surface plasmon resonance sensor.
 また、上記フジツボ体の平面部における分散密度は、100μm四方当たり1個以上50万個以下の範囲内であることが好ましく、100μm四方当たり10個以上30万個以下の範囲内であることがより好ましい。また100μm四方当たり50個以上20万個以下の範囲内であることが最も好ましい。上記分散密度は、AFMまたはSEM観察等により任意の範囲に存在するフジツボ体の個数を計測し、これをもとに100μm四方当たりの個数を算出すればよい。 Further, the dispersion density in the plane portion of the barnacle body is preferably in the range of 1 to 500,000 per 100 μm square, more preferably in the range of 10 to 300,000 per 100 μm square. preferable. Moreover, it is most preferable that it is in the range of 50 to 200,000 per 100 μm square. The dispersion density may be calculated by measuring the number of barnacles existing in an arbitrary range by AFM or SEM observation, and calculating the number per 100 μm square.
 <第一の構造体の製造例>
 本発明の複製方法によれば、第一の構造体の材料にかかわらず、第一の構造体と同一の形状を有する第三の構造体を製造することができる。従って、本実施の形態に係る第一の構造体の材料および製造方法は特に限定されるものではないが、以下にその一例を示す。
<Example of production of first structure>
According to the replication method of the present invention, a third structure having the same shape as the first structure can be manufactured regardless of the material of the first structure. Accordingly, the material and manufacturing method of the first structure body according to the present embodiment are not particularly limited, but an example thereof is shown below.
 (第一の構造体の材料)
 上記第一の構造体を構成する材料は特に限定されるものではなく、無機材料であっても、有機材料であってもよく、またこれらの混合物であってもよい。さらに本実施の形態に係る構造体は、刺激応答性材料(例えば光応答性材料、熱応答性材料等)からなるものであってもよい。
(Material of the first structure)
The material constituting the first structure is not particularly limited, and may be an inorganic material, an organic material, or a mixture thereof. Furthermore, the structure according to the present embodiment may be made of a stimulus-responsive material (for example, a light-responsive material, a heat-responsive material, or the like).
 (無機材料)
 無機材料としては、シリコン(結晶、多結晶、非晶)、カーボン(結晶、アモルファス)、窒化物、酸化物(酸化チタン、二酸化ケイ素(SiO2))等の誘電体、半導体材料などが挙げられる。これら無機材料は微粒子を焼結させたものでも構わない。
(Inorganic material)
Examples of inorganic materials include dielectrics such as silicon (crystal, polycrystal, amorphous), carbon (crystal, amorphous), nitride, oxide (titanium oxide, silicon dioxide (SiO 2 )), and semiconductor materials. . These inorganic materials may be those obtained by sintering fine particles.
 (有機材料)
 有機材料としては、汎用高分子、エンジニアリングプラスチック、スーパーエンジニアリングプラスチックや液晶化合物などが挙げられる(混合物でも良いし、架橋構造を有するなど二次構造、三次構造を制御されたものでも構わない)。これら有機材料の中には、外部刺激に応じて物性や形状を変化させる刺激応答性材料がある。
(Organic material)
Examples of the organic material include general-purpose polymers, engineering plastics, super engineering plastics, and liquid crystal compounds (a mixture may be used, or a secondary structure or a tertiary structure may be controlled such as having a crosslinked structure). Among these organic materials, there is a stimulus-responsive material that changes physical properties and shape in response to an external stimulus.
 (刺激応答性材料)
 刺激応答性材料とは、外部刺激に応答して分子鎖が運動性を有する材料であり、具体的には熱応答性材料および光応答性材料が挙げられる。
(Stimulus responsive material)
The stimulus-responsive material is a material in which a molecular chain has mobility in response to an external stimulus, and specifically includes a heat-responsive material and a photo-responsive material.
 (熱応答性材料)
 上記熱応答性材料とは、熱刺激により材料を構成する分子鎖が激しく運動性を有する材料である。熱刺激に対して、材料が流動性を示したり、軟化したり変形する材料である。具体的には、ポリスチレンやポリメチルメタクリレートに代表されるようなアクリル系材料などの非晶性材料、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレートやアイソタクチックポリスチレン等の結晶性材料、ウレタン樹脂、ウレア樹脂、メラミン樹脂、フェノール樹脂などが使用できる。また、スチレン-メタクリレート共重合体(ブロック共重合体、ランダム共重合体など)などの共重合体を用いることもできる。またこれらの材料を併用しても良い。
(Heat-responsive material)
The heat-responsive material is a material in which the molecular chain constituting the material is intensely moved by thermal stimulation. A material that exhibits fluidity, softens or deforms in response to thermal stimulation. Specifically, amorphous materials such as acrylic materials such as polystyrene and polymethyl methacrylate, crystalline materials such as polyethylene, polypropylene, polyethylene terephthalate and isotactic polystyrene, urethane resins, urea resins, melamine Resin, phenol resin, etc. can be used. A copolymer such as a styrene-methacrylate copolymer (block copolymer, random copolymer, etc.) can also be used. These materials may be used in combination.
 (光応答性材料)
 上記光応答性材料とは、光照射により物質移動が起こる材料であり、より具体的には照射部の光の明部及び暗部に沿って物質移動現象を生じる材料である。
(Photoresponsive material)
The photoresponsive material is a material that causes mass transfer by light irradiation, and more specifically, is a material that causes a mass transfer phenomenon along the bright and dark portions of the light of the irradiated portion.
 上記光応答性材料としては、光変形を起こし得る材料であって、光照射部の明暗部に応じて物質移動を示す材料であれば特には限定されないが、例えば、光照射によりアブレーション、フォトクロミズム、分子の光誘起配向等を起こす成分(光反応性成分)をマトリックス材料中に含み、光照射により体積、密度、自由体積等が変化するような、有機又は無機の材料が挙げられる。また、上記光応答性材料としては、イオウ、セレン及びテルルからなる群から選択される何れかの元素と、ゲルマニウム、ヒ素及びアンチモンからなる群から選択される何れかの元素とが結合した構造を含むカルコゲナイトガラスと総称される無機材料等も挙げられる。 The photoresponsive material is not particularly limited as long as it is a material capable of causing photodeformation and exhibits mass transfer according to the light and dark part of the light irradiation part.For example, ablation, photochromism, Examples include organic or inorganic materials that contain a component (photoreactive component) that causes photo-induced alignment of molecules in the matrix material, and whose volume, density, free volume, and the like are changed by light irradiation. The photoresponsive material has a structure in which any element selected from the group consisting of sulfur, selenium, and tellurium is bonded to any element selected from the group consisting of germanium, arsenic, and antimony. Examples thereof include inorganic materials generically called chalcogenite glass.
 上記光反応性成分としては、例えば、材料の形状変化を伴う異方的光反応を起こし得る成分である、光異性化成分や光重合性成分が挙げられる。 Examples of the photoreactive component include a photoisomerization component and a photopolymerizable component, which are components capable of causing an anisotropic photoreaction accompanied by a change in material shape.
 上記光異性化成分としては、例えば、トランス-シス光異性化を生じる成分、特に代表的にはアゾ基(-N=N-)を有する色素構造、特に、アゾベンゼンやその誘導体の化学構造を持つ成分が挙げられる。 Examples of the photoisomerization component include components that cause trans-cis photoisomerization, particularly typically a dye structure having an azo group (—N═N—), particularly a chemical structure of azobenzene or a derivative thereof. Ingredients.
 上記異性化成分がアゾ基を有する色素構造を含む材料である場合において、その色素構造が、1又は2以上の電子吸引性官能基(電子吸引性置換基)、及び/又は、1又は2以上の電子供与性官能基(電子供与性置換基)を備えることが好ましく、これらの電子吸引性官能基と電子供与性官能基とを両方備えることが特に好ましい。 In the case where the isomerization component is a material containing a dye structure having an azo group, the dye structure has one or more electron-withdrawing functional groups (electron-withdrawing substituents) and / or one or two or more. These electron donating functional groups (electron donating substituents) are preferably provided, and it is particularly preferred to have both of these electron withdrawing functional groups and electron donating functional groups.
 上記電子吸引性官能基としては、ハメット則における置換基定数σが正の値である官能基が好ましく、電子供与性官能基としてはハメット則における置換基定数σが負の値である官能基が好ましい。 The electron-withdrawing functional group is preferably a functional group having a positive value for the substituent constant σ in Hammett's rule, and the electron-donating functional group is a functional group having a negative value for the substituent constant σ in Hammett's rule. preferable.
 つまり、上記異性化成分は、下記式(1)
Σ|σ|≦|σ1 |+|σ2 |  …(1)
(上記式において、σはハメット則における置換基定数、σ1 はシアノ基の置換基定数、σ2 はアミノ基の置換基定数である。)
が成立する条件下で、上記電子供与性置換基と電子吸引性置換基とを備えることが好ましい。これにより、蛍光分析用の蛍光色素における蛍光ピーク波長よりも短い波長域に光吸収波長の長波長側のカットオフ波長があるように制御した色素構造を含み得る。これにより、正確な測定を行うことができる。
That is, the isomerization component is represented by the following formula (1)
Σ | σ | ≦ | σ1 | + | σ2 | (1)
(In the above formula, σ is a substituent constant in Hammett's rule, σ 1 is a cyano group substituent constant, and σ 2 is an amino group substituent constant.)
It is preferable that the above-mentioned electron donating substituent and electron withdrawing substituent are provided under the condition that is established. Thereby, the dye structure controlled so that the cut-off wavelength on the long wavelength side of the light absorption wavelength is in the wavelength range shorter than the fluorescence peak wavelength in the fluorescent dye for fluorescence analysis can be included. Thereby, an accurate measurement can be performed.
 上記色素構造の種類は特には限定されないが、例えば、アゾ基を有する色素構造、特に、アゾベンゼンやその誘導体の化学構造が好ましい。つまり、上記光応答性材料は、アゾポリマー誘導体を含むことが好ましく、アゾベンゼン基を主鎖及び/又は側鎖に有するアゾポリマー誘導体であることがより好ましい。 The type of the dye structure is not particularly limited. For example, a dye structure having an azo group, particularly a chemical structure of azobenzene or a derivative thereof is preferable. That is, the photoresponsive material preferably contains an azopolymer derivative, and more preferably an azopolymer derivative having an azobenzene group in the main chain and / or side chain.
 光応答性材料のマトリクス材料中において、上記光応答性成分は単に分散していているだけでもよく、マトリクス材料の構成分子と化学結合等をしていてもよい。マトリクス材料中の光反応性成分の分布密度をほぼ完全に制御できる点や、材料の耐熱性又は経時的安定性等の点からは、マトリクス材料を構成する分子に対して光応答性成分が化学的に結合していることが特に好ましい。 In the matrix material of the photoresponsive material, the photoresponsive component may be simply dispersed, or may be chemically bonded to the constituent molecules of the matrix material. From the point of view that the distribution density of the photoreactive component in the matrix material can be almost completely controlled and the heat resistance or stability over time of the material, the photoresponsive component is chemically connected to the molecules constituting the matrix material. It is particularly preferred that they are bonded together.
 上記マトリクス材料としては、通常の高分子材料等の有機材料や、ガラス等の無機材料を用いることができる。マトリクス材料に対する光応答性成分の均一分散性あるいは結合性を考慮すれば、有機材料、特に高分子材料を用いることがより好ましい。 As the matrix material, an organic material such as a normal polymer material or an inorganic material such as glass can be used. In consideration of the uniform dispersibility or binding property of the photoresponsive component to the matrix material, it is more preferable to use an organic material, particularly a polymer material.
 マトリックス材料を構成する上記高分子材料の種類は特には限定されないが、高分子の繰返し構造単位がウレタン基、ウレア基、又はアミド基を有していることが好ましく、更には高分子の主鎖中にフェニレン基等の環構造を有していることが耐熱性の点でより好ましい。 The type of the polymer material constituting the matrix material is not particularly limited, but it is preferable that the repeating structural unit of the polymer has a urethane group, a urea group, or an amide group, and further the main chain of the polymer. It preferably has a ring structure such as a phenylene group from the viewpoint of heat resistance.
 マトリックス材料を構成する上記高分子材料は、必要な形状に成形可能であればその分子量や重合度は特には限定されない。また、その重合形態も直鎖状、分岐状、はしご状、星形等の任意の形態でよく、ホモポリマーでも共重合体であってもよい。 The molecular weight and the degree of polymerization of the polymer material constituting the matrix material are not particularly limited as long as it can be molded into a required shape. Further, the polymerization form may be any form such as linear, branched, ladder, or star shape, and may be a homopolymer or a copolymer.
 光変形の経時的な安定性のためには、高分子材料のガラス転移温度は、例えば100℃以上のように高いことが好ましいが、ガラス転移温度が室温程度やそれ以下のものでも使用可能である。 For the stability of photodeformation over time, the glass transition temperature of the polymer material is preferably high, for example, 100 ° C. or higher, but it can be used even when the glass transition temperature is about room temperature or lower. is there.
 本発明において利用され得る光応答性材料としては、例えば、 As photoresponsive materials that can be used in the present invention, for example,
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
を有するアゾポリマー(N-フェニルマレイミド(z)と、
4-イソプロペニルフェノール(y)と、
4’-[N-エチル-N-(4-イソプロペニルフェノキシエチル)アミノ]-4’’-ニトロアゾベンゼン(x)とのコポリマー(x:y:z=0.43:0.07:0.50))(参考文献:Mat. Res. Soc. Symp. Proc. Vol.488 (1998), pp.813-818, “Synthesis of High-Tg Azo polymer and the optimization of its poling condition for stable EO system”、特開2006-77239号公報を参照、「PMPD43」と略す場合がある。)や、後述の実施例において使用した、
An azopolymer (N-phenylmaleimide (z)) having
4-isopropenylphenol (y),
Copolymer with 4 ′-[N-ethyl-N- (4-isopropenylphenoxyethyl) amino] -4 ″ -nitroazobenzene (x) (x: y: z = 0.43: 0.07: 0. 50)) (Reference: Mat. Res. Soc. Symp. Proc. Vol.488 (1998), pp.813-818, “Synthesis of High-Tg Azo polymer and the optimization of its poling condition for stable EO system” , Refer to Japanese Patent Application Laid-Open No. 2006-77239, and may be abbreviated as “PMPD43”) or used in the examples described later.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
を有するアゾポリマー:The side-chain azo-polymer, poly(orange tom-1 isophoronedisocyanate)(参考文献、Direct Fabrication of Surface Relief Holographic Diffusersin Azobenzene Polymer Films、OPTICAL REVIEW Vol. 12, No. 5 (2005) 383-386、実施例において「POT1」と表記する。)や、Poly[4'-[[2-(acryloyloxy)ethyl]ethylamino]-4-nitroazobenzene] (「pDR1A」と表記する。参考文献、Poly[4'-[[2-(acryloyloxy)ethyl]ethylamino]-4-nitroazobenzene]、Macromolecule Vol. 25 (1992)2268 -2273)等が挙げられる。 -Side-chain azo-polymer, poly (orange tom-1 isophoronedisocyanate) (reference, Direct Fabrication of Surface Relief Holographic Diffusersin Azobenzene Polymer Films, OPTICAL REVIEW Vol. 12, No. 386 (2005) 383- In the examples, it is expressed as “POT1”) and Poly [4 ′-[[2- (acryloyloxy) ethyl] ethylamino] -4-nitroazobenzene] (referred to as “pDR1A”. Reference, Poly [4 ′ -[[2- (acryloyloxy) ethyl] ethylamino] -4-nitroazobenzene], Macromolecule Vol. 25 (1992) 2268-2273) and the like.
 (第一の構造体の製造方法)
 上記第一の構造体の製造方法は、特に限定されず、例えば公知のフォトリソグラフィー技術や電子ビームリソグラフィー技術、ナノインプリント技術、ドライおよびウェットエッチング技術を用いてもよい。以下では一例として、(i)光応答性材料膜形成工程と、(ii)液体塗布工程と、(iii)光照射工程とを含む製造方法について、図3を参照しながら説明する。
(Method for manufacturing the first structure)
The method for manufacturing the first structure is not particularly limited, and for example, a known photolithography technique, electron beam lithography technique, nanoimprint technique, dry and wet etching technique may be used. Hereinafter, as an example, a manufacturing method including (i) a light-responsive material film forming step, (ii) a liquid application step, and (iii) a light irradiation step will be described with reference to FIG.
 (光応答性材料膜形成工程)
 上記光応答性材料膜形成工程は、図3(a)に示すように、基板46(例えば、ガラス、アクリル樹脂、アモルファスカーボン、結晶シリコン、多結晶シリコン、アモルファスシリコン等からなる基板)の表面に光応答性材料の膜(光応答性材料層48)を形成する工程である。
(Photo-responsive material film formation process)
As shown in FIG. 3A, the photoresponsive material film forming step is performed on the surface of a substrate 46 (for example, a substrate made of glass, acrylic resin, amorphous carbon, crystalline silicon, polycrystalline silicon, amorphous silicon, or the like). This is a step of forming a film of photoresponsive material (photoresponsive material layer 48).
 ここで、光応答性材料は「(I)構造体」にて例示したものと同じものを用いることができる。 Here, as the photoresponsive material, the same materials as those exemplified in “(I) Structure” can be used.
 光応答性材料膜形成工程は、例えば、光応答性材料を適当な有機溶媒(テトラヒドロフラン(THF)、クロロホルム、シクロヘキサノンやアセトン等の光応答性材料を溶解し得る有機溶媒)に溶解した溶液を、スピンコート法、スプレー法、ディップコーティング法等の公知の方法により、上述の基板上に塗布することによって行われ得る。 In the photoresponsive material film forming step, for example, a solution obtained by dissolving a photoresponsive material in an appropriate organic solvent (an organic solvent capable of dissolving a photoresponsive material such as tetrahydrofuran (THF), chloroform, cyclohexanone, or acetone), It can be performed by applying on the above-mentioned substrate by a known method such as spin coating, spraying, dip coating or the like.
 また上記の方法によって形成された光応答性材料の膜は、アニーリングされてもよい。上記「アニーリング」とは、光応答性材料の膜中に含まれている溶媒(残存溶媒)を加熱することにより揮発させるプロセスのことである。また、アニーリングは、膜構成材料(例えば、ポリマー)の膜形成プロセス時に受けた物理的履歴(分子配向)を緩和するプロセスでもある。アニーリングの加熱温度としては、適宜好ましい条件が採用され得る。アニーリングの加熱温度は、例えば、光応答性材料のガラス転移点前後であってもよく、室温付近であってもよい。またアニーリングは、大気圧条件下で行われても、また減圧条件下で行われてもよい。 Further, the film of the photoresponsive material formed by the above method may be annealed. The “annealing” is a process of volatilizing the solvent (residual solvent) contained in the film of the photoresponsive material by heating. Annealing is also a process of relaxing the physical history (molecular orientation) received during the film formation process of the film constituent material (for example, polymer). As the annealing heating temperature, preferable conditions can be adopted as appropriate. The heating temperature for annealing may be, for example, around the glass transition point of the photoresponsive material, or may be around room temperature. The annealing may be performed under atmospheric pressure conditions or under reduced pressure conditions.
 上記のようにして形成された光応答性材料の膜は、すぐに上記液体塗布工程が実施されてもよいし、しばらくの間放置された後に液体塗布工程が実施されてもよい。放置する際の雰囲気温度は、室温であっても、室温以上であっても、また室温以下であってもよい。また必要に応じて湿度が制御された条件下で放置されてもよい。 The film of the photoresponsive material formed as described above may be immediately subjected to the liquid application process, or may be left for a while and then the liquid application process may be performed. The ambient temperature when left standing may be room temperature, room temperature or higher, or room temperature or lower. Further, it may be left under a condition in which the humidity is controlled as necessary.
 (液体塗布工程)
 上記液体塗布工程は、図3(b)に示すように、光応答性材料層48上に、液体54を塗布する工程である。液体54は、粒子状物質非含有の液体であってもよく、粒子状物質含有の液体であってもよい。
(Liquid coating process)
The liquid application step is a step of applying the liquid 54 on the photoresponsive material layer 48 as shown in FIG. The liquid 54 may be a liquid containing no particulate matter or a liquid containing a particulate matter.
 上記「粒子状物質非含有の液体」とは、粒子状の物質を実質的に含有しない液体を意味する。「粒子状の物質」とは、液体中において粒子状の固体を意味する。特にその平均粒径が1nm~100μmの範囲内の物質を意味する場合がある。上記「平均粒径」は、一次粒子径の平均粒径を意味し、BET法(比表面積法)により測定され得る。また「実質的に含有しない」とは、1nm~100μmの物質を検出し得る検出手段(例えば、粒度分布測定機)で検出されないことを意味する。 The above “particulate-substance-free liquid” means a liquid that does not substantially contain a particulate substance. “Particulate matter” means a particulate solid in a liquid. In particular, it may mean a substance having an average particle diameter in the range of 1 nm to 100 μm. The “average particle diameter” means an average particle diameter of primary particle diameters and can be measured by a BET method (specific surface area method). Further, “substantially free” means that the substance is not detected by a detection means (for example, a particle size distribution measuring device) capable of detecting a substance of 1 nm to 100 μm.
 また、上記「粒子状の物質」としては、液体中において粒子状の固体として存在する物質であれば特に限定されず、金属粒子の様な剛体や、動物細胞のような非常に柔軟な物体を意味する。上記「粒子状の物質」としてより具体的には、無機材料、金属材料、及び高分子材料からなる群から選択される少なくとも1つの材料からなる粒子状の物質や、金属粒子、金属酸化物粒子、半導体粒子、セラミック粒子、プラスチック粒子、又はこれらの2以上の材料からなる(例えば、2種材料の混合体又は重層構造体)粒子状の物質が例示される。 The “particulate substance” is not particularly limited as long as it is a substance that exists as a particulate solid in a liquid. A rigid body such as a metal particle or a very flexible object such as an animal cell is used. means. More specifically, the above “particulate substance” is a particulate substance, metal particles, or metal oxide particles made of at least one material selected from the group consisting of inorganic materials, metal materials, and polymer materials. Examples of the particulate material include semiconductor particles, ceramic particles, plastic particles, or a mixture of two or more of these materials (for example, a mixture of two materials or a multilayer structure).
 上記金属粒子としては、例えば、金、銀、銅、アルミ、白金等が挙げられる。金属酸化物粒子としては、例えば、シリカ、酸化チタン、酸化スズ、酸化亜鉛等が挙げられる。プラスチック粒子としては、例えば、ポリスチレン粒子、アクリル粒子等が挙げられる。 Examples of the metal particles include gold, silver, copper, aluminum, and platinum. Examples of the metal oxide particles include silica, titanium oxide, tin oxide, and zinc oxide. Examples of the plastic particles include polystyrene particles and acrylic particles.
 本工程において使用する「液体」としては、水、メタノールやエタノール等のアルコール、テトラヒドロフラン(THF)、クロロホルム、シクロヘキサノンやアセトン等の光応答性材料を溶解し得る有機溶媒や、水と上記有機溶媒との混合物が挙げられる。 As the “liquid” used in this step, water, an organic solvent such as methanol or ethanol, an organic solvent capable of dissolving a photoresponsive material such as tetrahydrofuran (THF), chloroform, cyclohexanone or acetone, water and the above organic solvent Of the mixture.
 液体の塗布方法としては、特に限定されるものではなく、スポイト等で単に添加するだけでもよいし、また、スピンコート法、スプレー法、ディップコーティング法等の公知の方法を用いることができる。 The liquid application method is not particularly limited, and may be simply added with a dropper or the like, and a known method such as a spin coating method, a spray method, or a dip coating method may be used.
