WO2014167672A1 - Screen device - Google Patents

Screen device Download PDF

Info

Publication number
WO2014167672A1
WO2014167672A1 PCT/JP2013/060835 JP2013060835W WO2014167672A1 WO 2014167672 A1 WO2014167672 A1 WO 2014167672A1 JP 2013060835 W JP2013060835 W JP 2013060835W WO 2014167672 A1 WO2014167672 A1 WO 2014167672A1
Authority
WO
WIPO (PCT)
Prior art keywords
screen
axis
around
screen device
resonance frequency
Prior art date
Application number
PCT/JP2013/060835
Other languages
French (fr)
Japanese (ja)
Inventor
育也 菊池
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2015511016A priority Critical patent/JPWO2014167672A1/en
Priority to PCT/JP2013/060835 priority patent/WO2014167672A1/en
Publication of WO2014167672A1 publication Critical patent/WO2014167672A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0149Head-up displays characterised by mechanical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/562Screens moving during projection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features

Definitions

  • the present invention relates to a technical field using a screen.
  • a screen is used when an image is generated by a laser scanning projector or when an intermediate image is generated by a head-up display or a head-mounted display using a laser scan engine.
  • a technique related to such a screen a technique has been proposed in which light projected on the screen is diffusely reflected (or diffusely transmitted) on the screen to increase the viewing angle and the observable range.
  • a technique for reducing speckles generated due to interference caused by random irregularities on the reflecting surface
  • diffusing light on a screen has been proposed.
  • a technique for reducing speckles by driving a screen surface has been proposed.
  • the screen may rotate within the screen surface. If the screen rotates within the screen surface, it may cause problems such as a reduction in the speckle reduction effect. Therefore, it is desirable to suppress this. Furthermore, in the conventional technology, the degree of design freedom tends to be low, and it is difficult to reduce the cost and size. Such a problem will be described in detail in the section “2. Problems of Comparative Example”.
  • Examples of the problem to be solved by the present invention include the above. It is an object of the present invention to provide a screen device that can reduce speckles appropriately, has a high degree of freedom in design, and can be reduced in cost and size.
  • the screen device includes a screen, a first axis along one direction in the plane of the screen, and another direction intersecting the one direction in the plane of the screen. And a support portion that supports the screen in a swingable manner around a second axis extending along the axis, and the screen around a third axis that is different in direction from the first axis and the second axis. And a drive unit for driving.
  • a specific example of a display system to which the screen device according to this embodiment is applied will be described.
  • the structure of the screen apparatus based on a present Example is shown.
  • the figure for demonstrating the drive method of the screen which concerns on a present Example is shown.
  • the figure for demonstrating the reason for inputting the signal which has two types of resonance frequency components into a drive part is shown.
  • the figure for supplementarily explaining the support part which concerns on a present Example is shown.
  • the figure for demonstrating the modification of a support part is shown.
  • the structure of the screen apparatus which concerns on the comparative example 1 is shown.
  • the structure of the screen apparatus which concerns on the comparative example 2 is shown.
  • the figure for supplementarily explaining Comparative Examples 1 and 2 is shown.
  • the figure for demonstrating the speckle reduction effect is shown.
  • the figure for demonstrating the reason which the setting of a resonant frequency is easy according to a present Example is shown.
  • An example when the drive unit is provided at various positions is shown.
  • the figure for demonstrating the suitable inclination of a p-axis is shown.
  • the structure of the screen apparatus which concerns on the 1st example of the modification 2 is shown.
  • the structure of the screen apparatus which concerns on the 2nd example of the modification 2 is shown.
  • the structure of the screen apparatus which concerns on the 1st example of the modification 3 is shown.
  • the structure of the screen apparatus which concerns on the 2nd example of the modification 3 is shown.
  • the screen device includes a screen, a first axis along one direction in the plane of the screen, and another direction that intersects the one direction in the plane of the screen. And a support portion that supports the screen in a swingable manner around a second axis along the axis, and drives the screen around a third axis that is different from the first axis and the second axis.
  • a drive unit that drives the screen around a third axis that is different from the first axis and the second axis.
  • the screen has a diffusing surface for diffusing incident light.
  • the support portion is arranged around a first axis along one direction in the plane of the screen and along another direction (for example, a direction orthogonal to the one direction) intersecting the one direction in the plane of the screen.
  • the screen is swingably supported around the second axis.
  • the drive unit drives the screen around a third axis different from the first axis and the second axis. Specifically, the drive unit applies a moment around the third axis, which is located in a plane defined by the first axis and the second axis, to the screen.
  • the speckles generated by diffusing light on the screen (due to interference caused by random irregularities on the screen surface), as in the configuration in which the screen is translated by swinging the screen. Can be reduced by averaging. Further, according to the above screen device, since the screen does not rotate within the plane defined by the first axis and the second axis, various problems caused by the rotation (decrease in speckle reduction effect, etc.) ) Can be suppressed. Further, according to the screen device described above, the screen is swung, so that the support portion can be simplified and the cost can be reduced. Furthermore, according to the above-described screen device, the degree of freedom in design is high compared to the configuration in which the screen is driven in translation, and a low-cost and compact design can be achieved.
  • the first resonance frequency around the first axis and the second resonance frequency around the second axis in the screen be different.
  • the screen device further includes a control unit that controls the driving unit with a signal having components of the first resonance frequency and the second resonance frequency.
  • control unit sets a frequency ratio and an amplitude ratio between the first resonance frequency and the second resonance frequency, and is configured around the first axis on the surface of the screen.
  • the drive unit is controlled so that the first angle and the second angle around the second axis draw a Lissajous figure. Thereby, it is possible to impart a tilting motion about two axes (the first axis and the second axis) to the screen more appropriately, and it is possible to effectively average the speckles.
  • control unit may set the frequency ratio and the amplitude ratio so that the angular velocity of the first angle and the angular velocity of the second angle do not simultaneously become “0”.
  • the driving unit drives the screen by applying a force to only one portion of the screen.
  • a drive part can be comprised simply.
  • the driving unit applies the force to two locations on the screen that are symmetric with respect to a center position when the screen is swung.
  • the said drive part provides the force which becomes mutually opposite in one of the said two places, and the other of the said two places.
  • the support portion is an elastic body having a second moment of inertia about the first axis and a second moment of inertia about the second axis.
  • the first resonance frequency around the first axis and the second resonance frequency around the second axis can be appropriately varied.
  • the elastic body has a cross-sectional shape in which a length along the one direction is different from a length along the other direction.
  • the supporting portion supports a first torsion bar that supports the screen so as to be swingable about the first axis, and supports the screen so as to be swingable about the second axis. And a second torsion bar.
  • the support portion may include a spherical bearing and a spring that applies at least a biasing force to the screen so that the screen does not move away from the spherical bearing.
  • the screen has a moment of inertia around the first axis and a moment of inertia around the second axis.
  • FIG. 1 shows a specific example of a display system to which a screen device 100 according to this embodiment is applied.
  • FIG. 1A shows a display system 400 a that projects an image (real image) onto the screen 1 of the screen device 100 by using, for example, a laser scanning projector 200.
  • FIG. 1B an intermediate image is formed on the screen 1 of the screen device 100 by an image projected from the projector 200 using a laser scan engine or the like, and light corresponding to the intermediate image is reflected by the combiner 300.
  • the display system 400b that visually recognizes an image as a virtual image is illustrated.
  • the screen device 100 mainly includes a screen 1, a drive unit 2 as an actuator that drives the screen 1, and a CPU (Central Processing Unit that controls the drive unit 2. ) And the like.
  • the screen 1 has a reflective diffusion surface, and functions to reflect and diffuse incident light (hereinafter referred to as “beam” as appropriate).
  • beam functions to reflect and diffuse incident light
  • it is not limited to applying a reflection type diffusion surface to the screen 1, You may apply a transmission type diffusion surface instead of a reflection type diffusion surface.
  • the screen 1 having a reflective diffusion surface is taken as an example.
  • FIG. 2 is a diagram illustrating a configuration of the screen device 100 according to the present embodiment. 2, the front view of the screen device 100 is shown in the upper left, the side view of the screen device 100 observed from the direction of the arrow Ar11 in the front view is shown in the upper right, and the screen device observed from the direction of the arrow Ar12 in the front view in the lower left. A side view of 100 is shown. In addition, the definition of a front view and a side view is the same also in the figure of the screen apparatus mentioned later.
  • the screen device 100 mainly includes a screen 1, a drive unit 2, a support unit 3, a base 4, and a fixing unit 5.
  • the screen 1 is configured as a substantially flat plate having a rectangular plane, and has a reflective diffusion surface that reflects and diffuses the light from the projector 200 described above. As the reflective diffusion surface, various known ones can be applied.
  • the screen 1 is supported by a support portion 3 provided at a location including the center of gravity G of the screen 1 and is fixed to the base 4 via the support portion 3 and the fixing portion 5.
  • the screen 1, the support part 3, the fixing part 5, and the base 4 are fixed so as not to be separated from each other. In addition, you may connect the support part 3 and the base 4 directly, without using the fixing
  • the support part 3 is composed of an elastic body.
  • the screen 1 has a support 3 as such an elastic body so that the direction around the x axis (hereinafter, the direction around the x axis is appropriately referred to as “ ⁇ direction”) and the direction around the y axis (hereinafter, the direction around the y axis). (Referred to as “ ⁇ direction” as appropriate).
  • the x-axis is an axis passing through the center of gravity G of the screen 1 and along the length direction of one side of the screen 1
  • the y-axis is passing through the center of gravity G of the screen 1 and perpendicular to the one side of the screen 1. It is an axis along the length direction of a long side.
  • the screen 1 is configured to have a uniform surface density, and the rectangular center position of the screen 1 and the position of the gravity center G coincide with each other.
  • the x-axis corresponds to an example of a “first axis” in the present invention
  • the y-axis corresponds to an example of a “second axis” in the present invention.
  • the support part 3 has a rectangular cross-sectional shape (cross section along the xy plane) in which the dimension L2 in the y direction is longer than the dimension L1 in the x direction. Therefore, the support part 3 has a bending rigidity (spring constant) in the ⁇ direction larger than a bending rigidity (spring constant) in the ⁇ direction. Accordingly, the resonance frequency in the ⁇ direction is different from the resonance frequency in the ⁇ direction. Specifically, the resonance frequency in the ⁇ direction is higher than the resonance frequency in the ⁇ direction. Note that the resonance frequency in the ⁇ direction corresponds to an example of the “first resonance frequency” in the present invention, and the resonance frequency in the ⁇ direction corresponds to an example of the “second resonance frequency” in the present invention.
  • the driving unit 2 generates a moment around the axis p different from the x axis and the y axis in the xy plane.
  • the drive unit 2 is provided at one corner of the screen 1 (a corner located at the upper right in the front view) and is fixed to the surface of the screen 1 (that is, always with the surface of the screen 1).
  • the force is applied in the direction in which the screen 1 is pushed up and the direction in which the screen 1 is pushed down.
  • the drive unit 2 generates a moment around the axis p that is orthogonal to the diagonal line of the screen 1 and passes through the center of gravity G.
  • the 2 illustrates a case where a force F in the direction of pushing up the screen 1 is applied and a moment of “F * L3” is generated (“L3” is half the length of the diagonal line of the screen 1). ).
  • Various types such as an electromagnetic type, an electrostatic type, and an electrostrictive type can be applied to the driving unit 2.
  • the drive part 2 is controlled by the control part 10 (refer FIG. 1) mentioned above.
  • the p-axis corresponds to an example of a “third axis” in the present invention.
  • the support portion 3 may not be provided at a location including the center of gravity G of the screen 1. That is, you may provide the support part 3 in the location remove
  • the screen 1 may not be configured to have a uniform surface density. In that case, the rectangular center position of the screen 1 and the position of the center of gravity G tend not to match.
  • the resonance frequency in the ⁇ direction is different from the resonance frequency in the ⁇ direction depending on the configuration of the support portion 3, but the support portion 3 is not configured as such (for example, the dimension L 2 in the y direction).
  • the ⁇ -direction resonance frequency and the ⁇ -direction resonance frequency may be made different by appropriately setting the ⁇ -direction inertia moment and the ⁇ -direction inertia moment in the screen 1. . This will be described in detail in the section “3-3. Setting of Resonance Frequency” described later.
  • FIG. 3A the angle around the y axis on the screen surface, that is, the angle in the ⁇ direction is defined as “angle ⁇ ”, and the angle around the x axis on the screen surface, that is, the angle in the ⁇ direction is defined as “ It is defined as “angle ⁇ ”.
  • the control unit 10 inputs a signal having two types of resonance frequency components to the driving unit 2 so that the angles ⁇ and ⁇ are Lissajous figures as shown in FIGS. 3B to 3D. Control to draw.
  • the Lissajous figure for the angle ⁇ and the angle ⁇ of the screen surface changes according to the frequency ratio and the amplitude ratio at the two types of resonance frequencies.
  • the angle ⁇ corresponds to an example of a “first angle” in the present invention
  • the angle ⁇ corresponds to an example of a “second angle” in the present invention.
  • the drive unit 2 prevents both the rotational angular velocity d ⁇ / dt in the ⁇ direction (around the y axis) and the rotational angular velocity d ⁇ / dt in the ⁇ direction (around the x axis) on the screen 1 from simultaneously becoming “0”.
  • Two types of resonance frequencies to be input to are set. For example, two types of resonance frequencies are set so that the Lissajous figures shown in FIGS. 3B and 3C can be obtained. In the Lissajous figure shown in FIG. 3D, the rotational angular velocities are “0” in both the ⁇ direction and the ⁇ direction at both ends, and therefore the resonance frequency that makes such a Lissajous figure is not adopted.
  • FIG. 4 shows the frequency on the horizontal axis and the angular velocity amplitude of the tilt of the screen 1 on the vertical axis.
  • a graph G1 represented by a thick line shows the relationship between the frequency around the x axis ( ⁇ direction) and the angular velocity amplitude of the gradient
  • a graph G2 represented by a thin line represents the frequency around the y axis ( ⁇ direction) and The relationship between the inclination and the angular velocity amplitude is shown.
  • the frequency f 1 indicates a resonance frequency having an inclination around the x axis
  • the frequency f 2 indicates a resonance frequency having an inclination around the y axis.
  • the amplitude ratio between the resonance frequency f 1 and the resonance frequency f 2 as shown in FIG. 3 is used to cause the screen 1 to always perform a motion having inclination angular velocities around the x axis and the y axis. And set the frequency ratio to an appropriate value. In this way, speckle can be appropriately averaged.
  • FIG. 6A to 6D show cross-sectional shapes (specifically, cross-sectional views cut along the xy plane) of the support portions 31 to 34 according to the modification.
  • the support portions 31 to 34 according to the modification are also made of an elastic body.
  • Comparative Example 1 a comparative example for comparison with the present example will be given, and problems of the comparative example will be described.
  • Comparative Examples 1 and 2 are described in which the screen 1 is translated in the in-plane direction in order to increase the emission angle of light from the screen 1 and to reduce speckle.
  • FIG. 7 is a diagram illustrating a configuration of the screen device 100x1 according to the first comparative example.
  • the screen device 100x1 according to the comparative example 1 in order to translate the screen 1 in the x direction and the y direction, the screen 1 is supported using four support portions 3x1 as parallel springs.
  • the resonance frequency is the same in the x direction and the y direction.
  • the driving unit 2x1a for driving the screen 1 in the x direction and the driving unit 2x1b for driving the screen 1 in the y direction are separately used,
  • the screen 1 is driven by inputting a signal having a phase difference of 90 ° in the y direction to the drive units 2 ⁇ 1a and 2 ⁇ 1b. By doing so, the screen 1 is moved in a circular motion.
  • Such a screen device 100x1 according to Comparative Example 1 has the following problems.
  • driving at the resonance frequency is close to the resonance frequency of the translational motion and the resonance frequency of the rotational motion (that is, in-plane rotation of the screen 1), it is necessary to eliminate the rotational motion as much as possible. This is because unevenness in speed occurs in the plane of the screen 1 (details will be described with reference to FIG. 9). Furthermore, driving other than the resonance frequency is less efficient than driving at the resonance frequency.
  • FIG. 8 is a diagram illustrating a configuration of a screen device 100x2 according to the second comparative example.
  • the screen device 100x2 according to the comparative example 2 in order to translate the screen 1 in the x direction and the y direction, the screen 1 is supported using four support portions 3x2 as parallel springs.
  • the resonance frequency is made different between the x direction and the y direction by using the support portion 3x2 that is harder in the y direction than in the x direction.
  • a single drive unit 2x2 arranged to be inclined with respect to both the x-axis and the y-axis is used, and a signal obtained by combining two types of resonance frequencies is input to the drive unit 2x2. By doing so, the screen 1 is driven.
  • the screen device 100x2 according to the comparative example 2 has the following problems.
  • FIG. 9A shows a case where the gravity center drive of the screen 1 is realized. Specifically, the case where the driving force F passing through the center of gravity G is applied to the screen 1 is shown. In this case, no torque is generated around the center of gravity G, and the screen 1 moves in translation, so that the speed of any position in the screen 1 is equal.
  • a y-direction velocity V G of the center of gravity G the y-direction velocity V P1 at the position P1
  • the y-direction velocity V P2 at the position P2 becomes different respectively (V G ⁇ V P1, V G ⁇ V P2 , V P1 ⁇ V P2 ). Therefore, even if the speed at which the speckle disappears near the center of the screen 1, a phenomenon may occur in which, for example, the speckle does not disappear at the position P ⁇ b> 1 because the speed is low.
  • the rotational motion also affects the motion in the x direction, the rotational motion in the plane of the screen 1 needs to be reduced as much as possible.
  • FIG. 10 is a diagram for explaining the effect of reducing speckle (speckle noise).
  • FIGS. 10A to 10C schematically show how an incident beam having a uniform intensity distribution is diffusely reflected by the screen 1. When the beam is diffusely reflected by the screen 1 in this way, the viewing angle and the observable range can be expanded.
  • FIG. 10A shows a comparative example in which the screen 1 is fixed without moving.
  • the intensity distribution corresponding to the unevenness of the screen 1 is generated due to the interference caused by the random unevenness of the screen 1 (phase difference due to the unevenness), that is, speckles occur.
  • FIG. 10B shows a comparative example in which the screen 1 is translated. In this case, the intensity distribution corresponding to the unevenness of the screen 1 changes. Accordingly, the speckle is reduced by averaging the intensity distribution.
  • FIG. 10C shows the present embodiment in which the screen 1 is swung.
  • a high speed for example, a frequency higher than the refresh rate
  • the intensity distribution corresponding to the unevenness of the screen 1 can be changed at a high speed as in the example shown in FIG. To average. Therefore, according to the present embodiment, speckle can be appropriately reduced.
  • the direction of the optical axis also changes, but this influence can also be averaged by high-speed displacement. Further, since the incident beam is close to parallel light and has a wide focal depth, spot blur can be ignored.
  • the drive unit 2 generates a torque around an axis p different from the x axis and the y axis, so that the x axis is relative to the screen 1.
  • a tilt around and a tilt around the y-axis are generated. Therefore, basically, the screen 1 does not rotate in the xy plane (that is, in the screen surface). Therefore, according to the present embodiment, it is possible to appropriately suppress problems due to rotational motion (such as a reduction in speckle reduction effect) as described in the section “2. Problems of Comparative Examples”.
  • FIG. 11 shows an example in which mass is added to the screen device 100 according to the present embodiment at a position away from the y axis on the x axis (see reference numerals 60a and 60b).
  • the moment of inertia about the y-axis increases, but the moment of inertia about the x-axis hardly changes. Therefore, when mass is added as shown in FIG. 11, the resonance frequency around the y axis can be lowered without substantially changing the resonance frequency around the x axis.
  • the resonance frequency around the x-axis can be lowered without substantially changing the resonance frequency around the y-axis. it can.
  • both the resonance frequency around the x axis and the resonance frequency around the y axis can be changed as appropriate.
  • each of the moment of inertia around the x axis and the moment of inertia around the y axis in the movable portion (screen 1) can be set independently. Therefore, the resonance frequency can be set easily, that is, the degree of freedom in design is increased.
  • a speckle reduction effect equivalent to the configuration in which the screen 1 is driven in translation can be obtained. Further, according to the present embodiment, since the screen 1 is swung, the support portion 3 can be simplified, and the cost can be reduced. Furthermore, according to the present embodiment, the degree of freedom in design is high compared to the configuration in which the screen 1 is driven in translation, and a low-cost and compact design is possible.
  • the drive unit 2 is provided at the corner of the screen 1, but this is not a limitation.
  • the axis orthogonal to the diagonal line of the screen 1 is not limited to the axis p for the moment applied to the screen 1. That is, the drive unit 2 can be provided at various positions as long as the drive force F can be applied to the screen 1, and the inclination (direction) of the axis p varies depending on the position of the drive unit 2.
  • FIG. 12 shows an example in which the drive unit 2 is provided at various positions.
  • the drive unit 2 in addition to the corner positions of the screen 1, for example, the drive unit 2 can be provided at positions indicated by arrows Ar21 and Ar22.
  • the position coordinate of the drive unit 2 is (x, y)
  • the angle formed by the straight line connecting the position of the drive unit 2 and the center of gravity G and the x axis is “ ⁇ ”
  • FIG. 12B shows an example of the angle ⁇ ( ⁇ 1 and ⁇ 2) and an example of the p-axis inclination ⁇ (p1-axis inclination ⁇ 1 and p2 when the driving unit 2 is provided at the positions indicated by the arrows Ar21 and Ar22.
  • the axis inclination ⁇ 2) is illustrated.
  • the inclination ⁇ of the p-axis is defined.
  • Modification 2 The modification 2 relates to another example of the support part 3 according to the above-described embodiment.
  • FIG. 14 is a diagram illustrating a configuration of a screen device 100a according to a first example of the second modification.
  • the screen device 100 a is implemented in that it has support portions 3 a 1 and 3 a 2 as torsion bars instead of the support portion 3, and has a base 4 a 1 and a subframe 4 a 2 instead of the base 4.
  • the screen 1 is supported by a support portion 3a1 along the x axis and a support portion 3a2 along the y axis.
  • the screen 1 is fixed to the subframe 4a2 via the support portion 3a1, and the subframe 4a2 is fixed to the base 4a1 via the support portion 3a2.
  • the support portion 3a1 supports the screen 1 so as to be swingable around the x axis
  • the support portion 3a2 supports the subframe 4a2 so as to be swingable around the y axis.
  • the screen device 100a according to the first example of the second modification also functions in the same manner as the screen device 100 according to the above-described embodiment.
  • FIG. 15 is a diagram illustrating a configuration of a screen device 100b according to a second example of the second modification.
  • the screen device 100 b is different from the screen device 100 according to the embodiment in that the screen device 100 b includes a support portion 3 b 1 as a spherical bearing and a support portion 3 b 2 as a spring instead of the support portion 3.
  • the screen 1 includes two support portions 3b1 arranged at line-symmetric positions with the x axis as a symmetry axis, and two support portions 3b2 arranged at line-symmetric positions with the y axis as a symmetry axis. Supported by.
  • the support portion 3b2 as a spring also generates a biasing force so that the screen 1 is not separated from the support portion 3b1 as a spherical bearing.
  • the screen device 100b according to the second example of the second modification also functions in the same manner as the screen device 100 according to the above-described embodiment.
  • FIG. 16 is a diagram illustrating a configuration of a screen device 100c according to a first example of the third modification.
  • the screen device 100c is different from the screen device 100 according to the embodiment in that two drive units 2c1 and 2c2 are used.
  • the drive units 2c1 and 2c2 are disposed on the diagonal line of the screen 1 at symmetrical positions (positions separated from the center of gravity G by a distance L3) with the center of gravity G in between.
  • the drive units 2c1 and 2c2 are driven in reverse phase. That is, when one of the drive units 2c1 and 2c2 applies a force F that pushes up the screen 1, the other drive unit 2c1 and 2c2 applies a force “ ⁇ F” that pushes down the screen 1. 2c1 and 2c2 are driven. In this case, since the force in the direction perpendicular to the xy plane is “0”, only the swinging torque is generated on the screen 1. Therefore, vibration during operation can be reduced.
  • FIG. 17 is a diagram illustrating a configuration of a screen device 100d according to a second example of the third modification.
  • the screen device 100d is different from the screen device 100 according to the embodiment in that four driving units 2d1 to 2d4 are used.
  • the drive units 2d1 and 2d2 are arranged at line-symmetrical positions with the y axis as the symmetry axis, and the drive units 2d3 and 2d4 are arranged at line-symmetrical positions with the x axis as the symmetry axis.
  • the drive units 2d1 and 2d2 are driven in opposite phases.
  • the drive units 2d1 and 2d2 when one of the drive units 2d1 and 2d2 applies a force F y that pushes up the screen 1, the other of the drive units 2d1 and 2d2 applies a force “ ⁇ F y ” that pushes down the screen 1.
  • the drive units 2d1 and 2d2 are driven.
  • the drive units 2d3 and 2d4 are also driven in opposite phases. In other words, as when one of the driving portion 2d3,2d4 is applying a force F x which pushes up the screen 1, the other driver 2d3,2d4 imparts a force "-F x" depressing the screen 1,
  • the drive units 2d3 and 2d4 are driven. Also according to the second example of the third modification example, since the force in the direction perpendicular to the xy plane is “0”, only the swinging torque is generated on the screen 1, thereby reducing vibration during operation. be able to.
  • the present invention can be applied to a screen of a laser projector. As a result, it is possible to realize an image with high resolution and good color reproducibility without laser-specific speckles.
  • the present invention can be applied to a head-up display or a head-mounted display that generates an intermediate image from a laser scanning light source.
  • the present invention can be applied to a light source of LCD (Liquid Crystal Display) or DLP (Digital Light Processing). Thereby, a display with good color reproducibility can be realized.
  • LCD Liquid Crystal Display
  • DLP Digital Light Processing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Projection Apparatus (AREA)

Abstract

This screen device is provided with: a screen; a support section that oscillatably supports the screen around a first axis, which is along one direction in the screen plane, and a second axis, which is along another direction intersecting the one direction in the screen plane; and a drive unit that drives the screen around a third axis differing from the directions of the first axis and the second axis.

