WO2014166107A1 - 异构网中功率配置的控制方法及用户设备 - Google Patents

异构网中功率配置的控制方法及用户设备 Download PDF

Info

Publication number
WO2014166107A1
WO2014166107A1 PCT/CN2013/074141 CN2013074141W WO2014166107A1 WO 2014166107 A1 WO2014166107 A1 WO 2014166107A1 CN 2013074141 W CN2013074141 W CN 2013074141W WO 2014166107 A1 WO2014166107 A1 WO 2014166107A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
dedicated physical
power offset
power
control channel
Prior art date
Application number
PCT/CN2013/074141
Other languages
English (en)
French (fr)
Inventor
赵悦莹
王宗杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380000252.8A priority Critical patent/CN104255078B/zh
Priority to EP13881826.5A priority patent/EP2981142A4/en
Priority to PCT/CN2013/074141 priority patent/WO2014166107A1/zh
Publication of WO2014166107A1 publication Critical patent/WO2014166107A1/zh
Priority to US14/881,008 priority patent/US9408128B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • H04W52/244Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/362Aspects of the step size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff

Definitions

  • the invention belongs to the technical field of wireless communications, and particularly relates to a method for controlling power configuration in a heterogeneous network and a user equipment.
  • Hetnet Heterogeneous
  • the network technology is to set up a micro base station in a cell covered by a macro base station with a large coverage, and use a micro base station to cooperate with a macro base station to form a network.
  • a soft handover area occurs.
  • the uplink channel power received by the micro base station by the user equipment is greater than the uplink channel power of the user equipment received by the macro base station.
  • the user equipment in the soft handoff area, the user equipment is simultaneously controlled by the power of the micro base station and the macro base station, and the power control criterion is: as long as a base station in the Hetnet sends a "power down" command, the user equipment responds to the drop. Power operation. Only when all base stations send a "up power" command to the user equipment, the user equipment will respond to the power up operation. This will directly affect the demodulation performance of the uplink high-speed dedicated physical control channel (HS-DPCCH).
  • HS-DPCCH high-speed dedicated physical control channel
  • An existing method is to increase the dedicated physical control channel (DPCCH) power to ensure the demodulation performance of the HS-DPCCH when the user equipment is in the soft handover area.
  • DPCCH dedicated physical control channel
  • E-DPDCH enhanced dedicated physical data channel
  • the signal received by the micro base station is very strong, and the signal received by the macro base station is weak.
  • the power of the user equipment E-DPDCH is increased, the user equipment received by the micro base station is obtained. The signal is stronger, and the macro base station must interfere with the signal received by the user equipment.
  • the macro base station sends a power reduction command to the user equipment, and the user equipment further reduces the power by reducing the power command, thereby failing to increase the DPCCH power guarantee HS- The purpose of DPCCH demodulation performance.
  • the technical problem to be solved by the present application is to solve the performance problem of the uplink high-speed dedicated physical control channel in the soft handover area in the heterogeneous network.
  • the embodiment of the present application provides a method for controlling power configuration in a heterogeneous network and a user equipment, and the purpose is to enable normal communication with the base station when the user equipment is in a soft handover area of the heterogeneous network. It also makes the performance of HS-DPCCH unaffected.
  • the first aspect of the present application provides a method for controlling power configuration in a heterogeneous network, including the following steps: determining whether a user equipment is in a soft handover area between a uplink and downlink balance point and a macro station serving as a serving base station; When the macro station is used as the soft handover area of the serving base station between the balance points, the power of the dedicated physical control channel is increased to enable the serving base station to normally receive signals from the user equipment; and the power offset of the enhanced dedicated physical data channel is adjusted to A first power offset, the first power offset being any one of the flat regions of the optimal power offset of the user equipment.
  • SIR 0 is an initial SNR target value of the dedicated physical control channel when the user equipment is not in the soft handover area
  • PO 0 is a dedicated physics when the user equipment is not in the soft handover area
  • the initial power offset of the data channel, the SIR 1 is a first signal-to-noise ratio target value of the dedicated physical control channel when the user equipment is in the soft handover area
  • the PO w is when the user equipment is not in the soft handover area.
  • the dedicated area is increased.
  • the step of physically controlling the power of the channel includes: when the user equipment is in the soft handover area of the serving base station between the uplink and downlink balance points, the signal to noise ratio target value of the dedicated physical control channel is used by the initial signal to noise Adjusting to the first signal to noise ratio target value by the target value, so that the serving base station can normally receive the signal from the user equipment, wherein the first signal to noise ratio target value is greater than the initial signal to noise ratio target value.
  • PO 1 is the first power offset
  • Ec dpcch0 is an initial transmit power of the dedicated physical control channel when the user equipment is not in the soft handover area
  • PO 0 is enhanced when the user equipment is not in the soft handover area.
  • PO w PO hsdpcch + PO edpcch + PO dpdch +1.
  • the user equipment is located between the uplink and downlink balance points, and the macro station is used as the serving base station.
  • the step of increasing the power of the dedicated physical control channel when the user equipment is in the soft handover area of the serving base station between the uplink and downlink balance points, the transmission power of the dedicated physical control channel The initial transmit power is adjusted to the first transmit power to enable the serving base station to normally receive signals from the user equipment, wherein the first transmit power is greater than the initial transmit power.
  • a second aspect provides a user equipment, where the user equipment includes a judging module and a control module, wherein: the judging module is configured to determine whether the user equipment is in a soft state between the uplink and downlink balance points and the macro station is a serving base station. Switching the area and outputting the judgment result to the control module; the control module is configured to increase the dedicated physical control channel when the user equipment is in the soft handover area of the serving base station between the uplink and downlink balance points The power is such that the serving base station can normally receive signals from the user equipment and adjust the power offset of the enhanced dedicated physical data channel to a first power offset, the first power offset being an optimal power offset of the user equipment Set any value of the flat area.
  • the initial power offset of the dedicated physical data channel is enhanced, and the SIR 1 is a first signal-to-noise ratio target value of the dedicated physical control channel when the user equipment is in the soft handover area, and the PO w is that the user equipment is not in the soft handover zone, high speed dedicated physical control channel power offset PO hsdpcch, enhanced dedicated physical control channel power offset PO edpcch, a power offset PO dpdch dedicated physical data channel and a dedicated physical control channel power offset seeking 1
  • PO w PO hsdpcch + PO
  • a third aspect provides a user equipment, including a processor, a transmitter, and a receiver, wherein the processor is electrically connected to the transmitter and the receiver, respectively, where the processor is configured to balance the uplink and downlink of the user equipment.
  • the power of the dedicated physical control channel is increased to enable the serving base station to normally receive signals from the user equipment, and adjust the power offset of the enhanced dedicated physical data channel to a first power offset, the first power offset being any one of a flat region of an optimal power offset of the user equipment;
  • the transmitter is configured to transmit a communication signal to the base station;
  • the receiver is configured to receive from the base station Communication signal.
  • the power of the dedicated physical control channel is increased to enable the serving base station to normally receive signals from the user equipment; and the enhanced dedicated physical data channel is adjusted.
  • the power is biased to a first power offset that is any one of the flat regions of the optimal power offset of the user equipment. In this way, when the user equipment is in the soft handover area, the power can be quickly adjusted to meet the signal transmission needs, and the demodulation performance of the HS-DPCCH can be ensured.
  • FIG. 1 is a schematic diagram of a system architecture of an embodiment of a power configuration control method of the present application
  • FIG. 2 is a flow chart of an embodiment of a method for controlling power configuration in a heterogeneous network of the present application
  • FIG. 3 is a flow chart of another embodiment of a method for controlling power configuration in a heterogeneous network of the present application
  • FIG. 4 is a schematic structural diagram of an embodiment of a user equipment of the present application.
  • FIG. 5 is a schematic structural diagram of another embodiment of a user equipment according to the present application.
  • FIG. 1 is a schematic diagram of an embodiment of a system (ie, a heterogeneous network networking system) for implementing a control method for power configuration of the present application.