 上記第一の構造体の製造方法においては、液体を塗布後、当該液体上にフィルムまたは板状物質を置いて液体の厚みを一定に保つ操作を行ってもよい。上記フィルムまたは板状物質は透明でも不透明であってもよい。 In the first method for producing a structure, after applying a liquid, an operation of keeping a thickness of the liquid constant by placing a film or a plate-like substance on the liquid may be performed. The film or plate-like substance may be transparent or opaque.
 (光照射工程)
 光照射工程は、図3(c)に示すように、上記液体塗布工程によって液体54が塗布された光応答性材料層48に対して、光を照射する工程である。言い換えれば、液体を光応答性材料の表面に塗布した後、液体が乾燥するまでの間に光照射を行う工程である。
(Light irradiation process)
As shown in FIG. 3C, the light irradiation step is a step of irradiating light to the photoresponsive material layer 48 to which the liquid 54 has been applied by the liquid application step. In other words, it is a step of performing light irradiation after the liquid is applied to the surface of the photoresponsive material and before the liquid dries.
 また上記液体塗布工程後の光応答性材料を、塗布された液体が完全に蒸発しない程度に乾燥させた後に、光照射工程を行ってもよい。光照射時の光応答性材料上に存在する液体の残存量を制御することによって、構造体の形状(フジツボ体の開口部の口径、フジツボ体の密度、フジツボ体の高さ、フジツボ体の凹部の深さなど)を制御することができる。乾燥の方法は、特に限定されるものではなく、液体塗布工程後の光応答性材料を乾燥炉内に入れて加熱しても良いし、ドライヤーなどで風乾してもよいし(窒素ガスまたは空気等のガスを吹きつけてもよい)、減圧による乾燥を行ってもよいし、また自然乾燥させてもよい。 The photoresponsive material after the liquid application step may be dried after the applied liquid is dried to such an extent that the applied liquid is not completely evaporated. By controlling the remaining amount of liquid present on the photoresponsive material during light irradiation, the shape of the structure (the diameter of the opening of the barnacle body, the density of the barnacle body, the height of the barnacle body, the recess of the barnacle body) The depth etc.). The drying method is not particularly limited, and the photoresponsive material after the liquid application step may be heated in a drying furnace, or may be air-dried with a dryer (nitrogen gas or air). Etc.), drying under reduced pressure, or natural drying may be performed.
 上記光照射の時間は、得ようとする構造の形状や、光の種類や強度に合わせて適宜調整すればよい。また、光の照射方向も特には限定されず、光応答性材料の裏面(液体が塗布されていない側)から光を照射してもよいし、液体が塗布された側から光照射してもよい。 The light irradiation time may be appropriately adjusted according to the shape of the structure to be obtained and the type and intensity of light. Also, the direction of light irradiation is not particularly limited, and light may be irradiated from the back surface (the side where the liquid is not applied) of the photoresponsive material, or light may be irradiated from the side where the liquid is applied. Good.
 照射する光としては、光変形を起こす材料との組み合わせにおいてミスマッチングがない限り、伝搬光、近接場光、又はエバネッセント光等の任意の照射光を利用できる。伝搬光としては、自然光、レーザー光等を利用できる。伝搬光、近接場光、又はエバネッセント光として、その偏光特性を利用できる。 As the irradiation light, any irradiation light such as propagating light, near-field light, or evanescent light can be used as long as there is no mismatch in combination with a material that causes optical deformation. Natural light, laser light, or the like can be used as the propagating light. The polarization characteristics can be used as propagating light, near-field light, or evanescent light.
 照射光の波長や光源は限定されないが、波長に関しては、光変形を起こす材料の吸収効率の高い波長が好ましい。よって、紫外光(波長300~400nm)および可視光(波長400~700nm)の中から、吸収効率の高い波長を含む光を選択することが好ましい。可視光を照射する場合は、可視光の照射により上記固体の光固定化が可能な光応答性材料を用いることが好ましい。また、尖頭出力の高いパルス光を使用することもできる。 The wavelength of the irradiation light and the light source are not limited, but the wavelength is preferably a wavelength with high absorption efficiency of the material that causes optical deformation. Therefore, it is preferable to select light including a wavelength with high absorption efficiency from ultraviolet light (wavelength 300 to 400 nm) and visible light (wavelength 400 to 700 nm). In the case of irradiation with visible light, it is preferable to use a photoresponsive material capable of fixing the solid light by irradiation with visible light. In addition, pulsed light having a high peak output can be used.
 また、上記光照射工程は、液体塗布工程後、すぐに実施されてもよいし、しばらく放置された後に光照射工程が実施されてもよい。放置する際の雰囲気温度は、室温下であっても、室温以上であっても、また室温以下であってもよい。また必要に応じて湿度が制御された条件下で放置されてもよい。 The light irradiation step may be performed immediately after the liquid application step, or may be performed after being left for a while. The ambient temperature at the time of leaving may be below room temperature, above room temperature, or below room temperature. Further, it may be left under a condition in which the humidity is controlled as necessary.
 上記光照射工程後は、光応答性材料層を乾燥させれば、図3(d)に示すように第一の構造体49を得ることができる。乾燥の方法は、特に限定されるものではなく、液体塗布工程後の光応答性材料を乾燥炉内に入れて加熱しても良いし、ドライヤーなどで風乾してもよいし、減圧による乾燥を行ってもよいし、また自然乾燥させてもよい。 After the light irradiation step, if the photoresponsive material layer is dried, the first structure 49 can be obtained as shown in FIG. The drying method is not particularly limited, and the photoresponsive material after the liquid application step may be heated in a drying furnace, or may be air-dried with a dryer, or may be dried under reduced pressure. It may be carried out or may be naturally dried.
 (コロナ放電処理工程)
 上記第一の構造体の製造方法には、光照射工程の後にコロナ放電処理を行う工程(コロナ放電処理工程)が含まれていても良い。コロナ放電処理を行うことによって、所望の構造体を得ることができる。例えば、コロナ放電処理によって、フジツボ体の***部分の高さをより高くすることができる。コロナ放電処理方法は一般的なコロナ放電処理方法を用いることができる(例えば、Optics Letters, Vol. 26, No. 1, January 1, 2001, “Diffraction efficiency increase by corona discharge in photoinduced surface relief gratings on an azo polymer film”参照)。また、所望の構造が得られるように、コロナ放電の強さ、処理時間を調節すればよい。
(Corona discharge treatment process)
The manufacturing method of the first structure may include a step of performing a corona discharge treatment (corona discharge treatment step) after the light irradiation step. A desired structure can be obtained by performing a corona discharge treatment. For example, the height of the raised portion of the barnacle can be increased by corona discharge treatment. As a corona discharge treatment method, a general corona discharge treatment method can be used (for example, Optics Letters, Vol. 26, No. 1, January 1, 2001, “Diffraction efficiency increase by corona discharge in photoinduced surface relief gratings on an azo polymer film ”). Moreover, what is necessary is just to adjust the intensity | strength of a corona discharge and processing time so that a desired structure may be obtained.
 コロナ放電処理工程自体は所望の構造を得るために、必要によりコロナ放電処理を行えばよく、コロナ放電処理をする必要がなければ行わなくてもよい。 The corona discharge treatment process itself may be performed if necessary in order to obtain a desired structure, and may not be performed if it is not necessary to perform the corona discharge treatment.
 〔2.構造体の複製方法〕
 本発明に係る構造体の複製方法は、(i)離型処理工程と、(ii)構造体の型の製造工程と、(iii)型を用いた構造体の複製工程と、を含んでいる。上記構成によれば、第一の構造体の材料にかかわらず、容易に第一の構造体の複製物を量産することができる。以下に、上記第一の構造体の製造方法について、図4~6を参照しながら説明する。
[2. (Replication method of structure)
The structure replication method according to the present invention includes (i) a mold release process, (ii) a structure mold manufacturing process, and (iii) a structure replication process using the mold. . According to the said structure, the replica of a 1st structure can be mass-produced easily irrespective of the material of a 1st structure. Hereinafter, the manufacturing method of the first structure will be described with reference to FIGS.
 <離型処理工程>
 離型処理工程とは、上記第一の構造体の表面にフッ素基を導入する工程である。本発明の複製方法は、離型処理工程を含んでいるため、上述のような複雑な形状を有している第一の構造体から、第一の構造体の型となる第二の構造体を容易に剥離することができる。図4は、本実施の形態に係る構造体の複製方法における第二の構造体の製造方法を示す断面図である。図4(a)に示すように、まず、第一の構造体49の表面に対し、離型処理が施される。
<Mold release process>
The mold release treatment step is a step of introducing a fluorine group into the surface of the first structure. Since the duplication method of the present invention includes a mold release process, the second structure which becomes the mold of the first structure from the first structure having the complicated shape as described above. Can be easily peeled off. FIG. 4 is a cross-sectional view illustrating a second structure manufacturing method in the structure replication method according to the present embodiment. As shown in FIG. 4A, first, a mold release process is performed on the surface of the first structure 49.
 本明細書において「フッ素基を導入する」とは、第一の構造体の表面の少なくとも一部にフッ素基が存在する状態にすることを意味する。フッ素基は、第一の構造体の表面に直接的に化学結合していてもよいし、フッ素を含有する化合物によって第一の構造体を覆うことで導入されていてもよい。上記構成によれば、第一の構造体と、第一の構造体の表面に塗布される第一の熱硬化性樹脂または光硬化性樹脂との間には上記疎水基が存在する。よって、上述のように内部が逆テーパー型になっているフジツボ体を有する第一の構造体から、第二の構造体を容易に剥離することができる。 In this specification, “introducing a fluorine group” means that a fluorine group is present on at least a part of the surface of the first structure. The fluorine group may be directly chemically bonded to the surface of the first structure, or may be introduced by covering the first structure with a fluorine-containing compound. According to the said structure, the said hydrophobic group exists between the 1st structure and the 1st thermosetting resin or photocurable resin apply | coated to the surface of a 1st structure. Therefore, as described above, the second structure can be easily peeled from the first structure having the barnacle body whose inside is a reverse taper type.
 上記フッ素基を導入する方法としては、例えば、上記第一の構造体の表面にフッ素系シランカップリング剤またはフッ素コーティング剤を付着させる方法、上記第一の構造体の表面にフッ素ガスを接触させる方法、および、上記第一の構造体の表面にフッ素を含有する有機ナノ薄膜を形成する方法が挙げられる。フッ素系シランカップリング剤としては、ダイキン工業株式会社製のオプツール(登録商標)DSX、HD-1100TH等が挙げられる。離型処理後のリンス剤としては、ダイキン工業株式会社製のオプツール(登録商標)HD-TH等が挙げられる。フッ素コーティング剤としては、株式会社野田スクリーン製のXINT-333QA、XINT-333QF、WOP-019XQA等が挙げられる。フッ素ガスを接触させる方法としては、例えば、高松帝酸株式会社の技術が挙げられる。フッ素を含有する有機ナノ薄膜を形成する方法としては、例えば株式会社ティーアンドケー社のNANOS(登録商標)が挙げられる。 As a method for introducing the fluorine group, for example, a method in which a fluorine-based silane coupling agent or a fluorine coating agent is attached to the surface of the first structure, or a fluorine gas is brought into contact with the surface of the first structure. And a method of forming an organic nano thin film containing fluorine on the surface of the first structure. Examples of the fluorine-based silane coupling agent include OPTOOL (registered trademark) DSX, HD-1100TH manufactured by Daikin Industries, Ltd. Examples of the rinsing agent after the mold release treatment include OPTOOL (registered trademark) HD-TH manufactured by Daikin Industries, Ltd. Examples of the fluorine coating agent include XINT-333QA, XINT-333QF, and WOP-019XQA manufactured by Noda Screen Co., Ltd. Examples of the method of bringing the fluorine gas into contact include the technology of Takamatsu Teic acid Co., Ltd. As a method of forming an organic nano thin film containing fluorine, for example, NANOS (registered trademark) manufactured by T & K Corporation may be mentioned.
 上記第一の構造体の表面にフッ素系シランカップリング剤を付着させる方法としては、例えば、フッ素系シランカップリング剤溶液に上記第一の構造体を浸漬する方法(ウェット処理)が挙げられる。また、加熱および減圧下においてフッ素系シランカップリング剤を気相で付着させる方法(ドライ処理)を用いてもよい。 Examples of the method for attaching the fluorine-based silane coupling agent to the surface of the first structure include a method of immersing the first structure in a fluorine-based silane coupling agent solution (wet treatment). Alternatively, a method (dry treatment) in which a fluorine-based silane coupling agent is attached in a gas phase under heating and reduced pressure may be used.
 上記ウェット処理における浸漬後の温度は、20℃以上100℃以下であることが好ましく、25℃以上80℃以下であることがより好ましい。また、上記ウェット処理における浸漬後の湿度(相対湿度)は、10RH%以上100RH%以下であることが好ましく、50RH%以上100RH%以下であることがより好ましい。上記構成によれば、フッ素系シランカップリング剤を第一の構造体に対してより強固に、且つより短時間で付着させることができる。上記フッ素系シランカップリング剤による離型処理の反応時間は終夜放置でもよいが、上記温度および湿度下であればカップリング反応が促進されるため、1時間程度で反応を完了させることができる。 The temperature after immersion in the wet treatment is preferably 20 ° C. or higher and 100 ° C. or lower, and more preferably 25 ° C. or higher and 80 ° C. or lower. Moreover, the humidity (relative humidity) after immersion in the wet treatment is preferably 10 RH% to 100 RH%, and more preferably 50 RH% to 100 RH%. According to the above configuration, the fluorinated silane coupling agent can be adhered to the first structure more firmly and in a shorter time. The reaction time of the mold release treatment with the fluorine-based silane coupling agent may be left overnight, but since the coupling reaction is promoted at the temperature and humidity, the reaction can be completed in about 1 hour.
 また、上記離型処理工程においては、上記第一の構造体の表面にフッ素系シランカップリング剤を付着させる前に、上記第一の構造体の表面において表面活性化処理を施すことが好ましい。上記表面活性化処理としては、例えば、プラズマ、または紫外線等による処理が挙げられる。上記構成によれば、第一の構造体の表面において水酸基(-OH)を導入することによって第一の構造体の表面を親水化することができ、当該水酸基を介してフッ素系シランカップリング剤を第一の構造体に対してより強固に付着させることができる。プラズマ処理を行う場合、低周波プラズマ処理機またはRIE装置(リアクティブイオンエッチング装置)等の高周波プラズマ処理機を用いても良い。紫外線処理を行う場合、紫外域の波長の光を照射すればよい。紫外域の波長としては、150nm以上400nm以下の波長範囲が好ましく、160nm以上300nm以下の波長範囲が更に好ましい。 Moreover, in the mold release treatment step, it is preferable to perform a surface activation treatment on the surface of the first structure before attaching the fluorine-based silane coupling agent to the surface of the first structure. Examples of the surface activation treatment include treatment with plasma or ultraviolet rays. According to the above configuration, the surface of the first structure can be hydrophilized by introducing a hydroxyl group (—OH) on the surface of the first structure, and the fluorine-based silane coupling agent can be introduced via the hydroxyl group. Can be more firmly attached to the first structure. When performing plasma processing, a high-frequency plasma processing machine such as a low-frequency plasma processing machine or an RIE apparatus (reactive ion etching apparatus) may be used. In the case of performing ultraviolet treatment, light having a wavelength in the ultraviolet region may be irradiated. As the wavelength in the ultraviolet region, a wavelength range of 150 nm to 400 nm is preferable, and a wavelength range of 160 nm to 300 nm is more preferable.
 図5は、本実施の形態に係る構造体の複製方法における、第一の構造体に対する離型処理の方法の一例を示す断面図である。まず、第一の構造体49に対し、例えばプラズマ処理による表面活性化が行われ、水酸基が導入される(図5(a)および(b))。そして、当該表面活性化処理を施された第一の構造体49を、フッ素系シランカップリング剤溶液60に浸漬させることで、第一の構造体49の表面にフッ素基を導入し、離型処理を行うことができる(図5(c))。 FIG. 5 is a cross-sectional view showing an example of a mold release processing method for the first structure in the structure duplication method according to the present embodiment. First, surface activation is performed on the first structure 49 by, for example, plasma treatment, and hydroxyl groups are introduced (FIGS. 5A and 5B). Then, the first structure 49 subjected to the surface activation treatment is immersed in the fluorine-based silane coupling agent solution 60 to introduce fluorine groups on the surface of the first structure 49, and to release the mold. Processing can be performed (FIG. 5C).
 <構造体の型の製造工程>
 構造体の型の製造工程とは、上記第一の構造体の表面を覆うように第一の熱硬化性樹脂または光硬化性樹脂を塗布し、当該第一の熱硬化性樹脂または光硬化性樹脂を硬化後、上記第一の構造体から剥離することによって、第一の構造体の型となる第二の構造体を製造する工程である。なお、本明細書において、第一の構造体の型となる構造体を「第二の構造体」または「ネガ型レプリカ」と称する場合もある。
<Manufacturing process of structure mold>
The manufacturing process of the structure mold means that the first thermosetting resin or photocurable resin is applied so as to cover the surface of the first structure, and the first thermosetting resin or photocurable resin is applied. This is a step of manufacturing a second structure which becomes a mold of the first structure by peeling the resin from the first structure after curing. In the present specification, a structure serving as a mold of the first structure may be referred to as a “second structure” or a “negative replica”.
 上述の離型処理工程の後、図4(b)に示すように、第一の構造体49の表面を覆うように第一の熱硬化性樹脂又は光硬化性樹脂50aを塗布する。 After the above-mentioned mold release process step, as shown in FIG. 4B, the first thermosetting resin or photocurable resin 50a is applied so as to cover the surface of the first structure 49.
 上記第一の熱硬化性樹脂又は光硬化性樹脂としては、一般に用いられる樹脂を使用することができる。なお、第一の構造体の材料として光応答性材料を使用する場合、熱硬化性樹脂については、光応答性材料のガラス転移温度より低い熱硬化温度を有するものを使用することが好ましい。本発明において好ましい熱硬化性樹脂としては、シリコーン樹脂、特にポリジメチルシロキサンや、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ジリアルフタレート樹脂、ポリウレタン、ポリイミドなどが利用可能であり、光硬化性樹脂としてはシリコーン樹脂、ポリイミド樹脂、アクリル系樹脂などが利用可能である。さらに本発明においては光硬化性樹脂としては、光を吸収して硬化する樹脂のみならず、アゾベンゼンポリマーのように光を吸収して可塑化し、光を遮断することで硬化するものも含む意味である。よって本工程においてアゾベンゼンポリマーをも用いることができる。アゾベンゼンポリマーを用いることで、可視光波長域での屈折率が高いため、金属を蒸着した際の局在表面プラズモン共鳴電場の増幅効果がより大きくなるというメリットがある。 As the first thermosetting resin or photocurable resin, generally used resins can be used. In addition, when using a photoresponsive material as a material of a 1st structure, it is preferable to use what has a thermosetting temperature lower than the glass transition temperature of a photoresponsive material about a thermosetting resin. As the preferred thermosetting resin in the present invention, silicone resin, particularly polydimethylsiloxane, phenol resin, urea resin, melamine resin, unsaturated polyester resin, epoxy resin, direal phthalate resin, polyurethane, polyimide and the like can be used. In addition, as the photocurable resin, silicone resin, polyimide resin, acrylic resin, and the like can be used. Further, in the present invention, the photocurable resin includes not only a resin that absorbs and cures light, but also includes a resin that absorbs light and plasticizes and cures by blocking light, such as an azobenzene polymer. is there. Therefore, an azobenzene polymer can also be used in this step. By using an azobenzene polymer, since the refractive index in the visible light wavelength region is high, there is an advantage that the amplification effect of the localized surface plasmon resonance electric field when the metal is deposited becomes larger.
 上記第一の熱硬化性樹脂又は光硬化性樹脂の塗布方法としては、例えばスピンコート法、スプレー法、ディップコーティング法、射出成形法等の公知の方法が挙げられる。 Examples of the coating method of the first thermosetting resin or photocurable resin include known methods such as spin coating, spraying, dip coating, and injection molding.
 上記第一の熱硬化性樹脂または光硬化性樹脂を、樹脂の性質に応じて加熱、光照射または光遮断によって硬化させた後、上記第一の構造体から剥離する。これにより、図4(c)に示すように、第二の構造体50が得られる。第二の構造体の材料として熱硬化性樹脂を用いる場合の硬化温度は、樹脂の種類にもよるが、例えば室温であってもよく、150℃以下の温度であってもよい。例えばシリコーン樹脂として信越化学工業株式会社製のX32-3095(一液硬化型)を用いる場合、硬化条件は150℃×30分であってもよい。 The first thermosetting resin or photocurable resin is cured by heating, light irradiation, or light blocking according to the properties of the resin, and then peeled from the first structure. Thereby, as shown in FIG.4 (c), the 2nd structure 50 is obtained. The curing temperature when a thermosetting resin is used as the material of the second structure depends on the type of resin, but may be, for example, room temperature or 150 ° C. or lower. For example, when X32-3095 (one-component curing type) manufactured by Shin-Etsu Chemical Co., Ltd. is used as the silicone resin, the curing condition may be 150 ° C. × 30 minutes.
 得られた第二の構造体50は、第一の構造体の型となるものである。すなわち、第二の構造体は、第一の構造体が有するフジツボ体内部に対応する凸部を有している。当該第二の構造体における凸部は、当該凸部が突出している方向に垂直な断面の直径が先端に向かって増加する形状となっている。第一の構造体および第二の構造体の形状は嵌合する形状となっているため、従来の技術では剥離することが困難である。本発明の複製方法によれば、第一の構造体と第二の構造体との間にフッ素系シランカップリング剤が存在するため、第一の構造体から第二の構造体を容易に剥離することができる。 The obtained second structure 50 is a mold of the first structure. That is, the second structure has a convex portion corresponding to the inside of the barnacle body of the first structure. The convex part in the second structure has a shape in which the diameter of the cross section perpendicular to the direction in which the convex part protrudes increases toward the tip. Since the shape of the first structure and the second structure is a fitting shape, it is difficult to peel off by the conventional technique. According to the replication method of the present invention, since the fluorinated silane coupling agent exists between the first structure and the second structure, the second structure can be easily peeled from the first structure. can do.
 また、本工程(構造体の型の製造工程)は複数回繰り返し行われてもよい。つまり、第一の構造体から第二の構造体を剥離した後、同一の第一の構造体に再度、第一の熱硬化性樹脂又は光硬化性樹脂を塗布して硬化させ、第二の構造体を得るという工程を繰り返してもよい。上記構成によれば、同一の第一の構造体を用いて、複数の第二の構造体を得ることができる。 In addition, this step (the structure mold manufacturing step) may be repeated a plurality of times. That is, after peeling the second structure from the first structure, the first thermosetting resin or the photocurable resin is applied and cured again on the same first structure, You may repeat the process of obtaining a structure. According to the above configuration, a plurality of second structures can be obtained using the same first structure.
 上記構造体の型の製造工程においては、上記第一の熱硬化性樹脂または光硬化性樹脂が硬化する前に、脱泡工程を行うことが好ましい。上記構成によれば、上記熱硬化性樹脂および光硬化性樹脂中に発生した泡を除去することが挙げられる。なお、次の複製工程においても同じく脱泡工程が行われることが好ましい。 In the manufacturing process of the structure mold, it is preferable to perform a defoaming step before the first thermosetting resin or photocurable resin is cured. According to the said structure, removing the bubble which generate | occur | produced in the said thermosetting resin and photocurable resin is mentioned. In addition, it is preferable that a defoaming process is similarly performed in the next replication process.