Description

スクリーン装置Screen device
 本発明は、スクリーンを用いた技術分野に関する。 The present invention relates to a technical field using a screen.
 従来から、レーザースキャン型プロジェクタなどで像を生成する場合や、レーザースキャンエンジンを用いたヘッドアップディスプレイやヘッドマウントディスプレイで中間像を生成する場合に、スクリーンが用いられている。また、そのようなスクリーンに関する技術として、スクリーンに投影される光をスクリーン上で拡散反射(若しくは拡散透過)させることで、視野角の拡大や観察可能範囲の拡大を図る技術が提案されている。更に、スクリーンにて光を拡散させることで発生するスペックル(反射面のランダムな凹凸に起因する干渉により発生する)を低減する技術が提案されている。例えば、スクリーン面を駆動(並進運動など)することで、スペックルを低減する技術が提案されている。 Conventionally, a screen is used when an image is generated by a laser scanning projector or when an intermediate image is generated by a head-up display or a head-mounted display using a laser scan engine. In addition, as a technique related to such a screen, a technique has been proposed in which light projected on the screen is diffusely reflected (or diffusely transmitted) on the screen to increase the viewing angle and the observable range. Furthermore, a technique for reducing speckles (generated due to interference caused by random irregularities on the reflecting surface) generated by diffusing light on a screen has been proposed. For example, a technique for reducing speckles by driving a screen surface (translational motion or the like) has been proposed.
 上記したようなスクリーンに関する技術は、例えば下記の特許文献1乃至7に開示されている。 The technology relating to the screen as described above is disclosed in, for example, the following Patent Documents 1 to 7.
特開平6-208089号公報JP-A-6-208089 特開2005-338241号公報JP 2005-338241 A 特開2007-241023号公報JP 2007-244103 A 特開2012-247424号公報JP 2012-247424 A 特開2009-244590号公報JP 2009-244590 A 特許4303926号公報Japanese Patent No. 4303926 米国特許第8031403号公報US Patent No. 8031403
 従来のスクリーンを並進運動等させる技術では、スクリーン面内でスクリーンの回転が生じてしまう場合があった。スクリーン面内でスクリーンが回転すると、スペックル低減効果が低下するなどの不具合が発生する場合があるため、これを抑制することが望ましい。更に、従来の技術では、設計自由度が低い傾向にあり、また、低コスト化や小型化が困難であった。なお、このような課題については、「2.比較例の問題点」のセクションで詳細を説明する。 In the conventional technology that translates the screen, the screen may rotate within the screen surface. If the screen rotates within the screen surface, it may cause problems such as a reduction in the speckle reduction effect. Therefore, it is desirable to suppress this. Furthermore, in the conventional technology, the degree of design freedom tends to be low, and it is difficult to reduce the cost and size. Such a problem will be described in detail in the section “2. Problems of Comparative Example”.
 本発明が解決しようとする課題は上記のようなものが一例として挙げられる。本発明は、スペックルを適切に低減しつつ、設計自由度が高く、低コスト化や小型化が実現可能なスクリーン装置を提供することを課題とする。 Examples of the problem to be solved by the present invention include the above. It is an object of the present invention to provide a screen device that can reduce speckles appropriately, has a high degree of freedom in design, and can be reduced in cost and size.
 請求項に記載の発明では、スクリーン装置は、スクリーンと、前記スクリーンの面内における一の方向に沿った第1の軸まわりと、前記スクリーンの面内における前記一の方向と交差する他の方向に沿った第2の軸まわりとに、前記スクリーンを揺動可能に支持する支持部と、前記第1の軸及び前記第2の軸とは方向が異なる第3の軸まわりに、前記スクリーンを駆動する駆動部と、を備えることを特徴とする。 In the present invention, the screen device includes a screen, a first axis along one direction in the plane of the screen, and another direction intersecting the one direction in the plane of the screen. And a support portion that supports the screen in a swingable manner around a second axis extending along the axis, and the screen around a third axis that is different in direction from the first axis and the second axis. And a drive unit for driving.
本実施例に係るスクリーン装置を適用した表示システムの具体例を示す。A specific example of a display system to which the screen device according to this embodiment is applied will be described. 本実施例に係るスクリーン装置の構成を示す。The structure of the screen apparatus based on a present Example is shown. 本実施例に係るスクリーンの駆動方法を説明するための図を示す。The figure for demonstrating the drive method of the screen which concerns on a present Example is shown. 2種類の共振周波数成分を有する信号を駆動部に入力する理由を説明するための図を示す。The figure for demonstrating the reason for inputting the signal which has two types of resonance frequency components into a drive part is shown. 本実施例に係る支持部について補足説明するための図を示す。The figure for supplementarily explaining the support part which concerns on a present Example is shown. 支持部の変形例を説明するための図を示す。The figure for demonstrating the modification of a support part is shown. 比較例1に係るスクリーン装置の構成を示す。The structure of the screen apparatus which concerns on the comparative example 1 is shown. 比較例2に係るスクリーン装置の構成を示す。The structure of the screen apparatus which concerns on the comparative example 2 is shown. 比較例1、2について補足説明するための図を示す。The figure for supplementarily explaining Comparative Examples 1 and 2 is shown. スペックル低減効果を説明するための図を示す。The figure for demonstrating the speckle reduction effect is shown. 本実施例によれば共振周波数の設定が容易である理由を説明するための図を示す。The figure for demonstrating the reason which the setting of a resonant frequency is easy according to a present Example is shown. 駆動部を種々の位置に設けた場合の一例を示す。An example when the drive unit is provided at various positions is shown. p軸の好適な傾きを説明するための図を示す。The figure for demonstrating the suitable inclination of a p-axis is shown. 変形例2の第1の例に係るスクリーン装置の構成を示す。The structure of the screen apparatus which concerns on the 1st example of the modification 2 is shown. 変形例2の第2の例に係るスクリーン装置の構成を示す。The structure of the screen apparatus which concerns on the 2nd example of the modification 2 is shown. 変形例3の第1の例に係るスクリーン装置の構成を示す。The structure of the screen apparatus which concerns on the 1st example of the modification 3 is shown. 変形例3の第2の例に係るスクリーン装置の構成を示す。The structure of the screen apparatus which concerns on the 2nd example of the modification 3 is shown.
 本発明の1つの観点では、スクリーン装置は、スクリーンと、前記スクリーンの面内における一の方向に沿った第1の軸まわりと、前記スクリーンの面内における前記一の方向と交差する他の方向に沿った第2の軸まわりとに、前記スクリーンを揺動可能に支持する支持部と、前記第1の軸及び前記第2の軸とは異なる第3の軸まわりに、前記スクリーンを駆動する駆動部と、を備える。 In one aspect of the present invention, the screen device includes a screen, a first axis along one direction in the plane of the screen, and another direction that intersects the one direction in the plane of the screen. And a support portion that supports the screen in a swingable manner around a second axis along the axis, and drives the screen around a third axis that is different from the first axis and the second axis. A drive unit.
 上記のスクリーン装置では、スクリーンは、入射される光を拡散する拡散面などを有する。支持部は、スクリーンの面内における一の方向に沿った第1の軸まわりと、スクリーンの面内における当該一の方向と交差する他の方向(例えば当該一の方向に直交する方向)に沿った第2の軸まわりとに、スクリーンを揺動可能に支持する。駆動部は、第1の軸及び第2の軸とは異なる第3の軸まわりに、スクリーンを駆動する。具体的には、駆動部は、第1の軸及び第2の軸で規定される面内に位置する、第3の軸まわりのモーメントをスクリーンに付与する。 In the above screen device, the screen has a diffusing surface for diffusing incident light. The support portion is arranged around a first axis along one direction in the plane of the screen and along another direction (for example, a direction orthogonal to the one direction) intersecting the one direction in the plane of the screen. The screen is swingably supported around the second axis. The drive unit drives the screen around a third axis different from the first axis and the second axis. Specifically, the drive unit applies a moment around the third axis, which is located in a plane defined by the first axis and the second axis, to the screen.
 上記のスクリーン装置によれば、スクリーンを揺動させることにより、スクリーンを並進させる構成と同様に、スクリーンにて光を拡散させることで発生するスペックル(スクリーン面のランダムな凹凸に起因する干渉により発生する)を平均化することで低減することができる。また、上記のスクリーン装置によれば、第1の軸及び第2の軸で規定される面内でスクリーンが回転しないため、当該回転に起因する種々の不具合の発生(スペックル低減効果の低下など)を抑制することができる。また、上記のスクリーン装置によれば、スクリーンを揺動させるため、支持部を簡略化することができ、低コスト化を実現することが可能となる。更に、上記のスクリーン装置によれば、スクリーンを並進駆動させる構成と比較して、設計自由度が高く、低コスト小型化設計が可能となる。 According to the screen device described above, the speckles generated by diffusing light on the screen (due to interference caused by random irregularities on the screen surface), as in the configuration in which the screen is translated by swinging the screen. Can be reduced by averaging. Further, according to the above screen device, since the screen does not rotate within the plane defined by the first axis and the second axis, various problems caused by the rotation (decrease in speckle reduction effect, etc.) ) Can be suppressed. Further, according to the screen device described above, the screen is swung, so that the support portion can be simplified and the cost can be reduced. Furthermore, according to the above-described screen device, the degree of freedom in design is high compared to the configuration in which the screen is driven in translation, and a low-cost and compact design can be achieved.
 上記のスクリーン装置の一態様では、前記スクリーンにおける前記第1の軸まわりの第1共振周波数と前記第2の軸まわりの第2共振周波数とが異なるように構成すると良い。 In one aspect of the above screen device, it is preferable that the first resonance frequency around the first axis and the second resonance frequency around the second axis in the screen be different.
 上記のスクリーン装置の他の一態様では、前記第1共振周波数及び前記第2共振周波数の成分を有する信号で前記駆動部を制御する制御部を更に有する。このように駆動部を制御することで、同時に2軸(第1の軸及び第2の軸)まわりの傾き運動を適切にスクリーンに与えることができる。 In another aspect of the above screen device, the screen device further includes a control unit that controls the driving unit with a signal having components of the first resonance frequency and the second resonance frequency. By controlling the drive unit in this way, it is possible to appropriately impart a tilting motion about two axes (first axis and second axis) to the screen at the same time.
 上記のスクリーン装置の他の一態様では、前記制御部は、前記第1共振周波数と前記第2共振周波数との周波数比及び振幅比を設定して、前記スクリーンの面における前記第1の軸まわりの第1角度と前記第2の軸まわりの第2角度とがリサージュ図形を描くように前記駆動部を制御する。これにより、2軸(第1の軸及び第2の軸)まわりの傾き運動をより適切にスクリーンに与えることができ、スペックルを効果的に平均化することが可能となる。 In another aspect of the screen device, the control unit sets a frequency ratio and an amplitude ratio between the first resonance frequency and the second resonance frequency, and is configured around the first axis on the surface of the screen. The drive unit is controlled so that the first angle and the second angle around the second axis draw a Lissajous figure. Thereby, it is possible to impart a tilting motion about two axes (the first axis and the second axis) to the screen more appropriately, and it is possible to effectively average the speckles.
 上記のスクリーン装置において好適には、前記制御部は、前記第1角度の角速度及び前記第2角度の角速度が同時に「0」にならないように、前記周波数比及び前記振幅比を設定すると良い。 Preferably, in the above screen device, the control unit may set the frequency ratio and the amplitude ratio so that the angular velocity of the first angle and the angular velocity of the second angle do not simultaneously become “0”.
 上記のスクリーン装置の他の一態様では、前記駆動部は、前記スクリーンの一箇所にのみ力を付与することで、前記スクリーンを駆動する。これにより、駆動部を簡便に構成することができる。 In another aspect of the screen device, the driving unit drives the screen by applying a force to only one portion of the screen. Thereby, a drive part can be comprised simply.
 上記のスクリーン装置の他の一態様では、前記駆動部は、前記スクリーンが揺動する際の中心位置を基準にして対称となる前記スクリーン上の二箇所に力を付与することで、前記スクリーンを駆動する。その場合、前記駆動部は、前記二箇所の一方と前記二箇所の他方とで互いに逆向きとなる力を付与する。これにより、スクリーンには揺動させるトルクのみが生じるので、動作時の振動を低減することができる。 In another aspect of the screen device, the driving unit applies the force to two locations on the screen that are symmetric with respect to a center position when the screen is swung. To drive. In that case, the said drive part provides the force which becomes mutually opposite in one of the said two places, and the other of the said two places. As a result, only the torque to be swung is generated on the screen, so that vibration during operation can be reduced.
