WO2014156966A2 - Oxygen reduction catalyst, and fuel cell - Google Patents

Oxygen reduction catalyst, and fuel cell Download PDF

Info

Publication number
WO2014156966A2
WO2014156966A2 PCT/JP2014/057792 JP2014057792W WO2014156966A2 WO 2014156966 A2 WO2014156966 A2 WO 2014156966A2 JP 2014057792 W JP2014057792 W JP 2014057792W WO 2014156966 A2 WO2014156966 A2 WO 2014156966A2
Authority
WO
WIPO (PCT)
Prior art keywords
phenanthroline
complex
oxygen
fuel
oxygen reduction
Prior art date
Application number
PCT/JP2014/057792
Other languages
French (fr)
Japanese (ja)
Other versions
WO2014156966A3 (en
Inventor
浩史 岸
朝澤 浩一郎
田中 裕久
Original Assignee
ダイハツ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイハツ工業株式会社 filed Critical ダイハツ工業株式会社
Publication of WO2014156966A2 publication Critical patent/WO2014156966A2/en
Publication of WO2014156966A3 publication Critical patent/WO2014156966A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an oxygen reduction catalyst, and more particularly to an oxygen reduction catalyst used for an oxygen side electrode of a fuel cell such as a solid polymer fuel cell, and a fuel cell including an oxygen side electrode containing the oxygen reduction catalyst.
  • AFC alkaline type
  • PEFC solid polymer type
  • PAFC phosphoric acid type
  • MCFC molten carbonate type
  • SOFC solid electrolyte type
  • a polymer electrolyte fuel cell includes a fuel-side electrode (anode) to which fuel is supplied and an oxygen-side electrode (cathode) to which oxygen is supplied. These electrodes are formed from a solid polymer membrane. Are arranged opposite to each other with an electrolyte layer interposed therebetween.
  • fuel gas is supplied to the anode and air is supplied to the cathode, so that an electromotive force is generated between the anode and the cathode to generate electric power.
  • an oxygen reduction catalyst obtained by calcining a phenanthroline iron complex at a high temperature is known (for example, see Non-Patent Document 1). Since this oxygen reduction catalyst has a good oxygen reduction activity, it can activate the chemical reaction of the cathode and improve the power generation performance of the fuel cell.
  • an object of the present invention is to provide an oxygen reduction catalyst having further improved oxygen reduction activity and a fuel cell including an oxygen side electrode containing the oxygen reduction catalyst.
  • the oxygen reduction catalyst of the present invention includes a phenanthroline Fe complex in which a phenanthroline-based ligand is coordinated to iron, a phenanthroline Mn complex in which a phenanthroline-based ligand is coordinated to manganese, and a phenanthroline. It is characterized by containing a fired body obtained by firing a complex mixture containing at least one phenanthroline Ni complex coordinated to nickel as a system ligand.
  • At least one of the manganese and the nickel is contained in 1/3 mol or more and 3 mol or less with respect to 1 mol of the iron in the complex mixture. is there.
  • the phenanthroline-based ligand is represented by the following general formula (1).
  • the fuel cell of the present invention includes an electrolyte that can move an anion component, and a fuel side electrode and an oxygen side electrode that are arranged to face each other with the electrolyte interposed therebetween, and the oxygen side electrode includes the oxygen reduction described above. It is characterized by containing a catalyst.
  • the oxygen reduction catalyst of the present invention since the transition metal complex having a plurality of specific structures is contained, the oxygen reduction reaction can be activated. As a result, a high current can be stably obtained, and the power generation performance of the fuel cell is improved.
  • FIG. 1 is a schematic configuration diagram showing an embodiment of a fuel cell of the present invention.
  • the fuel cell 1 is a polymer electrolyte fuel cell, and includes a plurality of fuel cells S, and is formed as a stack structure in which these fuel cells S are stacked. In FIG. 1, only one fuel cell S is shown for easy illustration.
  • the fuel cell S includes a fuel side electrode 2 (anode), an oxygen side electrode 3 (cathode), and an electrolyte layer 4.
  • the fuel side electrode 2 is formed of an electrode material such as a catalyst carrier carrying a catalyst, for example.
  • a catalyst may be used as the electrode material without using the catalyst carrier, and the catalyst may be formed directly as the fuel-side electrode 2.
  • the catalyst is not particularly limited, and examples thereof include platinum group elements (ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), platinum (Pt)), iron group elements ( In accordance with periodic table (IUPAC Periodic Table of the Elements (version date 22 June 2007), etc., the same applies hereinafter) such as iron (Fe), cobalt (Co), nickel (Ni))
  • periodic table 11th group (IB) elements such as copper (Cu), silver (Ag), and gold (Au), and simple metals such as zinc (Zn), and alloys thereof may be used.
  • Examples of the catalyst carrier include porous substances such as carbon.
  • the amount of the catalyst supported on the catalyst carrier is not particularly limited, and is appropriately set according to the purpose and application.
  • the thickness of the fuel side electrode 2 is, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more, and for example, 200 ⁇ m or less, preferably 100 ⁇ m or less.
  • the oxygen-side electrode 3 includes, as an oxygen reduction catalyst, a sintered body of a complex mixture containing a phenanthroline Fe complex and at least one of a phenanthroline Mn complex and a phenanthroline Ni complex.
  • the phenanthroline Fe complex is a transition metal complex in which a phenanthroline ligand is coordinated to iron.
  • the phenanthroline-based ligand is phenanthroline or a derivative thereof, preferably 1,10-phenanthroline or a derivative thereof. More specifically, a phenanthroline compound represented by the general formula (1) can be given.
  • M is 0 or an integer of 1 to 3, preferably 0 or 1, and more preferably 0.
  • N is 0 or an integer of 1 to 3, preferably 0 or 1, and more preferably 0.
  • K is 0 or an integer of 1 to 2, preferably 0 or 1, and more preferably 0.
  • R 1 singly or independently represents an alkyl group, an alkoxy group, an aryl group, a carboxyl group (—COOH), a sulfo group (—SO 3 H) or the like.
  • the alkyl group represented by R 1 is preferably a C 1-6 alkyl group, specifically, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, Examples thereof include linear, branched or cyclic alkyl groups having 1 to 6 carbon atoms, such as pentyl, isopentyl, sec-pentyl, neopentyl, cyclopentyl, n-hexyl, isohexyl, cyclohexyl and the like.
  • the alkoxy group represented by R 1 is preferably a C1-6 alkoxy group, and specifically includes methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentyloxy, iso Examples thereof include straight-chain or branched alkoxy groups having 1 to 6 carbon atoms such as pentyloxy, neopentyloxy, n-hexyloxy, isohexyloxy and the like.
  • Examples of the aryl group represented by R 1 include aryl groups such as phenyl, tolyl, xylyl, biphenyl, naphthyl, phenylnaphthyl, anthryl, phenanthryl, and azulenyl.
  • R 1 is a carboxyl group (—COOH) or a sulfo group (—SO 3 H), these may form a metal salt.
  • the metal that forms the metal salt include sodium and potassium.
  • R 2 represents an alkyl group, an alkoxy group, an aryl group, a carboxyl group, a sulfo group, or the like, alone or independently of each other.
  • Alkyl group represented by R 2 an alkoxy group, an aryl group, a carboxyl group, etc. sulfo group include the same as R 1.
  • R 3 singly or independently represents an alkyl group, an alkoxy group, an aryl group, a carboxyl group, a sulfo group, or the like.
  • Alkyl group represented by R 3 an alkoxy group, an aryl group, a carboxyl group, etc. sulfo group include the same as R 1.
  • phenanthroline-based ligand examples include 1,10-phenanthroline.
  • the phenanthroline-based ligand is available as a commercial product, and specific examples include 1,10-phenanthroline monohydrate (manufactured by Tokyo Chemical Industry Co., Ltd., manufactured by Kishida Chemical Co., Ltd.).
  • the phenanthroline-based ligand is coordinated with, for example, three molecules of iron as a bidentate ligand.
  • phenanthroline Fe complex examples include tris (phenanthroline) iron (II) complex.
  • the phenanthroline Mn complex is a transition metal complex in which a phenanthroline ligand is coordinated to manganese.
  • Examples of the phenanthroline-based ligand in the phenanthroline Mn complex include the same phenanthroline-based ligands as mentioned in the phenanthroline Fe complex, and preferable phenanthroline-based ligands include the same as the phenanthroline-based Fe complex.
  • the phenanthroline-based ligand is coordinated to, for example, three molecules of manganese as a bidentate ligand.
  • the phenanthroline Ni complex is a transition metal complex in which a phenanthroline ligand is coordinated to nickel.
  • Examples of the phenanthroline-based ligand in the phenanthroline Ni complex include the same phenanthroline-based ligands as exemplified in the phenanthroline Ni complex, and preferable phenanthroline-based ligands include those similar to the phenanthroline Fe complex.
  • the phenanthroline-based ligand is coordinated with, for example, three molecules of nickel as a bidentate ligand.
  • the complex mixture is composed of two Fe—Mn metals as the core, Fe—Mn complex complex in which the phenanthroline ligand is coordinated to these metals, and two Fe—Ni metals as the core. May contain a complex complex such as an Fe—Ni complex complex coordinated with a phenanthroline-based ligand.
  • the content of manganese contained in the phenanthroline Mn complex is, for example, 1/3 mole or more with respect to 1 mole of iron contained in the phenanthroline Fe complex. 3 mol or less. Moreover, it is 30 mass parts or more with respect to 100 mass parts of iron, and is 300 mass parts or less.
  • the content ratio of nickel contained in the phenanthroline Ni complex is, for example, 1/3 mole or more with respect to 1 mole of iron contained in the phenanthroline Fe complex. 3 mol or less. Moreover, it is 30 mass parts or more with respect to 100 mass parts of iron, and is 350 mass parts or less.
  • the preparation of the phenanthroline Fe complex, the phenanthroline Mn complex, and the phenanthroline Ni complex is not particularly limited, and a known method can be employed.
  • iron, manganese or nickel salts for example, inorganic salts such as sulfates, nitrates, chlorides and phosphates, for example, organic acid salts such as acetates and oxalates
  • phenanthroline ligands are mixed in a known solvent such as water, alcohol, aliphatic hydrocarbon, aromatic hydrocarbon, halogenated hydrocarbon, nitrile, etc., to thereby convert phenanthroline Fe complex, phenanthroline Mn complex or phenanthroline Ni complex.
  • a known solvent such as water, alcohol, aliphatic hydrocarbon, aromatic hydrocarbon, halogenated hydrocarbon, nitrile, etc.
  • the phenanthroline Fe complex, the phenanthroline Mn complex, and the phenanthroline Ni complex may be produced in the same solvent, or may be produced in separate solvents.
  • a phenanthroline-based ligand, an iron salt, and at least one of a manganese salt and a nickel salt can be mixed in the same solvent.
  • a solution and / or dispersion of the complex mixture is prepared.
  • a phenanthroline-based ligand and an iron salt are mixed in a solvent, and a first solution containing a phenanthroline-Fe complex, a phenanthroline-based ligand, at least one of a manganese salt and a nickel salt, Can be mixed in a solvent to prepare a second solution containing at least one of a phenanthroline Mn complex and a phenanthroline Ni complex separately.
  • a solution and / or dispersion of the complex mixture is then prepared by mixing the first solution and the second solution.
  • the mixing ratio of the iron, manganese and nickel salt to the phenanthroline ligand is the total amount of iron, manganese and nickel salt per mole of the phenanthroline ligand. Is, for example, 0.1 mol or more, preferably 0.3 mol or more, for example, 30 mol or less, preferably 20 mol or less, and more preferably with respect to the phenanthroline-based ligand.
  • the total content of iron, manganese and nickel (the total content of iron, manganese and nickel with respect to the total amount of the complex mixture (solid content)) is, for example, 1% by mass or more, preferably For example, it is 50% by mass or less, preferably 25% by mass or less.
  • the complex mixture is heated in an atmosphere of an inert gas (for example, nitrogen gas, argon gas, etc.) or a reducing gas (for example, a mixed gas of nitrogen gas and hydrogen gas).
  • an inert gas for example, nitrogen gas, argon gas, etc.
  • a reducing gas for example, a mixed gas of nitrogen gas and hydrogen gas.
  • the firing temperature is, for example, 400 ° C. or higher, preferably 600 ° C. or higher, and for example, 1000 ° C. or lower.
  • the firing time is, for example, 1 hour or longer, and for example, 10 hours or shorter, preferably 5 hours or shorter.
  • complex mixture can be fired in one stage or in multiple stages.
  • the drying temperature is, for example, ⁇ 25 ° C. or higher, preferably 15 ° C. or higher, and for example, 80 ° C. or lower, preferably 50 ° C. or lower.
  • the drying time is, for example, 12 to 48 hours.
  • the oxygen reduction catalyst of the present invention can be obtained as a fired body.
  • the fired body thus obtained is obtained by firing the plurality of specific transition metal complexes (that is, phenanthroline Fe complex, phenanthroline Mn complex and / or phenanthroline Ni complex), Oxygen reduction activity can be further improved compared to a fired body obtained by firing one kind alone (for example, phenanthroline Fe complex alone or phenanthroline Mn complex alone).
  • specific transition metal complexes that is, phenanthroline Fe complex, phenanthroline Mn complex and / or phenanthroline Ni complex
  • Oxygen reduction activity can be further improved compared to a fired body obtained by firing one kind alone (for example, phenanthroline Fe complex alone or phenanthroline Mn complex alone).
  • the fired body thus obtained can be further treated with ammonia.
  • the oxygen reduction activity of the complex can be further improved by treating the fired product with ammonia.
  • the fired body obtained as described above is fired (secondary firing), for example, in an ammonia atmosphere (100% ammonia gas).
  • the firing temperature is, for example, 400 ° C. or more, preferably 600 ° C. or more, and, for example, 1000 ° C. or less.
  • the firing time is, for example, 0.5 hours or more, and for example, 10 hours or less, preferably 5 hours or less.