 (樹脂充填工程)
 上記構造体の型の製造工程においては、上記第一の熱硬化性樹脂または光硬化性樹脂が硬化する前に、上記第一の熱硬化性樹脂または光硬化性樹脂が塗布された第一の構造体を減圧条件下に配置することによって、上記凹部の外周に沿って連続的に突起した上記凸部の頂点が成す形状の内径に比べて、上記凹部および上記凹部の外周に沿って連続的に突起した上記凸部が成す形状の内径が大きい領域に対して上記第一の熱硬化性樹脂または光硬化性樹脂が充填される樹脂充填工程を行うことが好ましい。
(Resin filling process)
In the manufacturing process of the mold of the structure, the first thermosetting resin or the photocurable resin is applied before the first thermosetting resin or the photocurable resin is cured. By disposing the structure under reduced pressure conditions, it is continuous along the outer periphery of the concave portion and the concave portion as compared with the inner diameter of the shape formed by the apex of the convex portion continuously projecting along the outer periphery of the concave portion. It is preferable to perform a resin filling step in which the first thermosetting resin or the photocurable resin is filled into a region having a large inner diameter formed by the protruding portion.
 上述のように第一の構造体は、開口部から深さ方向に向かって内径が増加している部分を有しているフジツボ体構造を備えている。フジツボ体内部に樹脂を充填する場合、樹脂がフジツボ体内部の隅々にまで広がらず、開口部より内径の大きい領域に空気の層(隙間)が残存する場合がある。本発明の複製方法においては、上記第一の熱硬化性樹脂または光硬化性樹脂が塗布された第一の構造体が配置された環境を減圧条件とすることによって、フジツボ体内部に残存した空気の層を除去することが好ましい。上記構成によれば、フジツボ体の内部の隅々(特にフジツボ体内部における開口部より内径の大きい領域)まで樹脂を充填することができる。 As described above, the first structure has a barnacle structure having a portion where the inner diameter increases from the opening in the depth direction. When the resin is filled in the barnacle body, the resin may not spread to every corner of the barnacle body, and an air layer (gap) may remain in a region having an inner diameter larger than the opening. In the duplication method of the present invention, the air remaining in the barnacle body is obtained by setting the environment in which the first structure coated with the first thermosetting resin or the photocurable resin is disposed under a reduced pressure condition. It is preferable to remove the layer. According to the said structure, resin can be filled to every corner (especially area | region with a larger internal diameter than the opening part inside a barnacle body) inside a barnacle body.
 上記樹脂充填工程は、上記第一の熱硬化性樹脂または光硬化性樹脂が表面に塗布された第一の構造体を減圧下に配置することによって行われることが好ましい。上記減圧条件における圧力は、10Pa以上90kPa以下であることが好ましく、100Pa以上30kPa以下であることがより好ましい。また、上記樹脂充填工程における温度は20℃以上150℃以下であることが好ましく、25℃以上100℃以下であることがより好ましい。さらに上記樹脂充填工程を行う時間は、1分以上3時間以下であることが好ましく、1分以上2時間以下であることがより好ましく、5分以上1時間以下であることがさらに好ましい。上記構成によれば、より効率的にフジツボ体内部に樹脂を充填することができる。上記減圧条件は例えばアスピレーター(水流による減圧装置)によって実現されてもよい。 The resin filling step is preferably performed by placing the first structure having the surface coated with the first thermosetting resin or the photocurable resin under reduced pressure. The pressure under the above reduced pressure condition is preferably 10 Pa or more and 90 kPa or less, and more preferably 100 Pa or more and 30 kPa or less. Moreover, it is preferable that the temperature in the said resin filling process is 20 to 150 degreeC, and it is more preferable that it is 25 to 100 degreeC. Furthermore, the time for performing the resin filling step is preferably 1 minute or more and 3 hours or less, more preferably 1 minute or more and 2 hours or less, and further preferably 5 minutes or more and 1 hour or less. According to the above configuration, the inside of the barnacle body can be more efficiently filled with resin. The decompression condition may be realized by, for example, an aspirator (a decompression device using a water flow).
 また、上記樹脂充填工程は段階的に繰り返し行われてもよい。つまり、上記第一の構造体の表面を覆うように第一の熱硬化性樹脂または光硬化性樹脂を塗布し、樹脂充填工程を行い、再度第一の熱硬化性樹脂または光硬化性樹脂を塗布して樹脂充填工程を行ってもよい。上記構成によれば、より確実にフジツボ体内部に樹脂を充填することができる。 Further, the resin filling step may be repeated stepwise. That is, the first thermosetting resin or photocurable resin is applied so as to cover the surface of the first structure, the resin filling step is performed, and the first thermosetting resin or photocurable resin is again applied. You may apply | coat and perform a resin filling process. According to the above configuration, the resin can be filled into the barnacle body more reliably.
 <型を用いた構造体の複製工程>
 型を用いた構造体の複製工程とは、第二の熱硬化性樹脂または光硬化性樹脂を基板上に塗布し、当該第二の熱硬化性樹脂または光硬化性樹脂に対して上記第二の構造体を押し付け、当該第二の熱硬化性樹脂または光硬化性樹脂を硬化後、上記第二の構造体から剥離することによって、第一の構造体の複製物である第三の構造体を製造する工程である。なお、本明細書において、第一の構造体の複製物である構造体を「第三の構造体」または「ポジ型レプリカ」と称する場合もある。また、第二の熱硬化性樹脂または光硬化性樹脂に対して上記第二の構造体を押し付ける工程を「インプリント」と称する場合もある。
<Replication process of structure using mold>
The process of replicating a structure using a mold is a method in which a second thermosetting resin or a photocurable resin is applied onto a substrate, and the second thermosetting resin or the photocurable resin is applied to the second thermosetting resin. The third structure which is a replica of the first structure by pressing the structure and then peeling the second thermosetting resin or photocurable resin from the second structure. Is a process of manufacturing. In this specification, a structure that is a duplicate of the first structure may be referred to as a “third structure” or a “positive replica”. Further, the step of pressing the second structure against the second thermosetting resin or photocurable resin may be referred to as “imprint”.
 図6(a)に示すように、まず第二の熱硬化性樹脂または光硬化性樹脂61を基板62上に塗布し、当該第二の熱硬化性樹脂または光硬化性樹脂61に対して第二の構造体50を押し付ける。当該押し付ける工程によって、第一の構造体と同一の形状を第二の熱硬化性樹脂または光硬化性樹脂に転写することができる。そして、図6(b)に示すように、第二の熱硬化性樹脂または光硬化性樹脂61を硬化させる。第二の構造体50を、硬化した第二の熱硬化性樹脂または光硬化性樹脂61から剥離することによって、図6(c)に示すように、第三の構造体51が得られる。 As shown in FIG. 6A, first, a second thermosetting resin or photocurable resin 61 is applied on a substrate 62, and the second thermosetting resin or photocurable resin 61 is applied to the second thermosetting resin or photocurable resin 61. The second structure 50 is pressed. By the pressing step, the same shape as the first structure can be transferred to the second thermosetting resin or photocurable resin. Then, as shown in FIG. 6B, the second thermosetting resin or photocurable resin 61 is cured. By peeling the second structure 50 from the cured second thermosetting resin or photocurable resin 61, as shown in FIG. 6C, a third structure 51 is obtained.
 上記基板としては例えば、ガラス、アクリル樹脂、ポリエチレンレテフタレート(PET)等のポリエステル樹脂、オレフィンおよび環状オレフィン樹脂、アモルファスカーボン、結晶シリコン、多結晶シリコン、アモルファスシリコン等からなる基板が挙げられる。また、基板の形態としては板状、フィルム状等でもよい。なお、上記基板は、後述する局在型表面プラズモン共鳴センサ用チップを構成する基板である。 Examples of the substrate include substrates made of glass, acrylic resin, polyester resin such as polyethylene terephthalate (PET), olefin and cyclic olefin resin, amorphous carbon, crystalline silicon, polycrystalline silicon, amorphous silicon, and the like. The substrate may be in the form of a plate, a film, or the like. In addition, the said board | substrate is a board | substrate which comprises the chip | tip for localized surface plasmon resonance sensors mentioned later.
 第二の熱硬化性樹脂または光硬化性樹脂としては、第一の熱硬化性樹脂又は光硬化性樹脂と同様に、一般に用いられる樹脂を使用することができる。また上記第二の熱硬化性樹脂又は光硬化性樹脂には、屈折率を調整した樹脂(例えば、無機ナノ粒子、有機ナノ粒子、または金属ナノ粒子を含有したポリマー材料や、分極率の大きい元素(リン、硫黄、セレン等)を含む原子団を含むように分子設計をされたポリマー材料)も利用可能である。上記屈折率を調整した樹脂を用いることで、金属を蒸着した際の局在表面プラズモン共鳴電場の増幅効果がより大きくなる(傾向にある)というメリットがある。上記第二の熱硬化性樹脂又は光硬化性樹脂の塗布方法としては、例えばスピンコート法、スプレー法、ディップコーティング法等の公知の方法が挙げられる。上記第二の熱硬化性樹脂または光硬化性樹脂を、樹脂の性質に応じて加熱、光照射または光遮断によって硬化させた後、上記第二の構造体から剥離すればよい。 As the second thermosetting resin or photocurable resin, a commonly used resin can be used in the same manner as the first thermosetting resin or photocurable resin. In addition, the second thermosetting resin or the photocurable resin includes a resin having a refractive index adjusted (for example, a polymer material containing inorganic nanoparticles, organic nanoparticles, or metal nanoparticles, or an element having a high polarizability). Polymer materials that are molecularly designed to contain atomic groups containing (phosphorus, sulfur, selenium, etc.) can also be used. By using the resin having the adjusted refractive index, there is a merit that the amplification effect of the localized surface plasmon resonance electric field when the metal is deposited becomes larger (in a tendency). Examples of the coating method of the second thermosetting resin or photocurable resin include known methods such as a spin coating method, a spray method, and a dip coating method. The second thermosetting resin or photocurable resin may be cured by heating, light irradiation, or light blocking depending on the properties of the resin, and then peeled off from the second structure.
 なお、上述のように本発明の複製方法において複製対象となる第一の構造体は、内部が逆テーパー構造であるフジツボ体を有している。第二の熱硬化性樹脂または光硬化性樹脂が硬化して得られる第三の構造体は、第一の構造体の複製物であるため、第一の構造体と同様の形状を有している。そのため、第三の構造体も第二の構造体から剥離しにくい構造を有している。従って、第二の構造体を第三の構造体から剥離するために力を加えた場合に、第二の構造体と第三の構造体とが離れず、第三の構造体を形成する第二の熱硬化性樹脂または光硬化性樹脂と基板とが剥離してしまうおそれがある。よって、第二の熱硬化性樹脂または光硬化性樹脂は、基板と強固に結合していることが好ましい。また、必要に応じて第二の構造体の表面に例えば上述したような離型処理を施してもよい。 Note that, as described above, the first structure to be duplicated in the duplication method of the present invention has a barnacle body having an inverted taper inside. The third structure obtained by curing the second thermosetting resin or photocurable resin is a duplicate of the first structure, and therefore has the same shape as the first structure. Yes. Therefore, the third structure also has a structure that is difficult to peel from the second structure. Therefore, when a force is applied to peel the second structure from the third structure, the second structure and the third structure are not separated from each other, and the third structure is formed. There exists a possibility that a 2nd thermosetting resin or photocurable resin and a board | substrate may peel. Therefore, it is preferable that the second thermosetting resin or the photocurable resin is firmly bonded to the substrate. Moreover, you may perform the mold release process as mentioned above to the surface of a 2nd structure as needed, for example.
 ここで、基板がガラス、またはポリエチレンレテフタレート(PET)等のポリエステル樹脂、アクリル樹脂、もしくは、オレフィンもしくは環状オレフィン樹脂等からなるフィルムである場合、基板と強固に結合する樹脂としては例えば、アクリルシリコン樹脂が挙げられる。第二の熱硬化性樹脂または光硬化性樹脂としてアクリルシリコン樹脂を使用すれば、ガラス基板とアクリルシリコン樹脂とが強固に結合するため、基板とアクリルシリコン樹脂とが剥離してしまうおそれがなく、第三の構造体から第二の構造体を容易に剥離することができる。また、上記構成によれば、後述のエポキシ樹脂のようにガラス基板に予めシランカップリング剤等を塗布する必要がないので、簡易な構成で樹脂とガラス基板との剥離を防止することができる。アクリルシリコン樹脂の例としては、シロキサン架橋型アクリルシリコン樹脂等が挙げられる。シロキサン架橋型アクリルシリコン樹脂の具体例としては、株式会社カネカ製のゼムラック(登録商標)、東亞合成株式会社製のサイマック(登録商標)およびレゼダ(登録商標)、並びに関西ペイント株式会社製のアレスシリコン等が挙げられる。 Here, when the substrate is a film made of glass or a polyester resin such as polyethylene terephthalate (PET), an acrylic resin, or an olefin or a cyclic olefin resin, the resin that is firmly bonded to the substrate is, for example, acrylic silicon Resin. If an acrylic silicon resin is used as the second thermosetting resin or photocurable resin, the glass substrate and the acrylic silicon resin are firmly bonded to each other, so there is no possibility that the substrate and the acrylic silicon resin are peeled off. The second structure can be easily peeled from the third structure. Moreover, according to the said structure, since it is not necessary to apply | coat a silane coupling agent etc. previously to a glass substrate like the epoxy resin mentioned later, peeling with resin and a glass substrate can be prevented with a simple structure. Examples of acrylic silicon resins include siloxane cross-linked acrylic silicon resins. Specific examples of the siloxane crosslinked acrylic silicone resin include Zemlac (registered trademark) manufactured by Kaneka Corporation, Saimak (registered trademark) and Reseda (registered trademark) manufactured by Toagosei Co., Ltd., and Ares Silicon manufactured by Kansai Paint Co., Ltd. Etc.
 また、第二の熱硬化性樹脂または光硬化性樹脂は、エポキシ樹脂であってもよい。なお、エポキシ樹脂はガラス基板と強固に結合する性質を有していない。そのため、基板がガラスであって、エポキシ樹脂を用いる場合は、ガラス基板にエポキシ基を導入してからエポキシ樹脂を塗布することが好ましい。上記第二の熱硬化性樹脂または光硬化性樹脂を上記ガラス基板に塗布する前に、上記ガラス基板表面にエポキシ基を導入しておけば、エポキシ基を介してガラス基板とエポキシ樹脂とが強固に結合する。そのため、ガラス基板とエポキシ樹脂とが剥離してしまうおそれがなく、第三の構造体から第二の構造体を容易に剥離することができる。なお、本明細書において「エポキシ基を導入する」とは、基板表面の少なくとも一部にエポキシ基が存在する状態にすることを意味する。エポキシ基は、第一の構造体の表面に共有結合等を介して直接的に化学結合していてもよいし、エポキシ基を含有する化合物によって第一の構造体を覆うことで導入されていてもよい。 Further, the second thermosetting resin or the photocurable resin may be an epoxy resin. Note that the epoxy resin does not have a property of being firmly bonded to the glass substrate. Therefore, when the substrate is glass and an epoxy resin is used, it is preferable to apply the epoxy resin after introducing an epoxy group into the glass substrate. If an epoxy group is introduced to the surface of the glass substrate before the second thermosetting resin or photocurable resin is applied to the glass substrate, the glass substrate and the epoxy resin are firmly bonded via the epoxy group. To join. Therefore, there is no possibility that the glass substrate and the epoxy resin are peeled off, and the second structure can be easily peeled from the third structure. In the present specification, “introducing an epoxy group” means that an epoxy group is present on at least a part of the substrate surface. The epoxy group may be directly chemically bonded to the surface of the first structure via a covalent bond or the like, and is introduced by covering the first structure with a compound containing an epoxy group. Also good.
 上記エポキシ樹脂としては、例えば多官能エポキシ樹脂等が挙げられる。多官能エポキシ樹脂の具体例としては、日本化薬株式会社製のSU-8、ナガセケムテックス株式会社製のデナタイト(登録商標)、三菱化学株式会社製のjER(登録商標)等が挙げられる。 Examples of the epoxy resin include polyfunctional epoxy resins. Specific examples of the polyfunctional epoxy resin include SU-8 manufactured by Nippon Kayaku Co., Ltd., Denatite (registered trademark) manufactured by Nagase ChemteX Corporation, jER (registered trademark) manufactured by Mitsubishi Chemical Corporation.
 また、上記エポキシ基を導入する方法としては、例えば、ガラス基板表面にエポキシ系シランカップリング剤を付着させる方法が挙げられる。上記エポキシ系シランカップリング剤としては、例えば信越化学工業株式会社製のKBM-402、KBE-402等が挙げられる。 Moreover, as a method of introducing the epoxy group, for example, a method of attaching an epoxy silane coupling agent to the glass substrate surface can be mentioned. Examples of the epoxy silane coupling agent include KBM-402 and KBE-402 manufactured by Shin-Etsu Chemical Co., Ltd.
 第二の構造体を第二の熱硬化性樹脂または光硬化性樹脂に対して押し付ける際の応力は、1N/cm以上300N/cm以下であることが好ましく、2N/cm以上200N/cm以下であることがより好ましい。上記応力が1N/cm以上であれば、第二の構造体の形状をより確実に第二の熱硬化性樹脂または光硬化性樹脂に対して転写することができる。また、上記応力が300N/cm以下であれば、第二の構造体の形状の破損を防止することができる。 The stress when pressing the second structure against the second thermosetting resin or the photocurable resin is preferably 1 N / cm 2 or more and 300 N / cm 2 or less, and preferably 2 N / cm 2 or more and 200 N / More preferably, it is cm 2 or less. If the stress is 1 N / cm 2 or more, the shape of the second structure can be more reliably transferred to the second thermosetting resin or photocurable resin. Moreover, if the said stress is 300 N / cm < 2 > or less, the failure | damage of the shape of a 2nd structure body can be prevented.
 また、上記応力は、第二の構造体を第二の熱硬化性樹脂または光硬化性樹脂に対して押し付けている間、一定であってもよく、変化してもよい。応力を変化させる場合は、例えば、任意の応力にて第二の構造体を第二の熱硬化性樹脂または光硬化性樹脂に対して押し付けた後、より低い値の応力にて押し付ける状態を維持してもよい。なお、上記応力が一定であれば、第二の熱硬化性樹脂または光硬化性樹脂上の皺等の発生を抑えることができるため、より好ましい。 Further, the stress may be constant or may change while the second structure is pressed against the second thermosetting resin or the photocurable resin. When changing the stress, for example, after pressing the second structure against the second thermosetting resin or photo-curing resin with an arbitrary stress, maintain a state of pressing with a lower stress. May be. Note that it is more preferable that the stress is constant because generation of wrinkles on the second thermosetting resin or the photocurable resin can be suppressed.
 また、本工程(型を用いた構造体の複製工程)は複数回繰り返し行われてもよい。つまり、第三の構造体から第二の構造体を剥離した後、同一の第二の構造体を再度、第二の熱硬化性樹脂又は光硬化性樹脂に対して押し付け、樹脂を硬化させ、第三の構造体を得るという工程を繰り返してもよい。上記構成によれば、同一の第二の構造体を用いて、複数の第三の構造体を得ることができる。 In addition, this step (step of replicating the structure using a mold) may be repeated a plurality of times. That is, after peeling the second structure from the third structure, the same second structure is pressed again against the second thermosetting resin or photocurable resin, and the resin is cured, You may repeat the process of obtaining a 3rd structure. According to the above configuration, a plurality of third structures can be obtained using the same second structure.
 ここで、上記第二の熱硬化性樹脂又は光硬化性樹脂が常温で硬化する樹脂であることが好ましい。上記構成によれば、上記樹脂を硬化させる際の加熱によって、第二の構造体の形状に悪影響を与えること(例えば、第二の構造体の形状が崩れる等)を防ぐことができる。つまり、第二の構造体の寿命が長くなり、同一の第二の構造体から、より効率的に複数の第三の構造体を製造することができる。 Here, the second thermosetting resin or photocurable resin is preferably a resin that cures at room temperature. According to the said structure, it can prevent having a bad influence on the shape of a 2nd structure body (for example, the shape of a 2nd structure body collapse | crumbles) by the heating at the time of hardening the said resin. That is, the lifetime of the second structure is extended, and a plurality of third structures can be more efficiently manufactured from the same second structure.
 また、本発明の複製方法は、第三の構造体から第二の構造体を再生する工程を含んでいてもよい。つまり、上記第三の構造体を製造する工程の後に、上記第三の構造体の表面を覆うように第一の熱硬化性樹脂または光硬化性樹脂を塗布し、当該第一の熱硬化性樹脂または光硬化性樹脂を硬化後、上記第三の構造体から剥離することによって、第三の構造体の型となる第二の構造体を製造する工程を含んでいてもよい。上記構成によれば、第一の構造体または第二の構造体が破損した場合であっても、第二の構造体を再度製造することができる。なお、上記第三の構造体の表面を覆うように第一の熱硬化性樹脂または光硬化性樹脂を塗布する前に、上記第三の構造体の表面に対して上述の離型処理を施してもよい。 Further, the replication method of the present invention may include a step of regenerating the second structure from the third structure. That is, after the step of manufacturing the third structure, the first thermosetting resin or the photocurable resin is applied so as to cover the surface of the third structure, and the first thermosetting is performed. After the resin or photocurable resin is cured, it may include a step of producing a second structure to be a mold of the third structure by peeling from the third structure. According to the above configuration, even if the first structure or the second structure is damaged, the second structure can be manufactured again. Before applying the first thermosetting resin or photocurable resin so as to cover the surface of the third structure, the above-described mold release treatment is performed on the surface of the third structure. May be.
 さらに、本発明の複製方法は、上記第三の構造体を製造する工程において、上記第二の熱硬化性樹脂または光硬化性樹脂に対して上記第二の構造体を1回押し付けた場合に、上記基板上に上記第三の構造体を有する測定領域を2か所以上形成してもよい。本発明の第一の構造体を有する測定領域は基板上の複数の箇所(例えば、2か所以上9か所以下)に形成されていてもよい。そして、当該第一の構造体の測定領域の形状を反映した第二の構造体を作製し、当該第二の構造体を用いてインプリントを行うことで、第三の構造体を有する測定領域を複数有する基板を製造することができる。なお、この場合、インプリントの間、上記応力を一定に保つことで、複数の測定領域をより精密に転写することができる。 Furthermore, the duplication method of the present invention is the case where the second structure is pressed once against the second thermosetting resin or photocurable resin in the step of manufacturing the third structure. Two or more measurement regions having the third structure body may be formed on the substrate. The measurement area | region which has the 1st structure of this invention may be formed in the several location (for example, 2 or more and 9 or less) on a board | substrate. Then, a second structure that reflects the shape of the measurement region of the first structure is produced, and imprinting is performed using the second structure, thereby providing a measurement region having the third structure. Can be manufactured. In this case, a plurality of measurement regions can be transferred more precisely by keeping the stress constant during imprinting.
 〔3.局在型表面プラズモン共鳴センサ用チップの製造方法〕
 本実施の形態に係る局在型表面プラズモン共鳴センサ用チップの製造方法は、本実施の形態の複製方法により構造体を製造する工程と、上記工程で得られた構造体の表面を金属で被覆して上記構造体の形状が反映された形状を有する金属層を形成する工程とを含む。
[3. Method for Manufacturing Chip for Localized Surface Plasmon Resonance Sensor]
A manufacturing method of a localized surface plasmon resonance sensor chip according to the present embodiment includes a step of manufacturing a structure by the replication method of the present embodiment, and the surface of the structure obtained in the above step is covered with metal And forming a metal layer having a shape reflecting the shape of the structure.
