WO2014163059A1 - Electrically conductive coating material, and adherend using same - Google Patents

Electrically conductive coating material, and adherend using same Download PDF

Info

Publication number
WO2014163059A1
WO2014163059A1 PCT/JP2014/059588 JP2014059588W WO2014163059A1 WO 2014163059 A1 WO2014163059 A1 WO 2014163059A1 JP 2014059588 W JP2014059588 W JP 2014059588W WO 2014163059 A1 WO2014163059 A1 WO 2014163059A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
conductive
particles
adherend
coating
Prior art date
Application number
PCT/JP2014/059588
Other languages
French (fr)
Japanese (ja)
Inventor
俊之 長谷
小嶋 一宏
Original Assignee
スリーボンドファインケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スリーボンドファインケミカル株式会社 filed Critical スリーボンドファインケミカル株式会社
Publication of WO2014163059A1 publication Critical patent/WO2014163059A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/794Post-treatment doping with polymeric dopants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J165/00Adhesives based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Adhesives based on derivatives of such polymers

Definitions

  • the present invention relates to a conductive paint containing a conductive polymer and an adherend using the same.
  • a display surface of a display device such as a liquid crystal display, a window material such as a clean room, a glass or plastic used as a packaging material such as an IC package, or an overhead display or a film used for a photograph.
  • a display surface of a display device such as a liquid crystal display, a window material such as a clean room, a glass or plastic used as a packaging material such as an IC package, or an overhead display or a film used for a photograph.
  • Such various transparent base materials are generally insulators and are easily charged with static electricity. For this reason, dust, dust, and the like are likely to adhere to the surface, and problems such as deterioration in visibility, generation of defective products due to mixing into products, malfunction of electronic devices, and the like may occur.
  • the influence of electromagnetic waves generated from these electronic devices on the human body is also a problem. Therefore, application examples of conductive paints containing conductive particles are increasing for preventing charging and shielding electromagnetic waves.
  • a conductive paint that can be used as a conductive adhesive is also useful when manufacturing electronic devices or when manufacturing parts used in electronic devices. For example, when stacking and connecting sheet-like electrodes and dielectrics, electrically connecting substrates such as printed wiring boards, or connecting parts such as semiconductor elements to the substrate Adhesives are widely used.
  • a composition using insulating particles coated with a conductive polymer is known.
  • the manufacturing method uses a ball mill and a large amount of solvent.
  • filtration is performed to collect the particles, it was not clear whether most of the initially charged conductive polymer was filtered together with the solvent and the conductive polymer remained on the surface of the insulating particles.
  • primary particles may be fused to form large secondary particles during drying, or the conductive polymer coated on the surface of insulating particles may be biased to a certain region due to surface tension during drying. Concerned. It is estimated that the process is complicated by a combination of drying, filtration, washing and the like, and is complicated.
  • a conductive paint containing a conductive polymer has poor wettability with respect to an adherend, particularly in the case of an aqueous system, and the conductive paint is evenly coated on the adherend of various materials. Was difficult. Further, when the adherend is particles, it has been particularly difficult to uniformly coat the conductive paint.
  • a further object of the present invention is to provide conductive particles uniformly coated with the conductive paint of the present invention and a method for producing the same. Furthermore, a further object of the present invention is to provide a conductive adhesive and an anisotropic conductive adhesive having improved conductivity by using the conductive particles of the present invention.
  • the present inventors have completed the present invention relating to a conductive paint containing a conductive polymer and an adherend using the same.
  • the first embodiment of the present invention is a conductive paint containing the components (A) to (D).
  • FIG. 1 shows the result of measuring the continuity of processed particles with a micro compression tester.
  • the present invention is a conductive paint containing a conductive polymer.
  • the paint exhibits conductivity.
  • the component (C) is water
  • the conductive paint of the present invention is water-based, has little influence on the environment, and is excellent in workability.
  • the silane coupling agent having an alicyclic epoxy group and / or a silane coupling agent having a (meth) acrylic group as the component (D)
  • the entire components (A) to (D) are integrated.
  • the conductive coating material can form a uniform film on various adherends.
  • the present invention has good wettability with respect to various adherends, and has an effect of obtaining an adherend by forming a uniform film.
  • the adherend is a particle
  • the conductive coating can be evenly coated on the particle surface by a preferable manufacturing method.
  • the component (A) that can be used in the conductive paint of the present invention is poly3,4-ethylenedioxythiophene as shown in the following formula 1. Moreover, the derivative
  • Poly3,4-ethylenedioxythiophene may be synthesized by itself, but a commercially available product can also be used. Specific examples of commercially available products include H.C. C. Examples thereof include Clevios MV2 manufactured by STARCK, but are not limited thereto.
  • R 1 and R 2 represent an alkyl group having 1 to 10 carbon atoms, and more preferably a methyl group, an ethyl group, or a propyl group.
  • R 1 and R 2 may be connected by a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms to form a ring.
  • the substituent is an organic group, and more preferably an alkyl group having 1 to 10 carbon atoms.
  • R 1 and R 2 are more preferably an ethylene group, a trimethylene group or a propylene group as a whole.
  • R 3 and R 4 each independently represents a hydrogen atom, a halogen atom, or an organic group.
  • the organic group an alkyl group having 1 to 10 carbon atoms is preferable.
  • n is an integer.
  • iron (III) chloride In order to oxidatively polymerize thiophene, which is the main skeleton of component (A), iron (III) chloride, iron (III) chloride hydrate, iron (III) sulfide, copper perchlorate, iron perchlorate, para Other oxidizing agents including iron (III) toluenesulfonate are also used as catalysts.
  • iron (III) chloride and iron (III) paratoluenesulfonate are known to have good yields, but are not limited thereto.
  • the component (B) that can be used in the conductive paint of the present invention is polystyrene sulfonic acid.
  • guide_body is also contained in the (B) component of this invention, and the some (B) component may be mixed. Even if the site of the sulfonic acid is a metal salt such as sodium, potassium or iron, it can be used if there is no problem in the expression of conductivity.
  • the component (A) In order to develop conductivity, it is known to perform p-type doping on the component (A).
  • Various types of reagents are used as the dopant.
  • organic acids such as iodine, bromine, trifluoroacetic acid, propionic acid and sulfonic acid are used.
  • the component (B) is used as the dopant. It becomes a polymer which shows electroconductivity by combining (A) component and (B) component.
  • (A) component and (B) component can synthesize
  • a commercial item can also be used.
  • the mixing ratio of the component (A) and the component (B) is preferably 100 to 700 parts by weight of the component (B) with respect to 100 parts by weight of the component (A).
  • the component (B) is two or more, it means the total amount, and if the component (B) is 700 parts by mass or less, the conductivity can be reliably exhibited, and if the component (B) is 100 parts by mass or more, it is conductive. Can be demonstrated more reliably.
  • the component (C) that can be used in the conductive paint of the present invention is water.
  • water containing no ionic impurities such as purified water or distilled water is used.
  • the conductive paint of the present invention becomes a water-based paint, has little influence on the environment, and improves workability.
  • the component (A) and the component (B) are used by being dispersed in the water that is the component (C).
  • the components may be adjusted by themselves, or commercially available products in a state where these components are dispersed in water may be used.
  • component (A) and component (B) are dispersed (dispersion) in component (C).
  • C examples include, but are not limited to, Clevios P, PH and the like made by STARCK.
  • the mixing ratio it is preferable that 100 parts by mass of the mixture (solid content) of the component (A) and the component (B) is contained in an amount of 0.1 to 10% by mass of the component (C), more preferably 0.1 to 10%. 5% by mass. If 100 parts by mass of the mixture of the component (A) and the component (B) is 0.1% by mass or more, the conductivity of the coating film is surely expressed, and if it is 10% by mass or less, it is suitable for workability. It becomes a viscous paint.
  • the paint is water-based means that the main solvent is water.
  • the main solvent is water.
  • 100 parts by mass of the mixture of the component (A) and the component (B) is water.
  • the content is 0.1 to 10% by mass.
  • a form further including an organic solvent which is a component (E) described later as an additive is also preferable.
  • the component (E) is an additive, and the effect of improving the conductivity of the film can be obtained by adding this component.
  • the component (D) that can be used in the conductive paint of the present invention is at least one of a silane coupling agent having an alicyclic epoxy group and a silane coupling agent having a (meth) acryl group.
  • the silane coupling agent having an alicyclic epoxy group is not limited to this, but 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane is preferably used.
  • Examples of commercially available silane coupling agents having an alicyclic epoxy group include KBM-303 manufactured by Shin-Etsu Chemical Co., Ltd., A-186 manufactured by Nippon Unicar Co., Ltd., and the like.
  • silane coupling agent having a (meth) acryl group examples include, but are not limited to, 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3 -Methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane and the like. Of these, 3-methacryloxypropyltrimethoxysilane is more preferable for the desired effect of the present invention.
  • KBM-502, KBM-503, KBE-502, KBE-503, KBM-5103 and the like manufactured by Shin-Etsu Chemical Co., Ltd. are known. However, it is not limited to these.
  • component (D) may be mixed and used.
  • the component (D) is preferably contained in an amount of 10 to 1000 parts by mass, more preferably 10 to 500 parts by mass with respect to 100 parts by mass of the mixture of the component (A) and the component (B). .
  • (D) component is 2 or more types, it says the total amount of them.
  • the component (D) is preferably 0.01 to 10 parts by mass, more preferably 0 to 100 parts by mass of the total of the components (A), (B) and (C). 1 to 5 parts by mass.
  • the conductive paint of the present invention preferably further contains at least one solvent selected from glycol derivatives, pyrrolidone derivatives and sulfoxide derivatives as the component (E). That is, the second embodiment of the present invention is the conductive paint according to the first embodiment, further comprising at least one solvent selected from glycol derivatives, pyrrolidone derivatives, and sulfoxide derivatives as the component (E). is there. Further, two or more different types of (E) components may be mixed and used. Although the clear reason has not been elucidated, it has been found that the addition of the component (E) improves the conductivity of the conductive paint film.
  • glycol derivative examples include ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-nbutyl ether and the like. More preferably, it is ethylene glycol from the viewpoint of availability and cost.
  • pyrrolidone derivatives include 2-pyrrolidone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-butyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, 5-methyl-2-pyrrolidone, N -Phenyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N-hydroxyethyl-2-pyrrolidone and the like. More preferred is N-methyl-2-pyrrolidone from the viewpoint of availability and cost.
  • sulfoxide derivatives examples include dialkyl sulfoxides such as dimethyl sulfoxide, tetramethylene sulfoxide, dioctyl sulfoxide, and dibenzyl sulfoxide; diaryl sulfoxides such as diphenyl sulfoxide, di-p-tolyl sulfoxide, and bis- (p-chlorophenyl) sulfoxide. . More preferred is dimethyl sulfoxide from the viewpoint of availability and cost.
  • the third embodiment of the present invention is the conductive paint according to the second embodiment, wherein the component (E) is at least one selected from ethylene glycol, N-methyl-2-pyrrolidone and dimethyl sulfoxide. It is.
  • the component (E) is preferably contained in an amount of 10 to 1000 parts by mass, more preferably 200 to 700 parts by mass with respect to 100 parts by mass of the mixture of the components (A) and (B).
  • the component (E) When there are two or more components, the total amount thereof is indicated. If it is 10 parts by mass or more, the conductivity can be improved, and if it is 1000 parts by mass or less, the component (E) is volatile, and the coating film is quickly dried, which is preferable.
  • the component (E) is preferably 0.1 to 20 parts by mass, more preferably 1 ⁇ 10 parts by mass.
  • the conductive paint of the present invention includes colorants such as pigments and dyes, metal powders, inorganic fillers such as calcium carbonate, talc, silica, alumina, aluminum hydroxide, and flame retardants, as long as the effects of the present invention are not impaired.
  • colorants such as pigments and dyes, metal powders, inorganic fillers such as calcium carbonate, talc, silica, alumina, aluminum hydroxide, and flame retardants, as long as the effects of the present invention are not impaired.
  • An appropriate amount of additives such as organic fillers, plasticizers, antioxidants, antifoaming agents, leveling agents, rheology control agents, and the like may be blended. By adding these, a coating film excellent in conductivity, flexibility, adhesive strength, workability and the like can be obtained.
  • the conductive paint can be applied to adherends of various materials to form a uniform coating film. That is, the fourth embodiment of the present invention is an adherend provided with a coating film, in which the conductive paint according to any one of the first to third embodiments is coated on the adherend.
  • the material of the adherend is not particularly limited, but (meth) acrylic resin, glass, polyphenylene sulfide, polybutylene terephthalate, polyethylene, nylon, polyacetal, liquid crystal polymer, hard vinyl chloride, polycarbonate, polyethylene terephthalate, cycloolefin resin , Polystyrene resin, phenol resin, acrylonitrile-butadiene-styrene resin, and the like.