  • each transition metal complex (phenanthroline Fe complex, phenanthroline Mn complex, phenanthroline Mn complex) aggregates and grows, and its effective surface area decreases, resulting in a decrease in catalytic activity. is there.
  • the method for forming the porous fired body is not particularly limited, and may be a known method. For example, a method of first firing a particle mixture of a complex mixture and soluble particles to produce a composite containing the complex mixture and soluble particles at random, and then removing the soluble particles in the composite. .
  • soluble particles examples include amorphous silica such as fumed silica and colloidal silica, polymer particles such as polystyrene and polyimide, and fired bodies thereof.
  • soluble particles can be used alone or in combination of two or more kinds, preferably amorphous silica, more preferably fumed silica.
  • the complex mixture and the soluble particles are mixed to prepare a particle mixture of the complex mixture and the soluble particles.
  • the complex mixture is dissolved and / or dispersed in a solvent.
  • the solvent is not particularly limited.
  • water for example, protic polar solvent (for example, alcohol such as methanol, ethanol, isopropanol, glycol, etc.), aprotic polar solvent (for example, acetone, N, N-dimethyl) Formamide (DMF), N, N-dimethylacetamide (DMAC), dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), acetonitrile, piperidine, etc.), amines (eg, ammonia, eg, triethylamine, pyridine, etc.), Ethers (for example, dioxane, tetrahydrofuran (THF), etc.), aromatic hydrocarbons (for example, benzene, toluene, xylene, etc.) and the like can be mentioned.
  • protic polar solvent for example, alcohol such as methanol, ethanol, isopropanol, glycol, etc.
  • solvents can be used alone or in combination of two or more, and preferably include tetrahydrofuran, acetone and the like.
  • the mixing ratio of the complex mixture and the solvent is such that the solvent is, for example, 1 part by mass or more, preferably 10 parts by mass or more, for example, 100000 parts by mass or less, preferably 100 parts by mass of the complex mixture. 50000 parts by mass or less.
  • the solution and / or dispersion liquid of the obtained complex mixture and the soluble particles are mixed by a known method such as wet mixing.
  • the mixing ratio of the solution and / or dispersion of the complex mixture and the soluble particles is, for example, that the soluble particles are contained in 100 parts by mass of the total amount of the complex mixture (solid content) in the solution and / or dispersion of the complex mixture.
  • it is 10 parts by mass or more, preferably 50 parts by mass or more, and for example, 500 parts by mass or less, preferably 200 parts by mass or less.
  • the drying temperature is, for example, ⁇ 25 ° C. or more, preferably 15 ° C. or more, and for example, 80 ° C. or less, preferably 50 ° C. or less.
  • the drying time is, for example, 12 to 48 hours.
  • the complex mixture and the particle mixture of soluble particles are fired to obtain a composite containing the complex mixture and soluble particles at random.
  • the amorphous silica when used as the soluble particles, the amorphous silica may be crystallized by firing to form silica (fired body). In such a case, in order to remove the silica, for example, the composite is treated with an alkali.
  • the composite is impregnated with an alkaline solution such as potassium hydroxide or sodium hydroxide.
  • an alkaline solution such as potassium hydroxide or sodium hydroxide.
  • the pores ensure a sufficient effective surface area of the complex mixture, thereby maintaining excellent catalytic activity. be able to.
  • the method for removing the soluble particles is not limited to the above, and can be appropriately selected according to the type of the soluble particles, for example, a method of immersing in water, a method of acid treatment, and the like.
  • the oxygen reduction catalyst of the present invention can also contain components other than the above-mentioned calcined body.
  • a component include a carrier.
  • the carrier examples include carbon such as carbon black.
  • the oxygen reduction catalyst includes a support
  • the fired body is supported on the support.
  • a known support method can be employed.
  • the support is mixed with the above complex mixture solution and / or dispersion, and then fired under the above firing conditions.
  • the mixing ratio of the support is, for example, 10 parts by mass or more, preferably 50 parts by mass or more, and for example, 500 parts by mass or less, preferably 200 parts by mass with respect to 100 parts by mass of the phenanthroline ligand. Or less.
  • the oxygen-side electrode 3 fixed on the other surface of the electrolyte layer 4 different from the one surface on which the fuel-side electrode 2 is fixed can be obtained. That is, the oxygen-side electrode 3 is fixed to the other surface of the electrolyte layer 4, so that the fuel-side electrode 2 and the oxygen-side electrode 3 are disposed to face each other with the electrolyte layer 4 interposed therebetween.
  • the basis weight of the oxygen-side electrode 3 (the amount of oxygen reduction catalyst attached to the electrolyte layer 4) is, for example, 0.01 to 10 mg / cm 2 .
  • the thickness of the oxygen side electrode 3 is, for example, 0.1 ⁇ m or more, preferably 1 ⁇ m or more, and for example, 100 ⁇ m or less, preferably 10 ⁇ m or less.
  • the electrolyte layer 4 is formed from an anion exchange membrane.
  • the anion exchange membrane is not particularly limited as long as it is a medium capable of moving hydroxide ions (OH ⁇ ) as an anion component generated at the oxygen side electrode 3 from the oxygen side electrode 3 to the fuel side electrode 2.
  • a solid polymer membrane (anion exchange resin) having an anion exchange group such as a quaternary ammonium group or a pyridinium group can be mentioned.
  • the fuel battery cell S further includes a fuel supply member 5 and an oxygen supply member 6.
  • the fuel supply member 5 is made of a gas-impermeable conductive member, and one surface thereof is in opposed contact with the fuel-side electrode 2.
  • the fuel supply member 5 is formed with a fuel-side flow path 7 for bringing fuel into contact with the entire fuel-side electrode 2 as a distorted groove recessed from one surface.
  • the fuel-side flow path 7 has a supply port 8 and a discharge port 9 that pass through the fuel supply member 5 formed continuously at the upstream end and the downstream end, respectively.
  • the oxygen supply member 6 is made of a gas-impermeable conductive member, and one surface thereof is opposed to the oxygen side electrode 3.
  • the oxygen supply member 6 is also formed with an oxygen-side flow channel 10 for contacting oxygen (air) with the entire oxygen-side electrode 3 as a distorted groove recessed from one surface.
  • the oxygen-side flow path 10 also has a supply port 11 and a discharge port 12 that pass through the oxygen supply member 6 continuously formed at the upstream end portion and the downstream end portion thereof.
  • the fuel cell 1 is actually formed as a stack structure in which a plurality of the above-described fuel cells S are stacked. Therefore, the fuel supply member 5 and the oxygen supply member 6 are actually configured as separators in which the fuel side flow path 7 and the oxygen side flow path 10 are formed on both surfaces.
  • the fuel cell 1 is provided with a current collector plate formed of a conductive material, and an electromotive force generated in the fuel cell 1 is taken out from a terminal provided on the current collector plate. It is configured to be able to.
  • the fuel supply member 5 and the oxygen supply member 6 of the fuel cell S are connected by an external circuit 13, and a voltmeter 14 is interposed in the external circuit 13 to generate the fuel cell S.
  • the voltage can also be measured.
  • the fuel containing the fuel compound is directly supplied without going through reforming or the like. Further, the directly supplied fuel is preferably a liquid fuel.
  • the fuel compound preferably has hydrogen bonded directly to nitrogen and has a nitrogen-nitrogen bond, and preferably has no carbon-carbon bond. Further, it is preferable that the number of carbons is as small as possible (zero if possible).
  • such a fuel compound may contain an oxygen atom, a sulfur atom, etc. within a range not impairing its performance, and more specifically, a carbonyl group, a hydroxyl group, a hydrate, a sulfonic acid group or a sulfuric acid group. It may be contained as a salt or the like.
  • the fuel compound examples include hydrazine (NH 2 NH 2 ), hydrazine hydrate (NH 2 NH 2 .H 2 O), and hydrazine carbonate ((NH 2 NH 2 ) 2. CO 2 ), hydrazine sulfate (NH 2 NH 2 .H 2 SO 4 ), monomethyl hydrazine (CH 3 NHNH 2 ), dimethyl hydrazine ((CH 3 ) 2 NNH 2 , CH 3 NHNHCH 3 ), carboxylic hydrazide ((NHNH 2 ) Hydrazines such as 2 CO), for example urea (NH 2 CONH 2 ), for example ammonia (NH 3 ), for example imidazole, 1,3,5-triazine, 3-amino-1,2,4-triazole heterocyclic compounds such as, for example, hydroxylamine (NH 2 OH), hydroxylamine sulfate (NH 2 OH ⁇ H 2 O 4), and the like
  • hydrazine (NH 2 NH 2 ), hydrazine hydrate (NH 2 NH 2 .H 2 O), hydrazine sulfate (NH 2 NH 2 .H 2 SO 4 ) , Ammonia (NH 3 ), hydroxylamine (NH 2 OH), and hydroxylamine sulfate (NH 2 OH ⁇ H 2 SO 4 ) are durable because there is no poisoning of the catalyst by CO as in the case of hydrazine reaction described later. Can be improved and substantially zero emission can be realized.
  • the fuel compound exemplified above may be used as it is, but the fuel compound exemplified above is used as a solution such as water and / or alcohol (for example, lower alcohol such as methanol, ethanol, propanol, isopropanol). Can be used.
  • the concentration of the fuel compound in the solution varies depending on the type of the fuel compound, but is, for example, 1% by mass or more, for example, 90% by mass or less, preferably 30% by mass or less.
  • the above fuel compound can be used as a gas (for example, steam).
  • the hydroxide ions (OH ⁇ ) that have passed through the electrolyte layer 4 react with the fuel to generate electrons (e ⁇ ). To do.
  • the generated electrons (e ⁇ ) are moved from the fuel supply member 5 to the oxygen supply member 6 via the external circuit 13 and supplied to the oxygen side electrode 3.
  • An electromotive force is generated by such an electrochemical reaction in the fuel side electrode 2 and the oxygen side electrode 3, and power generation is performed.
  • the operating conditions of the fuel cell 1 are not particularly limited.
  • the pressure on the fuel side electrode 2 side is 200 kPa or less, preferably 100 kPa or less
  • the pressure on the oxygen side electrode 3 side is 200 kPa or less.
  • the temperature of the fuel battery cell S is 0 ° C. or higher, preferably 20 ° C. or higher, for example, 120 ° C. or lower, preferably 80 ° C. or lower.
  • Applications of the fuel cell of the present invention include, for example, power sources for driving motors in automobiles, ships, airplanes, etc., and power sources in communication terminals such as mobile phones.
  • the oxygen side electrode 3 since the oxygen side electrode 3 includes a plurality of transition metal complexes having a specific structure, the oxygen reduction reaction in the oxygen side electrode 3 can be activated.
  • Example 1 Preparation of Oxygen Reduction Catalyst A ligand dispersion was prepared by adding 500 mg of 1,10-phenanthroline (manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a ligand and dispersing in a mixed solvent of 25 g of ethanol and 10.5 g of water.
  • 1,10-phenanthroline manufactured by Tokyo Kasei Kogyo Co., Ltd.
  • Example 2 In the same manner as in Example 1 except that 15.695 g of iron acetic acid and 22.448 g of nickel acetate were added to the ligand dispersion instead of 16.238 g of iron acetic acid and 22.874 g of manganate acetate, oxygen A reduction catalyst was obtained. In this oxygen reduction catalyst, Ni was 1 mol with respect to 1 mol of Fe.
  • Comparative Example 1 An oxygen reduction catalyst was obtained in the same manner as in Example 1 except that 32.205 g of iron acetic acid was added to the ligand dispersion instead of 16.238 g of iron acetic acid and 22.874 g of manganic acid acetate.
  • Comparative Example 2 An oxygen reduction catalyst was obtained in the same manner as in Example 1 except that 46.136 g of manganese acetate was added to the ligand dispersion instead of 16.238 g of iron acetic acid and 22.874 g of manganate acetate.
  • Comparative Example 3 An oxygen reduction catalyst was obtained in the same manner as in Example 1, except that 43.787 g of nickel acetate was added to the ligand dispersion instead of 16.238 g of iron acetic acid and 22.874 g of manganate acetate.
  • Comparative Example 4 An oxygen reduction catalyst was obtained in the same manner as in Example 1, except that 43.647 g of cobalt acetate was added to the ligand dispersion instead of 16.238 g of iron acetic acid and 22.874 g of manganate acetate.
  • Comparative Example 5 An oxygen reduction catalyst was obtained in the same manner as in Example 1 except that 32.399 g of copper acetic acid was added to the ligand dispersion instead of 16.238 g of iron acetic acid and 22.874 g of manganic acid acetate.
  • Comparative Example 6 In the same manner as in Example 1 except that 16.661 g of iron acetic acid and 22.422 g of cobalt acetate were added to the ligand dispersion instead of 16.238 g of iron acetic acid and 22.874 g of manganate acetate, A reduction catalyst was obtained. In this oxygen reduction catalyst, Co was 1 mol with respect to 1 mol of Fe.
  • Comparative Example 7 The procedure of Example 1 was repeated except that 15.043 g of iron acetate and 17.265 g of copper acetate were added to the ligand dispersion instead of 16.238 g of iron acetate and 22.874 g of manganate acetate. Thus, an oxygen reduction catalyst was obtained. In this oxygen reduction catalyst, Cu was 1 mol with respect to 1 mol of Fe.
  • Evaluation Method 1 Preparation of Test Pieces An ink was prepared by appropriately dispersing the mixture of the oxygen reduction catalyst obtained in each Example and each Comparative Example and an anion exchange resin in an organic solvent such as alcohols. In all the inks, the transition metal catalysts (Fe, Mn, Ni, Co, and Cu) were prepared so as to have a content of 1 ⁇ g / ⁇ L.
  • Activity measurement of oxygen side electrode was measured by an electrochemical measurement method (cyclic voltammetry) using a rotating disk electrode. More specifically, the potential was scanned in a 1N aqueous KOH solution deoxygenated by nitrogen bubbling to perform test piece stabilization and background measurement.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