 <構造体の製造>
 構造体を製造する工程は、〔2.構造体の複製方法〕で記載した方法により構造体(第三の構造体)を製造する工程である。よって、この工程の説明は〔2.構造体の複製方法〕の説明を援用することができる。
<Manufacture of structure>
The process of manufacturing the structure is described in [2. This is a step of manufacturing a structure (third structure) by the method described in [Method of replicating structure]. Therefore, the description of this step is [2. The description of the structure replication method] can be cited.
 <金属層の形成>
 金属層を形成する工程とは、上記構造体を製造する工程で得られた構造体の表面を金属で被覆して上記構造体の形状が反映された形状を有する金属層を形成する工程である。金属層の形成は、例えば、スパッタリング法、蒸着法等の公知の方法により行うことができる。
<Formation of metal layer>
The step of forming a metal layer is a step of forming a metal layer having a shape reflecting the shape of the structure by coating the surface of the structure obtained in the step of manufacturing the structure with a metal. . Formation of a metal layer can be performed by well-known methods, such as sputtering method and a vapor deposition method, for example.
 なお、スパッタリングや蒸着により堆積させる金属層の厚みが薄い場合には、センサ用チップの表面全面に金属層が形成しない場合も起こり得るが、本実施の形態に係る局在型表面プラズモン共鳴センサ用チップでは、そのような場合でも局在型表面プラズモン共鳴現象は誘起される。 If the metal layer deposited by sputtering or vapor deposition is thin, the metal layer may not be formed on the entire surface of the sensor chip. However, for the localized surface plasmon resonance sensor according to the present embodiment, Even in such a case, the localized surface plasmon resonance phenomenon is induced in the chip.
 <局在型表面プラズモン共鳴センサ用チップ>
 本実施の形態に係る局在型表面プラズモン共鳴センサ用チップは、上述の局在型表面プラズモン共鳴センサ用チップの製造方法によって製造されることを特徴としている。つまり、本実施の形態に係る局在型表面プラズモン共鳴センサ用チップは、上述した構造体の複製方法によって製造された第三の構造体が基板上に形成されており、当該構造体の表面の少なくとも一部を覆い且つ当該構造体の構造を反映するように金属層が形成されていることを特徴としている。
<Localized surface plasmon resonance sensor chip>
The localized surface plasmon resonance sensor chip according to the present embodiment is manufactured by the above-described manufacturing method of the localized surface plasmon resonance sensor chip. That is, in the localized surface plasmon resonance sensor chip according to the present embodiment, the third structure manufactured by the structure replication method described above is formed on the substrate, and the surface of the structure is A metal layer is formed so as to cover at least a part and reflect the structure of the structure.
 換言すれば、本実施の形態に係る局在型表面プラズモン共鳴センサ用チップは、平面部と、当該平面部に対して突出した凸部と、当該凸部の頂点または当該平面部に対して窪んだ凹部とを備え、上記凸部は、上記凹部の外周に沿って連続的に突起しており、上記凹部の外周に沿って連続的に突起した上記凸部の頂点が成す形状の平均内径が5nm以上2,000nm以下の範囲内であり、且つ、上記凹部の外周に沿って連続的に突起した上記凸部の頂点が成す形状の内径は、上記凹部および上記凹部の外周に沿って連続的に突起した上記凸部が成す形状の内径の最大値に比べて小さい構造体が基板上に形成されており、当該構造体の表面の少なくとも一部を覆い且つ当該構造体の構造を反映するように金属層が形成されていることを特徴としている。なお、本実施形態に係る局在型表面プラズモン共鳴センサ用チップにおいて、上述の構造体の説明と共通する事項については〔1.構造体〕の項の説明を援用するものとする。また、本明細書において、上記第三の構造体から製造された局在型表面プラズモン共鳴センサ用チップを「レプリカセンサ用チップ」と称する場合もある。 In other words, the localized surface plasmon resonance sensor chip according to the present embodiment includes a flat portion, a convex portion protruding from the flat portion, and an apex of the convex portion or a depression with respect to the flat portion. The convex portion continuously protrudes along the outer periphery of the concave portion, and the average inner diameter of the shape formed by the apex of the convex portion continuously protruded along the outer periphery of the concave portion is The inner diameter of the shape formed by the vertices of the protrusions that are in the range of 5 nm to 2,000 nm and that protrudes continuously along the outer periphery of the recesses is continuous along the outer periphery of the recesses and the recesses A structure smaller than the maximum value of the inner diameter of the shape formed by the protrusion protruding above is formed on the substrate so as to cover at least a part of the surface of the structure and reflect the structure of the structure. Characterized in that a metal layer is formed on To have. In the localized surface plasmon resonance sensor chip according to the present embodiment, matters common to the description of the above-described structure are described in [1. The description in the section “Structure” is incorporated. In the present specification, a localized surface plasmon resonance sensor chip manufactured from the third structure may be referred to as a “replica sensor chip”.
 本実施の形態に係る局在型表面プラズモン共鳴センサ用チップを構成する基板としては、ガラスや、アクリル樹脂、アモルファスカーボン、結晶シリコン、多結晶シリコン、アモルファスシリコン等が好ましく用いられる。特に透過型の局在型表面プラズモン共鳴法に用いるための基板としては光透過性の高い基板(全光線透過率が60%以上(厚さ1mm換算))であることが好ましい。 As the substrate constituting the localized surface plasmon resonance sensor chip according to the present embodiment, glass, acrylic resin, amorphous carbon, crystalline silicon, polycrystalline silicon, amorphous silicon, or the like is preferably used. In particular, the substrate for use in the transmission type localized surface plasmon resonance method is preferably a substrate having high light transmittance (total light transmittance is 60% or more (in terms of thickness 1 mm)).
 本実施の形態に係る局在型表面プラズモン共鳴センサ用チップは、上記構造体の形状を有しているため、フジツボ体内部および開口部周辺の金属における自由電子と入射光との間で結合が起こり、フジツボ体内部および開口部周辺に電界が集中して極めて強い局在型表面プラズモン共鳴が発生する。ここで、「局在的な共鳴電界」とは、共鳴電界が金属表面に沿って伝搬せず、共鳴によって増強された電界の領域が入射光の回折限界よりも小さい電界のことをいう。 Since the localized surface plasmon resonance sensor chip according to the present embodiment has the shape of the above structure, coupling between free electrons and incident light in the metal inside the barnacle body and around the opening is performed. As a result, the electric field concentrates inside the barnacle body and around the opening, and extremely strong localized surface plasmon resonance is generated. Here, the “local resonance electric field” refers to an electric field in which the resonance electric field does not propagate along the metal surface and the region of the electric field enhanced by resonance is smaller than the diffraction limit of incident light.
 本実施の形態に係る局在型表面プラズモン共鳴センサ用チップでは、上述した「フジツボ体」を有する。当該構成であれば、フジツボ体内部および開口部周辺の金属における自由電子と入射光との間で結合がより起こり易く、フジツボ体内部および開口部周辺により強い電界が集中して更に強い局在型表面プラズモン共鳴が発生する。 The localized surface plasmon resonance sensor chip according to the present embodiment has the “barnacle body” described above. If it is the said structure, a coupling | bonding will occur more easily between the free electron and incident light in the metal inside a barnacle body and an opening part periphery, and a stronger electric field concentrates in the barnacle body and an opening part periphery, and a stronger localized type Surface plasmon resonance occurs.
 本実施の形態に係る局在型表面プラズモン共鳴センサ用チップでは、上記フジツボ体構造の開口部の平均内径が5nm以上2,000nm以下の範囲内である。また、バイオセンサとして使用する場合には、一般的なタンパク質のサイズが10nm前後であるため、上記筒状構造の開口部の平均内径は20nm以上、1,000nm以下の範囲内であることがより好ましい。 In the localized surface plasmon resonance sensor chip according to the present embodiment, the average inner diameter of the opening of the barnacle structure is in the range of 5 nm to 2,000 nm. In addition, when used as a biosensor, since the general protein size is around 10 nm, the average inner diameter of the opening of the cylindrical structure is more preferably in the range of 20 nm to 1,000 nm. preferable.
 本実施の形態に係る局在型表面プラズモン共鳴センサ用チップでは、上記フジツボ体の開口部からの深さの平均値が、10nm以上、2μm以下の範囲内であることが好ましく、30nm以上、500nm以下の範囲内であることがより好ましい。フジツボ体の深さが上記範囲内であれば、高いセンサ感度で、局在型表面プラズモン共鳴現象を良好に生じさせることができる。 In the localized surface plasmon resonance sensor chip according to the present embodiment, the average value of the depth from the opening of the barnacle body is preferably in the range of 10 nm to 2 μm, preferably 30 nm to 500 nm. More preferably within the following range. If the depth of the barnacle is within the above range, the localized surface plasmon resonance phenomenon can be satisfactorily generated with high sensor sensitivity.
 本実施の形態に係る局在型表面プラズモン共鳴センサ用チップでは、フジツボ体間の距離に制限はないが、上記フジツボ体の平面部における分散密度が、100μm四方当たり1個以上50万個以下の範囲内であることが好ましく、100μm四方当たり10個以上30万個以下の範囲内であることがより好ましい。また100μm四方当たり50個以上20万個以下の範囲内であることが最も好ましい。 In the localized surface plasmon resonance sensor chip according to the present embodiment, the distance between the barnacle bodies is not limited, but the dispersion density in the planar portion of the barnacle bodies is 1 to 500,000 per 100 μm square. It is preferably within the range, and more preferably within the range of 10 to 300,000 per 100 μm square. Moreover, it is most preferable that it is in the range of 50 to 200,000 per 100 μm square.
 本実施の形態に係る局在型表面プラズモン共鳴センサ用チップでは、上記金属層の厚さが10nm以上500nm以下の範囲内であることが好ましい。金属層の厚さが上記範囲内であれば、反射光について十分な光量を確保でき、また透過光量についても十分な光量を確保でき、計測精度が高くなる。 In the localized surface plasmon resonance sensor chip according to the present embodiment, the thickness of the metal layer is preferably in the range of 10 nm to 500 nm. If the thickness of the metal layer is within the above range, a sufficient amount of light can be secured for the reflected light, and a sufficient amount of light can be secured for the amount of transmitted light, resulting in high measurement accuracy.
 本実施の形態に係る局在型表面プラズモン共鳴センサ用チップでは、上記金属層の材質が、Au、Ag、又はこれらの合金からなるものであることが好ましい。上記金属層の材質が、Au、Ag、又はこれらの合金であれば、強い局在型表面プラズモン共鳴を発生させることができる。 In the localized surface plasmon resonance sensor chip according to the present embodiment, the metal layer is preferably made of Au, Ag, or an alloy thereof. If the material of the metal layer is Au, Ag, or an alloy thereof, strong localized surface plasmon resonance can be generated.
 また、当該金属層の上に更に無機材料層を形成してもよい。金属層の酸化劣化を防ぎ、測定対象のタンパク質等の分子を失活させないようにできるためである。上記無機材料としては、二酸化珪素、酸化亜鉛、酸化スズ、酸化チタン等の材料が好適である。 Further, an inorganic material layer may be further formed on the metal layer. This is because oxidative deterioration of the metal layer can be prevented and molecules such as proteins to be measured can be prevented from being deactivated. As the inorganic material, materials such as silicon dioxide, zinc oxide, tin oxide, and titanium oxide are suitable.
 本実施の形態に係る局在型表面プラズモン共鳴センサ用チップでは、上記金属層の表面に、生体分子を固定化するための有機分子層が形成されていることが好ましい。これにより、特定の生体分子を検出することができるバイオセンサとして用いることが可能になる。つまり、本実施の形態に係るチップであれば、有機分子層を形成するための表面積を大きくすることができ、センサ感度を向上させることができる。 In the localized surface plasmon resonance sensor chip according to the present embodiment, an organic molecular layer for immobilizing biomolecules is preferably formed on the surface of the metal layer. Thereby, it becomes possible to use as a biosensor capable of detecting a specific biomolecule. That is, with the chip according to the present embodiment, the surface area for forming the organic molecular layer can be increased, and the sensor sensitivity can be improved.
 また、本実施の形態に係る局在型表面プラズモン共鳴センサ用チップでは、上記有機分子層は、金属層表面からの長さが50nm以上200nm以下の分子と、金属層表面からの長さが1nm以上50nm未満の分子とを含むことが好ましい。 In the localized surface plasmon resonance sensor chip according to the present embodiment, the organic molecular layer has a length of 50 nm to 200 nm from the metal layer surface and a length of 1 nm from the metal layer surface. It is preferable that the molecular weight is less than 50 nm.
 上記有機分子層が上記のような分子を有することにより、長さが1nm以上50nm未満の分子は金属層の近傍で生体分子と結合し、長さが50nm以上200nm以下の分子は金属層から離れたところで生体分子と結合する。そして、生体分子と結合した、長さが50nm以上200nm以下の分子が折れ曲がることによってその生体分子も金属層の近傍へ引き寄せられる。これにより、金属層の近傍の領域に多くの生体分子を集めることができ、センサ感度をより一層高めることができる。 When the organic molecular layer has molecules as described above, molecules having a length of 1 nm or more and less than 50 nm bind to biomolecules in the vicinity of the metal layer, and molecules having a length of 50 nm or more and 200 nm or less are separated from the metal layer. It binds to biomolecules at the moment. And when the molecule | numerator with a length of 50 to 200 nm which couple | bonded with the biomolecule bends, the biomolecule will also be drawn near the metal layer. Thereby, many biomolecules can be collected in the area | region of the vicinity of a metal layer, and sensor sensitivity can be improved further.
 上記有機分子層を構成する上記分子としては、ビオチン修飾ポリエチレングリコール、ORLA18(商品名、ORLA PROTEIN TECHNOLOGY社製)、デキストラン等が挙げられる。 Examples of the molecules constituting the organic molecular layer include biotin-modified polyethylene glycol, ORLA18 (trade name, ORLA PROTEIN, manufactured by TECHNOLOGY), dextran, and the like.
 また、上記分子の分子鎖長の計測は、動的光散乱法により測定することができる。 Further, the molecular chain length of the molecule can be measured by a dynamic light scattering method.
 <局在型表面プラズモン共鳴センサ用チップの製造方法の例>
 以下、図7により、本実施の形態に係る局在型表面プラズモン共鳴センサ用チップの製造方法の一例について詳細に説明する。ただし本発明はこれに限定されるものではない。
<Example of Manufacturing Method for Localized Surface Plasmon Resonance Sensor Chip>
Hereinafter, an example of a method for manufacturing the localized surface plasmon resonance sensor chip according to the present embodiment will be described in detail with reference to FIG. However, the present invention is not limited to this.
 まず、上述の構造体の複製方法によって、第三の構造体51を作製する(図7(a))。 First, the third structure 51 is produced by the above-described structure duplication method (FIG. 7A).
 このようにして得られたフジツボ体を有する第三の構造体51の表面に、抵抗加熱式真空蒸着機によってAu、Ag等の金属を堆積させてフジツボ体形状を反映するように金属層52を成膜し、図7(b)のようなセンサ用チップ53の基板部分を得ることができる。さらに、図7(c)に示すように、金属層52上に抗体およびブロッキング分子を結合させることによって、バイオセンサチップを製造することもできる。 On the surface of the third structure 51 having the barnacle body thus obtained, a metal layer 52 is deposited so as to reflect the shape of the barnacle body by depositing a metal such as Au or Ag by a resistance heating vacuum vapor deposition machine. By forming the film, a substrate portion of the sensor chip 53 as shown in FIG. 7B can be obtained. Furthermore, as shown in FIG. 7C, a biosensor chip can be manufactured by binding an antibody and a blocking molecule on the metal layer 52.
 尚、第三の構造体51の表面と金属層52との密着性が不十分である場合には、第三の構造体51と金属層52との間にTi、Cr等の密着層を設けてもよい。 If the adhesion between the surface of the third structure 51 and the metal layer 52 is insufficient, an adhesion layer such as Ti or Cr is provided between the third structure 51 and the metal layer 52. May be.
 また、反射光の光量を十分得るためには、金属層52の厚さは10nm以上であることが望ましい。但し、金属層52があまり厚いと、入射光が透過しなくなってしまうことやコストや作製スループットが良くないため、現実的には10~150nm程度の膜厚が望ましい。 In order to obtain a sufficient amount of reflected light, the thickness of the metal layer 52 is desirably 10 nm or more. However, if the metal layer 52 is too thick, incident light cannot be transmitted, and the cost and production throughput are not good. Therefore, a film thickness of about 10 to 150 nm is practically desirable.
 上述のように、一旦製造された第一の構造体に、熱又は光硬化樹脂を塗布し、硬化後に剥離させることで容易に構造体の型となる第二の構造体を大量に生産することができる。そして、得られた型となる第二の構造体に、更に熱又は光硬化性樹脂を塗布し、剥離させることで第一の構造体上の表面形状と同じ形状を有する第三の構造体を得ることができる。 As described above, mass production of a second structure that easily becomes a mold of a structure by applying heat or a photo-curing resin to the first structure that has been once manufactured and peeling it after curing. Can do. Then, a third structure having the same shape as the surface shape on the first structure is obtained by further applying a heat or photocurable resin to the second structure to be the obtained mold and peeling it. Obtainable.
 本実施の形態に係る局在型表面プラズモン共鳴センサ用チップの製造方法では、上記第三の構造体を使用するため、局在型表面プラズモン共鳴センサ用チップを容易に量産することができる。また、本実施の形態に係る局在型表面プラズモン共鳴センサ用チップの製造方法は、量産性に優れているため、高精度のセンサ用チップを低コストで生産することができる。 In the manufacturing method of the localized surface plasmon resonance sensor chip according to the present embodiment, since the third structure is used, the localized surface plasmon resonance sensor chip can be easily mass-produced. Moreover, since the manufacturing method of the localized surface plasmon resonance sensor chip according to the present embodiment is excellent in mass productivity, a highly accurate sensor chip can be produced at low cost.
 尚、これまでの局在型表面プラズモン共鳴センサ用チップでは金属ナノ微粒子を基板上に固定化するために、基板表面を化学修飾しなければならず、金属ナノ微粒子固定化工程が煩雑で、効率的に製造することが難しかった。これに対し、本実施の形態に係る局在型表面プラズモン共鳴センサ用チップの製造方法では、金属層を連続的に形成することができるので、効率的に製造することができる。つまり、光応答性材料上に液体を滴下し、光異性化に伴う物質移動とが誘起される波長の光を照射する等で得られる、平面部および筒状体を備えた基板の上に蒸着、スパッタ等のプロセスで金属膜を形成することで、平面部および筒状体を備えた形状を効率的に形成することができる。 In the conventional localized surface plasmon resonance sensor chip, in order to immobilize the metal nanoparticles on the substrate, the substrate surface must be chemically modified, and the metal nanoparticle immobilization process is complicated and efficient. Manufacturing was difficult. On the other hand, in the manufacturing method of the localized surface plasmon resonance sensor chip according to the present embodiment, the metal layer can be formed continuously, so that it can be manufactured efficiently. In other words, a liquid is dropped onto a photoresponsive material, and vapor deposition is performed on a substrate having a planar portion and a cylindrical body obtained by irradiating light having a wavelength that induces mass transfer accompanying photoisomerization. By forming the metal film by a process such as sputtering, the shape including the flat portion and the cylindrical body can be efficiently formed.
 〔4.局在型表面プラズモン共鳴センサ〕
 本実施の形態に係る局在型表面プラズモン共鳴センサは、上述した本実施の形態に係る局在型表面プラズモン共鳴センサ用チップと、上記局在型表面プラズモン共鳴センサ用チップに光を照射する光源と、上記局在型表面プラズモン共鳴センサ用チップにおいて反射若しくは透過した光を受光する光検出器とを備えている。
[4. Localized surface plasmon resonance sensor)
The localized surface plasmon resonance sensor according to the present embodiment includes the above-described localized surface plasmon resonance sensor chip according to the present embodiment and a light source that emits light to the localized surface plasmon resonance sensor chip. And a photodetector for receiving light reflected or transmitted by the localized surface plasmon resonance sensor chip.
 本実施の形態に係る局在型表面プラズモン共鳴センサは、上述した局在型表面プラズモン共鳴センサ用チップにおける金属層表面において局在的な共鳴電界を発生させ、上記光源から出射して上記センサ用チップの表面に入射し、上記金属層の表面における共鳴電界が発生した領域において反射又は透過した光を上記光検出器で受光する。そして、上記センサ用チップにおける、反射率、透過率、又は上記光検出器で受光した光強度を測定する。 The localized surface plasmon resonance sensor according to the present embodiment generates a localized resonance electric field on the surface of the metal layer in the above-described localized surface plasmon resonance sensor chip, and emits it from the light source to be used for the sensor. Light incident on the surface of the chip and reflected or transmitted in a region where a resonance electric field is generated on the surface of the metal layer is received by the photodetector. Then, the reflectance, transmittance, or light intensity received by the photodetector in the sensor chip is measured.
 また、本実施の形態に係る局在型表面プラズモン共鳴センサでは、上記センサ用チップに対して2種類以上の波長の光をセンサ用チップ表面に対して垂直に入射させ、上記センサ用チップで反射又は透過した各波長の光の反射率若しくは透過率、又は各波長の光の光強度を上記光検出器で測定するものであってもよい。 In the localized surface plasmon resonance sensor according to the present embodiment, light of two or more wavelengths is incident on the sensor chip perpendicularly to the sensor chip surface and reflected by the sensor chip. Alternatively, the reflectance or transmittance of the transmitted light of each wavelength, or the light intensity of the light of each wavelength may be measured by the photodetector.
 かかる実施態様によれば、特定の2波長以上の波長における反射率若しくは透過率、光強度を比較することにより共鳴波長の変化を評価することができる。よって、既知の特定物質の有無等を検査する用途に望ましい。 According to this embodiment, a change in resonance wavelength can be evaluated by comparing reflectance or transmittance and light intensity at two or more specific wavelengths. Therefore, it is desirable for an application for inspecting the presence or absence of a known specific substance.
 本実施の形態に係る局在型表面プラズモン共鳴センサ用チップにおいて局在型表面プラズモン共鳴が起きると、照射される光のエネルギーが金属層の表面プラズモン波に吸収されるので、ある波長(共鳴波長)において光の反射率又は透過率、及び光検出器で受光する光強度が低下する。 When localized surface plasmon resonance occurs in the localized surface plasmon resonance sensor chip according to the present embodiment, the energy of the irradiated light is absorbed by the surface plasmon wave of the metal layer. ), The light reflectance or transmittance and the light intensity received by the photodetector are reduced.
 この共鳴波長は、フジツボ体内部および開口部周辺にある媒質の屈折率により変化するので、かかる局在型表面プラズモンセンサによれば、当該領域内に誘電体物質が付着したことや付着量の変化等を検知することができる。特に、バイオセンサとして使用して特定のタンパク質の検出に好ましく使用することができる。 Since this resonance wavelength changes depending on the refractive index of the medium inside the barnacle body and around the opening, according to such a localized surface plasmon sensor, the dielectric material has adhered to the region and the amount of adhesion has changed. Etc. can be detected. In particular, it can be preferably used as a biosensor for the detection of specific proteins.