  • the adherend is (meth) acrylic resin, glass, polyphenylene sulfide, polybutylene terephthalate, polyethylene, nylon, polyacetal, liquid crystal polymer, hard vinyl chloride, polycarbonate, polyethylene terephthalate, cycloolefin. It is a to-be-adhered body provided with the coating film as described in 4th Embodiment which is resin, a polystyrene resin, or a phenol resin.
  • a uniform coating film can be formed by the conductive paint of the present invention. In particular, it is possible to form a good coating film on acrylic resin or glass that is used for general purposes.
  • the shape of the adherend is not limited to a film shape, a sheet shape, a plate shape, and a flat plate shape.
  • a film can be formed.
  • the conductive coating film on the adherend there are no particular restrictions on the formation of the conductive coating film on the adherend, and methods such as bar coating, spray coating, curtain coating, spin coating, gravure coating, ink jet, and dip are used. be able to.
  • the coating thickness is preferably adjusted so that the film thickness after drying is 1 to 600 nm, more preferably 10 to 300 nm.
  • the coating film can be formed by drying at 40 to 150 ° C. in a hot air drying furnace or the like. If it is 150 degrees C or less, since it will not become high temperature even if it heats, it can maintain, without the electroconductivity of a conductive polymer falling. Further, bumping of the component (C) can be prevented.
  • the adherend provided with the coating film of the conductive paint of the present invention is obtained.
  • the sixth embodiment of the present invention is a conductive particle obtained by coating the particle with the conductive paint according to any one of the first to third embodiments.
  • the conductive paint of the present invention can be applied to various adherends to form a uniform coating film.
  • the particle-shaped adherend is coated to obtain conductive particles. It is suitable for.
  • the electroconductive particle of this invention is corresponded to the plating powder of a prior art, since a metal is not used, an inexpensive electroconductive particle can be manufactured without using a multistep process.
  • the adherend constituting the particle is not particularly limited, and the above-described adherend formed into particles can be used.
  • (meth) acrylic resin particles are preferred because there are particularly abundant particle variations and a more uniform coating can be formed by the conductive paint of the present invention.
  • 7th embodiment of this invention is the electroconductive particle as described in 6th embodiment in which the said particle
  • a conductive adhesive or an anisotropic conductive adhesive can be produced.
  • the above two types of adhesives can be made separately. That is, in the case of a conductive adhesive, the addition amount of conductive particles is 70 to 99% by mass, whereas in the anisotropic conductive adhesive, the addition amount is 1 to 10% by mass.
  • the curing method is also different. In the case of a conductive adhesive, conductivity is manifested by curing after application.
  • the ninth embodiment of the present invention is a conductive adhesive comprising the conductive particles described in the sixth or seventh embodiment or the conductive particles manufactured by the manufacturing method described in the eighth embodiment. It is. Further, the tenth embodiment of the present invention is an anisotropic conductive material including the conductive particles described in the sixth or seventh embodiment or the conductive particles manufactured by the manufacturing method described in the eighth embodiment. It is an adhesive.
  • the curing form of the curable resin various curing forms such as thermal curing, photocuring, anaerobic curing, and moisture curing can be used.
  • thermosetting a curable epoxy resin, a curable urethane resin, an addition-type silicone resin, or the like can be used, but is not limited thereto.
  • Photocuring includes, but is not limited to, curable acrylate resins, curable methacrylate resins, and curable vinyl ether resins.
  • Anaerobic curing is a form in which the resin is cured by contact with the adherend when the adherend is a metal.
  • a composition of a methacrylate compound and saccharin is representative, but is not limited thereto.
  • moisture curing include, but are not limited to, condensation-type silicone resins.
  • an anisotropic conductive adhesive when an anisotropic conductive adhesive is made by adding metal particles to a photocurable resin, the photocurable resin is colored and opaque due to the influence of the metal particles.
  • the conductive particles of the present invention when the conductive particles of the present invention are added to a photocurable resin, an anisotropic conductive adhesive having no color and good transparency can be produced.
  • the resin when trying to make an anisotropic conductive adhesive by adding metal particles to an anaerobic curable resin, the resin reacted with the metal particles and gelled.
  • the conductive particles of the present invention are not metals, they do not gel even when added to an anaerobic curable resin, and an anisotropic conductive adhesive having anaerobic curability can be made.
  • the conductive adhesive or anisotropic conductive adhesive of the present invention includes pigments, dyes and other colorants, metal powder, calcium carbonate, talc, silica, alumina, aluminum hydroxide as long as the effects of the present invention are not impaired.
  • An appropriate amount of additives such as inorganic fillers, flame retardants, organic fillers, plasticizers, antioxidants, antifoaming agents, leveling agents, rheology control agents and the like may be blended. By adding these, a composition excellent in conductivity, flexibility, adhesive strength, workability and the like can be obtained.
  • the conductive adhesive and the anisotropic conductive adhesive can be used as an electrical connection material in the electric / electronic field.
  • the conductive particles according to the sixth or seventh embodiment have a step of coating the particles with the conductive paint using a rolling fluidized bed granulation coating apparatus. It is a manufacturing method.
  • conductive particles are formed by adhering a conductive paint to the surface of the particles to be adhered and drying by heating.
  • the apparatus for forming conductive particles include a rolling fluid coating apparatus (for example, a rolling fluid coating apparatus-MP-01 (manufactured by POWREC Co., Ltd.)) and a centrifugal fluid coating granulator (for example, Granurex ( Freund Sangyo Co., Ltd.), composite granulation coating equipment (eg Spiraflow (Freund Sangyo Co., Ltd.), etc.), fluidized bed granulation drying equipment (eg GPCG / WSG-CT series (Powrec Co., Ltd.) ), Etc.), flow coater (Freund Sangyo Co., Ltd.), fine particle coating and granulating equipment-SFP series (manufactured by POWREC, Inc.), fine particle coating equipment GPCG-SCP series (manufactured by POWREC, Inc.),
  • secondary agglomerates may occur depending on the method of adhering the conductive coating to the particle surface, and when the secondary agglomerates occur, the particle size distribution of the original primary particles may change. There is.
  • the conductive paint may be biased on the particle surface, and a uniform coating film may not be obtained.
  • the specifications of the processing apparatus and the charging method such as dripping or spraying of the stock solution depend greatly. Therefore, as a specification for obtaining the conductive particles of the present invention, it is more preferable to use a rolling fluidized coating apparatus.
  • Rolling fluid coating equipment is characterized by a fluidized bed granulator that has a granular material flow and high-efficiency drying action by an air flow, and a stirring granulator that has a powder flow, rolling, and compaction action by a mechanical action. Is an apparatus for performing granulation and fine particle coating. Further, it is most preferable that the stock solution is charged by a spray method.
  • the coating material was applied to the substrate with a bar coater and left in a hot air drying oven at 100 ° C. for 5 minutes to evaporate the water and obtain a 100 nm coating film.
  • the substrate was confirmed to have “coating property (acrylic)” and “coating property (glass)” with respect to the acrylic resin plate and the glass plate, respectively.
  • confirmation was made visually by the following three stages.
  • The coating film has a uniform thickness. ⁇ : Applied but the composition is partially biased. X: Completely repelled and not applied.
  • a coating film was prepared on the glass plate by the same method as the above coating film property confirmation, and the electrode width was 1 mm, the distance between the electrodes was 5 mm, and “surface resistance value (unit: ⁇ ) was measured with a tester (two-terminal method). ) ”Was measured.
  • M means 10 6 .
  • the composition may be biased even after application.
  • the viscosity of the paint may temporarily decrease and the paint may approach.
  • the paints of Examples 1 to 7 to which the component (D) was added formed an even coating film on both the acrylic resin and the glass.
  • Examples 2, 4 to 6 to which the component (E) was added a decrease in the surface resistance value could be confirmed as compared with Examples 1, 3, and 7 to which the component (E) was not added, and it was more conductive. It can be seen that a conductive paint having excellent properties was obtained.
  • Comparative Example 1 not including the component (D) and Comparative Examples 2 to 4 including the component (D ′) instead of the component (D), a coating film could not be formed on the acrylic resin. . Furthermore, in Comparative Example 5 which does not contain the components (A) to (C), a coating film could not be formed on both acrylic resin and glass.
  • Example 2 the coating properties of the conductive paint obtained in Example 2 were confirmed using materials other than glass and acrylic as adherends.
  • the test method and judgment criteria were the same as those for the above-described coating property confirmation.
  • Table 3 The results are summarized in Table 3 below. From Table 3, it was found that although some materials have “x”, good coating films can be formed on various materials other than acrylic and glass.
  • Example 8 Comparative Examples 5 to 6
  • the surface of polymethyl methacrylate particles having an average particle size of 15 ⁇ m was coated with the conductive paint obtained in Example 2 to produce conductive particles.
  • the following apparatuses 1 to 3 were used to attach the paint to the particle surfaces and dry them.
  • the particles processed by the apparatus are called processed particles.
  • the specifications of each apparatus are summarized in Table 4 below. Further, as described later, the conductivity of the treated particles was measured.
  • a particle and fine particle coating device that combines the characteristics of a fluidized bed granulator (powder flow by airflow, high-efficiency drying action) and agitation granulator (powder flow, rolling, compaction action by mechanical action). is there.
  • Apparatus 2 (UV type vibration stirrer): In the batch type vertical dryer, the vibration mechanism attaches two vibration motors to the side of the main body and generates a semi-elliptical vibration obliquely upward. The material to be dried inside the main body flows up and down in the radial direction while turning in the circumferential direction.
  • Device 3 high speed vacuum dryer: The inside of the can body is evacuated and the jacket is heated from the bottom and side surfaces of the can body. By stirring and rolling the material to be dried, heat can be uniformly applied and drying can be performed in a short time.
  • Example 8 The particles produced according to Table 4 were measured for conductivity with a micro compression tester manufactured by Shimadzu Corporation. The measured value when a particle having a particle size of 15 ⁇ m was compressed to 70% (10 ⁇ m) while compressing one particle at a load speed of 3.8 mN / sec was taken as a resistance value. The results of Example 8 are shown in FIG. The X axis is displacement (unit: ⁇ m), and the displacement of the probe in contact with the particles is 0 ⁇ m. The Y-axis is the resistance value at that time (unit: ⁇ 10 6 ⁇ ). Example 8 exhibited a conductivity of 0.06 ⁇ 10 6 ⁇ , but Comparative Examples 5 and 6 were insulating, and the resistance value could not be measured.
  • Example 8 Since only the conductivity of Example 8 was exhibited, it can be seen that the state of the coating film is greatly affected by the apparatus for forming the coating film.
  • the charging method of the composition it is considered that in the case of dropping, a nonuniform coating film is formed on the particle surface, and spraying forms a uniform coating film.
  • the rolling / flowing method is considered to be more suitable for stirring than for vibration.
  • Example 9 In order to prepare an anisotropic conductive adhesive using the conductive particles obtained in Example 8, the following components were prepared. All the following components were weighed and stirred for 30 minutes. Detailed preparation amounts are in accordance with Table 5, and all numerical values are expressed in parts by mass. ⁇ Polyethylene glycol # 400 diacrylate (A-400 Shin-Nakamura Chemical Co., Ltd.) 1-hydroxycyclohexyl phenyl ketone (IRGACURE (registered trademark) 184 manufactured by BASF) -Conductive particles of Example 8
  • Example 9 The conductivity of Example 9 above was measured. Two 10 mm ⁇ 25 mm ITO glass plates having a surface treated with ITO on one side were prepared. Among them, a strip-shaped PET film having a thickness of 12 ⁇ m was disposed on both sides of the ITO glass plate as a spacer on one conductive surface side. 0.5 mg of the anisotropic conductive adhesive of Example 9 was applied between PET films. On this coating film, the conductive surface of another ITO glass was shifted so that the bonded surface was 5 mm ⁇ 5 mm. After the bonded ITO glass was fixed with a clip, light irradiation was performed with an integrated light amount of 3000 mJ / cm 2 to cure the adhesive. The resistance value between the ITO glass of the test piece produced as described above was measured, and the total resistance value of the ITO glass and the conductive particles was measured and found to be 300 ⁇ .
  • the present invention is a conductive paint capable of forming an organic conductive layer on an adherend of various materials.
  • the conductive particles In the production of the conductive particles, it can be efficiently produced by using a specific type of apparatus.
  • the said electroconductive particle is corresponded to plating powder, since a metal is not used, an inexpensive electroconductive particle can be manufactured without using a multistep process.
  • the anisotropic conductive adhesive using the said electroconductive particle it can form the hardened

Abstract

An electrically conductive coating material according to the present invention has good wettability on various adherends and, when the adherends are particles, can be coated on the surfaces of the particles uniformly by a specific production method. The present invention is an electrically conductive coating material comprising the following components (A) to (D): (A) polyethylene dioxythiophene; (B) polystyrene sulfonate; (C) water; and (D) a silane coupling agent having an alicyclic epoxy group and/or a silane-type coupling agent having a (meth)acrylic group.