Provided are an oxygen reduction catalyst that can activate an oxygen reduction reaction, and a fuel cell provided with an oxygen side electrode containing said oxygen reduction catalyst. The oxygen reduction catalyst, which is contained in the oxygen side electrode of a fuel cell, includes a sintered body obtained by firing a complex mixture containing: a phenanthroline Fe complex in which a phenanthroline ligand is coordinated to iron; and at least one selected from a phenanthroline Mn complex in which a phenanthroline ligand is coordinated to manganese, and a phenanthroline Ni complex in which a phenanthroline ligand is coordinated to nickel.

Description

酸素還元触媒および燃料電池Oxygen reduction catalyst and fuel cell
 本発明は、酸素還元触媒、詳しくは、固体高分子型燃料電池などの燃料電池の酸素側電極に用いられる酸素還元触媒、および、その酸素還元触媒を含有する酸素側電極を備える燃料電池に関する。 The present invention relates to an oxygen reduction catalyst, and more particularly to an oxygen reduction catalyst used for an oxygen side electrode of a fuel cell such as a solid polymer fuel cell, and a fuel cell including an oxygen side electrode containing the oxygen reduction catalyst.
 従来、燃料電池として、アルカリ型(AFC)、固体高分子型(PEFC)、リン酸型(PAFC)、溶融炭酸塩型(MCFC)、固体電解質型(SOFC)など、各種燃料電池が知られている。これらの燃料電池は、例えば、自動車用途など、各種用途での使用が検討されている。 Conventionally, various fuel cells such as alkaline type (AFC), solid polymer type (PEFC), phosphoric acid type (PAFC), molten carbonate type (MCFC), and solid electrolyte type (SOFC) are known as fuel cells. Yes. These fuel cells are being studied for use in various applications such as automobile applications.
 例えば、固体高分子型燃料電池は、燃料が供給される燃料側電極(アノード)と、酸素が供給される酸素側電極(カソード)とを備えており、これらの電極は、固体高分子膜からなる電解質層を挟んで対向配置されている。そして、この燃料電池では、アノードに燃料ガスが供給されるとともに、カソードに空気が供給されることによって、アノード-カソード間に起電力が発生して、発電が行われる。 For example, a polymer electrolyte fuel cell includes a fuel-side electrode (anode) to which fuel is supplied and an oxygen-side electrode (cathode) to which oxygen is supplied. These electrodes are formed from a solid polymer membrane. Are arranged opposite to each other with an electrolyte layer interposed therebetween. In this fuel cell, fuel gas is supplied to the anode and air is supplied to the cathode, so that an electromotive force is generated between the anode and the cathode to generate electric power.
 このような固体高分子型燃料電池に使用されるカソードとして、例えば、フェナントロリン鉄錯体を高温で焼成してなる酸素還元触媒が知られている(例えば、非特許文献1参照。)。この酸素還元触媒は、良好な酸素還元活性能を備えているため、カソードの化学反応を活性化させて、燃料電池の発電性能を向上させることができる。 As a cathode used in such a polymer electrolyte fuel cell, for example, an oxygen reduction catalyst obtained by calcining a phenanthroline iron complex at a high temperature is known (for example, see Non-Patent Document 1). Since this oxygen reduction catalyst has a good oxygen reduction activity, it can activate the chemical reaction of the cathode and improve the power generation performance of the fuel cell.
 しかるに、燃料電池の技術分野では、燃料電池の発電性能向上させることが、常に期待されており、近年ますますその要求が高まっている。そのため、上述した酸素還元触媒よりも、さらに燃料電池の発電性能を向上させることができる高性能の触媒還元触媒の開発が期待される。 However, in the technical field of fuel cells, it is always expected to improve the power generation performance of fuel cells, and in recent years, the demand is increasing. Therefore, the development of a high-performance catalytic reduction catalyst that can further improve the power generation performance of the fuel cell as compared with the above-described oxygen reduction catalyst is expected.
 そこで、本発明の目的は、酸素還元活性能がさらに向上した酸素還元触媒、および、その酸素還元触媒を含有する酸素側電極を備える燃料電池を提供することにある。 Therefore, an object of the present invention is to provide an oxygen reduction catalyst having further improved oxygen reduction activity and a fuel cell including an oxygen side electrode containing the oxygen reduction catalyst.
 上記目的を達成するために、本発明の酸素還元触媒は、フェナントロリン系配位子が鉄に配位されたフェナントロリンFe錯体と、フェナントロリン系配位子がマンガンに配位されたフェナントロリンMn錯体およびフェナントロリン系配位子がニッケルに配位されたフェナントロリンNi錯体の少なくとも1種とを含有する錯体混合物を、焼成することにより得られる焼成体を含有していることを特徴としている。 In order to achieve the above object, the oxygen reduction catalyst of the present invention includes a phenanthroline Fe complex in which a phenanthroline-based ligand is coordinated to iron, a phenanthroline Mn complex in which a phenanthroline-based ligand is coordinated to manganese, and a phenanthroline. It is characterized by containing a fired body obtained by firing a complex mixture containing at least one phenanthroline Ni complex coordinated to nickel as a system ligand.
 また、本発明の酸素還元触媒では、前記錯体混合物において、前記マンガンおよび前記ニッケルの少なくとも1種が、前記鉄1モルに対して、1/3モル以上3モル以下含有されていることが好適である。 In the oxygen reduction catalyst of the present invention, it is preferable that at least one of the manganese and the nickel is contained in 1/3 mol or more and 3 mol or less with respect to 1 mol of the iron in the complex mixture. is there.
 また、本発明の酸素還元触媒では、前記フェナントロリン系配位子が、下記一般式(1)で示されることが好適である。 In the oxygen reduction catalyst of the present invention, it is preferable that the phenanthroline-based ligand is represented by the following general formula (1).
 一般式(1): General formula (1):
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、mおよびnは、0または1~3の整数であり、kは、0または1~2の整数であり、R、RおよびRは、単独または互いに独立して、アルキル基、アルコキシ基、アリール基、カルボキシル基またはスルホ基を表す。)
 また、本発明の燃料電池は、アニオン成分を移動させることができる電解質と、前記電解質を挟んで対向配置された燃料側電極および酸素側電極とを備え、前記酸素側電極は、上記の酸素還元触媒を含有していることを特徴としている。
Wherein m and n are 0 or an integer of 1 to 3, k is an integer of 0 or 1 to 2, and R 1 , R 2 and R 3 are each independently or independently of each other Represents a group, an alkoxy group, an aryl group, a carboxyl group or a sulfo group.)
The fuel cell of the present invention includes an electrolyte that can move an anion component, and a fuel side electrode and an oxygen side electrode that are arranged to face each other with the electrolyte interposed therebetween, and the oxygen side electrode includes the oxygen reduction described above. It is characterized by containing a catalyst.
 本発明の酸素還元触媒によれば、複数の特定構造を有する遷移金属錯体が含まれているため、酸素の還元反応を活性化することができる。その結果、高電流を安定して得ることができ、燃料電池の発電性能を向上させる。 According to the oxygen reduction catalyst of the present invention, since the transition metal complex having a plurality of specific structures is contained, the oxygen reduction reaction can be activated. As a result, a high current can be stably obtained, and the power generation performance of the fuel cell is improved.
本発明の燃料電池の一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the fuel cell of this invention. 酸素側電極の活性測定の結果を示すグラフである。It is a graph which shows the result of the activity measurement of an oxygen side electrode.
 図1は、本発明の燃料電池の一実施形態を示す概略構成図である。 FIG. 1 is a schematic configuration diagram showing an embodiment of a fuel cell of the present invention.
 燃料電池1は、固体高分子型燃料電池であって、複数の燃料電池セルSを備えており、これらの燃料電池セルSが積層されたスタック構造として形成されている。なお、図1においては、図解しやすいように1つの燃料電池セルSのみを示している。 The fuel cell 1 is a polymer electrolyte fuel cell, and includes a plurality of fuel cells S, and is formed as a stack structure in which these fuel cells S are stacked. In FIG. 1, only one fuel cell S is shown for easy illustration.
 燃料電池セルSは、燃料側電極2(アノード)と、酸素側電極3(カソード)と、電解質層4とを備えている。 The fuel cell S includes a fuel side electrode 2 (anode), an oxygen side electrode 3 (cathode), and an electrolyte layer 4.
 燃料側電極2は、例えば、触媒を担持した触媒担体などの電極材料により形成されている。また、触媒担体を用いずに、電極材料として触媒を用い、その触媒を、直接、燃料側電極2として形成してもよい。 The fuel side electrode 2 is formed of an electrode material such as a catalyst carrier carrying a catalyst, for example. Alternatively, a catalyst may be used as the electrode material without using the catalyst carrier, and the catalyst may be formed directly as the fuel-side electrode 2.
 触媒としては、特に制限されず、例えば、白金族元素(ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)、白金(Pt))、鉄族元素(鉄(Fe)、コバルト(Co)、ニッケル(Ni))などの周期表(IUPAC Periodic Table of the Elements(version date 22 June 2007)に従う。以下同じ。)第8~10(VIII)族元素や、例えば、銅(Cu)、銀(Ag)、金(Au)などの周期表第11(IB)族元素、さらには亜鉛(Zn)などの金属単体や、それらの合金などが挙げられる。 The catalyst is not particularly limited, and examples thereof include platinum group elements (ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), platinum (Pt)), iron group elements ( In accordance with periodic table (IUPAC Periodic Table of the Elements (version date 22 June 2007), etc., the same applies hereinafter) such as iron (Fe), cobalt (Co), nickel (Ni)) For example, periodic table 11th group (IB) elements, such as copper (Cu), silver (Ag), and gold (Au), and simple metals such as zinc (Zn), and alloys thereof may be used.
 これらは、単独使用または2種以上併用することができる。 These can be used alone or in combination of two or more.
 触媒担体としては、例えば、カーボンなどの多孔質物質が挙げられる。触媒の触媒担体に対する担持量は、特に制限されず、目的および用途に応じて、適宜設定される。 Examples of the catalyst carrier include porous substances such as carbon. The amount of the catalyst supported on the catalyst carrier is not particularly limited, and is appropriately set according to the purpose and application.
 燃料側電極2の厚みは、例えば、10μm以上、好ましくは、20μm以上であり、また、例えば、200μm以下、好ましくは、100μm以下である。 The thickness of the fuel side electrode 2 is, for example, 10 μm or more, preferably 20 μm or more, and for example, 200 μm or less, preferably 100 μm or less.
 酸素側電極3は、酸素還元触媒として、フェナントロリンFe錯体と、フェナントロリンMn錯体およびフェナントロリンNi錯体の少なくとも1種とを含有する錯体混合物の焼成体を含んでいる。 The oxygen-side electrode 3 includes, as an oxygen reduction catalyst, a sintered body of a complex mixture containing a phenanthroline Fe complex and at least one of a phenanthroline Mn complex and a phenanthroline Ni complex.
 フェナントロリンFe錯体は、フェナントロリン系配位子が鉄に配位された遷移金属錯体である。 The phenanthroline Fe complex is a transition metal complex in which a phenanthroline ligand is coordinated to iron.
 フェナントロリン系配位子は、フェナントロリンまたはその誘導体であり、好ましくは、1,10-フェナントロリンまたはその誘導体が挙げられる。より具体的には、 一般式(1)で挙げられるフェナントロリン系化合物が挙げられる。 The phenanthroline-based ligand is phenanthroline or a derivative thereof, preferably 1,10-phenanthroline or a derivative thereof. More specifically, a phenanthroline compound represented by the general formula (1) can be given.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 mは、0または1~3の整数であり、好ましくは、0または1であり、より好ましくは、0である。 M is 0 or an integer of 1 to 3, preferably 0 or 1, and more preferably 0.
 nは、0または1~3の整数であり、好ましくは、0または1であり、より好ましくは、0である。 N is 0 or an integer of 1 to 3, preferably 0 or 1, and more preferably 0.
 kは、0または1~2の整数であり、好ましくは、0または1であり、より好ましくは、0である。 K is 0 or an integer of 1 to 2, preferably 0 or 1, and more preferably 0.
 Rは、単独または互いに独立して、例えば、アルキル基、アルコキシ基、アリール基、カルボキシル基(-COOH)、スルホ基(-SOH)などを表す。 R 1 singly or independently represents an alkyl group, an alkoxy group, an aryl group, a carboxyl group (—COOH), a sulfo group (—SO 3 H) or the like.
 Rで示されるアルキル基は、好ましくは、C1-6アルキル基が挙げられ、具体的には、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、sec-ペンチル、ネオペンチル、シクロペンチル、n-ヘキシル、イソへキシル、シクロヘキシルなどの炭素数1~6の直鎖状、分岐状または環状のアルキル基が挙げられる。 The alkyl group represented by R 1 is preferably a C 1-6 alkyl group, specifically, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, Examples thereof include linear, branched or cyclic alkyl groups having 1 to 6 carbon atoms, such as pentyl, isopentyl, sec-pentyl, neopentyl, cyclopentyl, n-hexyl, isohexyl, cyclohexyl and the like.
 Rで示されるアルコキシ基は、好ましくは、C1-6アルコキシ基が挙げられ、具体的は、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、sec-ブトキシ、tert-ブトキシ、ペンチルオキシ、イソペンチルオキシ、ネオペンチルオキシ、n-ヘキシルオキシ、イソヘキシルオキシなどの炭素数1~6の直鎖状または分岐状のアルコキシ基が挙げられる。 The alkoxy group represented by R 1 is preferably a C1-6 alkoxy group, and specifically includes methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentyloxy, iso Examples thereof include straight-chain or branched alkoxy groups having 1 to 6 carbon atoms such as pentyloxy, neopentyloxy, n-hexyloxy, isohexyloxy and the like.
 Rで示されるアリール基としては、例えば、フェニル、トリル、キシリル、ビフェニル、ナフチル、フェニルナフチル、アントリル、フェナントリル、アズレニルなどのアリール基が挙げられる。 Examples of the aryl group represented by R 1 include aryl groups such as phenyl, tolyl, xylyl, biphenyl, naphthyl, phenylnaphthyl, anthryl, phenanthryl, and azulenyl.
 Rは、カルボキシル基(-COOH)またはスルホ基(-SOH)である場合、これらは、金属塩を形成していてもよい。金属塩を形成する金属としては、例えば、ナトリウム、カリウムなどが挙げられる。 When R 1 is a carboxyl group (—COOH) or a sulfo group (—SO 3 H), these may form a metal salt. Examples of the metal that forms the metal salt include sodium and potassium.
 Rは、単独または互いに独立して、例えば、アルキル基、アルコキシ基、アリール基、カルボキシル基、スルホ基などを表す。 R 2 represents an alkyl group, an alkoxy group, an aryl group, a carboxyl group, a sulfo group, or the like, alone or independently of each other.
 Rに示されるアルキル基、アルコキシ基、アリール基、カルボキシル基、スルホ基などはRと同様のものが挙げられる。 Alkyl group represented by R 2, an alkoxy group, an aryl group, a carboxyl group, etc. sulfo group include the same as R 1.
 Rは、単独または互いに独立して、例えば、アルキル基、アルコキシ基、アリール基、カルボキシル基、スルホ基などを表す。 R 3 singly or independently represents an alkyl group, an alkoxy group, an aryl group, a carboxyl group, a sulfo group, or the like.
 Rに示されるアルキル基、アルコキシ基、アリール基、カルボキシル基、スルホ基などはRと同様のものが挙げられる。 Alkyl group represented by R 3, an alkoxy group, an aryl group, a carboxyl group, etc. sulfo group include the same as R 1.
 フェナントロリン系配位子として、具体的には、1,10-フェナントロリンなどが挙げられる。 Specific examples of the phenanthroline-based ligand include 1,10-phenanthroline.
