WO2014166081A1 - 基于物联网和云平台的植物特征数据测量和存储*** - Google Patents

基于物联网和云平台的植物特征数据测量和存储*** Download PDF

Info

Publication number
WO2014166081A1
WO2014166081A1 PCT/CN2013/074020 CN2013074020W WO2014166081A1 WO 2014166081 A1 WO2014166081 A1 WO 2014166081A1 CN 2013074020 W CN2013074020 W CN 2013074020W WO 2014166081 A1 WO2014166081 A1 WO 2014166081A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
measurement
data
processing unit
central processing
Prior art date
Application number
PCT/CN2013/074020
Other languages
English (en)
French (fr)
Inventor
沈震
康孟珍
王飞跃
Original Assignee
中国科学院自动化研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院自动化研究所 filed Critical 中国科学院自动化研究所
Priority to PCT/CN2013/074020 priority Critical patent/WO2014166081A1/zh
Publication of WO2014166081A1 publication Critical patent/WO2014166081A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/006Labels or label holders specially adapted for plant receptacles

Definitions

  • the invention belongs to the field of computer technology and electronic information technology, and particularly relates to a plant characteristic data measuring and storing system and method for an internet of things and a cloud platform. Background technique
  • the Internet of Things is "the Internet connected by things", mainly referring to
  • Information sensing devices such as RFID, barcode, and GPS connect items to the Internet for information exchange and communication, enabling intelligent identification, location, tracking, and management of items.
  • Cloud computing refers to the provision of computing, storage, software, information, etc. as a service rather than a product to an end user. For the end user, there is no need to know the physical location and specific configuration of the cloud platform. In general, end users usually only need a browser to access various resources of the cloud platform and enjoy the services provided by the cloud platform.
  • the problem to be solved by the present invention is the measurement of plant characteristic data and the problems of rapid storage and propagation.
  • a plant based on the Internet of Things and a cloud platform comprises: a measuring device for measuring the dimensional information of the plant, and automatically converting the measurement result into an electronic signal, and transmitting the converted electronic signal to the central processing unit; , for reading the label on the plant, transferring the read label to the central processing unit; the central processing unit receiving the measurement data from the measuring device and processing the received data, receiving the label of the plant from the label reading and writing device The number is used to associate the processed measurement data with the received tag number, and the corresponding data is transmitted to the cloud platform.
  • a method for measuring and storing plant characteristic data based on an Internet of Things and a cloud platform comprising: measuring a dimensional information of a plant by a measuring device, and automatically converting the measurement result
  • the electronic signal is transmitted to the central processing unit; the tag reading and writing device reads the tag on the plant, and transmits the read tag to the central processing unit; the central processing unit receives the measurement data from the measuring device and processes the received data.
  • the tag number of the plant is received from the tag reading and writing device, and the processed measurement data is associated with the received tag number, and the corresponding data is transmitted to the cloud platform.
  • the measurement of each plant can be completed by manual operation, and the link of data and tags and the storage of the cloud can be automatically realized after the measurement.
  • the invention can also realize a fully automatic measurement storage scheme, which can realize automatic measurement, transmission and storage of data.
  • the invention uses the Internet of Things technology to equip plants with RFID or barcode labels.
  • the data is stored on the label and transmitted to the cloud platform, and the cloud platform can analyze the data and Processing, providing query, statistics and other service functions.
  • the invention can make the measurement data and the plant can be conveniently and effectively corresponded, and the original manual input process is turned into an automatic transmission, which has the characteristics of real-time and accuracy, and can improve work efficiency in a case where many plants are boring. Reducing human error is important for improving the level of data management for large cash crops.
  • FIG. 1 is a structural diagram of a plant feature data measurement and storage system based on an Internet of Things and a cloud platform, in accordance with an embodiment of the present invention
  • 2 is a flowchart showing the operation of the plant characteristic data measurement and storage system based on the Internet of Things and the cloud platform shown in FIG. 1;
  • FIG. 3 is a structural diagram of a plant feature data measurement and storage system based on an Internet of Things and a cloud platform in the case of single plant measurement, in accordance with another embodiment of the present invention
  • FIG. 4 is a structural diagram of a plant feature data measurement and storage system based on an Internet of Things and a cloud platform in the case of multiple plant measurements, in accordance with another embodiment of the present invention
  • Figure 5 is a flowchart showing the operation of the plant characteristic data measuring and storing system based on the Internet of Things and the cloud platform shown in Figure 3;
  • Figure 6 is a flow chart showing the operation of the plant-based data measurement and storage system based on the Internet of Things and cloud platform shown in Figure 4. detailed description
  • the present invention proposes a plant feature data measurement and storage system based on the Internet of Things and the cloud platform.
  • the link between the measurement tool and the tag is realized, and the measured data can be quickly and automatically stored in the tag, and on the other hand, the measurement data needs to be transmitted to the cloud server through a wireless or wired network, and automatic implementation is realized. management.
  • FIG. 1 is a structural diagram of a plant characteristic data measurement and storage system based on an Internet of Things and a cloud platform according to an embodiment of the present invention.
  • the system includes a measurement device 101, a central processing unit 102, a tag reading and writing device 103, a tag 104, a cloud platform 105, and a terminal user 106.
  • the measuring device 101 is configured to measure the dimensional information of the plant, such as the length, etc., and has different range requirements in different situations, and the measuring device can automatically convert the measurement result into an electronic signal, and the converted electronic signal Send to central processing unit 102.
  • the measurement amount of the present invention is not limited to the length, and any measurement can be converted into an electrical signal.
  • the measuring device can use an existing digital vernier caliper, which is typically a handheld device.
  • the central processing unit 102 and the measuring device 101 are wired or not via USB, WIFI, etc.
  • the line mode is connected, the measurement data is received from the measurement device 101, and the received data is processed, for example, averaged, and the plant ID is received from the tag reading and writing device 103, and the processed measurement data is associated with the ID.
  • the data is transmitted to the cloud platform, and can also be transmitted to the tag reading and writing device 102, and the tag reading and writing device 102 writes the data into the tag.
  • the central processing unit 102 can be a separate device or can be integrated with the tag reading and writing device 103.
  • the tag reading and writing device 103 may be an RFID reading and writing device that is capable of reading data from a tag 104 mounted to the plant, such as a plant ID or barcode, on the one hand, or writing data received from the central processing unit 102 to the site. In the label 104.
  • Tag 104 the tag may be RFID, or may be a bar code or the like.
  • the label 104 stores the ID of the corresponding plant, and if it is RFID, it can also store the measurement data of the plant.
  • Cloud platform 105 for receiving data from central processing unit 102, and providing storage, query, and analysis functions.
  • the end user 106 is configured to access the cloud platform to remotely know the plant measurement data stored in the cloud platform 105.
  • the communication between the central processing unit 102 and the measuring device 101 and the tag reading and writing device 103 may be wired or wireless, such as 3G, GPRS, WIFI o.
  • FIG. 2 is a working flow chart of the plant characteristic data measurement and storage system based on the Internet of Things and the cloud platform shown in FIG. 1. Referring to FIG. 2, the flow includes the following steps:
  • Step 201 A connection is established between the central processing unit 102 and the measuring device 101, the tag reading and writing device 103, and the cloud platform 104.
