WO2014162780A1 - Cooling structure - Google Patents

Cooling structure Download PDF

Info

Publication number
WO2014162780A1
WO2014162780A1 PCT/JP2014/053420 JP2014053420W WO2014162780A1 WO 2014162780 A1 WO2014162780 A1 WO 2014162780A1 JP 2014053420 W JP2014053420 W JP 2014053420W WO 2014162780 A1 WO2014162780 A1 WO 2014162780A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling air
heat sink
converter
frame member
power converter
Prior art date
Application number
PCT/JP2014/053420
Other languages
French (fr)
Japanese (ja)
Inventor
武司 小田
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201480010642.8A priority Critical patent/CN105027405B/en
Priority to JP2015509941A priority patent/JP6034957B2/en
Publication of WO2014162780A1 publication Critical patent/WO2014162780A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20909Forced ventilation, e.g. on heat dissipaters coupled to components
    • H05K7/20918Forced ventilation, e.g. on heat dissipaters coupled to components the components being isolated from air flow, e.g. hollow heat sinks, wind tunnels or funnels

Definitions

  • the present invention relates to a cooling structure that cools a power converter by heat exchange with cooling air.
  • Electrical components (air conditioners, lamps, audio equipment, etc.) installed in a hybrid vehicle are driven by DC power supplied from a battery, regenerative power supplied from a traveling motor, or the like.
  • the voltage is stepped up / down by the DC-DC converter and the DC / AC conversion by the inverter is performed.
  • Patent Document 1 discloses that each power conversion device (DC-DC converter and inverter) has a heat sink of a DC-DC converter and a heat sink of an inverter parallel to the flow direction of cooling air. It describes a cooling structure with both sides fixed by brackets. The cooling structure is configured to allow cooling air to flow through a flow path sandwiched between the power conversion devices in the height direction and sandwiched between the two brackets in the width direction.
  • an object of the present invention is to provide a cooling structure with improved cooling efficiency.
  • a cooling structure includes a first power conversion device having a first heat sink and a second power conversion device having a second heat sink.
  • a cooling structure that cools by replacement wherein a first hole into which the first heat sink is inserted and a second hole into which the second heat sink is inserted so as to face the first heat sink are formed
  • a cooling air duct that is a resin tubular body, and a pair of holding portions that hold the first power conversion device and the second power conversion device in a state of being separated from each other in the height direction, and the first power
  • the cooling air duct has a periphery of the first hole in close contact with the first power conversion device, and a periphery of the second hole.
  • the second power Characterized in that it is arranged so as to be in close contact with the converter.
  • the first power conversion device and the second power conversion device are held in a state of being separated in the height direction by the pair of holding portions, and are coupled to the frame member. Therefore, even when a resin cooling air duct is used, the coupling strength between the first power converter and the second power converter can be sufficiently secured by the frame member.
  • the cooling air duct which is a cylindrical body, is arranged so that the periphery of the first hole is in close contact with the first power converter and the periphery of the second hole is in close contact with the second power converter. Therefore, there is no gap between the first power converter or the second power converter and the cooling air duct, and the cooling air can be prevented from leaking outside.
  • the cooling air duct is made of resin, the cooling air duct is appropriately brought into close contact with the first power conversion device and the second power conversion device while absorbing a dimensional error generated when the cooling structure is manufactured. Can do. As a result, heat exchange between the first heat sink and the second heat sink and the cooling air disposed so as to face each other is performed with high efficiency, and the cooling efficiency of the first power converter and the second power converter is improved. Can do.
  • Each of the pair of holding portions includes a support portion extending in a height direction so as to separate the first power conversion device and the second power conversion device, and a width direction inner side from one end of the support portion. And a fastening part that is bolted to the second power converter between the support part and the cooling air duct in the width direction.
  • the fastening portion extends inward in the width direction from one end of the support portion.
  • the respective fastening portions extend so that their tips approach each other in the width direction. Therefore, it becomes easy to form a frame member with one sheet metal including each support part and each fastening part.
  • the fastening portion can be appropriately bolted (coupled) to the second power conversion device in the gap in the width direction formed between the cooling air duct that is a cylindrical body and the support portion extending in the height direction.
  • the bolt fastening described above means fastening using bolts and nuts corresponding to each other.
  • the frame member includes a connection portion that is integrally formed with each of the fastening portions so as to form an insertion hole into which the second heat sink is inserted.
  • the frame member is integrally formed with the pair of holding portions and the connecting portion. Therefore, for example, it is possible to form a frame member by bending or punching a single sheet metal, which saves the trouble of manufacturing the frame member and reduces the number of parts of the cooling structure. it can.
  • the insertion hole can be formed in an arbitrary shape (for example, a rectangular shape) corresponding to the second heat sink.
  • a cooling structure with improved cooling efficiency can be provided.
  • FIG. 2 is a cross-sectional view of the cooling structure shown in FIG.
  • FIG. 3 is an end view taken along the line BB of the cooling structure shown in FIG. 2.
  • It is the disassembled perspective view which looked at the cooling structure from the right rear. It is the elements on larger scale which looked at the location where the holding
  • the PDU 10 and the DC-DC converter 20 are included in a PCU (Power Control Unit) that controls charging / discharging of a battery (not shown) and power running / regenerative driving of a traveling motor (not shown). It is mounted under a rear seat (not shown).
  • PCU Power Control Unit
  • the PDU 10 (first power conversion device) shown in FIG. 1 is electrically connected to the battery and the travel motor, and functions as an inverter that converts DC power from the battery into predetermined AC power.
  • the PDU 10 (see FIG. 4) includes a main body 11 having an electronic circuit (heating element: not shown) such as a switching element and a resistor, and a heat sink 12 (first heat sink) disposed so as to be able to exchange heat with the main body 11. ) And a housing part 13 for housing the main body part 11.
  • a pair of flanges 11 a and 11 b for fastening the main body part 11 and the accommodating part 13 are formed on the left and right sides of the main body part 11.
  • the right flange 11a extends in the front-rear direction, and two insertion holes h1 through which the bolts b1 welded to the bottom wall 131 of the housing portion 13 are inserted are formed.
  • the heat sink 12 has a plurality of heat radiating fins arranged in parallel to each other, and is arranged so as to be able to exchange heat with the main body 11.
  • the radiating fin is a metal plate (for example, aluminum) that has a rectangular shape in a side view, and is disposed in parallel to each other with a predetermined interval from other radiating fins adjacent in the left-right direction.
  • the accommodating part 13 (refer FIG. 4) is a member which accommodates the main-body part 11 in the state which exposed the heat sink 12, and is formed in the concave shape (box shape with the upper part opened).
  • a rectangular hole H1 into which the heat sink 12 is inserted is formed in the bottom wall 131 of the accommodating portion 13.
  • the inner side surface of the accommodating part 13 has a predetermined margin in the front-rear and left-right directions with respect to the side surface of the main body part 11. Is formed.
  • each bolt b1 is inserted into the insertion hole h1 of the flange 11a, 11b.
  • four bolts b4 projecting downward are welded to the lower surface of the bottom wall 131 of the accommodating portion 13. These bolts b4 are welded in advance to fasten the PDU 10 to the cooling air duct 30 and the frame member 40.
  • a DC-DC converter 20 (second power converter) shown in FIG. 4 is a device that steps up and down a voltage in response to a control command from an ECU (Electric Control Unit: not shown), and includes a battery (not shown), It is electrically connected to various electrical components (not shown).
  • the DC-DC converter 20 includes a main body 21 having an electronic circuit (heating element: not shown) such as a switching element and a resistor, and a heat sink 22 (second heat sink: 4).
  • a flange 21 a for fastening the main body 21 to the frame member 40 is formed on the upper wall of the main body 21.
  • insertion holes h2 through which bolts b2 welded to the frame member 40 are inserted are formed at the front, rear, left and right corners, respectively, so as to protrude downward.
  • the heat sink 22 has a plurality of heat radiating fins arranged in parallel to each other, and is arranged so as to be able to exchange heat with the main body 21.
  • the radiating fin is a metal plate (for example, aluminum) that has a rectangular shape in a side view, and is disposed in parallel to each other with a predetermined interval from other radiating fins adjacent in the left-right direction.
  • the cooling structure A has a function of cooling the PDU 10 and the DC-DC converter 20 by heat exchange with cooling air.
  • the cooling structure A includes a cooling air duct 30 for passing cooling air and a frame member 40 that couples the PDU 10 and the DC-DC converter 20.
  • the cooling air duct 30 includes a duct body 31 for allowing the cooling air to flow, seal members 32p and 32q for closely attaching the cooling air duct 30 to the PDU 10 and the DC-DC converter 20, A pair of flanges 33a and 33b.
  • the duct main body 31 is a cylindrical body made of resin, and has a flow path through which cooling air flows.
  • the duct body 31 is formed with a first hole K1 into which the heat sink 12 of the PDU 10 is inserted, and a second hole K2 into which the heat sink 22 of the DC-DC converter 20 is inserted so as to face the heat sink 12. Yes.
  • the duct body 31 includes a side wall 34 (see FIG. 3) extending so as to sandwich the heat sinks 12 and 22 from the left and right directions, and a cylindrical introduction portion 35 extending from the side wall 34 toward the upstream side of the cooling air. (See FIG. 2) and a cylindrical lead-out portion 36 (see FIG. 2) extending from the side wall 34 toward the downstream side of the cooling air are integrally formed.
  • the introduction part 35 is formed so that the opening 35t faces downward
  • the lead-out part 36 is formed so that the opening 36t faces forward.
  • Seal members 32r and 32s are installed in the openings 35t and 36t, respectively, for preventing cooling air from leaking in a state where the openings are connected to other devices or pipes.
  • the first hole K ⁇ b> 1 is a rectangular hole, and is formed larger than the hole H ⁇ b> 1 of the housing portion 13 so that the heat sink 12 of the PDU 10 faces the cooling air duct 30.
  • the sealing member 32p is an annular elastic member (for example, made of resin) whose inner edge and outer edge are substantially rectangular in plan view.
  • the seal member 32p is bonded to the upper surface of the duct body 31 so as to surround the rectangular edge of the first hole K1.
  • the second hole K2 is a rectangular hole, and has substantially the same size as an insertion hole H4 of the frame member 40 (or later) so that the heat sink 22 of the DC-DC converter 20 faces the cooling air duct 30 (or Larger than the insertion hole H4).
  • the seal member 32q is an annular elastic member (for example, made of resin) whose inner edge and outer edge are substantially rectangular in plan view. The seal member 32q is bonded to the lower surface of the duct body 31 so as to surround the rectangular edge of the second hole K2.
  • the pair of flanges 33a and 33b are respectively installed on the side walls 34 of the duct body 31 (see FIGS. 2 and 3).
  • the right flange 33a extends in the front-rear direction, and two insertion holes h3 are formed through which bolts b4 protruding from the lower surface of the housing portion 13 are inserted. The same applies to the left flange 33b.
  • the frame member 40 shown in FIG. 4 is a plate-like member coupled to the PDU 10 and the DC-DC converter 20, and is formed, for example, by bending or punching one sheet metal. Thereby, the coupling strength of the PDU 10, the cooling air duct 30, the frame member 40, and the DC-DC converter 20 can be sufficiently secured.
  • the frame member 40 includes a pair of holding portions 42a and 42b that hold the PDU 10 and the DC-DC converter 20 in a state of being separated from each other in the height direction, and a pair of connecting portions 41 that connect the holding portions 42a and 42b. have.
  • the holding part 42a includes a support part 421a, a flange 422a extending from the upper end of the support part 421a to the right side, and a fastening part 423a extending from the lower end of the support part 421a to the left side.
  • the support portion 421a extends along the flow direction (front-rear direction) of the cooling air, and extends in the height direction so as to separate the PDU 10 and the DC-DC converter 20.
  • the flange 422a is a portion coupled to the PDU 10 together with the flange 33a of the cooling air duct 30, and extends from the upper end of the support portion 421a to the right side (width direction outer side).
  • Two insertion holes h4 for inserting bolts b4 protruding from the lower surface of the accommodating portion 13 are formed in the flange 422a.
  • the fastening portion 423a is a portion coupled to the flange 21a of the DC-DC converter 20, and extends from the lower end of the support portion 421a to the left (in the width direction). Two bolts b2 inserted into the insertion hole h2 of the flange 21a are welded to the fastening portion 423a so as to protrude downward.
  • the fastening portion 423a is DC-DC between the side wall 34 (see FIG. 3) of the cooling air duct 30 and the support portion 421a in the width direction in a state where the DC-DC converter 20 and the cooling air duct 30 are assembled to itself.
  • a bolt is fastened to the converter 20.
  • the above-described “bolt fastening” means fastening using the bolt b2 and the nut m2 corresponding to each other.
  • the holding part 42b has a support part 421b, a flange 422b extending from the upper end of the support part 421b to the left side, and a fastening part 423b extending from the lower end of the support part 421b to the right side. Since the holding part 42b has the same configuration as the holding part 42a described above, the description thereof is omitted.
  • the pair of connecting portions 41 extend in the left-right direction so as to connect the right fastening portion 423a and the left fastening portion 423b. That is, each connecting portion 41 is integrally formed with the pair of fastening portions 423a and 423b so as to form a rectangular insertion hole H4 into which the heat sink 22 is inserted.
  • the insertion hole H4 is formed in a size that allows the heat sink 22 of the DC-DC converter 20 to be inserted. Therefore, it is possible to form the frame member 40 by bending or punching a single sheet metal, saving time and trouble of manufacturing the frame member 40 and minimizing the number of parts of the cooling structure A. Can be suppressed.
  • the bolt b2 welded to the fastening portions 423a and 423b of the frame member 40 so as to protrude downward is inserted into the insertion hole h2 of the DC-DC converter 20, and the fastening portions 423a and 423b and the connecting portion 41 are inserted.
  • the lower surface is closely attached to the upper surface of the flange 21a (see FIG. 3).
  • the heat sink 22 is exposed through the insertion hole H4 of the frame member 40.
  • the PDU 10, the cooling air duct 30, the frame member 40, and the DC-DC converter 20 are sequentially arranged in the vertical direction and assembled to each other. That is, the four bolts b4 welded to the bottom wall 131 of the housing portion 13 are inserted into the insertion holes h3 of the flanges 33a and 33b and the insertion holes h4 of the flanges 422a and 422b. Then, the heat sink 12 of the PDU 10 is exposed to the cooling air flow path through the first hole K1, and the heat sink 22 of the DC-DC converter 20 is exposed to the cooling air flow path through the insertion hole H4 and the second hole K2. To do. In this state, the heat sinks 12 and 22 have their heat radiating fins extending in the same direction (front-rear direction) and facing each other in the vertical direction. Therefore, it is possible to minimize the fluid resistance when the cooling air flows.
  • the PDU 10, the cooling air duct 30, the frame member 40, and the DC-DC converter 20 are coupled (fastened) using nuts m2 and m4. That is, as shown in FIGS. 4 and 5 (a), the bolt b4 welded to the housing portion 13 is inserted into the insertion hole h3 of the right flange 33a and the insertion hole h4 of the flange 422a, and the nut m4 from below. Conclude with. Further, as shown in FIGS. 4 and 5B, the bolt b4 welded to the accommodating portion 13 is inserted into the insertion hole h3 of the left flange 33b and the insertion hole h4 of the flange 422b, and the nut m4 from below. Conclude with.
  • the bolt b2 welded to the fastening portions 423a and 423b is inserted into the insertion hole h2 of the flange 21a of the DC-DC converter 20, and fastened with a nut m2 from below.
  • the insertion position of the bolt b4 that fastens the PDU 10 and the frame member 40 (tool line: ⁇ ), and the insertion position of the bolt b2 that fastens the DC-DC converter 20 and the frame member 40. (Tool line: ⁇ mark) does not overlap in the assembly direction (vertical direction).
  • the bolts b2 and b4 ( ⁇ and ⁇ ) are exposed. Therefore, the nuts m2 and m4 may be fastened together for each of the eight bolts b2 and b4 in total, and the assembling work can be simplified and speeded up as compared with the case where the fastening work is performed in a plurality of stages. .
  • the bolt b ⁇ b> 2 is welded to the fastening portions 423 a and 423 b of the frame member 40, and the bolt b ⁇ b> 4 is welded to the bottom wall 131 of the housing portion 13. Therefore, it is only necessary to tighten the nuts m2 and m4 from below, and the fastening operation can be simplified.
  • the side wall 34 (see FIG. 3) of the cooling air duct 30 that sandwiches the heat sinks 12 and 22 in the left-right direction, the lower surface of the PDU 10 (including the surface of the heat sink 12), and the DC-DC converter 20
  • a flow path through which cooling air flows is formed by the upper surface (including the heat sink 22).
  • the cylindrical introduction portion 35 extends from the side wall 34 of the cooling air duct 30 to the upstream side, and the cylindrical lead-out portion 36 extends to the downstream side.
  • the sealing members 32p and 32q having elasticity are compressed in the vertical direction by the fastening operation described above.
  • the seal member 32p is in close contact with the lower surface of the housing portion 13 of the PDU 10
  • the seal member 32q is in close contact with the upper surface of the coupling portion 41 and the fastening portions 423a and 423b of the frame member 40. Therefore, there is no gap between the cooling air duct 30 and the PDU 10 and between the cooling air duct 30 and the DC-DC converter 20, and it is possible to reliably prevent the cooling air from leaking outside.
  • the cooling air sent through the opening 35t flows through the cylindrical introduction portion 35, and the side wall 34 of the cooling air duct 30 (see FIG. 3), the PDU 10, and the DC ⁇ It flows into the flow path formed by the DC converter 20.
  • the cooling air absorbs heat from the heat sinks 12 and 22.
  • the PDU 10 is cooled by dissipating heat to the cooling air via the heat sink 12
  • the DC-DC converter 20 is cooled by dissipating heat to the cooling air via the heat sink 22.
  • the cooling air duct 30 is made of resin, a dimensional error at the time of manufacture can be absorbed by its own deformation. Further, the cooling air duct 30 is in close contact with the PDU 10 and the DC-DC converter 20 by elastic seal members 32p and 32q. Therefore, it is possible to reliably prevent the cooling air from leaking to the outside.
  • the cooling air heated by the above-described heat absorption flows through the cylindrical outlet 36 and flows out through the opening 36t.
  • the seal member 32p installed so as to surround the first hole K1 is in close contact with the PDU 10
  • the seal member 32q installed so as to surround the second hole K2 is the frame member. 40. Accordingly, there is no gap between the PDU 10 and the cooling air duct 30 or between the cooling air duct 30 and the frame member 40, and it is possible to reliably prevent the cooling air from leaking to the outside. As a result, the PDU 10 and the DC-DC converter 20 can be cooled with high efficiency, and a cooling fan (not shown) for sending the cooling air can be downsized.
  • the PDU 10 and the DC-DC converter 20 are coupled by a frame member 40 having a pair of holding portions 42 a and 42 b and a connecting portion 41. Therefore, for example, even when the cooling air duct 30 is made of resin, the frame member 40 can sufficiently secure the coupling strength between the PDU 10 and the DC-DC converter 20. That is, according to the present embodiment, the cooling air duct 30 is responsible for forming the cooling air flow path, and the frame member 40 is responsible for ensuring the coupling strength, thereby ensuring sufficient coupling strength. Cooling efficiency can be improved.
  • the frame member 40 includes a fastening portion 423a extending to the left side (width direction inner side) from the support portion 421a and a fastening portion 423b extending to the right side (width direction inner side) from the support portion 421b via a pair of connecting portions 41. It has a connected structure. Therefore, the frame member 40 can be formed by bending or punching one sheet metal, and the number of parts required for the cooling structure A can be reduced. As a result, the labor for manufacturing the cooling structure 40 can be saved, and the manufacturing cost can be greatly reduced.
  • the insertion positions (tool lines) of the bolts b2 and b4 for performing each fastening do not overlap in the assembly direction. Therefore, the assembly work and the fastening work are collectively performed from one side in a state where the PDU 10, the cooling air duct 30, the frame member 40, and the DC-DC converter 20 are assembled, thereby reducing the man-hour when the cooling structure A is manufactured. it can.
  • the said embodiment demonstrated the case where the flanges 33a and 33b of the cooling wind duct 30 were interposed between PDU10 (accommodating part 13) and the holding
  • the first power conversion device is the PDU 10 (inverter) and the second power conversion device is the DC-DC converter 20 has been described.
  • the present invention is not limited to this.
  • the first and second power converters other power converters such as an AC / DC converter, a VCU (Voltage Control Unit), and the like may be used.
  • the PDU 10 has the accommodating part 13 and the bolts b1 and b4 are previously welded to the accommodating part 13 in the embodiment, the present invention is not limited to this.
  • the accommodating part 13 may be omitted, the length of the flanges 11a and 11b extending in the left-right direction may be made longer than that in the above embodiment, and the bolts b1 and b4 may be welded to the flanges 11a and 11b.
  • the said embodiment demonstrated the case where holding
  • the said embodiment demonstrated the case where the volt
  • the said embodiment demonstrated the case where the volt
  • the cooling structure A was mounted in a hybrid vehicle, it is not restricted to this.
  • the cooling structure A may be mounted on other types of vehicles such as electric vehicles and fuel cell vehicles. Further, the cooling structure A may be mounted on a moving body such as a motorcycle, a ship, or an aircraft, or may be mounted on a stationary system.
  • a Cooling structure 10 PDU (first power converter) 11 Body 12 Heat sink (first heat sink) 13 Housing 20 DC-DC converter (second power converter) 21 Main body 22 Heat sink (second heat sink) 30 Cooling air duct 31 Duct body 32p, 32q Seal member 40 Frame member 41 Connection portion 42a, 42b Holding portion 421a, 421b Support portion 422a, 422b Flange 423a, 423b Fastening portion K1 First hole K2 Second hole H4 Insertion hole