 好適な例では、前記支持部は、前記第1の軸まわりの断面2次モーメントと、前記第2の軸まわりの断面2次モーメントとが異なる弾性体である。これにより、第1の軸まわりの第1共振周波数と第2の軸まわりの第2共振周波数とを適切に異ならせることができる。例えば、前記弾性体は、前記一の方向に沿った長さと、前記他の方向に沿った長さとが異なる断面形状を有する。 In a preferred example, the support portion is an elastic body having a second moment of inertia about the first axis and a second moment of inertia about the second axis. As a result, the first resonance frequency around the first axis and the second resonance frequency around the second axis can be appropriately varied. For example, the elastic body has a cross-sectional shape in which a length along the one direction is different from a length along the other direction.
 他の好適な例では、前記支持部は、前記スクリーンを前記第1の軸まわりに揺動可能に支持する第1トーションバーと、前記スクリーンを前記第2の軸まわりに揺動可能に支持する第2トーションバーと、を有していても良い。 In another preferred example, the supporting portion supports a first torsion bar that supports the screen so as to be swingable about the first axis, and supports the screen so as to be swingable about the second axis. And a second torsion bar.
 更に他の好適な例では、前記支持部は、球面軸受けと、前記スクリーンが前記球面軸受けから離れないように当該スクリーンに付勢力を少なくとも付与するばねと、を有していても良い。 In still another preferred example, the support portion may include a spherical bearing and a spring that applies at least a biasing force to the screen so that the screen does not move away from the spherical bearing.
 また、好適な例では、前記スクリーンは、前記第1の軸まわりの慣性モーメントと、前記第2の軸まわりの慣性モーメントとが異なる。第1の軸まわりの慣性モーメントと第2の軸まわりの慣性モーメントとを適宜設定することで、第1の軸まわりの第1共振周波数と第2の軸まわりの第2共振周波数とを容易に設定することができる。 In a preferred example, the screen has a moment of inertia around the first axis and a moment of inertia around the second axis. By appropriately setting the moment of inertia around the first axis and the moment of inertia around the second axis, the first resonance frequency around the first axis and the second resonance frequency around the second axis can be easily achieved. Can be set.
 以下、図面を参照して本発明の好適な実施例について説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
 1.本実施例に係るスクリーン装置
 まず、本実施例に係るスクリーン装置について説明する。
1. Screen Device According to this Example First, the screen device according to this example will be described.
 1-1.システム構成
 図1は、本実施例に係るスクリーン装置100を適用した表示システムの具体例を示している。図1(a)は、例えばレーザースキャン型のプロジェクタ200によって、スクリーン装置100のスクリーン1に画像(実像)を投影する表示システム400aを示している。図1(b)は、レーザースキャンエンジンなどを用いたプロジェクタ200から投影された画像により、スクリーン装置100のスクリーン1上に中間像を形成し、その中間像に対応する光をコンバイナ300で反射させることで画像を虚像として視認させる表示システム400bを例示している。
1-1. System Configuration FIG. 1 shows a specific example of a display system to which a screen device 100 according to this embodiment is applied. FIG. 1A shows a display system 400 a that projects an image (real image) onto the screen 1 of the screen device 100 by using, for example, a laser scanning projector 200. In FIG. 1B, an intermediate image is formed on the screen 1 of the screen device 100 by an image projected from the projector 200 using a laser scan engine or the like, and light corresponding to the intermediate image is reflected by the combiner 300. Thus, the display system 400b that visually recognizes an image as a virtual image is illustrated.
 図1(a)及び(b)に示すように、スクリーン装置100は、主に、スクリーン1と、スクリーン1を駆動するアクチュエータとしての駆動部2と、駆動部2を制御するCPU(Central Processing Unit)などの制御部10と、を有する。スクリーン1は、反射型拡散面を有しており、入射される光(以下では適宜「ビーム」と呼ぶ。)を反射すると共に拡散するように機能する。なお、スクリーン1に反射型拡散面を適用することに限定はされず、反射型拡散面の代わりに透過型拡散面を適用しても良い。以下の説明では、反射型拡散面を有するスクリーン1を例に挙げる。 As shown in FIGS. 1A and 1B, the screen device 100 mainly includes a screen 1, a drive unit 2 as an actuator that drives the screen 1, and a CPU (Central Processing Unit that controls the drive unit 2. ) And the like. The screen 1 has a reflective diffusion surface, and functions to reflect and diffuse incident light (hereinafter referred to as “beam” as appropriate). In addition, it is not limited to applying a reflection type diffusion surface to the screen 1, You may apply a transmission type diffusion surface instead of a reflection type diffusion surface. In the following description, the screen 1 having a reflective diffusion surface is taken as an example.
 1-2.スクリーン装置の構成
 図2は、本実施例に係るスクリーン装置100の構成を示す図である。図2では、左上にスクリーン装置100の正面図を示し、右上に正面図中の矢印Ar11方向から観察したスクリーン装置100の側面図を示し、左下に正面図中の矢印Ar12方向から観察したスクリーン装置100の側面図を示している。なお、後述するスクリーン装置の図においても正面図及び側面図の定義は同様であるものとする。
1-2. Configuration of Screen Device FIG. 2 is a diagram illustrating a configuration of the screen device 100 according to the present embodiment. 2, the front view of the screen device 100 is shown in the upper left, the side view of the screen device 100 observed from the direction of the arrow Ar11 in the front view is shown in the upper right, and the screen device observed from the direction of the arrow Ar12 in the front view in the lower left. A side view of 100 is shown. In addition, the definition of a front view and a side view is the same also in the figure of the screen apparatus mentioned later.
 図2に示すように、本実施例に係るスクリーン装置100は、主に、スクリーン1と、駆動部2と、支持部3と、ベース4と、固定部5と、を有する。スクリーン1は、矩形形状の平面を有する略平板として構成されており、上記したプロジェクタ200からの光を反射させると共に拡散させる反射型拡散面を有する。反射型拡散面としては、公知の種々のものを適用することができる。スクリーン1は、当該スクリーン1の重心Gを含む箇所に設けられた支持部3によって支持され、支持部3及び固定部5を介してベース4に対して固定されている。スクリーン1と支持部3と固定部5とベース4とは、離れ合わないように固定されている。なお、固定部5を用いずに、支持部3とベース4とを直接接続しても良い。 As shown in FIG. 2, the screen device 100 according to the present embodiment mainly includes a screen 1, a drive unit 2, a support unit 3, a base 4, and a fixing unit 5. The screen 1 is configured as a substantially flat plate having a rectangular plane, and has a reflective diffusion surface that reflects and diffuses the light from the projector 200 described above. As the reflective diffusion surface, various known ones can be applied. The screen 1 is supported by a support portion 3 provided at a location including the center of gravity G of the screen 1 and is fixed to the base 4 via the support portion 3 and the fixing portion 5. The screen 1, the support part 3, the fixing part 5, and the base 4 are fixed so as not to be separated from each other. In addition, you may connect the support part 3 and the base 4 directly, without using the fixing | fixed part 5. FIG.
 支持部3は、弾性体で構成されている。スクリーン1は、そのような弾性体としての支持部3により、x軸まわり(以下ではx軸まわりの方向を適宜「β方向」と呼ぶ。)とy軸まわり(以下ではy軸まわりの方向を適宜「α方向」と呼ぶ。)とに揺動可能に支持されている。x軸は、スクリーン1の重心Gを通り、スクリーン1における1つの辺の長さ方向に沿った軸であり、y軸は、スクリーン1の重心Gを通り、スクリーン1における当該1つの辺に垂直な辺の長さ方向に沿った軸である。なお、スクリーン1は、一様な面密度に構成されており、当該スクリーン1の矩形の中心位置と重心Gの位置とが一致するものとする。また、x軸は、本発明における「第1の軸」の一例に相当し、y軸は、本発明における「第2の軸」の一例に相当する。 The support part 3 is composed of an elastic body. The screen 1 has a support 3 as such an elastic body so that the direction around the x axis (hereinafter, the direction around the x axis is appropriately referred to as “β direction”) and the direction around the y axis (hereinafter, the direction around the y axis). (Referred to as “α direction” as appropriate). The x-axis is an axis passing through the center of gravity G of the screen 1 and along the length direction of one side of the screen 1, and the y-axis is passing through the center of gravity G of the screen 1 and perpendicular to the one side of the screen 1. It is an axis along the length direction of a long side. Note that the screen 1 is configured to have a uniform surface density, and the rectangular center position of the screen 1 and the position of the gravity center G coincide with each other. The x-axis corresponds to an example of a “first axis” in the present invention, and the y-axis corresponds to an example of a “second axis” in the present invention.
 更に、支持部3は、y方向の寸法L2がx方向の寸法L1よりも長い矩形の断面形状(xy平面に沿った断面)を有する。そのため、支持部3は、β方向の曲げ剛性(ばね定数)がα方向の曲げ剛性(ばね定数)よりも大きい。したがって、β方向の共振周波数とα方向の共振周波数とが異なるものとなる。具体的には、β方向の共振周波数がα方向の共振周波数よりも高くなる。なお、β方向の共振周波数は、本発明における「第1共振周波数」の一例に相当し、α方向の共振周波数は、本発明における「第2共振周波数」の一例に相当する。 Furthermore, the support part 3 has a rectangular cross-sectional shape (cross section along the xy plane) in which the dimension L2 in the y direction is longer than the dimension L1 in the x direction. Therefore, the support part 3 has a bending rigidity (spring constant) in the β direction larger than a bending rigidity (spring constant) in the α direction. Accordingly, the resonance frequency in the β direction is different from the resonance frequency in the α direction. Specifically, the resonance frequency in the β direction is higher than the resonance frequency in the α direction. Note that the resonance frequency in the β direction corresponds to an example of the “first resonance frequency” in the present invention, and the resonance frequency in the α direction corresponds to an example of the “second resonance frequency” in the present invention.
 駆動部2は、xy平面内においてx軸及びy軸とは異なる軸pまわりのモーメントを発生する。具体的には、駆動部2は、スクリーン1の1つの隅(正面図において右上に位置する隅)に設けられていると共に、スクリーン1の面に固定されており(つまりスクリーン1の面と常に接触した状態になっている)、スクリーン1を押し上げる方向及びスクリーン1を押し下げる方向に力を付与する。これにより、駆動部2は、スクリーン1の対角線に直交し、重心Gを通る軸pまわりのモーメントを発生する。図2では、スクリーン1を押し上げる方向の力Fが付与され、「F*L3」のモーメントが発生している場合を例示している(「L3」はスクリーン1の対角線の半分の長さである)。なお、駆動部2には、電磁型や静電型や電歪型など種々の形式を適用することができる。また、駆動部2は、前述した制御部10(図1参照)によって制御される。また、p軸は、本発明における「第3の軸」の一例に相当する。 The driving unit 2 generates a moment around the axis p different from the x axis and the y axis in the xy plane. Specifically, the drive unit 2 is provided at one corner of the screen 1 (a corner located at the upper right in the front view) and is fixed to the surface of the screen 1 (that is, always with the surface of the screen 1). The force is applied in the direction in which the screen 1 is pushed up and the direction in which the screen 1 is pushed down. As a result, the drive unit 2 generates a moment around the axis p that is orthogonal to the diagonal line of the screen 1 and passes through the center of gravity G. FIG. 2 illustrates a case where a force F in the direction of pushing up the screen 1 is applied and a moment of “F * L3” is generated (“L3” is half the length of the diagonal line of the screen 1). ). Various types such as an electromagnetic type, an electrostatic type, and an electrostrictive type can be applied to the driving unit 2. Moreover, the drive part 2 is controlled by the control part 10 (refer FIG. 1) mentioned above. The p-axis corresponds to an example of a “third axis” in the present invention.
 なお、支持部3に、y方向の寸法L2がx方向の寸法L1よりも長い矩形の断面形状を適用することに限定はされず、x方向の寸法L1がy方向の寸法L2よりも長い矩形の断面形状を適用しても良い。また、支持部3を、スクリーン1の重心Gを含む箇所に設けなくても良い。つまり、スクリーン1の重心Gから外れた箇所に、支持部3を設けても良い。更に、スクリーン1を、一様な面密度に構成しなくても良い。その場合には、スクリーン1の矩形の中心位置と重心Gの位置とが一致しない傾向にある。 In addition, it is not limited to applying the rectangular cross-sectional shape with the dimension L2 of y direction longer than the dimension L1 of x direction to the support part 3, The dimension L1 of x direction is longer than the dimension L2 of y direction. The cross-sectional shape may be applied. Further, the support portion 3 may not be provided at a location including the center of gravity G of the screen 1. That is, you may provide the support part 3 in the location remove | deviated from the gravity center G of the screen 1. FIG. Furthermore, the screen 1 may not be configured to have a uniform surface density. In that case, the rectangular center position of the screen 1 and the position of the center of gravity G tend not to match.
 また、上記では、支持部3の構成によって、α方向の共振周波数とβ方向の共振周波数とを異ならせていたが、支持部3をそのような構成にせずに(例えばy方向の寸法L2とx方向の寸法L1とを等しくする)、スクリーン1におけるα方向の慣性モーメント及びβ方向の慣性モーメントを適宜設定することで、α方向の共振周波数とβ方向の共振周波数とを異ならせても良い。これについては、後述する「3-3.共振周波数の設定」のセクションで詳細を述べる。 In the above description, the resonance frequency in the α direction is different from the resonance frequency in the β direction depending on the configuration of the support portion 3, but the support portion 3 is not configured as such (for example, the dimension L 2 in the y direction). The α-direction resonance frequency and the β-direction resonance frequency may be made different by appropriately setting the α-direction inertia moment and the β-direction inertia moment in the screen 1. . This will be described in detail in the section “3-3. Setting of Resonance Frequency” described later.