  • the connection between the devices can be wired or wireless, and the wireless mode can be 3G, GPRS, WIFI, and the like.
  • Step 202 Measuring the plant using the measuring device 101 to obtain measurement data.
  • the measurement process can be accomplished by manual operation using information such as a vernier caliper, the diameter of the plant, and the measured data is converted into an electronic signal by the measuring device 101.
  • Step 203 The measurement data is transmitted to the central processing unit 102 through a communication connection established between the measurement device 101 and the central processing unit 102, and is stored. If it is necessary to make multiple measurements on one quantity, repeat steps 202, 203.
  • the central processing unit 102 can be a separate device or can be integrated into a handheld tag In the read/write device 103, in the case of integration, the tag reading and writing device 103 and the measuring device 102 are connected by USB or serial port or Bluetooth. Each time the measuring device 101 measures a data, the data is associated with the tag on the tree via a confirmation button on the hand-held tag reading and writing device 103. If the tag is RFID and has a storage function, the data can be written to the RFID at the same time.
  • Step 204 The measured data is processed on the central processing unit 102, such as taking an average value and the like.
  • Step 205 The label reading device 103 reads the plant ID from the label mounted on the plant.
  • the tag may be a bar code or an RFID. If it is RFID, the tag stores not only the ID of the plant but also the related data of the plant. A label is installed on each plant.
  • Step 206 The data processed in step 4 and the RFID read in step 5 are established in the central processing unit 102.
  • Step 207 The processing data, the RFID number, and the time, location, and the like of the current measurement are transmitted to the cloud platform by the central processing unit 102.
  • Step 208 The measurement data, the measurement time, and the like are written into the RFID by the central processing unit 102 calling the label reading and writing device 103. This step is optional. Because the correspondence already exists on the cloud platform. But if RFID exists, it can be backed up with each other.
  • Step 209 Processing and analyzing the measured data in the cloud platform to provide services. According to the above method of the present invention, when the large-scale plant is measured, since the manual input process is eliminated, human error is eliminated, and work efficiency can be improved.
  • any end user can obtain information about plants by accessing the cloud platform at any time and any place.
  • the information may be specific information of a single plant, or may be processed statistical information.
  • the system described above requires manual handheld measurement equipment for measurements when measuring plants.
  • a plant feature data measurement and storage system based on an Internet of Things and a cloud platform is also provided.
  • the measurement data, the time at which the data was measured, and the plant tag number are automatically transmitted to the cloud platform, for example, by a button operation.
  • the system can realize automatic measurement, transmission and storage of data.
  • the measurement is divided into single plant measurement and simultaneous measurement of multiple plants.
  • the key to the invention is that the measurement device automatically triggers, completes the measurement, and transmits the data to the central processing unit.
  • the data is transmitted, the data homology problem is solved, and the data is automatically transmitted to the cloud storage.
  • Figure 3 shows the block diagram of the system in the case of individual measurements
  • Figure 4 shows the block diagram of the system in the case of multiple measurements.
  • the system includes:
  • Measuring device 301 which is mounted on a plant, is used to measure data such as plant stem length and stem diameter, and can convert measurement data into electrical signals.
  • the device can use existing equipment, such as a plant radius measuring device, which has a tension sensor, which is directly fixed at the plant measurement position during use, and can directly obtain data such as the diameter of the plant to be tested.
  • a measuring device control unit 302 which is mounted on the plant, is wired to the measuring device 301, and the measuring device control unit 302 is, for example, a single chip microcomputer system.
  • the measuring device control unit 302 controls the measuring device to automatically measure and transmit data according to the set time, and has a clock function.
  • the measurement control unit 302 uses its time control function, such as a single crystal oscillator, to be set to send to each measuring device on the plant in accordance with the sequence of the measuring device in the program of the measurement control unit 302 at a fixed time or every other time every day.
  • the signal triggering the measuring device to measure the plant and obtain the measured data.
  • the central processing unit 303 establishes a communication connection with the measurement device 301, the tag reading and writing device 304, and the cloud platform 305, receives measurement data from the measurement device 301, and processes the received data, for example, averaging.
  • the central processing unit 303 associates the processed data with the plant ID received from the tag reading and writing device 304, transfers the corresponding data to the cloud platform 306, and transmits the data to the tag reading and writing device 304.
  • the tag reading and writing device 304 may be an RFID reading and writing device that is capable of reading data from a tag mounted to the plant, such as a plant ID or barcode, on the one hand, or writing data received from the central processing unit 303 to the In the label.
  • the tag reading and writing device 304 is preferably mounted to the plant or to a location near the plant, but needs to be capable of data transceiving with the measuring device 101 and capable of reading and writing data from the plant tag.
  • the tag 305 can be an RFID, a bar code, or the like.
  • the tag 304 stores the ID of the corresponding plant, and if it is RFID, it can also store the measurement data of the plant.
  • Cloud platform 306 for receiving data from central processing unit 303, and providing storage, query, and analysis functions.
  • the communication between the central processing unit 303 and the measuring device 301 and the tag reading and writing device 304 may be wired or wireless, such as 3G, GPRS, WIFI o.
  • each plant is required to have a measuring device 301 and a measuring device control unit 302, and a plurality of plants share a central processing unit 303 and a tag reading and writing device 304. Because the tag reading and writing device 304 has a certain coverage, such as 30 meters or 50 meters, or other range.
  • the measurement device control unit 302 transmits the measurement trigger signal to the measurement device 301, it simultaneously transmits the ID of the plant being measured to the central processing unit 303, and the tag reading and writing device 304 continuously scans the plants within its coverage. ID, and sends the received ID to the central processing unit 303.
  • the central processing unit 303 compares the ID received from the measurement device control unit 302 with the ID received from the tag reading and writing device 304. When the comparison is consistent, the ID is associated with The received measurement data establishes a correspondence relationship, and uploads corresponding data to the cloud platform. If the tag of the plant has a storage function, the data is simultaneously written into the tag through the tag reading and writing device 304.
  • the measuring device control unit 302 should store the corresponding number of the RFID chip of the plant that the system has previously allocated, which may also be referred to as a tag number, which may be an RFID number or a simplified number corresponding to the RFID number.
  • each device can be connected wirelessly, such as Zigbee, GPRS, WIFI, 3G o
  • FIG 5 shows the working flow chart of the system for single-plant measurement. Referring to Figure 5, the process includes the following steps:
  • Step 501 A connection is established between the central processing unit 303 and the measuring device 301, the tag reading and writing device 304, and the cloud platform 305.
  • the measuring device 301, the measuring device control unit 302 are installed on the plant, the tag reading and writing device 304 and the central processing Unit 303 can be mounted on the plant or can be installed close to the plant.
  • Step 502 Using the time control function of the measurement control unit 302, such as a single crystal oscillator, to be set at a fixed time or every other time every day, according to the measurement device sequence table in the measurement control unit 302 program, sequentially to the plant Each measuring device transmits a signal, and the measuring device 301 is triggered to measure the plant to obtain measurement data.
  • the time control function of the measurement control unit 302 such as a single crystal oscillator