Description

導電性塗料およびそれを用いた被着体Conductive paint and adherend using the same
 本発明は、導電性ポリマーを含む導電性塗料およびそれを用いた被着体に関するものである。 The present invention relates to a conductive paint containing a conductive polymer and an adherend using the same.
 近年、多様な電子機器が製造され、広く普及してきている。電子機器の部材として、例えば、液晶ディスプレイ等の表示機器の表示面、クリーンルーム等の窓材、ICパッケージ等の包装材として用いられるガラス、プラスチック、あるいは、オーバーヘッドディスプレイ、写真等に用いられるフィルムのような各種透明基材は、一般的に絶縁体であり、静電気を帯び易い。このため、表面にゴミ、埃などが付着し易く、視認性の低下、製品への混入による不良品の発生、電子機器の誤動作等の問題が生じうる。また、それら電子機器から発生する電磁波が、人体に与える影響も問題になっている。そこで、帯電防止や電磁波遮蔽のために、導電性粒子を配合した導電性塗料の適用例が増加している。 In recent years, various electronic devices have been manufactured and widely spread. As a member of an electronic device, for example, a display surface of a display device such as a liquid crystal display, a window material such as a clean room, a glass or plastic used as a packaging material such as an IC package, or an overhead display or a film used for a photograph. Such various transparent base materials are generally insulators and are easily charged with static electricity. For this reason, dust, dust, and the like are likely to adhere to the surface, and problems such as deterioration in visibility, generation of defective products due to mixing into products, malfunction of electronic devices, and the like may occur. In addition, the influence of electromagnetic waves generated from these electronic devices on the human body is also a problem. Therefore, application examples of conductive paints containing conductive particles are increasing for preventing charging and shielding electromagnetic waves.
 また、電子機器製造の際、または電子機器に用いられる部品製造の際も、導電性接着剤として用いうる導電性塗料が有用である。例えば、シート状の電極と誘電体とを積層して接続したり、プリント配線板等の基板同志を電気的に接続したり、半導体素子等の部品を基板に接続したり、といった際に、導電性接着剤は広範に使用されている。 Also, a conductive paint that can be used as a conductive adhesive is also useful when manufacturing electronic devices or when manufacturing parts used in electronic devices. For example, when stacking and connecting sheet-like electrodes and dielectrics, electrically connecting substrates such as printed wiring boards, or connecting parts such as semiconductor elements to the substrate Adhesives are widely used.
 従来、このような導電性塗料として、導電ポリマーを被覆した絶縁粒子を用いた組成物が知られている。例えば、特許文献1に記載の発明の様に、その製造方法はボールミルを用いると共に、溶剤を多量に使用していた。また、粒子を回収するために濾過を行うため、当初投入した導電ポリマーのほとんどが溶剤と共に濾過されて絶縁粒子の表面に導電ポリマーが残っているか明確ではなかった。また、乾燥する際に1次粒子同士が融着して大きな2次粒子ができあがることも有り、または乾燥時には絶縁粒子表面に被覆された導電ポリマーが、表面張力で一部の領域に偏ることも懸念される。その工程についても乾燥、濾過、洗浄等の組合せで多段階であり、煩雑であることが推測される。 Conventionally, as such a conductive paint, a composition using insulating particles coated with a conductive polymer is known. For example, like the invention described in Patent Document 1, the manufacturing method uses a ball mill and a large amount of solvent. Further, since filtration is performed to collect the particles, it was not clear whether most of the initially charged conductive polymer was filtered together with the solvent and the conductive polymer remained on the surface of the insulating particles. In addition, primary particles may be fused to form large secondary particles during drying, or the conductive polymer coated on the surface of insulating particles may be biased to a certain region due to surface tension during drying. Concerned. It is estimated that the process is complicated by a combination of drying, filtration, washing and the like, and is complicated.
 絶縁粒子の表面に導電ポリマーを均一に被覆すると共に、強固に表面に密着させるために特許文献2に記載の様な多段階の工程により製造される導電性塗料もある。当該発明は、母粒子に対して、母粒子より平均粒径が小さい子粒子をその表面に物理的に打ち込んで、その後に導電ポリマーを表面に被覆するものである。これは、アンカー効果により導電ポリマーが剥がれない様にしているものと推測される。しかしながら、製造工程が多段階になると共に、部材の組合せによっては導電ポリマーの被覆が一部の領域に偏ることは特許文献1と同様に懸念される。 There is also a conductive paint produced by a multi-step process as described in Patent Document 2 in order to uniformly coat the surface of the insulating particles with the conductive polymer and firmly adhere to the surface. In the invention, child particles having an average particle size smaller than that of the mother particles are physically implanted into the surface of the mother particles, and then the conductive polymer is coated on the surface. This is presumed to prevent the conductive polymer from peeling off due to the anchor effect. However, as the manufacturing process becomes multistage, depending on the combination of members, there is a concern that the conductive polymer coating is biased to a part of the region, as in Patent Document 1.
 また、近年の導電性塗料に係る技術分野全体の動きとして、環境への影響や作業性を考慮して、有機溶媒を用いた溶剤系から水系に切り替わっている。しかしながら、水系においては、溶剤系よりも更に導電性塗料の被着体に対するなじみが悪くなる傾向がある。そのため、偏ることなく均等に導電性塗料で被覆することが一層困難になっている。 Also, as a movement of the entire technical field related to conductive paint in recent years, the solvent system using an organic solvent is switched to an aqueous system in consideration of environmental impact and workability. However, in the aqueous system, the familiarity of the conductive paint to the adherend tends to be worse than that in the solvent system. For this reason, it is more difficult to uniformly coat with a conductive paint without bias.
特開平2-120373号公報Japanese Patent Laid-Open No. 2-120373 特開2009-170319号公報JP 2009-170319 A
 上記のように、従来は、導電ポリマーを含む導電性塗料は、特に水系の場合は被着体に対して濡れ性が悪く、当該導電塗料を多様な材質の被着体に均等に被覆することは困難であった。また、被着体が粒子の場合には、導電性塗料を均等に被覆することがとりわけ困難であった。 As described above, conventionally, a conductive paint containing a conductive polymer has poor wettability with respect to an adherend, particularly in the case of an aqueous system, and the conductive paint is evenly coated on the adherend of various materials. Was difficult. Further, when the adherend is particles, it has been particularly difficult to uniformly coat the conductive paint.
 そこで、本発明では、水系導電性塗料の場合にも、多様な材質の被着体に対して濡れ性が改善され、多様な被着体を均等に被覆し得る導電性塗料を提供することを目的とする。また、本発明の更なる目的としては、本発明の導電性塗料を均等に被覆した導電性粒子およびその製造方法を提供することを目的とする。また、本発明の更なる目的としては、本発明の導電性粒子を用いることにより、導電性が向上された導電性接着剤および異方導電性接着剤を提供することである。 Therefore, in the present invention, even in the case of a water-based conductive paint, the wettability is improved with respect to adherends of various materials, and a conductive paint capable of evenly covering various adherends is provided. Objective. A further object of the present invention is to provide conductive particles uniformly coated with the conductive paint of the present invention and a method for producing the same. Furthermore, a further object of the present invention is to provide a conductive adhesive and an anisotropic conductive adhesive having improved conductivity by using the conductive particles of the present invention.
 本発明者らは、上記目的を達成するべく鋭意検討した結果、導電性ポリマーを含む導電性塗料およびそれを用いた被着体に関する本発明を完成するに至った。 As a result of intensive studies aimed at achieving the above object, the present inventors have completed the present invention relating to a conductive paint containing a conductive polymer and an adherend using the same.
 本発明の要旨を次に説明する。本発明の第一の実施態様は、(A)~(D)成分を含む導電性塗料である。
(A)成分:ポリエチレンジオキシチオフェン
(B)成分:ポリスチレンスルホン酸
(C)成分:水
(D)成分:脂環式エポキシ基を有するシランカップリング剤および/または(メタ)アクリル基を有するシラン系カップリング剤。
The gist of the present invention will be described next. The first embodiment of the present invention is a conductive paint containing the components (A) to (D).
(A) Component: Polyethylenedioxythiophene (B) Component: Polystyrenesulfonic acid (C) Component: Water (D) Component: Silane coupling agent having alicyclic epoxy group and / or silane having (meth) acrylic group Coupling agent.
図1は微小圧縮試験機にて処理済み粒子の導通性測定を行った結果である。FIG. 1 shows the result of measuring the continuity of processed particles with a micro compression tester.
 本発明は、導電性ポリマーを含む導電性塗料である。上記(A)成分および(B)成分を含むことにより、塗料は導電性を示すものとなる。上記(C)成分が水である通り、本発明の導電性塗料は水系であり、環境に影響が少なく、作業性に優れている。さらに、(D)成分の脂環式エポキシ基を有するシランカップリング剤および/または(メタ)アクリル基を有するシラン系カップリング剤を含むことにより、(A)~(D)成分全体が一体的に作用して、多様な被着体上に均一な被膜を形成し得る導電性塗料となる。本発明は、様々な被着体に対して濡れ性が良く、均等な被膜を形成し被着体を得る効果がある。さらに、被着体が粒子の場合は、好ましい製造方法により導電塗料を粒子表面に均等な被覆をすることを可能にする。 The present invention is a conductive paint containing a conductive polymer. By including the component (A) and the component (B), the paint exhibits conductivity. As the component (C) is water, the conductive paint of the present invention is water-based, has little influence on the environment, and is excellent in workability. Further, by including the silane coupling agent having an alicyclic epoxy group and / or a silane coupling agent having a (meth) acrylic group as the component (D), the entire components (A) to (D) are integrated. Thus, the conductive coating material can form a uniform film on various adherends. The present invention has good wettability with respect to various adherends, and has an effect of obtaining an adherend by forming a uniform film. Further, when the adherend is a particle, the conductive coating can be evenly coated on the particle surface by a preferable manufacturing method.
 本発明について詳細を次に説明する。 Details of the present invention will be described below.
 <(A)成分;ポリエチレンジオキシチオフェン>
 本発明の導電性塗料に使用することができる(A)成分としては、下記式1に示す様なポリ3,4-エチレンジオキシチオフェンである。また、その誘導体も本発明の範囲に含まれ、複数の種類の(A)成分が混合されて用いられても良い。ポリ3,4-エチレンジオキシチオフェンは自ら合成してもよいが、市販品を使用することもできる。市販品の具体例としてはH.C.STARCK製のClevios MV2などが挙げられるが、これに限定されるものではない。
<(A) component; polyethylene dioxythiophene>
The component (A) that can be used in the conductive paint of the present invention is poly3,4-ethylenedioxythiophene as shown in the following formula 1. Moreover, the derivative | guide_body is also included in the scope of the present invention, and a plurality of types of component (A) may be mixed and used. Poly3,4-ethylenedioxythiophene may be synthesized by itself, but a commercially available product can also be used. Specific examples of commercially available products include H.C. C. Examples thereof include Clevios MV2 manufactured by STARCK, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式1中、RおよびRは炭素数1~10のアルキル基を表し、より好ましくは、メチル基、エチル基またはプロピル基である。また、RおよびRは置換または非置換の炭素数1~10のアルキレン基により連結され、環を形成していてもよい。置換基としては、有機基であり、より好ましくは炭素数1~10のアルキル基である。RおよびRが環を形成する場合には、RおよびRは一体としてエチレン基、トリメチレン基またはプロピレン基であることがより好ましい。RおよびRはそれぞれ独立して水素、ハロゲン原子、または有機基を表す。有機基としては、炭素数1~10のアルキル基が好ましい。nは整数である。 In the above formula 1, R 1 and R 2 represent an alkyl group having 1 to 10 carbon atoms, and more preferably a methyl group, an ethyl group, or a propyl group. R 1 and R 2 may be connected by a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms to form a ring. The substituent is an organic group, and more preferably an alkyl group having 1 to 10 carbon atoms. When R 1 and R 2 form a ring, R 1 and R 2 are more preferably an ethylene group, a trimethylene group or a propylene group as a whole. R 3 and R 4 each independently represents a hydrogen atom, a halogen atom, or an organic group. As the organic group, an alkyl group having 1 to 10 carbon atoms is preferable. n is an integer.
 (A)成分の主骨格であるチオフェンを酸化重合するためには、塩化鉄(III)、塩化鉄(III)水和物、硫化鉄(III)、過塩素酸銅や過塩素酸鉄、パラトルエンスルホン酸鉄(III)を含む他の酸化剤なども触媒として使用される。特に、塩化鉄(III)やパラトルエンスルホン酸鉄(III)が収率がよいことが知られているが、これに限定されるものではない。 In order to oxidatively polymerize thiophene, which is the main skeleton of component (A), iron (III) chloride, iron (III) chloride hydrate, iron (III) sulfide, copper perchlorate, iron perchlorate, para Other oxidizing agents including iron (III) toluenesulfonate are also used as catalysts. In particular, iron (III) chloride and iron (III) paratoluenesulfonate are known to have good yields, but are not limited thereto.
 <(B)成分;ポリスチレンスルホン酸>
 本発明の導電性塗料で使用することができる(B)成分としては、ポリスチレンスルホン酸である。また、その誘導体も本発明の(B)成分に含まれ、複数の(B)成分が混合されていても良い。スルホン酸の部位がナトリウム、カリウム、鉄などの金属塩であっても、導電性発現において問題が無ければ使用することができる。
<(B) component; polystyrene sulfonic acid>
The component (B) that can be used in the conductive paint of the present invention is polystyrene sulfonic acid. Moreover, the derivative | guide_body is also contained in the (B) component of this invention, and the some (B) component may be mixed. Even if the site of the sulfonic acid is a metal salt such as sodium, potassium or iron, it can be used if there is no problem in the expression of conductivity.
 導電性を発現するためには、(A)成分にp型ドーピングを行うことが知られている。ドーパントとして様々な種類の試薬が使われ、例えばヨウ素、臭素、トリフルオロ酢酸、プロピオン酸及びスルホン酸などの有機酸が用いられるが、本願発明においては(B)成分がドーパントとして用いられる。(A)成分と(B)成分を組み合わせることで導電性を示すポリマーとなる。(A)成分および(B)成分は、それぞれを合成し、混合して用いることもできるが、市販品を使用することもできる。(A)成分および(B)成分が混合された市販品としては、H.C.STARCK製のCleviosシリーズとしてP、F、Sタイプ等が有り、AGFA製のOrgaconシリーズが知られている。 In order to develop conductivity, it is known to perform p-type doping on the component (A). Various types of reagents are used as the dopant. For example, organic acids such as iodine, bromine, trifluoroacetic acid, propionic acid and sulfonic acid are used. In the present invention, the component (B) is used as the dopant. It becomes a polymer which shows electroconductivity by combining (A) component and (B) component. (A) component and (B) component can synthesize | combine and can mix and use each, However A commercial item can also be used. As a commercial item in which the component (A) and the component (B) are mixed, C. There are P, F, S type etc. as Clevios series made by STARCK, and the Orgacon series made by AGFA is known.