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

Provided is a cooling structure having improved cooling efficiency. A cooling structure (A) comprises: a cylindrical cooling air duct (30) having formed therein a first hole (K1) in which a heat sink (12) is inserted, and a second hole (K2) in which a heat sink (22) is inserted; and a frame member (40) having a pair of holding sections (42a, 42b) which holds a PDU (10) and a DC-DC converter (20) in such a manner that the PDU (10) and the DC-DC converter (20) are arranged at a distance from each other in the height direction, the frame member (40) being joined to both the PDU (10) and the DC-DC converter (20). The cooling air duct (30) is disposed so that the periphery of the opening of the first hole (K1) is in close contact with the PDU (10) and so that the periphery of the opening of the second hole (K2) is in close contact with the DC-DC converter (20).

Description

冷却構造体Cooling structure
 本発明は、冷却風との熱交換によって電力変換装置を冷却する冷却構造体に関する。 The present invention relates to a cooling structure that cools a power converter by heat exchange with cooling air.
 ハイブリッド自動車に設置される電装部品(エアコン、ランプ、オーディオ機器等)は、バッテリから供給される直流電力や走行モータから供給される回生電力等によって駆動する。なお、前記した電力を供給する際、DC-DCコンバータによる電圧の昇降圧や、インバータによる直流/交流変換が行われる。 Electrical components (air conditioners, lamps, audio equipment, etc.) installed in a hybrid vehicle are driven by DC power supplied from a battery, regenerative power supplied from a traveling motor, or the like. When supplying the electric power, the voltage is stepped up / down by the DC-DC converter and the DC / AC conversion by the inverter is performed.
 ところで、DC-DCコンバータ、インバータ等の電力変換装置は、自身の駆動に伴って発熱する。したがって、電力変換装置にヒートシンクを設け、このヒートシンクを介して冷却風と熱交換することで電力変換装置を冷却する冷却構造体が知られている。 Incidentally, power converters such as DC-DC converters and inverters generate heat as they are driven. Therefore, a cooling structure that cools the power conversion device by providing a heat sink in the power conversion device and exchanging heat with the cooling air via the heat sink is known.
 例えば、特許文献1には、DC-DCコンバータのヒートシンクと、インバータのヒートシンクと、が冷却風の通流方向に対して平行となるように、各電力変換装置(DC-DCコンバータ及びインバータ)の両側をブラケットで固定した冷却構造体について記載されている。当該冷却構造体は、高さ方向において各電力変換装置で挟まれ、かつ、幅方向において2つのブラケットで挟まれる流路に冷却風を通流させる構成となっている。 For example, Patent Document 1 discloses that each power conversion device (DC-DC converter and inverter) has a heat sink of a DC-DC converter and a heat sink of an inverter parallel to the flow direction of cooling air. It describes a cooling structure with both sides fixed by brackets. The cooling structure is configured to allow cooling air to flow through a flow path sandwiched between the power conversion devices in the height direction and sandwiched between the two brackets in the width direction.
特開2009-18785号公報JP 2009-18785 A
 しかしながら、特許文献1に記載の発明では、各電力変換装置とブラケットとの間に隙間が生じ易く、この隙間を介して冷却風が外部に漏れてしまい、冷却効率が低下するおそれがある。 However, in the invention described in Patent Document 1, a gap is easily generated between each power conversion device and the bracket, and cooling air leaks to the outside through the gap, which may reduce the cooling efficiency.
 そこで本発明は、冷却効率を向上させた冷却構造体を提供することを課題とする。 Therefore, an object of the present invention is to provide a cooling structure with improved cooling efficiency.
 前記した課題を解決するための手段として、本発明に係る冷却構造体は、第1ヒートシンクを有する第1電力変換装置と、第2ヒートシンクを有する第2電力変換装置と、を冷却風との熱交換によって冷却する冷却構造体であって、前記第1ヒートシンクが挿入される第1孔と、前記第1ヒートシンクと対向するように前記第2ヒートシンクが挿入される第2孔と、が形成された樹脂製の筒状体である冷却風ダクトと、前記第1電力変換装置と前記第2電力変換装置とを高さ方向において離間した状態で保持する一対の保持部を有すると共に、前記第1電力変換装置及び前記第2電力変換装置に結合されるフレーム部材と、を備え、前記冷却風ダクトは、前記第1孔の周囲が前記第1電力変換装置に密着し、前記第2孔の周囲が前記第2電力変換装置に密着するように配置されることを特徴とする。 As a means for solving the above-described problems, a cooling structure according to the present invention includes a first power conversion device having a first heat sink and a second power conversion device having a second heat sink. A cooling structure that cools by replacement, wherein a first hole into which the first heat sink is inserted and a second hole into which the second heat sink is inserted so as to face the first heat sink are formed A cooling air duct that is a resin tubular body, and a pair of holding portions that hold the first power conversion device and the second power conversion device in a state of being separated from each other in the height direction, and the first power A frame member coupled to the conversion device and the second power conversion device, wherein the cooling air duct has a periphery of the first hole in close contact with the first power conversion device, and a periphery of the second hole. The second power Characterized in that it is arranged so as to be in close contact with the converter.
 このような構成によれば、第1電力変換装置と第2電力変換装置は、一対の保持部によって高さ方向において離間した状態で保持され、フレーム部材に結合される。したがって、樹脂製の冷却風ダクトを用いた場合でも、第1電力変換装置と第2電力変換装置との結合強度をフレーム部材によって充分に確保できる。 According to such a configuration, the first power conversion device and the second power conversion device are held in a state of being separated in the height direction by the pair of holding portions, and are coupled to the frame member. Therefore, even when a resin cooling air duct is used, the coupling strength between the first power converter and the second power converter can be sufficiently secured by the frame member.
 また、筒状体である冷却風ダクトは、第1孔の周囲が第1電力変換装置に密着し、第2孔の周囲が第2電力変換装置に密着するように配置される。したがって、第1電力変換装置又は第2電力変換装置と冷却風ダクトとの間に隙間が生じることはなく、冷却風が外部に漏れることを防止できる。さらに、冷却風ダクトが樹脂製であることから、冷却構造体の製造時に生じる寸法誤差を吸収しつつ、冷却風ダクトを第1電力変換装置及び第2電力変換装置に対して適切に密着させることができる。
 その結果、互いに対向するように配置される第1ヒートシンク及び第2ヒートシンクと冷却風との熱交換が高効率で行われ、第1電力変換装置及び第2電力変換装置の冷却効率を向上させることができる。
The cooling air duct, which is a cylindrical body, is arranged so that the periphery of the first hole is in close contact with the first power converter and the periphery of the second hole is in close contact with the second power converter. Therefore, there is no gap between the first power converter or the second power converter and the cooling air duct, and the cooling air can be prevented from leaking outside. In addition, since the cooling air duct is made of resin, the cooling air duct is appropriately brought into close contact with the first power conversion device and the second power conversion device while absorbing a dimensional error generated when the cooling structure is manufactured. Can do.
As a result, heat exchange between the first heat sink and the second heat sink and the cooling air disposed so as to face each other is performed with high efficiency, and the cooling efficiency of the first power converter and the second power converter is improved. Can do.
 また、一対の前記保持部はそれぞれ、前記第1電力変換装置と前記第2電力変換装置とを離間させるように、高さ方向に延在する支持部と、前記支持部の一端から幅方向内側に延びると共に、幅方向において前記支持部と前記冷却風ダクトとの間で前記第2電力変換装置にボルト締結される締結部と、を有することが好ましい。 Each of the pair of holding portions includes a support portion extending in a height direction so as to separate the first power conversion device and the second power conversion device, and a width direction inner side from one end of the support portion. And a fastening part that is bolted to the second power converter between the support part and the cooling air duct in the width direction.
 このような構成によれば、締結部は、支持部の一端から幅方向内側に延びている。換言すると、第2電力変換装置とフレーム部材とを組み付けた状態において、それぞれの締結部は、その先端が幅方向において互いに近づくように延在している。したがって、各支持部及び各締結部を含んで一枚の板金でフレーム部材を形成しやすくなる。
 また、筒状体である冷却風ダクトと、高さ方向に延在する支持部と、の間にできる幅方向の隙間において、締結部を第2電力変換装置と適切にボルト締結(結合)できる。なお、前記したボルト締結とは、互いに対応するボルト及びナットを用いた締結を意味している。
According to such a configuration, the fastening portion extends inward in the width direction from one end of the support portion. In other words, in a state where the second power conversion device and the frame member are assembled, the respective fastening portions extend so that their tips approach each other in the width direction. Therefore, it becomes easy to form a frame member with one sheet metal including each support part and each fastening part.
Further, the fastening portion can be appropriately bolted (coupled) to the second power conversion device in the gap in the width direction formed between the cooling air duct that is a cylindrical body and the support portion extending in the height direction. . The bolt fastening described above means fastening using bolts and nuts corresponding to each other.
 また、前記フレーム部材は、前記第2ヒートシンクが挿入される挿入孔を形成するように、それぞれの前記締結部と一体形成される連結部を備えることが好ましい。 In addition, it is preferable that the frame member includes a connection portion that is integrally formed with each of the fastening portions so as to form an insertion hole into which the second heat sink is inserted.
 このような構成によれば、フレーム部材は、一対の保持部と連結部とが一体形成される。したがって、例えば、一枚の板金を折曲加工・穿設加工等することでフレーム部材を形成することが可能であり、フレーム部材を製造する際の手間を省くと共に冷却構造体の部品点数を削減できる。なお、挿入孔は、第2ヒートシンクに対応した任意の形(例えば、矩形状)に形成できる。 According to such a configuration, the frame member is integrally formed with the pair of holding portions and the connecting portion. Therefore, for example, it is possible to form a frame member by bending or punching a single sheet metal, which saves the trouble of manufacturing the frame member and reduces the number of parts of the cooling structure. it can. The insertion hole can be formed in an arbitrary shape (for example, a rectangular shape) corresponding to the second heat sink.