  • Step 503 At the same time as step 502, the working measuring device 301 sends a communication request to the central processing unit 303, and the central processing unit 303 responds to realize data synchronization and prepare for data transmission.
  • the measurement data is transmitted to the central processing unit 303 via the communication module and stored. After a data transmission is completed, it is checked whether there is still a measurement device that has not sent data, and if so, repeat 502, 503.
  • Step 504 The measured data is processed on the central processing unit 303, such as taking an average value and the like.
  • Step 505 The tag reading and writing device 304 reads the RFID of the plant to be measured and transmits it to the central processing unit 303.
  • Step 506 The central processing unit 303 establishes a correspondence between the processed data and the read RFID.
  • Step 507 The central processing unit 303 transmits the data, the RFID number, and the time, location, and the like of the current measurement to the cloud platform.
  • Step 508 Write measurement data, measurement time, and the like into the RFID by calling the RFID read/write device through the central processing unit. This step is optional. Because the correspondence already exists on the cloud platform. But if RFID exists, it can be backed up with each other.
  • Step 509 Processing and analyzing the measured data in the cloud platform to provide a service. The system can automatically collect, upload and store unmanned measurement data without manual operation.
  • a single measuring device and a measuring device control unit are installed for each plant during the single plant measurement, and a fixed RFID reading and writing device is installed, between the plant device and the RFID reading and writing device.
  • Use wireless technology such as zigbee, wif i, etc.
  • the measuring device control unit 302 sets a fixed time, such as 8 am and 5 pm every day, the measuring device control unit 302 sends a signal to the measuring device, triggering the measuring device on each plant to measure the various data of the plant, and uploading the data.
  • a central processing unit that manages the area in which the plant is located. When performing multiple plant measurements, the trigger mode is that the data is associated with the RFID serial number and stored, and then automatically stored by the central processing unit 303 on the cloud platform.
  • the key issue is how to automatically measure and store all plant data in the earth to ensure that the data is not heavy. Another issue is how to ensure automatic correspondence and linking of measurement equipment and RFID tags.
  • a measuring device 301 and a measuring device control unit 302 should be installed for each plant.
  • the measuring device control unit 302 should store the corresponding number of the RFID chip of the plant to which the system has previously assigned.
  • the tag reading and writing device 304 is fixedly installed to manage the plants in a certain area, and the reading distance of the tag reading and writing device 304 can reach more than 1000 meters. Here, the distance can be fully utilized, so that one handheld is responsible for a larger Range of plant management.
  • the central processing unit can search for the function of the plant corresponding RFID chip based on the corresponding number of the plant's RFID chip.
  • the measuring device control unit 302 sets a different time for each plant managed by the same RFID reading and writing device to control the measuring device on the plant to automatically measure and transmit data.
  • Figure 6 is a flow chart of the system in the case of multiple measurements. Referring to Figure 6, the system includes the following steps:
  • Step 601 Establish a connection between the measuring device 301, the measuring device control unit 302, the central processing unit 303, the tag reading and writing device 304, the cloud platform 305, the tag reading and writing device 304, the measuring device 301, and the measuring device control unit 302.
  • the plant is numbered according to a certain rule, and the number may be an RFID number of the RFID chip on the plant, or may be a simplified number corresponding to the RFID number, and the plant measuring device control unit 302 and the plant are established.
  • the one-to-one correspondence between the RFID chips stores the corresponding numbers in the measurement control unit 302.
  • Step 602 Using the time control function of the measurement control unit 302, such as a single crystal oscillator, is set at a fixed time or every other time every day, according to the measurement device sequence table in the module program, sequentially to each measurement device on the plant Send a signal, trigger the measuring device to measure the plant and obtain the measured data.
  • the measurement control unit 302 such as a single crystal oscillator
  • Step 603 At the same time as step 602, the working measuring device 301 sends a communication request to the central processing unit 303, and the central processing unit 303 responds to implement data synchronization and prepare for data transmission.
  • the measurement data is transmitted to the central processing unit 302 via the communication module and stored. After a data transmission is completed, it is checked whether there is still a measurement device that has not sent data, and if so, repeat 602, 603.
  • Step 604 The measured data is processed on the central processing unit 303, such as taking an average value and the like.
  • Step 605 After the last measuring device 301 sends the data, the measuring device control unit 302 sends the number of the plant to the tag reading and writing device 304 through the communication module.
  • Step 606 The tag reading and writing device determines the chip according to the number, reads the RFID of the measured plant, and transmits it to the central processing unit.
  • Step 605 it is determined which plant the previously transmitted series of data belongs to and the RFID tag of the plant is read.
  • the tag reading and writing device adopts a continuous cyclic scan, for example, reading ten tags with IDs from 000 to 009, then the reading and writing device continuously scans the ten numbers, that is, The ten digits from 000 to 009 will appear cyclically on the screen of the read/write device.
  • Step 605 is such that, for example, if the plant of the 003 number has sent all the data, then the last measuring device control unit sends the number 003 to the reading and writing device, and then the reading and writing device performs the cyclic reading of the ten numbers.
  • Step 607 The central processing unit transmits the data, the RFID number, and the time, location, and the like of the current measurement to the cloud platform.
  • Step 608 Calling the measurement data, the measurement time, and the like through the central processing unit 303
  • the sign-on device 304 is written to the RFID.
  • Step 609 Processing and analyzing the measured data in the cloud platform to provide services.
  • Step 610 After the plant sends the data, the central processing unit 303 waits for the transmission request signal of the next plant.
  • the method can automatically collect, upload and store unmanned measurement data of a plurality of plants in the field, which greatly saves manpower.
  • a set of tag reading and writing devices (which can be integrated with the central processing unit 303) is responsible for a certain number of plants, for example 50 strains; a fixed time trigger signal is provided by each measuring device control unit 302 to control the measuring device 301. The plant production data is measured and uploaded to the central processing unit 303.
  • Different plant measurement times have a certain interval, which is greater than the time required for each plant to measure the uploaded data. If it takes ten minutes for each plant to measure all the data, the design interval can be more than twenty minutes.
  • the first plant can be set to start measuring at 8: 00 am, the second plant at 8: 30, ... and so on, each plant
  • the communication time with the tag reading and writing device is about ten minutes (here is only an example way, the actual time may only take tens of seconds to one minute), and the remaining time in the interval is for the tag reading and writing device to complete data storage, processing, After uploading and other work, the related work of the first plant enters the waiting state after completion, and then enters the measurement of the second strain at 8:30.
  • One way to implement the second key technology is to store a number corresponding to the plant RFID tag in the measurement device control unit. For example, the 50 plants are numbered according to a binary rule, each number corresponding to a fixed RFID tag.
  • the measurement control unit sends the number to the central control module, finds and reads the corresponding tag by number, and integrates the tag RFID serial number and measurement data into a set of data. If the RFID has a storage function, the data can be stored in the RFID tag at the same time.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Botany (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