 (A)成分と(B)成分の混合比率としては、(A)成分100質量部(に対して、(B)成分は100~700質量部添加することが好ましい。なお、(A)成分および/または(B)成分が2種以上ある場合は、合計の量をいう。(B)成分は700質量部以下であれば導電性を確実に発揮でき、100質量部以上であれば、導電性をより確実に発揮できる。 The mixing ratio of the component (A) and the component (B) is preferably 100 to 700 parts by weight of the component (B) with respect to 100 parts by weight of the component (A). When the component (B) is two or more, it means the total amount, and if the component (B) is 700 parts by mass or less, the conductivity can be reliably exhibited, and if the component (B) is 100 parts by mass or more, it is conductive. Can be demonstrated more reliably.
 <(C)成分:水>
 本発明の導電性塗料で使用することができる(C)成分としては、水である。好ましくは、精製水や蒸留水などイオン不純物を含まないものを用いる。溶媒として水を用いることにより、本発明の導電性塗料は水系の塗料となり、環境に影響が少なく、作業性も向上する。(A)成分および(B)成分を(C)成分である水に分散させて用いるが、自ら調整してもよく、これらの成分が水に分散された状態の市販品を用いてもよい。取扱い性や有害性防止の鑑定から、(A)成分と(B)成分の混合物が(C)成分に分散(ディスパージョン)されたものが好ましく、H.C.STARCK製のClevios P、PH等が挙げられるがこれらに限定されるものではない。
<(C) component: water>
The component (C) that can be used in the conductive paint of the present invention is water. Preferably, water containing no ionic impurities such as purified water or distilled water is used. By using water as a solvent, the conductive paint of the present invention becomes a water-based paint, has little influence on the environment, and improves workability. The component (A) and the component (B) are used by being dispersed in the water that is the component (C). However, the components may be adjusted by themselves, or commercially available products in a state where these components are dispersed in water may be used. From the appraisal of handling property and prevention of harmfulness, it is preferable that a mixture of component (A) and component (B) is dispersed (dispersion) in component (C). C. Examples include, but are not limited to, Clevios P, PH and the like made by STARCK.
 混合比としては、(A)成分と(B)成分の混合物(固形分)100質量部が、(C)成分の0.1~10質量%含まれる事が好ましく、より好ましくは0.1~5質量%である。(A)成分と(B)成分の混合物100質量部が、0.1質量%以上であれば、塗膜の導電性発現が確実であり、10質量%以下であれば、作業性に適した粘性の塗料となる。 As the mixing ratio, it is preferable that 100 parts by mass of the mixture (solid content) of the component (A) and the component (B) is contained in an amount of 0.1 to 10% by mass of the component (C), more preferably 0.1 to 10%. 5% by mass. If 100 parts by mass of the mixture of the component (A) and the component (B) is 0.1% by mass or more, the conductivity of the coating film is surely expressed, and if it is 10% by mass or less, it is suitable for workability. It becomes a viscous paint.
 本発明において、塗料が水系であるとは、主たる溶媒が水であることを意味し、上記のように(A)成分と(B)成分の混合物100質量部が水である(C)成分の0.1~10質量%含まれていることを言う。本発明は、後述する(E)成分である有機溶剤を添加剤としてさらに含む形態も好ましいが、その場合にも水が上記の範囲で含まれていれば、水が溶媒として機能し、環境への影響の低減および作業性向上の効果が得られる。これに対して(E)成分は添加剤であり、これを添加することにより被膜の導通性向上の効果が得られる。 In the present invention, that the paint is water-based means that the main solvent is water. As described above, 100 parts by mass of the mixture of the component (A) and the component (B) is water. The content is 0.1 to 10% by mass. In the present invention, a form further including an organic solvent which is a component (E) described later as an additive is also preferable. However, in this case, if water is included in the above range, the water functions as a solvent, and the environment. The effect of reducing the influence of the above and improving workability can be obtained. On the other hand, the component (E) is an additive, and the effect of improving the conductivity of the film can be obtained by adding this component.
 <(D)成分;脂環式エポキシ基を有するシランカップリング剤および(メタ)アクリル基を有するシラン系カップリング剤の少なくとも一種>
 本発明の導電性塗料で使用することができる(D)成分としては、脂環式エポキシ基を有するシランカップリング剤および(メタ)アクリル基を有するシラン系カップリング剤の少なくとも一種である。
<(D) component; at least one of a silane coupling agent having an alicyclic epoxy group and a silane coupling agent having a (meth) acrylic group>
The component (D) that can be used in the conductive paint of the present invention is at least one of a silane coupling agent having an alicyclic epoxy group and a silane coupling agent having a (meth) acryl group.
 脂環式エポキシ基を有するシランカップリング剤としては、これに限定はされないが、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランが好ましく用いられる。脂環式エポキシ基を有するシランカップリング剤の市販品としては、信越化学工業株式会社製のKBM-303、日本ユニカー株式会社製のA-186などが挙げられる。 The silane coupling agent having an alicyclic epoxy group is not limited to this, but 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane is preferably used. Examples of commercially available silane coupling agents having an alicyclic epoxy group include KBM-303 manufactured by Shin-Etsu Chemical Co., Ltd., A-186 manufactured by Nippon Unicar Co., Ltd., and the like.
 (メタ)アクリル基を有するシラン系カップリング剤としては、これらに限定はされないが、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等が挙げられる。このうち、本発明の所期の効果のためには、3-メタクリロキシプロピルトリメトキシシランがより好ましい。(メタ)アクリル基を有するシラン系カップリング剤の市販品としては、信越化学工業株式会社製のKBM-502、KBM-503、KBE-502、KBE-503、KBM-5103などが知られているが、これらに限定されるものではない。 Examples of the silane coupling agent having a (meth) acryl group include, but are not limited to, 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3 -Methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane and the like. Of these, 3-methacryloxypropyltrimethoxysilane is more preferable for the desired effect of the present invention. As commercially available silane coupling agents having a (meth) acrylic group, KBM-502, KBM-503, KBE-502, KBE-503, KBM-5103 and the like manufactured by Shin-Etsu Chemical Co., Ltd. are known. However, it is not limited to these.
 また、異なる2種類以上の(D)成分を混合して使用しても良い。塗膜中に、(A)成分と(B)成分との混合物100質量部に対して、(D)成分は10~1000質量部含まれることが好ましく、より好ましくは10~500質量部である。なお、(D)成分が2種以上の場合には、それらの合計の量を言う。10質量部以上であると塗膜をより形成しやすく、1000質量部以下であると(D)成分が塗膜に残留することを防止できる。また、塗布液中では、(A)成分、(B)成分および(C)成分の合計100質量部に対しては、(D)成分は0.01~10質量部が好ましく、より好ましくは0.1~5質量部である。 Also, two or more different types of component (D) may be mixed and used. In the coating film, the component (D) is preferably contained in an amount of 10 to 1000 parts by mass, more preferably 10 to 500 parts by mass with respect to 100 parts by mass of the mixture of the component (A) and the component (B). . In addition, when (D) component is 2 or more types, it says the total amount of them. When it is 10 parts by mass or more, it is easier to form a coating film, and when it is 1000 parts by mass or less, component (D) can be prevented from remaining in the coating film. In the coating solution, the component (D) is preferably 0.01 to 10 parts by mass, more preferably 0 to 100 parts by mass of the total of the components (A), (B) and (C). 1 to 5 parts by mass.
 <(E)成分;グリコール誘導体、ピロリドン誘導体およびスルホキシド誘導体から選択される少なくとも1種>
 本発明の導電性塗料は、さらに(E)成分として、グリコール誘導体、ピロリドン誘導体およびスルホキシド誘導体から選択される少なくとも1種の溶剤を含むことが好ましい。すなわち、本発明の第二の実施形態は、(E)成分として、グリコール誘導体、ピロリドン誘導体およびスルホキシド誘導体から選択される少なくとも1種の溶剤をさらに含む第一の実施形態に記載の導電性塗料である。また、異なる2種類以上の(E)成分を混合して使用しても良い。明確な理由は解明されていないが、(E)成分を添加することで導電性塗料の塗膜の導通性が向上することが判明した。
<(E) component; at least one selected from glycol derivatives, pyrrolidone derivatives and sulfoxide derivatives>
The conductive paint of the present invention preferably further contains at least one solvent selected from glycol derivatives, pyrrolidone derivatives and sulfoxide derivatives as the component (E). That is, the second embodiment of the present invention is the conductive paint according to the first embodiment, further comprising at least one solvent selected from glycol derivatives, pyrrolidone derivatives, and sulfoxide derivatives as the component (E). is there. Further, two or more different types of (E) components may be mixed and used. Although the clear reason has not been elucidated, it has been found that the addition of the component (E) improves the conductivity of the conductive paint film.
 グリコール誘導体としては、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-nブチルエーテル等が挙げられる。より好ましくは、入手しやすさやコストの点からエチレングリコールである。 Examples of the glycol derivative include ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-nbutyl ether and the like. More preferably, it is ethylene glycol from the viewpoint of availability and cost.
 ピロリドン誘導体としては、2-ピロリドン、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-ブチル-2-ピロリドン、N-ビニル-2-ピロリドン、5-メチル-2-ピロリドン、N-フェニル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン、N-ヒドロキシエチル-2-ピロリドン等が挙げられる。より好ましくは、入手しやすさやコストの点からN-メチル-2-ピロリドンである。 Examples of pyrrolidone derivatives include 2-pyrrolidone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-butyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, 5-methyl-2-pyrrolidone, N -Phenyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N-hydroxyethyl-2-pyrrolidone and the like. More preferred is N-methyl-2-pyrrolidone from the viewpoint of availability and cost.
 スルホキシド誘導体としては、ジメチルスルホキシド、テトラメチレンスルホキシド、ジオクチルスルホキシド、ジベンジルスルホキシド等のジアルキルスルホキシド;ジフェニルスルホキシド、ジ-p-トリルスルホキシド、ビス-(p-クロロフェニル)スルホキシド等のジアリールスルホキシドを挙げることができる。より好ましくは、入手しやすさやコストの点からジメチルスルホキシドである。 Examples of the sulfoxide derivatives include dialkyl sulfoxides such as dimethyl sulfoxide, tetramethylene sulfoxide, dioctyl sulfoxide, and dibenzyl sulfoxide; diaryl sulfoxides such as diphenyl sulfoxide, di-p-tolyl sulfoxide, and bis- (p-chlorophenyl) sulfoxide. . More preferred is dimethyl sulfoxide from the viewpoint of availability and cost.
 本発明の第三の実施形態は、前記(E)成分が、エチレングリコール、N-メチル-2-ピロリドンおよびジメチルスルホキシドから選択される少なくとも1種である第二の実施形態に記載の導電性塗料である。 The third embodiment of the present invention is the conductive paint according to the second embodiment, wherein the component (E) is at least one selected from ethylene glycol, N-methyl-2-pyrrolidone and dimethyl sulfoxide. It is.
 塗布液中において、(A)成分と(B)成分の混合物100質量部に対して、(E)成分は10~1000質量部含まれることが好ましく、より好ましくは200~700質量部である。(E)成分が2種以上ある場合には、それらの合計の量を指す。10質量部以上であると導通性が向上でき、1000質量部以下であれば、(E)成分は揮発性であり、塗膜の乾燥が早いため好ましい。また、塗布液中において、(A)成分、(B)成分および(C)成分の合計100質量部に対しては、(E)成分は0.1~20質量部が好ましく、より好ましくは1~10質量部である。 In the coating solution, the component (E) is preferably contained in an amount of 10 to 1000 parts by mass, more preferably 200 to 700 parts by mass with respect to 100 parts by mass of the mixture of the components (A) and (B). (E) When there are two or more components, the total amount thereof is indicated. If it is 10 parts by mass or more, the conductivity can be improved, and if it is 1000 parts by mass or less, the component (E) is volatile, and the coating film is quickly dried, which is preferable. In addition, in the coating solution, with respect to the total of 100 parts by mass of the component (A), the component (B) and the component (C), the component (E) is preferably 0.1 to 20 parts by mass, more preferably 1 ~ 10 parts by mass.
 <その他の成分>
 本発明の導電性塗料には、本発明の効果を損なわない範囲において、顔料、染料などの着色剤、金属粉、炭酸カルシウム、タルク、シリカ、アルミナ、水酸化アルミニウム等の無機充填剤、難燃剤、有機充填剤、可塑剤、酸化防止剤、消泡剤、レベリング剤、レオロジーコントロール剤等の添加剤を適量配合しても良い。これらの添加により、導電性、柔軟性、接着強さ、作業性等に優れた塗膜が得られる。
<Other ingredients>
The conductive paint of the present invention includes colorants such as pigments and dyes, metal powders, inorganic fillers such as calcium carbonate, talc, silica, alumina, aluminum hydroxide, and flame retardants, as long as the effects of the present invention are not impaired. An appropriate amount of additives such as organic fillers, plasticizers, antioxidants, antifoaming agents, leveling agents, rheology control agents, and the like may be blended. By adding these, a coating film excellent in conductivity, flexibility, adhesive strength, workability and the like can be obtained.
 <塗膜を備えた被着体>
 上記の導電性塗料は、様々な材質の被着体に塗布して均一な塗膜を形成することができる。すなわち、本発明の第四の実施形態は、被着体に第一~第三の実施形態のいずれかに記載の導電性塗料がコーティングされた、塗膜を備えた被着体である。
<Adherent with coating film>
The conductive paint can be applied to adherends of various materials to form a uniform coating film. That is, the fourth embodiment of the present invention is an adherend provided with a coating film, in which the conductive paint according to any one of the first to third embodiments is coated on the adherend.
 被着体の材質としては、特に制限はないが、(メタ)アクリル樹脂、ガラス、ポリフェニレンサルファイド、ポリブチレンテレフタレート、ポリエチレン、ナイロン、ポリアセタール、液晶ポリマー、硬質塩化ビニール、ポリカーボネート、ポリエチレンテレフタレート、シクロオレフィン樹脂、ポリスチレン樹脂、フェノール樹脂、アクリロニトリル-ブタジエン-スチレン樹脂等に使用することができる。 The material of the adherend is not particularly limited, but (meth) acrylic resin, glass, polyphenylene sulfide, polybutylene terephthalate, polyethylene, nylon, polyacetal, liquid crystal polymer, hard vinyl chloride, polycarbonate, polyethylene terephthalate, cycloolefin resin , Polystyrene resin, phenol resin, acrylonitrile-butadiene-styrene resin, and the like.
 本発明の第五の実施形態は、前記被着体が(メタ)アクリル樹脂、ガラス、ポリフェニレンサルファイド、ポリブチレンテレフタレート、ポリエチレン、ナイロン、ポリアセタール、液晶ポリマー、硬質塩化ビニール、ポリカーボネート、ポリエチレンテレフタレート、シクロオレフィン樹脂、ポリスチレン樹脂またはフェノール樹脂である、第四の実施形態に記載の塗膜を備えた被着体である。これらの被着体の場合には、本発明の導電性塗料により均一な塗膜が形成できることから好ましい。特に、汎用的に使用されるアクリル樹脂やガラスなどには、良好な塗膜を形成することができる。 In the fifth embodiment of the present invention, the adherend is (meth) acrylic resin, glass, polyphenylene sulfide, polybutylene terephthalate, polyethylene, nylon, polyacetal, liquid crystal polymer, hard vinyl chloride, polycarbonate, polyethylene terephthalate, cycloolefin. It is a to-be-adhered body provided with the coating film as described in 4th Embodiment which is resin, a polystyrene resin, or a phenol resin. In the case of these adherends, a uniform coating film can be formed by the conductive paint of the present invention. In particular, it is possible to form a good coating film on acrylic resin or glass that is used for general purposes.