 また、前記冷却構造体において、前記第1電力変換装置と前記フレーム部材とを締結するボルトの挿通位置と、前記第2電力変換装置と前記フレーム部材とを締結するボルトの挿通位置と、が前記第1電力変換装置及び前記第2電力変換装置の組付方向において重ならないことが好ましい。 Further, in the cooling structure, the insertion position of a bolt that fastens the first power conversion device and the frame member, and the insertion position of a bolt that fastens the second power conversion device and the frame member, It is preferable that the first power converter and the second power converter do not overlap in the assembly direction.
 このような構成によれば、第1電力変換装置とフレーム部材とを締結する工程と、第2電力変換装置とフレーム部材とを締結する工程と、を分ける必要がない。すなわち、前記した各締結を行うためのボルトの挿通位置が組付方向において重ならないため、第1電力変換装置、冷却風ダクト、フレーム部材、及び第2電力変換装置の組付作業及び締結作業を一括して行うことができる。したがって、冷却構造体を製造する際の工数を削減できる。 According to such a configuration, there is no need to separate the step of fastening the first power conversion device and the frame member and the step of fastening the second power conversion device and the frame member. That is, since the insertion positions of the bolts for performing each fastening described above do not overlap in the assembly direction, the assembly work and fastening work of the first power conversion device, the cooling air duct, the frame member, and the second power conversion device are performed. Can be done in a lump. Therefore, the man-hour at the time of manufacturing a cooling structure can be reduced.
 本発明によれば、冷却効率を向上させた冷却構造体を提供できる。 According to the present invention, a cooling structure with improved cooling efficiency can be provided.
本発明の一実施形態に係る冷却構造体を右後方から視た斜視図である。It is the perspective view which looked at the cooling structure concerning one embodiment of the present invention from the right rear. 図1に示す冷却構造体のA-A矢視断面図である。FIG. 2 is a cross-sectional view of the cooling structure shown in FIG. 図2に示す冷却構造体のB-B矢視端面図である。FIG. 3 is an end view taken along the line BB of the cooling structure shown in FIG. 2. 冷却構造体を右後方から視た分解斜視図である。It is the disassembled perspective view which looked at the cooling structure from the right rear. フレーム部材の保持部、冷却風ダクト、及びPDUが締結された箇所を左前方から視た部分拡大図であり、(a)は右側の締結箇所の断面斜視図であり、(b)は左側の締結箇所の断面斜視図である。It is the elements on larger scale which looked at the location where the holding | maintenance part of the frame member, the cooling air duct, and PDU were fastened from the left front, (a) is a cross-sectional perspective view of the right fastening location, (b) is the left side It is a cross-sectional perspective view of a fastening location. 組み付けられた状態の冷却構造体を下方から視た下面図である。It is the bottom view which looked at the cooling structure of the assembled state from the lower part.
 本発明を実施するための形態(以下、実施形態と記す)について、適宜図面を参照しながら詳細に説明する。以下では、一例として、「第1電力変換装置」がPDU10(Power Drive Unit:図1参照)であり、「第2電力変換装置」がDC-DCコンバータ20(図1参照)である場合について説明する。また、向きを説明する場合、図1に示す上下前後左右に基づいて説明する。 DETAILED DESCRIPTION Embodiments for carrying out the present invention (hereinafter referred to as embodiments) will be described in detail with reference to the drawings as appropriate. Hereinafter, as an example, a case where the “first power conversion device” is the PDU 10 (Power Drive Unit: see FIG. 1) and the “second power conversion device” is the DC-DC converter 20 (see FIG. 1) will be described. To do. Further, the direction will be described based on the top, bottom, front, back, left, and right shown in FIG.
≪実施形態≫
 まず、本実施形態に係る冷却構造体Aに先立って、PDU10及びDC-DCコンバータ20について、図1~図4を参照しつつ説明する。なお、PDU10及びDC-DCコンバータ20は、バッテリ(図示せず)の充放電や走行モータ(図示せず)の力行/回生駆動を制御するPCU(Power Control Unit)に含まれ、例えば、車両のリヤシート(図示せず)の下に搭載される。
<Embodiment>
First, prior to the cooling structure A according to the present embodiment, the PDU 10 and the DC-DC converter 20 will be described with reference to FIGS. The PDU 10 and the DC-DC converter 20 are included in a PCU (Power Control Unit) that controls charging / discharging of a battery (not shown) and power running / regenerative driving of a traveling motor (not shown). It is mounted under a rear seat (not shown).
(PDU)
 図1に示すPDU10(第1電力変換装置)は、バッテリ及び走行モータと電気的に接続され、バッテリからの直流電力を所定の交流電力に変換するインバータとして機能する。
 PDU10(図4参照)は、スイッチング素子や抵抗等の電子回路(発熱体:図示せず)を有する本体部11と、この本体部11と熱交換可能に配設されたヒートシンク12(第1ヒートシンク)と、本体部11を収容する収容部13と、を有している。
(PDU)
The PDU 10 (first power conversion device) shown in FIG. 1 is electrically connected to the battery and the travel motor, and functions as an inverter that converts DC power from the battery into predetermined AC power.
The PDU 10 (see FIG. 4) includes a main body 11 having an electronic circuit (heating element: not shown) such as a switching element and a resistor, and a heat sink 12 (first heat sink) disposed so as to be able to exchange heat with the main body 11. ) And a housing part 13 for housing the main body part 11.
 図4に示すように、本体部11の左右両側には、本体部11と収容部13とを締結するための一対のフランジ11a,11bが形成されている。右側のフランジ11aは前後方向に延びており、収容部13の底壁131に溶着されたボルトb1を挿通するための挿通孔h1が2つ形成されている。左側のフランジ11bについても同様である。
 ヒートシンク12は、互いに平行に配置される複数の放熱フィンを有し、本体部11と熱交換可能に配設されている。放熱フィンは側面視で矩形状を呈する金属板(例えば、アルミニウム)であり、左右方向で隣り合う他の放熱フィンと所定間隔を空けて互いに平行に配置されている。
As shown in FIG. 4, a pair of flanges 11 a and 11 b for fastening the main body part 11 and the accommodating part 13 are formed on the left and right sides of the main body part 11. The right flange 11a extends in the front-rear direction, and two insertion holes h1 through which the bolts b1 welded to the bottom wall 131 of the housing portion 13 are inserted are formed. The same applies to the left flange 11b.
The heat sink 12 has a plurality of heat radiating fins arranged in parallel to each other, and is arranged so as to be able to exchange heat with the main body 11. The radiating fin is a metal plate (for example, aluminum) that has a rectangular shape in a side view, and is disposed in parallel to each other with a predetermined interval from other radiating fins adjacent in the left-right direction.
 収容部13(図4参照)は、ヒートシンク12を露出させた状態で本体部11を収容する部材であり、凹状(上方が開いた箱状)に形成されている。収容部13の底壁131には、ヒートシンク12が挿入される矩形状の孔H1が形成されている。なお、収容部13は、本体部11に接続される配線(図示せず)を引き回すために、本体部11の側面に対して自身の内側面が、前後・左右方向で所定の余裕を有するように形成されている。 The accommodating part 13 (refer FIG. 4) is a member which accommodates the main-body part 11 in the state which exposed the heat sink 12, and is formed in the concave shape (box shape with the upper part opened). A rectangular hole H1 into which the heat sink 12 is inserted is formed in the bottom wall 131 of the accommodating portion 13. In addition, in order for the accommodating part 13 to route the wiring (not shown) connected to the main body part 11, the inner side surface of the accommodating part 13 has a predetermined margin in the front-rear and left-right directions with respect to the side surface of the main body part 11. Is formed.
 収容部13の底壁131の上面(底面)には、上方に向けて突出する4つのボルトb1が溶着されている。収容部13に本体部11を収容する際、各ボルトb1が前記したフランジ11a,11bの挿通孔h1に挿通される。
 一方、収容部13の底壁131の下面には、下方に向けて突出する4つのボルトb4が溶着されている。これらのボルトb4は、PDU10を冷却風ダクト30及びフレーム部材40と締結するために予め溶着されている。
Four bolts b <b> 1 projecting upward are welded to the upper surface (bottom surface) of the bottom wall 131 of the housing portion 13. When the main body 11 is accommodated in the accommodating portion 13, each bolt b1 is inserted into the insertion hole h1 of the flange 11a, 11b.
On the other hand, four bolts b4 projecting downward are welded to the lower surface of the bottom wall 131 of the accommodating portion 13. These bolts b4 are welded in advance to fasten the PDU 10 to the cooling air duct 30 and the frame member 40.
(DC-DCコンバータ)
 図4に示すDC-DCコンバータ20(第2電力変換装置)は、ECU(Electric Control Unit:図示せず)からの制御指令に応じて電圧を昇降圧する装置であり、バッテリ(図示せず)や各種電装部品(図示せず)と電気的に接続される。DC-DCコンバータ20は、スイッチング素子や抵抗等の電子回路(発熱体:図示せず)を有する本体部21と、この本体部21と熱交換可能に配設されたヒートシンク22(第2ヒートシンク:図4参照)と、を有している。
(DC-DC converter)
A DC-DC converter 20 (second power converter) shown in FIG. 4 is a device that steps up and down a voltage in response to a control command from an ECU (Electric Control Unit: not shown), and includes a battery (not shown), It is electrically connected to various electrical components (not shown). The DC-DC converter 20 includes a main body 21 having an electronic circuit (heating element: not shown) such as a switching element and a resistor, and a heat sink 22 (second heat sink: 4).
 本体部21の上壁には、この本体部21をフレーム部材40と締結するためのフランジ21aが形成されている。フランジ21aにおいて前後・左右の四隅には、下方に突出するようにフレーム部材40に溶着されたボルトb2を挿通するための挿通孔h2がそれぞれ形成されている。
 ヒートシンク22は、互いに平行に配置される複数の放熱フィンを有し、本体部21と熱交換可能に配設されている。放熱フィンは側面視で矩形状を呈する金属板(例えば、アルミニウム)であり、左右方向で隣り合う他の放熱フィンと所定間隔を空けて互いに平行に配置されている。
A flange 21 a for fastening the main body 21 to the frame member 40 is formed on the upper wall of the main body 21. In the flange 21a, insertion holes h2 through which bolts b2 welded to the frame member 40 are inserted are formed at the front, rear, left and right corners, respectively, so as to protrude downward.
The heat sink 22 has a plurality of heat radiating fins arranged in parallel to each other, and is arranged so as to be able to exchange heat with the main body 21. The radiating fin is a metal plate (for example, aluminum) that has a rectangular shape in a side view, and is disposed in parallel to each other with a predetermined interval from other radiating fins adjacent in the left-right direction.
<冷却構造体の構成>