  • the heterogeneous network networking system of this embodiment includes: a serving base station 110, a secondary base station 120, and a user equipment 130.
  • the user equipment 130 can establish a wireless connection with the serving base station 110 and the secondary base station 120, respectively, and the data transmission can be performed between the serving base station 110 and the secondary base station 120.
  • the macro base station is used as the serving base station 110
  • the micro base station is used as the auxiliary base station 120.
  • the user equipment 130 in the cell covered by the serving base station 110 can communicate with the serving base station 110, and the user equipment 130 in the cell covered by the secondary base station 120 can communicate with the auxiliary base station 120, but since the serving base station is here
  • the 110 and the secondary base station 120 form a heterogeneous network. Therefore, three areas are formed between the cell covered by the serving base station 110 and the cell covered by the secondary base station 120.
  • the signal received by the serving base station 110 from the user equipment 130 is strong, and the signal received by the user equipment 130 from the serving base station 110 is also strong.
  • the signal received by the secondary base station 120 from the user equipment 130 is weak, and the user equipment 130 receives the signal.
  • the signal of the secondary base station 120 is also weak; in the area B, the signal received by the serving base station 110 from the user equipment 130 is weak (shown by a broken line in the figure), and the signal received by the user equipment 130 by the serving base station 110 is strong (in the figure As shown by the line, the secondary base station 120 receives the signal from the user equipment 130 (shown by the solid line in the figure), and the signal received by the user equipment 130 from the secondary base station 120 is weak (shown by a broken line in the figure); The signal received by the serving base station 110 from the user equipment 130 is weak, and the signal received by the user equipment 130 from the serving base station 110 is also weak.
  • the signal received by the secondary base station 120 from the user equipment 130 is strong, and the user equipment 130 receives the signal from the secondary base station 120.
  • the signal is also very strong. Therefore, the areas A and C are referred to as balanced areas, and the area B is referred to as a soft switching area, that is, an unbalanced area.
  • the serving base station 110 and the secondary base station 120 can directly communicate with each other.
  • the serving base station 110 and the secondary base station 120 can also communicate with each other through a radio network controller (RNC, Radio). Network Controller) for communication.
  • RNC Radio Network Controller
  • the user equipment 130 When the user equipment 130 is in the soft handover area, the user equipment 130 is simultaneously controlled by the power of the micro base station and the macro base station, and the criterion of power control is: as long as one of the cells in the active set sends a "power down" command, the user equipment 130 The response is to reduce power operation. Only when all cells send a "up power” command to the user equipment 130, the user equipment 130 will respond to the power up operation. This will directly affect the demodulation performance of the uplink high-speed dedicated physical control channel (HS-DPCCH).
  • HS-DPCCH high-speed dedicated physical control channel
  • the present invention provides a method for controlling power configuration in a heterogeneous network, which aims to realize normal communication with the base station and no uplink when the user equipment is in the soft handover area of the heterogeneous network. Demodulation performance of a dedicated physical control channel.
  • FIG. 2 is a flowchart of a method for controlling power configuration in a heterogeneous network according to the present application.
  • the method for controlling power configuration in a heterogeneous network in this embodiment includes:
  • Step S101 When the user equipment is in the soft handover area of the serving base station between the uplink and downlink balance points, the power of the dedicated physical control channel is increased to enable the serving base station to normally receive the signal from the user equipment.
  • DPCCH dedicated physical control channel
  • Step S102 Adjusting a power offset of the enhanced dedicated physical data channel to a first power offset, where the first power offset is any value of a flat region of an optimal power offset of the user equipment;
  • the power offset of the enhanced dedicated physical data channel (E-DPDCH) in time. Otherwise, the purpose of increasing the DPCCH to ensure the performance of the DPCCH cannot be realized. Because the power of the following DPCCH increases, the power offset of the E-DPDCH increases accordingly, which causes the power of the E-DPDCH to exceed the normal demand. Due to the regulation of the outer loop, the power is controlled to be reduced, so that the user equipment further responds to the drop. The power command causes the transmit power of the user equipment to be reduced again.
  • E-DPDCH enhanced dedicated physical data channel
  • the power offset of the E-DPDCH is adjusted in time to a first power offset, which is any value of the flat region of the optimal power offset of the user equipment.
  • the power of the E-DPDCH is controlled to be offset in a flat area of the optimal power offset of the user equipment, and the total received power of the user equipment is the same. Therefore, in this way, the purpose of increasing the DPCCH power for normal communication is achieved, and the demodulation performance of the DPCCH is not affected.
  • the embodiment of the present application provides a method for controlling power configuration in a heterogeneous network.
  • the power of the dedicated physical control channel is increased to enable the
  • the serving base station can normally receive the signal from the user equipment; and simultaneously adjust the power offset of the enhanced dedicated physical data channel to the first power offset, the first power offset being any value of the flat region of the optimal power offset of the user equipment .
  • the power can be quickly adjusted to meet the signal transmission needs, and the demodulation performance of the HS-DPCCH can be ensured.
  • control method of the power configuration in the heterogeneous network of the present application is explained below through a more detailed implementation process.
  • FIG. 3 is a flowchart of a method for controlling power configuration in a heterogeneous network according to the present application.
  • the method for controlling power configuration in a heterogeneous network includes:
  • Step S201 determining whether the user equipment is in a soft handover area between the uplink and downlink balance points and using the macro station as the serving base station;
  • the user equipment determines whether it is in the soft handover area between the uplink and downlink balance points and the macro station as the serving base station. For example, the user equipment can determine whether its location is in the soft handover area by the signal status received by itself. When the user equipment detects that the location is already in the soft handover area of the serving base station between the uplink and downlink balance points, step S202 is performed; otherwise, step S204 is performed.
  • Step S202 increasing the power of the dedicated physical control channel to enable the serving base station to normally receive signals from the user equipment;
  • the power of the dedicated DPCCH is raised, so that the serving base station can normally receive the signal from the user equipment.
  • One implementation manner is to adjust the signal to noise ratio target value (SIR target) of the DPCCH from the initial signal to noise ratio target value (SIR 0 ). Up to the first signal to noise ratio target value (SIR 1 ), so that the serving base station can normally receive signals from the user equipment, wherein SIR 1 is greater than SIR 0 , ie, the SIR target is raised.
  • SIR target signal to noise ratio target value
  • Another implementation manner is to adjust the transmit power of the DPCCH from the initial transmit power (Ec dpcch0 ) to the first transmit power (Ec dpcch1 ), so that the serving base station can normally receive signals from the user equipment, where Ec dpcch1 is greater than Ec dpcch0. , the transmission power will be increased.
  • Step S203 adjusting a power offset of the enhanced dedicated physical data channel to a first power offset, where the first power offset is any value of a flat region of the optimal power offset of the user equipment;
  • the power offset of the E-DPDCH is adjusted to the first power offset in time.
  • the SIR Target controls the transmit power to increase the power of the DPCCH.
  • Adjusting the power offset of the E-DPDCH to the first power offset also has the following implementations:
  • SIR 1 is the first signal-to-noise ratio target value of the dedicated physical control channel when the user equipment is in the soft handover area
  • E 0 /N 0 (SIR 0 /256) ⁇ (PO 0 +PO hsdpcch +PO edpcch +PO dpdch +1);
  • E 1 /N 0 (SIR 1 /256) ⁇ (PO 1 +PO hsdpcch +PO edpcch +PO dpdch +1),
  • PO 1 (SIR 0 /SIR 1 ) ⁇ (PO 0 +PO hsdpcch +PO edpcch +PO dpdch +1)-(PO hsdpcch +PO edpcch +PO dpdch +1), if PO m -PO n is user equipment For a flat region of optimal power offset, then PO m ⁇ PO 1 ⁇ PO n .
  • E 0 Ec dpcch0 ⁇ (PO 0 +PO hsdpcch +PO edpcch +PO dpdch +1),
  • E 1 Ec dpcch1 ⁇ (PO 1 +PO hsdpcch +PO edpcch +PO dpdch +1),
  • PO 1 (Ec dpcch0 / Ec dpcch1 ) ⁇ (PO 0 + PO hsdpcch + PO edpcch + PO dpdch +1) - (PO hsdpcch + PO edpcch + PO dpdch +1), if PO m - PO n is the user The flat region of the optimal power offset of the device, then PO m ⁇ PO 1 ⁇ PO n .
  • the sum of the power offsets 1, PO w PO hsdpcch + PO edpcch + PO dpdch +1.
  • E 0 Ec dpcch0 ⁇ (PO 0 +PO hsdpcch +PO edpcch +PO dpdch +1),
  • E 1 Ec dpcch0 ⁇ PO dpcch ⁇ (PO 1 +PO hsdpcch +PO edpcch +PO dpdch +1),