 被着体の形状としては、フィルム状、シート状、板状、また、平板状に限られず、球状、円筒状、粒子状等、曲面形状の被着体にも、様々な被着体に塗膜を形成することができる。 The shape of the adherend is not limited to a film shape, a sheet shape, a plate shape, and a flat plate shape. A film can be formed.
 被着体に導電性塗料の被膜を形成するには、特に制限はなく、バーコート法、スプレーコート法、カーテンコート法、スピンコート法、グラビアコート法、インクジェット法、ディップ法等の方法を用いることができる。塗布厚さは、乾燥後の膜厚が1~600nmとなるように調整することが好ましく、より好ましくは10~300nmである。次いで、塗膜形成においては、熱風乾燥炉等により40~150℃で加熱により乾燥させて塗膜を形成することができる。150℃以下であれば、加熱をしても高温になりすぎないため、導電性ポリマーの導通性が低下せず維持できる。また、(C)成分の突沸を防止することもできる。このようにして、本発明の導電性塗料の塗膜を備えた被着体が得られる。 There are no particular restrictions on the formation of the conductive coating film on the adherend, and methods such as bar coating, spray coating, curtain coating, spin coating, gravure coating, ink jet, and dip are used. be able to. The coating thickness is preferably adjusted so that the film thickness after drying is 1 to 600 nm, more preferably 10 to 300 nm. Next, in the coating film formation, the coating film can be formed by drying at 40 to 150 ° C. in a hot air drying furnace or the like. If it is 150 degrees C or less, since it will not become high temperature even if it heats, it can maintain, without the electroconductivity of a conductive polymer falling. Further, bumping of the component (C) can be prevented. Thus, the adherend provided with the coating film of the conductive paint of the present invention is obtained.
 <導電性粒子>
 本発明の第六の実施形態は、第一~第三の実施形態のいずれかに記載の導電性塗料が粒子にコーティングされた導電性粒子である。上記のように、本発明の導電性塗料は多様な被着体に塗布して均一な塗膜を形成することができるが、特に粒子形状の被着体を被覆し、導電性粒子を得るのに好適である。本発明の導電性粒子は従来技術のメッキ粉に相当するものであるが、金属を使用しないため多段階な工程を用いず安価な導電性粒子を製造することができる。
<Conductive particles>
The sixth embodiment of the present invention is a conductive particle obtained by coating the particle with the conductive paint according to any one of the first to third embodiments. As described above, the conductive paint of the present invention can be applied to various adherends to form a uniform coating film. In particular, the particle-shaped adherend is coated to obtain conductive particles. It is suitable for. Although the electroconductive particle of this invention is corresponded to the plating powder of a prior art, since a metal is not used, an inexpensive electroconductive particle can be manufactured without using a multistep process.
 粒子を構成する被着体としては、特に制限はなく、上記した被着体を粒子状に成形したものを用いることができる。このうち、特に粒子のバリエーションが豊富であることおよび本発明の導電性塗料によってより均一な塗膜形成ができることから、(メタ)アクリル樹脂粒子が好ましい。本発明の第七の実施形態は、前記粒子が(メタ)アクリル樹脂からなる第六の実施形態に記載の導電性粒子である。 The adherend constituting the particle is not particularly limited, and the above-described adherend formed into particles can be used. Among these, (meth) acrylic resin particles are preferred because there are particularly abundant particle variations and a more uniform coating can be formed by the conductive paint of the present invention. 7th embodiment of this invention is the electroconductive particle as described in 6th embodiment in which the said particle | grain consists of (meth) acrylic resin.
 本発明の導電性粒子は硬化性樹脂に添加すれば導電性接着剤や異方導電性接着剤を製造することができる。導電性粒子の添加量により、前記の2種類の接着剤を作り分けることができる。つまり、導電性接着剤の場合は、導電性粒子の添加量が70~99質量%であるのに対して、異方導電性接着剤においては、添加量が1~10質量%である。その硬化方法もことなり、導電性接着剤の場合は塗布後に硬化させれば導電性が発現する。一方、異方導電性接着剤の場合は、接着剤を2種類の電極で挟み込んだ状態で加圧した状態で硬化させる必要があり、それにより2種類の電極間は導電性を有する。すなわち、本発明の第九の実施形態は、第六もしくは第七の実施形態に記載の導電性粒子または第八の実施形態に記載の製造方法により製造された導電性粒子を含む導電性接着剤である。また、本発明の第十の実施形態は、第六もしくは第七の実施形態に記載の導電性粒子または第八の実施形態に記載の製造方法により製造された導電性粒子を含む異方導電性接着剤である。 If the conductive particles of the present invention are added to a curable resin, a conductive adhesive or an anisotropic conductive adhesive can be produced. Depending on the amount of conductive particles added, the above two types of adhesives can be made separately. That is, in the case of a conductive adhesive, the addition amount of conductive particles is 70 to 99% by mass, whereas in the anisotropic conductive adhesive, the addition amount is 1 to 10% by mass. The curing method is also different. In the case of a conductive adhesive, conductivity is manifested by curing after application. On the other hand, in the case of an anisotropic conductive adhesive, it is necessary to cure in a state where the adhesive is sandwiched between two types of electrodes and is pressurized, whereby the two types of electrodes have conductivity. That is, the ninth embodiment of the present invention is a conductive adhesive comprising the conductive particles described in the sixth or seventh embodiment or the conductive particles manufactured by the manufacturing method described in the eighth embodiment. It is. Further, the tenth embodiment of the present invention is an anisotropic conductive material including the conductive particles described in the sixth or seventh embodiment or the conductive particles manufactured by the manufacturing method described in the eighth embodiment. It is an adhesive.
 また、硬化性樹脂の硬化形態としては熱硬化、光硬化、嫌気硬化、湿気硬化など様々な硬化形態のものを使用することができる。熱硬化としては、硬化性エポキシ樹脂、硬化性ウレタン樹脂、付加型シリコーン樹脂などを用いることができるがこれらに限定されるものではない。光硬化としては、硬化性アクリレート樹脂、硬化性メタクリレート樹脂、硬化性ビニルエーテル樹脂が挙げられるが、これらに限定されるものではない。嫌気硬化とは、被着体が金属の場合に被着体と接触することで樹脂が硬化する形態である。メタクリレート化合物とサッカリンの組成物が代表的であるが、これらに限定されるものではない。湿気硬化としては、縮合型シリコーン樹脂が挙げられるがこれらに限定されるものではない。 Also, as the curing form of the curable resin, various curing forms such as thermal curing, photocuring, anaerobic curing, and moisture curing can be used. As thermosetting, a curable epoxy resin, a curable urethane resin, an addition-type silicone resin, or the like can be used, but is not limited thereto. Photocuring includes, but is not limited to, curable acrylate resins, curable methacrylate resins, and curable vinyl ether resins. Anaerobic curing is a form in which the resin is cured by contact with the adherend when the adherend is a metal. A composition of a methacrylate compound and saccharin is representative, but is not limited thereto. Examples of moisture curing include, but are not limited to, condensation-type silicone resins.
 従来、光硬化性樹脂に金属粒子を添加して異方導電性接着剤を作ろうとした場合、金属粒子の影響で光硬化性樹脂が着色されると共に不透明なものとなっていた。しかしながら、光硬化性樹脂に本発明の導電性粒子を添加した場合、無着色で透明性が良い異方導電性接着剤を作ることができる。一方、嫌気硬化性樹脂に金属粒子を添加して異方導電性接着剤を作ろうとした場合、金属粒子により樹脂が反応してゲル化していた。しかしながら、本発明の導電性粒子は金属ではないため、嫌気硬化性樹脂に添加してもゲル化することが無く、嫌気硬化性を有する異方導電性接着剤を作ることができる。 Conventionally, when an anisotropic conductive adhesive is made by adding metal particles to a photocurable resin, the photocurable resin is colored and opaque due to the influence of the metal particles. However, when the conductive particles of the present invention are added to a photocurable resin, an anisotropic conductive adhesive having no color and good transparency can be produced. On the other hand, when trying to make an anisotropic conductive adhesive by adding metal particles to an anaerobic curable resin, the resin reacted with the metal particles and gelled. However, since the conductive particles of the present invention are not metals, they do not gel even when added to an anaerobic curable resin, and an anisotropic conductive adhesive having anaerobic curability can be made.
 本発明の導電性接着剤または異方導電性接着剤には、本発明の効果を損なわない範囲において、顔料、染料などの着色剤、金属粉、炭酸カルシウム、タルク、シリカ、アルミナ、水酸化アルミニウム等の無機充填剤、難燃剤、有機充填剤、可塑剤、酸化防止剤、消泡剤、レベリング剤、レオロジーコントロール剤等の添加剤を適量配合しても良い。これらの添加により、導電性、柔軟性、接着強さ、作業性等に優れた組成物が得られる。 The conductive adhesive or anisotropic conductive adhesive of the present invention includes pigments, dyes and other colorants, metal powder, calcium carbonate, talc, silica, alumina, aluminum hydroxide as long as the effects of the present invention are not impaired. An appropriate amount of additives such as inorganic fillers, flame retardants, organic fillers, plasticizers, antioxidants, antifoaming agents, leveling agents, rheology control agents and the like may be blended. By adding these, a composition excellent in conductivity, flexibility, adhesive strength, workability and the like can be obtained.
 前記の導電性接着剤および異方導電性接着剤は、電気電子分野における電気的接続材料として使用することができる。 The conductive adhesive and the anisotropic conductive adhesive can be used as an electrical connection material in the electric / electronic field.
 <導電性粒子の製造方法>
 本発明の第八の実施形態は、転動流動層造粒コーティング装置を用いて、前記粒子に前記導電性塗料をコーティングする工程を有する第六または第七の実施形態に記載の導電性粒子の製造方法である。
<Method for producing conductive particles>
In an eighth embodiment of the present invention, the conductive particles according to the sixth or seventh embodiment have a step of coating the particles with the conductive paint using a rolling fluidized bed granulation coating apparatus. It is a manufacturing method.
 粒子状の被着体を製造する場合、被着体となる粒子の表面に導電性塗料を付着させ、加熱乾燥すれば、導電性粒子が形成される。導電性粒子形成のための装置としては、転動流動コーティング装置(例えば、転動流動コーティング装置-MP-01(株式会社パウレック製)等)、遠心流動型コーティング造粒装置(例えば、グラニュレックス(フロイント産業株式会社製)等)、複合型造粒コーティング装置(例えば、スパイラフロー(フロイント産業株式会社製)等)、流動層造粒乾燥装置(例えば、GPCG/WSG-CTシリーズ(株式会社パウレック製)等)、フローコーター(フロイント産業株式会社製)、微粒子コーティング・造粒装置-SFPシリーズ(株式会社パウレック製)、微粒子コーティング装置GPCG-SCPシリーズ(株式会社パウレック製)、撹拌混合造粒装置(例えば、バーチカルグラニュレーター(株式会社パウレック製)等)等が好適に挙げられる。このうち、特に転動流動コーティング装置がより好ましい。 When producing a particulate adherend, conductive particles are formed by adhering a conductive paint to the surface of the particles to be adhered and drying by heating. Examples of the apparatus for forming conductive particles include a rolling fluid coating apparatus (for example, a rolling fluid coating apparatus-MP-01 (manufactured by POWREC Co., Ltd.)) and a centrifugal fluid coating granulator (for example, Granurex ( Freund Sangyo Co., Ltd.), composite granulation coating equipment (eg Spiraflow (Freund Sangyo Co., Ltd.), etc.), fluidized bed granulation drying equipment (eg GPCG / WSG-CT series (Powrec Co., Ltd.) ), Etc.), flow coater (Freund Sangyo Co., Ltd.), fine particle coating and granulating equipment-SFP series (manufactured by POWREC, Inc.), fine particle coating equipment GPCG-SCP series (manufactured by POWREC, Inc.), stirring and mixing granulator ( For example, vertical granulator (manufactured by POWREC Co., Ltd.) etc.) Preferably exemplified. Of these, a rolling fluid coating apparatus is particularly preferred.
 導電性粒子の製造において、粒子表面に対する導電性塗料の付着方法によっては、2次凝集体が発生することがあり、2次凝集体が発生すると本来の1次粒子が有する粒度分布が変化する恐れがある。また、粒子表面にて導電性塗料が偏り、均一な塗膜ができない場合もある。均一な塗膜が形成された1次粒子を得るためには、処理装置の仕様や原液の滴下や噴霧などの投入方法が大きく依存することが分かった。そのため、本発明の導電性粒子を得るための仕様としては、転動流動コーティング装置を用いることがより好ましい。転動流動コーティング装置は、気流による粉粒体流動・高効率乾燥作用を有する流動層造粒装置と、機械的作用による粉粒体流動・転動・圧密作用を有する攪拌造粒装置との特徴を備えた、造粒および微粒子コーティングを行うための装置である。さらに、原液の投入方法は噴霧法であることが最も好ましい。 In the production of conductive particles, secondary agglomerates may occur depending on the method of adhering the conductive coating to the particle surface, and when the secondary agglomerates occur, the particle size distribution of the original primary particles may change. There is. In addition, the conductive paint may be biased on the particle surface, and a uniform coating film may not be obtained. In order to obtain primary particles on which a uniform coating film is formed, it has been found that the specifications of the processing apparatus and the charging method such as dripping or spraying of the stock solution depend greatly. Therefore, as a specification for obtaining the conductive particles of the present invention, it is more preferable to use a rolling fluidized coating apparatus. Rolling fluid coating equipment is characterized by a fluidized bed granulator that has a granular material flow and high-efficiency drying action by an air flow, and a stirring granulator that has a powder flow, rolling, and compaction action by a mechanical action. Is an apparatus for performing granulation and fine particle coating. Further, it is most preferable that the stock solution is charged by a spray method.
 次に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。(以下、導電性塗料を単に塗料と呼ぶ。)
 [実施例1~7、比較例1~5]
 塗料を調製するために下記成分を準備した。
EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited only to these Examples. (Hereinafter, the conductive paint is simply referred to as paint.)
[Examples 1 to 7, Comparative Examples 1 to 5]
The following ingredients were prepared to prepare the paint.
 (A)成分:ポリエチレンジオキシチオフェン、(B)成分:ポリスチレンスルホン酸および(C)成分:水の混合物
 ・固形分1質量%のポリエチレンジオキシチオフェンとポリスチレンスルホン酸の水系エマルジョン((A)成分および(B)成分:(C)成分 の質量比 1:99)
 その他の導電ポリマーおよび(C)成分:水の混合物
 ・固形分5質量%のポリアニリン水溶液(ポリアニリン:(C)成分 の質量比 5:95)
 (D)成分:脂環式エポキシ基を有するシランカップリング剤および/または(メタ)アクリル基を有するシラン系カップリング剤
 ・2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(KBM-303 信越化学工業株式会社製)
 ・3-メタクリロキシプロピルトリメトキシシラン(KBM-503 信越化学工業株式会社製)
 (D’)成分:(D)成分以外のシラン系カップリング剤
 ・3-グリシドキシプロピルトリメトキシシラン(KBM-403 信越化学工業株式会社)
 ・N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン(KBM-603 信越化学工業株式会社製)
 ・ビニルトリメトキシシラン(KBM-1003 信越化学工業株式会社製)
 (E)成分:グリコール誘導体、ピロリドン誘導体およびスルホキシド誘導体から少なくとも1種類選択される溶剤
 ・エチレングリコール(試薬)
 ・N-メチル-2-ピロリドン(試薬)
 ・ジメチルスルホキシド(試薬)
 (E’)成分:(E)成分以外の溶剤
 ・エタノール(試薬)