本发明公开一种基于物联网和云平台的植物特征数据测量和存储***,包括:测量设备,用于对植物的维度信息进行测量,并将测量结果自动转换为电子信号,将转换后的电子信号发送到中央处理单元;标签读写设备,用于对植物上的标签进行读取,将读取的标签传送到中央处理单元;中央处理单元,从测量设备接收测量数据并对接收的数据进行处理,从标签读写设备接收植物的标签编号,将处理后的测量数据与接收到的标签编号建立对应关系,将对应后的数据传送到云平台。利用本发明的方案,可通过人工操作完成每株植物的测量,测量后可自动实现数据和标签的链接以及云端的存储。本发明也可实现全自动测量存储方案,能够实现数据的自动测量、传输和存储。

Description

基于物联网和云平台的植物特征数据测量和存储*** 技术领域
本发明属于计算机技术、 电子信息技术领域, 具体涉及一种物联网 和云平台的植物特征数据测量和存储***及方法。 背景技术
物联网, 顾名思义, 就是 "物物相连的互联网", 主要指的是通过
RFID、 条码、 GPS 等信息传感设备, 把物品和互联网相连, 进行信息交 换和通信, 实现对物品的智能化识别、 定位、 跟踪和管理。
云计算是指将计算、 存储、 软件、 信息等作为服务而不是产品提供 给终端用户。 对于终端用户而言, 不需要知道云平台的物理位置和具体 配置。 通常而言, 终端用户通常只需要浏览器即可访问云平台的各种资 源, 享受云平台提供的服务。
随着信息和通信技术的发展, 农业也从传统农业向数字农业转变, 而进一歩随着物联网、 云计算等智能技术的发展, 这些技术和农业的结 合就促进了 "智能农业" 的产生和发展。
智能农业的发展有些现实需求。 比如, 对于经济苗木而言, 其特征 数据如胸径等对其经济价值至关重要。 现有方式主要是人工测量, 然后 再将数据录入电脑。 在经济苗木数量众多的时候 (如上百万棵), 录入 过程非常枯燥, 并且容易出现敲入错误等。 而随着经济的发展, 经济苗 木越来越重要。 这就促进了本发明的产生。 发明内容
本发明欲解决的问题就是植物特征数据的测量以及快速存储和传 播等问题。
根据本发明的一个方面, 提出了一种基于物联网和云平台的植物特 征数据测量和存储***, 该***包括: 测量设备, 用于对植物的维度信 息进行测量, 并将测量结果自动转换为电子信号, 将转换后的电子信号 发送到中央处理单元; 标签读写设备, 用于对植物上的标签进行读取, 将读取的标签传送到中央处理单元; 中央处理单元, 从测量设备接收测 量数据并对接收的数据进行处理, 从标签读写设备接收植物的标签编号, 将处理后的测量数据与接收到的标签编号建立对应关系, 将对应后的数 据传送到云平台。
根据本发明的另一方面, 提出了一种基于物联网和云平台的植物特 征数据测量和存储方法, 该方法包括歩骤: 通过测量设备对植物的维度 信息进行测量, 并将测量结果自动转换为电子信号后传送到中央处理单 元; 标签读写设备对植物上的标签进行读取, 将读取的标签传送到中央 处理单元; 中央处理单元从测量设备接收测量数据并对接收的数据进行 处理, 从标签读写设备接收植物的标签编号, 将处理后的测量数据与接 收到的标签编号建立对应关系, 将对应后的数据传送到云平台。
利用本发明的方案, 可通过人工操作完成每株植物的测量, 测量后 可自动实现数据和标签的链接以及云端的存储。 本发明也可实现全自动 测量存储方案, 能够实现数据的自动测量、 传输和存储。
本发明使用物联网技术, 给植物配备 RFID或者条码等标签, 在对 植物特征数据进行测量时, 数据一方面存入到标签中, 一方面传输到云 平台上, 云平台能够对数据进行分析和处理, 提供查询、 统计等服务功 能。
本发明能够使得测量数据和植物能够方便、 有效地对应起来, 将原 本手动输入的过程变成自动化传输, 具有实时性、 准确性等特点, 在植 物很多工作很枯燥的情况下的能够提高工作效率、 减少人为出错, 对于 提升对大量经济作物的数据管理水平有重要意义。 附图说明
图 1是根据本发明一实施例的基于物联网和云平台的植物特征数据 测量和存储***结构图; 图 2是图 1所示的基于物联网和云平台的植物特征数据测量和存储 ***的工作流程图;
图 3是根据本发明另一实施例的在单株测量情况下的基于物联网和 云平台的植物特征数据测量和存储***的结构图;
图 4是根据本发明另一实施例的在多株测量情况下的基于物联网和 云平台的植物特征数据测量和存储***的结构图;
图 5是图 3所示的基于物联网和云平台的植物特征数据测量和存储 ***的工作流程图;
图 6是图 4所示的所示的基于物联网和云平台的植物特征数据测量 和存储***的工作流程图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚明白, 以下结合具体 实施例子, 并参照附图, 对本发明进一歩详细说明。
本发明提出了一种基于物联网和云平台的植物特征数据测量和存 储***。 在该***中, 实现了测量工具和标签的链接, 测量得到的数据 能够快速、 自动地存储到标签中, 另一方面需要将这些测量数据通过无 线或者有线网络传输到云服务器上, 并且实现自动管理。
图 1为根据本发明一实施例提出的基于物联网和云平台的植物特征 数据测量和存储***的结构图。 参照图 1, 该***包括测量设备 101、 中央处理单元 102、 标签读写设备 103、 标签 104、 云平台 105及终端用 户 106。
测量设备 101, 用于对植物的维度信息进行测量, 如长度等, 在不 同的情况下要有不同的量程要求, 并且该测量设备能够将测量结果自动 转换为电子信号, 将转换后的电子信号发送到中央处理单元 102。 本发 明的测量量不限于长度, 对于任何测量只要能转化为电信号即可。 该测 量设备可以使用现有的数显游标卡尺, 其通常为手持设备。