 冷却構造体Aは、PDU10及びDC-DCコンバータ20を冷却風との熱交換によって冷却する機能を有している。冷却構造体Aは、冷却風を通流させるための冷却風ダクト30と、PDU10とDC-DCコンバータ20とを結合するフレーム部材40と、を備えている。
<Configuration of cooling structure>
The cooling structure A has a function of cooling the PDU 10 and the DC-DC converter 20 by heat exchange with cooling air. The cooling structure A includes a cooling air duct 30 for passing cooling air and a frame member 40 that couples the PDU 10 and the DC-DC converter 20.
(冷却風ダクト)
 図4に示すように、冷却風ダクト30は、冷却風を通流させるためのダクト本体31と、冷却風ダクト30をPDU10及びDC-DCコンバータ20に密着させるためのシール部材32p,32qと、一対のフランジ33a,33bと、を有している。
 ダクト本体31は、樹脂製の筒状体であり、その内部に冷却風を通流させる流路を有している。ダクト本体31には、PDU10のヒートシンク12が挿入される第1孔K1と、このヒートシンク12と対向するようにDC-DCコンバータ20のヒートシンク22が挿入される第2孔K2と、が形成されている。
(Cooling air duct)
As shown in FIG. 4, the cooling air duct 30 includes a duct body 31 for allowing the cooling air to flow, seal members 32p and 32q for closely attaching the cooling air duct 30 to the PDU 10 and the DC-DC converter 20, A pair of flanges 33a and 33b.
The duct main body 31 is a cylindrical body made of resin, and has a flow path through which cooling air flows. The duct body 31 is formed with a first hole K1 into which the heat sink 12 of the PDU 10 is inserted, and a second hole K2 into which the heat sink 22 of the DC-DC converter 20 is inserted so as to face the heat sink 12. Yes.
 換言すると、ダクト本体31は、ヒートシンク12,22を左右方向から挟むように延在する側壁34(図3参照)と、この側壁34から冷却風の上流側に向かって延びる筒状の導入部35(図2参照)と、側壁34から冷却風の下流側に向かって延びる筒状の導出部36(図2参照)と、が一体形成されている。
 図2に示すように、導入部35は開口35tが下方に臨むように形成され、導出部36は開口36tが前方に臨むように形成されている。それぞれの開口35t,36tには、他の機器又は配管と結合された状態で冷却風の漏れを防止するためのシール部材32r、32sが設置されている。
In other words, the duct body 31 includes a side wall 34 (see FIG. 3) extending so as to sandwich the heat sinks 12 and 22 from the left and right directions, and a cylindrical introduction portion 35 extending from the side wall 34 toward the upstream side of the cooling air. (See FIG. 2) and a cylindrical lead-out portion 36 (see FIG. 2) extending from the side wall 34 toward the downstream side of the cooling air are integrally formed.
As shown in FIG. 2, the introduction part 35 is formed so that the opening 35t faces downward, and the lead-out part 36 is formed so that the opening 36t faces forward. Seal members 32r and 32s are installed in the openings 35t and 36t, respectively, for preventing cooling air from leaking in a state where the openings are connected to other devices or pipes.
 図4に示すように、第1孔K1は矩形状の孔であり、PDU10のヒートシンク12が冷却風ダクト30内に臨むように、前記した収容部13の孔H1よりも大きく形成されている。
 シール部材32pは、内縁及び外縁が平面視で略矩形である環状の弾性部材(例えば、樹脂製)である。シール部材32pは、第1孔K1の矩形状の縁を囲むようにダクト本体31の上面に接着されている。PDU10を冷却風ダクト30に組み付けて上下方向で押圧すると、シール部材32p(第1孔K1の周囲)が圧縮されて収容部13の下面に密着する。
As shown in FIG. 4, the first hole K <b> 1 is a rectangular hole, and is formed larger than the hole H <b> 1 of the housing portion 13 so that the heat sink 12 of the PDU 10 faces the cooling air duct 30.
The sealing member 32p is an annular elastic member (for example, made of resin) whose inner edge and outer edge are substantially rectangular in plan view. The seal member 32p is bonded to the upper surface of the duct body 31 so as to surround the rectangular edge of the first hole K1. When the PDU 10 is assembled to the cooling air duct 30 and pressed in the vertical direction, the seal member 32p (around the first hole K1) is compressed and closely contacts the lower surface of the housing portion 13.
 第2孔K2は矩形状の孔であり、DC-DCコンバータ20のヒートシンク22が冷却風ダクト30内に臨むように、後記するフレーム部材40の挿入孔H4と略同一の大きさに(又は、挿入孔H4よりも大きく)形成されている。
 シール部材32qは、内縁及び外縁が平面視で略矩形である環状の弾性部材(例えば、樹脂製)である。シール部材32qは、第2孔K2の矩形状の縁を囲むようにダクト本体31の下面に接着されている。DC-DCコンバータ20を、フレーム部材40を介し冷却風ダクト30に組み付けて上下方向で押圧すると、シール部材32q(第2孔K2の周囲)が圧縮されてフレーム部材40に密着する。
The second hole K2 is a rectangular hole, and has substantially the same size as an insertion hole H4 of the frame member 40 (or later) so that the heat sink 22 of the DC-DC converter 20 faces the cooling air duct 30 (or Larger than the insertion hole H4).
The seal member 32q is an annular elastic member (for example, made of resin) whose inner edge and outer edge are substantially rectangular in plan view. The seal member 32q is bonded to the lower surface of the duct body 31 so as to surround the rectangular edge of the second hole K2. When the DC-DC converter 20 is assembled to the cooling air duct 30 via the frame member 40 and pressed in the vertical direction, the seal member 32q (around the second hole K2) is compressed and is in close contact with the frame member 40.
 一対のフランジ33a,33bは、ダクト本体31の側壁34(図2、図3参照)にそれぞれ設置されている。右側のフランジ33aは前後方向に延びており、収容部13の下面から突出するボルトb4を挿通するための挿通孔h3が2つ形成されている。左側のフランジ33bについても同様である。 The pair of flanges 33a and 33b are respectively installed on the side walls 34 of the duct body 31 (see FIGS. 2 and 3). The right flange 33a extends in the front-rear direction, and two insertion holes h3 are formed through which bolts b4 protruding from the lower surface of the housing portion 13 are inserted. The same applies to the left flange 33b.
(フレーム部材)
 図4に示すフレーム部材40は、PDU10及びDC-DCコンバータ20に結合される板状部材であり、例えば、一枚の板金を折曲加工・穿設加工等することで形成される。これによって、PDU10、冷却風ダクト30、フレーム部材40、及びDC-DCコンバータ20の結合強度を充分に確保できる。
 フレーム部材40は、PDU10とDC-DCコンバータ20とを高さ方向において離間した状態で保持する一対の保持部42a,42bと、これらの保持部42a,42bを連結する一対の連結部41と、を有している。
(Frame member)
The frame member 40 shown in FIG. 4 is a plate-like member coupled to the PDU 10 and the DC-DC converter 20, and is formed, for example, by bending or punching one sheet metal. Thereby, the coupling strength of the PDU 10, the cooling air duct 30, the frame member 40, and the DC-DC converter 20 can be sufficiently secured.
The frame member 40 includes a pair of holding portions 42a and 42b that hold the PDU 10 and the DC-DC converter 20 in a state of being separated from each other in the height direction, and a pair of connecting portions 41 that connect the holding portions 42a and 42b. have.
 保持部42aは、支持部421aと、支持部421aの上端から右側に延びるフランジ422aと、支持部421aの下端から左側に延びる締結部423aと、を有している。
 支持部421aは、冷却風の通流方向(前後方向)に沿って延び、PDU10とDC-DCコンバータ20とを離間させるように高さ方向に延在している。
 フランジ422aは、冷却風ダクト30のフランジ33aと共にPDU10に結合される部分であり、支持部421aの上端から右側(幅方向外側)に延びている。フランジ422aには、収容部13の下面から突出するボルトb4を挿通するための挿通孔h4が2つ形成されている。
The holding part 42a includes a support part 421a, a flange 422a extending from the upper end of the support part 421a to the right side, and a fastening part 423a extending from the lower end of the support part 421a to the left side.
The support portion 421a extends along the flow direction (front-rear direction) of the cooling air, and extends in the height direction so as to separate the PDU 10 and the DC-DC converter 20.
The flange 422a is a portion coupled to the PDU 10 together with the flange 33a of the cooling air duct 30, and extends from the upper end of the support portion 421a to the right side (width direction outer side). Two insertion holes h4 for inserting bolts b4 protruding from the lower surface of the accommodating portion 13 are formed in the flange 422a.
 締結部423aは、DC-DCコンバータ20のフランジ21aに結合される部分であり、支持部421aの下端から左側(幅方向内側)に延びている。締結部423aには、フランジ21aの挿通孔h2に挿通される2つのボルトb2が、下方に向けて突出するように溶着されている。
 締結部423aは、自身にDC-DCコンバータ20及び冷却風ダクト30が組み付けられた状態で、幅方向において冷却風ダクト30の側壁34(図3参照)と支持部421aとの間でDC-DCコンバータ20にボルト締結される。なお、前記した「ボルト締結」とは、互いに対応するボルトb2及びナットm2を用いた締結を意味している。
The fastening portion 423a is a portion coupled to the flange 21a of the DC-DC converter 20, and extends from the lower end of the support portion 421a to the left (in the width direction). Two bolts b2 inserted into the insertion hole h2 of the flange 21a are welded to the fastening portion 423a so as to protrude downward.
The fastening portion 423a is DC-DC between the side wall 34 (see FIG. 3) of the cooling air duct 30 and the support portion 421a in the width direction in a state where the DC-DC converter 20 and the cooling air duct 30 are assembled to itself. A bolt is fastened to the converter 20. The above-described “bolt fastening” means fastening using the bolt b2 and the nut m2 corresponding to each other.
 保持部42bは、支持部421bと、支持部421bの上端から左側に延びるフランジ422bと、支持部421bの下端から右側に延びる締結部423bと、を有している。保持部42bについては、前記した保持部42aと同様の構成であるから説明を省略する。 The holding part 42b has a support part 421b, a flange 422b extending from the upper end of the support part 421b to the left side, and a fastening part 423b extending from the lower end of the support part 421b to the right side. Since the holding part 42b has the same configuration as the holding part 42a described above, the description thereof is omitted.
 一対の連結部41は、右側の締結部423aと左側の締結部423bとを連結するように、左右方向に延びている。すなわち、それぞれの連結部41は、ヒートシンク22が挿入される矩形状の挿入孔H4を形成するように一対の締結部423a,423bと一体形成されている。なお、挿入孔H4は、DC-DCコンバータ20のヒートシンク22を挿入可能な大きさに形成されている。
 したがって、一枚の板金を折曲加工・穿設加工等することでフレーム部材40を形成することができ、フレーム部材40を製造する際の手間を省くと共に冷却構造体Aの部品点数を最小限に抑えることができる。
The pair of connecting portions 41 extend in the left-right direction so as to connect the right fastening portion 423a and the left fastening portion 423b. That is, each connecting portion 41 is integrally formed with the pair of fastening portions 423a and 423b so as to form a rectangular insertion hole H4 into which the heat sink 22 is inserted. The insertion hole H4 is formed in a size that allows the heat sink 22 of the DC-DC converter 20 to be inserted.