 しかも、本実施の形態に係る局在型表面プラズモン共鳴センサでは、フジツボ体内部および開口部周辺に大きな電界増強が見られるので、極めて強い表面プラズモン共鳴を引き起こすことができ、従来の伝搬型表面プラズモン共鳴センサや局在型表面プラズモン共鳴センサと比較して非常に感度の高いセンシングを行うことができる。 Moreover, in the localized surface plasmon resonance sensor according to the present embodiment, since a large electric field enhancement is observed inside the barnacle body and around the opening, extremely strong surface plasmon resonance can be caused, and the conventional propagation surface plasmon resonance can be caused. Sensing with very high sensitivity can be performed as compared with a resonance sensor or a localized surface plasmon resonance sensor.
 特に、本実施の形態に係る局在型表面プラズモン共鳴センサでは、上述したフジツボ体を含むため、当該フジツボ体が形成されている領域における面に対して光を入射させると、フジツボ体の内壁の金属側面における自由電子と入射光との間で結合が起こり、フジツボ体内部により強い電界が集中して、更に強い局在型表面プラズモン共鳴が発生する。 In particular, the localized surface plasmon resonance sensor according to the present embodiment includes the above-mentioned barnacle body. Therefore, when light is incident on the surface in the region where the barnacle body is formed, the inner wall of the barnacle body Coupling occurs between free electrons and incident light on the metal side surface, and a strong electric field concentrates in the barnacle body, thereby generating a stronger localized surface plasmon resonance.
 更に、本実施の形態に係る局在型表面プラズモン共鳴センサは、金属層の表面から数十nm程度の狭い領域で感度を持つので、金属層から離れた領域の物質によるノイズが小さく、S/N比の良好な局在型表面プラズモン共鳴センサを作製することができる。 Furthermore, since the localized surface plasmon resonance sensor according to the present embodiment has sensitivity in a narrow region of about several tens of nanometers from the surface of the metal layer, noise due to a substance in a region away from the metal layer is small, and S / A localized surface plasmon resonance sensor having a good N ratio can be manufactured.
 以下、図8を用いて、本実施の形態に係る局在型表面プラズモン共鳴センサ(以下、局在SPRセンサという)の反射光学系の基本的構成の一例について説明する。図8は、本実施の形態に係る局在SPRセンサ24の反射光学系の基本的構成の概略を示す平面図である。 Hereinafter, an example of a basic configuration of a reflection optical system of a localized surface plasmon resonance sensor (hereinafter referred to as a localized SPR sensor) according to the present embodiment will be described with reference to FIG. FIG. 8 is a plan view showing the outline of the basic configuration of the reflective optical system of the localized SPR sensor 24 according to the present embodiment.
 図8に示すように、上記局在SPRセンサ24は、光源25と、コリメータレンズ26と、ピンホールを有するコリメータ板27と、ビームスプリッタ(ハーフミラーでもよい)28と、分光器29と、光検出器33と、局在SPRセンサ用チップ30と、データ処理装置31とを備える。 As shown in FIG. 8, the localized SPR sensor 24 includes a light source 25, a collimator lens 26, a collimator plate 27 having a pinhole, a beam splitter (may be a half mirror) 28, a spectroscope 29, a light A detector 33, a localized SPR sensor chip 30, and a data processing device 31 are provided.
 光源25から出射された光は、コリメータレンズ26へ導かれる。コリメータレンズ26は、光源25から出射された光をコリメート化し、平行ビームとして通過させる。コリメータレンズ26でコリメート化された光は、コリメータ板27のピンホールを通過することにより細く絞られた平行ビームとなる。 The light emitted from the light source 25 is guided to the collimator lens 26. The collimator lens 26 collimates the light emitted from the light source 25 and passes it as a parallel beam. The light collimated by the collimator lens 26 becomes a collimated beam that is narrowed down by passing through the pinhole of the collimator plate 27.
 コリメータ板27のピンホールを通過した光はビームスプリッタ28に入射し、入射光量の約1/2の光だけがビームスプリッタ28を真っ直ぐに透過する。ビームスプリッタ28を透過した平行ビームは測定領域(フジツボ体が形成された領域)32に照射される。 The light that has passed through the pinhole of the collimator plate 27 enters the beam splitter 28, and only about ½ of the amount of incident light passes straight through the beam splitter 28. The parallel beam that has passed through the beam splitter 28 is applied to the measurement region (region where the barnacle body is formed) 32.
 測定領域32に照射された光は、測定領域32で反射して元の方向に戻る。元の方向に戻った測定光はビームスプリッタ28に入射する。ビームスプリッタ28に入射した測定光は、その光量の約1/2だけがビームスプリッタ28内の貼合せ面で90度の方向へ反射される。 The light irradiated to the measurement region 32 is reflected by the measurement region 32 and returns to the original direction. The measurement light that has returned to the original direction enters the beam splitter 28. As for the measurement light incident on the beam splitter 28, only about ½ of the amount of light is reflected by the bonding surface in the beam splitter 28 in the direction of 90 degrees.
 ビームスプリッタ28で反射した光は、分光器29を通過して各波長の光に分光され、光検出器33で受光される。よって、分光器29で分光された光を光検出器33で受光することにより、各波長の光強度を検出することができる。 The light reflected by the beam splitter 28 passes through the spectroscope 29, is split into light of each wavelength, and is received by the photodetector 33. Therefore, the light intensity of each wavelength can be detected by receiving the light separated by the spectroscope 29 by the photodetector 33.
 データ処理装置31は、測定領域32に検体が無い状態で照射する光の各波長の光強度をデータとして予め与えられている。よって、データ処理装置31により、予め与えられているデータと光検出器33で検出した各波長の光強度とを比較することで、測定領域32における各波長の反射率の分光特性(反射率スペクトル)等を求めることができる。 The data processing device 31 is given in advance as data the light intensity of each wavelength of light irradiated in a state where there is no specimen in the measurement region 32. Therefore, the data processor 31 compares the data given in advance with the light intensity of each wavelength detected by the light detector 33, so that the spectral characteristic (reflectance spectrum) of the reflectance of each wavelength in the measurement region 32 is obtained. ) And the like.
 次に、図9を用いて、本実施の形態に係る局在SPRセンサの透過光学系の基本的構成の一例について説明する。図9は、本実施の形態に係る局在SPRセンサ34の透過光学系の基本的構成の概略を示す平面図である。 Next, an example of the basic configuration of the transmission optical system of the localized SPR sensor according to the present embodiment will be described with reference to FIG. FIG. 9 is a plan view showing the outline of the basic configuration of the transmission optical system of the localized SPR sensor 34 according to the present embodiment.
 局在SPRセンサ34は、光源25と、コリメータレンズ26と、ピンホールを有するコリメータ板27と、測定領域32を含む局在SPRセンサ用チップ30と、分光器29と、光検出器33と、データ処理装置31とを備える。 The localized SPR sensor 34 includes a light source 25, a collimator lens 26, a collimator plate 27 having a pinhole, a localized SPR sensor chip 30 including a measurement region 32, a spectrometer 29, a photodetector 33, A data processing device 31.
 光源25から出射された光は、コリメータレンズ26へ導かれる。コリメータレンズ26は、光源25から出射された光をコリメート化し、平行ビームとして通過させる。コリメータレンズ26でコリメート化された光は、コリメータ板27のピンホールを通過することにより細く絞られた平行ビームとなる。 The light emitted from the light source 25 is guided to the collimator lens 26. The collimator lens 26 collimates the light emitted from the light source 25 and passes it as a parallel beam. The light collimated by the collimator lens 26 becomes a collimated beam that is narrowed down by passing through the pinhole of the collimator plate 27.
 コリメータ板27のピンホールを通過した光は測定領域(フジツボ体が形成された領域)32に照射される。測定領域32に照射された光は、測定領域32を透過する。透過した測定光は分光器29を通過して各波長の光に分光され、光検出器33で受光される。 The light that has passed through the pinhole of the collimator plate 27 is irradiated to the measurement region (region where the barnacle body is formed) 32. The light irradiated on the measurement region 32 passes through the measurement region 32. The transmitted measurement light passes through the spectroscope 29 and is split into light of each wavelength and received by the photodetector 33.
 データ処理装置31は、測定領域32に検体が無い状態で照射する光の各波長の光強度をデータとして予め与えられている。よって、データ処理装置31により、予め与えられているデータと光検出器33で検出した各波長の光強度とを比較することで、測定領域32における各波長の反射率の分光特性(透過率スペクトル)等を求めることができる。 The data processing device 31 is given in advance as data the light intensity of each wavelength of light irradiated in a state where there is no specimen in the measurement region 32. Therefore, the data processing device 31 compares the data given in advance with the light intensity of each wavelength detected by the photodetector 33, so that the spectral characteristic (transmittance spectrum) of the reflectance of each wavelength in the measurement region 32 is obtained. ) And the like.
 尚、上記反射光学系及び透過光学系の構成において、上記光源25は、ハロゲンランプまたはLED等の白色光を照射するものが望ましいが、測定に用いる波長域の光を含むものであればよい。また、ピンホールを通過した平行ビームは、ある偏光面を有する直線偏光や楕円偏光、円偏光等でもよい。 In the configuration of the reflection optical system and the transmission optical system, the light source 25 is preferably one that emits white light such as a halogen lamp or an LED, but may be any one that includes light in the wavelength region used for measurement. The parallel beam that has passed through the pinhole may be linearly polarized light, elliptically polarized light, circularly polarized light or the like having a certain polarization plane.
 更には、上記各種偏光状態にするための光学部品(例えば、λ/2板等)は必要に応じて配置してもよい。尚、本実施の形態においては、光(電磁波)の電界の振動面を偏光面と定義し、その電界の方向を偏光方向と定義する。 Furthermore, the optical components (for example, a λ / 2 plate) for making the various polarization states may be arranged as necessary. In this embodiment, the vibration plane of the electric field of light (electromagnetic wave) is defined as the polarization plane, and the direction of the electric field is defined as the polarization direction.
 また、光検出器33は、複数の受光面を有するフォトダイオードアレイ、CCD、CMOSやプラズモン現象を利用した受光器等によって構成することができる。 Further, the photodetector 33 can be constituted by a photodiode array having a plurality of light receiving surfaces, a CCD, a CMOS, a light receiver utilizing a plasmon phenomenon, or the like.
 測定領域32においては、金属層の表面に複数のフジツボ体(金属薄膜によるフジツボ体)が形成されている。 In the measurement region 32, a plurality of barnacle bodies (barnacle bodies made of a metal thin film) are formed on the surface of the metal layer.
 このような配置のもとで測定領域32に光が垂直入射すると、フジツボ体に光が入射し、フジツボ体の内部や周辺に電界が生じる。フジツボ体を有する金属層に入射した光は、フジツボ体の内部および周辺において電界を生じ、その電界と金属層内部の自由電子の固有振動とが結合することで、局在型SPRが発生する。よって、金属層に入射した光のエネルギーが局在型SPRによってフジツボ体へ集中し、金属層へ入射した光の一部が吸収される。 In such an arrangement, when light enters the measurement region 32 vertically, the light enters the barnacle body, and an electric field is generated in and around the barnacle body. Light incident on the metal layer having the barnacle body generates an electric field in and around the barnacle body, and the electric field and the natural vibration of free electrons in the metal layer are combined to generate a localized SPR. Therefore, the energy of light incident on the metal layer is concentrated on the barnacle body by the localized SPR, and a part of the light incident on the metal layer is absorbed.
 この結果、光検出器33で受光した光から求めた反射率若しくは透過率はある特定の波長(共鳴波長)で小さくなる。この特定の波長は、検査試料溶液の屈折率によって変化するので、反射率または透過率の極小点の波長又はその変化を調べることで検査試料溶液に含まれる誘電体物質の屈折率や種類等を検査することができる。 As a result, the reflectance or transmittance obtained from the light received by the photodetector 33 becomes smaller at a specific wavelength (resonance wavelength). Since this specific wavelength changes depending on the refractive index of the test sample solution, the refractive index and the type of the dielectric substance contained in the test sample solution can be determined by examining the wavelength of the minimum point of the reflectance or transmittance or the change thereof. Can be inspected.
 なお、図8及び9に示す構成はあくまで一例であり、例えばコリメータレンズ26及びコリメータ板27を備えていない構成であってもよい。 The configurations shown in FIGS. 8 and 9 are merely examples, and for example, a configuration without the collimator lens 26 and the collimator plate 27 may be used.
 また、特定のタンパク質を特異的に結合させる抗体等を用いることにより、検査試料溶液に含まれる特定のタンパク質の有無や含有量等を検査することができる。 Also, by using an antibody or the like that specifically binds a specific protein, it is possible to inspect the presence or content of the specific protein contained in the test sample solution.
 尚、このような測定領域32において、フジツボ体の口径や深さは均一に揃っていてもよいし、不均一であってもよい。 In such a measurement region 32, the diameter and depth of the barnacle body may be uniform or non-uniform.
 また、上記局在型表面プラズモン共鳴センサは、上述の局在型表面プラズモン共鳴センサ用チップを用いて公知の方法により製造することができる。 The localized surface plasmon resonance sensor can be manufactured by a known method using the above-mentioned localized surface plasmon resonance sensor chip.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 本発明は以下のように構成することも可能である。 The present invention can also be configured as follows.
 すなわち、上記課題を解決するために、本発明に係る構造体の複製方法は、構造体の複製方法であって、(i)第一の構造体の表面にフッ素基を導入する工程と、(ii)上記第一の構造体の表面を覆うように第一の熱硬化性樹脂または光硬化性樹脂を塗布し、当該第一の熱硬化性樹脂または光硬化性樹脂を硬化後、上記第一の構造体から剥離することによって、第一の構造体の型となる第二の構造体を製造する工程と、(iii)第二の熱硬化性樹脂または光硬化性樹脂を基板上に塗布し、当該第二の熱硬化性樹脂または光硬化性樹脂に対して上記第二の構造体を押し付け、当該第二の熱硬化性樹脂または光硬化性樹脂を硬化後、上記第二の構造体から剥離することによって、第一の構造体の複製物である第三の構造体を製造する工程と、を含んでおり、上記第一の構造体は、平面部と、当該平面部に対して突出した凸部と、当該凸部の頂点または当該平面部に対して窪んだ凹部とを備え、上記凸部は、上記凹部の外周に沿って連続的に突起しており、上記凹部の外周に沿って連続的に突起した上記凸部の頂点が成す形状の平均内径が5nm以上2,000nm以下の範囲内であり、且つ、上記凹部の外周に沿って連続的に突起した上記凸部の頂点が成す形状の内径は、上記凹部および上記凹部の外周に沿って連続的に突起した上記凸部が成す形状の内径の最大値に比べて小さいことを特徴としている。 That is, in order to solve the above-mentioned problem, a structure replication method according to the present invention is a structure replication method, comprising: (i) introducing a fluorine group on the surface of the first structure; ii) Applying the first thermosetting resin or photocurable resin so as to cover the surface of the first structure, curing the first thermosetting resin or photocurable resin, (Ii) applying a second thermosetting resin or photocurable resin on the substrate, and a step of producing a second structure to be a mold of the first structure by peeling from the structure. From the second structure after pressing the second structure against the second thermosetting resin or photocurable resin, and curing the second thermosetting resin or photocurable resin A step of producing a third structure that is a replica of the first structure by peeling. The first structure includes a flat portion, a convex portion projecting with respect to the flat portion, and a concave portion recessed with respect to the apex of the convex portion or the flat portion. , Projecting continuously along the outer periphery of the concave portion, and the average inner diameter of the shape formed by the apex of the convex portion continuously projecting along the outer periphery of the concave portion is within the range of 5 nm to 2,000 nm In addition, the inner diameter of the shape formed by the apex of the convex portion continuously projecting along the outer periphery of the concave portion is the shape of the convex portion continuously projecting along the outer periphery of the concave portion and the concave portion. It is characterized by being smaller than the maximum inner diameter.
 上記構成によれば、第一の構造体の表面においてフッ素基を導入することによって離型処理が施されている。そのため、「上記凹部の外周に沿って連続的に突起した上記凸部の頂点が成す形状の直径が、上記凹部および上記凹部の外周に沿って連続的に突起した上記凸部が成す形状の内径の最大値に比べて小さい」という複雑な形状を備えた第一の構造体から、第一の構造体の型となる第二の構造体を容易に剥離することができる。 According to the above configuration, the mold release treatment is performed by introducing a fluorine group on the surface of the first structure. Therefore, “the diameter of the shape formed by the apex of the convex portion protruding continuously along the outer periphery of the concave portion is the inner diameter of the shape of the convex portion continuously protruding along the outer periphery of the concave portion and the concave portion. The second structure as the mold of the first structure can be easily peeled from the first structure having a complicated shape “smaller than the maximum value of”.
 また、上記構成によれば、第一の構造体の材料にかかわらず、容易に第二の構造体を形成することができる。 Further, according to the above configuration, the second structure can be easily formed regardless of the material of the first structure.
 よって、高感度の局在型表面プラズモン共鳴センサを提供し得る構造体を、ナノインプリント法によって容易に複製することができる。 Therefore, a structure capable of providing a highly sensitive localized surface plasmon resonance sensor can be easily replicated by the nanoimprint method.
 本発明に係る構造体の複製方法では、上記第二の構造体を製造する工程において、上記第一の熱硬化性樹脂または光硬化性樹脂が硬化する前に、上記第一の熱硬化性樹脂または光硬化性樹脂が塗布された第一の構造体を減圧条件下に配置することによって、上記凹部の外周に沿って連続的に突起した上記凸部の頂点が成す形状の内径に比べて、上記凹部および上記凹部の外周に沿って連続的に突起した上記凸部が成す形状の内径が大きい領域に対して上記第一の熱硬化性樹脂または光硬化性樹脂が充填される樹脂充填工程が含まれていてもよい。 In the structure replication method according to the present invention, in the step of manufacturing the second structure, the first thermosetting resin is cured before the first thermosetting resin or the photocurable resin is cured. Or, by placing the first structure coated with a photocurable resin under reduced pressure conditions, compared to the inner diameter of the shape formed by the top of the convex part continuously projecting along the outer periphery of the concave part, A resin filling step in which the first thermosetting resin or the photocurable resin is filled into a region having a large inner diameter of the shape formed by the convex portion continuously projecting along the outer periphery of the concave portion and the concave portion; It may be included.
 本発明に係る構造体の複製方法では、上記樹脂充填工程は、1分以上3時間以下で行われてもよい。 In the structure duplication method according to the present invention, the resin filling step may be performed in a period of 1 minute to 3 hours.
 本発明に係る構造体の複製方法では、上記第二の構造体を製造する工程において、上記第一の構造体の表面を覆うように第一の熱硬化性樹脂または光硬化性樹脂を塗布し、樹脂充填工程を行い、再度第一の熱硬化性樹脂または光硬化性樹脂を塗布して樹脂充填工程を行われてもよい。 In the structure replication method according to the present invention, in the step of manufacturing the second structure, the first thermosetting resin or the photocurable resin is applied so as to cover the surface of the first structure. The resin filling step may be performed by applying the first thermosetting resin or the photocurable resin again.
 本発明に係る構造体の複製方法では、上記基板はガラスまたはフィルムであって、上記第二の熱硬化性樹脂または光硬化性樹脂は、アクリルシリコン樹脂であってもよい。 In the structure duplication method according to the present invention, the substrate may be glass or film, and the second thermosetting resin or photocurable resin may be an acrylic silicon resin.
 本発明に係る構造体の複製方法では、上記基板はガラスまたはフィルムであって、上記第二の熱硬化性樹脂または光硬化性樹脂は、エポキシ樹脂であり、上記第三の構造体を得る工程において、上記第二の熱硬化性樹脂または光硬化性樹脂を上記基板に塗布する前に、上記基板表面にエポキシ基を導入してもよい。 In the method for replicating a structure according to the present invention, the substrate is glass or a film, the second thermosetting resin or the photocurable resin is an epoxy resin, and the third structure is obtained. In this case, an epoxy group may be introduced to the surface of the substrate before the second thermosetting resin or photocurable resin is applied to the substrate.
 本発明に係る構造体の複製方法では、上記第二の構造体を製造する工程を繰り返してもよい。 In the structure duplication method according to the present invention, the step of manufacturing the second structure may be repeated.
 本発明に係る構造体の複製方法では、上記第三の構造体を製造する工程を繰り返してもよい。 In the structure duplication method according to the present invention, the step of manufacturing the third structure may be repeated.
 本発明に係る構造体の複製方法では、上記第三の構造体を製造する工程の後に、上記第三の構造体の表面を覆うように第一の熱硬化性樹脂または光硬化性樹脂を塗布し、当該第一の熱硬化性樹脂または光硬化性樹脂を硬化後、上記第三の構造体から剥離することによって、第三の構造体の型となる第二の構造体を製造する工程を含んでいてもよい。 In the structure replication method according to the present invention, after the step of manufacturing the third structure, the first thermosetting resin or the photocurable resin is applied so as to cover the surface of the third structure. And, after curing the first thermosetting resin or photo-curing resin, peeling from the third structure to produce a second structure that becomes the mold of the third structure May be included.
 本発明に係る構造体の複製方法では、上記第三の構造体を製造する工程において、上記第二の熱硬化性樹脂または光硬化性樹脂に対して上記第二の構造体を1回押し付けた場合に、上記基板上に上記第三の構造体を有する測定領域を2か所以上形成してもよい。 In the structure replication method according to the present invention, in the step of manufacturing the third structure, the second structure is pressed once against the second thermosetting resin or the photocurable resin. In some cases, two or more measurement regions having the third structure may be formed on the substrate.
 本発明に係る構造体の複製方法では、上記フッ素基を導入する工程は、20℃以上100℃以下の温度にて行われてもよい。 In the structure replication method according to the present invention, the step of introducing the fluorine group may be performed at a temperature of 20 ° C. or higher and 100 ° C. or lower.
 本発明に係る局在型表面プラズモン共鳴センサ用チップの製造方法は、上記課題を解決するために、本発明に係る構造体の複製方法により構造体を製造する工程と、上記工程によって得られた構造体の表面を金属で被覆して上記構造体の形状が反映された形状を有する金属層を形成する工程と、を含むことを特徴としている。 In order to solve the above problems, a method for manufacturing a localized surface plasmon resonance sensor chip according to the present invention was obtained by the steps of manufacturing a structure by the method for replicating a structure according to the present invention and the above steps. And forming a metal layer having a shape reflecting the shape of the structure by coating the surface of the structure with a metal.
 本発明は、本発明に係る構造体の複製方法によって製造される構造体、本発明に係る局在型表面プラズモン共鳴センサ用チップの製造方法によって製造される局在型表面プラズモン共鳴センサ用チップ、および、本発明に係る局在型表面プラズモン共鳴センサ用チップと、上記局在型表面プラズモン共鳴センサ用度チップに光を照射する光源と、上記局在型表面プラズモン共鳴センサ用チップにおいて反射若しくは透過した光を受光する光検出器と、を備えることを特徴とする局在型表面プラズモン共鳴センサをも包含する。 The present invention provides a structure manufactured by the method for replicating a structure according to the present invention, a localized surface plasmon resonance sensor chip manufactured by the method for manufacturing a localized surface plasmon resonance sensor chip according to the present invention, And a localized surface plasmon resonance sensor chip according to the present invention, a light source for irradiating light to the localized surface plasmon resonance sensor degree chip, and reflection or transmission in the localized surface plasmon resonance sensor chip. And a local surface plasmon resonance sensor characterized by comprising a photodetector for receiving the emitted light.
 〔実施例1:構造体の複製-1〕
 光応答性材料として、POT1を用い、当該アゾポリマー誘導体薄膜(厚み50nm)をスピンコート法によってガラス基板上に形成した。
[Example 1: Duplication of structure-1]
POT1 was used as a photoresponsive material, and the azo polymer derivative thin film (thickness 50 nm) was formed on a glass substrate by spin coating.
