WO2014156528A1 - Heat ray shielding material, windowpane using heat ray shielding material, intermediate film for laminated glass, and laminated glass - Google Patents

Heat ray shielding material, windowpane using heat ray shielding material, intermediate film for laminated glass, and laminated glass Download PDF

Info

Publication number
WO2014156528A1
WO2014156528A1 PCT/JP2014/055718 JP2014055718W WO2014156528A1 WO 2014156528 A1 WO2014156528 A1 WO 2014156528A1 JP 2014055718 W JP2014055718 W JP 2014055718W WO 2014156528 A1 WO2014156528 A1 WO 2014156528A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat ray
ray shielding
shielding material
layer
containing layer
Prior art date
Application number
PCT/JP2014/055718
Other languages
French (fr)
Japanese (ja)
Inventor
克行 温井
柴山 繁
威史 濱
優樹 中川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2014156528A1 publication Critical patent/WO2014156528A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/10238Coatings of a metallic or dielectric material on a constituent layer of glass or polymer in the form of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10614Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising particles for purposes other than dyeing
    • B32B17/10633Infrared radiation absorbing or reflecting agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J3/00Antiglare equipment associated with windows or windscreens; Sun visors for vehicles
    • B60J3/007Sunglare reduction by coatings, interposed foils in laminar windows, or permanent screens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/206Filters comprising particles embedded in a solid matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal

Definitions

  • the present invention relates to a heat ray shielding material, a window glass using the heat ray shielding material, an interlayer film for laminated glass, and a laminated glass.
  • the present invention relates to a heat ray shielding material having excellent heat shielding performance, visible light transmittance, and wet heat durability.
  • heat ray shielding materials for automobiles and building windows have been developed as an energy-saving measure for reducing carbon dioxide. From the viewpoint of the heat ray shielding property (acquisition rate of solar heat), the heat ray reflection type without re-radiation is better than the heat ray absorption type with re-radiation of absorbed light into the room (about 1/3 of the absorbed solar energy).
  • Various proposals have been made. When considering application to windows of automobiles and buildings, it is preferable in the market that the appearance is highly transparent and the heat ray shielding performance is high. Furthermore, a heat ray shielding material excellent in durability is considered preferable.
  • Patent Document 1 when the resonance wavelength of light due to Ag fine particles is made longer by the particle size, a high dielectric constant is formed in the lower layer of the Ag fine particle layer in response to a problem that irregular reflection in the visible light wavelength region increases as the particle size increases.
  • a radio wave transmissive wavelength selection plate is described in which near-infrared light can be reflected by providing a dielectric layer having a refractive index and increasing the resonance wavelength while keeping the particle size as it is.
  • Patent Document 2 has a metal particle-containing layer containing at least one kind of metal particles, and the metal particles have hexagonal or circular plate-like metal particles of 60 number% or more, Reflection wavelength selectivity is achieved by a heat ray shielding material, wherein the main plane of the flat metal particles is plane-oriented in the range of 0 ° to ⁇ 30 ° with respect to one surface of the metal particle-containing layer.
  • a heat ray shielding material that has high selectivity in the reflection band and excellent transparency at a wavelength at which reflection is desired to be prevented.
  • Patent Document 3 describes a near-infrared cut film in which a near-infrared-absorbing dye and a near-infrared-absorbing layer containing silica fine particles are provided on a transparent substrate film, and the film winding property (sliding property) is described. It is described that it is possible to provide a near-infrared cut film that is excellent, has a small haze, has no particle feeling, and has an excellent average visible light transmittance, near-infrared transmittance (850 nm, 950 nm), heat resistance, and light resistance. .
  • the radio wave transmission wavelength selection plate obtained by the configuration of Patent Document 1 cannot be said to be sufficiently transparent and low haze, and further improvement has been desired. There was no disclosure or suggestion about the combined use with an infrared light absorbing material.
  • the method described in Patent Document 2 has not been studied at all such as providing a refractive index adjustment layer below the silver particle-containing layer for the purpose of further improving the visible light transmittance.