Therefore, it is possible to form the frame member 40 by bending or punching a single sheet metal, saving time and trouble of manufacturing the frame member 40 and minimizing the number of parts of the cooling structure A. Can be suppressed.
<冷却構造体の組付手順>
 次に、図3~図6を参照しつつ、冷却構造体Aの組付手順について説明する。
 図4に示すように、本体部11のフランジ11a,11bに形成された4つの孔h1に、収容部13の底壁131から上方に向けて突出するボルトb1を挿通させ、ナットm1で締結する。なお、ボルトb1は収容部13の底壁131に予め溶着されているため、ボルト(図示せず)を別体として用意しナットm1で締結する場合と比較して、締結作業を簡単化できる。
 このようにしてPDU10の本体部11と収容部13とを締結すると、収容部13の孔H1を介してヒートシンク12が露出した状態になる。
<Assembly procedure of cooling structure>
Next, the procedure for assembling the cooling structure A will be described with reference to FIGS.
As shown in FIG. 4, bolts b1 protruding upward from the bottom wall 131 of the housing portion 13 are inserted into the four holes h1 formed in the flanges 11a and 11b of the main body portion 11, and fastened with a nut m1. . Since the bolt b1 is welded to the bottom wall 131 of the accommodating portion 13 in advance, the fastening operation can be simplified as compared with a case where a bolt (not shown) is prepared as a separate body and fastened with the nut m1.
When the main body 11 and the housing 13 of the PDU 10 are fastened in this way, the heat sink 12 is exposed through the hole H1 of the housing 13.
 次に、下方に向けて突出するようにフレーム部材40の締結部423a,423bに溶着されたボルトb2を、DC-DCコンバータ20の挿通孔h2に挿通させ、締結部423a,423b及び連結部41の下面をフランジ21aの上面に密着させる(図3参照)。そうすると、フレーム部材40の挿入孔H4を介してヒートシンク22が露出した状態になる。
 なお、ボルトb2とナットm2との締結については、後記するボルトb4とナットm4との締結と併せて、一括して行うことが好ましい。
Next, the bolt b2 welded to the fastening portions 423a and 423b of the frame member 40 so as to protrude downward is inserted into the insertion hole h2 of the DC-DC converter 20, and the fastening portions 423a and 423b and the connecting portion 41 are inserted. The lower surface is closely attached to the upper surface of the flange 21a (see FIG. 3). Then, the heat sink 22 is exposed through the insertion hole H4 of the frame member 40.
In addition, about fastening with the volt | bolt b2 and the nut m2, it is preferable to collectively carry out together with the fastening with the volt | bolt b4 and the nut m4 which are mentioned later.
 次に、上下方向においてPDU10、冷却風ダクト30、フレーム部材40、及びDC-DCコンバータ20が順次並ぶように配置し、相互に組み付ける。すなわち、収容部13の底壁131に溶着された4つのボルトb4を、フランジ33a,33bの挿通孔h3と、フランジ422a,422bの挿通孔h4と、に挿通する。そうすると、PDU10のヒートシンク12が第1孔K1を介して冷却風の流路に露出し、DC-DCコンバータ20のヒートシンク22が挿入孔H4及び第2孔K2を介して冷却風の流路に露出する。この状態において、ヒートシンク12,22は、それぞれの放熱フィンが同じ方向(前後方向)に延び、かつ、上下方向で相互に対向している。したがって、冷却風が通流する際の流体抵抗を最小限に抑えることができる。 Next, the PDU 10, the cooling air duct 30, the frame member 40, and the DC-DC converter 20 are sequentially arranged in the vertical direction and assembled to each other. That is, the four bolts b4 welded to the bottom wall 131 of the housing portion 13 are inserted into the insertion holes h3 of the flanges 33a and 33b and the insertion holes h4 of the flanges 422a and 422b. Then, the heat sink 12 of the PDU 10 is exposed to the cooling air flow path through the first hole K1, and the heat sink 22 of the DC-DC converter 20 is exposed to the cooling air flow path through the insertion hole H4 and the second hole K2. To do. In this state, the heat sinks 12 and 22 have their heat radiating fins extending in the same direction (front-rear direction) and facing each other in the vertical direction. Therefore, it is possible to minimize the fluid resistance when the cooling air flows.
 次に、PDU10、冷却風ダクト30、フレーム部材40、及びDC-DCコンバータ20をナットm2,m4を用いて結合(締結)する。すなわち、図4、図5(a)に示すように、収容部13に溶着されたボルトb4を、右側のフランジ33aの挿通孔h3、及びフランジ422aの挿通孔h4に挿通し、下方からナットm4で締結する。
 また、図4、図5(b)に示すように、収容部13に溶着されたボルトb4を、左側のフランジ33bの挿通孔h3、及びフランジ422bの挿通孔h4に挿通し、下方からナットm4で締結する。
 さらに、図4に示すように、締結部423a,423bに溶着されたボルトb2をDC-DCコンバータ20のフランジ21aの挿通孔h2に挿通し、下方からナットm2で締結する。
Next, the PDU 10, the cooling air duct 30, the frame member 40, and the DC-DC converter 20 are coupled (fastened) using nuts m2 and m4. That is, as shown in FIGS. 4 and 5 (a), the bolt b4 welded to the housing portion 13 is inserted into the insertion hole h3 of the right flange 33a and the insertion hole h4 of the flange 422a, and the nut m4 from below. Conclude with.
Further, as shown in FIGS. 4 and 5B, the bolt b4 welded to the accommodating portion 13 is inserted into the insertion hole h3 of the left flange 33b and the insertion hole h4 of the flange 422b, and the nut m4 from below. Conclude with.
Further, as shown in FIG. 4, the bolt b2 welded to the fastening portions 423a and 423b is inserted into the insertion hole h2 of the flange 21a of the DC-DC converter 20, and fastened with a nut m2 from below.
 ところで、図6に示すように、PDU10とフレーム部材40とを締結するボルトb4の挿通位置(工具ライン:○印)と、DC-DCコンバータ20とフレーム部材40とを締結するボルトb2の挿通位置(工具ライン:△印)と、は組付方向(上下方向)において重なっていない。 By the way, as shown in FIG. 6, the insertion position of the bolt b4 that fastens the PDU 10 and the frame member 40 (tool line: ◯), and the insertion position of the bolt b2 that fastens the DC-DC converter 20 and the frame member 40. (Tool line: Δ mark) does not overlap in the assembly direction (vertical direction).
 つまり、組み付けた状態の冷却構造体Aを下方から視ると、ボルトb2,b4(○印、△印)が露出した状態になる。したがって、合計8個のボルトb2,b4それぞれに対し一括してナットm2,m4を締結すればよく、複数段階に分けて締結作業を行う場合と比較して組付作業を簡単化・高速化できる。また、ボルトb2はフレーム部材40の締結部423a,423bに溶着され、ボルトb4は収容部13の底壁131に溶着されている。したがって、下方からナットm2,m4を締めさえすればよく、締結作業を簡単化できる。 That is, when the assembled cooling structure A is viewed from below, the bolts b2 and b4 (◯ and Δ) are exposed. Therefore, the nuts m2 and m4 may be fastened together for each of the eight bolts b2 and b4 in total, and the assembling work can be simplified and speeded up as compared with the case where the fastening work is performed in a plurality of stages. . The bolt b <b> 2 is welded to the fastening portions 423 a and 423 b of the frame member 40, and the bolt b <b> 4 is welded to the bottom wall 131 of the housing portion 13. Therefore, it is only necessary to tighten the nuts m2 and m4 from below, and the fastening operation can be simplified.
 前記した締結がなされると、ヒートシンク12,22を左右方向で挟む冷却風ダクト30の側壁34(図3参照)と、PDU10の下面(ヒートシンク12の表面を含む)と、DC-DCコンバータ20の上面(ヒートシンク22を含む)と、によって冷却風を通流させる流路が形成される。なお、前記したように、冷却風ダクト30の側壁34から上流側に筒状の導入部35が延び、下流側に筒状の導出部36が延びている。 When the fastening described above is performed, the side wall 34 (see FIG. 3) of the cooling air duct 30 that sandwiches the heat sinks 12 and 22 in the left-right direction, the lower surface of the PDU 10 (including the surface of the heat sink 12), and the DC-DC converter 20 A flow path through which cooling air flows is formed by the upper surface (including the heat sink 22). As described above, the cylindrical introduction portion 35 extends from the side wall 34 of the cooling air duct 30 to the upstream side, and the cylindrical lead-out portion 36 extends to the downstream side.
 また、前記した締結作業によって、弾性を有するシール部材32p,32qが上下方向で圧縮される。その結果、シール部材32pがPDU10の収容部13の下面に密着し、シール部材32qがフレーム部材40の連結部41及び締結部423a,423bの上面に密着する。したがって、冷却風ダクト30とPDU10との間、及び、冷却風ダクト30とDC-DCコンバータ20との間に隙間ができず、冷却風が外部に漏れることを確実に防止できる。 Moreover, the sealing members 32p and 32q having elasticity are compressed in the vertical direction by the fastening operation described above. As a result, the seal member 32p is in close contact with the lower surface of the housing portion 13 of the PDU 10, and the seal member 32q is in close contact with the upper surface of the coupling portion 41 and the fastening portions 423a and 423b of the frame member 40. Therefore, there is no gap between the cooling air duct 30 and the PDU 10 and between the cooling air duct 30 and the DC-DC converter 20, and it is possible to reliably prevent the cooling air from leaking outside.
<作用>
 図2の矢印で示すように、開口35tを介して送り込まれた冷却風は、筒状の導入部35内を通流し、冷却風ダクト30の側壁34(図3参照)、PDU10、及びDC-DCコンバータ20によって形成される流路に流入する。当該流路を通流する際、冷却風はヒートシンク12,22から吸熱する。換言すると、PDU10はヒートシンク12を介して冷却風に放熱することで冷却され、DC-DCコンバータ20はヒートシンク22を介して冷却風に放熱することで冷却される。
<Action>
As shown by the arrows in FIG. 2, the cooling air sent through the opening 35t flows through the cylindrical introduction portion 35, and the side wall 34 of the cooling air duct 30 (see FIG. 3), the PDU 10, and the DC− It flows into the flow path formed by the DC converter 20. When flowing through the flow path, the cooling air absorbs heat from the heat sinks 12 and 22. In other words, the PDU 10 is cooled by dissipating heat to the cooling air via the heat sink 12, and the DC-DC converter 20 is cooled by dissipating heat to the cooling air via the heat sink 22.
 なお、冷却風ダクト30は樹脂製であるため、自身の変形によって製造時の寸法誤差を吸収できる。さらに、弾性を有するシール部材32p,32qによって、冷却風ダクト30がPDU10及びDC-DCコンバータ20に密着している。したがって、冷却風が外部に漏れることを確実に防止できる。前記した吸熱によって昇温した冷却風は、筒状の導出部36を通流し、開口36tを介して流出する。 In addition, since the cooling air duct 30 is made of resin, a dimensional error at the time of manufacture can be absorbed by its own deformation. Further, the cooling air duct 30 is in close contact with the PDU 10 and the DC-DC converter 20 by elastic seal members 32p and 32q. Therefore, it is possible to reliably prevent the cooling air from leaking to the outside. The cooling air heated by the above-described heat absorption flows through the cylindrical outlet 36 and flows out through the opening 36t.
<効果>
 本実施形態に係る冷却構造体Aによれば、第1孔K1を囲むように設置されるシール部材32pがPDU10に密着し、第2孔K2を囲むように設置されるシール部材32qがフレーム部材40に密着する。したがって、PDU10と冷却風ダクト30との間、又は、冷却風ダクト30とフレーム部材40との間に隙間が生じることがなく、冷却風が外部に漏れることを確実に防止できる。その結果、PDU10及びDC-DCコンバータ20を高効率で冷却でき、そのぶん冷却風を送る冷却ファン(図示せず)を小型化できる。