中央处理单元 102与测量设备 101之间通过 USB、 WIFI等有线或无 线方式进行连接, 从测量设备 101接收测量数据, 并对接收的数据进行 处理, 例如求平均等, 并从标签读写设备 103接收植物 ID, 将处理后的 测量数据与该 ID 建立对应关系后传送到云平台, 也可以传送到标签读 写设备 102, 由标签读写设备 102将数据写入到标签中。 中央处理单元 102可以是单独的设备, 也可以与标签读写设备 103集成在一起。
标签读写设备 103可以是 RFID读写设备, 其一方面能够从安装到 植物的标签 104中读取数据, 例如植物的 ID或条形码, 也可以将从中 央处理单元 102接收的数据写入到所述标签 104中。
标签 104, 标签可以是 RFID, 也可以是条码等。 标签 104中存储有 对应植物的 ID, 如果是 RFID, 还可以存储该植物的测量数据。
云平台 105, 用于从中央处理单元 102接收数据, 并提供存储、 查 询和分析功能。
终端用户 106, 用于访问云平台, 以远端了解存储在云平台 105中 的植物测量数据。
中央处理单元 102与测量设备 101、 标签读写设备 103之间的通信 方式可以是有线方式, 也可以是无线方式, 例如 3G、 GPRS, WIFI o
图 2为图 1所示的基于物联网和云平台的植物特征数据测量和存储 ***的工作流程图, 参照图 2, 该流程包括以下歩骤:
歩骤 201: 中央处理单元 102和测量设备 101、 标签读写设备 103、 云平台 104之间建立连接。 各个设备之间的连接可以是有线方式也可以 是无线方式, 无线方式可以是 3G、 GPRS, WIFI等等。
歩骤 202: 使用测量设备 101对植物进行测量, 得到测量数据。 该 测量过程可通过人工操作来完成, 使用例如游标卡尺, 植物的直径等信 息, 并且通过该测量设备 101将测量所得到的数据转换成电子信号。
歩骤 203: 通过测量设备 101与中央处理单元 102之间建立的通讯 连接, 将该测量数据传输到中央处理单元 102, 并且进行存储。 如果需 要对一个量进行多次测量, 那么重复 202, 203歩骤。
中央处理单元 102可以是单独的设备, 也可以是集成到手持的标签 读写设备 103中, 在集成的情况下, 标签读写设备 103与测量设备 102 之间通过 USB或者串口或者蓝牙进行连接。 测量设备 101每次测得一个 数据, 则通过手持的标签读写设备 103上的确认按钮将该数据和树木上 的标签对应起来。 如果标签是 RFID并且有存储功能, 可以把数据同时 写到 RFID中。
歩骤 204: 在中央处理单元 102上对测得的数据进行处理, 如取平 均值等。
歩骤 205: 标签读取设备 103从安装到植物上的标签读取植物 ID。 该标签可以是条码, 也可以是 RFID, 如果是 RFID, 则该标签中不仅存 储有植物的 ID, 还存储有该植物的相关数据。在每一植株上都安装一个 标签。
歩骤 206:将歩骤 4处理后的数据和歩骤 5读取到的 RFID在中央处 理单元 102中建立起对应关系。
歩骤 207: 通过中央处理单元 102将处理数据、 RFID号码以及当前 测量发生的时间、 地点等传输于云平台上。
歩骤 208: 将测量数据、 测量时间等通过中央处理单元 102调用标 签读写设备 103写入到 RFID中。 该歩骤可选。 因为该对应关系已经存 在于云平台上。 但是如果在 RFID也存在的话可以彼此备份。
歩骤 209:在云平台中对测得的数据进行加工和分析,以提供服务。 通过本发明的上述方法, 在对大规模的植物进行测量的时候, 由于 消除了手动输入过程, 那么就消除了人为出错, 能够提高工作效率。
由于对于植物有 RFID标识, 那么在不同次、 不同人测量时, 能够 简单、 快捷地建立起不同次测量和同一株植物的对应关系。 而之前在使 用人工测量的时候, 不同次、 不同人的测量难以和被测量植物建立对应 关系。
通过本发明, 任何终端用户在任何时间、 任何地点都可以通过访问 云平台,来获得有关植物的信息。该信息可以是某单棵植物的具体信息, 也可以是经过加工处理的统计信息。 上面描述的***在对植物进行测量时, 需要人工手持测量设备进行 测量。 根据本发明的另一方面, 还提供了一种基于物联网和云平台的植 物特征数据测量和存储***。 在该***中, 在数据获取并且和标签建立 起联系之后, 例如通过按钮操作自动将此测量数据、 测量该数据的时间 以及植物标签标号通过无线方式传输到云平台上。 该***能够实现数据 的自动测量、 传输和存储, 其中测量分为单株植物测量、 多株植物同时 测量两种情况。
对于单株测量, 本发明的关键在于测量设备自动触发, 完成测量以 及将数据传入中央处理单元, 在数据传输时, 要解决数据同歩问题, 并 且使数据自动传入云端存储。
图 3所示的是在单株测量情况下该***的结构框图, 图 4所示的是 在多株测量情况下该***的结构框图。 参照图 3, 该***包括:
测量设备 301, 该设备安装在植物上, 用于测量植物茎长和枝干直 径等数据, 并可将测量数据转换为电信号。 该设备可以使用现有设备, 例如一种植物半径测量仪, 此设备带有张力传感器, 使用时直接固定在 植物测量位置上, 可以直接得到待测植物的直径等数据。