 実施例1~6については、(A)成分~(E)成分を秤量して撹拌した。実施例7については、(A)成分~(D)成分および(E’)成分を秤量し、撹拌した。比較例1~4の場合は、(A)成分~(C)成分のみ、または、(A)成分~(C)成分と(D’)成分とを使用した。比較例5は、その他の導電性ポリマーおよび(C)成分を使用した。詳細な調製量は表1-1および表1-2に従い、数値は全て質量部で表記する。
(A) Component: Polyethylenedioxythiophene, (B) Component: Polystyrene sulfonic acid and (C) Component: Mixture of water Aqueous emulsion of polyethylene dioxythiophene and polystyrene sulfonic acid having a solid content of 1% by mass (component (A) And (B) component: (C) component mass ratio 1:99)
Other conductive polymer and component (C): mixture of water-polyaniline aqueous solution having a solid content of 5% by mass (mass ratio of polyaniline: component (C) 5:95)
Component (D): Silane coupling agent having an alicyclic epoxy group and / or silane coupling agent having a (meth) acryl group 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (KBM-303) Shin-Etsu Chemical Co., Ltd.)
・ 3-Methacryloxypropyltrimethoxysilane (KBM-503, Shin-Etsu Chemical Co., Ltd.)
Component (D ′): Silane coupling agent other than component (D) 3-Glycidoxypropyltrimethoxysilane (KBM-403 Shin-Etsu Chemical Co., Ltd.)
・ N-2- (Aminoethyl) -3-aminopropyltriethoxysilane (KBM-603, Shin-Etsu Chemical Co., Ltd.)
・ Vinyltrimethoxysilane (KBM-1003, Shin-Etsu Chemical Co., Ltd.)
(E) Component: Solvent selected from glycol derivatives, pyrrolidone derivatives and sulfoxide derivatives. Ethylene glycol (reagent)
・ N-methyl-2-pyrrolidone (reagent)
・ Dimethyl sulfoxide (reagent)
Component (E '): Solvent other than component (E)-Ethanol (reagent)
For Examples 1 to 6, the components (A) to (E) were weighed and stirred. For Example 7, the components (A) to (D) and (E ′) were weighed and stirred. In Comparative Examples 1 to 4, only the components (A) to (C) or the components (A) to (C) and the component (D ′) were used. In Comparative Example 5, other conductive polymer and component (C) were used. Detailed preparation amounts follow Table 1-1 and Table 1-2, and all numerical values are expressed in parts by mass.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~7、比較例1~5に対して、下記のように塗膜性(アクリル)確認、塗膜性(ガラス)確認、表面抵抗値測定を行った。評価結果は下記表2-1および2-2にまとめた。 For Examples 1 to 7 and Comparative Examples 1 to 5, coating property (acrylic) confirmation, coating property (glass) confirmation, and surface resistance measurement were performed as described below. The evaluation results are summarized in Tables 2-1 and 2-2 below.
 [塗膜性確認]
 バーコーターにより基板に塗料を塗布して、熱風乾燥炉により100℃雰囲気で5分放置して、水分を揮発させて100nmの塗膜を得た。基板はアクリル樹脂板とガラス板に対して、それぞれ「塗膜性(アクリル)」と「塗膜性(ガラス)」を確認した。判断基準として、以下の3段階で目視により確認を行った。
[Confirmation of coating properties]
The coating material was applied to the substrate with a bar coater and left in a hot air drying oven at 100 ° C. for 5 minutes to evaporate the water and obtain a 100 nm coating film. The substrate was confirmed to have “coating property (acrylic)” and “coating property (glass)” with respect to the acrylic resin plate and the glass plate, respectively. As a judgment criterion, confirmation was made visually by the following three stages.
 ○:塗膜が均等の厚さである
 △:塗れているが組成物が部分的に偏っている
 ×:完全にはじいていて塗れない。
○: The coating film has a uniform thickness. Δ: Applied but the composition is partially biased. X: Completely repelled and not applied.
 [表面抵抗値測定]
 ガラス板に対して上記の塗膜性確認と同じ方法にて塗膜を作製し、電極幅が1mm、電極間の距離が5mmでテスター(二端子法)にて「表面抵抗値(単位:Ω)」を測定した。表2-2中、Mは10を意味する。
[Surface resistance measurement]
A coating film was prepared on the glass plate by the same method as the above coating film property confirmation, and the electrode width was 1 mm, the distance between the electrodes was 5 mm, and “surface resistance value (unit: Ω) was measured with a tester (two-terminal method). ) ”Was measured. In Table 2-2, M means 10 6 .
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 従来技術によっては、導電性塗料の被着体に対するなじみが良くない場合、塗布後の状態でも組成物が偏ることもある。さらに、100℃雰囲気に曝された時に一時的に塗料が低粘度化して塗料が寄ってしまうこともある。しかしながら、表2の結果から、(D)成分を添加した実施例1~7の塗料は、アクリル樹脂およびガラスの両方に対して、均等な塗膜が形成されていることが確認できた。また、(E)成分を添加した実施例2、4~6では、(E)成分を添加していない実施例1、3、7に比較して、表面抵抗値の低下が確認でき、より導電性に優れた導電性塗料が得られたことが分かる。これに対して、(D)成分を含まない比較例1、(D)成分の代わりに(D’)成分を含んだ比較例2~4では、アクリル樹脂に対して塗膜が形成できなかった。さらに、(A)成分~(C)成分を含まない比較例5では、アクリル樹脂およびガラスの両方に対して、塗膜が形成できない結果となった。 Depending on the prior art, if the familiarity of the conductive paint to the adherend is not good, the composition may be biased even after application. In addition, when exposed to an atmosphere of 100 ° C., the viscosity of the paint may temporarily decrease and the paint may approach. However, from the results in Table 2, it was confirmed that the paints of Examples 1 to 7 to which the component (D) was added formed an even coating film on both the acrylic resin and the glass. Further, in Examples 2, 4 to 6 to which the component (E) was added, a decrease in the surface resistance value could be confirmed as compared with Examples 1, 3, and 7 to which the component (E) was not added, and it was more conductive. It can be seen that a conductive paint having excellent properties was obtained. On the other hand, in Comparative Example 1 not including the component (D) and Comparative Examples 2 to 4 including the component (D ′) instead of the component (D), a coating film could not be formed on the acrylic resin. . Furthermore, in Comparative Example 5 which does not contain the components (A) to (C), a coating film could not be formed on both acrylic resin and glass.
 次に、実施例2で得られた導電性塗料について、ガラスとアクリル以外の材質を被着体として塗膜性を確認した。試験方法及び判断基準は上記の塗膜性確認と同様の方法で行った。その結果を下記表3にまとめた。表3より、一部の材質には「×」が有るが、アクリルやガラス以外にも様々な材質に対して良好な塗膜が形成できることが分かった。 Next, the coating properties of the conductive paint obtained in Example 2 were confirmed using materials other than glass and acrylic as adherends. The test method and judgment criteria were the same as those for the above-described coating property confirmation. The results are summarized in Table 3 below. From Table 3, it was found that although some materials have “x”, good coating films can be formed on various materials other than acrylic and glass.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 [実施例8、比較例5~6]
 平均粒径15μmのポリメタクリル酸メチル粒子(SSX-115 積水化成品工業株式会社製)の表面に実施例2で得られた導電性塗料を被覆し、導電性粒子を製造した。粒子を被覆するために、下記の装置1~3を用いて塗料を粒子表面に付着させると共に乾燥させる処理を行った。(以下、装置による処理を行った粒子を処理済み粒子と呼ぶ。)各装置の仕様をまとめると下記表4の通りである。また、後述するように、処理済み粒子の導通性測定を実施した。
[Example 8, Comparative Examples 5 to 6]
The surface of polymethyl methacrylate particles having an average particle size of 15 μm (SSX-115 manufactured by Sekisui Plastics Co., Ltd.) was coated with the conductive paint obtained in Example 2 to produce conductive particles. In order to coat the particles, the following apparatuses 1 to 3 were used to attach the paint to the particle surfaces and dry them. (Hereinafter, the particles processed by the apparatus are called processed particles.) The specifications of each apparatus are summarized in Table 4 below. Further, as described later, the conductivity of the treated particles was measured.
 装置1(転動流動コーティング装置):
 流動層造粒装置(気流による粉粒体流動、高効率乾燥作用)と攪拌造粒装置(機械的作用による粉粒体流動、転動、圧密作用)の特徴を合わせた粒や微粒子コーティング装置である。
Device 1 (rolling fluid coating device):
A particle and fine particle coating device that combines the characteristics of a fluidized bed granulator (powder flow by airflow, high-efficiency drying action) and agitation granulator (powder flow, rolling, compaction action by mechanical action). is there.
 装置2(UV型振動撹拌機): 
 バッチ式縦型乾燥機で振動機構は、2台の振動モーターを本体側面に取付け、斜め上方の半楕円状の振動を発生させる。本体内部の被乾燥物は円周方向に旋回しながら半径方向に上下流動する。
Apparatus 2 (UV type vibration stirrer):
In the batch type vertical dryer, the vibration mechanism attaches two vibration motors to the side of the main body and generates a semi-elliptical vibration obliquely upward. The material to be dried inside the main body flows up and down in the radial direction while turning in the circumferential direction.
 装置3(ハイスピードバキュームドライヤー):
 缶体内部を減圧状態にし、缶体底面および側面からジャケット加熱する。被乾燥物が撹拌、転動することにより、均一に熱を与えて短時間での乾燥できる。
Device 3 (high speed vacuum dryer):
The inside of the can body is evacuated and the jacket is heated from the bottom and side surfaces of the can body. By stirring and rolling the material to be dried, heat can be uniformly applied and drying can be performed in a short time.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 [処理済み粒子導通性測定]
 表4に従って製造された粒子は、株式会社島津製作所製 微小圧縮試験機にて導通性の測定を行った。1つの粒子を3.8mN/secの負荷速度で圧縮しながら、粒径15μmの粒子を70%に圧縮(10μm)した際の測定値を抵抗値とした。実施例8の結果を図1に示す。X軸は変位(単位:μm)でありプローブが粒子に接触した変位が0μmである。Y軸はその時の抵抗値(単位:×10Ω)である。実施例8は0.06×10Ωの導通性が発現したが、比較例5と6は絶縁であり抵抗値を測定することができなかった。
[Measurement of processed particle conductivity]
The particles produced according to Table 4 were measured for conductivity with a micro compression tester manufactured by Shimadzu Corporation. The measured value when a particle having a particle size of 15 μm was compressed to 70% (10 μm) while compressing one particle at a load speed of 3.8 mN / sec was taken as a resistance value. The results of Example 8 are shown in FIG. The X axis is displacement (unit: μm), and the displacement of the probe in contact with the particles is 0 μm. The Y-axis is the resistance value at that time (unit: × 10 6 Ω). Example 8 exhibited a conductivity of 0.06 × 10 6 Ω, but Comparative Examples 5 and 6 were insulating, and the resistance value could not be measured.
 実施例8のみ導通性が発現したため、塗膜を形成する装置によって塗膜の状態に大きな影響を与えることが判る。特に、組成物の投入方法においては、滴下の場合は均一ではなく偏った塗膜が粒子表面に形成され、噴霧の方が均一が塗膜が形成されていると考えられる。本発明の場合、転動/流動の方法は振動よりも撹拌の方が適していると考えられる。 Since only the conductivity of Example 8 was exhibited, it can be seen that the state of the coating film is greatly affected by the apparatus for forming the coating film. In particular, in the charging method of the composition, it is considered that in the case of dropping, a nonuniform coating film is formed on the particle surface, and spraying forms a uniform coating film. In the case of the present invention, the rolling / flowing method is considered to be more suitable for stirring than for vibration.
 [実施例9]
 実施例8で得られた導電性粒子を用いて異方導電性接着剤を調製するため、下記成分を準備した。下記成分すべてを秤量して30分間撹拌した。詳細な調製量は表5に従い、数値は全て質量部で表記する。
・ポリエチレングリコール#400ジアクリレート(A-400 新中村化学工業株式会社製)
・1-ヒドロキシシクロヘキシルフェニルケトン(IRGACURE(登録商標)184 BASF製)
・実施例8の導電性粒子
[Example 9]
In order to prepare an anisotropic conductive adhesive using the conductive particles obtained in Example 8, the following components were prepared. All the following components were weighed and stirred for 30 minutes. Detailed preparation amounts are in accordance with Table 5, and all numerical values are expressed in parts by mass.
・ Polyethylene glycol # 400 diacrylate (A-400 Shin-Nakamura Chemical Co., Ltd.)
1-hydroxycyclohexyl phenyl ketone (IRGACURE (registered trademark) 184 manufactured by BASF)
-Conductive particles of Example 8
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 [導通性測定]
 上記の実施例9の導通性を測定した。片面にITOの表面処理をした10mm×25mmのITOガラス板を二枚用意した。そのうち一枚の導通面側に、スペーサーとして厚さ12μmの短冊状PETフィルムをITOガラス板の両端に配置した。実施例9の異方導電性接着剤をPETフィルムの間に0.5mg塗布した。この塗布膜上に、もう一枚のITOガラスの導通面をずらして貼り合わせ面が5mm×5mmになる様に貼り合わせた。貼り合わせたITOガラスをクリップにて固定した後、積算光量3000mJ/cmで光照射を行い、接着剤を硬化した。以上のように作製したテストピースのITOガラス間の抵抗値を測定し、ITOガラスと導電粒子の全抵抗値を測定したところ300Ωであった。
[Conductivity measurement]
The conductivity of Example 9 above was measured. Two 10 mm × 25 mm ITO glass plates having a surface treated with ITO on one side were prepared. Among them, a strip-shaped PET film having a thickness of 12 μm was disposed on both sides of the ITO glass plate as a spacer on one conductive surface side. 0.5 mg of the anisotropic conductive adhesive of Example 9 was applied between PET films. On this coating film, the conductive surface of another ITO glass was shifted so that the bonded surface was 5 mm × 5 mm. After the bonded ITO glass was fixed with a clip, light irradiation was performed with an integrated light amount of 3000 mJ / cm 2 to cure the adhesive. The resistance value between the ITO glass of the test piece produced as described above was measured, and the total resistance value of the ITO glass and the conductive particles was measured and found to be 300Ω.
 本願発明は様々な材質の被着体に有機導電層を形成することができる導電性塗料である。導電性粒子の製造においては、特定の方式の装置を用いることで効率的に製造することが可能である。また、当該導電性粒子はメッキ粉に相当するものであるが、金属を使用しないため多段階な工程を用いず安価な導電性粒子を製造することができる。また、当該導電性粒子を用いた異方導電性接着剤においては、見た目は透明で透光性がある硬化物を形成することができる。 The present invention is a conductive paint capable of forming an organic conductive layer on an adherend of various materials. In the production of the conductive particles, it can be efficiently produced by using a specific type of apparatus. Moreover, although the said electroconductive particle is corresponded to plating powder, since a metal is not used, an inexpensive electroconductive particle can be manufactured without using a multistep process. Moreover, in the anisotropic conductive adhesive using the said electroconductive particle, it can form the hardened | cured material which is transparent in appearance and has translucency.
 なお、本出願は、2013年4月1日に出願された日本国特許出願第2013-075640号に基づいており、その開示内容は、参照により全体として引用されている。 Note that this application is based on Japanese Patent Application No. 2013-075640 filed on April 1, 2013, the disclosure of which is incorporated by reference in its entirety.