<Effect>
According to the cooling structure A according to the present embodiment, the seal member 32p installed so as to surround the first hole K1 is in close contact with the PDU 10, and the seal member 32q installed so as to surround the second hole K2 is the frame member. 40. Accordingly, there is no gap between the PDU 10 and the cooling air duct 30 or between the cooling air duct 30 and the frame member 40, and it is possible to reliably prevent the cooling air from leaking to the outside. As a result, the PDU 10 and the DC-DC converter 20 can be cooled with high efficiency, and a cooling fan (not shown) for sending the cooling air can be downsized.
 また、PDU10及びDC-DCコンバータ20は、一対の保持部42a,42b及び連結部41を有するフレーム部材40によって結合される。したがって、例えば、冷却風ダクト30を樹脂製とした場合でも、フレーム部材40によってPDU10とDC-DCコンバータ20との結合強度を充分に確保できる。
 つまり、本実施形態によれば、冷却風の流路を形成する役割を冷却風ダクト30に担わせ、結合強度を確保する役割をフレーム部材40に担わせることによって、充分な結合強度を確保しつつ冷却効率を向上させることができる。
The PDU 10 and the DC-DC converter 20 are coupled by a frame member 40 having a pair of holding portions 42 a and 42 b and a connecting portion 41. Therefore, for example, even when the cooling air duct 30 is made of resin, the frame member 40 can sufficiently secure the coupling strength between the PDU 10 and the DC-DC converter 20.
That is, according to the present embodiment, the cooling air duct 30 is responsible for forming the cooling air flow path, and the frame member 40 is responsible for ensuring the coupling strength, thereby ensuring sufficient coupling strength. Cooling efficiency can be improved.
 また、フレーム部材40は、支持部421aから左側(幅方向内側)に延びる締結部423aと、支持部421bから右側(幅方向内側)に延びる締結部423bと、を一対の連結部41を介して連結した構成になっている。したがって、一枚の板金を折曲加工・穿設加工等することでフレーム部材40を形成できると共に、冷却構造体Aに必要な部品点数を削減できる。その結果、冷却構造体40を製造する際の手間を省き、製造コストを大幅に削減できる。 Further, the frame member 40 includes a fastening portion 423a extending to the left side (width direction inner side) from the support portion 421a and a fastening portion 423b extending to the right side (width direction inner side) from the support portion 421b via a pair of connecting portions 41. It has a connected structure. Therefore, the frame member 40 can be formed by bending or punching one sheet metal, and the number of parts required for the cooling structure A can be reduced. As a result, the labor for manufacturing the cooling structure 40 can be saved, and the manufacturing cost can be greatly reduced.
 また、各締結を行うためのボルトb2,b4の挿通位置(工具ライン)が組付方向において重なっていない。したがって、PDU10、冷却風ダクト30、フレーム部材40、及びDC-DCコンバータ20を組み付けた状態で組付作業・締結作業を片側から一括して行い、冷却構造体Aを製造する際の工数を削減できる。 Also, the insertion positions (tool lines) of the bolts b2 and b4 for performing each fastening do not overlap in the assembly direction. Therefore, the assembly work and the fastening work are collectively performed from one side in a state where the PDU 10, the cooling air duct 30, the frame member 40, and the DC-DC converter 20 are assembled, thereby reducing the man-hour when the cooling structure A is manufactured. it can.
≪変形例≫
 以上、本発明に係る冷却構造体Aについて前記実施形態により説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
 例えば、前記実施形態では、一枚の板金を折曲加工、穿設加工等することでフレーム部材40を形成する場合について説明したが、これに限らない。すなわち、フレーム部材40のうち一対の連結部41を省略し、フレーム部材を2つの部品(つまり、保持部42a,42b)に分けてもよい。この場合でも、それぞれのフレーム部材を用いてPDU10、冷却風ダクト30、及びDC-DCコンバータ20を締結することで結合強度を確保できる。
≪Modification≫
As mentioned above, although the cooling structure A which concerns on this invention was demonstrated by the said embodiment, this invention is not limited to these description, A various change can be made.
For example, in the above-described embodiment, the case where the frame member 40 is formed by bending or punching one sheet metal has been described, but the present invention is not limited thereto. That is, the pair of connecting portions 41 in the frame member 40 may be omitted, and the frame member may be divided into two parts (that is, the holding portions 42a and 42b). Even in this case, the coupling strength can be ensured by fastening the PDU 10, the cooling air duct 30, and the DC-DC converter 20 using the respective frame members.
 また、前記実施形態では、組付方向(上下方向)においてPDU10(収容部13)と保持部42との間に冷却風ダクト30のフランジ33a,33bが介在する場合について説明したが、これに限らない。すなわち、冷却風ダクト30のフランジ33a,33bを省略し、PDU10と保持部42とを密着させた状態で締結してもよい。この場合、高さ方向に延びる支持部421a,421bの長さを適宜調整することで、シール部材32pをPDU10に密着させ、かつ、シール部材32qをフレーム部材40に密着させることができる。 Moreover, although the said embodiment demonstrated the case where the flanges 33a and 33b of the cooling wind duct 30 were interposed between PDU10 (accommodating part 13) and the holding | maintenance part 42 in the assembly direction (up-down direction), it is not restricted to this. Absent. That is, the flanges 33a and 33b of the cooling air duct 30 may be omitted and the PDU 10 and the holding unit 42 may be fastened together. In this case, the seal member 32p can be brought into close contact with the PDU 10 and the seal member 32q can be brought into close contact with the frame member 40 by appropriately adjusting the lengths of the support portions 421a and 421b extending in the height direction.
 また、前記実施形態では、第1電力変換装置がPDU10(インバータ)であり、第2電力変換装置がDC-DCコンバータ20である場合について説明したが、これに限らない。例えば、第1、第2電力変換装置として、交流/直流変換用のコンバータ、VCU(Voltage Control Unit)等、他の電力変換装置を用いてもよい。
 また、前記実施形態では、PDU10が収容部13を有し、この収容部13にボルトb1,b4が予め溶着されている場合について説明したが、これに限らない。すなわち、収容部13を省略し、フランジ11a,11bが左右方向に延びる長さを前記実施形態よりも長くし、このフランジ11a,11bにボルトb1,b4を溶着してもよい。
In the above embodiment, the case where the first power conversion device is the PDU 10 (inverter) and the second power conversion device is the DC-DC converter 20 has been described. However, the present invention is not limited to this. For example, as the first and second power converters, other power converters such as an AC / DC converter, a VCU (Voltage Control Unit), and the like may be used.
Moreover, although the PDU 10 has the accommodating part 13 and the bolts b1 and b4 are previously welded to the accommodating part 13 in the embodiment, the present invention is not limited to this. That is, the accommodating part 13 may be omitted, the length of the flanges 11a and 11b extending in the left-right direction may be made longer than that in the above embodiment, and the bolts b1 and b4 may be welded to the flanges 11a and 11b.
 また、前記実施形態では、左右方向において冷却風ダクト30よりも外側に保持部42a,42b(図3、図4参照)を設ける場合について説明したが、これに限らない。すなわち、左右方向において冷却風ダクト30よりも内側に保持部を配置し、この保持部の配置に対応してフランジ、ボルト等の配置を適宜設定してもよい。
 また、前記実施形態では、冷却構造体Aの組付方向においてボルトb2,b4が重ならず、下方から視てボルトb2,b4が露出する場合について説明したが、これに限らない。例えば、冷却構造体の組付作業を一括して行った後、上方及び下方の両側からボルトを締結する構成としてもよい。
Moreover, although the said embodiment demonstrated the case where holding | maintenance part 42a, 42b (refer FIG. 3, FIG. 4) was provided outside the cooling air duct 30 in the left-right direction, it is not restricted to this. That is, a holding part may be arranged inside the cooling air duct 30 in the left-right direction, and the arrangement of flanges, bolts, and the like may be set as appropriate in accordance with the arrangement of the holding part.
Moreover, although the said embodiment demonstrated the case where the volt | bolt b2, b4 did not overlap in the assembly direction of the cooling structure A, and the volt | bolt b2, b4 was exposed seeing from the downward direction, it is not restricted to this. For example, it is good also as a structure which fastens a bolt from both upper and lower sides after performing the assembly | attachment operation | work of a cooling structure collectively.
 また、前記実施形態では、PDU10の底壁131に予めボルトb1,b4が溶着され、フレーム部材40の締結部423a,423bに予めボルトb2が溶着されている場合について説明したが、これに限らない。すなわち、別部材として用意したボルトをナットと締結してもよい。
 また、前記実施形態では、冷却構造体Aをハイブリッド車に搭載する場合について説明したが、これに限らない。例えば、冷却構造体Aを電気自動車や燃料電池車等、他の種類の自動車に搭載してもよい。また、冷却構造体Aを二輪車、船舶、航空機等の移動体に搭載してもよいし、定置式のシステムに搭載してもよい。
Moreover, although the said embodiment demonstrated the case where the volt | bolt b1, b4 was welded previously to the bottom wall 131 of PDU10, and the volt | bolt b2 was welded previously to the fastening part 423a, 423b of the frame member 40, it is not restricted to this. . That is, a bolt prepared as a separate member may be fastened to the nut.
Moreover, although the said embodiment demonstrated the case where the cooling structure A was mounted in a hybrid vehicle, it is not restricted to this. For example, the cooling structure A may be mounted on other types of vehicles such as electric vehicles and fuel cell vehicles. Further, the cooling structure A may be mounted on a moving body such as a motorcycle, a ship, or an aircraft, or may be mounted on a stationary system.
 A 冷却構造体
 10 PDU(第1電力変換装置)
 11 本体部
 12 ヒートシンク(第1ヒートシンク)
 13 収容部
 20 DC-DCコンバータ(第2電力変換装置)
 21 本体部
 22 ヒートシンク(第2ヒートシンク)
 30 冷却風ダクト
 31 ダクト本体
 32p,32q シール部材
 40 フレーム部材
 41 連結部
 42a,42b 保持部
 421a,421b 支持部
 422a,422b フランジ
 423a,423b 締結部
 K1 第1孔
 K2 第2孔
 H4 挿入孔
A Cooling structure 10 PDU (first power converter)
11 Body 12 Heat sink (first heat sink)
13 Housing 20 DC-DC converter (second power converter)
21 Main body 22 Heat sink (second heat sink)
30 Cooling air duct 31 Duct body 32p, 32q Seal member 40 Frame member 41 Connection portion 42a, 42b Holding portion 421a, 421b Support portion 422a, 422b Flange 423a, 423b Fastening portion K1 First hole K2 Second hole H4 Insertion hole

Claims (4)

  1.  第1ヒートシンクを有する第1電力変換装置と、第2ヒートシンクを有する第2電力変換装置と、を冷却風との熱交換によって冷却する冷却構造体であって、
     前記第1ヒートシンクが挿入される第1孔と、前記第1ヒートシンクと対向するように前記第2ヒートシンクが挿入される第2孔と、が形成された樹脂製の筒状体である冷却風ダクトと、
     前記第1電力変換装置と前記第2電力変換装置とを高さ方向において離間した状態で保持する一対の保持部を有すると共に、前記第1電力変換装置及び前記第2電力変換装置に結合されるフレーム部材と、を備え、
     前記冷却風ダクトは、前記第1孔の周囲が前記第1電力変換装置に密着し、前記第2孔の周囲が前記第2電力変換装置に密着するように配置される
     ことを特徴とする冷却構造体。
    A cooling structure that cools a first power conversion device having a first heat sink and a second power conversion device having a second heat sink by heat exchange with cooling air,
    A cooling air duct that is a resin-made cylindrical body in which a first hole into which the first heat sink is inserted and a second hole into which the second heat sink is inserted so as to face the first heat sink are formed. When,
    The first power converter and the second power converter have a pair of holding units that are spaced apart in the height direction, and are coupled to the first power converter and the second power converter. A frame member,
    The cooling air duct is disposed such that the periphery of the first hole is in close contact with the first power converter, and the periphery of the second hole is in close contact with the second power converter. Structure.
  2.  一対の前記保持部はそれぞれ、
     前記第1電力変換装置と前記第2電力変換装置とを離間させるように、高さ方向に延在する支持部と、
     前記支持部の一端から幅方向内側に延びると共に、幅方向において前記支持部と前記冷却風ダクトとの間で前記第2電力変換装置にボルト締結される締結部と、を有する
     ことを特徴とする請求項1に記載の冷却構造体。
    Each of the pair of holding portions is
    A support portion extending in a height direction so as to separate the first power converter and the second power converter;
    A fastening portion that extends inward in the width direction from one end of the support portion, and that is bolted to the second power converter between the support portion and the cooling air duct in the width direction. The cooling structure according to claim 1.
  3.  前記フレーム部材は、
     前記第2ヒートシンクが挿入される挿入孔を形成するように、それぞれの前記締結部と一体形成される連結部を備える
     ことを特徴とする請求項2に記載の冷却構造体。
    The frame member is
    The cooling structure according to claim 2, further comprising a connecting portion integrally formed with each of the fastening portions so as to form an insertion hole into which the second heat sink is inserted.
  4.  前記第1電力変換装置と前記フレーム部材とを締結するボルトの挿通位置と、前記第2電力変換装置と前記フレーム部材とを締結するボルトの挿通位置と、が前記第1電力変換装置及び前記第2電力変換装置の組付方向において重ならない
     ことを特徴とする請求項1から請求項3のいずれか一項に記載の冷却構造体。
    The bolt insertion position for fastening the first power converter and the frame member and the bolt insertion position for fastening the second power converter and the frame member are the first power converter and the first The cooling structure according to any one of claims 1 to 3, wherein the two power converters do not overlap in the assembling direction.
PCT/JP2014/053420 2013-04-04 2014-02-14 Cooling structure WO2014162780A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480010642.8A CN105027405B (en) 2013-04-04 2014-02-14 Cooling structure body
JP2015509941A JP6034957B2 (en) 2013-04-04 2014-02-14 Cooling structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-078148 2013-04-04
JP2013078148 2013-04-04