测量设备控制单元 302, 其安装在植物上, 与测量设备 301有线连 接, 测量设备控制单元 302比如一个单片机***。 该测量设备控制单元 302 按设定的时间控制测量设备自动测量和发送数据, 具有时钟功能。 测量控制单元 302利用其时间控制功能, 如单片机晶振, 设定在每天某 一固定时间或每隔一段时间, 按照测量控制单元 302程序中的测量设备 顺序表, 依次向植物上的各个测量设备发送信号, 触发测量设备对植物 进行测量, 得到测量数据。
中央处理单元 303, 与测量设备 301、 标签读写设备 304、 云平台 305之间建立通信连接, 从测量设备 301接收测量数据, 并对接收的数 据进行处理, 例如求平均。 该中央处理单元 303将处理后的数据和从标 签读写设备 304中接收的植物 ID进行对应, 将对应的数据传送到云平 台 306中, 也可将该数据传送到标签读写设备 304中, 通过标签读写设 标签读写设备 304可以是 RFID读写设备, 其一方面能够从安装到 植物的标签中读取数据, 例如植物的 ID或条形码, 也可以将从中央处 理单元 303接收的数据写入到所述标签中。 标签读写设备 304优选地安 装到植物上, 也可安装到靠近植物的地方, 但需要能够与测量设备 101 进行数据收发并能够从植物标签中读写数据。
标签 305可以是 RFID, 也可以是条码等。标签 304中存储有对应植 物的 ID, 如果是 RFID, 还可以存储该植物的测量数据。
云平台 306, 用于从中央处理单元 303接收数据, 并提供存储、 查 询和分析功能。
中央处理单元 303与测量设备 301、 标签读写设备 304之间的通信 方式可以是有线方式, 也可以是无线方式, 例如 3G、 GPRS, WIFI o
对于多株测量的情况下, ***结构如图 4所示, 需要在每一植株都 安装有测量设备 301和测量设备控制单元 302, 多个植株共享一个中央 处理单元 303和一个标签读写设备 304, 因为标签读写设备 304有一定 的覆盖范围, 例如 30米或 50米, 或其他范围。
在进行测量过程中, 测量设备控制单元 302向测量设备 301发送测 量触发信号时, 其同时向中央处理单元 303发送正在测量的植株的 ID, 标签读写设备 304是连续扫描其覆盖范围内的植株的 ID,并将接收到的 ID发送到中央处理单元 303, 中央处理单元 303比较从测量设备控制单 元 302接收的 ID和从标签读写设备 304接收的 ID, 当比较一致时, 将 该 ID 与接收的测量数据建立对应关系, 并将建立对应的数据上传到云 平台, 如果植株的标签具有存储功能, 则同时将数据通过标签读写设备 304写入到标签中。 测量设备控制单元 302应储存有***事先分配好的 该植物的 RFID 芯片的对应编号, 也可以称为标签编号, 该编号可以是 RFID号码, 也可以是与 RFID号码相对应的一简化编号。。 在该***中,各个设备之间可通过无线方式连接,例如 Zigbee、GPRS、 WIFI、 3G o
图 5所示是单株测量时***的工作流程图, 参照图 5, 该流程包括 歩骤:
歩骤 501: 中央处理单元 303和测量设备 301、 标签读写设备 304、 云平台 305之间建立连接, 测量设备 301、 测量设备控制单元 302被安 装在植株上,标签读写设备 304和中央处理单元 303可以安装在植株上, 也可以安装在靠近植株的地方。
歩骤 502:利用测量控制单元 302的时间控制功能,如单片机晶振, 设定在每天某一固定时间或每隔一段时间, 按照测量控制单元 302程序 中的测量设备顺序表, 依次向植物上的各个测量设备发送信号, 触发测 量设备 301对植物进行测量, 得到测量数据。
歩骤 503: 在歩骤 502进行的同时, 正在工作的测量设备 301向中 央处理单元 303发出通讯请求, 中央处理单元 303进行应答, 实现数据 同歩, 做好数据传输准备。 当测量结束后, 通过通讯模块将该测量数据 传输到中央处理单元 303, 并且进行存储。 一个数据发送完成后, 检查 是否还有测量设备未发送数据, 若有, 那么重复 502, 503歩骤。
歩骤 504: 在中央处理单元 303上对测得的数据进行处理, 如取平 均值等。
歩骤 505: 标签读写设备 304对被测量植物的 RFID进行读取, 传送 给中央处理单元 303。
歩骤 506:中央处理单元 303将处理后的数据和读取到的 RFID建立 起对应关系。
歩骤 507: 中央处理单元 303将数据、 RFID号码以及当前测量发生 的时间、 地点等传输于云平台上。
歩骤 508: 将测量数据、测量时间等通过中央处理单元调用 RFID读 写设备写入到 RFID 中。 该歩骤可选。 因为该对应关系已经存在于云平 台上。 但是如果在 RFID也存在的话可以彼此备份。 歩骤 509:在云平台中对测得的数据进行加工和分析,以提供服务。 该***可实现无人控制的测量数据自动采集、 上传、 存储, 无需人 工操作。