  • the near-infrared cut film described in Patent Document 3 is an infrared absorption type, and has a high heat transmissivity and inferior heat ray shielding performance as compared with an infrared reflection type heat ray shielding material.
  • Patent Document 3 uses silica fine particles of a specific size for imparting film winding property (sliding property) that deteriorates haze, but the silica fine particles are used for adjusting the refractive index of the infrared absorption layer. There was no disclosure or suggestion.
  • An object of the present invention is to solve the conventional problems and to provide a heat ray shielding material having better heat shielding performance, visible light transmittance, and wet heat durability than conventional techniques.
  • the present inventors diligently studied to have a metal particle-containing layer and an infrared-absorbing compound-containing layer, and to have at least one intermediate layer between the two layers.
  • a filler in at least one of the absorbing compound-containing layer or the intermediate layer, it is possible to provide a heat ray shielding material that has higher heat ray shielding ability, higher visible light transmittance, and superior wet heat durability compared to the conventional technology.
  • the headline and the present invention have been completed.
  • the present invention which is a specific means for solving the above-described problems is as follows.
  • a metal particle-containing layer containing at least one metal particle and an infrared-absorbing compound-containing layer containing an infrared-absorbing compound, and between the metal-particle-containing layer and the infrared-absorbing compound-containing layer
  • a heat ray shielding material comprising at least one intermediate layer and containing a filler in at least one of the infrared absorbing compound-containing layer or the intermediate layer.
  • R 1a and R 1b may be the same or different and each independently represents an alkyl group, an aryl group or a heteroaryl group.
  • R 2 and R 3 each independently represent a hydrogen atom.
  • R 2 and R 3 may combine to form a ring
  • R 4 represents a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, a substituted group Represents a boron or metal atom, and may be a covalent bond or a coordinate bond with at least one group of R 1a , R 1b and R 3.
  • the tabular metal particles are silver tabular grains.
  • the plate-like metal particles are hexagonal or circular plate-like metal particles, and among the hexagonal or circular plate-like metal particles, a main plane is one of the metal particle-containing layers.
  • the heat ray shielding material according to ⁇ 4> or ⁇ 5>, wherein the flat metal particles whose plane orientation is in an average range of 0 ° to ⁇ 30 ° with respect to the surface is 50% by number or more of all the flat metal particles.
  • the filler is at least one selected from the group consisting of titanium oxide, zirconium oxide, zinc oxide, synthetic amorphous silica, colloidal silica, hollow silica, porous silica, magnesium fluoride, and hollow magnesium fluoride.
  • the intermediate layer has a thickness of 20 nm or more.
  • ⁇ 11> The heat ray shielding material according to any one of ⁇ 1> to ⁇ 10>, wherein the infrared absorbing compound-containing layer has a density of the infrared absorbing compound of 0.25 g / cm 3 or more.
  • ⁇ 12> The heat ray shielding material according to any one of ⁇ 1> to ⁇ 11>, further comprising an overcoat layer on a surface opposite to the surface having the intermediate layer of the metal particle-containing layer.
  • ⁇ 13> The heat ray shielding material according to any one of ⁇ 1> to ⁇ 12>, further comprising a support on the surface of the infrared absorbing compound-containing layer opposite to the surface having the metal particle-containing layer.
  • the support is polyethylene, polypropylene, polyolefin resin, polyethylene terephthalate, polyethylene naphthalate, polycarbonate resin, polyvinyl chloride resin, polyphenylene sulfide resin, polyether sulfone resin, polyethylene sulfide resin, polyphenylene
  • the heat ray shielding material according to ⁇ 12> or ⁇ 13> which is any one of an ether resin, a styrene resin, an acrylic resin, a polyamide resin, a polyimide resin, and a cellulose resin.
  • the heat ray shielding material according to ⁇ 13> or ⁇ 14> which has at least one layer between the infrared absorbing compound-containing layer and the support.
  • a hard coat layer on the surface opposite to the surface having the metal particle-containing layer of the support.
  • the hard coat layer contains metal oxide particles.
  • the metal oxide particles are at least one selected from tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), and cesium tungsten oxide (CWO).