Publications (1)

Publication Number Publication Date
WO2014162780A1 true WO2014162780A1 (en) 2014-10-09

Family

ID=51658084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053420 WO2014162780A1 (en) 2013-04-04 2014-02-14 Cooling structure

Country Status (3)

Country Link
JP (1) JP6034957B2 (en)
CN (1) CN105027405B (en)
WO (1) WO2014162780A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105730184A (en) * 2014-12-24 2016-07-06 本田技研工业株式会社 Electric control unit and electrical device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107054041B (en) * 2017-04-28 2020-06-12 重庆长安汽车股份有限公司 DC/DC converter bracket of hybrid electric vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5574099U (en) * 1978-11-16 1980-05-21
JPH0865825A (en) * 1994-08-26 1996-03-08 Mitsubishi Electric Corp Control panel
US6046921A (en) * 1996-08-27 2000-04-04 Tracewell; Larry L. Modular power supply
JP2001020737A (en) * 1999-07-05 2001-01-23 Honda Motor Co Ltd Compulsory cooling device
JP2003197834A (en) * 2001-12-26 2003-07-11 Nippon Keiki Works Ltd Fin structure of heat sink
JP2007008403A (en) * 2005-07-04 2007-01-18 Honda Motor Co Ltd Cooling device for vehicular electric equipment unit
US20080310109A1 (en) * 2007-06-18 2008-12-18 Hyundai Motor Company Cooling structure for high voltage electrical parts of a hybrid electric vehicle
JP2012104822A (en) * 2010-11-05 2012-05-31 Semikron Elektronik Gmbh & Co Kg Power semiconductor system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201066982Y (en) * 2007-05-25 2008-05-28 太业科技股份有限公司 Heat radiation module with low wind resistance and high heat radiation efficiency

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5574099U (en) * 1978-11-16 1980-05-21
JPH0865825A (en) * 1994-08-26 1996-03-08 Mitsubishi Electric Corp Control panel
US6046921A (en) * 1996-08-27 2000-04-04 Tracewell; Larry L. Modular power supply
JP2001020737A (en) * 1999-07-05 2001-01-23 Honda Motor Co Ltd Compulsory cooling device
JP2003197834A (en) * 2001-12-26 2003-07-11 Nippon Keiki Works Ltd Fin structure of heat sink
JP2007008403A (en) * 2005-07-04 2007-01-18 Honda Motor Co Ltd Cooling device for vehicular electric equipment unit
US20080310109A1 (en) * 2007-06-18 2008-12-18 Hyundai Motor Company Cooling structure for high voltage electrical parts of a hybrid electric vehicle
JP2012104822A (en) * 2010-11-05 2012-05-31 Semikron Elektronik Gmbh & Co Kg Power semiconductor system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105730184A (en) * 2014-12-24 2016-07-06 本田技研工业株式会社 Electric control unit and electrical device
JP2016123165A (en) * 2014-12-24 2016-07-07 本田技研工業株式会社 Power control unit and electric device
CN105730184B (en) * 2014-12-24 2018-03-06 本田技研工业株式会社 power control unit and electric device

Also Published As

Publication number Publication date
CN105027405B (en) 2018-06-01
JP6034957B2 (en) 2016-11-30
JPWO2014162780A1 (en) 2017-02-16
CN105027405A (en) 2015-11-04

Similar Documents

Publication Publication Date Title
US10305154B2 (en) Apparatus for controlling temperature of coolant in water-cooled battery system and method thereof
JP3784813B2 (en) High-voltage cooling device for vehicle motor and hybrid vehicle
JP5120576B2 (en) Fuel cell vehicle
US7051825B2 (en) Structure for installing high-voltage equipment component to vehicle
JP6129979B2 (en) Battery heat dissipation system, battery heat dissipation unit
JP5423654B2 (en) Power converter
KR102131684B1 (en) Vehicle-mounted power converter
JP4285405B2 (en) Hybrid car
US9437852B2 (en) Method for manufacturing a battery, battery arrangement and modular system
WO2012070129A1 (en) Stacked cooler
EP2697860A1 (en) Battery system having an external thermal management system
JP5382874B2 (en) Power control unit
JP2015050257A (en) Power conversion device for vehicle and railway vehicle
JP5521978B2 (en) Power converter
JP6034957B2 (en) Cooling structure
US9931937B2 (en) Vehicle installation structure
JP2009194331A (en) Cooling structure of power circuit
WO2018047851A1 (en) Battery unit and vehicular storage battery device
JP6350330B2 (en) Power converter
CN210591715U (en) Electric installation sectional shelf-unit and have its electric automobile
JP6583513B2 (en) Power converter
JP7459845B2 (en) power converter
JP2010110130A (en) Power converter for railroad vehicle
JP6722081B2 (en) Fixed cooling device for power control unit
JP2016157561A (en) Battery pack

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480010642.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14780055

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015509941

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201506148

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14780055

Country of ref document: EP

Kind code of ref document: A1