  • PO 1 (1/PO dpcch ) ⁇ (PO 0 + PO hsdpcch + PO edpcch + PO dpdch +1) - (PO hsdpcch + PO edpcch + PO dpdch +1), if PO m - PO n is the user equipment The flat region of the optimal power offset, then PO m ⁇ PO 1 ⁇ PO n .
  • Step S204 no action is performed
  • FIG. 4 is a schematic structural diagram of an embodiment of a user equipment according to the present application.
  • the user equipment 130 includes a judging module 11 and a control module 12, where:
  • the judging module 11 is configured to determine whether the user equipment is in the soft handover area between the uplink and downlink balance points and the macro station as the serving base station, and output the determination result to the control module 12;
  • the judging module 11 determines whether the user equipment is in the soft handover area of the serving base station between the uplink and downlink balance points, for example, the judging module 11 can determine whether the location of the user equipment is in the soft handover area by using the signal status received by the user equipment, and The judgment result is output to the control module 12.
  • the control module 12 is configured to increase the power of the DPCCH when the user equipment is in the soft handover area of the serving base station between the uplink and downlink balance points, so that the serving base station can normally receive the signal from the user equipment, and adjust the E-DPDCH.
  • the power is biased to a first power offset that is any one of the flat regions of the optimal power offset of the user equipment.
  • control module 12 increases the power of the DPCCH, so that the serving base station can normally receive the signal from the user equipment.
  • control module 12 of the embodiment of the present application may increase the power of the DPCCH in two implementation manners.
  • One implementation manner is to set the signal to noise ratio target value (SIR target) of the DPCCH from the initial signal to noise ratio target value (SIR). 0 ) Adjusted to the first signal to noise ratio target value (SIR 1 ), so that the serving base station can normally receive signals from the user equipment, wherein SIR 1 is greater than SIR 0 , ie, the SIR target is raised.
  • control module 12 adjusts the transmit power of the DPCCH from the initial transmit power (Ec dpcch0 ) to the first transmit power (Ec dpcch1 ), so that the serving base station can normally receive signals from the user equipment, where Ec dpcch1 Greater than Ec dpcch0 , the transmit power will be increased.
  • the control module 12 also needs to adjust the power offset of the enhanced dedicated physical data channel (E-DPDCH) in time. Otherwise, the purpose of increasing the DPCCH to ensure the performance of the DPCCH cannot be realized. Because the power of the following DPCCH increases, the power offset of the E-DPDCH increases accordingly, which results in the power of the E-DPDCH being too good. Due to the regulation of the outer loop, the power is reduced, so that the user equipment further responds to the power reduction. The command causes the transmit power of the user equipment to be reduced again.
  • E-DPDCH enhanced dedicated physical data channel
  • the control module 12 adjusts the power offset of the E-DPDCH to the first power offset in time, and the first power offset is any one of the flat regions of the optimal power offset of the user equipment. value.
  • the power of the E-DPDCH is controlled to be offset in a flat area of the optimal power offset of the user equipment, and the total received power of the user equipment is the same. Therefore, in this way, the purpose of increasing the DPCCH power for normal communication is achieved, and the demodulation performance of the DPCCH is not affected.
  • the initial power offset of the dedicated physical data channel is enhanced when not in the soft handoff zone, and the SIR 1 is the first signal to noise ratio target value of the dedicated physical control channel when the user equipment is in the soft handoff zone, and the PO w is not in the user equipment.
  • E 0 /N 0 (SIR 0 /256) ⁇ (PO 0 +PO hsdpcch +PO edpcch +PO dpdch +1);
  • E 1 /N 0 (SIR 1 /256) ⁇ (PO 1 +PO hsdpcch +PO edpcch +PO dpdch +1),
  • PO 1 (SIR 0 /SIR 1 ) ⁇ (PO 0 +PO hsdpcch +PO edpcch +PO dpdch +1)-(PO hsdpcch +PO edpcch +PO dpdch +1), if PO m -PO n is user equipment For a flat region of optimal power offset, then PO m ⁇ PO 1 ⁇ PO n .
  • E 0 Ec dpcch0 ⁇ (PO 0 +PO hsdpcch +PO edpcch +PO dpdch +1),
  • E 1 Ec dpcch1 ⁇ (PO 1 +PO hsdpcch +PO edpcch +PO dpdch +1),
  • PO 1 (Ec dpcch0 / Ec dpcch1 ) ⁇ (PO 0 + PO hsdpcch + PO edpcch + PO dpdch +1) - (PO hsdpcch + PO edpcch + PO dpdch +1), if PO m - PO n is the user The flat region of the optimal power offset of the device, then PO m ⁇ PO 1 ⁇ PO n .
  • PO w of the user equipment when, PO w of the user equipment is not in a soft handover region, a high speed dedicated physical control channel power offset PO hsdpcch, enhanced dedicated physical control channel power offset PO edpcch, a power offset PO dpdch dedicated physical data channel and a dedicated physical
  • the sum of the power offsets 1 of the control channel, PO w PO hsdpcch + PO edpcch + PO dpdch +1.
  • E 0 Ec dpcch0 ⁇ (PO 0 +PO hsdpcch +PO edpcch +PO dpdch +1),
  • E 1 Ec dpcch0 ⁇ PO dpcch ⁇ (PO 1 +PO hsdpcch +PO edpcch +PO dpdch +1),
  • PO 1 (1/PO dpcch ) ⁇ (PO 0 + PO hsdpcch + PO edpcch + PO dpdch +1) - (PO hsdpcch + PO edpcch + PO dpdch +1), if PO m - PO n is the user equipment The flat region of the optimal power offset, then PO m ⁇ PO 1 ⁇ PO n .
  • FIG. 5 is a schematic structural diagram of another embodiment of a user equipment according to the present application.
  • the user equipment 130 includes a processor 21, a receiver 22, a transmitter 23, a random access memory 24, a read only memory 25, and a bus 26.
  • the processor 21 is coupled to the receiver 22, the transmitter 23, the random access memory 24, and the read only memory 25 via a bus 26, respectively.
  • the basic input/output system in the read-only memory 25 or the bootloader booting system in the embedded system is booted to guide the user terminal 130 to enter a normal operating state.
  • the application and the operating system are run in the random access memory 44 and cause:
  • Processor 21 is used to increase the power of the DPCCH when the user equipment is in the soft handover area of the serving base station between the uplink and downlink balance points, so that the serving base station can normally receive the signal from the user equipment, and adjust the power of the E-DPDCH. Offset to a first power offset, the first power offset being any one of the flat regions of the optimal power offset of the user equipment;
  • PO 1 is the first power offset
  • SIR 0 is that the user equipment is not in the soft state
  • the initial SNR target value of the dedicated physical control channel when the zone is switched PO 0 is the initial power offset of the dedicated physical data channel when the user equipment is not in the soft handoff zone
  • SIR 1 is the dedicated physical control when the user equipment is in the soft handoff zone.
  • the initial transmit power of the dedicated physical control channel PO 0 is the initial power offset of the dedicated physical data channel when the user equipment is not in the soft handover zone
  • Ec dpcch1 is the adjustment of the dedicated physical control channel when the user equipment is in the soft handover zone.
  • PO w of the user equipment is not in the soft handover region, a high speed dedicated physical control channel power offset PO hsdpcch, enhanced dedicated physical control channel power offset PO edpcch, dedicated physical data channel
  • PO w PO hsdpcch + PO edpcch + PO dpdch +1.
  • PO 1 is the first power offset
  • PO 0 is that the user equipment is not in the soft handoff region
  • PO dpcch is the power offset of the dedicated physical control channel when the user equipment is in the soft handover area
  • PO w is the high-speed dedicated physical control channel when the user equipment is not in the soft handover area.
  • the processor 21 of the embodiment of the present application may be a central processing unit CPU or a specific integrated circuit ASIC (Application Specific Integrated Circuit), or one or more integrated circuits configured to implement the embodiments of the present application.
  • ASIC Application Specific Integrated Circuit
  • the transmitter 23 is configured to send a communication signal to the base station
  • the transmitter 23 is configured to send a communication signal to the base station during communication between the user equipment and the base station.
  • Receiver 22 is operative to receive communication signals from the base station.
  • the receiver 22 is configured to receive a communication signal sent by the base station during communication between the user equipment and the base station.
  • the present application further provides a heterogeneous network system, including a serving base station, a secondary base station, and a user equipment.
  • the user equipment can perform uplink communication to the secondary base station, and the auxiliary base station and the serving base station can communicate with each other. Downstream communication to the user equipment. Please refer to FIG. 1 and related description for details, and details are not repeated herein.
  • the embodiment of the present application provides a method for controlling power configuration in a heterogeneous network.
  • the power of the dedicated physical control channel is increased to enable the
  • the serving base station can normally receive the signal from the user equipment; and simultaneously adjust the power offset of the enhanced dedicated physical data channel to the first power offset, the first power offset being any value of the flat region of the optimal power offset of the user equipment .
  • the power can be quickly adjusted to meet the signal transmission needs, and the demodulation performance of the HS-DPCCH can be ensured.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read only memory (ROM, Read-Only) Memory, random access memory (RAM), disk or optical disk, and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种异构网中功率配置的控制方法及用户设备。其中,功率配置的控制方法包括:判断用户设备是否处于上下行平衡点之间以宏站为服务基站的软切换区;当用户设备处于上下行平衡点之间以宏站为服务基站的软切换区时,增大专用物理控制信道的功率以使服务基站能正常接收来自用户设备的信号;调整增强专用物理数据信道的功率偏置至第一功率偏置,第一功率偏置为用户设备的最优功率偏置的平坦区域的任何一个值。通过这种方式,当用户设备处于异构网的软切换区时,既能实现与基站之间的正常通讯,又能使HS-DPCCH的性能不受影响。