 1-3.スクリーンの駆動方法
 図3を参照して、本実施例におけるスクリーン1の駆動方法について説明する。図3(a)に示すように、スクリーン面におけるy軸まわりの角度、つまりα方向における角度を「角度α」と定義すると共に、スクリーン面におけるx軸まわりの角度、つまりβ方向における角度を「角度β」と定義する。本実施例では、制御部10は、2種類の共振周波数成分を有する信号を駆動部2に入力することで、角度α及び角度βが図3(b)~(d)に示すようなリサージュ図形を描くように制御する。スクリーン面の角度α及び角度βについてのリサージュ図形は、2種類の共振周波数における周波数比及び振幅比に応じて変わる。なお、角度βは、本発明における「第1角度」の一例に相当し、角度αは、本発明における「第2角度」の一例に相当する。
1-3. Screen Driving Method With reference to FIG. 3, a method for driving the screen 1 in this embodiment will be described. As shown in FIG. 3A, the angle around the y axis on the screen surface, that is, the angle in the α direction is defined as “angle α”, and the angle around the x axis on the screen surface, that is, the angle in the β direction is defined as “ It is defined as “angle β”. In this embodiment, the control unit 10 inputs a signal having two types of resonance frequency components to the driving unit 2 so that the angles α and β are Lissajous figures as shown in FIGS. 3B to 3D. Control to draw. The Lissajous figure for the angle α and the angle β of the screen surface changes according to the frequency ratio and the amplitude ratio at the two types of resonance frequencies. The angle β corresponds to an example of a “first angle” in the present invention, and the angle α corresponds to an example of a “second angle” in the present invention.
 図3(b)は、振幅比が「1:1」であり、周波数比が「1:1.5」である場合に、角度α及び角度βが描くリサージュ図形を示している。この場合には、「α=sin(ωt)」であり、「β=sin(1.5ωt)」である。図3(c)は、振幅比が「1:1」であり、周波数比が「0.5:1」である場合に、角度α及び角度βが描くリサージュ図形を示している。この場合には、「α=sin(0.5ωt)」であり、「β=sin(ωt)」である。図3(d)は、角度αと角度βとの振幅比が「1:1」であり、角度αと角度βとの周波数比が「1:1」である場合に、角度α及び角度βが描くリサージュ図形を示している。この場合には、「α=sin(ωt)」であり、「β=sin(ωt)」である。 FIG. 3B shows a Lissajous figure drawn by the angle α and the angle β when the amplitude ratio is “1: 1” and the frequency ratio is “1: 1.5”. In this case, “α = sin (ωt)” and “β = sin (1.5ωt)”. FIG. 3C shows a Lissajous figure drawn by the angle α and the angle β when the amplitude ratio is “1: 1” and the frequency ratio is “0.5: 1”. In this case, “α = sin (0.5ωt)” and “β = sin (ωt)”. FIG. 3D shows an angle α and an angle β when the amplitude ratio between the angle α and the angle β is “1: 1” and the frequency ratio between the angle α and the angle β is “1: 1”. Shows the Lissajous figure drawn by. In this case, “α = sin (ωt)” and “β = sin (ωt)”.
 本実施例では、スクリーン1におけるα方向(y軸まわり)の回転角速度dα/dt及びβ方向(x軸まわり)の回転角速度dβ/dtの両方が同時に「0」にならないように、駆動部2に入力する2種類の共振周波数を設定する。例えば、図3(b)及び図3(c)に示したリサージュ図形が得られるような2種類の共振周波数を設定する。図3(d)に示したリサージュ図形では、両端でα方向及びβ方向の両方とも回転角速度が「0」となるため、そのようなリサージュ図形となる共振周波数は採用しない。 In the present embodiment, the drive unit 2 prevents both the rotational angular velocity dα / dt in the α direction (around the y axis) and the rotational angular velocity dβ / dt in the β direction (around the x axis) on the screen 1 from simultaneously becoming “0”. Two types of resonance frequencies to be input to are set. For example, two types of resonance frequencies are set so that the Lissajous figures shown in FIGS. 3B and 3C can be obtained. In the Lissajous figure shown in FIG. 3D, the rotational angular velocities are “0” in both the α direction and the β direction at both ends, and therefore the resonance frequency that makes such a Lissajous figure is not adopted.
 ここで、図4を参照して、2種類の共振周波数成分を有する信号を駆動部2に入力する理由について説明する。図4は、横軸に周波数を示し、縦軸にスクリーン1の傾きの角速度振幅を示している。太線で表したグラフG1は、x軸まわり(β方向)についての周波数と傾きの角速度振幅との関係を示しており、細線で表したグラフG2は、y軸まわり(α方向)についての周波数と傾きの角速度振幅との関係を示している。また、周波数fは、x軸まわりの傾きの共振周波数を示しており、周波数fは、y軸まわりの傾きの共振周波数を示している。共振周波数fと共振周波数fとを異なる周波数に設定することで、共振周波数fに基づいてスクリーン1を駆動した場合には、ほぼx軸まわりの傾きが得られ、共振周波数fに基づいてスクリーン1を駆動した場合には、ほぼy軸まわりの傾きが得られる。また、共振周波数f及び共振周波数fに基づいてスクリーン1を駆動した場合には、x軸まわりの傾き及びy軸まわりの傾きが得られる。 Here, the reason why a signal having two types of resonance frequency components is input to the drive unit 2 will be described with reference to FIG. FIG. 4 shows the frequency on the horizontal axis and the angular velocity amplitude of the tilt of the screen 1 on the vertical axis. A graph G1 represented by a thick line shows the relationship between the frequency around the x axis (β direction) and the angular velocity amplitude of the gradient, and a graph G2 represented by a thin line represents the frequency around the y axis (α direction) and The relationship between the inclination and the angular velocity amplitude is shown. Further, the frequency f 1 indicates a resonance frequency having an inclination around the x axis, and the frequency f 2 indicates a resonance frequency having an inclination around the y axis. By setting the resonance frequency f 1 and the resonance frequency f 2 to different frequencies, when the screen 1 is driven based on the resonance frequency f 1 , an inclination about the x axis is obtained, and the resonance frequency f 2 When the screen 1 is driven based on this, an inclination about the y-axis can be obtained. In addition, when the screen 1 is driven based on the resonance frequency f 1 and the resonance frequency f 2 , an inclination about the x axis and an inclination about the y axis are obtained.
 したがって、本実施例では、同時に2軸(x軸及びy軸)まわりの傾き運動をスクリーン1に与えるべく、共振周波数f及び共振周波数fの周波数成分を有する信号を駆動部2に入力することとした。また、本実施例では、x軸まわり及びy軸まわりの傾き角速度を常に有する運動をスクリーン1に行わせるべく、図3で述べたように、共振周波数fと共振周波数fとにおける振幅比及び周波数比を適当な値に設定する。こうすることで、スペックルを適切に平均化することができる。 Thus, in this embodiment, to provide the two axes (x-axis and y-axis) around the tilt motion to the screen 1 at the same time, and inputs a signal having a frequency component of the resonant frequency f 1 and the resonance frequency f 2 to the driving section 2 It was decided. Further, in this embodiment, the amplitude ratio between the resonance frequency f 1 and the resonance frequency f 2 as shown in FIG. 3 is used to cause the screen 1 to always perform a motion having inclination angular velocities around the x axis and the y axis. And set the frequency ratio to an appropriate value. In this way, speckle can be appropriately averaged.
 1-4.支持部の補足
 図5を参照して、上記した支持部3について補足する。図5は、x方向の長さが「b」であり、y方向の長さが「h」である直方体のゴムブロック50に、モーメントMが作用した場合を示している。この場合、ゴムブロック50の一辺は縮み、ゴムブロック50の他辺は伸びる。伸縮の生じない線(中立軸)の曲率半径を「r」とすると、「M=EI/r」の関係がある(E:ヤング率、I:x軸まわりの断面2次モーメント)。また、矩形断面のx軸まわりの断面2次モーメントIは「I=bh/12」であり、矩形断面のy軸まわりの断面2次モーメントIは「I=hb/12」である。したがって、「h」と「b」とを異なる適当な長さに設定することで、所定の特性を得ることができる。つまり、上記した支持部3の「L1」と「L2」とを異なる適当な長さに設定することで、α方向の共振周波数及びβ方向の共振周波数のそれぞれを所望の周波数にすることができる。
1-4. Supplement of Support Part With reference to FIG. 5, the support part 3 described above will be supplemented. FIG. 5 shows a case where the moment M acts on a rectangular rubber block 50 having a length in the x direction of “b” and a length in the y direction of “h”. In this case, one side of the rubber block 50 contracts and the other side of the rubber block 50 extends. If the radius of curvature of a line (neutral axis) where no expansion or contraction occurs is “r”, there is a relationship of “M = EI / r” (E: Young's modulus, I: secondary moment around the x axis). The cross-sectional secondary moment I x around the x-axis of the rectangular cross-section is "I x = bh 3/12", the second moment I y around the y-axis of the rectangular cross-section "I y = hb 3/12 Is. Therefore, predetermined characteristics can be obtained by setting “h” and “b” to appropriate different lengths. That is, by setting “L1” and “L2” of the support portion 3 to different appropriate lengths, the resonance frequency in the α direction and the resonance frequency in the β direction can be set to desired frequencies, respectively. .
 次に、図6を参照して、上記した支持部3の変形例について説明する。図6(a)~(d)は、変形例に係る支持部31~34の断面形状(詳しくはxy平面に沿って切断した断面図)を示している。変形例に係る支持部31~34も弾性体で構成される。図6(a)に示す支持部31では断面2次モーメントは「I=(bh-b )/12」であり、図6(b)に示す支持部32では断面2次モーメントは「I=b(h-h )/12」であり、図6(c)に示す支持部33では断面2次モーメントは「I=(BH-bh)/12」であり、図6(d)に示す支持部34では断面2次モーメントは「I=(BH+bh)/12」である。 Next, with reference to FIG. 6, the modification of the above-mentioned support part 3 is demonstrated. 6A to 6D show cross-sectional shapes (specifically, cross-sectional views cut along the xy plane) of the support portions 31 to 34 according to the modification. The support portions 31 to 34 according to the modification are also made of an elastic body. In the support portion 31 shown in FIG. 6A, the secondary moment of section is “I = (bh 3 −b 1 h 1 3 ) / 12”, and in the support portion 32 shown in FIG. Is “I = b (h 3 −h 1 3 ) / 12”, and the second moment of section is “I = (BH 3 −bh 3 ) / 12” in the support portion 33 shown in FIG. 6C. In the support portion 34 shown in FIG. 6D, the second moment of section is “I = (BH 3 + bh 3 ) / 12”.
 2.比較例の問題点
 次に、本実施例と比較するための比較例を挙げ、その比較例の問題点について説明する。ここでは、スクリーン1からの光の射出角の拡大及びスペックル低減のために、スクリーン1をその面内方向に並進運動させる比較例1、2を挙げる。
2. Problems of Comparative Example Next, a comparative example for comparison with the present example will be given, and problems of the comparative example will be described. Here, Comparative Examples 1 and 2 are described in which the screen 1 is translated in the in-plane direction in order to increase the emission angle of light from the screen 1 and to reduce speckle.
 2-1.比較例1
 図7は、比較例1に係るスクリーン装置100x1の構成を示す図である。比較例1に係るスクリーン装置100x1では、x方向及びy方向にスクリーン1を並進運動させるために、平行ばねとしての支持部3x1を4つ用いてスクリーン1を支持する。また、比較例1に係るスクリーン装置100x1では、x方向とy方向とで共振周波数を同一にしている。更に、比較例1に係るスクリーン装置100x1では、スクリーン1をx方向に駆動するための駆動部2x1aと、スクリーン1をy方向に駆動するための駆動部2x1bとを別々に用いて、x方向とy方向とで位相差90°を有する信号を駆動部2x1a、2x1bに入力することでスクリーン1を駆動する。こうすることで、スクリーン1を円運動させる。
2-1. Comparative Example 1
FIG. 7 is a diagram illustrating a configuration of the screen device 100x1 according to the first comparative example. In the screen device 100x1 according to the comparative example 1, in order to translate the screen 1 in the x direction and the y direction, the screen 1 is supported using four support portions 3x1 as parallel springs. In the screen device 100x1 according to the comparative example 1, the resonance frequency is the same in the x direction and the y direction. Furthermore, in the screen device 100x1 according to the comparative example 1, the driving unit 2x1a for driving the screen 1 in the x direction and the driving unit 2x1b for driving the screen 1 in the y direction are separately used, The screen 1 is driven by inputting a signal having a phase difference of 90 ° in the y direction to the drive units 2 × 1a and 2 × 1b. By doing so, the screen 1 is moved in a circular motion.
 このような比較例1に係るスクリーン装置100x1には、以下のような問題がある。まず、比較例1に係るスクリーン装置100x1では、2つの駆動部2x1a、2x1bを用いるため、小型化及び低コスト化が困難である。また、並進運動を実現するためには駆動力F、Fが重心Gを通る必要があるので、駆動部2x1a、2x1bの精密な位置調整が必要となる。また、共振周波数での駆動は、並進運動の共振周波数と回転運動(つまりスクリーン1の面内回転)の共振周波数とが近いため、回転運動を極力排除する必要がある。これは、スクリーン1の面内で速度むらが生じるためである(詳細は図9で説明する)。更に、共振周波数以外の駆動は、共振周波数での駆動に対し効率が悪い。 Such a screen device 100x1 according to Comparative Example 1 has the following problems. First, in the screen device 100x1 according to the comparative example 1, since the two drive units 2x1a and 2x1b are used, it is difficult to reduce the size and the cost. Further, since the driving forces F x and F y need to pass through the center of gravity G in order to realize the translational movement, precise position adjustment of the driving units 2x1a and 2x1b is necessary. Further, since driving at the resonance frequency is close to the resonance frequency of the translational motion and the resonance frequency of the rotational motion (that is, in-plane rotation of the screen 1), it is necessary to eliminate the rotational motion as much as possible. This is because unevenness in speed occurs in the plane of the screen 1 (details will be described with reference to FIG. 9). Furthermore, driving other than the resonance frequency is less efficient than driving at the resonance frequency.