Claims (10)

  1.  下記(A)~(D)成分: 
       (A)成分:ポリエチレンジオキシチオフェン
       (B)成分:ポリスチレンスルホン酸
       (C)成分:水
       (D)成分:脂環式エポキシ基を有するシランカップリング剤および/または(メタ)アクリル基を有するシ
    ラン系カップリング剤
     を含む導電性塗料。
    The following components (A) to (D):
    (A) Component: Polyethylenedioxythiophene (B) Component: Polystyrene sulfonic acid (C) Component: Water (D) Component: Silane coupling agent having alicyclic epoxy group and / or silane having (meth) acrylic group Conductive paint containing a coupling agent.
  2.  (E)成分として、グリコール誘導体、ピロリドン誘導体およびスルホキシド誘導体から選択される少なくとも1種の溶剤をさらに含む請求項1に記載の導電性塗料。 The conductive paint according to claim 1, further comprising at least one solvent selected from a glycol derivative, a pyrrolidone derivative, and a sulfoxide derivative as the component (E).
  3.  前記(E)成分が、エチレングリコール、N-メチル-2-ピロリドンおよびジメチルスルホキシドから選択される少なくとも1種である請求項2に記載の導電性塗料。 The conductive paint according to claim 2, wherein the component (E) is at least one selected from ethylene glycol, N-methyl-2-pyrrolidone and dimethyl sulfoxide.
  4.  被着体に、請求項1~3のいずれかに記載の導電性塗料がコーティングされた、塗膜を備えた被着体。 An adherend provided with a coating film, wherein the adherend is coated with the conductive paint according to any one of claims 1 to 3.
  5.  前記被着体が、(メタ)アクリル樹脂、ガラス、ポリフェニレンサルファイド、ポリブチレンテレフタレート、ポリエチレン、ナイロン、ポリアセタール、液晶ポリマー、硬質塩化ビニール、ポリカーボネート、ポリエチレンテレフタレート、シクロオレフィン樹脂、ポリスチレン樹脂またはフェノール樹脂である、請求項4に記載の塗膜を備えた被着体。 The adherend is (meth) acrylic resin, glass, polyphenylene sulfide, polybutylene terephthalate, polyethylene, nylon, polyacetal, liquid crystal polymer, hard vinyl chloride, polycarbonate, polyethylene terephthalate, cycloolefin resin, polystyrene resin or phenol resin. An adherend provided with the coating film according to claim 4.
  6.  請求項1~3のいずれかに記載の導電性塗料が粒子にコーティングされた導電性粒子。 Conductive particles obtained by coating particles with the conductive paint according to any one of claims 1 to 3.
  7.  前記粒子が(メタ)アクリル樹脂からなる請求項6に記載の導電性粒子。 The conductive particles according to claim 6, wherein the particles are made of (meth) acrylic resin.
  8.  転動流動層造粒コーティング装置を用いて、前記粒子に前記導電性塗料をコーティングする工程を有する請求項6または7に記載の導電性粒子の製造方法。 The method for producing conductive particles according to claim 6 or 7, further comprising a step of coating the particles with the conductive paint using a rolling fluidized bed granulation coating apparatus.
  9.  請求項6もしくは7に記載の導電性粒子または請求項8に記載の製造方法により製造された導電性粒子を含む導電性接着剤。 A conductive adhesive comprising the conductive particles according to claim 6 or 7, or the conductive particles produced by the production method according to claim 8.
  10.  請求項6もしくは7に記載の導電性粒子または請求項8に記載の製造方法により製造された導電性粒子を含む異方導電性接着剤。 An anisotropic conductive adhesive comprising conductive particles according to claim 6 or 7, or conductive particles produced by the production method according to claim 8.
PCT/JP2014/059588 2013-04-01 2014-03-31 Electrically conductive coating material, and adherend using same WO2014163059A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013075640A JP2014201595A (en) 2013-04-01 2013-04-01 Conductive coating material and adherend using the same
JP2013-075640 2013-04-01