使用该***, 在进行单株植物测量时, 为每株植物安装一套数据测 量设备以及一套测量设备控制单元,并配备一个固定的 RFID读写设备, 植物上设备与 RFID读写设备之间使用无线技术如 zigbee、wif i等连接。 设置一固定时间, 如每天上午 8时及下午 5时两次, 由测量设备控制单 元 302向测量设备发出信号, 触发每株植物上的这套测量设备进行植物 各个数据的测量, 并将数据上传给管理该植物所在区域的中央处理单元。 在进行多株植物测量时, 触发方式为数据与 RFID序列号取得对应并存 储后, 由中央处理单元 303自动将其存储入云平台上。 对于多株植物的 测量, 关键问题是如何在大地内完成所有植物数据的自动测量以及存储, 保证数据不重不漏。 另外一个问题是如何保证测量设备和 RFID标签的 自动对应和链接问题。 在多株植物测量中, 每株植物均应安装测量设备 301和测量设备控制单元 302。 测量设备控制单元 302应储存有***事 先分配好的该植物的 RFID芯片的对应编号。 将标签读写设备 304分别 固定安装, 以管理某一区域内的植物, 标签读写设备 304的读取距离可 到达 1000米以上, 这里可以充分利用这一距离, 使一台手持机负责较 大范围的植物管理。 在多株测量的情况下, 中央处理单元能够根据植物 的 RFID芯片的对应编号搜寻植物对应 RFID芯片的功能。 测量设备控制 单元 302为同一 RFID读写设备管理的每株植物设定不同时间控制该植 物上测量设备自动测量和发送数据。
图 6为在多株测量情况下***的工作流程图。 参照图 6, 该***包 括歩骤:
歩骤 601: 建立测量设备 301、 测量设备控制单元 302、 中央处理单 元 303、标签读写设备 304、云平台 305的连接,安装标签读写设备 304、 测量设备 301、 测量设备控制单元 302, 对植物按一定规则进行编号, 该编号可以是植物上 RFID芯片的 RFID号码, 也可以是与该 RFID号码 相对应的一简化号码, 并建立起植物测量设备控制单元 302和该植物上 RFID芯片间一一对应的联系, 将相应编号储存于测量控制单元 302中。 歩骤 602:利用测量控制单元 302的时间控制功能,如单片机晶振, 设定在每天某一固定时间或每隔一段时间, 按照模块程序中的测量设备 顺序表, 依次向植物上的各个测量设备发送信号, 触发测量设备对植物 进行测量, 得到测量数据。 设置测量时间时, 应保证同一区域内只有一 株植物正在向中央处理单元发送数据, 防止植物间数据冲突。
歩骤 603: 在歩骤 602进行的同时, 正在工作的测量设备 301向中 央处理单元 303发出通讯请求, 中央处理单元 303进行应答, 实现数据 同歩, 做好数据传输准备。 当测量结束后, 通过通讯模块将该测量数据 传输到中央处理单元 302, 并且进行存储。 一个数据发送完成后, 检查 是否还有测量设备未发送数据, 若有, 那么重复 602, 603歩骤。
歩骤 604: 在中央处理单元 303上对测得的数据进行处理, 如取平 均值等。
歩骤 605: 在最后一个测量设备 301发送完数据后, 测量设备控制 单元 302将该植物的编号通过通讯模块发送给标签读写设备 304。
歩骤 606: 标签读写设备根据编号确定芯片, 对被测量植物的 RFID 进行读取, 并传送到中央处理单元。
在歩骤 605和 606确定之前发送的一系列数据属于哪株植物并读取 该植物的 RFID标签。 标签读写设备在读取多个标签的模式下, 采用的 方式是连续的循环扫描, 例如读取十个标签, ID为 000到 009, 那么读 写设备会持续扫描这十个号码, 也就是 000到 009这十个数字会循环出 现在读写设备屏幕上。 歩骤 605是这样, 例如现在 003号码的植物发送 完了全部数据, 那么最后测量设备控制单元就将 003这个数字也发送到 读写设备上, 那么读写设备在循环读取这十个号码时进行对比, 当对比 到 003时就停止扫描,并将读取模式变为读取单个芯片,进行数据传送。 歩骤 607: 中央处理单元将数据、 RFID号码以及当前测量发生的时间、 地点等传输于云平台上。
歩骤 608: 将测量数据、 测量时间等通过中央处理单元 303调用标 签读写设备 304写入到 RFID中。
歩骤 609:在云平台中对测得的数据进行加工和分析,以提供服务。 歩骤 610: —株植物发送数据完毕, 中央处理单元 303等待下一株 植物的发送请求信号。
该方法能够实现大田内多株植物的无人控制的测量数据自动采集、 上传、 存储, 极大地节省了人力。
在该***中, 使用一个安装好的标签读写设备 (可以集成中央处理 单元 303)负责一定数量的植物, 例如 50株; 由每株测量设备控制单元 302设置固定的时间触发信号控制测量设备 301测量植物产生数据, 并 上传给中央处理单元 303。
不同植物测量时间具有一定的间隔, 这一间隔大于每株植物测量上 传数据所需时间, 若每测完一株植物的所有数据需十分钟, 则可设计间 隔为二十分钟以上。
综上, 仍以一个标签读写设备控制 50 株植物为例, 可设置第一株 植物的开始测量时间为上午 8: 00, 第二株植物为 8: 30, …以此类推, 每株植物与标签读写设备通信时间大约为十分钟 (此处仅是举例的方式, 实际的时间可能仅需要几十秒到一分钟) 左右, 间隔内剩余时间供标签 读写设备完成数据存储、 处理、 上传等其他工作, 第一株植物的相关工 作全部完成后进入等待状态, 到 8: 30再进入第二株的测量。
实现第二个关键技术的一种方式是在测量设备控制单元中存储一 个与该植物 RFID标签对应的编号, 例如将这 50株植物编按二进制规则 进行编号,每一个编号对应固定的 RFID标签。当所有数据传送结束后, 测量控制单元发送该编号到中央控制模块, 通过编号找到并读取相应标 签,并把标签 RFID序列号与测量数据整合为一组数据存储起来。若 RFID 具有存储功能, 可同时把数据存入 RFID标签中。
以上所述的具体实施例, 对本发明的目的、 技术方案和有益效果进 行了进一歩详细说明, 所应理解的是, 以上所述仅为本发明的具体实施 例而已, 并不用于限制本发明, 凡在本发明的精神和原则之内, 所做的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内

Claims

权利要求
1、 一种基于物联网和云平台的植物特征数据测量和存储***, 该 ***包括:
测量设备, 用于对植物的维度信息进行测量, 并将测量结果自动转 换为电子信号, 将转换后的电子信号发送到中央处理单元;
标签读写设备, 用于对植物上的标签进行读取, 将读取的标签传送 到中央处理单元; 中央处理单元, 从测量设备接收测量数据并对接收的数据进行处理, 从标签读写设备接收植物的标签编号, 将处理后的测量数据与接收到的 标签编号建立对应关系, 将对应后的数据传送到云平台。
2、 根据权利要求 1 所述的***, 其特征在于, 所述标签读写设备 与中央处理单元之间通过有线或无线方式进行通信或者被集成到同一 个手持设备中。
3、 根据权利要求 2 所述的***, 其特征在于, 所述测量设备为手 持数显游标卡尺。
4、根据权利要求 1所述的***, 其特征在于, 该***进一歩包括: 测量设备控制单元, 其与测量设备有线连接, 具有时钟功能, 其按设定 的时间控制测量设备自动测量和发送数据。
5、 根据权利要求 4所述的***, 其特征在于, 所述测量设备控制 单元 302设定在每天某一固定时间或每隔一段时间, 按照预先设置的测 量设备顺序表, 依次向植物上的各个测量设备发送信号, 触发测量设备 对植物进行测量, 得到测量数据。
6、 根据权利要求 5 所述的***, 其特征在于, 所述***用于单株 植物测量, 所述标签、 测量设备和测量设备控制单元被固定到植株上, 所述标签读写设备和中央处理单元被安装到植株上或者植株附近。
7、 根据权利要求 5 所述的***, 其特征在于, 所述***用于多株 植物测量, 所述标签、 测量设备和测量设备控制单元被固定到植株上, 多个植株共享一个中央处理单元和一个标签读写设备。
8、 根据权利要求 7所述的***, 其特征在于, 测量设备控制单元 向测量设备发送测量触发信号时, 其同时向中央处理单元发送正在测量 的植株的标签编号, 标签读写设备是连续扫描其覆盖范围内的植株的标 签编号, 并将接收到的标签编号发送到中央处理单元, 中央处理单元比 较从测量设备控制单元接收的标签编号和从标签读写设备接收的标签 编号, 当比较一致时, 将该标签编号与接收的测量数据建立对应关系, 并将建立对应的数据上传到云平台。
9、 根据权利要求 1-8任一项所述的***, 其特征在于, 所述标签 是具有存储功能的 RFID,中央处理单元将传送到云平台的数据传送到标 签读写设备, 通过标签读写设备将该数据写入到 RFID中。
10、 一种基于物联网和云平台的植物特征数据测量和存储方法, 该 方法包括歩骤:
通过测量设备对植物的维度信息进行测量, 并将测量结果自动转换 为电子信号后传送到中央处理单元;
标签读写设备对植物上的标签进行读取, 将读取的标签传送到中央 处理单元;
中央处理单元从测量设备接收测量数据并对接收的数据进行处理, 从标签读写设备接收植物的标签编号, 将处理后的测量数据与接收到的 标签编号建立对应关系, 将对应后的数据传送到云平台。
11、 根据权利要求 10所述的方法, 其特征在于, 所述标签读写设 备与中央处理单元之间通过有线或无线方式进行通信或者被集成到同 一个手持设备中。
12、 根据权利要求 11 所述的方法, 其特征在于, 该方法进一歩包 括歩骤:
测量设备控制单元按照预先设定的时间以及预先设置的测量设备 顺序表, 依次向植物上的各个测量设备发送信号, 触发测量设备对植物 进行测量, 得到测量数据。
13、 根据权利要求 12 所述的方法, 其特征在于, 该方法用于单株 植物测量, 所述标签、 测量设备和测量设备控制单元被固定到植株上, 所述标签读写设备和中央处理单元被安装到植株上或者植株附近。
14、 根据权利要求 12 所述的方法, 其特征在于, 所述***用于多 株植物测量,所述标签、测量设备和测量设备控制单元被固定到植株上, 多个植株共享一个中央处理单元和一个标签读写设备。
15、 根据权利要求 14所述的方法, 其特征在于, 测量设备控制单 元向测量设备发送测量触发信号时, 其同时向中央处理单元发送正在测 量的植株的标签编号, 标签读写设备是连续扫描其覆盖范围内的植株的 标签编号, 并将接收到的标签编号发送到中央处理单元, 中央处理单元 比较从测量设备控制单元接收的标签编号和从标签读写设备接收的标 签编号,当比较一致时,将该标签编号与接收的测量数据建立对应关系, 并将建立对应的数据上传到云平台。
PCT/CN2013/074020 2013-04-10 2013-04-10 基于物联网和云平台的植物特征数据测量和存储*** WO2014166081A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/074020 WO2014166081A1 (zh) 2013-04-10 2013-04-10 基于物联网和云平台的植物特征数据测量和存储***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/074020 WO2014166081A1 (zh) 2013-04-10 2013-04-10 基于物联网和云平台的植物特征数据测量和存储***

Publications (1)

Publication Number Publication Date
WO2014166081A1 true WO2014166081A1 (zh) 2014-10-16

Family

ID=51688856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074020 WO2014166081A1 (zh) 2013-04-10 2013-04-10 基于物联网和云平台的植物特征数据测量和存储***

Country Status (1)

Country Link
WO (1) WO2014166081A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102445933A (zh) * 2011-10-14 2012-05-09 兰泽华 基于物联网的农田大棚监测报警管理***
CN102564593A (zh) * 2011-12-30 2012-07-11 河海大学常州校区 基于计算机视觉及物联网的植物生长状况监测***
CN102854854A (zh) * 2012-08-16 2013-01-02 北京市农林科学院 一种基于物联网设施蔬菜农田环境监测与标准化生产***
CN102868749A (zh) * 2012-09-20 2013-01-09 张晋 一种农业种植、饲养的物联网云服务***及服务流程方法
CN103218637A (zh) * 2013-04-10 2013-07-24 中国科学院自动化研究所 基于物联网和云平台的植物特征数据测量和存储***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102445933A (zh) * 2011-10-14 2012-05-09 兰泽华 基于物联网的农田大棚监测报警管理***
CN102564593A (zh) * 2011-12-30 2012-07-11 河海大学常州校区 基于计算机视觉及物联网的植物生长状况监测***
CN102854854A (zh) * 2012-08-16 2013-01-02 北京市农林科学院 一种基于物联网设施蔬菜农田环境监测与标准化生产***
CN102868749A (zh) * 2012-09-20 2013-01-09 张晋 一种农业种植、饲养的物联网云服务***及服务流程方法
CN103218637A (zh) * 2013-04-10 2013-07-24 中国科学院自动化研究所 基于物联网和云平台的植物特征数据测量和存储***

Similar Documents

Publication Publication Date Title
CN203055121U (zh) 一种基于Zigbee技术的土壤压实数据无线传输装置
CN103218637A (zh) 基于物联网和云平台的植物特征数据测量和存储***
CN202342017U (zh) 一种指纹识别身份的智能体温采集***
CN103235552B (zh) 一种rfid自动识别在线动态快速称重控制***及其控制方法
CN105011914A (zh) 一种体温无线采集处理***
CN106781391A (zh) 一种远程无线抄表及传输方法
CN203759763U (zh) 一种基于rfid 技术的电力设备智能巡检***
CN107493377B (zh) 一种基于移动终端应用的热工参数采集装置与方法
CN204557109U (zh) 一种水产养殖精准管理***
CN115794934A (zh) 一种生产设施监测数据与数字孪生模型集成***及方法
CN202267680U (zh) 一种指纹识别身份的智能血糖采集***
CN103954186A (zh) 面向数显检测工具的质检数据采集终端及数据采集方法
CN106197747A (zh) 一种双供电模式的电力架空线温度监控传感器电路及测温方法
CN107465998B (zh) 多数据采集***
CN102928122B (zh) 用于工业温度计自动校准的设备指标信息核验方法及装置
CN108177316A (zh) 一种模具计数管理***
CN202486961U (zh) 电力营销数据采集装置
CN116744152A (zh) 一种电表数据采集方法、装置、设备和可读存储介质
CN112595396A (zh) 一种养殖场种鸡自动称重***和方法
CN205192654U (zh) 一种蓝牙多点测温***
WO2014166081A1 (zh) 基于物联网和云平台的植物特征数据测量和存储***
CN204346607U (zh) 结合温度化学变色标签与电子记录标签的合成温度标签
CN103747463A (zh) 水环境无线传感器网络性能的测试方法
CN106326059A (zh) 一种嵌入式设备自动化测试***
CN202210001U (zh) 无线多路多监测模式温度测量***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881804

Country of ref document: EP

Kind code of ref document: A1