 2-2.比較例2
 図8は、比較例2に係るスクリーン装置100x2の構成を示す図である。比較例2に係るスクリーン装置100x2では、x方向及びy方向にスクリーン1を並進運動させるために、平行ばねとしての支持部3x2を4つ用いてスクリーン1を支持する。また、比較例2に係るスクリーン装置100x2では、x方向よりもy方向のほうが硬い支持部3x2を用いることで、x方向とy方向とで共振周波数を異ならせている。更に、比較例2に係るスクリーン装置100x2では、x軸及びy軸の両方に対して傾けて配置された1つの駆動部2x2を用い、2種類の共振周波数を合成した信号を駆動部2x2に入力することでスクリーン1を駆動する。
2-2. Comparative Example 2
FIG. 8 is a diagram illustrating a configuration of a screen device 100x2 according to the second comparative example. In the screen device 100x2 according to the comparative example 2, in order to translate the screen 1 in the x direction and the y direction, the screen 1 is supported using four support portions 3x2 as parallel springs. In the screen device 100x2 according to the comparative example 2, the resonance frequency is made different between the x direction and the y direction by using the support portion 3x2 that is harder in the y direction than in the x direction. Furthermore, in the screen device 100x2 according to the comparative example 2, a single drive unit 2x2 arranged to be inclined with respect to both the x-axis and the y-axis is used, and a signal obtained by combining two types of resonance frequencies is input to the drive unit 2x2. By doing so, the screen 1 is driven.
 このような比較例2に係るスクリーン装置100x2には、以下のような問題がある。まず、比較例2に係るスクリーン装置100x2では、並進運動を実現するためには駆動力Fが重心Gを通る必要があるので、駆動部2x2の精密な位置調整が必要となる。また、共振周波数での駆動のため、回転運動(つまりスクリーン1の面内回転)の共振を避ける必要があるが、支持部3x2(4本の平行ばね)は回転運動を制御しなければならないので機構が複雑化する。これは、スクリーン1の面内で速度むらが生じるためである(詳細は図9で説明する)。更に、2種類の共振周波数の設定パラメータはばね定数のみであるため、設計自由度が低い。つまり、x方向及びy方向ともに可動部質量が同一であるため、共振周波数の設定はx方向及びy方向のばね定数のみで決定するしかない。 The screen device 100x2 according to the comparative example 2 has the following problems. First, in the screen device 100x2 according to the comparative example 2, since it is necessary for the driving force F to pass through the center of gravity G in order to realize translational movement, precise position adjustment of the driving unit 2x2 is necessary. Further, because of the drive at the resonance frequency, it is necessary to avoid the resonance of the rotational motion (that is, the in-plane rotation of the screen 1), but the support portion 3x2 (four parallel springs) must control the rotational motion. The mechanism becomes complicated. This is because unevenness in speed occurs in the plane of the screen 1 (details will be described with reference to FIG. 9). Furthermore, since the setting parameter for the two types of resonance frequencies is only the spring constant, the degree of freedom in design is low. That is, since the movable part mass is the same in both the x direction and the y direction, the resonance frequency can only be determined by the spring constants in the x direction and the y direction.
 2-3.比較例1、2の補足
 図9を参照して、上記した比較例1、2について補足する。図9(a)は、スクリーン1の重心駆動が実現されている場合を示している。具体的には、重心Gを通る駆動力Fがスクリーン1に付与されている場合を示している。この場合には、重心Gまわりのトルクは発生せず、スクリーン1は並進運動するので、スクリーン1内のどの位置の速度も等しい。例えば、重心Gでのy方向速度Vと、重心Gから距離L4だけ離れた2つの位置P1、P2でのy方向速度VP1、VP2とは等しい(V=VP1=VP2)。
2-3. Supplementation of Comparative Examples 1 and 2 With reference to FIG. FIG. 9A shows a case where the gravity center drive of the screen 1 is realized. Specifically, the case where the driving force F passing through the center of gravity G is applied to the screen 1 is shown. In this case, no torque is generated around the center of gravity G, and the screen 1 moves in translation, so that the speed of any position in the screen 1 is equal. For example, the y-direction speed V G at the center of gravity G is equal to the y-direction speeds V P1 and V P2 at two positions P1 and P2 that are separated from the center of gravity G by a distance L4 (V G = V P1 = V P2 ). .
 図9(b)及び(c)は、スクリーン1が非重心駆動されている場合を示している。具体的には、図9(b)に示すように、重心Gから「ε」だけずれた位置から駆動力Fがスクリーン1に付与されている場合を示している。この場合には、図9(c)に示すように、重心駆動力Fと重心GまわりのトルクT(T=F*ε)との合成された表現と同様の運動となる。したがって、例えば、重心Gでのy方向速度Vと、位置P1でのy方向速度VP1と、位置P2でのy方向速度VP2とがそれぞれ異なってしまう(V≠VP1、V≠VP2、VP1≠VP2)。そのため、スクリーン1の中央付近ではスペックルが消滅する速度を実現していても、例えば位置P1では、速度が低いためにスペックルが消滅しないといった現象が生じる場合がある。実際は、x方向の運動についても回転運動は影響するため、スクリーン1の面内での回転運動は極力低減する必要がある。 FIGS. 9B and 9C show a case where the screen 1 is driven with a non-centroid. Specifically, as shown in FIG. 9B, a case where the driving force F is applied to the screen 1 from a position shifted from the center of gravity G by “ε” is shown. In this case, as shown in FIG. 9C, the motion is the same as the synthesized expression of the gravity center driving force F and the torque T (T = F * ε) around the gravity center G. Thus, for example, a y-direction velocity V G of the center of gravity G, the y-direction velocity V P1 at the position P1, the y-direction velocity V P2 at the position P2 becomes different respectively (V GV P1, V G ≠ V P2 , V P1 ≠ V P2 ). Therefore, even if the speed at which the speckle disappears near the center of the screen 1, a phenomenon may occur in which, for example, the speckle does not disappear at the position P <b> 1 because the speed is low. Actually, since the rotational motion also affects the motion in the x direction, the rotational motion in the plane of the screen 1 needs to be reduced as much as possible.
 3.本実施例の作用・効果
 次に、本実施例の作用・効果について説明する。
3. Next, the operation and effect of the present embodiment will be described.
 3-1.スペックル低減
 図10は、スペックル(スペックルノイズ)の低減効果を説明するための図を示している。図10(a)~(c)は、一様な強度分布を有する入射ビームがスクリーン1で拡散反射される様子を概略的に示している。このようにスクリーン1によりビームを拡散反射させると、視野角の拡大や観察可能範囲の拡大が実現される。
3-1. Speckle Reduction FIG. 10 is a diagram for explaining the effect of reducing speckle (speckle noise). FIGS. 10A to 10C schematically show how an incident beam having a uniform intensity distribution is diffusely reflected by the screen 1. When the beam is diffusely reflected by the screen 1 in this way, the viewing angle and the observable range can be expanded.
 図10(a)は、スクリーン1を移動させずに固定する比較例を示している。この場合には、スクリーン1のランダムな凹凸(凹凸による位相差)に起因する干渉により、スクリーン1の凹凸に対応した強度分布が生じる、つまりスペックルが生じる。図10(b)は、スクリーン1を並進させる比較例を示している。この場合には、スクリーン1の凹凸に対応した強度分布が変化する。これにより、当該強度分布が平均化することで、スペックルが低減する。 FIG. 10A shows a comparative example in which the screen 1 is fixed without moving. In this case, the intensity distribution corresponding to the unevenness of the screen 1 is generated due to the interference caused by the random unevenness of the screen 1 (phase difference due to the unevenness), that is, speckles occur. FIG. 10B shows a comparative example in which the screen 1 is translated. In this case, the intensity distribution corresponding to the unevenness of the screen 1 changes. Accordingly, the speckle is reduced by averaging the intensity distribution.
 図10(c)は、スクリーン1を揺動させる本実施例を示している。本実施例では、高速(例えばリフレッシュレートより高い周波数)でスクリーン1を揺動させることにより、図10(b)に示した例と同様に、スクリーン1の凹凸に対応した強度分布を高速で変化させることで平均化する。したがって、本実施例によれば、スペックルを適切に低減することができる。 FIG. 10C shows the present embodiment in which the screen 1 is swung. In this embodiment, by swinging the screen 1 at a high speed (for example, a frequency higher than the refresh rate), the intensity distribution corresponding to the unevenness of the screen 1 can be changed at a high speed as in the example shown in FIG. To average. Therefore, according to the present embodiment, speckle can be appropriately reduced.
 なお、本実施例では、スクリーン1を傾けるため光軸方向も変化するが、この影響も高速変位することで平均化することができる。また、入射ビームは平行光に近く、焦点深度が広いため、スポットぼけも無視することができる。 In this embodiment, since the screen 1 is tilted, the direction of the optical axis also changes, but this influence can also be averaged by high-speed displacement. Further, since the incident beam is close to parallel light and has a wide focal depth, spot blur can be ignored.
 3-2.xy平面内の回転
 本実施例によれば、図2に示したように、駆動部2によってx軸及びy軸とは異なる軸pまわりにトルクを発生することで、スクリーン1に対してx軸まわりの傾きとy軸まわりの傾きとを発生させる。そのため、基本的には、スクリーン1はxy平面内(つまりスクリーン面内)で回転しない。したがって、本実施例によれば、「2.比較例の問題点」のセクションで述べたような回転運動による不具合(スペックル低減効果の低下など)を適切に抑制することができる。
3-2. Rotation in the xy plane According to the present embodiment, as shown in FIG. 2, the drive unit 2 generates a torque around an axis p different from the x axis and the y axis, so that the x axis is relative to the screen 1. A tilt around and a tilt around the y-axis are generated. Therefore, basically, the screen 1 does not rotate in the xy plane (that is, in the screen surface). Therefore, according to the present embodiment, it is possible to appropriately suppress problems due to rotational motion (such as a reduction in speckle reduction effect) as described in the section “2. Problems of Comparative Examples”.
 3-3.共振周波数の設定
 本実施例によれば、例えば比較例2と比較して、共振周波数の設定が容易である。これについて、図11を参照して説明する。図11では、本実施例に係るスクリーン装置100において、x軸上のy軸から離れた位置に質量を追加した例を示している(符号60a、60b参照)。この場合、y軸まわりの慣性モーメントは大きくなるが、x軸まわりの慣性モーメントはほとんど変化しない。そのため、図11に示すように質量を追加すると、x軸まわりの共振周波数をほとんど変化させることなく、y軸まわりの共振周波数を下げることができる。これと同様の原理にて、y軸上のx軸から離れた位置に質量を追加した場合には、y軸まわりの共振周波数をほとんど変化させることなく、x軸まわりの共振周波数を下げることができる。また、質量を追加する位置を適宜変えることで、x軸まわりの共振周波数及びy軸まわりの共振周波数の両方を適宜変えることができる。
3-3. Setting of Resonance Frequency According to the present embodiment, setting of the resonance frequency is easy as compared with, for example, Comparative Example 2. This will be described with reference to FIG. FIG. 11 shows an example in which mass is added to the screen device 100 according to the present embodiment at a position away from the y axis on the x axis (see reference numerals 60a and 60b). In this case, the moment of inertia about the y-axis increases, but the moment of inertia about the x-axis hardly changes. Therefore, when mass is added as shown in FIG. 11, the resonance frequency around the y axis can be lowered without substantially changing the resonance frequency around the x axis. Based on the same principle, when mass is added at a position away from the x-axis on the y-axis, the resonance frequency around the x-axis can be lowered without substantially changing the resonance frequency around the y-axis. it can. In addition, by appropriately changing the position where the mass is added, both the resonance frequency around the x axis and the resonance frequency around the y axis can be changed as appropriate.
 このように、本実施例に係るスクリーン装置100によれば、可動部(スクリーン1)におけるx軸まわりの慣性モーメント及びy軸まわりの慣性モーメントのそれぞれを独立に設定することができる。よって、共振周波数の設定を容易に行うことができる、つまり設計の自由度が高くなる。 Thus, according to the screen device 100 according to the present embodiment, each of the moment of inertia around the x axis and the moment of inertia around the y axis in the movable portion (screen 1) can be set independently. Therefore, the resonance frequency can be set easily, that is, the degree of freedom in design is increased.
 3-4.まとめ
 以上をまとめると、本実施例によれば、スクリーン1を並進駆動させる構成と同等のスペックル低減効果が得られる。また、本実施例によれば、スクリーン1を揺動させるため、支持部3を簡略化することができ、低コスト化を実現することができる。更に、本実施例によれば、スクリーン1を並進駆動させる構成と比較して、設計自由度が高く、低コスト小型化設計が可能となる。