Description

异构网中功率配置的控制方法及用户设备
【技术领域】
本发明属于无线通信技术领域,具体涉及异构网中功率配置的控制方法及用户设备。
【背景技术】
为了增强网络侧的处理能力,现有技术提供了一种异构网络(Hetnet,Heterogeneous network)技术,即在覆盖范围大的宏基站所覆盖的小区内设置微基站,使用微基站搭配宏基站来组网。
上述现有技术Hetnet中,会出现一个软切换区,当用户设备处于该软切换区时,微基站接收到用户设备的上行信道功率会大于宏基站接收到的用户设备的上行信道功率。而Hetnet中在该软切换区,用户设备同时受到微基站和宏基站的功率控制,且功率控制的准则是:只要有一个Hetnet内的基站发送“降功率”指令,则用户设备就响应为降功率操作。只有当所有基站都向用户设备发送“升功率”指令,用户设备才会响应为升功率操作。这样将直接影响上行高速专用物理控制信道(HS-DPCCH)的解调性能。
现有的一种做法是当用户设备处于软切换区时,自行增大专用物理控制信道(DPCCH)功率来保证HS-DPCCH的解调性能。但是这样又会导致增强专用物理数据信道(E-DPDCH)的功率也随之相应增大,从而导致E-DPDCH功率过高而浪费Hetnet的负载资源。且当用户设备处于软切换区时,微基站接收到用户设备的信号很强,而宏基站接收到用户设备的信号很弱,当用户设备E-DPDCH功率增大,使得微基站接收的用户设备的信号更强,必然对宏基站接收用户设备的信号造成干扰,宏基站向用户设备发送降功率指令,用户设备又会进一步响应降低功率指令而降低功率,从而无法实现增大DPCCH功率保证HS-DPCCH解调性能的目的。
【发明内容】
本申请主要解决的技术问题是解决异构网中软切换区上行高速专用物理控制信道的性能问题。
有鉴于此,本申请实施例提供一种异构网中功率配置的控制方法及用户设备,目的在于当用户设备处于异构网的软切换区时,既能实现与基站之间的正常通讯,又能使HS-DPCCH的性能不受影响。
本申请第一方面提供一种异构网中功率配置的控制方法,包括如下步骤:判断用户设备是否处于上下行平衡点之间以宏站为服务基站的软切换区;当用户设备处于上下行平衡点之间以宏站为服务基站的软切换区时,增大专用物理控制信道的功率以使所述服务基站能正常接收来自用户设备的信号;调整增强专用物理数据信道的功率偏置至第一功率偏置,所述第一功率偏置为用户设备的最优功率偏置的平坦区域的任何一个值。
结合第一方面,在第一种可能的实现方式中,所述第一功率偏置满足:PO1 =(SIR0 /SIR1 )×(PO0 +POw ) - POw ,其中,PO1 为所述第一功率偏置,SIR0 为用户设备未处于所述软切换区时专用物理控制信道的初始信噪比目标值,PO0 为用户设备未处于所述软切换区时增强专用物理数据信道的初始功率偏置,SIR1 为用户设备处于所述软切换区时专用物理控制信道经调整后的第一信噪比目标值,POw 为用户设备未处于所述软切换区时,高速专用物理控制信道的功率偏置POhsdpcch 、增强专用物理控制信道的功率偏置POedpcch 、专用物理数据信道的功率偏置POdpdch 以及专用物理控制信道的功率偏置1的求和,POw = POhsdpcch +POedpcch +POdpdch +1。
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述当用户设备处于上下行平衡点之间以宏站为服务基站的软切换区时,增大专用物理控制信道的功率的步骤包括:当用户设备处于上下行平衡点之间以宏站为服务基站的软切换区时,将所述专用物理控制信道的信噪比目标值由所述初始信噪比目标值调至所述第一信噪比目标值,以使服务基站能正常接收来自用户设备的信号,其中,所述第一信噪比目标值大于所述初始信噪比目标值。
结合第一方面,在第一方面的第三种可能的实现方式中,所述第一功率偏置满足:PO1 =(Ecdpcch0 /Ecdpcch1 )×(PO0 +POw ) - POw ,其中,PO1 为所述第一功率偏置,Ecdpcch0 为用户设备未处于所述软切换区时专用物理控制信道的初始发射功率,PO0 为用户设备未处于所述软切换区时增强专用物理数据信道的初始功率偏置,Ecdpcch1 为用户设备处于所述软切换区时专用物理控制信道的经调整后的第一发射功率,POw 为用户设备未处于所述软切换区时,高速专用物理控制信道的功率偏置POhsdpcch 、增强专用物理控制信道的功率偏置POedpcch 、专用物理数据信道的功率偏置POdpdch 以及专用物理控制信道的功率偏置1的求和,POw =POhsdpcch +POedpcch +POdpdch +1。
结合第一方面,在第一方面的第四种可能的实现方式中,所述第一功率偏置满足:PO1 =(1/POdpcch )×(PO0 +POw )- POw ,其中,PO1 为所述第一功率偏置,PO0 为用户设备未处于所述软切换区时增强专用物理数据信道的初始功率偏置,POdpcch 为用户设备处于所述软切换区时专用物理控制信道的功率偏置,POw 为用户设备未处于所述软切换区时,高速专用物理控制信道的功率偏置POhsdpcch 、增强专用物理控制信道的功率偏置POedpcch 、专用物理数据信道的功率偏置POdpdch 以及专用物理控制信道的功率偏置1的求和,PO w =POhsdpcch +POedpcch +POdpdch +1。
结合第一方面的第三种可能或第四种可能的实现方式,在第一方面的第五种可能的实现方式中,所述当用户设备处于上下行平衡点之间以宏站为服务基站的软切换区时,增大专用物理控制信道的功率的步骤包括:当用户设备处于上下行平衡点之间以宏站为服务基站的软切换区时,将所述专用物理控制信道的发射功率由所述初始发射功率调整为所述第一发射功率,以使服务基站能正常接收来自用户设备的信号,其中,所述第一发射功率大于所述初始发射功率。
第二方面,提供一种用户设备,所述用户设备包括判断模块和控制模块,其中:所述判断模块用于判断所述用户设备是否处于上下行平衡点之间以宏站为服务基站的软切换区,并将判断结果输出给所述控制模块;所述控制模块用于当所述用户设备处于上下行平衡点之间以宏站为服务基站的软切换区时,增大专用物理控制信道的功率以使所述服务基站能正常接收来自用户设备的信号,并调整增强专用物理数据信道的功率偏置至第一功率偏置,所述第一功率偏置为用户设备的最优功率偏置的平坦区域的任何一个值。
结合第二方面,在第二方面的第一种可能的实现方式中,所述第一功率偏置满足:PO1 =(SIR0 /SIR1 )×(PO0 +POw ) - POw ,其中,PO1 为所述第一功率偏置,SIR0 为用户设备未处于所述软切换区时专用物理控制信道的初始信噪比目标值,PO0 为用户设备未处于所述软切换区时增强专用物理数据信道的初始功率偏置,SIR1 为用户设备处于所述软切换区时专用物理控制信道经调整后的第一信噪比目标值,POw 为用户设备未处于所述软切换区时,高速专用物理控制信道的功率偏置POhsdpcch 、增强专用物理控制信道的功率偏置POedpcch 、专用物理数据信道的功率偏置POdpdch 以及专用物理控制信道的功率偏置1的求和, POw = POhsdpcch +POedpcch +POdpdch +1;所述控制模块用于当用户设备处于上下行平衡点之间以宏站为服务基站的软切换区时,将所述专用物理控制信道的信噪比目标值由所述初始信噪比目标值调至所述第一信噪比目标值,以使服务基站能正常接收来自用户设备的信号,其中,所述第一信噪比目标值大于所述初始信噪比目标值。
结合第二方面,在第二方面的第二种可能的实现方式中,所述第一功率偏置满足:PO 1 =(Ecdpcch0 /Ecdpcch1 )×(PO0 +POw ) - POw ,其中,PO1 为所述第一功率偏置,Ecdpcch0 为用户设备未处于所述软切换区时专用物理控制信道的初始发射功率,PO0 为用户设备未处于所述软切换区时增强专用物理数据信道的初始功率偏置,Ecdpcch1 为用户设备处于所述软切换区时专用物理控制信道的经调整后的第一发射功率,POw 为用户设备未处于所述软切换区时,高速专用物理控制信道的功率偏置POhsdpcch 、增强专用物理控制信道的功率偏置POedpcch 、专用物理数据信道的功率偏置POdpdch 以及专用物理控制信道的功率偏置1的求和, POw = POhsdpcch +POedpcch +POdpdch +1;或所述第一功率偏置满足:PO 1 =(1/POdpcch )×(PO 0 +PO w )- POw ,其中,PO1 为所述第一功率偏置,PO0 为用户设备未处于所述软切换区时增强专用物理数据信道的初始功率偏置,POdpcch 为用户设备处于所述软切换区时专用物理控制信道的功率偏置,POw 为用户设备未处于所述软切换区时,高速专用物理控制信道的功率偏置POhsdpcch 、增强专用物理控制信道的功率偏置POedpcch 、专用物理数据信道的功率偏置POdpdch 以及专用物理控制信道的功率偏置1的求和,POw = POhsdpcch +POedpcch +POdpdch +1;所述控制模块用于当用户设备处于上下行平衡点之间以宏站为服务基站的软切换区时,将所述专用物理控制信道的发射功率由所述初始发射功率调整为所述第一发射功率,以使服务基站能正常接收来自用户设备的信号,其中,所述第一发射功率大于所述初始发射功率。
结合第二方面的第一种可能的实现方式,在第二种可能的实现方式中,
第三方面,提供一种用户设备,包括处理器、发送器以及接收器,所述处理器分别与所述发送器以及接收器电连接,其中:所述处理器用于当用户设备处于上下行平衡点之间以宏站为服务基站的软切换区时,增大专用物理控制信道的功率以使所述服务基站能正常接收来自用户设备的信号,并调整增强专用物理数据信道的功率偏置至第一功率偏置,所述第一功率偏置为用户设备的最优功率偏置的平坦区域的任何一个值;所述发送器用于向基站发送通讯信号;所述接收器用于接收来自基站的通讯信号。
上述技术方案,在异构网中,当用户设备处于软切换区时,增大专用物理控制信道的功率以使所述服务基站能正常接收来自用户设备的信号;同时调整增强专用物理数据信道的功率偏置至第一功率偏置,第一功率偏置为用户设备的最优功率偏置的平坦区域的任何一个值。通过这种方式,当用户设备处于软切换区时,能够快速调整功率以适应信号传输需要,且能保证HS-DPCCH的解调性能不受影响。
【附图说明】
图1是本申请功率配置的控制方法一个实施例的***架构示意图;
图2是本申请异构网中功率配置的控制方法一个实施例的流程图;
图3是本申请异构网中功率配置的控制方法另一个实施例的流程图;
图4是本申请用户设备一个实施例的结构示意图;
图5是本申请用户设备另一个实施例的结构示意图。
【具体实施方式】
以下描述中,为了说明而不是为了限定,提出了诸如特定***结构、接口、技术之类的具体细节,以便透彻理解本申请。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
参阅图1,图1是实现本申请功率配置的控制方法的***(即异构网组网***)的一个实施例的示意图。本实施例的异构网组网***包括:服务基站110、辅助基站120以及用户设备130。其中,用户设备130可分别与服务基站110以及辅助基站120建立无线连接,而服务基站110与辅助基站120之间同样可进行数据传输。在本实施例中,将宏基站作为服务基站110,而将微基站作为辅助基站120。
通常,服务基站110所覆盖的小区内的用户设备130均可与服务基站110通讯,而辅助基站120所覆盖的小区内的用户设备130均可与辅助基站120进行通讯,但是,由于这里服务基站110与辅助基站120组成了异构网络,所以,服务基站110所覆盖的小区和辅助基站120所覆盖的小区之间形成了三个区域。在区域A中,服务基站110收到用户设备130的信号很强,用户设备130收到服务基站110的信号也很强,辅助基站120收到用户设备130的信号很弱,用户设备130收到辅助基站120的信号也很弱;在区域B中,服务基站110收到用户设备130的信号很弱(图中虚线所示),用户设备130收到服务基站110的信号很强(图中实线所示),辅助基站120收到用户设备130的信号很强(图中实线所示),用户设备130收到辅助基站120的信号很弱(图中虚线所示);在区域C中,服务基站110收到用户设备130的信号很弱,用户设备130收到服务基站110的信号也很弱,辅助基站120收到用户设备130的信号很强,用户设备130收到辅助基站120的信号也很强。所以,区域A和C称作平衡区域,而区域B称作软切换区即不平衡区域。
在本实施例中,服务基站110与辅助基站120之间可以直接进行通讯,在其它的实施例中,服务基站110与辅助基站120之间也可以通过无线网络控制器(RNC,Radio Network Controller)进行通讯。
当用户设备130处于软切换区时,用户设备130同时受到微基站和宏基站的功率控制,且功率控制的准则是:只要有一个激活集内的小区发送“降功率”指令,则用户设备130就响应为降功率操作。只有当所有小区都向用户设备130发送“升功率”指令,用户设备130才会响应为升功率操作。这样将直接影响上行高速专用物理控制信道(HS-DPCCH)的解调性能。
本申请有鉴于此,提供一种异构网中功率配置的控制方法,目的在于实现,当用户设备处于异构网的软切换区时,既能实现与基站之间正常通讯,也不影响上行专用物理控制信道的解调性能。
请参阅图2,图2是本申请异构网中功率配置的控制方法一个实施例的流程图,本实施例异构网中功率配置的控制方法包括:
步骤S101:用户设备当用户设备处于上下行平衡点之间以宏站为服务基站的软切换区时,增大专用物理控制信道的功率以使服务基站能正常接收来自用户设备的信号;
当用户设备处于上下行平衡点之间以宏站为服务基站的软切换区时,增大专用物理控制信道(DPCCH)的功率,这样能使服务基站能够正常接收来自用户设备的信号。
步骤S102:调整增强专用物理数据信道的功率偏置至第一功率偏置,所述第一功率偏置为用户设备的最优功率偏置的平坦区域的任何一个值;
在增大DPCCH的功率后,需要及时调整增强专用物理数据信道(E-DPDCH)的功率偏置,否则,没法真正实现增大DPCCH以保证DPCCH的性能的目的。因为跟随DPCCH的功率增大,E-DPDCH的功率偏置也相应增大,从而导致E-DPDCH的功率超出正常需求,由于外环的调控,会控制降低功率,从而使用户设备又进一步响应降功率指令而使用户设备的发射功率再度降低。
因此,在增大DPCCH的功率后,及时调整E-DPDCH的功率偏置至第一功率偏置,该第一功率偏置为用户设备的最优功率偏置的平坦区域的任何一个值。控制E-DPDCH的功率偏置在用户设备的最优功率偏置的平坦区域,则用户设备的接收总功率相同。因此,通过这种方式,既达到增大DPCCH功率实现正常通讯的目的,也不会影响DPCCH的解调性能。
通过上述实施例的阐述,可以理解,本申请实施例提供异构网中功率配置的控制方法,当用户设备处于异构网的软切换区时,增大专用物理控制信道的功率以使所述服务基站能正常接收来自用户设备的信号;同时调整增强专用物理数据信道的功率偏置至第一功率偏置,第一功率偏置为用户设备的最优功率偏置的平坦区域的任何一个值。通过这种方式,当用户设备处于软切换区时,能够快速调整功率以适应信号传输需要,且能保证HS-DPCCH的解调性能不受影响。
为进一步解释本申请的技术方案,以下通过更加详细的实现过程来解释本申请异构网中功率配置的控制方法。
请参阅图3,图3是本申请异构网中功率配置的控制方法一个实施例的流程图,异构网中功率配置的控制方法包括:
步骤S201:判断用户设备是否处于上下行平衡点之间以宏站为服务基站的软切换区;
用户设备判断自己是否处于上下行平衡点之间以宏站为服务基站的软切换区,比如用户设备可以通过自身接收的信号状况判断自己的位置是否处于软切换区。当用户设备检测到自己的位置已经处于上下行平衡点之间以宏站为服务基站的软切换区时,执行步骤S202,否则,执行步骤S204。
步骤S202:增大专用物理控制信道的功率以使服务基站能正常接收来自用户设备的信号;
用户设备处于上下行平衡点之间以宏站为服务基站的软切换区时,抬升专用DPCCH的功率,这样能使服务基站能够正常接收来自用户设备的信号。
在实际应用中,本申请实施例增大DPCCH的功率可以有两种实现方式,一种实现方式是将DPCCH的信噪比目标值(SIR target)由初始信噪比目标值(SIR0 )调至第一信噪比目标值(SIR1 ),以使服务基站能正常接收来自用户设备的信号,其中,SIR1 大于SIR0 ,即将SIR target调高。
另一种实现方式是将DPCCH的发射功率由初始发射功率(Ecdpcch0 )调整为第一发射功率(Ecdpcch1 ),以使服务基站能正常接收来自用户设备的信号,其中,Ecdpcch1 大于Ecdpcch0 ,即将发射功率调高。
步骤S203:调整增强专用物理数据信道的功率偏置至第一功率偏置,第一功率偏置为用户设备的最优功率偏置的平坦区域的任何一个值;
在增大DPCCH的功率后,及时调整E-DPDCH的功率偏置至第一功率偏置。其中,针对增大DPCCH的功率的两种实现方式,通过调整SIR target和调整发射功率来增大DPCCH的功率。调整E-DPDCH的功率偏置至第一功率偏置也有相应的以下几种实现方式:
当通过调整SIR target来增大DPCCH的功率时,可以控制第一功率偏置满足: PO1 =(SIR0 /SIR1 )×(PO0 +POw ) - POw ,其中,PO1 为第一功率偏置,SIR0 为用户设备未处于软切换区时专用物理控制信道的初始信噪比目标值,PO0 为用户设备未处于软切换区时增强专用物理数据信道的初始功率偏置,SIR1 为用户设备处于软切换区时专用物理控制信道经调整后的第一信噪比目标值,POw 为用户设备未处于软切换区时,高速专用物理控制信道的功率偏置POhsdpcch 、增强专用物理控制信道的功率偏置POedpcch 、专用物理数据信道的功率偏置POdpdch 以及专用物理控制信道的功率偏置1的求和,POw = POhsdpcch +POedpcch +POdpdch +1。
因为平坦区接收总功率相同,即E0 =E1 ,其中,
E0 /N0 =(SIR0 /256)×(PO0 +POhsdpcch +POedpcch +POdpdch +1);
E1 /N0 =(SIR1 /256)×(PO1 +POhsdpcch +POedpcch +POdpdch +1),
所以:
PO1 =(SIR0 /SIR1 )×(PO0 +POhsdpcch +POedpcch +POdpdch +1)-(POhsdpcch +POedpcch +POdpdch +1),若POm -POn 为用户设备的最优功率偏置的平坦区域,则POm ≤PO1 ≤POn
当通过调整发射功率来增大DPCCH的功率时,可以控制第一功率偏置满足: PO1 =(Ecdpcch0 /Ecdpcch1 )×(PO0 +POw ) - POw ,其中,PO1 为第一功率偏置,Ecdpcch0 为用户设备未处于软切换区时专用物理控制信道的初始发射功率,PO0 为用户设备未处于软切换区时增强专用物理数据信道的初始功率偏置,Ecdpcch1 为用户设备处于软切换区时专用物理控制信道的经调整后的第一发射功率,POw 为用户设备未处于所述软切换区时,高速专用物理控制信道的功率偏置POhsdpcch 、增强专用物理控制信道的功率偏置POedpcch 、专用物理数据信道的功率偏置POdpdch 以及专用物理控制信道的功率偏置1的求和,POw =POhsdpcch +POedpcch +POdpdch +1。
因为平坦区接收总功率相同,即:E0 =E1 ,其中,
E0 =Ecdpcch0 ×(PO0 +POhsdpcch +POedpcch +POdpdch +1),
E1 =Ecdpcch1 ×(PO1 +POhsdpcch +POedpcch +POdpdch +1),
所以:PO1 =(Ecdpcch0 /Ecdpcch1 )×(PO0 +POhsdpcch +POedpcch +POdpdch +1)- (POhsdpcch +POedpcch +POdpdch +1),若POm -POn 为用户设备的最优功率偏置的平坦区域,则POm ≤PO1 ≤POn
如果功率调整是以信令的形式通知到用户终端时,可以控制第一功率偏置满足:PO1 =(1/POdpcch )×(PO0 +POw )- POw ,其中,PO1 为第一功率偏置,PO0 为用户设备未处于软切换区时增强专用物理数据信道的初始功率偏置,POdpcch 为用户设备处于所述软切换区时专用物理控制信道的功率偏置,POw 为用户设备未处于软切换区时,高速专用物理控制信道的功率偏置POhsdpcch 、增强专用物理控制信道的功率偏置POedpcch 、专用物理数据信道的功率偏置POdpdch 以及专用物理控制信道的功率偏置1的求和,POw =POhsdpcch +POedpcch +POdpdch +1。
因为平坦区接收总功率相同,即:E0 =E1 ,其中,
E0 =Ecdpcch0 ×(PO0 +POhsdpcch +POedpcch +POdpdch +1),
E1 =Ecdpcch0 ×POdpcch ×(PO1 +POhsdpcch +POedpcch +POdpdch +1),
所以:PO1 =(1/POdpcch )×(PO0 +POhsdpcch +POedpcch +POdpdch +1)- (POhsdpcch +POedpcch +POdpdch +1), 若POm -POn 为用户设备的最优功率偏置的平坦区域,则POm ≤PO1 ≤POn
步骤S204:不执行动作;
当用户设备检测到自己的位置未处于上下行平衡点之间以宏站为服务基站的软切换区时,则不执行动作。
请参阅图4,图4为本申请用户设备一个实施例的结构示意图,用户设备130包括判断模块11和控制模块12,其中:
判断模块11用于判断用户设备是否处于上下行平衡点之间以宏站为服务基站的软切换区,并将判断结果输出给控制模块12;
判断模块11判断用户设备是否处于上下行平衡点之间以宏站为服务基站的软切换区,比如判断模块11可以通过用户设备接收的信号状况判断用户设备的位置是否处于软切换区,并将判断结果输出给控制模块12。
控制模块12用于当用户设备处于上下行平衡点之间以宏站为服务基站的软切换区时,增大DPCCH的功率以使服务基站能正常接收来自用户设备的信号,并调整E-DPDCH的功率偏置至第一功率偏置,第一功率偏置为用户设备的最优功率偏置的平坦区域的任何一个值。
当用户设备处于上下行平衡点之间以宏站为服务基站的软切换区时,控制模块12增大DPCCH的功率,这样能使服务基站能够正常接收来自用户设备的信号。
在实际应用中,本申请实施例控制模块12增大DPCCH的功率可以有两种实现方式,一种实现方式是将DPCCH的信噪比目标值(SIR target)由初始信噪比目标值(SIR0 )调至第一信噪比目标值(SIR1 ),以使服务基站能正常接收来自用户设备的信号,其中,SIR1 大于SIR0 ,即将SIR target调高。
另一种实现方式是控制模块12将DPCCH的发射功率由初始发射功率(Ecdpcch0 )调整为第一发射功率(Ecdpcch1 ),以使服务基站能正常接收来自用户设备的信号,其中,Ecdpcch1 大于Ecdpcch0 ,即将发送功率调高。
另外,在增大DPCCH的功率后,控制模块12还需要及时调整增强专用物理数据信道(E-DPDCH)的功率偏置,否则,没法真正实现增大DPCCH以保证DPCCH的性能的目的。因为跟随DPCCH的功率增大,E-DPDCH的功率偏置也相应增大,从而导致E-DPDCH的功率过好,由于外环的调控,会控制降低功率,从而使用户设备又进一步响应降功率指令而使用户设备的发射功率再度降低。
因此,在增大DPCCH的功率后,控制模块12及时调整E-DPDCH的功率偏置至第一功率偏置,该第一功率偏置为用户设备的最优功率偏置的平坦区域的任何一个值。控制E-DPDCH的功率偏置在用户设备的最优功率偏置的平坦区域,则用户设备的接收总功率相同。因此,通过这种方式,既达到增大DPCCH功率实现正常通讯的目的,也不会影响DPCCH的解调性能。
其中,针对增大DPCCH的功率的两种实现方式,当通过调整SIR target来增大DPCCH的功率时,控制模块12可以控制第一功率偏置满足: PO1 =(SIR0 /SIR1 )×(PO0 +POw ) - POw ,其中,PO1 为第一功率偏置,SIR0 为用户设备未处于软切换区时专用物理控制信道的初始信噪比目标值,PO0 为用户设备未处于软切换区时增强专用物理数据信道的初始功率偏置,SIR1 为用户设备处于软切换区时专用物理控制信道经调整后的第一信噪比目标值,POw 为用户设备未处于软切换区时,高速专用物理控制信道的功率偏置POhsdpcch 、增强专用物理控制信道的功率偏置POedpcch 、专用物理数据信道的功率偏置POdpdch 以及专用物理控制信道的功率偏置1的求和,POw = POhsdpcch +POedpcch +POdpdch +1。
因为平坦区接收总功率相同即E0 =E1 ,其中,
E0 /N0 =(SIR0 /256)×(PO0 +POhsdpcch +POedpcch +POdpdch +1);
E1 /N0 =(SIR1 /256)×(PO1 +POhsdpcch +POedpcch +POdpdch +1),
所以:
PO1 =(SIR0 /SIR1 )×(PO0 +POhsdpcch +POedpcch +POdpdch +1)-(POhsdpcch +POedpcch +POdpdch +1),若POm -POn 为用户设备的最优功率偏置的平坦区域,则POm ≤PO1 ≤POn
当通过调整发射功率来增大DPCCH的功率时,控制模块12可以控制第一功率偏置满足:PO1 =(Ecdpcch0 /Ecdpcch1 )×(PO0 +POw ) - POw ,其中,PO1 为第一功率偏置,Ecdpcch0 为用户设备未处于软切换区时专用物理控制信道的初始发射功率,PO0 为用户设备未处于软切换区时增强专用物理数据信道的初始功率偏置,Ecdpcch1 为用户设备处于软切换区时专用物理控制信道的经调整后的第一发射功率,POw 为用户设备未处于所述软切换区时,高速专用物理控制信道的功率偏置POhsdpcch 、增强专用物理控制信道的功率偏置POedpcch 、专用物理数据信道的功率偏置POdpdch 以及专用物理控制信道的功率偏置1的求和,POw =POhsdpcch +POedpcch +POdpdch +1。
因为平坦区接收总功率相同,即:E0 =E1 ,其中,
E0 =Ecdpcch0 ×(PO0 +POhsdpcch +POedpcch +POdpdch +1),
E1 =Ecdpcch1 ×(PO1 +POhsdpcch +POedpcch +POdpdch +1),
所以:PO1 =(Ecdpcch0 /Ecdpcch1 )×(PO0 +POhsdpcch +POedpcch +POdpdch +1)- (POhsdpcch +POedpcch +POdpdch +1),若POm -POn 为用户设备的最优功率偏置的平坦区域,则POm ≤PO1 ≤POn
如果功率调整是以信令形式通知到用户终端时,控制模块12可以控制第一功率偏置满足:PO1 =(1/POdpcch )×(PO0 +POw )- POw ,其中,PO1 为第一功率偏置,PO0 为用户设备未处于软切换区时增强专用物理数据信道的初始功率偏置,POdpcch 为用户设备处于所述软切换区时专用物理控制信道的功率偏置,POw 为用户设备未处于软切换区时,高速专用物理控制信道的功率偏置POhsdpcch 、增强专用物理控制信道的功率偏置POedpcch 、专用物理数据信道的功率偏置POdpdch 以及专用物理控制信道的功率偏置1的求和,POw =POhsdpcch +POedpcch +POdpdch +1。
因为平坦区接收总功率相同,即:E0 =E1 ,其中,
E0 =Ecdpcch0 ×(PO0 +POhsdpcch +POedpcch +POdpdch +1),
E1 =Ecdpcch0 ×POdpcch ×(PO1 +POhsdpcch +POedpcch +PO dpdch +1),
所以:PO1 =(1/POdpcch )×(PO0 +POhsdpcch +POedpcch +POdpdch +1)- (POhsdpcch +POedpcch +POdpdch +1), 若POm -POn 为用户设备的最优功率偏置的平坦区域,则POm ≤PO1 ≤POn
请参阅图5,图5为本申请用户设备另一个实施例的结构示意图,用户设备130包括处理器21、接收器22、发送器23、随机存取存储器24、只读存储器25以及总线26。其中,处理器21通过总线26分别耦接接收器22、发送器23、随机存取存储器24以及只读存储器25。其中,当需要运行用户终端130时,通过固化在只读存储器25中的基本输入输出***或者嵌入式***中的bootloader引导***进行启动,引导用户终端130进入正常运行状态。用户终端130进入正常运行状态后,在随机存取存储器44中运行应用程序和操作***,并使得:
处理器(processor) 21用于当用户设备处于上下行平衡点之间以宏站为服务基站的软切换区时,增大DPCCH的功率以使服务基站能正常接收来自用户设备的信号,并调整E-DPDCH的功率偏置至第一功率偏置,第一功率偏置为用户设备的最优功率偏置的平坦区域的任何一个值;
其中,第一功率偏置满足:PO1 =(SIR0 /SIR1 )×(PO0 +POw ) - POw ,其中,PO1 为第一功率偏置,SIR0 为用户设备未处于软切换区时专用物理控制信道的初始信噪比目标值,PO0 为用户设备未处于软切换区时增强专用物理数据信道的初始功率偏置,SIR1 为用户设备处于软切换区时专用物理控制信道经调整后的第一信噪比目标值,POw 为用户设备未处于软切换区时,高速专用物理控制信道的功率偏置POhsdpcch 、增强专用物理控制信道的功率偏置POedpcch 、专用物理数据信道的功率偏置POdpdch 以及专用物理控制信道的功率偏置1的求和,POw = POhsdpcch +POedpcch +POdpdch +1。
或第一功率偏置满足:PO1 =(Ecdpcch0 /Ecdpcch1 )×(PO0 +POw ) - POw ,其中,PO1 为第一功率偏置,Ecdpcch0 为用户设备未处于软切换区时专用物理控制信道的初始发射功率,PO0 为用户设备未处于软切换区时增强专用物理数据信道的初始功率偏置,Ecdpcch1 为用户设备处于软切换区时专用物理控制信道的经调整后的第一发射功率,POw 为用户设备未处于所述软切换区时,高速专用物理控制信道的功率偏置POhsdpcch 、增强专用物理控制信道的功率偏置POedpcch 、专用物理数据信道的功率偏置POdpdch 以及专用物理控制信道的功率偏置1的求和,POw =POhsdpcch +POedpcch +POdpdch +1。
或第一功率偏置满足:PO1 =(1/POdpcch )×(PO0 +POw )- POw ,其中,PO1 为第一功率偏置,PO0 为用户设备未处于软切换区时增强专用物理数据信道的初始功率偏置,POdpcch 为用户设备处于所述软切换区时专用物理控制信道的功率偏置,POw 为用户设备未处于软切换区时,高速专用物理控制信道的功率偏置POhsdpcch 、增强专用物理控制信道的功率偏置POedpcch 、专用物理数据信道的功率偏置POdpdch 以及专用物理控制信道的功率偏置1的求和,POw =POhsdpcch +POedpcch +POdpdch +1。
本申请实施例的处理器21可能是一个中央处理器CPU,或者是特定集成电路ASIC(Application Specific Integrated Circuit),或者是被配置成实施本申请实施例的一个或多个集成电路。
发送器23用于向基站发送通讯信号;
发送器23用于在用户设备与基站之间进行通讯过程中,向基站发送通讯信号。
接收器22用于接收来自基站的通讯信号。
接收器22用于在用户设备与基站之间进行通讯过程中,接收基站发送过来的通讯信号。
基于上述用户设备,本申请还提出了一种异构网***,包括服务基站、辅助基站以及用户设备,用户设备可向辅助基站上行通讯,辅助基站和服务基站之间可进行通讯,服务基站可向用户设备下行通讯。具体请参阅附图1及相关说明,此处不重复赘述。
通过上述实施例的阐述,可以理解,本申请实施例提供异构网中功率配置的控制方法,当用户设备处于异构网的软切换区时,增大专用物理控制信道的功率以使所述服务基站能正常接收来自用户设备的信号;同时调整增强专用物理数据信道的功率偏置至第一功率偏置,第一功率偏置为用户设备的最优功率偏置的平坦区域的任何一个值。通过这种方式,当用户设备处于软切换区时,能够快速调整功率以适应信号传输需要,且能保证HS-DPCCH的解调性能不受影响。
在本申请所提供的几个实施例中,应该理解到,所揭露的***,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种异构网中功率配置的控制方法,其特征在于,包括:
    用户设备当用户设备处于上下行平衡点之间以宏站为服务基站的软切换区时,增大专用物理控制信道的功率以使所述服务基站能正常接收来自所述用户设备的信号;
    调整增强专用物理数据信道的功率偏置至第一功率偏置,所述第一功率偏置为所述用户设备的最优功率偏置的平坦区域的任何一个值。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一功率偏置满足:PO1 =(SIR0 /SIR1 )×(PO0 +POw ) - POw ,其中,PO1 为所述第一功率偏置,SIR0 为用户设备未处于所述软切换区时专用物理控制信道的初始信噪比目标值,PO0 为用户设备未处于所述软切换区时增强专用物理数据信道的初始功率偏置,SIR1 为用户设备处于所述软切换区时专用物理控制信道经调整后的第一信噪比目标值,POw 为用户设备未处于所述软切换区时,高速专用物理控制信道的功率偏置POhsdpcch 、增强专用物理控制信道的功率偏置POedpcch 、专用物理数据信道的功率偏置POdpdch 以及专用物理控制信道的功率偏置1的求和,POw = POhsdpcch +POedpcch +POdpdch +1 。
  3. 根据权利要求2所述的方法,其特征在于,
    所述当用户设备处于上下行平衡点之间以宏站为服务基站的软切换区时,增大专用物理控制信道的功率的步骤包括:当用户设备处于上下行平衡点之间以宏站为服务基站的软切换区时,将所述专用物理控制信道的信噪比目标值由所述初始信噪比目标值调至所述第一信噪比目标值,以使服务基站能正常接收来自用户设备的信号,其中,所述第一信噪比目标值大于所述初始信噪比目标值。
  4. 根据权利要求1所述的方法,其特征在于,
    所述第一功率偏置满足:PO1 =(Ecdpcch0 /Ecdpcch1 )×(PO0 +POw ) - POw ,其中,PO1 为所述第一功率偏置,Ecdpcch0 为用户设备未处于所述软切换区时专用物理控制信道的初始发射功率,PO0 为用户设备未处于所述软切换区时增强专用物理数据信道的初始功率偏置,Ecdpcch1 为用户设备处于所述软切换区时专用物理控制信道的经调整后的第一发射功率,POw 为用户设备未处于所述软切换区时,高速专用物理控制信道的功率偏置POhsdpcch 、增强专用物理控制信道的功率偏置POedpcch 、专用物理数据信道的功率偏置POdpdch 以及专用物理控制信道的功率偏置1的求和,POw = POhsdpcch +POedpcch +POdpdch +1 。
  5. 根据权利要求1所述的方法,其特征在于,
    所述第一功率偏置满足:
    PO1 =(1/POdpcch )×(PO0 +POw )- POw ,其中,PO1 为所述第一功率偏置,PO0 为用户设备未处于所述软切换区时增强专用物理数据信道的初始功率偏置,POdpcch 为用户设备处于所述软切换区时专用物理控制信道的功率偏置,POw 为用户设备未处于所述软切换区时,高速专用物理控制信道的功率偏置POhsdpcch 、增强专用物理控制信道的功率偏置POedpcch 、专用物理数据信道的功率偏置POdpdch 以及专用物理控制信道的功率偏置1的求和,POw = POhsdpcch +POedpcch +POdpdch +1 。
  6. 根据权利要求4或5所述的方法,其特征在于,
    所述当用户设备处于上下行平衡点之间以宏站为服务基站的软切换区时,增大专用物理控制信道的功率的步骤包括:当用户设备处于上下行平衡点之间以宏站为服务基站的软切换区时,将所述专用物理控制信道的发射功率由所述初始发射功率调整为所述第一发射功率,以使服务基站能正常接收来自用户设备的信号,其中,所述第一发射功率大于所述初始发射功率。
  7. 一种用户设备,其特征在于,包括判断模块和控制模块,其中:
    所述判断模块用于判断所述用户设备是否处于上下行平衡点之间以宏站为服务基站的软切换区,并将判断结果输出给所述控制模块;
    所述控制模块用于当所述用户设备处于上下行平衡点之间以宏站为服务基站的软切换区时,增大专用物理控制信道的功率以使所述服务基站能正常接收来自用户设备的信号,并调整增强专用物理数据信道的功率偏置至第一功率偏置,所述第一功率偏置为用户设备的最优功率偏置的平坦区域的任何一个值。
  8. 根据权利要求7所述的用户设备,其特征在于,
    所述第一功率偏置满足:PO1 =(SIR0 /SIR1 )×(PO0 +POw ) - POw ,其中,PO1 为所述第一功率偏置,SIR0 为用户设备未处于所述软切换区时专用物理控制信道的初始信噪比目标值,PO0 为用户设备未处于所述软切换区时增强专用物理数据信道的初始功率偏置,SIR1 为用户设备处于所述软切换区时专用物理控制信道经调整后的第一信噪比目标值,POw 为用户设备未处于所述软切换区时,高速专用物理控制信道的功率偏置POhsdpcch 、增强专用物理控制信道的功率偏置POedpcch 、专用物理数据信道的功率偏置POdpdch 以及专用物理控制信道的功率偏置1的求和, POw = POhsdpcch +POedpcch +POdpdch +1 。
    所述控制模块用于当用户设备处于上下行平衡点之间以宏站为服务基站的软切换区时,将所述专用物理控制信道的信噪比目标值由所述初始信噪比目标值调至所述第一信噪比目标值,以使服务基站能正常接收来自用户设备的信号,其中,所述第一信噪比目标值大于所述初始信噪比目标值。
  9. 根据权利要求7所述的用户设备,其特征在于,
    所述第一功率偏置满足:PO1 =(Ecdpcch0 /Ecdpcch1 )×(PO0 +POw ) - POw ,其中,PO1 为所述第一功率偏置,Ecdpcch0 为用户设备未处于所述软切换区时专用物理控制信道的初始发射功率,PO0 为用户设备未处于所述软切换区时增强专用物理数据信道的初始功率偏置,Ecdpcch1 为用户设备处于所述软切换区时专用物理控制信道的经调整后的第一发射功率,POw 为用户设备未处于所述软切换区时,高速专用物理控制信道的功率偏置POhsdpcch 、增强专用物理控制信道的功率偏置POedpcch 、专用物理数据信道的功率偏置POdpdch 以及专用物理控制信道的功率偏置1的求和,POw = POhsdpcch +POedpcch +POdpdch +1 ;或
    所述第一功率偏置满足:PO1 =(1/POdpcch )×(PO0 +POw )- POw ,其中,PO1 为所述第一功率偏置,PO0 为用户设备未处于所述软切换区时增强专用物理数据信道的初始功率偏置,POdpcch 为用户设备处于所述软切换区时专用物理控制信道的功率偏置,POw 为用户设备未处于所述软切换区时,高速专用物理控制信道的功率偏置POhsdpcch 、增强专用物理控制信道的功率偏置POedpcch 、专用物理数据信道的功率偏置POdpdch 以及专用物理控制信道的功率偏置1的求和,POw = POhsdpcch +POedpcch +POdpdch +1 ;
    所述控制模块用于当用户设备处于上下行平衡点之间以宏站为服务基站的软切换区时,将所述专用物理控制信道的发射功率由所述初始发射功率调整为所述第一发射功率,以使服务基站能正常接收来自用户设备的信号,其中,所述第一发射功率大于所述初始发射功率。
  10. 一种用户设备,其特征在于,包括处理器、发送器以及接收器,所述处理器与所述发送器以及所述接收器电连接,其中:
    所述处理器用于当用户设备处于上下行平衡点之间以宏站为服务基站的软切换区时,增大专用物理控制信道的功率以使所述服务基站能正常接收来自用户设备的信号,并调整增强专用物理数据信道的功率偏置至第一功率偏置,所述第一功率偏置为用户设备的最优功率偏置的平坦区域的任何一个值;
    所述发送器用于向基站发送通讯信号;
    所述接收器用于接收来自基站的通讯信号。
PCT/CN2013/074141 2013-04-12 2013-04-12 异构网中功率配置的控制方法及用户设备 WO2014166107A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380000252.8A CN104255078B (zh) 2013-04-12 2013-04-12 异构网中功率配置的控制方法及用户设备
EP13881826.5A EP2981142A4 (en) 2013-04-12 2013-04-12 METHOD AND USER DEVICE FOR PERFORMANCE CONFIGURATION IN A HETEROGENIC NETWORK
PCT/CN2013/074141 WO2014166107A1 (zh) 2013-04-12 2013-04-12 异构网中功率配置的控制方法及用户设备
US14/881,008 US9408128B2 (en) 2013-04-12 2015-10-12 Control method for power configuration on heterogeneous network, and user equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/074141 WO2014166107A1 (zh) 2013-04-12 2013-04-12 异构网中功率配置的控制方法及用户设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/881,008 Continuation US9408128B2 (en) 2013-04-12 2015-10-12 Control method for power configuration on heterogeneous network, and user equipment