 フェナントロリン系配位子は、市販品として入手可能であり、具体的には、1,10-フェナントロリン一水和物(東京化成工業社製、キシダ化学社製)などが挙げられる。 The phenanthroline-based ligand is available as a commercial product, and specific examples include 1,10-phenanthroline monohydrate (manufactured by Tokyo Chemical Industry Co., Ltd., manufactured by Kishida Chemical Co., Ltd.).
 フェナントロリンFe錯体において、フェナントロリン系配位子は、2座配位子として、例えば、鉄に3分子配位している。 In the phenanthroline Fe complex, the phenanthroline-based ligand is coordinated with, for example, three molecules of iron as a bidentate ligand.
 フェナントロリンFe錯体としては、具体的には、トリス(フェナントロリン)鉄(II)錯体などが挙げられる。 Specific examples of the phenanthroline Fe complex include tris (phenanthroline) iron (II) complex.
 フェナントロリンMn錯体は、フェナントロリン系配位子がマンガンに配位された遷移金属錯体である。 The phenanthroline Mn complex is a transition metal complex in which a phenanthroline ligand is coordinated to manganese.
 フェナントロリンMn錯体におけるフェナントロリン系配位子は、フェナントロリンFe錯体で挙げたフェナントロリン系配位子と同様のものが挙げられ、好ましいフェナントロリン系配位子もフェナントロリンFe錯体と同様のものが挙げられる。 Examples of the phenanthroline-based ligand in the phenanthroline Mn complex include the same phenanthroline-based ligands as mentioned in the phenanthroline Fe complex, and preferable phenanthroline-based ligands include the same as the phenanthroline-based Fe complex.
 フェナントロリンMn錯体において、フェナントロリン系配位子は、2座配位子として、例えば、マンガンに3分子配位している。 In the phenanthroline Mn complex, the phenanthroline-based ligand is coordinated to, for example, three molecules of manganese as a bidentate ligand.
 フェナントロリンNi錯体は、フェナントロリン系配位子がニッケルに配位された遷移金属錯体である。 The phenanthroline Ni complex is a transition metal complex in which a phenanthroline ligand is coordinated to nickel.
 フェナントロリンNi錯体におけるフェナントロリン系配位子は、フェナントロリンNi錯体で挙げたフェナントロリン系配位子と同様のものが挙げられ、好ましいフェナントロリン系配位子もフェナントロリンFe錯体と同様のものが挙げられる。 Examples of the phenanthroline-based ligand in the phenanthroline Ni complex include the same phenanthroline-based ligands as exemplified in the phenanthroline Ni complex, and preferable phenanthroline-based ligands include those similar to the phenanthroline Fe complex.
 フェナントロリンNi錯体において、フェナントロリン系配位子は、2座配位子として、例えば、ニッケルに3分子配位している。 In the phenanthroline Ni complex, the phenanthroline-based ligand is coordinated with, for example, three molecules of nickel as a bidentate ligand.
 また、錯体混合物は、Fe-Mnの二つの金属を核とし、それらの金属にフェナントロリン系配位子が配位したFe-Mn複合錯体、Fe-Niの二つの金属を核とし、それらの金属にフェナントロリン系配位子が配位したFe-Ni複合錯体などの複合錯体を含有していてもよい。 The complex mixture is composed of two Fe—Mn metals as the core, Fe—Mn complex complex in which the phenanthroline ligand is coordinated to these metals, and two Fe—Ni metals as the core. May contain a complex complex such as an Fe—Ni complex complex coordinated with a phenanthroline-based ligand.
 錯体混合物が、フェナントロリンFe錯体およびフェナントロリンMn錯体を含有する場合、フェナントロリンMn錯体に含まれるマンガンの含有割合は、フェナントロリンFe錯体に含まれる鉄1モルに対して、例えば、1/3モル以上であり、3モル以下である。また、鉄100質量部に対して、例えば、30質量部以上であり、300質量部以下である。 When the complex mixture contains a phenanthroline Fe complex and a phenanthroline Mn complex, the content of manganese contained in the phenanthroline Mn complex is, for example, 1/3 mole or more with respect to 1 mole of iron contained in the phenanthroline Fe complex. 3 mol or less. Moreover, it is 30 mass parts or more with respect to 100 mass parts of iron, and is 300 mass parts or less.
 錯体混合物が、フェナントロリンFe錯体およびフェナントロリンNi錯体を含有する場合、フェナントロリンNi錯体に含まれるニッケルの含有割合は、フェナントロリンFe錯体に含まれる鉄1モルに対して、例えば、1/3モル以上であり、3モル以下である。また、鉄100質量部に対して、例えば、30質量部以上であり、350質量部以下である。 When the complex mixture contains a phenanthroline Fe complex and a phenanthroline Ni complex, the content ratio of nickel contained in the phenanthroline Ni complex is, for example, 1/3 mole or more with respect to 1 mole of iron contained in the phenanthroline Fe complex. 3 mol or less. Moreover, it is 30 mass parts or more with respect to 100 mass parts of iron, and is 350 mass parts or less.
 フェナントロリンFe錯体、フェナントロリンMn錯体およびフェナントロリンNi錯体を調製するには、特に制限されず、公知の方法を採用することができる。 The preparation of the phenanthroline Fe complex, the phenanthroline Mn complex, and the phenanthroline Ni complex is not particularly limited, and a known method can be employed.
 例えば、鉄、マンガンまたはニッケルの塩(例えば、硫酸塩、硝酸塩、塩化物、りん酸塩などの無機塩、例えば、酢酸塩、しゅう酸塩などの有機酸塩など)と、フェナントロリン系配位子とを、例えば、水、アルコール、脂肪族炭化水素、芳香族炭化水素、ハロゲン化炭化水素、ニトリル類などの公知の溶媒中で混合することにより、フェナントロリンFe錯体、フェナントロリンMn錯体またはフェナントロリンNi錯体を製造することができる。 For example, iron, manganese or nickel salts (for example, inorganic salts such as sulfates, nitrates, chlorides and phosphates, for example, organic acid salts such as acetates and oxalates) and phenanthroline ligands Are mixed in a known solvent such as water, alcohol, aliphatic hydrocarbon, aromatic hydrocarbon, halogenated hydrocarbon, nitrile, etc., to thereby convert phenanthroline Fe complex, phenanthroline Mn complex or phenanthroline Ni complex. Can be manufactured.
 フェナントロリンFe錯体、フェナントロリンMn錯体およびフェナントロリンNi錯体は、同一の溶媒中で製造してもよく、または、それぞれ別々の溶媒中で製造してもよい。 The phenanthroline Fe complex, the phenanthroline Mn complex, and the phenanthroline Ni complex may be produced in the same solvent, or may be produced in separate solvents.
 すなわち、例えば、フェナントロリン系配位子と、鉄塩と、マンガン塩およびニッケル塩の少なくとも1種とを同一溶媒中に混合することができる。この場合では、錯体混合物の溶液および/または分散液が調製される。 That is, for example, a phenanthroline-based ligand, an iron salt, and at least one of a manganese salt and a nickel salt can be mixed in the same solvent. In this case, a solution and / or dispersion of the complex mixture is prepared.
 また、例えば、フェナントロリン系配位子と、鉄塩とを溶媒中に混合して、フェナントロリンFe錯体を含有する第1溶液と、フェナントロリン系配位子と、マンガン塩およびニッケル塩の少なくとも1種とを溶媒中に混合して、フェナントロリンMn錯体およびフェナントロリンNi錯体の少なくとも1種を含有する第2溶液とを別々に調製することができる。この場合においては、次いで、第1溶液と第2溶液とを混合することにより、錯体混合物の溶液および/または分散液が調製される。 Further, for example, a phenanthroline-based ligand and an iron salt are mixed in a solvent, and a first solution containing a phenanthroline-Fe complex, a phenanthroline-based ligand, at least one of a manganese salt and a nickel salt, Can be mixed in a solvent to prepare a second solution containing at least one of a phenanthroline Mn complex and a phenanthroline Ni complex separately. In this case, a solution and / or dispersion of the complex mixture is then prepared by mixing the first solution and the second solution.
 このように調製された錯体混合物において、鉄、マンガンおよびニッケルの塩と、フェナントロリン系配位子との配合割合は、フェナントロリン系配位子1モルに対して、鉄、マンガンおよびニッケルの塩の総量が、例えば、0.1モル以上、好ましくは、0.3モル以上であり、例えば、30モル以下、好ましくは、20モル以下であり、また、さらに好ましくは、フェナントロリン系配位子に対して、鉄、マンガンおよびニッケルの塩の総量が等モル以上となる割合である。 In the complex mixture thus prepared, the mixing ratio of the iron, manganese and nickel salt to the phenanthroline ligand is the total amount of iron, manganese and nickel salt per mole of the phenanthroline ligand. Is, for example, 0.1 mol or more, preferably 0.3 mol or more, for example, 30 mol or less, preferably 20 mol or less, and more preferably with respect to the phenanthroline-based ligand. The ratio of the total amount of iron, manganese and nickel salts to be equimolar or more.
 錯体混合物(固形分)において、鉄、マンガンおよびニッケルの総量の含有割合(錯体混合物(固形分)の総量に対する鉄、マンガンおよびニッケルの総量の含有割合)は、例えば、1質量%以上、好ましくは、5質量%以上であり、また、例えば、50質量%以下、好ましくは、25質量%以下である。 In the complex mixture (solid content), the total content of iron, manganese and nickel (the total content of iron, manganese and nickel with respect to the total amount of the complex mixture (solid content)) is, for example, 1% by mass or more, preferably For example, it is 50% by mass or less, preferably 25% by mass or less.
 このように調製された錯体混合物の溶液または/分散液は、必要により乾燥し、次いで、焼成する。 The solution / dispersion of the complex mixture thus prepared is dried if necessary and then calcined.
 焼成では、例えば、不活性ガス(例えば、窒素ガス、アルゴンガスなど)や、還元ガス(例えば、窒素ガスおよび水素ガスの混合ガス)雰囲気下において、錯体混合物を加熱する。 In calcination, for example, the complex mixture is heated in an atmosphere of an inert gas (for example, nitrogen gas, argon gas, etc.) or a reducing gas (for example, a mixed gas of nitrogen gas and hydrogen gas).
 焼成条件としては、焼成温度が、例えば、400℃以上、好ましくは、600℃以上であり、また、例えば、1000℃以下である。焼成時間は、例えば、1時間以上であり、また、例えば、10時間以下、好ましくは、5時間以下である。 As the firing conditions, the firing temperature is, for example, 400 ° C. or higher, preferably 600 ° C. or higher, and for example, 1000 ° C. or lower. The firing time is, for example, 1 hour or longer, and for example, 10 hours or shorter, preferably 5 hours or shorter.
 なお、錯体混合物は、一段階または多段階で焼成することができる。 Note that the complex mixture can be fired in one stage or in multiple stages.
 乾燥する場合の乾燥条件としては、乾燥温度が、例えば、-25℃以上、好ましくは、15℃以上であり、また、例えば、80℃以下、好ましくは、50℃以下である。乾燥時間は、例えば、12~48時間である。 As drying conditions for drying, the drying temperature is, for example, −25 ° C. or higher, preferably 15 ° C. or higher, and for example, 80 ° C. or lower, preferably 50 ° C. or lower. The drying time is, for example, 12 to 48 hours.
 これにより、本発明の酸素還元触媒を焼成体として得ることができる。 Thereby, the oxygen reduction catalyst of the present invention can be obtained as a fired body.
 このようにして得られた焼成体は、これらの複数の特定の遷移金属錯体(すなわち、フェナントロリンFe錯体と、フェナントロリンMn錯体および/またはフェナントロリンNi錯体と)が焼成されていることにより、遷移金属錯体1種単独(例えば、フェナントロリンFe錯体単独や、フェナントロリンMn錯体単独など)を焼成した焼成体よりも、より一層優れた酸素還元活性を向上することができる。 The fired body thus obtained is obtained by firing the plurality of specific transition metal complexes (that is, phenanthroline Fe complex, phenanthroline Mn complex and / or phenanthroline Ni complex), Oxygen reduction activity can be further improved compared to a fired body obtained by firing one kind alone (for example, phenanthroline Fe complex alone or phenanthroline Mn complex alone).
 また、このようにして得られた焼成体を、さらに、アンモニア処理することもできる。焼成体をアンモニア処理することにより、錯体の酸素還元活性をさらに向上することができる。 Further, the fired body thus obtained can be further treated with ammonia. The oxygen reduction activity of the complex can be further improved by treating the fired product with ammonia.
 アンモニア処理においては、上記により得られた焼成体を、例えば、アンモニア雰囲気(100%アンモニアガス)下において、焼成(2次焼成)する。アンモニア処理における焼成条件としては、焼成温度が、例えば、400℃以上、好ましくは、600℃以上であり、また、例えば、1000℃以下である。焼成時間は、例えば、0.5時間以上であり、また、例えば、10時間以下、好ましくは、5時間以下である。 In the ammonia treatment, the fired body obtained as described above is fired (secondary firing), for example, in an ammonia atmosphere (100% ammonia gas). As firing conditions in the ammonia treatment, the firing temperature is, for example, 400 ° C. or more, preferably 600 ° C. or more, and, for example, 1000 ° C. or less. The firing time is, for example, 0.5 hours or more, and for example, 10 hours or less, preferably 5 hours or less.
 一方、錯体混合物を焼成すると、各遷移金属錯体(フェナントロリンFe錯体、フェナントロリンMn錯体、フェナントロリンMn錯体)が凝集および粒成長し、その有効表面積が減少して、その結果、触媒活性が低下する場合がある。このような場合には、有効表面積を十分に確保するため、好ましくは、遷移金属錯体が凝集および粒成長した粒状物に細孔を形成し、多孔質の焼成体を形成する。 On the other hand, when the complex mixture is baked, each transition metal complex (phenanthroline Fe complex, phenanthroline Mn complex, phenanthroline Mn complex) aggregates and grows, and its effective surface area decreases, resulting in a decrease in catalytic activity. is there. In such a case, in order to ensure a sufficient effective surface area, it is preferable to form pores in the granular material in which the transition metal complex is aggregated and grown, thereby forming a porous fired body.
 多孔質の焼成体を形成する方法としては、特に制限されず、公知の方法が挙げられる。例えば、まず、錯体混合物と可溶性粒子との粒子混合物を焼成して、錯体混合物と可溶性粒子とをランダムに含有する複合物を作製し、その後、複合物中の可溶性粒子を除去する方法が挙げられる。 The method for forming the porous fired body is not particularly limited, and may be a known method. For example, a method of first firing a particle mixture of a complex mixture and soluble particles to produce a composite containing the complex mixture and soluble particles at random, and then removing the soluble particles in the composite. .
 可溶性粒子としては、特に制限されないが、例えば、錯体混合物と可溶性粒子との混合時に、錯体混合物に均一に分散でき、また、上記の焼成によって融解することなく複合物に均一に分布し、また、焼成の後に、酸またはアルカリ処理などにより溶解および除去される粒子などが挙げられる。 Although it does not restrict | limit especially as a soluble particle, For example, at the time of mixing a complex mixture and a soluble particle, it can disperse | distribute uniformly to a complex mixture, and it distributes uniformly to a composite, without melt | dissolving by said baking, Examples of the particles that are dissolved and removed by firing with an acid or alkali after firing are exemplified.
 このような可溶性粒子としては、例えば、フュームドシリカ、コロイダルシリカなどのアモルファスシリカ、ポリスチレン、ポリイミドなどのポリマー粒子、および、それらの焼成体などが挙げられる。 Examples of such soluble particles include amorphous silica such as fumed silica and colloidal silica, polymer particles such as polystyrene and polyimide, and fired bodies thereof.
 これら可溶性粒子は、単独使用または2種類以上併用することができ、好ましくは、アモルファスシリカ、より好ましくは、フュームドシリカが挙げられる。 These soluble particles can be used alone or in combination of two or more kinds, preferably amorphous silica, more preferably fumed silica.
 この方法では、例えば、まず、上記焼成前に、錯体混合物と可溶性粒子とを混合して、錯体混合物と可溶性粒子との粒子混合物を調製する。 In this method, for example, first, before the firing, the complex mixture and the soluble particles are mixed to prepare a particle mixture of the complex mixture and the soluble particles.
 錯体混合物と可溶性粒子とを混合するには、例えば、まず、錯体混合物を、溶媒に、溶解および/または分散させる。 In order to mix the complex mixture and the soluble particles, for example, first, the complex mixture is dissolved and / or dispersed in a solvent.