  • ⁇ 19> The heat ray shielding material according to any one of ⁇ 1> to ⁇ 18>, further comprising an adhesive layer on a surface opposite to the surface having the intermediate layer of the metal particle-containing layer.
  • ⁇ 21> An interlayer film for laminated glass comprising the heat ray shielding material according to any one of ⁇ 1> to ⁇ 19>.
  • ⁇ 22> Laminated glass containing the heat ray shielding material according to any one of ⁇ 1> to ⁇ 19>.
  • ⁇ 23> ⁇ 21> An interlayer film for laminated glass and at least two glass plates, wherein the interlayer film for laminated glass is inserted into the two sheets of glass Laminated glass.
  • a heat ray shielding material having high heat ray shielding ability, high visible light transmittance, and excellent wet heat durability can be provided.
  • FIG. 1 is a schematic view showing an example of the heat ray shielding material of the present invention.
  • FIG. 2 is a schematic view showing another example of the heat ray shielding material of the present invention.
  • FIG. 3A is a schematic view showing another example of the heat ray shielding material of the present invention.
  • FIG. 3B is a schematic view showing another example of the heat ray shielding material of the present invention.
  • FIG. 4 is a schematic view showing another example of the heat ray shielding material of the present invention.
  • FIG. 5A is a schematic view showing an example in which the heat ray shielding material of the present invention is installed on a window glass.
  • FIG. 5B is a schematic view showing an example of a laminated glass using the heat ray shielding material of the present invention.
  • FIG. 6A is a schematic cross-sectional view showing a state of existence of a metal particle-containing layer containing flat metal particles in the heat ray shielding material of the present invention, wherein the metal particle-containing layer containing flat metal particles (plane of the substrate) The figure explaining the angle ((theta)) which the main plane (surface which determines the equivalent circle diameter D) of a flat metal particle and a flat metal particle forms.
  • FIG. 6B is a schematic cross-sectional view showing the existence state of the metal particle-containing layer containing flat metal particles in the heat ray shielding material of the present invention, and is a flat plate shape in the depth direction of the heat ray shielding material of the metal particle-containing layer. It is a figure which shows the presence area
  • FIG. 6C is a schematic cross-sectional view showing another example of the existence state of the metal particle-containing layer containing flat metal particles in the heat ray shielding material of the present invention.
  • FIG. 6D is a schematic cross-sectional view showing another example of the presence state of the metal particle-containing layer containing flat metal particles in the heat ray shielding material of the present invention.
  • FIG. 6E is a schematic cross-sectional view showing another example of the presence state of the metal particle-containing layer containing flat metal particles in the heat ray shielding material of the present invention.
  • FIG. 6F is a schematic cross-sectional view showing another example of the presence state of the metal particle-containing layer containing flat metal particles in the heat ray shielding material of the present invention.
  • FIG. 6C is a schematic cross-sectional view showing another example of the existence state of the metal particle-containing layer containing flat metal particles in the heat ray shielding material of the present invention.
  • FIG. 6D is a schematic cross-sectional view showing another example of the presence
  • FIG. 7A is a schematic perspective view showing an example of the shape of a flat metal particle preferably used in the heat ray shielding material of the present invention, and shows a circular flat metal particle.
  • FIG. 7B is a schematic perspective view showing an example of the shape of flat metal particles preferably used for the heat ray shielding material of the present invention, and shows hexagonal flat metal particles.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the heat ray shielding material of the present invention has a metal particle-containing layer containing at least one metal particle and an infrared-absorbing compound-containing layer containing an infrared-absorbing compound, the metal-particle-containing layer and the infrared-absorbing compound-containing It has at least one or more intermediate layers between the layers, and at least one of the infrared absorbing compound-containing layer or the intermediate layer contains a filler.
  • the heat ray shielding material has high heat ray shielding ability, high visible light transmittance, and excellent wet heat durability.
  • the heat ray shielding material having higher heat ray shielding ability, higher visible light transmittance and superior wet heat durability compared with the prior art could be provided by combining the following functions: ing. It is considered that there are two roles of the intermediate layer in the present invention. The first role of the intermediate layer is considered to be to weaken the interaction caused by the contact between the infrared absorbing compound and the metal particles due to the installation of the intermediate layer between the infrared absorbing compound-containing layer and the metal particle-containing layer. ing.
  • the second role of the intermediate layer is to obtain a smooth surface. It was found that when the infrared absorbing compound-containing layer was applied, random and minute irregularities were formed on the surface of the infrared absorbing compound-containing layer due to minute protrusions of the infrared absorbing compound. It was found that when the metal particle-containing layer was applied on a minute uneven surface, the metal particles were hardly arranged on the convex part, and the arrangement of the metal particles was disturbed along the uneven surface shape. On the other hand, by setting the intermediate layer between the infrared absorbing compound-containing layer and the metal particle-containing layer, the minute uneven surface shape of the infrared absorbing compound-containing layer can be canceled, and a smooth intermediate layer surface can be obtained.
  • the metal particle layer was applied on the surface of the smooth intermediate layer, the metal particles were applied in a uniform arrangement. It is known that the uniformity of the arrangement of metal particles contributes to the performance of the optical performance, and the effect of improving the visible light transmittance and the heat ray shielding ability was obtained by making the distance between the particles uniform. . As described above, the intermediate layer is considered to exhibit the above two functions simultaneously.
  • a further improvement effect of wet heat durability can be obtained by including a filler in at least one of the intermediate layer or the infrared ray absorbing compound-containing layer.
  • the filler has an effect of suppressing diffusion in the layer of the infrared absorbing compound.
  • a refractive index difference can be given between both layers, thereby reducing reflection in the visible light wavelength region and increasing reflection in the infrared wavelength region. An effect can be imparted.
  • the installation of the intermediate layer and the configuration including the filler in at least one of the intermediate layer or the infrared ray absorbing compound-containing layer can reduce the effects of improving the heat ray shielding ability, optical performance, and wet heat durability. It was found that this can be realized with a layer structure.
  • the heat ray shielding material of the present invention preferably has an average heat ray reflectance at 700 to 1200 nm of 5% or more, more preferably 7% or more, particularly preferably 8% or more, and 10% or more. More particularly preferred.
  • the heat ray shielding material of the present invention it is preferable from the viewpoint of lowering the heat ray transmittance that at least one layer has the lowest peak of the transmission spectrum in a region of 800 to 2000 nm.
  • the minimum peak wavelength of the transmission spectrum is more preferably in the band of 750 to 1400 nm, and particularly preferably in the band of 800 to 1100 nm.
  • the metal particle-containing layer preferably has the lowest peak of the transmission spectrum in the region of 800 to 2000 nm.
  • the heat ray shielding material of the present invention preferably has a maximum reflection wavelength in the band of 700 to 1800 nm from the viewpoint of increasing the efficiency of heat ray reflection.
  • the maximum reflection wavelength is more preferably in the band of 750 to 1400 nm, and particularly preferably in the band of 800 to 1100 nm.
  • the visible light transmittance of the heat ray shielding material of the present invention is preferably 60% or more, more preferably 65% or more, and particularly preferably 70% or more.
  • the ultraviolet ray transmittance of the heat ray shielding material of the present invention is preferably 5% or less, more preferably 2% or less.
  • the heat ray shielding material of the present invention has a metal particle-containing layer and an infrared absorbing compound-containing layer, and has at least one intermediate layer between the two layers, and at least one of the infrared absorbing compound-containing layer and the intermediate layer. Contains a filler. Furthermore, if necessary, an overcoat layer, an adhesive layer, an ultraviolet absorbing layer, a support (hereinafter also referred to as a substrate), a metal oxide particle-containing layer, a backcoat layer, a hard coat layer, a heat insulating layer, a protective layer, etc. An embodiment having other layers is also preferable.
  • the heat ray shielding material of the present invention may form a laminate having the configuration of the heat ray shielding material on a substrate, or after forming a laminate having the configuration of the heat ray shielding material on a temporary support.
  • the laminate having the configuration of the heat ray shielding material may be taken out by peeling at the interface between the temporary support and the laminate.