 形成されたアゾポリマー誘導体薄膜に対してアニーリング(150℃で10分(常圧))を行った。 Annealing (10 minutes at 150 ° C. (normal pressure)) was performed on the formed azopolymer derivative thin film.
 上記アゾポリマー誘導体薄膜上に純水5μLを滴下した後、波長470nmの光を80mW/cmの強度で5分間照射した。 After 5 μL of pure water was dropped on the azopolymer derivative thin film, light having a wavelength of 470 nm was irradiated for 5 minutes at an intensity of 80 mW / cm 2 .
 照射後、自然乾燥によって純水を除去し、マスター基板を得た。 After the irradiation, pure water was removed by natural drying to obtain a master substrate.
 上記マスター基板に対し、プラズマ処理を行った後、フッ素系シランカップリング剤(オプツールHD-1100TH、ダイキン工業株式会社)溶液に浸漬し、離型処理を施した。上記浸漬後、温度60℃、湿度90%RHの条件下にて反応させた後、リンス液(オプツールHD-TH、ダイキン工業株式会社)を用いてマスター基板表面を洗浄して反応を完了させた。 The master substrate was subjected to a plasma treatment and then immersed in a fluorine-based silane coupling agent (OPTOOL HD-1100TH, Daikin Industries, Ltd.) solution to perform a release treatment. After the immersion, the reaction was carried out under conditions of a temperature of 60 ° C. and a humidity of 90% RH, and then the master substrate surface was washed with a rinse solution (OPTOOL HD-TH, Daikin Industries, Ltd.) to complete the reaction. .
 当該離型処理を施したマスター基板に対し、熱硬化性樹脂であるシリコーン樹脂(X32-3095(一液硬化型)、信越化学工業株式会社)を滴下した。当該シリコーン樹脂を滴下したマスター基板を減圧条件(3,000Pa)下に配置し、室温で45分間、樹脂充填工程を行った。そして、130℃にてシリコーン樹脂を硬化させた。その後、シリコーン樹脂をマスター基板から剥離し、ネガ型レプリカを得た。 A silicone resin (X32-3095 (one-part curable type), Shin-Etsu Chemical Co., Ltd.), which is a thermosetting resin, was dropped onto the master substrate subjected to the release treatment. The master substrate to which the silicone resin was dropped was placed under reduced pressure conditions (3,000 Pa), and a resin filling step was performed at room temperature for 45 minutes. And the silicone resin was hardened at 130 degreeC. Thereafter, the silicone resin was peeled off from the master substrate to obtain a negative replica.
 エポキシ系シランカップリング剤を塗布したガラス基板に、紫外線硬化樹脂であり、エポキシ樹脂であるSU-8(日本化薬株式会社)を塗布し、100℃にて加熱軟化させた。上記ネガ型レプリカをSU-8に対し、30N/cmの応力を加えて押し付けた。そして、紫外線照射および加熱(100℃)により、SU-8を硬化させた後、ネガ型レプリカを剥離し、ポジ型レプリカを得た。得られたポジ型レプリカの表面に、真空蒸着法によって100nmの厚みの金を蒸着し、センサ用チップを作製した。その平面SEM像を図10に示す。図中の円は直径1μmの円を示している。ポジ型レプリカの表面には内径1μm未満の開口部を有するフジツボ体が多数存在することがわかる。 A glass substrate coated with an epoxy silane coupling agent was coated with SU-8 (Nippon Kayaku Co., Ltd.), which is an ultraviolet curable resin and epoxy resin, and was softened by heating at 100 ° C. The negative replica was pressed against SU-8 while applying a stress of 30 N / cm 2 . Then, after curing SU-8 by ultraviolet irradiation and heating (100 ° C.), the negative replica was peeled off to obtain a positive replica. On the surface of the obtained positive replica, gold having a thickness of 100 nm was vapor-deposited by vacuum vapor deposition to produce a sensor chip. The planar SEM image is shown in FIG. The circle in the figure indicates a circle having a diameter of 1 μm. It can be seen that there are many barnacle bodies having openings having an inner diameter of less than 1 μm on the surface of the positive replica.
 得られたポジ型レプリカの表面に、真空蒸着法によって100nmの厚みの金を蒸着し、センサ用チップを作製した。当該センサ用チップに何も滴下しない場合(空気が存在する場合)と水を滴下した場合で、透過スペクトル測定を行った。測定結果を図11に示す。プラズモン共鳴由来の吸収ピークが見られ、何も滴下しない場合と水を滴下した場合とを比較するとピークシフトが見られた。よって、本実施例に係るセンサ用チップは、透過型であると共に、高感度のプラズモン共鳴センサであることがわかった。 A 100 nm thick gold was deposited on the surface of the obtained positive replica by vacuum deposition to produce a sensor chip. Transmission spectrum measurement was performed when nothing was dropped on the sensor chip (when air was present) and when water was dropped. The measurement results are shown in FIG. An absorption peak derived from plasmon resonance was observed, and a peak shift was observed when nothing was dropped and when water was dropped. Therefore, it was found that the sensor chip according to this example is a transmission type and a highly sensitive plasmon resonance sensor.
 〔実施例2:構造体の複製-2〕
 光応答性材料として、POT1を用い、当該アゾポリマー誘導体薄膜(厚み45nm)をスピンコート法によってガラス基板上に形成した。
[Example 2: Duplication of structure-2]
POT1 was used as a photoresponsive material, and the azo polymer derivative thin film (thickness 45 nm) was formed on a glass substrate by a spin coating method.
 形成されたアゾポリマー誘導体薄膜に対してアニーリング(150℃で10分(常圧))を行った。 Annealing (10 minutes at 150 ° C. (normal pressure)) was performed on the formed azopolymer derivative thin film.
 上記アゾポリマー誘導体薄膜上に純水5μLを滴下した後、波長470nmの光を40mW/cmの強度で5分間照射した。 After 5 μL of pure water was dropped on the azopolymer derivative thin film, light having a wavelength of 470 nm was irradiated for 5 minutes at an intensity of 40 mW / cm 2 .
 照射後、純水を除去し、光照射後のアゾポリマー誘導体薄膜を風乾し、マスター基板を得た。得られたマスター基板の平面SEM像を図12(a)に示す。図中の円は直径1μmの円を示している。 After the irradiation, pure water was removed, and the azopolymer derivative thin film after the light irradiation was air-dried to obtain a master substrate. A planar SEM image of the obtained master substrate is shown in FIG. The circle in the figure indicates a circle having a diameter of 1 μm.
 上記マスター基板に対し、実施例1と同様の方法によって離型処理を施した。当該離型処理を施したマスター基板に対し、熱硬化性樹脂であるシリコーン樹脂(X32-3095(一液硬化型)、信越化学工業株式会社)を滴下した。当該シリコーン樹脂を滴下したマスター基板を減圧条件(3,000Pa)下に配置し、室温で45分間、樹脂充填工程を行った。そして、130℃にてシリコーン樹脂を硬化させた。その後、シリコーン樹脂をマスター基板から剥離し、ネガ型レプリカを得た。 The above-mentioned master substrate was subjected to a mold release process in the same manner as in Example 1. A silicone resin (X32-3095 (one-part curable type), Shin-Etsu Chemical Co., Ltd.), which is a thermosetting resin, was dropped onto the master substrate subjected to the release treatment. The master substrate to which the silicone resin was dropped was placed under reduced pressure conditions (3,000 Pa), and a resin filling step was performed at room temperature for 45 minutes. And the silicone resin was hardened at 130 degreeC. Thereafter, the silicone resin was peeled off from the master substrate to obtain a negative replica.
 シリコンウェハにSU-8(日本化薬株式会社)を塗布し、95℃にて加熱軟化させた。上記ネガ型レプリカをSU-8に対し、30N/cmの応力を加えて押し付けた。そして、紫外線照射および加熱(100℃)により、SU-8を硬化させた後、ネガ型レプリカを剥離し、ポジ型レプリカを得た。得られたポジ型レプリカの平面SEM像を図12(b)に示す。図中の円は直径1μmの円を示している。本実施例に係るポジ型レプリカの表面には内径400~600nm程度の開口部を有するフジツボ体(図中矢印)が存在し、マスター基板の形状(図12(a))がよく転写されていることがわかる。 SU-8 (Nippon Kayaku Co., Ltd.) was applied to the silicon wafer and softened by heating at 95 ° C. The negative replica was pressed against SU-8 while applying a stress of 30 N / cm 2 . Then, after curing SU-8 by ultraviolet irradiation and heating (100 ° C.), the negative replica was peeled off to obtain a positive replica. A planar SEM image of the obtained positive replica is shown in FIG. The circle in the figure indicates a circle having a diameter of 1 μm. A barnacle body (arrow in the figure) having an opening with an inner diameter of about 400 to 600 nm is present on the surface of the positive replica according to the present embodiment, and the shape of the master substrate (FIG. 12A) is well transferred. I understand that.
 〔実施例3:構造体の複製-3〕
 光応答性材料として、POT1を用い、当該アゾポリマー誘導体薄膜(厚み48nm)をスピンコート法によってガラス基板上に形成した。
[Example 3: Duplicate structure-3]
POT1 was used as a photoresponsive material, and the azopolymer derivative thin film (thickness 48 nm) was formed on a glass substrate by spin coating.
 形成されたアゾポリマー誘導体薄膜に対してアニーリング(150℃で10分(常圧))を行った。 Annealing (10 minutes at 150 ° C. (normal pressure)) was performed on the formed azopolymer derivative thin film.
 上記アゾポリマー誘導体薄膜上に純水5μLを滴下した後、波長470nmの光を120mW/cmの強度で5分間照射した。 After 5 μL of pure water was dropped on the azopolymer derivative thin film, light having a wavelength of 470 nm was irradiated at an intensity of 120 mW / cm 2 for 5 minutes.
 照射後、自然乾燥によって純水を除去し、マスター基板を得た。 After the irradiation, pure water was removed by natural drying to obtain a master substrate.
 上記マスター基板に対し、実施例1と同様の方法によって離型処理を施した。当該離型処理を施したマスター基板に対し、熱硬化性樹脂であるシリコーン樹脂(X32-3095(一液硬化型)、信越化学工業株式会社)を滴下した。当該シリコーン樹脂を滴下したマスター基板を減圧条件(3,000Pa)下に配置し、室温で45分間、樹脂充填工程を行った。そして、130℃にてシリコーン樹脂を硬化させた。その後、シリコーン樹脂をマスター基板から剥離し、ネガ型レプリカを得た。 The above-mentioned master substrate was subjected to a mold release process in the same manner as in Example 1. A silicone resin (X32-3095 (one-part curable type), Shin-Etsu Chemical Co., Ltd.), which is a thermosetting resin, was dropped onto the master substrate subjected to the release treatment. The master substrate to which the silicone resin was dropped was placed under reduced pressure conditions (3,000 Pa), and a resin filling step was performed at room temperature for 45 minutes. And the silicone resin was hardened at 130 degreeC. Thereafter, the silicone resin was peeled off from the master substrate to obtain a negative replica.
 エポキシ系シランカップリング剤を塗布したガラス基板にSU-8(日本化薬株式会社)を塗布し、100℃にて加熱軟化させた。上記ネガ型レプリカをSU-8に対し、50N/cmの応力を加えて押し付け、その後5N/cmの応力を維持した。図13(b)は応力履歴を示している。そして、紫外線照射および加熱(100℃)により、SU-8を硬化させた後、ネガ型レプリカを剥離し、ポジ型レプリカを得た。 SU-8 (Nippon Kayaku Co., Ltd.) was applied to a glass substrate coated with an epoxy silane coupling agent and softened by heating at 100 ° C. The negative replica was pressed against SU-8 by applying a stress of 50 N / cm 2 , and then the stress of 5 N / cm 2 was maintained. FIG. 13B shows a stress history. Then, after curing SU-8 by ultraviolet irradiation and heating (100 ° C.), the negative replica was peeled off to obtain a positive replica.
 得られたポジ型レプリカの表面に、真空蒸着法によって100nmの厚みの金を蒸着し、センサ用チップを作製した。 A 100 nm thick gold was deposited on the surface of the obtained positive replica by vacuum deposition to produce a sensor chip.
 ポジ型レプリカ由来のセンサ用チップの平面SEM像を図13(a)に示す。図中の円は直径1μmの円を示している。当該センサ用チップを用いて、空気中における透過スペクトルの測定を行った。測定結果を図13(c)に示す。図13(c)より、プラズモン共鳴由来の吸収ピークが見られる。 FIG. 13A shows a planar SEM image of a sensor chip derived from a positive replica. The circle in the figure indicates a circle having a diameter of 1 μm. Using the sensor chip, a transmission spectrum in air was measured. The measurement results are shown in FIG. FIG. 13C shows an absorption peak derived from plasmon resonance.
 ポジ型レプリカ由来のセンサ用チップの断面SEM像を図14(a)に示す。また、別の実験において作製したマスター基板由来のセンサ用チップの断面TEM像を図14(b)に示す。上記センサ用チップは共に開口部の内径が600nmであり、深さが150nmであった。本実施例に係るポジ型レプリカ由来のセンサ用チップは、マスター基板由来のセンサ用チップと同様の形状を有していることがわかる。 FIG. 14A shows a cross-sectional SEM image of a sensor chip derived from a positive replica. Further, FIG. 14B shows a cross-sectional TEM image of a sensor chip derived from a master substrate produced in another experiment. Both of the sensor chips had an inner diameter of 600 nm and a depth of 150 nm. It can be seen that the sensor chip derived from the positive replica according to this example has the same shape as the sensor chip derived from the master substrate.
 〔実施例4および比較例:離型処理の有無による比較〕
 光応答性材料として、POT1を用い、当該アゾポリマー誘導体薄膜(厚み50nm)をスピンコート法によってガラス基板上に形成した。
[Example 4 and Comparative Example: Comparison with and without mold release treatment]
POT1 was used as a photoresponsive material, and the azo polymer derivative thin film (thickness 50 nm) was formed on a glass substrate by spin coating.
 形成されたアゾポリマー誘導体薄膜に対してアニーリング(150℃で10分(常圧))を行った。 Annealing (10 minutes at 150 ° C. (normal pressure)) was performed on the formed azopolymer derivative thin film.
 上記アゾポリマー誘導体薄膜上に純水5μLを滴下した後、波長470nmの光を40mW/cmの強度で5分間照射した。 After 5 μL of pure water was dropped on the azopolymer derivative thin film, light having a wavelength of 470 nm was irradiated for 5 minutes at an intensity of 40 mW / cm 2 .
 照射後、純水を除去し、光照射後のアゾポリマー誘導体薄膜を風乾し、マスター基板を得た。 After the irradiation, pure water was removed, and the azopolymer derivative thin film after the light irradiation was air-dried to obtain a master substrate.
 上記マスター基板に対し、実施例1と同様の方法によって離型処理を施したもの(実施例4)と、離型処理を施していないマスター基板(比較例)を用意した。 The master substrate was subjected to release treatment (Example 4) by the same method as in Example 1 and the master substrate not subjected to release treatment (Comparative Example) was prepared.
 上記2つのマスター基板に対し、熱硬化性樹脂であるシリコーン樹脂(X32-3095(一液硬化型)、信越化学工業株式会社)を滴下した。当該シリコーン樹脂を滴下したマスター基板を減圧条件(3,000Pa)下に配置し、室温で45分間、樹脂充填工程を行った。そして、130℃にてシリコーン樹脂を硬化させた。その後、シリコーン樹脂をマスター基板から剥離し、ネガ型レプリカを得た。 A silicone resin (X32-3095 (one-part curable type), Shin-Etsu Chemical Co., Ltd.), which is a thermosetting resin, was dropped onto the two master substrates. The master substrate to which the silicone resin was dropped was placed under reduced pressure conditions (3,000 Pa), and a resin filling step was performed at room temperature for 45 minutes. And the silicone resin was hardened at 130 degreeC. Thereafter, the silicone resin was peeled off from the master substrate to obtain a negative replica.
 エポキシ系シランカップリング剤を塗布したガラス基板にSU-8(日本化薬株式会社)を塗布し、100℃にて加熱軟化させた。上記離型処理を施したマスター基板に由来するネガ型レプリカおよび離型処理を施していないマスター基板に由来するネガ型レプリカをそれぞれSU-8に対し、30N/cmの応力を加えて押し付けた。そして、紫外線照射および加熱(100℃)により、SU-8を硬化させた後、ネガ型レプリカを剥離し、ポジ型レプリカを得た。比較例および実施例4のポジ型レプリカの表面に、100nmの厚みの金を蒸着し、センサ用チップを作製した。 SU-8 (Nippon Kayaku Co., Ltd.) was applied to a glass substrate coated with an epoxy silane coupling agent and softened by heating at 100 ° C. The negative replica derived from the master substrate subjected to the release treatment and the negative replica derived from the master substrate not subjected to the release treatment were respectively pressed against SU-8 with a stress of 30 N / cm 2 . . Then, after curing SU-8 by ultraviolet irradiation and heating (100 ° C.), the negative replica was peeled off to obtain a positive replica. 100 nm-thick gold was vapor-deposited on the surfaces of the positive replicas of the comparative example and the example 4 to produce a sensor chip.
 比較例のポジ型レプリカ由来のセンサ用チップの平面SEM像を図15(a)に、実施例4のポジ型レプリカ由来のセンサ用チップの平面SEM像を図15(b)に示す。離型処理を施していないマスター基板に由来するポジ型レプリカでは、離型処理を施したマスター基板に比べて形状が崩れていた。 FIG. 15A shows a planar SEM image of the sensor chip derived from the positive type replica of the comparative example, and FIG. 15B shows a planar SEM image of the sensor chip derived from the positive type replica of Example 4. The positive replica derived from the master substrate that has not been subjected to the mold release treatment has been deformed compared to the master substrate that has been subjected to the mold release treatment.
 〔実施例5:構造体の型の耐久性-1〕
 光応答性材料として、POT1を用い、当該アゾポリマー誘導体薄膜(厚み50nm)をスピンコート法によってガラス基板上に形成した。
[Example 5: Durability of structure mold-1]
POT1 was used as a photoresponsive material, and the azo polymer derivative thin film (thickness 50 nm) was formed on a glass substrate by spin coating.
 形成されたアゾポリマー誘導体薄膜に対してアニーリング(150℃で10分(常圧))を行った。 Annealing (10 minutes at 150 ° C. (normal pressure)) was performed on the formed azopolymer derivative thin film.
 上記アゾポリマー誘導体薄膜上に純水5μLを滴下した後、波長470nmの光を120mW/cmの強度で5分間照射した。 After 5 μL of pure water was dropped on the azopolymer derivative thin film, light having a wavelength of 470 nm was irradiated at an intensity of 120 mW / cm 2 for 5 minutes.
 照射後、純水を除去し、光照射後のアゾポリマー誘導体薄膜を風乾し、マスター基板を得た。 After the irradiation, pure water was removed, and the azopolymer derivative thin film after the light irradiation was air-dried to obtain a master substrate.
 上記マスター基板に対し、実施例1と同様の方法によって離型処理を施した。当該離型処理を施したマスター基板に対し、熱硬化性樹脂であるシリコーン樹脂(X32-3095(一液硬化型)、信越化学工業株式会社)を滴下した。当該シリコーン樹脂を滴下したマスター基板を減圧条件(3,000Pa)下に配置し、室温で45分間、樹脂充填工程を行った。そして、130℃にてシリコーン樹脂を硬化させた。その後、シリコーン樹脂をマスター基板から剥離し、ネガ型レプリカを得た。 The above-mentioned master substrate was subjected to a mold release process in the same manner as in Example 1. A silicone resin (X32-3095 (one-part curable type), Shin-Etsu Chemical Co., Ltd.), which is a thermosetting resin, was dropped onto the master substrate subjected to the release treatment. The master substrate to which the silicone resin was dropped was placed under reduced pressure conditions (3,000 Pa), and a resin filling step was performed at room temperature for 45 minutes. And the silicone resin was hardened at 130 degreeC. Thereafter, the silicone resin was peeled off from the master substrate to obtain a negative replica.
 エポキシ系シランカップリング剤を塗布したガラス基板にSU-8(日本化薬株式会社)を塗布し、100℃にて加熱軟化させた。上記ネガ型レプリカをSU-8に対し、30N/cmの応力を加えて押し付けた。そして、紫外線照射および加熱(100℃)により、SU-8を硬化させた後、ネガ型レプリカを剥離し、ポジ型レプリカを得た。同一のネガ型レプリカを用いて複数のポジ型レプリカを得た。 SU-8 (Nippon Kayaku Co., Ltd.) was applied to a glass substrate coated with an epoxy silane coupling agent and softened by heating at 100 ° C. The negative replica was pressed against SU-8 while applying a stress of 30 N / cm 2 . Then, after curing SU-8 by ultraviolet irradiation and heating (100 ° C.), the negative replica was peeled off to obtain a positive replica. A plurality of positive replicas were obtained using the same negative replica.
 得られたポジ型レプリカの表面に、真空蒸着法によって100nmの厚みの金を蒸着し、センサ用チップを作製した。当該センサ用チップを用いて、透過スペクトルの測定を行った。空気中における測定結果を図16に示す。また、空気中におけるピーク波長、及び、後述のように空気中と水滴下時とにおける測定結果から求められる屈折率応答性を表1に示す。図16の縦軸は吸光度を示している。プラズモン共鳴由来の吸収ピークが見られ、当該吸収ピークのばらつきは±12nm以内に収まっている。よって、本実施例において同一のネガ型レプリカを用いて、高感度のプラズモン共鳴センサ用チップを量産できることがわかった。 A 100 nm thick gold was deposited on the surface of the obtained positive replica by vacuum deposition to produce a sensor chip. A transmission spectrum was measured using the sensor chip. The measurement result in the air is shown in FIG. Table 1 shows the peak wavelength in the air and the refractive index responsiveness obtained from the measurement results in the air and at the time of dropping the water as described later. The vertical axis | shaft of FIG. 16 has shown the light absorbency. An absorption peak derived from plasmon resonance is observed, and the dispersion of the absorption peak is within ± 12 nm. Therefore, it was found that a high-sensitivity plasmon resonance sensor chip can be mass-produced using the same negative replica in this example.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1の右欄の「屈折率応答性」について以下に説明する。本発明に係るプラズモン共鳴センサは、屈折率センサであり、センサチップ表面の屈折率の変化はピークシフト量で表現される。屈折率応答性とは、センサが、センサチップ表面の屈折率変化にどの程度敏感であるかを表す指標である。 The “refractive index responsiveness” in the right column of Table 1 will be described below. The plasmon resonance sensor according to the present invention is a refractive index sensor, and a change in the refractive index on the surface of the sensor chip is expressed by a peak shift amount. The refractive index responsiveness is an index representing how sensitive the sensor is to a change in the refractive index of the sensor chip surface.
 屈折率応答性の算出方法は以下の(a)~(c)に示す通りである。(a)空気中の透過スペクトルを測定する。(b)水滴下時の透過スペクトルを測定する。(c)上記二つの透過スペクトルのピーク位置の差分を計算する(例えば、60nm)。ここで、例えば、空気(屈折率1.00)と水(屈折率1.33)の場合は、屈折率差は0.33である。(d)単位屈折率変化当り(つまりは、屈折率が1.0変化した場合)のピークシフト量を求める。例えば、透過スペクトルのピーク位置の差分が60nmであり、屈折率差が0.33である場合は、60nm÷0.33=約180nm、となる。 The calculation method of the refractive index response is as shown in the following (a) to (c). (A) A transmission spectrum in air is measured. (B) The transmission spectrum at the time of water dripping is measured. (C) The difference between the peak positions of the two transmission spectra is calculated (for example, 60 nm). Here, for example, in the case of air (refractive index 1.00) and water (refractive index 1.33), the refractive index difference is 0.33. (D) A peak shift amount per unit refractive index change (that is, when the refractive index changes by 1.0) is obtained. For example, when the difference in the peak position of the transmission spectrum is 60 nm and the difference in refractive index is 0.33, 60 nm ÷ 0.33 = about 180 nm.