3-4. Summary In summary, according to the present embodiment, a speckle reduction effect equivalent to the configuration in which the screen 1 is driven in translation can be obtained. Further, according to the present embodiment, since the screen 1 is swung, the support portion 3 can be simplified, and the cost can be reduced. Furthermore, according to the present embodiment, the degree of freedom in design is high compared to the configuration in which the screen 1 is driven in translation, and a low-cost and compact design is possible.
 4.変形例
 次に、上記した実施例の変形例について説明する。なお、下記の変形例は、任意に組み合わせて実施することができる。
4). Modified Example Next, a modified example of the above-described embodiment will be described. Note that the following modifications can be implemented in any combination.
 4-1.変形例1
 上記した実施例では、スクリーン1の隅に駆動部2を設けていたが、これに限定はされない。言い換えると、スクリーン1の対角線に直交する軸を、スクリーン1に付与するモーメントについての軸pとすることに限定はされない。つまり、駆動部2はスクリーン1に駆動力Fを付与できる位置であれば種々の位置に設けることができ、駆動部2の位置に応じて軸pの傾き(方向)も種々に変わる。
4-1. Modification 1
In the above-described embodiment, the drive unit 2 is provided at the corner of the screen 1, but this is not a limitation. In other words, the axis orthogonal to the diagonal line of the screen 1 is not limited to the axis p for the moment applied to the screen 1. That is, the drive unit 2 can be provided at various positions as long as the drive force F can be applied to the screen 1, and the inclination (direction) of the axis p varies depending on the position of the drive unit 2.
 図12は、駆動部2を種々の位置に設けた場合の一例を示している。図12(a)に示すように、スクリーン1の隅の位置以外にも、例えば矢印Ar21、Ar22で示す位置に駆動部2を設けることができる。ここで、駆動部2の位置座標を(x、y)とすると、p軸の傾きφは「φ=tan-1(y/x)+90°」と表される。また、駆動部2の位置と重心Gとを結んだ直線と、x軸とが成す角度を「θ」とすると、p軸の傾きφは「φ=θ+90°」と表される。図12(b)は、矢印Ar21、Ar22で示す位置に駆動部2を設けた場合の、角度θの例(θ1及びθ2)と、p軸の傾きφの例(p1軸の傾きφ1及びp2軸の傾きφ2)とを例示している。 FIG. 12 shows an example in which the drive unit 2 is provided at various positions. As shown in FIG. 12A, in addition to the corner positions of the screen 1, for example, the drive unit 2 can be provided at positions indicated by arrows Ar21 and Ar22. Here, if the position coordinate of the drive unit 2 is (x, y), the inclination φ of the p-axis is expressed as “φ = tan −1 (y / x) + 90 °”. Further, if the angle formed by the straight line connecting the position of the drive unit 2 and the center of gravity G and the x axis is “θ”, the inclination φ of the p axis is expressed as “φ = θ + 90 °”. FIG. 12B shows an example of the angle θ (θ1 and θ2) and an example of the p-axis inclination φ (p1-axis inclination φ1 and p2 when the driving unit 2 is provided at the positions indicated by the arrows Ar21 and Ar22. The axis inclination φ2) is illustrated.
 次に、図13を参照して、p軸の好適な傾きについて説明する。ここでは、図13に示すように、p軸の傾きγを定義する。x軸まわりのスクリーン1の慣性モーメントIと、y軸まわりのスクリーン1の慣性モーメントIとを用いて、p軸の傾きγを「γ=tan-1(I/I)」とする。そうすると、x軸まわりの角速度振幅とy軸まわりの角速度振幅とをほぼ等しくし制御を容易にすることができる。このような関係はスクリーン1がほぼ一様な面密度とみなせる範囲では、「γ=tan-1(L6/L5)」と表すことができる(「L5」はスクリーン1の矩形の横方向の長さであり、「L6」はスクリーン1の矩形の縦方向の長さである)。 Next, a preferred inclination of the p-axis will be described with reference to FIG. Here, as shown in FIG. 13, the inclination γ of the p-axis is defined. Using the moment of inertia I x of the screen 1 around the x axis and the moment of inertia I y of the screen 1 around the y axis, the inclination γ of the p axis is expressed as “γ = tan −1 (I x / I y )”. To do. Then, the angular velocity amplitude around the x axis and the angular velocity amplitude around the y axis can be made substantially equal to facilitate control. Such a relationship can be expressed as “γ = tan −1 (L6 2 / L5 2 )” in a range in which the screen 1 can be regarded as a substantially uniform surface density (“L5” is the horizontal direction of the rectangle of the screen 1). “L6” is the length of the rectangle of the screen 1 in the vertical direction).
 4-2.変形例2
 変形例2は、上記した実施例に係る支持部3についての他の例に関する。
4-2. Modification 2
The modification 2 relates to another example of the support part 3 according to the above-described embodiment.
 図14は、変形例2の第1の例に係るスクリーン装置100aの構成を示す図である。図14に示すように、スクリーン装置100aは、支持部3の代わりに、トーションバーとしての支持部3a1、3a2を有すると共に、ベース4の代わりに、ベース4a1及びサブフレーム4a2を有する点で、実施例に係るスクリーン装置100と異なる。スクリーン装置100aでは、スクリーン1はx軸に沿った支持部3a1及びy軸に沿った支持部3a2によって支持されている。具体的には、スクリーン1は、支持部3a1を介してサブフレーム4a2に固定され、サブフレーム4a2は、支持部3a2を介してベース4a1に固定されている。支持部3a1は、スクリーン1をx軸まわりに揺動可能に支持し、支持部3a2は、サブフレーム4a2をy軸まわりに揺動可能に支持する。このような変形例2の第1の例に係るスクリーン装置100aも、上記した実施例に係るスクリーン装置100と同様に機能する。 FIG. 14 is a diagram illustrating a configuration of a screen device 100a according to a first example of the second modification. As shown in FIG. 14, the screen device 100 a is implemented in that it has support portions 3 a 1 and 3 a 2 as torsion bars instead of the support portion 3, and has a base 4 a 1 and a subframe 4 a 2 instead of the base 4. Different from the screen device 100 according to the example. In the screen device 100a, the screen 1 is supported by a support portion 3a1 along the x axis and a support portion 3a2 along the y axis. Specifically, the screen 1 is fixed to the subframe 4a2 via the support portion 3a1, and the subframe 4a2 is fixed to the base 4a1 via the support portion 3a2. The support portion 3a1 supports the screen 1 so as to be swingable around the x axis, and the support portion 3a2 supports the subframe 4a2 so as to be swingable around the y axis. The screen device 100a according to the first example of the second modification also functions in the same manner as the screen device 100 according to the above-described embodiment.
 図15は、変形例2の第2の例に係るスクリーン装置100bの構成を示す図である。図15に示すように、スクリーン装置100bは、支持部3の代わりに、球面軸受けとしての支持部3b1及びばねとしての支持部3b2を有する点で、実施例に係るスクリーン装置100と異なる。スクリーン装置100bでは、スクリーン1は、x軸を対称軸として線対称な位置に配置された2つの支持部3b1と、y軸を対称軸として線対称な位置に配置された2つの支持部3b2とによって支持される。ばねとしての支持部3b2は、球面軸受けとしての支持部3b1からスクリーン1が離れないように付勢力も発生する。このような変形例2の第2の例に係るスクリーン装置100bも、上記した実施例に係るスクリーン装置100と同様に機能する。 FIG. 15 is a diagram illustrating a configuration of a screen device 100b according to a second example of the second modification. As shown in FIG. 15, the screen device 100 b is different from the screen device 100 according to the embodiment in that the screen device 100 b includes a support portion 3 b 1 as a spherical bearing and a support portion 3 b 2 as a spring instead of the support portion 3. In the screen device 100b, the screen 1 includes two support portions 3b1 arranged at line-symmetric positions with the x axis as a symmetry axis, and two support portions 3b2 arranged at line-symmetric positions with the y axis as a symmetry axis. Supported by. The support portion 3b2 as a spring also generates a biasing force so that the screen 1 is not separated from the support portion 3b1 as a spherical bearing. The screen device 100b according to the second example of the second modification also functions in the same manner as the screen device 100 according to the above-described embodiment.
 4-3.変形例3
 上記した実施例では、1つの駆動部2のみを用いていたが、変形例3では、2以上の駆動部を用いる。
4-3. Modification 3
In the above-described embodiment, only one driving unit 2 is used. However, in Modification 3, two or more driving units are used.
 図16は、変形例3の第1の例に係るスクリーン装置100cの構成を示す図である。図16に示すように、スクリーン装置100cは、2つの駆動部2c1、2c2を用いる点で、実施例に係るスクリーン装置100と異なる。駆動部2c1、2c2は、スクリーン1の対角線上において重心Gを挟んで対称な位置(重心Gから概ね距離L3だけ離れた位置)に配置されている。また、駆動部2c1、2c2は、逆相で駆動される。つまり、駆動部2c1、2c2の一方がスクリーン1を押し上げる力Fを付与している際には、駆動部2c1、2c2の他方がスクリーン1を押し下げる力「-F」を付与するように、駆動部2c1、2c2が駆動される。こうすると、xy平面に垂直な方向の力が「0」となるため、スクリーン1には揺動させるトルクのみが生じる。そのため、動作時の振動を低減することができる。 FIG. 16 is a diagram illustrating a configuration of a screen device 100c according to a first example of the third modification. As shown in FIG. 16, the screen device 100c is different from the screen device 100 according to the embodiment in that two drive units 2c1 and 2c2 are used. The drive units 2c1 and 2c2 are disposed on the diagonal line of the screen 1 at symmetrical positions (positions separated from the center of gravity G by a distance L3) with the center of gravity G in between. The drive units 2c1 and 2c2 are driven in reverse phase. That is, when one of the drive units 2c1 and 2c2 applies a force F that pushes up the screen 1, the other drive unit 2c1 and 2c2 applies a force “−F” that pushes down the screen 1. 2c1 and 2c2 are driven. In this case, since the force in the direction perpendicular to the xy plane is “0”, only the swinging torque is generated on the screen 1. Therefore, vibration during operation can be reduced.
 図17は、変形例3の第2の例に係るスクリーン装置100dの構成を示す図である。図17に示すように、スクリーン装置100dは、4つの駆動部2d1~2d4を用いる点で、実施例に係るスクリーン装置100と異なる。駆動部2d1、2d2は、y軸を対称軸として線対称な位置に配置されており、駆動部2d3、2d4は、x軸を対称軸として線対称な位置に配置されている。駆動部2d1、2d2は、逆相で駆動される。つまり、駆動部2d1、2d2の一方がスクリーン1を押し上げる力Fを付与している際には、駆動部2d1、2d2の他方がスクリーン1を押し下げる力「-F」を付与するように、駆動部2d1、2d2が駆動される。また、駆動部2d3、2d4も、逆相で駆動される。つまり、駆動部2d3、2d4の一方がスクリーン1を押し上げる力Fを付与している際には、駆動部2d3、2d4の他方がスクリーン1を押し下げる力「-F」を付与するように、駆動部2d3、2d4が駆動される。このような変形例3の第2の例によっても、xy平面に垂直な方向の力が「0」となるため、スクリーン1には揺動させるトルクのみが生じるので、動作時の振動を低減することができる。 FIG. 17 is a diagram illustrating a configuration of a screen device 100d according to a second example of the third modification. As shown in FIG. 17, the screen device 100d is different from the screen device 100 according to the embodiment in that four driving units 2d1 to 2d4 are used. The drive units 2d1 and 2d2 are arranged at line-symmetrical positions with the y axis as the symmetry axis, and the drive units 2d3 and 2d4 are arranged at line-symmetrical positions with the x axis as the symmetry axis. The drive units 2d1 and 2d2 are driven in opposite phases. In other words, when one of the drive units 2d1 and 2d2 applies a force F y that pushes up the screen 1, the other of the drive units 2d1 and 2d2 applies a force “−F y ” that pushes down the screen 1. The drive units 2d1 and 2d2 are driven. The drive units 2d3 and 2d4 are also driven in opposite phases. In other words, as when one of the driving portion 2d3,2d4 is applying a force F x which pushes up the screen 1, the other driver 2d3,2d4 imparts a force "-F x" depressing the screen 1, The drive units 2d3 and 2d4 are driven. Also according to the second example of the third modification example, since the force in the direction perpendicular to the xy plane is “0”, only the swinging torque is generated on the screen 1, thereby reducing vibration during operation. be able to.
 5.適用例
 本発明は、1つの例では、レーザープロジェクタのスクリーンに適用することができる。これにより、レーザー特有のスペックルが無く、高解像度で色再現性の良い画像を実現することができる。他の例では、本発明は、レーザースキャン型光源から中間像を生成するヘッドアップディスプレイやヘッドマウントディスプレイに適用することができる。更に他の例では、本発明は、LCD(Liquid Crystal Display)やDLP(Digital Light Processing)の光源に適用することができる。これにより、色再現性の良いディスプレイを実現することができる。
5. Application Example In one example, the present invention can be applied to a screen of a laser projector. As a result, it is possible to realize an image with high resolution and good color reproducibility without laser-specific speckles. In another example, the present invention can be applied to a head-up display or a head-mounted display that generates an intermediate image from a laser scanning light source. In yet another example, the present invention can be applied to a light source of LCD (Liquid Crystal Display) or DLP (Digital Light Processing). Thereby, a display with good color reproducibility can be realized.
 1 スクリーン
 2 駆動部
 3 支持部
 4 ベース
 10 制御部
 100 スクリーン装置
 200 プロジェクタ
 400a、400b 表示システム
DESCRIPTION OF SYMBOLS 1 Screen 2 Drive part 3 Support part 4 Base 10 Control part 100 Screen apparatus 200 Projector 400a, 400b Display system