 溶媒としては、特に制限されないが、例えば、水、例えば、プロトン性極性溶媒(例えば、メタノール、エタノール、イソプロパノール、グリコールなどのアルコールなど)、非プロトン性極性溶媒(例えば、アセトン、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAC)、ジメチルスルホキシド(DMSO)、N-メチルピロリドン(NMP)、アセトニトリル、ピペリジンなど)、アミン類(例えば、アンモニア、例えば、トリエチルアミン、ピリジンなど)、エーテル類(例えば、ジオキサン、テトラヒドロフラン(THF)など)、芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレンなど)などが挙げられる。 The solvent is not particularly limited. For example, water, for example, protic polar solvent (for example, alcohol such as methanol, ethanol, isopropanol, glycol, etc.), aprotic polar solvent (for example, acetone, N, N-dimethyl) Formamide (DMF), N, N-dimethylacetamide (DMAC), dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), acetonitrile, piperidine, etc.), amines (eg, ammonia, eg, triethylamine, pyridine, etc.), Ethers (for example, dioxane, tetrahydrofuran (THF), etc.), aromatic hydrocarbons (for example, benzene, toluene, xylene, etc.) and the like can be mentioned.
 これら溶媒としては、単独使用または2種類以上併用することができ、好ましくは、テトラヒドロフラン、アセトンなどが挙げられる。 These solvents can be used alone or in combination of two or more, and preferably include tetrahydrofuran, acetone and the like.
 錯体混合物と溶媒との配合割合は、錯体混合物100質量部に対して、溶媒が、例えば、1質量部以上、好ましくは、10質量部以上であり、また、例えば、100000質量部以下、好ましくは、50000質量部以下である。 The mixing ratio of the complex mixture and the solvent is such that the solvent is, for example, 1 part by mass or more, preferably 10 parts by mass or more, for example, 100000 parts by mass or less, preferably 100 parts by mass of the complex mixture. 50000 parts by mass or less.
 これにより、錯体混合物の溶液および/または分散液を得る。 This gives a solution and / or dispersion of the complex mixture.
 次いで、得られた錯体混合物の溶液および/または分散液と、可溶性粒子とを、湿式混合などの公知の方法により混合する。 Subsequently, the solution and / or dispersion liquid of the obtained complex mixture and the soluble particles are mixed by a known method such as wet mixing.
 錯体混合物の溶液および/または分散液と、可溶性粒子との配合割合は、例えば、錯体混合物の溶液および/または分散液における錯体混合物(固形分)の総量100質量部に対して、可溶性粒子が、例えば、10質量部以上、好ましくは、50質量部以上であり、また、例えば、500質量部以下、好ましくは、200質量部以下である。 The mixing ratio of the solution and / or dispersion of the complex mixture and the soluble particles is, for example, that the soluble particles are contained in 100 parts by mass of the total amount of the complex mixture (solid content) in the solution and / or dispersion of the complex mixture. For example, it is 10 parts by mass or more, preferably 50 parts by mass or more, and for example, 500 parts by mass or less, preferably 200 parts by mass or less.
 これにより、錯体混合物および可溶性粒子の溶液および/または分散液を得る。 This gives a solution and / or dispersion of the complex mixture and soluble particles.
 次いで、この方法では、得られた錯体混合物および可溶性粒子の溶液および/または分散液を乾燥させる。これにより、錯体混合物と可溶性粒子との粒子混合物を得る。 Next, in this method, the obtained complex mixture and soluble particle solution and / or dispersion liquid are dried. Thereby, a particle mixture of the complex mixture and the soluble particles is obtained.
 乾燥条件としては、乾燥温度が、例えば、-25℃以上、好ましくは、15℃以上であり、また、例えば、80℃以下、好ましくは、50℃以下である。乾燥時間は、例えば、12~48時間である。 As drying conditions, the drying temperature is, for example, −25 ° C. or more, preferably 15 ° C. or more, and for example, 80 ° C. or less, preferably 50 ° C. or less. The drying time is, for example, 12 to 48 hours.
 次いで、上記の焼成条件において、錯体混合物および可溶性粒子の粒子混合物を焼成し、錯体混合物と可溶性粒子とをランダムに含有する複合物を得る。 Next, under the above firing conditions, the complex mixture and the particle mixture of soluble particles are fired to obtain a composite containing the complex mixture and soluble particles at random.
 その後、この方法では、複合物中の可溶性粒子を、除去する。 Then, in this method, the soluble particles in the composite are removed.
 例えば、可溶性粒子としてアモルファスシリカが用いられる場合には、焼成により、アモルファスシリカが結晶化し、シリカ(焼成体)となる場合がある。このような場合において、そのシリカを除去するためには、例えば、複合物を、アルカリ処理する。 For example, when amorphous silica is used as the soluble particles, the amorphous silica may be crystallized by firing to form silica (fired body). In such a case, in order to remove the silica, for example, the composite is treated with an alkali.
 アルカリ処理としては、複合物に、例えば、水酸化カリウム、水酸化ナトリウムなどのアルカリ溶液を含浸させる。これにより、複合物中の可溶性粒子が溶解されて、細孔が形成され、その結果、多孔質の焼成体が得られる。 As the alkali treatment, the composite is impregnated with an alkaline solution such as potassium hydroxide or sodium hydroxide. Thereby, the soluble particles in the composite are dissolved to form pores, and as a result, a porous fired body is obtained.
 このような多孔質の焼成体によれば、焼成により錯体混合物が凝集および粒成長する場合にも、細孔により、錯体混合物の有効表面積が十分に確保されるため、優れた触媒活性を維持することができる。 According to such a porous fired body, even when the complex mixture aggregates and grows by firing, the pores ensure a sufficient effective surface area of the complex mixture, thereby maintaining excellent catalytic activity. be able to.
 なお、可溶性粒子を除去する方法としては、上記に限定されず、可溶性粒子の種類に応じて、例えば、水に浸漬する方法、酸処理する方法など、適宜選択することができる。 In addition, the method for removing the soluble particles is not limited to the above, and can be appropriately selected according to the type of the soluble particles, for example, a method of immersing in water, a method of acid treatment, and the like.
 また、本発明の酸素還元触媒は、上記した焼成体以外の成分を含むこともできる。そのような成分として、担持体が挙げられる。 The oxygen reduction catalyst of the present invention can also contain components other than the above-mentioned calcined body. Examples of such a component include a carrier.
 担持体としては、例えば、カーボンブラックなどのカーボンが挙げられる。酸素還元触媒が担持体を含む場合、焼成体は担持体に担持される。焼成体を担持体に担持させるには、公知の担持方法を採用することができる。 Examples of the carrier include carbon such as carbon black. When the oxygen reduction catalyst includes a support, the fired body is supported on the support. In order to support the fired body on the support, a known support method can be employed.
 例えば、含浸法では、上記した錯体混合物溶液および/または分散液に、担持体を混合した後、上記した焼成条件にて焼成する。担持体の混合割合は、フェナントロリン系配位子100質量部に対して、例えば、10質量部以上、好ましくは、50質量部以上であり、また、例えば、500質量部以下、好ましくは、200質量部以下である。 For example, in the impregnation method, the support is mixed with the above complex mixture solution and / or dispersion, and then fired under the above firing conditions. The mixing ratio of the support is, for example, 10 parts by mass or more, preferably 50 parts by mass or more, and for example, 500 parts by mass or less, preferably 200 parts by mass with respect to 100 parts by mass of the phenanthroline ligand. Or less.
 そして、得られた酸素還元触媒を用いて、電解質層4とともに膜-電極接合体を形成するには、例えば、上記した燃料側電極2と同様の方法により形成する。これによって、電解質層4における、燃料側電極2が定着された一方の表面とは異なる他方の表面に定着した酸素側電極3を得ることができる。すなわち、酸素側電極3が、電解質層4の他方の表面に定着されることによって、燃料側電極2および酸素側電極3は、電解質層4を挟んで対向配置される。 In order to form a membrane-electrode assembly together with the electrolyte layer 4 using the obtained oxygen reduction catalyst, for example, it is formed by the same method as that for the fuel side electrode 2 described above. As a result, the oxygen-side electrode 3 fixed on the other surface of the electrolyte layer 4 different from the one surface on which the fuel-side electrode 2 is fixed can be obtained. That is, the oxygen-side electrode 3 is fixed to the other surface of the electrolyte layer 4, so that the fuel-side electrode 2 and the oxygen-side electrode 3 are disposed to face each other with the electrolyte layer 4 interposed therebetween.
 なお、酸素側電極3の坪量(電解質層4に対する酸素還元触媒の付着量)は、例えば、0.01~10mg/cmである。 The basis weight of the oxygen-side electrode 3 (the amount of oxygen reduction catalyst attached to the electrolyte layer 4) is, for example, 0.01 to 10 mg / cm 2 .
 また、酸素側電極3の厚みは、例えば、0.1μm以上、好ましくは、1μm以上であり、また、例えば、100μm以下、好ましくは、10μm以下である。 The thickness of the oxygen side electrode 3 is, for example, 0.1 μm or more, preferably 1 μm or more, and for example, 100 μm or less, preferably 10 μm or less.
 電解質層4は、アニオン交換膜から形成されている。アニオン交換膜としては、酸素側電極3で生成されるアニオン成分としての水酸化物イオン(OH)を、酸素側電極3から燃料側電極2へ移動させることができる媒体であれば、特に限定されないが、例えば、4級アンモニウム基、ピリジニウム基などのアニオン交換基を有する固体高分子膜(アニオン交換樹脂)が挙げられる。 The electrolyte layer 4 is formed from an anion exchange membrane. The anion exchange membrane is not particularly limited as long as it is a medium capable of moving hydroxide ions (OH ) as an anion component generated at the oxygen side electrode 3 from the oxygen side electrode 3 to the fuel side electrode 2. However, for example, a solid polymer membrane (anion exchange resin) having an anion exchange group such as a quaternary ammonium group or a pyridinium group can be mentioned.
 燃料電池セルSは、さらに、燃料供給部材5および酸素供給部材6を備えている。燃料供給部材5は、ガス不透過性の導電性部材からなり、その一方の面が、燃料側電極2に対向接触されている。そして、この燃料供給部材5には、燃料側電極2の全体に燃料を接触させるための燃料側流路7が、一方の面から凹む葛折状の溝として形成されている。なお、この燃料側流路7は、その上流側端部および下流側端部に、燃料供給部材5を貫通する供給口8および排出口9がそれぞれ連続して形成されている。 The fuel battery cell S further includes a fuel supply member 5 and an oxygen supply member 6. The fuel supply member 5 is made of a gas-impermeable conductive member, and one surface thereof is in opposed contact with the fuel-side electrode 2. The fuel supply member 5 is formed with a fuel-side flow path 7 for bringing fuel into contact with the entire fuel-side electrode 2 as a distorted groove recessed from one surface. The fuel-side flow path 7 has a supply port 8 and a discharge port 9 that pass through the fuel supply member 5 formed continuously at the upstream end and the downstream end, respectively.
 また、酸素供給部材6も、燃料供給部材5と同様に、ガス不透過性の導電性部材からなり、その一方の面が、酸素側電極3に対向接触されている。そして、この酸素供給部材6にも、酸素側電極3の全体に酸素(空気)を接触させるための酸素側流路10が、一方の面から凹む葛折状の溝として形成されている。なお、この酸素側流路10にも、その上流側端部および下流側端部に、酸素供給部材6を貫通する供給口11および排出口12がそれぞれ連続して形成されている。 Similarly to the fuel supply member 5, the oxygen supply member 6 is made of a gas-impermeable conductive member, and one surface thereof is opposed to the oxygen side electrode 3. The oxygen supply member 6 is also formed with an oxygen-side flow channel 10 for contacting oxygen (air) with the entire oxygen-side electrode 3 as a distorted groove recessed from one surface. The oxygen-side flow path 10 also has a supply port 11 and a discharge port 12 that pass through the oxygen supply member 6 continuously formed at the upstream end portion and the downstream end portion thereof.
 そして、この燃料電池1は、実際には、上記した燃料電池セルSが、複数積層されるスタック構造として形成される。そのため、燃料供給部材5および酸素供給部材6は、実際には、両面に燃料側流路7および酸素側流路10が形成されるセパレータとして構成される。 The fuel cell 1 is actually formed as a stack structure in which a plurality of the above-described fuel cells S are stacked. Therefore, the fuel supply member 5 and the oxygen supply member 6 are actually configured as separators in which the fuel side flow path 7 and the oxygen side flow path 10 are formed on both surfaces.
 なお、図示しないが、この燃料電池1には、導電性材料によって形成される集電板が備えられており、集電板に備えられた端子から燃料電池1で発生した起電力を外部に取り出すことができるように構成されている。 Although not shown, the fuel cell 1 is provided with a current collector plate formed of a conductive material, and an electromotive force generated in the fuel cell 1 is taken out from a terminal provided on the current collector plate. It is configured to be able to.
 また、試験的(モデル的)には、この燃料電池セルSの燃料供給部材5と酸素供給部材6とを外部回路13によって接続し、その外部回路13に電圧計14を介在させて、発生する電圧を計測することもできる。 Further, on a test (model) basis, the fuel supply member 5 and the oxygen supply member 6 of the fuel cell S are connected by an external circuit 13, and a voltmeter 14 is interposed in the external circuit 13 to generate the fuel cell S. The voltage can also be measured.
 そして、この燃料電池1においては、燃料化合物を含む燃料が、改質などを経由することなく、直接供給される。また、直接供給される燃料は、好ましくは、液体燃料である。 In the fuel cell 1, the fuel containing the fuel compound is directly supplied without going through reforming or the like. Further, the directly supplied fuel is preferably a liquid fuel.
 燃料化合物は、水素が窒素に直接結合し、窒素-窒素結合を有するものが好ましく、炭素-炭素結合を有しないものが好ましい。また、炭素の数はできる限り少ない(できればゼロである)ものが好ましい。 The fuel compound preferably has hydrogen bonded directly to nitrogen and has a nitrogen-nitrogen bond, and preferably has no carbon-carbon bond. Further, it is preferable that the number of carbons is as small as possible (zero if possible).
 また、このような燃料化合物には、その性能を阻害しない範囲において、酸素原子、イオウ原子などを含んでいてよく、より具体的には、カルボニル基、水酸基、水和物、スルホン酸基あるいは硫酸塩などとして、含まれていてもよい。 Further, such a fuel compound may contain an oxygen atom, a sulfur atom, etc. within a range not impairing its performance, and more specifically, a carbonyl group, a hydroxyl group, a hydrate, a sulfonic acid group or a sulfuric acid group. It may be contained as a salt or the like.
 このような観点から、燃料化合物としては、具体的には、例えば、ヒドラジン(NHNH)、水加ヒドラジン(NHNH・HO)、炭酸ヒドラジン((NHNHCO)、硫酸ヒドラジン(NHNH・HSO)、モノメチルヒドラジン(CHNHNH)、ジメチルヒドラジン((CHNNH、CHNHNHCH)、カルボンヒドラジド((NHNHCO)などのヒドラジン類、例えば、尿素(NHCONH)、例えば、アンモニア(NH)、例えば、イミダゾール、1,3,5-トリアジン、3-アミノ-1,2,4-トリアゾールなどの複素環類、例えば、ヒドロキシルアミン(NHOH)、硫酸ヒドロキシルアミン(NHOH・HSO)などのヒドロキシルアミン類などが挙げられる。このような燃料化合物は、単独または2種類以上組み合わせて用いることができる。好ましくは、ヒドラジン類が挙げられる。 From this point of view, specific examples of the fuel compound include hydrazine (NH 2 NH 2 ), hydrazine hydrate (NH 2 NH 2 .H 2 O), and hydrazine carbonate ((NH 2 NH 2 ) 2. CO 2 ), hydrazine sulfate (NH 2 NH 2 .H 2 SO 4 ), monomethyl hydrazine (CH 3 NHNH 2 ), dimethyl hydrazine ((CH 3 ) 2 NNH 2 , CH 3 NHNHCH 3 ), carboxylic hydrazide ((NHNH 2 ) Hydrazines such as 2 CO), for example urea (NH 2 CONH 2 ), for example ammonia (NH 3 ), for example imidazole, 1,3,5-triazine, 3-amino-1,2,4-triazole heterocyclic compounds such as, for example, hydroxylamine (NH 2 OH), hydroxylamine sulfate (NH 2 OH · H 2 O 4), and the like hydroxylamines such. Such fuel compounds can be used alone or in combination of two or more. Preferably, hydrazines are used.