 屈折率応答性は、一言で表現すると、「単位屈折率変化当りのピークシフト量」である。算出方法は上記のように、空気中および水滴下中の透過スペクトルのピーク位置の差を、屈折率変化量(屈折率差)で除した値となる。 Refractive index responsiveness is simply expressed as “peak shift amount per unit refractive index change”. As described above, the calculation method is a value obtained by dividing the difference between the peak positions of the transmission spectrum in the air and when the water is dropped by the refractive index change amount (refractive index difference).
 〔実施例6-8:構造体の型の耐久性-2〕
 (実施例6および7)
 光応答性材料として、POT1を用い、当該アゾポリマー誘導体薄膜(厚み50nm)をスピンコート法によってガラス基板上に形成した。
[Example 6-8: Durability of structure mold-2]
(Examples 6 and 7)
POT1 was used as a photoresponsive material, and the azo polymer derivative thin film (thickness 50 nm) was formed on a glass substrate by spin coating.
 形成されたアゾポリマー誘導体薄膜に対してアニーリング(150℃で10分(常圧))を行った。 Annealing (10 minutes at 150 ° C. (normal pressure)) was performed on the formed azopolymer derivative thin film.
 上記アゾポリマー誘導体薄膜上に純水5μLを滴下した後、波長470nmの光を80mW/cmの強度で5分間照射した。 After 5 μL of pure water was dropped on the azopolymer derivative thin film, light having a wavelength of 470 nm was irradiated for 5 minutes at an intensity of 80 mW / cm 2 .
 照射後、純水を除去し、光照射後のアゾポリマー誘導体薄膜を風乾し、マスター基板を得た。 After the irradiation, pure water was removed, and the azopolymer derivative thin film after the light irradiation was air-dried to obtain a master substrate.
 上記マスター基板に対し、実施例1と同様の方法によって離型処理を施した。当該離型処理を施したマスター基板に対し、熱硬化性樹脂であるシリコーン樹脂(X32-3095(一液硬化型)、信越化学工業株式会社)を滴下した。当該シリコーン樹脂を滴下したマスター基板を減圧条件(3,000Pa)下に配置し、室温で45分間、樹脂充填工程を行った。そして、130℃にてシリコーン樹脂を硬化させた。その後、シリコーン樹脂をマスター基板から剥離し、ネガ型レプリカを得た。 The above-mentioned master substrate was subjected to a mold release process in the same manner as in Example 1. A silicone resin (X32-3095 (one-part curable type), Shin-Etsu Chemical Co., Ltd.), which is a thermosetting resin, was dropped onto the master substrate subjected to the release treatment. The master substrate to which the silicone resin was dropped was placed under reduced pressure conditions (3,000 Pa), and a resin filling step was performed at room temperature for 45 minutes. And the silicone resin was hardened at 130 degreeC. Thereafter, the silicone resin was peeled off from the master substrate to obtain a negative replica.
 エポキシ系シランカップリング剤を塗布したガラス基板にSU-8(日本化薬株式会社)を塗布し、100℃にて加熱軟化させた。上記ネガ型レプリカをSU-8に対し、押し付けた。図17(a)および(b)に示す応力履歴にてインプリントしたものをそれぞれ、実施例6および7とした。そして、紫外線照射および加熱(100℃)により、SU-8を硬化させた後、ネガ型レプリカを剥離し、ポジ型レプリカを得た。実施例6および7のそれぞれにおいて、同一のネガ型レプリカを用いて複数のポジ型レプリカを得た。 SU-8 (Nippon Kayaku Co., Ltd.) was applied to a glass substrate coated with an epoxy-based silane coupling agent, and softened by heating at 100 ° C. The negative replica was pressed against SU-8. Examples imprinted with the stress history shown in FIGS. 17A and 17B were designated as Examples 6 and 7, respectively. Then, after curing SU-8 by ultraviolet irradiation and heating (100 ° C.), the negative replica was peeled off to obtain a positive replica. In each of Examples 6 and 7, a plurality of positive replicas were obtained using the same negative replica.
 得られたポジ型レプリカの表面に、真空蒸着法によって100nmの厚みの金を蒸着し、センサ用チップを作製した。当該センサ用チップを用いて、空気中における透過スペクトルの測定を行った。実施例6および7における測定結果をそれぞれ図17(a)および(b)に示す。実施例6および7のいずれにおいてもプラズモン共鳴由来の吸収ピークが見られた。インプリントの繰り返しに伴い、センサ用チップのピーク位置が長波長化する傾向があるものの、いずれのチップもセンサ用チップとして利用可能であった。よって、本実施例において同一のネガ型レプリカを用いて、高感度のプラズモン共鳴センサ用チップを量産できることがわかった。 A 100 nm thick gold was deposited on the surface of the obtained positive replica by vacuum deposition to produce a sensor chip. Using the sensor chip, a transmission spectrum in air was measured. The measurement results in Examples 6 and 7 are shown in FIGS. 17 (a) and 17 (b), respectively. In both Examples 6 and 7, an absorption peak derived from plasmon resonance was observed. Although the peak position of the sensor chip has a tendency to become longer with repeated imprinting, any chip can be used as the sensor chip. Therefore, it was found that a high-sensitivity plasmon resonance sensor chip can be mass-produced using the same negative replica in this example.
 (実施例8)
 実施例6および7と同様に、マスター基板を作製し、離型処理を施した後、ネガ型レプリカを作製した。
(Example 8)
In the same manner as in Examples 6 and 7, a master substrate was produced and subjected to a release treatment, and then a negative replica was produced.
 紫外線硬化樹脂であり、アクリルシリコン樹脂であるゼムラック(硬化剤入り)(株式会社カネカ)をガラス基板に塗布した(50重量%、溶媒:酢酸ブチル)。塗布する際のスピンコート条件は、2,000rpm×20secであった(厚み4.5μm)。上記ネガ型レプリカをゼムラックに対し、室温(25℃)にて押し付けた。図18は、実施例8におけるインプリント時の応力履歴を示す。そして、紫外線照射により、ゼムラックを硬化させた後、ネガ型レプリカを剥離し、ポジ型レプリカを得た。そして、同一のネガ型レプリカを用いて複数のポジ型レプリカを得た。 Zemlac (containing a curing agent) (Kaneka Corporation), which is an ultraviolet curable resin and an acrylic silicon resin, was applied to a glass substrate (50 wt%, solvent: butyl acetate). The spin coating conditions for application were 2,000 rpm × 20 sec (thickness 4.5 μm). The negative replica was pressed against Zemlack at room temperature (25 ° C.). FIG. 18 shows the stress history during imprinting in Example 8. Then, after the Zemlac was cured by ultraviolet irradiation, the negative replica was peeled off to obtain a positive replica. A plurality of positive replicas were obtained using the same negative replica.
 得られたポジ型レプリカの表面に、真空蒸着法によって100nmの厚みの金を蒸着し、センサ用チップを作製した。当該センサ用チップの平面SEM像および断面図を図19に示す。点線で囲まれた部分のフジツボ体は、開口部の内径が556nmであり、深さが94nmであった。 A 100 nm thick gold was deposited on the surface of the obtained positive replica by vacuum deposition to produce a sensor chip. A planar SEM image and a cross-sectional view of the sensor chip are shown in FIG. The barnacle body in the portion surrounded by the dotted line had an inner diameter of the opening of 556 nm and a depth of 94 nm.
 当該センサ用チップを用いて、空気中における透過スペクトルの測定を行った。測定結果を図20に示す。また、図21は、実施例7および8におけるセンサ用チップの透過スペクトルを示している。実施例7および8のいずれにおいてもプラズモン共鳴由来の吸収ピークは見られているが、実施例8では、インプリントを繰り返しても、センサ用チップのピーク位置のばらつきは±10nm以内に収まっている。よって、実施例8において同一のネガ型レプリカを用いて、高感度のプラズモン共鳴センサ用チップをより精密に量産できることがわかった。ゼムラックは、室温でのインプリントが可能であるため、ネガ型レプリカの劣化が抑制されたと考えられる。 The transmission spectrum in air was measured using the sensor chip. The measurement results are shown in FIG. FIG. 21 shows the transmission spectrum of the sensor chip in Examples 7 and 8. In both Examples 7 and 8, an absorption peak derived from plasmon resonance is observed, but in Example 8, even when imprinting is repeated, variation in the peak position of the sensor chip is within ± 10 nm. . Thus, it was found that the same negative replica in Example 8 can be mass-produced more precisely with a highly sensitive plasmon resonance sensor chip. Since Zemlac can be imprinted at room temperature, it is considered that deterioration of the negative replica was suppressed.
 〔実施例9:複製した構造体を用いた型の再生-1〕
 光応答性材料として、POT1を用い、当該アゾポリマー誘導体薄膜(厚み50nm)をスピンコート法によってガラス基板上に形成した。
[Example 9: Regeneration of mold using replicated structure-1]
POT1 was used as a photoresponsive material, and the azo polymer derivative thin film (thickness 50 nm) was formed on a glass substrate by spin coating.
 形成されたアゾポリマー誘導体薄膜に対してアニーリング(150℃で10分(常圧))を行った。 Annealing (10 minutes at 150 ° C. (normal pressure)) was performed on the formed azopolymer derivative thin film.
 上記アゾポリマー誘導体薄膜上に純水5μLを滴下した後、波長470nmの光を80mW/cmの強度で5分間照射した。 After 5 μL of pure water was dropped on the azopolymer derivative thin film, light having a wavelength of 470 nm was irradiated for 5 minutes at an intensity of 80 mW / cm 2 .
 照射後、純水を除去し、光照射後のアゾポリマー誘導体薄膜を風乾し、マスター基板を得た。 After the irradiation, pure water was removed, and the azopolymer derivative thin film after the light irradiation was air-dried to obtain a master substrate.
 上記マスター基板に対し、実施例1と同様の方法によって離型処理を施した。当該離型処理を施したマスター基板に対し、熱硬化性樹脂であるシリコーン樹脂(X32-3095(一液硬化型)、信越化学工業株式会社)を滴下した。当該シリコーン樹脂を滴下したマスター基板を減圧条件(3,000Pa)下に配置し、室温で45分間、樹脂充填工程を行った。そして、130℃にてシリコーン樹脂を硬化させた。その後、シリコーン樹脂をマスター基板から剥離し、ネガ型レプリカを得た。 The above-mentioned master substrate was subjected to a mold release process in the same manner as in Example 1. A silicone resin (X32-3095 (one-part curable type), Shin-Etsu Chemical Co., Ltd.), which is a thermosetting resin, was dropped onto the master substrate subjected to the release treatment. The master substrate to which the silicone resin was dropped was placed under reduced pressure conditions (3,000 Pa), and a resin filling step was performed at room temperature for 45 minutes. And the silicone resin was hardened at 130 degreeC. Thereafter, the silicone resin was peeled off from the master substrate to obtain a negative replica.
 エポキシ系シランカップリング剤を塗布したガラス基板にSU-8(日本化薬株式会社)を塗布し、100℃にて加熱軟化させた。上記ネガ型レプリカをSU-8に対し、30N/cmの応力を加えて押し付けた。そして、紫外線照射および加熱(100℃)により、SU-8を硬化させた後、ネガ型レプリカを剥離し、ポジ型レプリカを得た。 SU-8 (Nippon Kayaku Co., Ltd.) was applied to a glass substrate coated with an epoxy silane coupling agent and softened by heating at 100 ° C. The negative replica was pressed against SU-8 while applying a stress of 30 N / cm 2 . Then, after curing SU-8 by ultraviolet irradiation and heating (100 ° C.), the negative replica was peeled off to obtain a positive replica.
 得られたポジ型レプリカに、マスター基板への離型処理と同じ離型処理を施した後、シリコーン樹脂を塗布して硬化する工程を繰り返し、3個のネガ型レプリカを得た。それぞれのネガ型レプリカから上記ポジ型レプリカと同様の製造方法でポジ型レプリカを得た。得られたポジ型レプリカを第二世代レプリカと称する。 The obtained positive replica was subjected to the same mold release treatment as that for the master substrate, and then a process of applying and curing a silicone resin was repeated to obtain three negative replicas. A positive replica was obtained from each negative replica by the same production method as the positive replica. The obtained positive replica is referred to as a second generation replica.
 それぞれの第二世代レプリカの表面に、真空蒸着法によって100nmの厚みの金を蒸着し、センサ用チップを作製した。得られた3個の第二世代レプリカセンサ用チップの平面SEM像を図22(a)、(c)および(e)に示す。いずれの第二世代レプリカセンサ用チップにおいてもフジツボ体構造がよく転写されていることがわかる。当該センサ用チップに何も滴下しない場合(空気が存在する場合)と水を滴下した場合で、透過スペクトル測定を行った。図22(a)、(c)および(e)に示されるそれぞれの第二世代レプリカセンサ用チップにおける測定結果を図22(b)、(d)および(f)に示す。図22(b)、(d)および(f)において、横軸は波長(nm)、縦軸は吸光度を示している。いずれの第二世代レプリカセンサ用チップにおいてもプラズモン共鳴由来の吸収ピークが見られ、何も滴下しない場合と水を滴下した場合とを比較するとピークシフトが見られた。よって、本実施例に係る第二世代レプリカセンサ用チップは、透過型であると共に、高感度のプラズモン共鳴センサであることがわかった。 A 100-nm-thick gold was vapor-deposited on the surface of each second-generation replica by vacuum vapor deposition to produce a sensor chip. The planar SEM images of the obtained three second-generation replica sensor chips are shown in FIGS. 22 (a), (c) and (e). It can be seen that the barnacle structure is well transferred in any of the second generation replica sensor chips. Transmission spectrum measurement was performed when nothing was dropped on the sensor chip (when air was present) and when water was dropped. The measurement results of the respective second generation replica sensor chips shown in FIGS. 22A, 22C and 22E are shown in FIGS. 22B, 22D and 22F. 22B, 22D, and 22F, the horizontal axis indicates the wavelength (nm) and the vertical axis indicates the absorbance. In any of the second generation replica sensor chips, an absorption peak derived from plasmon resonance was observed, and a peak shift was observed when nothing was dropped and when water was dropped. Therefore, it was found that the second generation replica sensor chip according to the present example is a transmissive and high-sensitivity plasmon resonance sensor.
 〔実施例10:複製した構造体を用いた型の再生-2〕
 実施例9において製造した第二世代レプリカからさらにネガ型レプリカを作製し、当該ネガ型レプリカからポジ型レプリカを作製した。当該ポジ型レプリカを第三世代レプリカと称する。当該第三世代レプリカの表面に、真空蒸着法によって100nmの厚みの金を蒸着し、センサ用チップを作製した。得られた第三世代レプリカセンサ用チップの平面SEM像を図23に示す。第三世代レプリカセンサ用チップにおいてもフジツボ体構造がよく転写されていることがわかった。
[Example 10: Regeneration of mold using replicated structure-2]
A negative replica was further produced from the second generation replica produced in Example 9, and a positive replica was produced from the negative replica. The positive type replica is referred to as a third generation replica. On the surface of the third generation replica, gold having a thickness of 100 nm was deposited by a vacuum deposition method to produce a sensor chip. FIG. 23 shows a planar SEM image of the obtained third generation replica sensor chip. It was found that the barnacle structure was well transferred even in the third generation replica sensor chip.
 〔実施例11-13:1回のインプリントによる複数の測定領域の複製〕
 光応答性材料として、POT1を用い、当該アゾポリマー誘導体薄膜(厚み50nm)をスピンコート法によって17mm角のガラス基板上に形成した。
[Example 11-13: Duplication of a plurality of measurement areas by one imprint]
POT1 was used as a photoresponsive material, and the azo polymer derivative thin film (thickness 50 nm) was formed on a 17 mm square glass substrate by spin coating.
 形成されたアゾポリマー誘導体薄膜に対してアニーリング(150℃で10分(常圧))を行った。 Annealing (10 minutes at 150 ° C. (normal pressure)) was performed on the formed azopolymer derivative thin film.
 上記アゾポリマー誘導体薄膜上に純水3μLを滴下した後、波長470nmの光を80mW/cmの強度で5分間照射した。当該光照射をガラス基板上の9か所(以下、9スポットと称する)にて行った。 After 3 μL of pure water was dropped on the azopolymer derivative thin film, light having a wavelength of 470 nm was irradiated at an intensity of 80 mW / cm 2 for 5 minutes. The said light irradiation was performed in nine places (henceforth 9 spots) on a glass substrate.
 照射後、自然乾燥によって純水を除去し、9スポットの測定領域(各スポットは3mmΦ)を有するマスター基板を得た。 After the irradiation, pure water was removed by natural drying to obtain a master substrate having a measurement area of 9 spots (each spot is 3 mmΦ).
 上記マスター基板に対し、実施例1と同様の方法によって離型処理を施した。当該離型処理を施したマスター基板に対し、熱硬化性樹脂であるシリコーン樹脂(X32-3095(一液硬化型)、信越化学工業株式会社)を滴下した。当該シリコーン樹脂を滴下したマスター基板を減圧条件(3,000Pa)下に配置し、室温で45分間、樹脂充填工程を行った。そして、130℃にてシリコーン樹脂を硬化させた。その後、シリコーン樹脂をマスター基板から剥離し、ネガ型レプリカを得た。 The above-mentioned master substrate was subjected to a mold release process in the same manner as in Example 1. A silicone resin (X32-3095 (one-part curable type), Shin-Etsu Chemical Co., Ltd.), which is a thermosetting resin, was dropped onto the master substrate subjected to the release treatment. The master substrate to which the silicone resin was dropped was placed under reduced pressure conditions (3,000 Pa), and a resin filling step was performed at room temperature for 45 minutes. And the silicone resin was hardened at 130 degreeC. Thereafter, the silicone resin was peeled off from the master substrate to obtain a negative replica.
 エポキシ系シランカップリング剤を塗布したガラス基板にSU-8(日本化薬株式会社)を塗布し、100℃にて加熱軟化させた。上記ネガ型レプリカをSU-8に対し、応力を加えて押し付けた。図24(a)、(c)および(e)に示す応力履歴にてインプリントしたものをそれぞれ、実施例11、12および13とした。そして、紫外線照射および加熱(100℃)により、SU-8を硬化させた後、ネガ型レプリカを剥離し、ポジ型レプリカを得た。実施例11、12および13において得られたポジ型レプリカの平面図をそれぞれ図24(b)、(d)および(f)に示す。実施例11および12においては皺が見られる部分(図中矢印)があるが、30N/cmの応力を維持した実施例13においては、皺が見られず、9スポットの測定領域を精密に転写することができた。 SU-8 (Nippon Kayaku Co., Ltd.) was applied to a glass substrate coated with an epoxy silane coupling agent and softened by heating at 100 ° C. The negative replica was pressed against SU-8 while applying stress. Examples imprinted with the stress histories shown in FIGS. 24 (a), (c) and (e) were designated as Examples 11, 12, and 13, respectively. Then, after curing SU-8 by ultraviolet irradiation and heating (100 ° C.), the negative replica was peeled off to obtain a positive replica. Plan views of the positive replicas obtained in Examples 11, 12, and 13 are shown in FIGS. 24B, 24D, and 24F, respectively. In Examples 11 and 12, there is a portion (arrow in the figure) where wrinkles are seen, but in Example 13 where the stress of 30 N / cm 2 was maintained, wrinkles were not seen and the measurement area of 9 spots was precisely defined. I was able to transcribe.
 〔実施例14:1回のインプリントによる複数の測定領域の複製〕
 光応答性材料として、POT1を用い、当該アゾポリマー誘導体薄膜(厚み50nm)をスピンコート法によって17mm角のガラス基板上に形成した。
[Example 14: Duplication of a plurality of measurement areas by one imprint]
POT1 was used as a photoresponsive material, and the azo polymer derivative thin film (thickness 50 nm) was formed on a 17 mm square glass substrate by spin coating.
 形成されたアゾポリマー誘導体薄膜に対してアニーリング(150℃で10分(常圧))を行った。 Annealing (10 minutes at 150 ° C. (normal pressure)) was performed on the formed azopolymer derivative thin film.
 上記アゾポリマー誘導体薄膜上に純水3μLを滴下した後、波長470nmの光を80mW/cmの強度で5分間照射した。当該光照射をガラス基板上の5か所(以下、5スポットと称する)にて行った。 After 3 μL of pure water was dropped on the azopolymer derivative thin film, light having a wavelength of 470 nm was irradiated at an intensity of 80 mW / cm 2 for 5 minutes. The said light irradiation was performed in five places (henceforth 5 spots) on a glass substrate.
 照射後、純水を除去し、光照射後のアゾポリマー誘導体薄膜を風乾し、5スポットの測定領域(各スポットは5mmΦ)を有するマスター基板を得た。 After the irradiation, pure water was removed, and the light-irradiated azopolymer derivative thin film was air-dried to obtain a master substrate having a 5-spot measurement region (each spot was 5 mmΦ).
 上記マスター基板に対し、実施例1と同様の方法によって離型処理を施した。当該離型処理を施したマスター基板に対し、熱硬化性樹脂であるシリコーン樹脂(X32-3095(一液硬化型)、信越化学工業株式会社)を滴下した。当該シリコーン樹脂を滴下したマスター基板を減圧条件(3,000Pa)下に配置し、室温で45分間、樹脂充填工程を行った。そして、130℃にてシリコーン樹脂を硬化させた。その後、シリコーン樹脂をマスター基板から剥離し、ネガ型レプリカを得た。 The above-mentioned master substrate was subjected to a mold release process in the same manner as in Example 1. A silicone resin (X32-3095 (one-part curable type), Shin-Etsu Chemical Co., Ltd.), which is a thermosetting resin, was dropped onto the master substrate subjected to the release treatment. The master substrate to which the silicone resin was dropped was placed under reduced pressure conditions (3,000 Pa), and a resin filling step was performed at room temperature for 45 minutes. And the silicone resin was hardened at 130 degreeC. Thereafter, the silicone resin was peeled off from the master substrate to obtain a negative replica.
 エポキシ系シランカップリング剤を塗布したガラス基板にSU-8(日本化薬株式会社)を塗布し、100℃にて加熱軟化させた。上記ネガ型レプリカをSU-8に対し、30N/cmの応力を加えて押し付けた。そして、紫外線照射および加熱(100℃)により、SU-8を硬化させた後、ネガ型レプリカを剥離し、ポジ型レプリカを得た。 SU-8 (Nippon Kayaku Co., Ltd.) was applied to a glass substrate coated with an epoxy silane coupling agent and softened by heating at 100 ° C. The negative replica was pressed against SU-8 while applying a stress of 30 N / cm 2 . Then, after curing SU-8 by ultraviolet irradiation and heating (100 ° C.), the negative replica was peeled off to obtain a positive replica.
 得られたポジ型レプリカの表面に、真空蒸着法によって100nmの厚みの金を蒸着し、センサ用チップを作製した。当該センサ用チップ上の5スポットにおいて、空気中における透過スペクトルの測定を行った。測定結果を図25(a)に示す。なお、各スポットの位置関係を図25(b)に示す。いずれのスポットにおいてもプラズモン共鳴由来の吸収ピークが見られ、センサ用チップとして機能することが確認できた。 A 100 nm thick gold was deposited on the surface of the obtained positive replica by vacuum deposition to produce a sensor chip. At 5 spots on the sensor chip, the transmission spectrum in air was measured. The measurement results are shown in FIG. In addition, the positional relationship of each spot is shown in FIG.25 (b). In any spot, an absorption peak derived from plasmon resonance was observed, and it was confirmed that it functions as a sensor chip.