Claims (13)

  1.  スクリーンと、
     前記スクリーンの面内における一の方向に沿った第1の軸まわりと、前記スクリーンの面内における前記一の方向と交差する他の方向に沿った第2の軸まわりとに、前記スクリーンを揺動可能に支持する支持部と、
     前記第1の軸及び前記第2の軸とは方向が異なる第3の軸まわりに、前記スクリーンを駆動する駆動部と、
     を備えることを特徴とするスクリーン装置。
    Screen,
    The screen is swung around a first axis along one direction in the plane of the screen and around a second axis along another direction that intersects the one direction in the plane of the screen. A support section that is movably supported;
    A drive unit for driving the screen around a third axis having a direction different from that of the first axis and the second axis;
    A screen device comprising:
  2.  前記スクリーンにおける前記第1の軸まわりの第1共振周波数と前記第2の軸まわりの第2共振周波数とが異なるように構成されていることを特徴とする請求項1に記載のスクリーン装置。 2. The screen device according to claim 1, wherein a first resonance frequency around the first axis and a second resonance frequency around the second axis in the screen are different from each other.
  3.  前記第1共振周波数及び前記第2共振周波数の成分を有する信号で前記駆動部を制御する制御部を更に有することを特徴とする請求項2に記載のスクリーン装置。 3. The screen device according to claim 2, further comprising a control unit that controls the driving unit with a signal having components of the first resonance frequency and the second resonance frequency.
  4.  前記制御部は、前記第1共振周波数と前記第2共振周波数との周波数比及び振幅比を設定して、前記スクリーンの面についての前記第1の軸まわりの第1角度と前記第2の軸まわりの第2角度とがリサージュ図形を描くように前記駆動部を制御することを特徴とする請求項3に記載のスクリーン装置。 The control unit sets a frequency ratio and an amplitude ratio between the first resonance frequency and the second resonance frequency, and a first angle around the first axis and the second axis with respect to the surface of the screen The screen device according to claim 3, wherein the driving unit is controlled so that a second angle around the lens draws a Lissajous figure.
  5.  前記制御部は、前記第1角度の角速度及び前記第2角度の角速度が同時に「0」にならないように、前記周波数比及び前記振幅比を設定することを特徴とする請求項4に記載のスクリーン装置。 5. The screen according to claim 4, wherein the control unit sets the frequency ratio and the amplitude ratio so that the angular velocity of the first angle and the angular velocity of the second angle do not simultaneously become “0”. apparatus.
  6.  前記駆動部は、前記スクリーンの一箇所にのみ力を付与することで、前記スクリーンを駆動することを特徴とする請求項1乃至5のいずれか一項に記載のスクリーン装置。 The screen device according to any one of claims 1 to 5, wherein the driving unit drives the screen by applying a force to only one portion of the screen.
  7.  前記駆動部は、前記スクリーンが揺動する際の中心位置を基準にして対称となる前記スクリーン上の二箇所に力を付与することで、前記スクリーンを駆動することを特徴とする請求項1乃至5のいずれか一項に記載のスクリーン装置。 The drive unit drives the screen by applying a force to two locations on the screen that are symmetrical with respect to a center position when the screen swings. The screen device according to claim 5.
  8.  前記駆動部は、前記二箇所の一方と前記二箇所の他方とで互いに逆向きとなる力を付与することを特徴とする請求項7に記載のスクリーン装置。 The screen device according to claim 7, wherein the driving unit applies forces that are opposite to each other at one of the two places and the other of the two places.
  9.  前記支持部は、前記第1の軸まわりの断面2次モーメントと、前記第2の軸まわりの断面2次モーメントとが異なる弾性体であることを特徴とする請求項1乃至8のいずれか一項に記載のスクリーン装置。 The said support part is an elastic body from which the cross-sectional secondary moment around the said 1st axis | shaft differs from the cross-sectional secondary moment around the said 2nd axis | shaft. The screen device according to the item.
  10.  前記弾性体は、前記一の方向に沿った長さと、前記他の方向に沿った長さとが異なる断面形状を有することを特徴とする請求項9に記載のスクリーン装置。 10. The screen device according to claim 9, wherein the elastic body has a cross-sectional shape in which a length along the one direction is different from a length along the other direction.
  11.  前記支持部は、前記スクリーンを前記第1の軸まわりに揺動可能に支持する第1トーションバーと、前記スクリーンを前記第2の軸まわりに揺動可能に支持する第2トーションバーと、を有することを特徴とする請求項1乃至8のいずれか一項に記載のスクリーン装置。 The support portion includes: a first torsion bar that supports the screen so as to be swingable around the first axis; and a second torsion bar that supports the screen so as to be swingable around the second axis. The screen device according to claim 1, wherein the screen device is provided.
  12.  前記支持部は、球面軸受けと、前記スクリーンが前記球面軸受けから離れないように当該スクリーンに付勢力を少なくとも付与するばねと、を有することを特徴とする請求項1乃至8のいずれか一項に記載のスクリーン装置。 The said support part has a spherical bearing and the spring which provides at least urging | biasing force to the said screen so that the said screen may not leave | separate from the said spherical bearing, The Claim 1 thru | or 8 characterized by the above-mentioned. The screen device as described.
  13.  前記スクリーンは、前記第1の軸まわりの慣性モーメントと、前記第2の軸まわりの慣性モーメントとが異なることを特徴とする請求項1乃至12のいずれか一項に記載のスクリーン装置。 The screen device according to any one of claims 1 to 12, wherein the screen has a moment of inertia around the first axis and a moment of inertia around the second axis.
PCT/JP2013/060835 2013-04-10 2013-04-10 Screen device WO2014167672A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015511016A JPWO2014167672A1 (en) 2013-04-10 2013-04-10 Screen device
PCT/JP2013/060835 WO2014167672A1 (en) 2013-04-10 2013-04-10 Screen device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/060835 WO2014167672A1 (en) 2013-04-10 2013-04-10 Screen device

Publications (1)

Publication Number Publication Date
WO2014167672A1 true WO2014167672A1 (en) 2014-10-16

Family

ID=51689106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060835 WO2014167672A1 (en) 2013-04-10 2013-04-10 Screen device

Country Status (2)

Country Link
JP (1) JPWO2014167672A1 (en)
WO (1) WO2014167672A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017117728A1 (en) * 2016-01-05 2017-07-13 深圳市亿思达科技集团有限公司 Laser-based information center
CN107003597A (en) * 2014-12-09 2017-08-01 图像影院国际有限公司 The method and system for vibrating screen
WO2020049971A1 (en) * 2018-09-06 2020-03-12 日立オートモティブシステムズ株式会社 Surface measurement method, component manufacturing method, component inspection method, and component measurement device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007293187A (en) * 2006-04-27 2007-11-08 Seiko Epson Corp Projector, screen, projector system and scintillation removal apparatus
JP2007298945A (en) * 2006-04-05 2007-11-15 Mitsubishi Electric Corp Projection image display apparatus and image display method
JP2007328003A (en) * 2006-06-06 2007-12-20 Seiko Epson Corp Screen, projector and image display device
JP2008083687A (en) * 2006-08-28 2008-04-10 Seiko Epson Corp Screen and projector
JP2010049239A (en) * 2008-07-23 2010-03-04 Mitsubishi Electric Corp Projection image display apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55146439A (en) * 1979-05-02 1980-11-14 Fuji Photo Film Co Ltd Vibration type projecting screen
JP2007286349A (en) * 2006-04-17 2007-11-01 Seiko Epson Corp Screen, rear projector and image display device
JP4969294B2 (en) * 2007-04-03 2012-07-04 三菱電機株式会社 Projection-type image display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298945A (en) * 2006-04-05 2007-11-15 Mitsubishi Electric Corp Projection image display apparatus and image display method
JP2007293187A (en) * 2006-04-27 2007-11-08 Seiko Epson Corp Projector, screen, projector system and scintillation removal apparatus
JP2007328003A (en) * 2006-06-06 2007-12-20 Seiko Epson Corp Screen, projector and image display device
JP2008083687A (en) * 2006-08-28 2008-04-10 Seiko Epson Corp Screen and projector
JP2010049239A (en) * 2008-07-23 2010-03-04 Mitsubishi Electric Corp Projection image display apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107003597A (en) * 2014-12-09 2017-08-01 图像影院国际有限公司 The method and system for vibrating screen
US10691006B2 (en) 2014-12-09 2020-06-23 Imax Theatres International Limited Methods and systems of vibrating a screen
US10775690B1 (en) 2014-12-09 2020-09-15 Imax Theatres International Limited Methods and systems of vibrating a screen
WO2017117728A1 (en) * 2016-01-05 2017-07-13 深圳市亿思达科技集团有限公司 Laser-based information center
WO2020049971A1 (en) * 2018-09-06 2020-03-12 日立オートモティブシステムズ株式会社 Surface measurement method, component manufacturing method, component inspection method, and component measurement device
JPWO2020049971A1 (en) * 2018-09-06 2021-08-26 日立Astemo株式会社 Surface measurement method, component manufacturing method, component inspection method and component measuring device
JP7069328B2 (en) 2018-09-06 2022-05-17 日立Astemo株式会社 Surface measurement method, component manufacturing method, component inspection method and component measuring device
US11781861B2 (en) 2018-09-06 2023-10-10 Hitachi Astemo, Ltd. Surface measurement method, component manufacturing method, component inspection method, and component measurement device

Also Published As

Publication number Publication date
JPWO2014167672A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP5594272B2 (en) Head-up display device
JP5167634B2 (en) Laser projection device
EP3088935B1 (en) Image display apparatus and object apparatus
US8654426B2 (en) Optical scanning device
TWI469915B (en) Device for reducing speckle effect in a display system
JP4266660B2 (en) Projection type display optical system and projection type image display device
CN204740399U (en) MEMS device and miniature projecting apparatus
JP4062225B2 (en) Optical scanner and image forming apparatus having the same
US9244273B2 (en) Z-axis focusing beam brush device and associated methods
WO2014167672A1 (en) Screen device
CN110543075B (en) Speckle dissipation device and projection system
WO2019082954A1 (en) Mirror holder, mirror unit, and head-up display device
JP7001034B2 (en) Virtual image display device
CN113495407B (en) Optical device and projector
WO2012168980A1 (en) Image display device
JP2004029763A (en) Laser printer using pivotally scanning miller
JP5499502B2 (en) Optical device
WO2014167673A1 (en) Screen device
EP4070149A1 (en) Folded-beam, low-obliquity beam scanner
JP7035451B2 (en) Actuators, optics and projectors
JP2005338241A (en) Rocking body, image forming apparatus using the same and method of reducing speckle
JP7075302B2 (en) Manufacturing methods for optical equipment, projection optics, exposure equipment, and articles
JP2015161878A (en) Actuator, optical scanner, image display device, and head mount display
JP2016184103A (en) Light diffusion device and projection device
JP6478008B2 (en) Image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881942

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015511016

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881942

Country of ref document: EP

Kind code of ref document: A1