 上記した燃料化合物のうち、炭素を含まない化合物、すなわち、ヒドラジン(NHNH)、水加ヒドラジン(NHNH・HO)、硫酸ヒドラジン(NHNH・HSO)、アンモニア(NH)、ヒドロキシルアミン(NHOH)、硫酸ヒドロキシルアミン(NHOH・HSO)などは、後述するヒドラジンの反応のように、COによる触媒の被毒がないので耐久性の向上を図ることができ、実質的なゼロエミッションを実現することができる。 Among the above fuel compounds, compounds not containing carbon, that is, hydrazine (NH 2 NH 2 ), hydrazine hydrate (NH 2 NH 2 .H 2 O), hydrazine sulfate (NH 2 NH 2 .H 2 SO 4 ) , Ammonia (NH 3 ), hydroxylamine (NH 2 OH), and hydroxylamine sulfate (NH 2 OH · H 2 SO 4 ) are durable because there is no poisoning of the catalyst by CO as in the case of hydrazine reaction described later. Can be improved and substantially zero emission can be realized.
 燃料は、上記例示の燃料化合物をそのまま用いてもよいが、上記例示の燃料化合物を、例えば、水および/またはアルコール(例えば、メタノール、エタノール、プロパノール、イソプロパノールなどの低級アルコールなど)などの溶液として用いることができる。この場合、溶液中の燃料化合物の濃度は、燃料化合物の種類によっても異なるが、例えば、1質量%以上であり、例えば、90質量%以下、好ましくは、30質量%以下である。 As the fuel, the fuel compound exemplified above may be used as it is, but the fuel compound exemplified above is used as a solution such as water and / or alcohol (for example, lower alcohol such as methanol, ethanol, propanol, isopropanol). Can be used. In this case, the concentration of the fuel compound in the solution varies depending on the type of the fuel compound, but is, for example, 1% by mass or more, for example, 90% by mass or less, preferably 30% by mass or less.
 さらに、燃料は、上記した燃料化合物をガス(例えば、蒸気)として用いることができる。 Furthermore, as the fuel, the above fuel compound can be used as a gas (for example, steam).
 そして、酸素供給部材6の酸素側流路10に酸素(空気)を供給しつつ、燃料供給部材5の燃料側流路7に上記した燃料を供給すれば、酸素側電極3においては、下記反応式(2)に示すように、燃料側電極2で発生し、外部回路13を介して移動する電子(e)と、水(HO)と、酸素(O)とが反応して、水酸化物イオン(OH)を生成する。生成した水酸化物イオン(OH)は、アニオン交換膜からなる電解質層4を、酸素側電極3から燃料側電極2へ移動する。そして、燃料側電極2においては、下記反応式(1)に示すように、電解質層4を通過した水酸化物イオン(OH)と、燃料とが反応して、電子(e)が生成する。生成した電子(e)は、燃料供給部材5から外部回路13を介して酸素供給部材6に移動され、酸素側電極3へ供給される。このような燃料側電極2および酸素側電極3における電気化学的反応によって、起電力が生じ、発電が行われる。
(1) 2H+4OH→4HO+4e     (燃料側電極2における反応)(2) O+2HO+4e→4OH      (酸素側電極3における反応)(3) 2H+O→2HO          (燃料電池1全体としての反応)
 なお、この燃料電池1の運転条件は、特に限定されないが、例えば、燃料側電極2側の加圧が200kPa以下、好ましくは、100kPa以下であり、酸素側電極3側の加圧が200kPa以下、好ましくは、100kPa以下であり、燃料電池セルSの温度が0℃以上、好ましくは、20℃以上であり、例えば、120℃以下、好ましくは、80℃以下として設定される。
Then, if the above-described fuel is supplied to the fuel-side flow path 7 of the fuel supply member 5 while supplying oxygen (air) to the oxygen-side flow path 10 of the oxygen supply member 6, the following reaction occurs in the oxygen-side electrode 3. As shown in the equation (2), electrons (e ) generated in the fuel side electrode 2 and moved through the external circuit 13 react with water (H 2 O) and oxygen (O 2 ). , To generate hydroxide ions (OH ). The generated hydroxide ions (OH ) move from the oxygen side electrode 3 to the fuel side electrode 2 through the electrolyte layer 4 made of an anion exchange membrane. In the fuel side electrode 2, as shown in the following reaction formula (1), the hydroxide ions (OH ) that have passed through the electrolyte layer 4 react with the fuel to generate electrons (e ). To do. The generated electrons (e ) are moved from the fuel supply member 5 to the oxygen supply member 6 via the external circuit 13 and supplied to the oxygen side electrode 3. An electromotive force is generated by such an electrochemical reaction in the fuel side electrode 2 and the oxygen side electrode 3, and power generation is performed.
(1) 2H 2 + 4OH → 4H 2 O + 4e (reaction at fuel side electrode 2) (2) O 2 + 2H 2 O + 4e → 4OH (reaction at oxygen side electrode 3) (3) 2H 2 + O 2 → 2H 2 O (Reaction of fuel cell 1 as a whole)
The operating conditions of the fuel cell 1 are not particularly limited. For example, the pressure on the fuel side electrode 2 side is 200 kPa or less, preferably 100 kPa or less, and the pressure on the oxygen side electrode 3 side is 200 kPa or less. Preferably, it is 100 kPa or less, and the temperature of the fuel battery cell S is 0 ° C. or higher, preferably 20 ° C. or higher, for example, 120 ° C. or lower, preferably 80 ° C. or lower.
 以上、本発明の実施形態について説明したが、本発明の実施形態は、これに限定されるものではなく、本発明の要旨を変更しない範囲で、適宜設計を変形することができる。 As mentioned above, although embodiment of this invention was described, embodiment of this invention is not limited to this, A design can be suitably deform | transformed in the range which does not change the summary of this invention.
 本発明の燃料電池の用途としては、例えば、自動車、船舶、航空機などにおける駆動用モータの電源や、携帯電話機などの通信端末における電源などが挙げられる。 Applications of the fuel cell of the present invention include, for example, power sources for driving motors in automobiles, ships, airplanes, etc., and power sources in communication terminals such as mobile phones.
 このような燃料電池によれば、特定の構造を有する複数の遷移金属錯体が酸素側電極3に含まれているため、酸素側電極3における酸素の還元反応を活性化することができる。 According to such a fuel cell, since the oxygen side electrode 3 includes a plurality of transition metal complexes having a specific structure, the oxygen reduction reaction in the oxygen side electrode 3 can be activated.
 その結果、高電流を安定して得ることができ、燃料電池1の発電性能を向上させることができる。 As a result, a high current can be stably obtained, and the power generation performance of the fuel cell 1 can be improved.
 次に、本発明を実施例および比較例に基づいて説明するが、本発明は下記の実施例によって限定されるものではない。1.酸素還元触媒の調製
 実施例1
 1、10-フェナントロリン(東京化成工業社製)500mgを配位子として、エタノール25gおよび水10.5gの混合溶媒中に添加し、分散させて、配位子分散液を調製した。
Next, although this invention is demonstrated based on an Example and a comparative example, this invention is not limited by the following Example. 1. Example 1 Preparation of Oxygen Reduction Catalyst
A ligand dispersion was prepared by adding 500 mg of 1,10-phenanthroline (manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a ligand and dispersing in a mixed solvent of 25 g of ethanol and 10.5 g of water.
 この調製した配位子分散液に、鉄酢酸16.238gおよびマンガン酸酢塩22.874gを添加し、分散させた。次いで、カーボンブラック(Cabot社製、BP2000)500mgを添加し、分散させた後、乾燥させた。 To this prepared ligand dispersion, 16.238 g of iron acetic acid and 22.874 g of manganate acetate were added and dispersed. Subsequently, 500 mg of carbon black (manufactured by Cabot, BP2000) was added, dispersed, and dried.
 その後、得られた乾燥物を、不活性雰囲気中において、900℃で2時間焼成した。これにより、酸素還元触媒を得た。この酸素還元触媒では、Fe1モルに対して、Mnが1モルであった。 Thereafter, the obtained dried product was fired at 900 ° C. for 2 hours in an inert atmosphere. Thereby, an oxygen reduction catalyst was obtained. In this oxygen reduction catalyst, Mn was 1 mol per 1 mol of Fe.
 実施例2
 鉄酢酸16.238gおよびマンガン酸酢塩22.874gの代わりに、鉄酢酸15.695gおよびニッケル酢酸塩22.448gを配位子分散液に添加した以外は、実施例1と同様にして、酸素還元触媒を得た。この酸素還元触媒では、Fe1モルに対して、Niが1モルであった。
Example 2
In the same manner as in Example 1 except that 15.695 g of iron acetic acid and 22.448 g of nickel acetate were added to the ligand dispersion instead of 16.238 g of iron acetic acid and 22.874 g of manganate acetate, oxygen A reduction catalyst was obtained. In this oxygen reduction catalyst, Ni was 1 mol with respect to 1 mol of Fe.
 比較例1
 鉄酢酸16.238gおよびマンガン酸酢塩22.874gの代わりに、鉄酢酸32.205gを配位子分散液に添加した以外は、実施例1と同様にして、酸素還元触媒を得た。
Comparative Example 1
An oxygen reduction catalyst was obtained in the same manner as in Example 1 except that 32.205 g of iron acetic acid was added to the ligand dispersion instead of 16.238 g of iron acetic acid and 22.874 g of manganic acid acetate.
 比較例2
 鉄酢酸16.238gおよびマンガン酸酢塩22.874gの代わりに、マンガン酢酸塩46.136gを配位子分散液に添加した以外は、実施例1と同様にして、酸素還元触媒を得た。
Comparative Example 2
An oxygen reduction catalyst was obtained in the same manner as in Example 1 except that 46.136 g of manganese acetate was added to the ligand dispersion instead of 16.238 g of iron acetic acid and 22.874 g of manganate acetate.
 比較例3
 鉄酢酸16.238gおよびマンガン酸酢塩22.874gの代わりに、ニッケル酢酸塩43.787gを配位子分散液に添加した以外は、実施例1と同様にして、酸素還元触媒を得た。
Comparative Example 3
An oxygen reduction catalyst was obtained in the same manner as in Example 1, except that 43.787 g of nickel acetate was added to the ligand dispersion instead of 16.238 g of iron acetic acid and 22.874 g of manganate acetate.
 比較例4
 鉄酢酸16.238gおよびマンガン酸酢塩22.874gの代わりに、コバルト酢酸塩43.647gを配位子分散液に添加した以外は、実施例1と同様にして、酸素還元触媒を得た。
Comparative Example 4
An oxygen reduction catalyst was obtained in the same manner as in Example 1, except that 43.647 g of cobalt acetate was added to the ligand dispersion instead of 16.238 g of iron acetic acid and 22.874 g of manganate acetate.
 比較例5
 鉄酢酸16.238gおよびマンガン酸酢塩22.874gの代わりに、銅酢酸32.399gを配位子分散液に添加した以外は、実施例1と同様にして、酸素還元触媒を得た。
Comparative Example 5
An oxygen reduction catalyst was obtained in the same manner as in Example 1 except that 32.399 g of copper acetic acid was added to the ligand dispersion instead of 16.238 g of iron acetic acid and 22.874 g of manganic acid acetate.
 比較例6
 鉄酢酸16.238gおよびマンガン酸酢塩22.874gの代わりに、鉄酢酸15.661gおよびコバルト酢酸塩22.422gを配位子分散液に添加した以外は、実施例1と同様にして、酸素還元触媒を得た。この酸素還元触媒では、Fe1モルに対して、Coが1モルであった。
Comparative Example 6
In the same manner as in Example 1 except that 16.661 g of iron acetic acid and 22.422 g of cobalt acetate were added to the ligand dispersion instead of 16.238 g of iron acetic acid and 22.874 g of manganate acetate, A reduction catalyst was obtained. In this oxygen reduction catalyst, Co was 1 mol with respect to 1 mol of Fe.
 比較例7鉄酢酸16.238gおよびマンガン酸酢塩22.874gの代わりに、鉄酢酸15.043gおよび銅酢酸塩17.265gを配位子分散液に添加した以外は、実施例1と同様にして、酸素還元触媒を得た。この酸素還元触媒では、Fe1モルに対して、Cuが1モルであった。 Comparative Example 7 The procedure of Example 1 was repeated except that 15.043 g of iron acetate and 17.265 g of copper acetate were added to the ligand dispersion instead of 16.238 g of iron acetate and 22.874 g of manganate acetate. Thus, an oxygen reduction catalyst was obtained. In this oxygen reduction catalyst, Cu was 1 mol with respect to 1 mol of Fe.
 評価方法
 1)テストピースの作製
 各実施例および各比較例において得られた酸素還元触媒と、アニオン交換樹脂との混合物を、アルコール類などの有機溶媒に適宜分散させて、インクを調製した。なお、全てのインクにおいて、遷移金属触媒(Fe、Mn、Ni、CoおよびCu)の含有量が1μg/μLとなるように調製した。
Evaluation Method 1) Preparation of Test Pieces An ink was prepared by appropriately dispersing the mixture of the oxygen reduction catalyst obtained in each Example and each Comparative Example and an anion exchange resin in an organic solvent such as alcohols. In all the inks, the transition metal catalysts (Fe, Mn, Ni, Co, and Cu) were prepared so as to have a content of 1 μg / μL.
 次いで、得られたインク10μLをマイクロピペットで秤取して、グラッシーカーボン電極上に滴下した。その後、このグラッシーカーボンを乾燥することにより、テストピースを得た。 Next, 10 μL of the obtained ink was weighed with a micropipette and dropped onto a glassy carbon electrode. Thereafter, the glassy carbon was dried to obtain a test piece.
 2)酸素側電極の活性測定
 酸素側電極の活性は、回転ディスク電極による電気化学測定法(サイクリックボルタンメトリー)で測定した。より具体的には、窒素バブリングによって酸素を脱気した1NのKOH水溶液中で電位を走査し、テストピースの安定化およびバックグラウンド測定を行なった。
2) Activity measurement of oxygen side electrode The activity of the oxygen side electrode was measured by an electrochemical measurement method (cyclic voltammetry) using a rotating disk electrode. More specifically, the potential was scanned in a 1N aqueous KOH solution deoxygenated by nitrogen bubbling to perform test piece stabilization and background measurement.
 次いで、この水溶液中に、酸素をバブリングすることによって酸素を飽和させ、酸素側電極の酸素還元活性を測定した。なお、電位の走査範囲は、0.32V(vs.RHE)~1.02V(vs.RHE)であり、電極回転数は1600rpmであった。結果を、図2に示す。(考察)
 図2より、各実施例において得られた酸素還元触媒を用いれば、各比較例において得られた酸素還元触媒を用いる場合に比べ、高電流を安定して得られることがわかる。
Subsequently, oxygen was bubbled into this aqueous solution to saturate the oxygen, and the oxygen reduction activity of the oxygen side electrode was measured. The potential scanning range was 0.32 V (vs. RHE) to 1.02 V (vs. RHE), and the electrode rotation speed was 1600 rpm. The results are shown in FIG. (Discussion)
As can be seen from FIG. 2, when the oxygen reduction catalyst obtained in each example is used, a high current can be stably obtained as compared with the case of using the oxygen reduction catalyst obtained in each comparative example.
 本国際出願は、2013年3月26日に出願された日本国特許出願である特願2013-063896に基づく優先権を主張するものであり、当該日本国特許出願である特願2013-063896の全内容は、本国際出願に援用される。This international application claims priority based on Japanese Patent Application No. 2013-063896, which was filed on March 26, 2013, and is based on Japanese Patent Application No. 2013-063896, which is a Japanese patent application. The entire contents are incorporated into this international application.
 本発明の特定の実施の形態についての上記説明は、例示を目的として提示したものである。それらは、網羅的であったり、記載した形態そのままに本発明を制限したりすることを意図したものではない。数多くの変形や変更が、上記の記載内容に照らして可能であることは当業者に自明である。The above description of specific embodiments of the present invention has been presented for purposes of illustration. They are not intended to be exhaustive or to limit the invention to the precise form described. It will be apparent to those skilled in the art that many modifications and variations are possible in light of the above description.
1   燃料電池2   燃料側電極3   酸素側電極4   電解質層 1 Fuel cell 2 Fuel side electrode 3 Oxygen side electrode 4 Electrolyte layer