  • the laminated body having the configuration of the heat ray shielding material taken out in this manner is incorporated into an interlayer film for laminated glass, and the laminated glass using the interlayer film for laminated glass incorporating the laminated body having the configuration of the heat ray shielding material.
  • a laminated glass body having a heat ray shielding function can be formed.
  • the preferable structure of the heat ray shielding material of this invention is demonstrated based on drawing.
  • the heat ray shielding material 100 includes a metal particle-containing layer 1, an intermediate layer 2, and an infrared absorbing compound-containing layer 3 on a substrate 40.
  • stacked in this order is mentioned.
  • the heat ray shielding material of the present invention contains a filler in at least one of the intermediate layer 2 or the infrared absorbing compound-containing layer 3.
  • FIG. 2 is another example of the present invention, which is an embodiment of an example in which the intermediate layer has two or more layers.
  • the infrared absorbing compound-containing layer 3 On the substrate 40, the infrared absorbing compound-containing layer 3, the intermediate layer 2C, the intermediate layer 2B, the intermediate layer 2A, And the metal particle-containing layer 1 are stacked in this order.
  • At least one of the intermediate layers 2A to 2C or the infrared absorbing compound-containing layer 3 contains a filler. There may be a plurality of layers containing a filler.
  • FIG. 3A is another example of the present invention, in which the infrared absorbing compound-containing layer 3 is sandwiched between the intermediate layer 2 and the lower layer 4.
  • FIG. 3B is another example of this invention, and is an aspect further including lower layer 4A, 4B from the aspect of FIG.
  • FIG. 4 shows an embodiment in which an overcoat layer 5, an adhesive layer 6, and a hard coat layer 7 are installed in the embodiment of FIG.
  • FIG. 1 is used as a representative, an embodiment in which the overcoat layer 5, the pressure-sensitive adhesive layer 6, and the hard coat layer 7 are installed in the embodiments of FIGS. 2, 3A, and 3B may be used.
  • the heat ray shielding material of the embodiment of FIG. 4 may be installed on the window glass 8 through the adhesive layer 6.
  • the upper part in FIG. 5A is the outdoor side, and the lower part is the indoor side.
  • FIG. 5B it is an aspect when both surfaces of the heat ray shielding material which installed the overcoat layer in the aspect of FIG.
  • the upper part in FIG. 5B is the outdoor side, and the lower part is the indoor side.
  • the heat ray shielding material of the present invention is characterized in that an intermediate layer comprising at least one layer is provided between the metal particle-containing layer and the infrared absorbing compound-containing layer. Moreover, the heat ray shielding material of this invention contains a filler in at least any one of an intermediate
  • the intermediate layer provides a heat ray shielding material having high heat ray shielding ability, high visible light transmittance, and excellent wet heat durability.
  • the material constituting the intermediate layer in the present invention may be a metal thin film, a metal oxide thin film, or a polymer-containing layer. From the viewpoint of electromagnetic wave permeability, a metal oxide thin film or a polymer-containing layer is preferable, and from the viewpoint of productivity, a polymer-containing layer that can be easily applied in water is preferable.
  • the polymer (binder) used for the intermediate layer is preferably a transparent polymer.
  • the polymer examples include polyvinyl acetal resin, polyvinyl alcohol resin, polyvinyl butyral resin, polyacrylate resin, polymethyl methacrylate resin, polycarbonate resin, poly Examples thereof include vinyl chloride resins, (saturated) polyester resins, polyurethane resins, and polymers such as natural polymers such as gelatin and cellulose.
  • the main polymer of the polymer is preferably a polyvinyl alcohol resin, a polyvinyl butyral resin, a polyvinyl chloride resin, a (saturated) polyester resin, or a polyurethane resin. preferable.
  • the polymer used for the intermediate layer is an aqueous dispersion from the viewpoint of environmental impact and the reduction of coating cost.
  • a water-soluble polyester resin, Pluscoat Z-592 (manufactured by Kyoyo Chemical Industry Co., Ltd.), a water-soluble polyurethane resin, Hydran HW-350 (manufactured by DIC Corporation), or the like is preferably used. be able to.
  • the thickness of the intermediate layer is preferably 20 nm or more, more preferably 30 nm or more, and further preferably 40 nm or more. Although there is no restriction
  • the heat ray shielding material of the present invention contains a filler in at least one of the intermediate layer and the infrared absorbing compound-containing layer.
  • the filler is selected from at least one selected from the group consisting of titanium oxide, zirconium oxide, zinc oxide, synthetic amorphous silica, colloidal silica, hollow silica, porous silica, magnesium fluoride, and hollow magnesium fluoride. It is preferable to become. Among these, it is more preferable to use titanium oxide, zirconium oxide, hollow silica, and magnesium fluoride.
  • the refractive index of the layer containing the filler can be adjusted, which is preferable. It is preferable to provide a refractive index difference between adjacent layers, and a multilayer optical interference film can be designed by adjusting the refractive index difference and the film thickness of each layer. By appropriately designing the multilayer optical interference film, for example, it is possible to provide an effect of reducing reflection in the visible light wavelength region and enhancing reflection in the infrared wavelength region.
  • the average particle size of the filler used in the heat ray shielding material of the present invention is 200 nm or less, preferably 100 nm or less, more preferably 60 nm or less.
  • the average particle size of the filler is 200 nm or more, it is difficult to make the layer containing the filler thin, and it is not preferable when optical interference design is considered.
  • the filler content in the intermediate layer is preferably 10 to 250 mg / m 2 , more preferably 30 to 150 mg / m 2 , and even more preferably 40 to 100 mg / m 2 .
  • the mass ratio of the filler to the binder is preferably 0.1 to 2.5, more preferably 0.1 to 2.0, and more preferably 0.5 to A ratio of 1.5 is particularly preferred. If the mass ratio of the filler to the binder is less than 0.1, the effect of preventing the infrared absorbing compound from penetrating into the metal particle-containing layer is low, and the wet heat aging resistance deteriorates. If it is larger than 5, the film physical strength of the intermediate layer becomes weak, which is not preferable.
  • layers having different refractive indexes may be laminated to form a multilayer structure of two or more layers.
  • layers having different refractive indexes it is possible to provide an effect of reducing reflection in the visible light wavelength region and enhancing reflection in the infrared wavelength region.
  • a method for adjusting layers having different refractive indexes a method comprising laminating a layer containing zirconium oxide having a high refractive index and a layer containing hollow silica having a low refractive index, a layer containing a binder having a high refractive index, and a refractive index And a method of laminating a layer containing a low binder.
  • an intermediate layer having a refractive index of n1 is provided as a layer A
  • a layer having a refractive index of n2 is a layer B (infrared absorbing compound-containing layer).
  • a layer C as a support and satisfying the condition (1-1) or the condition (2-1) are also preferred.
  • Formula (1-1) 3 ⁇ / 8 + m ⁇ / 2 ⁇ A ⁇ n1 ⁇ d1 ⁇ 3 ⁇ / 8 + m ⁇ / 2 + A
  • m represents an integer of 0 or more
  • represents a wavelength (unit: nm) desired to prevent reflection
  • n1 represents the refractive index of the layer A
  • d1 represents the thickness of the layer A
  • n1 ⁇ d1 is preferably within a predetermined value ⁇ A
  • A represents any one of ⁇ / 8, ⁇ / 12, and ⁇ / 16, and the smaller A is, the more anti-reflection interference is.
  • m represents an integer of 0 or more
  • represents a wavelength (unit: nm) desired to prevent reflection
  • n1 represents the refractive index of layer A
  • d1 represents the thickness of layer A
  • n1 ⁇ d1 is preferably within a predetermined value ⁇ A
  • A represents any one of ⁇ / 8, ⁇ / 12, and ⁇ / 16, and the smaller A is, the more anti-reflection interference is.
  • A represents any one of ⁇ / 8, ⁇ / 12, and ⁇ / 16, and the smaller A is, the more anti-reflection interference is.
  • the preferable range of the condition (1-1) or the condition (2-1) will be described.
  • the preferred range of the following formula (1-1) or condition (2-1) is the same in the multilayer structure of the present invention other than the configuration of FIG.