Publications (1)

Publication Number Publication Date
WO2014163059A1 true WO2014163059A1 (en) 2014-10-09

Family

ID=51658355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059588 WO2014163059A1 (en) 2013-04-01 2014-03-31 Electrically conductive coating material, and adherend using same

Country Status (3)

Country Link
JP (1) JP2014201595A (en)
TW (1) TW201439232A (en)
WO (1) WO2014163059A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061374A1 (en) * 2016-09-30 2018-04-05 積水化成品工業株式会社 Conductive resin particles and use of same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6905744B2 (en) * 2016-07-19 2021-07-21 丸尾カルシウム株式会社 A conductive surface-treated powder filler and a resin composition containing the filler.
TWI651345B (en) * 2017-09-29 2019-02-21 國立中山大學 Method for manufacturing flexible transparent conductive film and flexible transparent conductive film, transparent electrode and organic light-emitting diode using the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006318876A (en) * 2004-06-29 2006-11-24 Dainippon Printing Co Ltd Electroluminescent element and manufacturing method thereof
JP2009170319A (en) * 2008-01-17 2009-07-30 Toda Kogyo Corp Conductive particle powder
JP2009199817A (en) * 2008-02-20 2009-09-03 Teijin Dupont Films Japan Ltd Conductive film, and touch panel using the same
JP2009230885A (en) * 2008-03-19 2009-10-08 Teijin Dupont Films Japan Ltd Conductive film, and touch panel using the same
WO2011093480A1 (en) * 2010-01-26 2011-08-04 帝人デュポンフィルム株式会社 Electrically conductive film
JP2012102304A (en) * 2010-11-15 2012-05-31 Nagase Chemtex Corp Electroconductive coating composition and laminate
JP2012172024A (en) * 2011-02-18 2012-09-10 Nagase Chemtex Corp Composition for electroconductive coating, electroconductive thin film, and electroconductive film
JP2012243460A (en) * 2011-05-17 2012-12-10 Teijin Dupont Films Japan Ltd Conductive film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006318876A (en) * 2004-06-29 2006-11-24 Dainippon Printing Co Ltd Electroluminescent element and manufacturing method thereof
JP2009170319A (en) * 2008-01-17 2009-07-30 Toda Kogyo Corp Conductive particle powder
JP2009199817A (en) * 2008-02-20 2009-09-03 Teijin Dupont Films Japan Ltd Conductive film, and touch panel using the same
JP2009230885A (en) * 2008-03-19 2009-10-08 Teijin Dupont Films Japan Ltd Conductive film, and touch panel using the same
WO2011093480A1 (en) * 2010-01-26 2011-08-04 帝人デュポンフィルム株式会社 Electrically conductive film
JP2012102304A (en) * 2010-11-15 2012-05-31 Nagase Chemtex Corp Electroconductive coating composition and laminate
JP2012172024A (en) * 2011-02-18 2012-09-10 Nagase Chemtex Corp Composition for electroconductive coating, electroconductive thin film, and electroconductive film
JP2012243460A (en) * 2011-05-17 2012-12-10 Teijin Dupont Films Japan Ltd Conductive film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061374A1 (en) * 2016-09-30 2018-04-05 積水化成品工業株式会社 Conductive resin particles and use of same
JPWO2018061374A1 (en) * 2016-09-30 2019-08-29 積水化成品工業株式会社 Conductive resin particles and uses thereof

Also Published As

Publication number Publication date
TW201439232A (en) 2014-10-16
JP2014201595A (en) 2014-10-27

Similar Documents

Publication Publication Date Title
US9117568B2 (en) Polymer compositions containing carbonaceous fillers
CN103382370B (en) Surface protection film and its optics of fitting
CN103113786B (en) Graphene conductive ink and preparation method thereof
US20110133134A1 (en) Crosslinkable and Crosslinked Compositions of Olefin Polymers and Graphene Sheets
US20120142832A1 (en) Polymeric Compositions Containing Graphene Sheets and Graphite
TWI449762B (en) Antistatic coating, method for manufacturing antistatic film and antistatic film obtained thereby
WO2007089114A1 (en) Basic solution washable antistatic composition and polymer products manufactured by using the same
KR20120006458A (en) Conductive paint composition and the method of conductive film using thereof
CN101816046A (en) Conductive polymer solution, conductive coating film, and input device
JP2007246905A (en) Conductive coating composition for protective film and method of manufacturing coating film using the same
JP2012140575A (en) Pedot/pss composition and pedot/pss film using the same
JP2016153513A (en) Coated particle
TW201345986A (en) Conductive ink composition
CN102936469A (en) Heat drying type transference resistant stripping blue gel and preparation method thereof
WO2014163059A1 (en) Electrically conductive coating material, and adherend using same
CN102604455A (en) Antistatic paint, antistatic thin film and preparation method of the antistatic thin film
TW201710413A (en) Thermosetting type antistatic coating agent, hardened film thereof and plastic film capable of forming a hardened film on the surface of a plastic film to suppress an increase in surface resistivity even at a high voltage
CN105670382A (en) Thermal-curable peelable print ink, preparation method and construction method thereof
JP2006144003A (en) Conductive coating composition and method for producing the same
CN1990524A (en) Static resistant polyester membrane
KR20140056045A (en) Copper paste composition for printed electronics
JP6905744B2 (en) A conductive surface-treated powder filler and a resin composition containing the filler.
JP4385254B2 (en) Conductive fine particles and method for producing the same
CN102820072A (en) Conductive paste
KR102064211B1 (en) Complex Capsule Comprising Phase Change Material and Inorganic Composite Enclosed by polymer and Method for Preparing the Same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14778548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14778548

Country of ref document: EP

Kind code of ref document: A1