Claims (4)

  1.  フェナントロリン系配位子が鉄に配位されたフェナントロリンFe錯体と、
     フェナントロリン系配位子がマンガンに配位されたフェナントロリンMn錯体およびフェナントロリン系配位子がニッケルに配位されたフェナントロリンNi錯体の少なくとも1種とを含有する錯体混合物を、焼成することにより得られる焼成体を含有していることを特徴とする酸素還元触媒。
    A phenanthroline Fe complex in which a phenanthroline-based ligand is coordinated to iron;
    Firing obtained by firing a complex mixture containing at least one of a phenanthroline Mn complex in which a phenanthroline ligand is coordinated to manganese and a phenanthroline Ni complex in which a phenanthroline ligand is coordinated to nickel The oxygen reduction catalyst characterized by containing the body.
  2.  前記錯体混合物において、前記マンガンおよび前記ニッケルの少なくとも1種が、前記鉄1モルに対して、1/3モル以上3モル以下含有されていることを特徴とする、請求項1に記載の酸素還元触媒。 2. The oxygen reduction according to claim 1, wherein in the complex mixture, at least one of the manganese and the nickel is contained by 1/3 mol or more and 3 mol or less with respect to 1 mol of the iron. catalyst.
  3.  前記フェナントロリン系配位子が、下記一般式(1)で示されることを特徴とする、請求項1または2に記載の酸素還元触媒。
     一般式(1):
    Figure JPOXMLDOC01-appb-C000001
     (式中、mおよびnは、0または1~3の整数であり、
     kは、0または1~2の整数であり、
     R、RおよびRは、単独または互いに独立して、アルキル基、アルコキシ基、アリール基、カルボキシル基またはスルホ基を表す。
    The oxygen reduction catalyst according to claim 1 or 2, wherein the phenanthroline-based ligand is represented by the following general formula (1).
    General formula (1):
    Figure JPOXMLDOC01-appb-C000001
    Wherein m and n are 0 or an integer of 1 to 3,
    k is 0 or an integer of 1 to 2,
    R 1 , R 2 and R 3 each independently or independently represent an alkyl group, an alkoxy group, an aryl group, a carboxyl group or a sulfo group.
  4.  アニオン成分を移動させることができる電解質と、
     前記電解質を挟んで対向配置された燃料側電極および酸素側電極とを備え、
     前記酸素側電極は、請求項1~3のいずれかに記載の酸素還元触媒を含有していることを特徴とする、燃料電池。
    An electrolyte capable of transferring an anionic component;
    A fuel-side electrode and an oxygen-side electrode disposed opposite to each other with the electrolyte interposed therebetween,
    A fuel cell, wherein the oxygen side electrode contains the oxygen reduction catalyst according to any one of claims 1 to 3.
PCT/JP2014/057792 2013-03-26 2014-03-20 Oxygen reduction catalyst, and fuel cell WO2014156966A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013063896A JP2014188397A (en) 2013-03-26 2013-03-26 Oxygen reduction catalyst and fuel cell
JP2013-063896 2013-03-26