 〔実施例15:1回のインプリントによる複数の測定領域の複製〕
 光応答性材料として、POT1を用い、当該アゾポリマー誘導体薄膜(厚み50nm)をスピンコート法によって17mm角のガラス基板上に形成した。
[Example 15: Duplication of a plurality of measurement areas by one imprint]
POT1 was used as a photoresponsive material, and the azo polymer derivative thin film (thickness 50 nm) was formed on a 17 mm square glass substrate by spin coating.
 形成されたアゾポリマー誘導体薄膜に対してアニーリング(150℃で10分(常圧))を行った。 Annealing (10 minutes at 150 ° C. (normal pressure)) was performed on the formed azopolymer derivative thin film.
 上記アゾポリマー誘導体薄膜上に純水3μLを滴下した後、波長470nmの光を120mW/cmの強度で5分間照射した。当該光照射をガラス基板上の9か所にて行った。 After 3 μL of pure water was dropped on the azopolymer derivative thin film, light having a wavelength of 470 nm was irradiated at an intensity of 120 mW / cm 2 for 5 minutes. The said light irradiation was performed in nine places on a glass substrate.
 照射後、純水を除去し、光照射後のアゾポリマー誘導体薄膜を風乾し、9スポットの測定領域を有するマスター基板を得た。 After irradiation, pure water was removed, and the azopolymer derivative thin film after light irradiation was air-dried to obtain a master substrate having a 9-spot measurement region.
 上記マスター基板に対し、実施例1と同様の方法によって離型処理を施した。当該離型処理を施したマスター基板に対し、熱硬化性樹脂であるシリコーン樹脂(X32-3095(一液硬化型)、信越化学工業株式会社)を滴下した。当該シリコーン樹脂を滴下したマスター基板を減圧条件(3,000Pa)下に配置し、室温で45分間、樹脂充填工程を行った。そして、130℃にてシリコーン樹脂を硬化させた。その後、シリコーン樹脂をマスター基板から剥離し、ネガ型レプリカを得た。 The above-mentioned master substrate was subjected to a mold release process in the same manner as in Example 1. A silicone resin (X32-3095 (one-part curable type), Shin-Etsu Chemical Co., Ltd.), which is a thermosetting resin, was dropped onto the master substrate subjected to the release treatment. The master substrate to which the silicone resin was dropped was placed under reduced pressure conditions (3,000 Pa), and a resin filling step was performed at room temperature for 45 minutes. And the silicone resin was hardened at 130 degreeC. Thereafter, the silicone resin was peeled off from the master substrate to obtain a negative replica.
 エポキシ系シランカップリング剤を塗布したガラス基板にSU-8(日本化薬株式会社)を塗布し、100℃にて加熱軟化させた。上記ネガ型レプリカをSU-8に対し、30N/cmの応力を加えて押し付けた。そして、紫外線照射および加熱(100℃)により、SU-8を硬化させた後、ネガ型レプリカを剥離し、ポジ型レプリカを得た。 SU-8 (Nippon Kayaku Co., Ltd.) was applied to a glass substrate coated with an epoxy silane coupling agent and softened by heating at 100 ° C. The negative replica was pressed against SU-8 while applying a stress of 30 N / cm 2 . Then, after curing SU-8 by ultraviolet irradiation and heating (100 ° C.), the negative replica was peeled off to obtain a positive replica.
 得られたポジ型レプリカの表面に、真空蒸着法によって100nmの厚みの金を蒸着し、センサ用チップを作製した。当該センサ用チップ上の9スポットにおいて、空気中における透過スペクトルの測定を行った。測定結果を図26(a)に示す。なお、各スポットの位置関係を図26(b)に示す。いずれのスポットにおいてもプラズモン共鳴由来の吸収ピークが見られ、センサ用チップとして機能することが確認できた。 A 100 nm thick gold was deposited on the surface of the obtained positive replica by vacuum deposition to produce a sensor chip. At 9 spots on the sensor chip, the transmission spectrum in air was measured. The measurement results are shown in FIG. In addition, the positional relationship of each spot is shown in FIG.26 (b). In any spot, an absorption peak derived from plasmon resonance was observed, and it was confirmed that it functions as a sensor chip.
 〔実施例16:センサ用チップを用いたバイオセンシング〕
 実施例15と同様の製造方法にて作製した9スポットの測定領域を有するセンサ用チップを用いて、バイオセンシング性能を確認した。
[Example 16: Biosensing using sensor chip]
Biosensing performance was confirmed using a sensor chip having a 9-spot measurement region produced by the same manufacturing method as in Example 15.
 上記センサ用チップの表面にインフルエンザウイルスに対する抗体を固定化し(物理吸着)、ウシ血清アルブミン(BSA)でブロッキングを施した。インフルエンザウイルスの不活化試薬(インフルエンザウイルス濃度:1pg/ml~1μg/ml)をセンサ用チップに滴下し、抗原抗体反応により検出した。また、対比のため、マスター基板に由来するセンサ用チップを用いて同様の実験を行った。 An antibody against influenza virus was immobilized on the surface of the sensor chip (physical adsorption) and blocked with bovine serum albumin (BSA). Influenza virus inactivation reagent (influenza virus concentration: 1 pg / ml to 1 μg / ml) was dropped onto the sensor chip and detected by antigen-antibody reaction. For comparison, a similar experiment was performed using a sensor chip derived from the master substrate.
 マスター基板およびポジ型レプリカのそれぞれに由来するセンサ用チップの測定結果を図27(a)および(b)に示す。マスター基板およびポジ型レプリカのいずれに由来するセンサ用チップにおいても1pg/mlのインフルエンザウイルスを検出することができた。従って、本実施例に係るポジ型レプリカ由来のセンサ用チップでは、極めて低濃度のインフルエンザウイルスを検出することができることがわかった。 Measurement results of sensor chips derived from the master substrate and the positive replica are shown in FIGS. It was possible to detect 1 pg / ml influenza virus in the sensor chip derived from either the master substrate or the positive replica. Therefore, it was found that the sensor chip derived from the positive replica according to the present example can detect an extremely low concentration of influenza virus.
 本発明は、高感度の局在型表面プラズモン共鳴センサ用のチップ等に好ましく利用可能な構造体の複製方法を提供することができるという効果を奏する。 The present invention has an effect that it is possible to provide a structure duplication method that can be preferably used for a highly sensitive localized surface plasmon resonance sensor chip or the like.
 従って、本発明は、例えばバイオセンサを用いる産業等において好ましく利用され得る。 Therefore, the present invention can be preferably used in, for example, an industry using a biosensor.
 24 局在型表面プラズモン共鳴センサ
 25 光源
 30 局在型表面プラズモン共鳴センサ用チップ
 32 測定領域
 33 光検出器
 34 局在型表面プラズモン共鳴センサ
 45 フジツボ体
 49 第一の構造体
 50 第二の構造体
 50a 第一の熱硬化性樹脂または光硬化性樹脂
 51 第三の構造体
 52 金属層
 53 センサ用チップ
 61 第二の熱硬化性樹脂または光硬化性樹脂
 62 基板
24 Localized Surface Plasmon Resonance Sensor 25 Light Source 30 Localized Surface Plasmon Resonance Sensor Chip 32 Measurement Area 33 Photodetector 34 Localized Surface Plasmon Resonant Sensor 45 Barnacle Body 49 First Structure 50 Second Structure 50a First thermosetting resin or photocurable resin 51 Third structure 52 Metal layer 53 Sensor chip 61 Second thermosetting resin or photocurable resin 62 Substrate

Claims (15)

  1.  構造体の複製方法であって、
     (i)第一の構造体の表面にフッ素基を導入する工程と、
     (ii)上記第一の構造体の表面を覆うように第一の熱硬化性樹脂または光硬化性樹脂を塗布し、当該第一の熱硬化性樹脂または光硬化性樹脂を硬化後、上記第一の構造体から剥離することによって、第一の構造体の型となる第二の構造体を製造する工程と、
     (iii)第二の熱硬化性樹脂または光硬化性樹脂を基板上に塗布し、当該第二の熱硬化性樹脂または光硬化性樹脂に対して上記第二の構造体を押し付け、当該第二の熱硬化性樹脂または光硬化性樹脂を硬化後、上記第二の構造体から剥離することによって、第一の構造体の複製物である第三の構造体を製造する工程と、を含んでおり、
     上記第一の構造体は、平面部と、当該平面部に対して突出した凸部と、当該凸部の頂点または当該平面部に対して窪んだ凹部とを備え、
     上記凸部は、上記凹部の外周に沿って連続的に突起しており、
     上記凹部の外周に沿って連続的に突起した上記凸部の頂点が成す形状の平均内径が5nm以上2,000nm以下の範囲内であり、且つ、
     上記凹部の外周に沿って連続的に突起した上記凸部の頂点が成す形状の内径は、上記凹部および上記凹部の外周に沿って連続的に突起した上記凸部が成す形状の内径の最大値に比べて小さいことを特徴とする構造体の複製方法。
    A method for duplicating a structure,
    (I) introducing a fluorine group into the surface of the first structure;
    (Ii) Applying the first thermosetting resin or photocurable resin so as to cover the surface of the first structure, and curing the first thermosetting resin or photocurable resin, A step of producing a second structure to be a mold of the first structure by peeling from the one structure;
    (Iii) A second thermosetting resin or a photocurable resin is applied onto the substrate, the second structure is pressed against the second thermosetting resin or the photocurable resin, and the second And a step of producing a third structure that is a replica of the first structure by peeling the thermosetting resin or the photocurable resin from the second structure and then peeling it from the second structure. And
    The first structure includes a flat portion, a convex portion protruding with respect to the flat portion, and a concave portion recessed with respect to the apex of the convex portion or the flat portion,
    The convex portion protrudes continuously along the outer periphery of the concave portion,
    The average inner diameter of the shape formed by the vertices of the convex portions continuously projecting along the outer periphery of the concave portion is in the range of 5 nm to 2,000 nm, and
    The inner diameter of the shape formed by the apex of the convex portion continuously projecting along the outer periphery of the concave portion is the maximum value of the inner diameter of the shape formed by the convex portion continuously projecting along the outer periphery of the concave portion and the concave portion. A method for duplicating a structure, which is smaller than the above.
  2.  上記第二の構造体を製造する工程において、上記第一の熱硬化性樹脂または光硬化性樹脂が硬化する前に、上記第一の熱硬化性樹脂または光硬化性樹脂が塗布された第一の構造体を減圧条件下に配置することによって、上記凹部の外周に沿って連続的に突起した上記凸部の頂点が成す形状の内径に比べて、上記凹部および上記凹部の外周に沿って連続的に突起した上記凸部が成す形状の内径が大きい領域に対して上記第一の熱硬化性樹脂または光硬化性樹脂が充填される樹脂充填工程が含まれていることを特徴とする請求項1に記載の構造体の複製方法。 In the step of manufacturing the second structure, the first thermosetting resin or photocurable resin is applied before the first thermosetting resin or photocurable resin is cured. By arranging the structure in a reduced pressure condition, it is continuous along the outer periphery of the concave portion and the concave portion as compared with the inner diameter of the shape formed by the apex of the convex portion continuously projecting along the outer periphery of the concave portion. A resin filling step is included in which the first thermosetting resin or the photocurable resin is filled into a region having a large inner diameter of the shape formed by the protruding convex portion. 2. A method for duplicating a structure according to 1.
  3.  上記樹脂充填工程は、1分以上3時間以下で行われることを特徴とする請求項2に記載の構造体の複製方法。 3. The method for replicating a structure according to claim 2, wherein the resin filling step is performed for 1 minute to 3 hours.
  4.  上記第二の構造体を製造する工程において、上記第一の構造体の表面を覆うように第一の熱硬化性樹脂または光硬化性樹脂を塗布し、樹脂充填工程を行い、再度第一の熱硬化性樹脂または光硬化性樹脂を塗布して樹脂充填工程を行うことを特徴とする請求項2~3のいずれか1項に記載の構造体の複製方法。 In the step of manufacturing the second structure, the first thermosetting resin or the photocurable resin is applied so as to cover the surface of the first structure, the resin filling step is performed, and the first structure is again performed. The method for replicating a structure according to any one of claims 2 to 3, wherein a resin filling step is performed by applying a thermosetting resin or a photocurable resin.
  5.  上記基板はガラスまたはフィルムであって、
     上記第二の熱硬化性樹脂または光硬化性樹脂は、アクリルシリコン樹脂であることを特徴とする請求項1~4のいずれか1項に記載の構造体の複製方法。
    The substrate is glass or film,
    5. The method for replicating a structure according to claim 1, wherein the second thermosetting resin or photocurable resin is an acrylic silicon resin.
  6.  上記基板はガラスまたはフィルムであって、
     上記第二の熱硬化性樹脂または光硬化性樹脂は、エポキシ樹脂であり、
     上記第三の構造体を得る工程において、上記第二の熱硬化性樹脂または光硬化性樹脂を上記基板に塗布する前に、上記基板表面にエポキシ基を導入することを特徴とする請求項1~4のいずれか1項に記載の構造体の複製方法。
    The substrate is glass or film,
    The second thermosetting resin or photocurable resin is an epoxy resin,
    2. In the step of obtaining the third structure, an epoxy group is introduced to the surface of the substrate before applying the second thermosetting resin or photocurable resin to the substrate. 5. The method for replicating a structure according to any one of items 1 to 4.
  7.  上記第二の構造体を製造する工程を繰り返すことを特徴とする請求項1~6のいずれか1項に記載の構造体の複製方法。 The method for duplicating a structure according to any one of claims 1 to 6, wherein the step of manufacturing the second structure is repeated.
  8.  上記第三の構造体を製造する工程を繰り返すことを特徴とする請求項1~7のいずれか1項に記載の構造体の複製方法。 The method for duplicating a structure according to any one of claims 1 to 7, wherein the step of manufacturing the third structure is repeated.
  9.  上記第三の構造体を製造する工程の後に、上記第三の構造体の表面を覆うように第一の熱硬化性樹脂または光硬化性樹脂を塗布し、当該第一の熱硬化性樹脂または光硬化性樹脂を硬化後、上記第三の構造体から剥離することによって、第三の構造体の型となる第二の構造体を製造する工程を含むことを特徴とする請求項1~8のいずれか1項に記載の構造体の複製方法。 After the step of manufacturing the third structure, a first thermosetting resin or a photocurable resin is applied so as to cover the surface of the third structure, and the first thermosetting resin or The method further comprises a step of producing a second structure to be a mold of the third structure by peeling the photocurable resin from the third structure after curing. The structure replication method according to any one of the above.
  10.  上記第三の構造体を製造する工程において、上記第二の熱硬化性樹脂または光硬化性樹脂に対して上記第二の構造体を1回押し付けた場合に、上記基板上に上記第三の構造体を有する測定領域を2か所以上形成することを特徴とする請求項1~9のいずれか1項に記載の構造体の複製方法。 In the step of manufacturing the third structure, when the second structure is pressed once against the second thermosetting resin or the photocurable resin, the third structure is formed on the substrate. 10. The structure duplication method according to claim 1, wherein two or more measurement regions having the structure are formed.
  11.  上記フッ素基を導入する工程は、20℃以上100℃以下の温度にて行われることを特徴とする請求項1~10のいずれか1項に記載の構造体の複製方法。 11. The structure replication method according to claim 1, wherein the step of introducing the fluorine group is performed at a temperature of 20 ° C. or higher and 100 ° C. or lower.
  12.  請求項1~11のいずれか1項に記載の構造体の複製方法により構造体を製造する工程と、
     上記工程によって得られた構造体の表面を金属で被覆して上記構造体の形状が反映された形状を有する金属層を形成する工程と、を含むことを特徴とする、局在型表面プラズモン共鳴センサ用チップの製造方法。
    A step of producing a structure by the structure duplication method according to any one of claims 1 to 11,
    Covering the surface of the structure obtained by the above step with a metal to form a metal layer having a shape reflecting the shape of the structure, and including localized surface plasmon resonance A method for manufacturing a sensor chip.
  13.  請求項1~11のいずれか1項に記載の構造体の複製方法によって製造されることを特徴とする構造体。 A structure produced by the method for duplicating a structure according to any one of claims 1 to 11.
  14.  請求項12に記載の局在型表面プラズモン共鳴センサ用チップの製造方法によって製造されることを特徴とする局在型表面プラズモン共鳴センサ用チップ。 13. A localized surface plasmon resonance sensor chip manufactured by the method for manufacturing a localized surface plasmon resonance sensor chip according to claim 12.
  15.  請求項14に記載の局在型表面プラズモン共鳴センサ用チップと、
     上記局在型表面プラズモン共鳴センサ用チップに光を照射する光源と、
     上記局在型表面プラズモン共鳴センサ用チップにおいて反射若しくは透過した光を受光する光検出器と、
    を備えることを特徴とする局在型表面プラズモン共鳴センサ。
    The localized surface plasmon resonance sensor chip according to claim 14,
    A light source for irradiating light to the localized surface plasmon resonance sensor chip;
    A photodetector for receiving light reflected or transmitted by the localized surface plasmon resonance sensor chip;
    A localized surface plasmon resonance sensor comprising:
PCT/JP2014/060481 2013-04-12 2014-04-11 Structure replication method, localized surface plasmon resonance sensor chip manufacturing method including this replication method, structure, localized surface plasmon resonance sensor chip, and localized surface plasmon resonance sensor WO2014168237A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013084372 2013-04-12
JP2013-084372 2013-04-12

Publications (1)

Publication Number Publication Date
WO2014168237A1 true WO2014168237A1 (en) 2014-10-16

Family

ID=51689638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060481 WO2014168237A1 (en) 2013-04-12 2014-04-11 Structure replication method, localized surface plasmon resonance sensor chip manufacturing method including this replication method, structure, localized surface plasmon resonance sensor chip, and localized surface plasmon resonance sensor

Country Status (1)

Country Link
WO (1) WO2014168237A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105353A1 (en) * 2016-12-06 2018-06-14 スタンレー電気株式会社 Method for producing nanoimprint mold
JP2018194550A (en) * 2017-05-12 2018-12-06 公立大学法人大阪府立大学 Detection kit for substance to be detected, detection system provided therewith and method for manufacturing detection kit for substance to be detected
WO2024043167A1 (en) * 2022-08-24 2024-02-29 株式会社Jvcケンウッド Target substance measuring method, and target substance measuring system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222507A (en) * 2008-03-14 2009-10-01 National Institute Of Advanced Industrial & Technology Trace material detection element
WO2011121857A1 (en) * 2010-03-31 2011-10-06 株式会社カネカ Structure, chip for localized surface plasmon resonance sensor, localized surface plasmon resonance sensor, and manufacturing methods therefor
WO2012018048A1 (en) * 2010-08-06 2012-02-09 綜研化学株式会社 Resin mold for nanoimprinting and manufacturing method thereof
WO2012108409A1 (en) * 2011-02-10 2012-08-16 株式会社日立ハイテクノロジーズ Microstructure transfer device and microstructure transfer method
JP2013039757A (en) * 2011-08-18 2013-02-28 Fujifilm Corp Mold release processing method for nanoimprinting mold, manufacturing method and the mold employing the mold release processing method, nanoimprinting method and method for manufacturing patterned substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222507A (en) * 2008-03-14 2009-10-01 National Institute Of Advanced Industrial & Technology Trace material detection element
WO2011121857A1 (en) * 2010-03-31 2011-10-06 株式会社カネカ Structure, chip for localized surface plasmon resonance sensor, localized surface plasmon resonance sensor, and manufacturing methods therefor
WO2012018048A1 (en) * 2010-08-06 2012-02-09 綜研化学株式会社 Resin mold for nanoimprinting and manufacturing method thereof
WO2012108409A1 (en) * 2011-02-10 2012-08-16 株式会社日立ハイテクノロジーズ Microstructure transfer device and microstructure transfer method
JP2013039757A (en) * 2011-08-18 2013-02-28 Fujifilm Corp Mold release processing method for nanoimprinting mold, manufacturing method and the mold employing the mold release processing method, nanoimprinting method and method for manufacturing patterned substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105353A1 (en) * 2016-12-06 2018-06-14 スタンレー電気株式会社 Method for producing nanoimprint mold
JP2018194550A (en) * 2017-05-12 2018-12-06 公立大学法人大阪府立大学 Detection kit for substance to be detected, detection system provided therewith and method for manufacturing detection kit for substance to be detected
JP7072847B2 (en) 2017-05-12 2022-05-23 公立大学法人大阪 A detection kit for a substance to be detected, a detection system provided with the kit, and a method for manufacturing a detection kit for the substance to be detected.
WO2024043167A1 (en) * 2022-08-24 2024-02-29 株式会社Jvcケンウッド Target substance measuring method, and target substance measuring system

Similar Documents

Publication Publication Date Title
JP5899298B2 (en) Localized surface plasmon resonance sensor chip and localized surface plasmon resonance sensor
US7705280B2 (en) Multispectral plasmonic crystal sensors
Hutter et al. Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging
Nakamoto et al. Development of a mass-producible on-chip plasmonic nanohole array biosensor
Yavas et al. Unravelling the role of electric and magnetic dipoles in biosensing with Si nanoresonators
Braun et al. Versatile direct laser writing lithography technique for surface enhanced infrared spectroscopy sensors
CN101261227A (en) Surface plasmon resonance sensor and chip used for the same
JP5438106B2 (en) Structure, localized surface plasmon resonance sensor chip, and localized surface plasmon resonance sensor
WO2019039551A1 (en) Metamaterial structure and refractive index sensor
Barrios et al. Aluminum nanohole arrays fabricated on polycarbonate for compact disc-based label-free optical biosensing
Rippa et al. Engineered nanopatterned substrates for high-sensitive localized surface plasmon resonance: An assay on biomacromolecules
Ruffato et al. Innovative exploitation of grating-coupled surface plasmon resonance for sensing
WO2014168237A1 (en) Structure replication method, localized surface plasmon resonance sensor chip manufacturing method including this replication method, structure, localized surface plasmon resonance sensor chip, and localized surface plasmon resonance sensor
Petefish et al. Angle-tunable enhanced infrared reflection absorption spectroscopy via grating-coupled surface plasmon resonance
Chowdhury et al. Large-area microfluidic sensors based on flat-optics Au nanostripe metasurfaces
Urbancova et al. 2D polymer/metal structures for surface plasmon resonance
Tao et al. Shape-altering flexible plasmonics of in-situ deformable nanorings
Park et al. Rigiflex lithography-based nanodot arrays for localized surface plasmon resonance biosensors
Kumari et al. Development of Flexible Plasmonic Sensor Based On Imprinted Nanostructure Array on Plastics
Nishikawa et al. Development of new localized surface plasmon resonance sensor with nanoimprinting technique
Acomovic Localized surface plasmon resonance for biosensing lab-on-a-chip applications
Wu Directly printed plasmonic sensors of gold micro/nano-structures for biochemical detection
Lopez Marcano Surface Modification of Multimaterial Multifunctional Fibers Enabling Biosensing Applications
Mohapatra et al. Flexible and disposable plasmonic refractive index sensor using nanoimprint lithography
Khodami Design, Fabrication and Characterization of Optical Biosensors based on (Bloch) Long Range Surface Plasmon Waveguides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14783411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14783411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP