WO2014166129A1 - 用于柔性直流输电***直流侧过电压保护装置及保护方法 - Google Patents

用于柔性直流输电***直流侧过电压保护装置及保护方法 Download PDF

Info

Publication number
WO2014166129A1
WO2014166129A1 PCT/CN2013/074824 CN2013074824W WO2014166129A1 WO 2014166129 A1 WO2014166129 A1 WO 2014166129A1 CN 2013074824 W CN2013074824 W CN 2013074824W WO 2014166129 A1 WO2014166129 A1 WO 2014166129A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
fault
overvoltage
spark gap
voltage
Prior art date
Application number
PCT/CN2013/074824
Other languages
English (en)
French (fr)
Inventor
荆平
邱宇峰
周飞
陆振纲
Original Assignee
国家电网公司
国网智能电网研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 国网智能电网研究院 filed Critical 国家电网公司
Publication of WO2014166129A1 publication Critical patent/WO2014166129A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/06Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using spark-gap arresters

Definitions

  • the invention relates to the field of flexible direct current transmission systems, in particular to a DC side overvoltage protection device and a protection method for a flexible direct current transmission system. Background technique
  • Flexible DC transmission is a new type of high-voltage direct current transmission technology. It uses a voltage source type converter to convert traditional alternating current into direct current at a power source such as a hydropower plant or a thermal power plant, and sends the power through a transmission line such as an overhead line or a cable. To the far side of the load. Compared with the traditional high-voltage direct current transmission, it has the advantages of strong controllability, easy reversal of the current flow, and no need for reactive compensation.
  • the flexible DC transmission system consists of three parts, including two converter stations at the power supply and load, and a DC cable or overhead line connecting the two stations.
  • the core equipment is a flexible DC converter valve, and its safety needs to pass through the protection system. Get a reliable guarantee.
  • the converter station has a converter valve 5 switchable between the AC line I and the DC line 8, comprising a power semiconductor valve 9 extending between the AC line I and the DC line 8, through which the power parameters are Conversion between AC and DC.
  • a converter transformer 3 between the AC line I and the AC line II, which is star-connected on the I-valve side of the AC line, and the neutral point is grounded through the resistor 6.
  • the fault of the flexible DC converter station is generally divided into three types: AC side fault, DC side fault and converter valve fault.
  • the AC and DC side fault protection is protected by the station control system (by voltage transformer, current transformer, AC/DC side filter). , transformer protection and other components are composed).
  • the DC protection system in the flexible DC converter station mainly judges the fault condition of the DC system through DC undervoltage and overvoltage protection.
  • the AC line of the converter station is single-phase ground fault or the DC line has a single-pole ground fault
  • the other The voltage of the DC line 8 may increase to 1.5 to 2 times the normal operating voltage, and the power semiconductor valve may be damaged by excessive fault voltage.
  • the conventional power semiconductor valve 9 protection measures are mainly parallel with no gap MOV.
  • the protection method generally connects the gapless MOV in parallel with the power semiconductor valve 9, and utilizes the nonlinear characteristic of the voltage and current of the MOV to consume the energy that may generate the overvoltage through the MOV, thereby protecting the protected device from the overvoltage.
  • this method has defects such as difficulty in setting the operating parameters, excessive energy stress, and uncontrollable conduction.
  • Other traditional line protection devices such as the side The thyristor switch has the disadvantages of complex structure, slow operation time and low overcurrent capability.
  • adding the protection device of the present invention to the DC line can effectively reduce the overvoltage of the DC line and avoid damage to the inside of the valve body of the converter valve. Summary of the invention
  • the object of the present invention is to provide a DC side overvoltage protection device and a protection method for a flexible direct current transmission system, and the protection device 7 uses an overvoltage or forced breakdown component to improve overvoltage protection performance.
  • the problem of overvoltage caused by the fault of the flexible direct current transmission system is solved.
  • the voltage of the other pole DC line will rise.
  • the grounding breakdown gap is adjusted according to a predefined voltage.
  • the protection device When the voltage is less than the set breakdown voltage, the protection device is not turned on, the DC system can normally transmit power, and once the overvoltage reaches the set value, the protection device is broken down. An electric spark is generated, and current is introduced into the ground through the gap to suppress the DC side overvoltage, thereby preventing the converter valve body and the DC line from being damaged due to overvoltage.
  • a DC-side overvoltage protection device for a flexible DC transmission system comprising a flexible DC converter valve 5 switching between an AC line I and a DC line 8, the AC A converter transformer 3 is disposed between the line I and the AC line II, and the converter transformer 3 is star-connected on the side of the AC line I, wherein the neutral point is grounded through the resistor 6; the converter transformer 3 is in the AC line II
  • the mesh side is a triangular or star connection; the improvement is that the protection device 7 is connected in parallel with the positive and negative poles of the DC line 8 for causing a fault in the AC line I or the DC line 8 resulting in a DC line 8 overvoltage.
  • the valve base controller detects that a short circuit fault occurs at any pole of the DC line 8, the action is taken to open the fault current, the DC line 8 overvoltage level is suppressed, and the converter valve body 9 is protected.
  • the protection device 7 employs a fast conduction element such as a spark gap; the spark gap is grounded.
  • the converter valve 5 is a three-phase six-bridge arm structure; each bridge arm is composed of a converter valve body 9; the converter valve body 9 is realized by a semiconductor switching element, including a switchable Semiconductor devices (such as IGBT, IGET,
  • the invention provides a method for protecting a DC side overvoltage of a flexible direct current transmission system based on another object, the improvement being that the protection device 7 for the method is connected in parallel to the positive and negative poles of the direct current line 8; Including the following steps:
  • the fault includes an AC line I single phase ground fault, a DC line 8 single pole ground short fault, and a bipolar short fault;
  • B When a single-phase ground fault of the AC line I or a single-pole ground fault of the DC line occurs, the voltage across the spark gap rises to the breakdown voltage and breaks the spark gap;
  • control device of the spark gap detects a DC line short-circuit fault
  • the control device sends a trigger command to the freewheeling gap to force the freewheeling gap to break the spark gap;
  • the return status information is sent to the control device, and a blocking signal is sent to the converter valve 5 to protect the valve body 9 of the converter valve.
  • the protection method for detecting the DC line voltage overvoltage is: if the DC line voltage exceeds a preset value, and the duration also reaches a preset value, the protection device 7 is turned on, and the valve base is The controller blocks the trigger pulse of the flexible DC converter valve 5.
  • the preset self-breakdown voltage is not broken down when the DC line voltage is not overvoltage, and is broken down when the DC line voltage is overvoltage, and the self-breakdown voltage is calculated by theoretical calculation, computer simulation or test. determine.
  • the magnitude of the discharge current at the time of breakdown is determined by theoretical calculations, computer simulations or experiments.
  • the amount of absorbed energy at the time of breakdown is determined by theoretical calculations, computer simulations or experiments.
  • the beneficial effects achieved by the present invention are:
  • the protection device proposed by the invention has rapid action, strong flow energy, large absorption energy, and can quickly protect the valve body.
  • control protection device proposed by the invention does not require complicated structure and function.
  • the protection device proposed by the invention has the advantages of simple structure, low cost and easy realization.
  • FIG. 1 is a schematic diagram of a protection device for a DC-side overvoltage of a flexible direct current transmission system provided by the present invention; wherein: 1- flexible DC converter station; 2-AC line II; 3-conversion transformer; 4-AC line I; 5-conversion valve; 6-resistor; 7-protection device; 8-DC line; 9-return valve body.
  • FIG. 1 The schematic diagram of the converter valve protection device of the flexible DC transmission system for DC line fault provided by the present invention is shown in FIG. 1 , and the protection device is included in the flexible DC converter station 1 , including the flexibility of switching between the AC line I and the DC line 8 a DC converter valve 5, a converter transformer 3 is disposed between the AC line I and the AC line II, and the converter transformer 3 is star-connected on the side of the AC line I valve, wherein the neutral point is grounded through the resistor 6; The flow transformer 3 is a triangular or star connection on the side of the AC line II network.
  • the converter valve 5 is a three-phase six-bridge arm structure; each of the bridge arms is composed of a converter valve body 9; the converter valve body 9 is realized by a semiconductor switching element, including an IGBT and a diode connected in anti-parallel thereto. Its structural form includes, but is not limited to, modular multi-level, H-bridge chain, IGBT series.
  • the protection device 7 is connected in parallel to the two poles (positive and negative) of the DC line 8 for performing an overvoltage at the fault of the DC line 8 or when the valve base controller detects a faulty short circuit of the DC line 8, performing an action to open the fault current and suppress the DC Line 8 overvoltage level protects the converter valve body 9.
  • the protection device 7 uses a spark gap conduction element; the spark gap is grounded.
  • the working principle of the spark gap adopted by the present invention is as follows:
  • the seal gap is automatically triggered when the spark gap is single-phase grounded by AC line I or a single-pole ground fault of DC line 10 causes its voltage to exceed the self-trigger voltage.
  • the preset breakdown voltage is required to ensure that the device will not be broken down when the DC line voltage is not over-voltage, and will be broken down when the DC line voltage is over-voltage.
  • the size is configured by theoretical calculation, computer simulation or Test confirmed.
  • the configuration of the discharge current at the time of breakdown is determined by theoretical calculation, computer simulation or experiment.
  • the configuration of the amount of energy absorbed during breakdown is determined by theoretical calculations, computer simulations or experiments.
  • the self-breakdown voltage is 1.3-1.8 times the rated voltage of the line.
  • the breakdown current during breakdown is 1.5-20 line rated current.
  • the energy absorbed during breakdown is the integral of the product of the above voltage and current in time.
  • the converter transformer side AC bus 2 is equivalent to a voltage source t / s and the internal impedance Z s in series, according to the converter transformer 3 ratio, and consider the transformer valve side leakage reactance X, will The voltage source t/ s and internal impedance are converted to the transformer valve side.
  • the transformer valve side voltage t/ s2 As an initial condition, according to the characteristic that the voltage of the DC line (or AC line II single phase) at the fault ground is 0, a mathematical expression reflecting the voltage of the normal pole of the DC line in the ground fault process is established, and the DC is calculated according to the initial condition and the expression.
  • the normal pole DC line voltage dOT (t) is the initial voltage t/ s2 of the transformer valve side.
  • the breakdown voltage of the spark gap is determined according to the voltage of each phase to ensure that the breakdown voltage is higher than the peak value of the DC line voltage during normal operation (preferably 1.2 times), which is lower than the maximum value of the DC line voltage at the time of failure. Combined with the mathematical model of the spark gap, the discharge current and absorbed energy of the spark gap under the fault voltage can be calculated.
  • the process of computer simulation is as follows: a simulation model including equivalent system, transformer, DC line, converter valve and ground fault is established in the computer simulation software. The single-phase and two-phase ground fault simulations at different times are used to obtain the fault time station. The amplitude of another DC line. The breakdown voltage of the spark gap is determined based on the voltage to ensure that the breakdown voltage is higher than the DC line voltage during normal operation (preferably 1.2 times), which is lower than the maximum value of the DC voltage at the time of failure.
  • a model of the spark gap is established in the simulation software to determine the maximum current allowed by the spark gap based on the maximum current flowing through the spark gap at the fault. Determine the energy that the spark gap needs to absorb based on the highest breakdown voltage and the maximum allowable current
  • the voltage measuring device or the protection device monitors the voltage across the spark gap, triggers a spark gap, and forces the spark gap to be triggered by the trigger gap to break the spark gap.
  • the state information is returned to the control device of the spark gap, and the control device detects the break of the spark gap and sends a blocking signal to the converter valve.
  • the invention further relates to a DC side overvoltage protection method for a flexible direct current transmission system, the protection device 7 for the method being connected in parallel to the two poles of the direct current line 8; the method comprising the steps of:
  • the fault includes an AC line I single phase ground fault, a DC line 8 single pole ground short fault, and a bipolar short fault;
  • B When the AC line I single-phase ground fault or the DC line single-pole ground fault 10 occurs, the voltage across the spark gap rises to the breakdown voltage and breaks the spark gap;
  • control device detects a DC line bipolar short circuit fault, the control device sends a trigger command to the freewheeling gap to force the freewheeling gap to break the spark gap;
  • the return status information is sent to the control device in the spark gap, and a blocking signal is sent to the converter valve 5 to protect the valve body 9 of the converter valve.

Landscapes

  • Rectifiers (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

一种用于柔性直流输电***直流侧过电压保护装置及保护方法。保护装置(7)并联在直流线路(8)的正、负极,用于在交流线路I(4)或直流线路(8)发生故障导致直流线路(8)过电压或者当阀基控制器检测到直流线路(8)任一极发生短路故障时,进行动作引开故障电流,抑制直流线路(8)过电压水平,保护换流阀阀体(9)。保护装置(7)采用过压或强制击穿元件提高过电压保护性能,解决了柔性直流输电***故障引起的过电压问题。

Description

用于柔性直流输电***直流侧过电压保护装置及保护方法 技术领域
本发明涉及柔性直流输电***领域,具体涉及一种用于柔性直流输电***直流侧过 电压保护装置及保护方法。 背景技术
柔性直流输电是一种新型的高压直流输电技术, 其通过电压源型变流器, 在水电厂 或火电厂等电源处, 将传统交流电变为直流电, 通过架空线或电缆等传输线, 将电力送 至远方负荷处。 与传统高压直流输电相比, 具有可控性强, 潮流反转容易, 无需无功补 偿等优点。
柔性直流输电***由三部分组成, 包括位于电源和负荷处的两个换流站, 及连接两 站的直流电缆或架空线, 其中核心设备是柔性直流换流阀, 其安全性需要通过保护*** 获得可靠的保证。
换流站中有一个可在交流线路 I及直流线路 8间切换的换流阀 5, 包括贯穿于交流 线路 I及直流线路 8间的功率半导体阀 9, 通过这样的功率半导体阀将电力参数在交流 和直流之间转换。 此外, 交流线路 I与交流线路 II之间有一个换流变压器 3, 它在交流 线路 I阀侧为星型接法, 其中性点通过电阻 6接地。
柔性直流换流站故障一般分为交流侧故障、 直流侧故障及换流阀故障三种, 交、 直 流侧故障保护由站控***(由电压互感器、 电流互感器、 交直流侧滤波器保护、 变压器 保护等组件组成) 实现。
目前柔性直流换流站内直流保护***主要通过直流欠压、过压保护来判断直流*** 故障情况,在换流站内部交流线路 I单相接地故障或直流线路发生单极接地短路故障时, 另一极的直流线路 8电压可能会提高到正常运行电压的 1.5〜2倍,功率半导体阀可能会 承受过高的故障电压而损坏。
传统功率半导体阀 9 保护措施主要并联无间隙 MOV。 该保护方法通常将无间隙 MOV并联在功率半导体阀 9的两端, 利用 MOV的电压电流非线性特性, 将可能产生 过电压的能量通过 MOV消耗掉, 从而使被保护设备免受过压的冲击, 但该方法存在动 作参数难以整定、 能量应力过大、 导通无法控制等缺陷。 而其它传统线路保护装置如旁 路晶闸管开关存在结构复杂, 动作时间慢、 承受过电流能力低等缺点。 针对上述问题, 在直流线路上增加本发明的保护装置可以有效降低直流线路过电压,避免对换流阀阀体 内部造成损害。 发明内容
针对现有技术的不足,本发明的目的是提供一种用于柔性直流输电***直流侧过电 压保护装置及保护方法, 保护装置 7采用过压或强制击穿元件提高过电压保护性能, 很 好地解决了柔性直流输电***故障引起的过电压问题。
通常交流线路发生单相接地故障或直流线路发生单极接地短路故障时, 另一极直流 线路电压会升高。 根据预先定义的电压, 调整接地击穿间隙, 当电压小于设定击穿电压 时, 保护装置不导通, 直流***可正常传送功率, 而一旦过电压达到设定值, 保护装置 被击穿, 产生电火花, 电流通过该间隙被导入大地, 抑制直流侧过电压, 避免换流阀阀 体和直流线路因过电压而损坏。
本发明的目的是采用下述技术方案实现的:
一种用于柔性直流输电***直流侧过电压保护装置,所述保护装置包含在柔性直流 换流站 1, 包括在交流线路 I与直流线路 8间切换的柔性直流换流阀 5, 所述交流线路 I 与交流线路 II之间设有换流变压器 3,所述换流变压器 3在交流线路 I阀侧为星型连接, 其中性点通过电阻 6接地; 所述换流变压器 3在交流线路 II网侧为三角型或星型连接; 其改进之处在于, 所述保护装置 7并联在直流线路 8的正、 负极, 用于在在交流线 路 I或直流线路 8发生故障导致直流线路 8过电压或当阀基控制器检测到直流线路 8任 一极发生短路故障时, 进行动作引开故障电流, 抑制直流线路 8过电压水平, 保护换流 阀阀体 9。
优选的, 所述保护装置 7采用如火花间隙的快速导通元件; 所述火花间隙接地。 优选的, 所述换流阀 5为三相六桥臂结构; 每个桥臂均由换流阀阀体 9组成; 所述 换流阀阀体 9采用半导体开关元件实现, 包括可关断的半导体器件 (如 IGBT、 IGET、
IGCT或 GTO) 以及与其反并联的二极管。
本发明基于另一目的提供的一种用于柔性直流输电***直流侧过电压保护方法,其 改进之处在于, 所述方法用的保护装置 7并联于直流线路 8的正、 负极; 所述方法包括 下述步骤:
A、 检测直流线路是否发生故障, 所述故障包括交流线路 I单相接地故障、 直流线 路 8单极接地短路故障和双极短路故障; B、 当发生交流线路 I单相接地故障或直流线路单极接地故障时, 火花间隙两端电 压升高至击穿电压, 击穿火花间隙;
或当火花间隙的控制装置检测到直流线路双极短路故障时,所述控制装置向续流间 隙发送触发命令, 强制触发续流间隙, 将火花间隙击穿;
火花间隙击穿后将故障电流引至大地;
C、火花间隙击穿后, 向控制装置发送返回状态信息, 并向换流阀 5下发闭锁信号, 实现保护换流阀阀体 9。
优选的, 所述步骤 A中, 检测到直流线路电压过压的保护方法为: 直流线路电压超 过预先设定值, 且持续时间也达到预先设定值, 则保护装置 7导通, 同时阀基控制器闭 锁柔性直流换流阀 5的触发脉冲。
优选的, 预设的自击穿电压大小在直流线路电压未过压时未被击穿, 在直流线路电 压过压时被击穿, 其自击穿电压大小为通过理论计算、 计算机仿真或试验确定。
优选的, 击穿时放电电流大小为通过理论计算、 计算机仿真或试验确定。
优选的, 击穿时吸收能量大小通过理论计算、 计算机仿真或试验确定。 与现有技术比, 本发明达到的有益效果是:
1、 本发明提出的保护装置动作迅速, 通流能量强, 吸收能量大, 能快速保护阀体。
2、 本发明提出的无需结构和功能复杂的控制保护装置。
3、 本发明提出的保护装置结构简单, 成本低, 易于实现。
4、 降低直流线路和换流阀绝缘成本;
5、 保障直流线路和换流阀设备安全;
6、 提高柔性直流换流站抗故障能力;
7、 保障柔性直流输电***安全稳定运行。 附图说明
图 1是本发明提供的用于柔性直流输电***直流侧过电压的保护装置示意图; 其中: 1-柔性直流换流站; 2-交流线路 II; 3-换流变压器; 4-交流线路 I; 5-换流阀; 6-电阻; 7-保护装置; 8-直流线路; 9-换流阀阀体。 具体实施方式
下面结合附图对本发明的具体实施方式作进一步的详细举例说明。 本发明提供的用于直流线路故障的柔性直流输电***换流阀保护装置示意图如图 1 所示, 保护装置包含在柔性直流换流站 1, 包括在交流线路 I与直流线路 8间切换的柔 性直流换流阀 5, 所述交流线路 I与交流线路 II之间设有换流变压器 3, 换流变压器 3 在交流线路 I阀侧为星型连接, 其中性点通过电阻 6接地; 所述换流变压器 3在交流线 路 II网侧为三角型或星型连接。
换流阀 5为三相六桥臂结构; 每个桥臂均由换流阀阀体 9组成; 所述换流阀阀体 9 采用半导体开关元件实现, 包括 IGBT以及与其反并联的二极管。 其结构形式包括但不 限于模块化多电平、 H桥链式、 IGBT串联。
保护装置 7并联在直流线路 8的两极 (正、 负极), 用于在直流线路 8故障导致过 电压或当阀基控制器检测到直流线路 8故障短路时, 进行动作引开故障电流, 抑制直流 线路 8过电压水平, 保护换流阀阀体 9。
保护装置 7采用火花间隙导通元件; 火花间隙接地。
本发明提供的采用的火花间隙的工作原理如下:
当火花间隙因交流线路 I单相接地或直流线路单极接地故障 10使其电压超过自触 发电压时, 密封间隙自动触发。
或当换流阀控制保护装置检测到换流直流线路 8短路故障时,通过光纤或电缆发出 强制触发命令使其间隙强制导通, 使短路电流快速流过密封间隙。
预设的击穿电压大小需保证装置在直流线路电压未过压时不会被击穿,而在直流线 路电压过压时会被击穿, 其大小的配置方法为通过理论计算、 计算机仿真或试验确定。 击穿时放电电流大小的配置方法为通过理论计算、 计算机仿真或试验确定。 击穿时吸收 能量大小的配置方法为通过理论计算、 计算机仿真或试验确定。 自击穿电压大小为 1.3-1.8倍线路额定电压, 击穿时放电电流大小为 1.5-20线路额定电流, 击穿时吸收能量 大小为上述电压与电流的乘积在时间上的积分。
(一)根据柔性直流短路故障理论计算、 计算机仿真、 试验确定火花间隙的击穿电 压、 短路电流、 吸收能量具体内容如下:
理论计算的过程为:将换流变压器网侧交流母线 2等效为一个电压源 t/s和内阻抗 Zs 的串联,根据换流变压器 3变比 、并考虑变压器阀侧漏抗 X ,将电压源 t/s和内阻抗 折算至变压器阀侧。
等效到变压器阀侧的电源电动势为: Us2 = kUs
内阻为: Zs2 = k + XL ', 以正常运行时的变压器阀侧电压 t/s2。作为初始条件,根据故障接地处直流线路 (或交 流线路 II单相)电压为 0的特点, 建立反映直流线路正常极的电压在接地故障过程的数 学表达式, 根据初始条件和表达式计算得直流线路的故障电压表达式;
故障后正常极直流线路电压 dOT (t)为变压器阀侧初始电压 t/s2。、初始直流电压 线路阻抗 Zs2和接地阻抗 的函数: udJ ) = F Us2Q, UdcQ,Zs2, Zn,t) '' 表示时间。
根据各相电压确定火花间隙的击穿电压,确保该击穿电压高于正常运行时直流线路 电压峰值(优选的为 1.2倍), 低于故障时直流线路电压的最大值。 结合火花间隙的数学 模型, 可计算得在故障电压作用下火花间隙的放电电流、 吸收能量。
计算机仿真的过程为:在计算机仿真软件中建立包含等值***、变压器、直流线路、 换流阀和接地故障的仿真模型, 通过不同时刻的单相、 两相接地故障仿真, 得到故障时 站内另一直流线路的幅值。 根据该电压确定火花间隙的击穿电压, 确保该击穿电压高于 正常运行时直流线路电压 (优选的为 1.2倍), 低于故障时直流电压的最大值。
在仿真软件中建立火花间隙的模型, 根据故障时火花间隙流过的最大电流, 确定火 花间隙允许的最大电流。根据最高击穿电压和允许最大电流确定火花间隙需要吸收的能
(二)根据击穿电压确定火花间隙的间隔距离;击穿电压 U是气体压力 Ρ以及两电 极间距离 d和绝对温度 T的函数: U=f (pd / T)。
(三) 将火花间隙并联一端安装于站内直流线路 8的正、 负极上, 另一端接地;
(四) 如图 1所示, 当发生交流线路 I单相接地或直流线路单极接地故障 10时, 火花间隙两端电压升高至击穿电压, 从而将火花间隙击穿;
或当直流线路发生短路故障时, 电压测量装置或保护装置监测火花间隙两端电压, 触发火花间隙, 通过触发间隙强制触发续流间隙, 将火花间隙击穿。
(五)短路故障电流从火花间隙中流过, 抑制了直流线路过电压水平, 避免了换流 阀阀体的过压;
(六)火花间隙击穿后, 向火花间隙的控制装置返回状态信息, 控制装置检测到火 花间隙击穿的同时, 向换流阀下发闭锁信号。
本发明还涉及一种用于柔性直流输电***直流侧过电压保护方法,所述方法用的保 护装置 7并联于直流线路 8的两极; 所述方法包括下述步骤:
A、 检测直流线路是否发生故障, 所述故障包括交流线路 I单相接地故障、 直流线 路 8单极接地短路故障和双极短路故障; B、 当发生交流线路 I单相接地故障或直流线路单极接地故障 10时, 火花间隙两端 电压升高至击穿电压, 击穿火花间隙;
或当控制装置检测到直流线路双极短路故障时,所述控制装置向续流间隙发送触发 命令, 强制触发续流间隙, 将火花间隙击穿;
火花间隙击穿后将故障电流引至大地;
C、 火花间隙击穿后, 向火花间隙中的控制装置发送返回状态信息, 并向换流阀 5 下发闭锁信号, 实现保护换流阀阀体 9。
最后应当说明的是: 以上实施例仅用以说明本发明的技术方案而非对其限制, 尽管 参照上述实施例对本发明进行了详细的说明, 所属领域的普通技术人员应当理解: 依然 可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任 何修改或者等同替换, 其均应涵盖在本发明的权利要求范围当中。

Claims

权利要求
1、 一种用于柔性直流输电***直流侧过电压保护装置, 所述保护装置包含在柔性 直流换流站(1 ), 包括在交流线路 I (4)与直流线路(8)间切换的柔性直流换流阀(5), 所述交流线路 I (4)与交流线路 II (2)之间设有换流变压器(3), 所述换流变压器(3) 在交流线路 I (4) 阀侧为星型连接, 其中性点通过电阻(6)接地; 所述换流变压器(3) 在交流线路 II (2) 网侧为三角型或星型连接;
其特征在于, 所述保护装置 (7) 并联在直流线路 (8) 的正、 负极, 用于在在交流 线路 I (4) 或直流线路(8)发生故障导致直流线路(8)过电压或当阀基控制器检测到 直流线路 (8)任一极发生短路故障时, 进行动作引开故障电流, 抑制直流线路 (8) 过 电压水平, 保护换流阀阀体 (9)。
2、 如权利要求 1所述的直流侧过电压保护装置, 其特征在于, 所述保护装置 (7) 采用如火花间隙的快速导通元件; 所述火花间隙接地。
3、 如权利要求 1所述的直流侧过电压保护装置, 其特征在于, 所述换流阀 (5) 为 三相六桥臂结构; 每个桥臂均由换流阀阀体 (9) 组成; 所述换流阀阀体 (9)采用半导 体开关元件实现, 包括可关断的半导体器件以及与其反并联的二极管。
4、 一种用于柔性直流输电***直流侧过电压保护方法, 其特征在于, 所述方法用 的保护装置 (7) 并联于直流线路 (8) 的正、 负极; 所述方法包括下述步骤:
A、 检测直流线路是否发生故障, 所述故障包括交流线路 I (4) 单相接地故障、 直 流线路 (8) 单极接地短路故障和双极短路故障;
B、 当发生交流线路 I (4) 单相接地故障或直流线路单极接地故障时, 火花间隙两 端电压升高至击穿电压, 击穿火花间隙;
或当火花间隙的控制装置检测到直流线路双极短路故障时,所述控制装置向续流间 隙发送触发命令, 强制触发续流间隙, 将火花间隙击穿;
火花间隙击穿后将故障电流引至大地;
C、 火花间隙击穿后, 向火花间隙的控制装置发送返回状态信息, 并向换流阀 (5) 下发闭锁信号, 实现保护换流阀阀体 (9)。
5、 根据权利要求 1所述的直流侧过电压保护方法, 其特征在于, 所述步骤 A中, 检测到直流线路电压过压的保护方法为: 直流线路电压超过预先设定值, 且持续时间也 达到预先设定值, 则保护装置 (7) 导通, 同时阀基控制器闭锁柔性直流换流阀 (5) 的 触发脉冲。
6、 根据权利要求 1所述的直流侧过电压保护方法, 其特征在于, 预设的自击穿电 压大小在直流线路电压未过压时未被击穿, 在直流线路电压过压时被击穿, 其自击穿电 压大小为通过理论计算、 计算机仿真或试验确定。
7、 根据权利要求 1所述的直流侧过电压保护方法, 其特征在于, 击穿时放电电流 大小为通过理论计算、 计算机仿真或试验确定。
8、 根据权利要求 1所述的直流侧过电压保护方法, 其特征在于, 击穿时吸收能量大 小通过理论计算、 计算机仿真或试验确定。
PCT/CN2013/074824 2013-04-09 2013-04-26 用于柔性直流输电***直流侧过电压保护装置及保护方法 WO2014166129A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310120747.6A CN103187722B (zh) 2013-04-09 2013-04-09 用于柔性直流输电***直流侧过电压保护装置及保护方法
CN201310120747.6 2013-04-09

Publications (1)

Publication Number Publication Date
WO2014166129A1 true WO2014166129A1 (zh) 2014-10-16

Family

ID=48678760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074824 WO2014166129A1 (zh) 2013-04-09 2013-04-26 用于柔性直流输电***直流侧过电压保护装置及保护方法

Country Status (2)

Country Link
CN (1) CN103187722B (zh)
WO (1) WO2014166129A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020011331A1 (de) * 2018-07-09 2020-01-16 Siemens Aktiengesellschaft Modularer multilevel-stromrichter mit unterschiedlichen submodultypen

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103618331B (zh) * 2013-11-27 2016-01-20 南方电网科学研究院有限责任公司 一种柔性直流输电换流站直流过压限流控制方法
CN103730880B (zh) * 2013-12-05 2016-04-20 国家电网公司 一种适用于mmc柔性直流子模块过压控制保护方法
CN104009459B (zh) * 2014-05-09 2016-09-21 国家电网公司 一种换流站阀厅的残余电荷泄放装置
CN104034984B (zh) * 2014-06-20 2017-02-15 中国西电电气股份有限公司 一种柔性直流输电运行试验中工程阀组件的短路试验方法
US9419539B2 (en) 2014-08-25 2016-08-16 General Electric Company Systems and methods for enhanced operation and protection of power converters
CN104215875B (zh) * 2014-09-25 2017-09-01 国家电网公司 大功率整流变压器机组整流阀击穿的监测方法
CN104393572B (zh) * 2014-11-17 2017-10-17 南京南瑞继保电气有限公司 一种模块化多电平换流器的过电压保护配置方法和***
CN104467393A (zh) * 2015-01-04 2015-03-25 南京南瑞继保电气有限公司 一种防止子模块电容过电压的装置
CN104820157B (zh) * 2015-04-30 2018-08-07 国家电网公司 一种柔性直流输电***直流单极接地故障判断方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5751536A (en) * 1996-02-29 1998-05-12 National Instruments Corporation Method and apparatus for providing isolation from hazardous voltage levels in a hybrid instrumentation system
EP0895332A1 (fr) * 1997-08-01 1999-02-03 Soule Materiel Electrique Perfectionnement au dispositif de protection contre les surtensions
CN102163842A (zh) * 2011-03-11 2011-08-24 国家电网公司直流建设分公司 一种用于并联式多端直流输电***控制模式转换的方法
CN203289088U (zh) * 2013-04-09 2013-11-13 国家电网公司 一种用于柔性直流输电***直流侧过电压保护装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007018344B4 (de) * 2007-04-16 2022-08-04 Siemens Energy Global GmbH & Co. KG Vorrichtung zum Schutz von Umrichtermodulen
CN101290337B (zh) * 2008-06-18 2010-06-02 昆明理工大学 一种高压直流输电线路雷电绕击与反击的识别方法
CN103181048B (zh) * 2010-10-29 2015-08-19 Abb技术有限公司 接地故障之后的对称hvdc单极输电线的电压平衡

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5751536A (en) * 1996-02-29 1998-05-12 National Instruments Corporation Method and apparatus for providing isolation from hazardous voltage levels in a hybrid instrumentation system
EP0895332A1 (fr) * 1997-08-01 1999-02-03 Soule Materiel Electrique Perfectionnement au dispositif de protection contre les surtensions
CN102163842A (zh) * 2011-03-11 2011-08-24 国家电网公司直流建设分公司 一种用于并联式多端直流输电***控制模式转换的方法
CN203289088U (zh) * 2013-04-09 2013-11-13 国家电网公司 一种用于柔性直流输电***直流侧过电压保护装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020011331A1 (de) * 2018-07-09 2020-01-16 Siemens Aktiengesellschaft Modularer multilevel-stromrichter mit unterschiedlichen submodultypen

Also Published As

Publication number Publication date
CN103187722B (zh) 2015-12-09
CN103187722A (zh) 2013-07-03

Similar Documents

Publication Publication Date Title
WO2014166130A1 (zh) 用于柔性直流输电***交流侧过电压保护装置及保护方法
WO2014166129A1 (zh) 用于柔性直流输电***直流侧过电压保护装置及保护方法
EP3355431B1 (en) Cascaded full-bridge high-voltage dc circuit breaker
CN104242265B (zh) 一种直流配电网全固态直流断路器
Sano et al. A surgeless solid-state DC circuit breaker for voltage-source-converter-based HVDC systems
Candelaria et al. VSC-HVDC system protection: A review of current methods
WO2016107509A1 (zh) 一种高压直流断路器分断试验装置及其试验方法
CN102403886B (zh) 模块化多电平换流器的直流线路瞬时短路故障的保护方法
BR112018013070B1 (pt) Dispositivo de desligamento de corrente contínua e método de controle do mesmo
WO2015180204A1 (zh) 用于模块化多电平换流器的子模块拓扑及其应用
TWI441402B (zh) 發電系統及其開關裝置
CN204668938U (zh) 混合直流故障处理装置、混合直流输电***
WO2020233180A1 (zh) 限流型可控避雷器、换流器、输电***以及控制方法
CN103731017A (zh) 储能双向变流器的短路保护***
CN106532757A (zh) 双极柔性直流输电***及其换流站、换流站的控制方法
CN106300309A (zh) 一种具有快速恢复能力的柔性直流电网故障限流器
CN203166505U (zh) 一种用于柔性直流输电***交流侧过电压保护装置
CN204732845U (zh) 一种全固态直流断路器
CN204205577U (zh) 一种直流配电网全固态直流断路器
CN103545787B (zh) 统一电能质量控制器的保护***及其保护控制方法
CN203289088U (zh) 一种用于柔性直流输电***直流侧过电压保护装置
CN206211547U (zh) 双极柔性直流输电***及其换流站
CN104377679A (zh) 用于电磁式电压互感器的二次直流消谐装置
CN110535105B (zh) 一种基于交流断路器切除的直流微网故障隔离方法
CN106451523A (zh) 双极柔性直流输电***及其换流站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881768

Country of ref document: EP

Kind code of ref document: A1