Publications (1)

Publication Number Publication Date
WO2014166107A1 true WO2014166107A1 (zh) 2014-10-16

Family

ID=51688878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074141 WO2014166107A1 (zh) 2013-04-12 2013-04-12 异构网中功率配置的控制方法及用户设备

Country Status (4)

Country Link
US (1) US9408128B2 (zh)
EP (1) EP2981142A4 (zh)
CN (1) CN104255078B (zh)
WO (1) WO2014166107A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6770859B2 (ja) * 2016-09-16 2020-10-21 株式会社ジャパンディスプレイ 表示装置の製造方法
WO2019147538A1 (en) * 2018-01-23 2019-08-01 Sharp Laboratories Of America, Inc. Power management for electronically controlled device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1428947A (zh) * 2001-12-28 2003-07-09 华为技术有限公司 高速数据接入***中高速物理控制信道的功率控制方法
CN102215533A (zh) * 2010-04-02 2011-10-12 电信科学技术研究院 一种异构***中控制信道上的干扰协调方法和设备
CN102761920A (zh) * 2012-06-29 2012-10-31 华为技术有限公司 通信方法、设备及***

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3109504B2 (ja) * 1998-03-27 2000-11-20 日本電気株式会社 セルラシステムおよびセルラシステムの隣接周波数干渉回避方法と移動局
US6334047B1 (en) * 1999-04-09 2001-12-25 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive power control in a mobile radio communications system
KR100964577B1 (ko) * 2006-06-02 2010-06-21 삼성전자주식회사 통신 시스템에서 전력 제어 방법 및 시스템
US8295225B2 (en) * 2006-09-08 2012-10-23 Qualcomm Incorporated Reverse link feedback for interference control in a wireless communication system
US9629096B2 (en) * 2006-12-15 2017-04-18 Alcatel-Lucent Usa Inc. Controlling uplink power for picocell communications within a macrocell
US20080200202A1 (en) * 2007-02-13 2008-08-21 Qualcomm Incorporated Power control with link imbalance on downlink and uplink
US8126403B2 (en) * 2008-04-23 2012-02-28 Telefonaktiebolaget Lm Ericsson (Publ) Estimating and limiting inter-cell interference
GB2462587B (en) * 2008-08-01 2013-01-02 Vodafone Plc Interference mitigation in a mobile telecommunications network
US8331937B2 (en) * 2009-08-17 2012-12-11 Motorola Mobility Llc Mitigation of uplink interference from wireless communication device connected to a micro cell
EP2355579B1 (en) * 2010-02-09 2012-08-22 Telefonaktiebolaget LM Ericsson (publ) Optimized handover configuration
EP2628341B1 (en) * 2010-10-12 2017-01-04 Telefonaktiebolaget LM Ericsson (publ) Uplink power control
WO2012096604A1 (en) * 2011-01-11 2012-07-19 Telefonaktiebolaget L M Ericsson (Publ) Methods for uplink interference mitigation in non-allowed csg
US10200166B2 (en) * 2011-01-17 2019-02-05 Qualcomm Incorporated Rate matching for coordinated multipoint transmission schemes
US9107173B2 (en) * 2011-07-28 2015-08-11 Blackberry Limited Method and system for access and uplink power control for a wireless system having multiple transmit points
US9191851B2 (en) * 2011-09-29 2015-11-17 Telefonaktiebolaget L M Ericsson (Publ) Cell size and shape estimation in heterogeneous networks
EP2749094B1 (en) * 2011-10-04 2018-06-06 Telefonaktiebolaget LM Ericsson (publ) Controlling uplink transmit power responsive to combination of received power control commands during soft handover in a communicaton system
EP2777336B1 (en) * 2011-11-09 2015-10-07 Telefonaktiebolaget L M Ericsson (publ) Base station, user equipment, radio network controller and methods therein

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1428947A (zh) * 2001-12-28 2003-07-09 华为技术有限公司 高速数据接入***中高速物理控制信道的功率控制方法
CN102215533A (zh) * 2010-04-02 2011-10-12 电信科学技术研究院 一种异构***中控制信道上的干扰协调方法和设备
CN102761920A (zh) * 2012-06-29 2012-10-31 华为技术有限公司 通信方法、设备及***

Also Published As

Publication number Publication date
EP2981142A4 (en) 2016-03-16
CN104255078B (zh) 2018-04-20
US9408128B2 (en) 2016-08-02
EP2981142A1 (en) 2016-02-03
US20160037419A1 (en) 2016-02-04
CN104255078A (zh) 2014-12-31

Similar Documents

Publication Publication Date Title
WO2021015553A1 (en) Method and apparatus for cell reselection in wireless communication system
WO2019059673A1 (ko) 무선 통신 시스템에서 데이터 송수신 방법 및 장치
WO2019160271A1 (en) Method for changing status of wus operation and device supporting the same
WO2020067776A1 (en) Configured grants based on channel quality or repetition level
WO2012144787A2 (ko) 부하 분산 방법, 이를 수행하는 펨토 기지국 및 펨토 기지국 관리 시스템
EP2586252A2 (en) Method and apparatus for transmitting and receiving uplink data in mobile communication system
WO2019194528A1 (en) Method and apparatus for performing transmission
WO2019194649A1 (en) Method for performing cell reselection and device supporting the same
WO2012070909A2 (en) Apparatus and method for managing hot cell devices
WO2022055254A1 (ko) Nr v2x에서 전력 절약 단말의 사이드링크 drx 타이머 기반 전력 절약 방법 및 장치
WO2017131479A1 (en) Method and apparatus for reducing signaling overhead and reducing battery of terminal
WO2021071234A1 (ko) Nr v2x에서 psfch 자원을 선택하는 방법 및 장치
WO2018053965A1 (zh) 一种广播***信息的方法、装置及***
WO2013048081A2 (ko) 무선 통신 시스템에서 잔여 전력 보고 송수신 방법 및 장치
WO2021182884A1 (ko) Nr v2x에서 타이머 기반 전력 절약을 수행하는 방법 및 장치
WO2020226392A1 (en) Method and apparatus for radio resource management in wireless communication system
WO2022203413A1 (ko) Nr v2x에서 수신 단말이 psfch를 기반으로 파워 세이빙 동작을 수행하는 방법 및 장치
WO2022086221A1 (en) Method and apparatus for cell reselection in sliced network in wireless communication system
WO2022231166A1 (ko) 전자 장치 및 전자 장치에서 과온도 상태에 따라 송신 전력을 제어하는 방법
WO2020222553A1 (en) Method and apparatus for performing relaxed measurement on a specific frequency in a wireless communication system
WO2020222595A1 (en) Management of sidelink using sidelink control information and resource allocation
WO2020226407A1 (ko) 사이드링크 통신에서 pscch 및 pssch의 전송
WO2020138856A1 (en) Method and apparatus for cell reselection in wireless communication system
WO2015012502A1 (en) Method for adjusting a transmission power
WO2021153954A1 (en) Method and apparatus for performing measurement in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013881826

Country of ref document: EP