Publications (2)

Publication Number Publication Date
WO2014156966A2 true WO2014156966A2 (en) 2014-10-02
WO2014156966A3 WO2014156966A3 (en) 2014-11-20

Family

ID=51625571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057792 WO2014156966A2 (en) 2013-03-26 2014-03-20 Oxygen reduction catalyst, and fuel cell

Country Status (2)

Country Link
JP (1) JP2014188397A (en)
WO (1) WO2014156966A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113903934A (en) * 2021-10-11 2022-01-07 先进能源产业研究院(广州)有限公司 Preparation method and application of porous Pd-PdO nanorod

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6993640B2 (en) * 2017-09-15 2022-01-13 国立大学法人大阪大学 Nitrogen-containing polycyclic compound

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099296A (en) * 2010-11-01 2012-05-24 Hitachi Ltd Catalyst for fuel batteries, method of manufacturing the same, film-electrode assembly, and fuel battery
WO2012107838A1 (en) * 2011-02-08 2012-08-16 Institut National De La Recherche Scientifique Catalysts made using thermally decomposable porous supports

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099296A (en) * 2010-11-01 2012-05-24 Hitachi Ltd Catalyst for fuel batteries, method of manufacturing the same, film-electrode assembly, and fuel battery
WO2012107838A1 (en) * 2011-02-08 2012-08-16 Institut National De La Recherche Scientifique Catalysts made using thermally decomposable porous supports

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KATSUKUNI TAKAHASHI ET AL.: 'Kotai Kobunshikei Nenryo Denchiyo Tetsu Cobalt Tanji Taso Carbon Nano Tube Sanso Kangen Shokubaino no Kojo' THE ELECTROCHEMICAL SOCIETY OF JAPAN SORITSU 80 SHUNEN KINEN TAIKAI KOEN YOSHISHU 29 March 2013, page 170 *
OU YIWEI ET AL.: 'Electrocatalytic Activity and Stability of M-Fe Catalysts Synthesized by Polymer Complex Method for PEFC Cathode' J ELECTROCHEM SOC vol. 158, no. 12, 2011, pages B1491 - B1498 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113903934A (en) * 2021-10-11 2022-01-07 先进能源产业研究院(广州)有限公司 Preparation method and application of porous Pd-PdO nanorod
CN113903934B (en) * 2021-10-11 2023-12-08 先进能源产业研究院(广州)有限公司 Preparation method and application of porous Pd-PdO nanorods

Also Published As

Publication number Publication date
WO2014156966A3 (en) 2014-11-20
JP2014188397A (en) 2014-10-06

Similar Documents

Publication Publication Date Title
JP4993867B2 (en) Fuel cell
WO2012056626A1 (en) Fuel cell
JP2005527957A (en) Proton conductive carbonaceous material
JP5426910B2 (en) Fuel cell
JP5813627B2 (en) Fuel cell
JP5800467B2 (en) Oxygen reduction catalyst and fuel cell
WO2014156966A2 (en) Oxygen reduction catalyst, and fuel cell
JP5715429B2 (en) Oxygen reduction catalyst and fuel cell
JP2015044153A (en) Method for manufacturing oxygen reduction catalyst
JP2016203133A (en) Oxygen reduction catalyst
JP6411808B2 (en) Oxygen reduction catalyst
JP5869262B2 (en) Fuel cell
JP5824307B2 (en) Fuel cell
JP6437233B2 (en) Membrane electrode assembly
JP2013026143A (en) Fuel cell
JP6382590B2 (en) Oxygen reduction catalyst and fuel cell
JP5824306B2 (en) Fuel cell
JP6462294B2 (en) Oxygen reduction catalyst, method for producing the same, and fuel cell
JP5653716B2 (en) Fuel cell
JP2012248388A (en) Fuel cell
JP6581342B2 (en) Fuel cell
JP2016081838A (en) Membrane-electrode assembly
JP6581343B2 (en) Fuel cell and fuel cell manufacturing method
JP2016035890A (en) Oxygen reduction catalyst
JP2016146312A (en) Oxygen reduction catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14772823

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 14772823

Country of ref document: EP

Kind code of ref document: A2