  • m represents an integer of 0 or more, and an integer of 0 to 5 is preferable from the viewpoint of manufacturing cost and film thickness robustness.
  • the m is more preferably an integer of 1 to 5 from the viewpoint of achieving both a visible light reflection suppression and a near infrared light reflection enhancement when the multilayer structure of the present invention is used as a heat ray shielding material.
  • the layer B satisfies the condition (3-1) or the condition (4-1).
  • Formula (3-1) n1 ⁇ n2 and the following formula (3-1) is satisfied.
  • Formula (3-1) ⁇ / 4 + L ⁇ / 4 ⁇ A ⁇ n2 ⁇ d2 ⁇ ⁇ / 4 + L ⁇ / 4 + A
  • L represents an integer of 1 or more
  • represents a wavelength (unit: nm) desired to prevent reflection
  • n2 represents the refractive index of layer B
  • d2 represents the thickness of layer B
  • n2 ⁇ d2 preferably falls within a predetermined value ⁇ A
  • A represents any one of ⁇ / 8, ⁇ / 12, and ⁇ / 16, and the smaller A is, the more anti-reflection interference is. (It is preferable to approach the optimum condition for obtaining the effect.)
  • Formula (4-1) L ⁇ / 4 ⁇ A ⁇ n2 ⁇ d2 ⁇ L ⁇ / 4 + A
  • L represents an integer of 1 or more
  • represents a wavelength (unit: nm) desired to prevent reflection
  • n2 represents the refractive index of the layer B
  • d2 represents the thickness of the layer B
  • n2 ⁇ d2 preferably falls within a predetermined value ⁇ A
  • A represents any one of ⁇ / 8, ⁇ / 12, and ⁇ / 16, and the smaller A is, the more anti-reflection interference is.
  • a preferable range of the condition (3-1) or the condition (4-1) will be described.
  • the preferred range of the following formula (3-1) or condition (4-1) is the same in the multilayer structure of the present invention other than the configuration of FIG.
  • L represents an integer of 1 or more, and is preferably 1 to 5, with 1 reducing the color change with respect to obliquely incident light. More preferable from the viewpoint.
  • the layer B satisfies the following formula (5-1) or the following formula (6-1) from the viewpoint of enhancing the reflection at the wavelength ⁇ ′ where a strong reflection is desired.
  • Formula (5-1) ⁇ / 4 + k ⁇ ′ / 4 ⁇ B ⁇ n2 ⁇ d2 ⁇ ⁇ / 4 + k ⁇ ′ / 4 + B (In the formula (5-1), k represents an integer of 1 or more, ⁇ ′ represents a wavelength (unit: nm) desired to have strong reflection, n2 represents the refractive index of the layer B, and d2 represents the layer B.
  • N2 ⁇ d2 is preferably within a predetermined value ⁇ B, B represents any one of ⁇ ′ / 8, ⁇ ′ / 12, and ⁇ ′ / 16, and B represents (The smaller the value, the closer to the optimum condition for obtaining the interference effect of reflection enhancement.)
  • Formula (6-1) k ⁇ ′ / 4 ⁇ B ⁇ n2 ⁇ d2 ⁇ k ⁇ ′ / 4 + B
  • k represents an integer of 1 or more
  • ⁇ ′ represents a wavelength (unit: nm) desired to have strong reflection
  • n2 represents the refractive index of layer B
  • d2 represents layer B.
  • N2 ⁇ d2 is preferably within a predetermined value ⁇ B
  • B represents any one of ⁇ ′ / 8, ⁇ ′ / 12, and ⁇ ′ / 16, and B is It is preferable that the smaller the value is, the closer to the optimum condition for obtaining the reflection enhancing interference effect.
  • a preferred range of the formula (5-1) or the formula (6-1) will be described.
  • k represents an integer of 1 or more, and is preferably 1 to 5, with 1 being small in color change with respect to obliquely incident light. More preferable from the viewpoint.
  • the wavelength ⁇ for preventing the strong reflection is not particularly limited, and examples thereof include visible light and ultraviolet light bands. Among them, visible light is preferable from the viewpoint of increasing visible light transmittance.
  • the wavelength ⁇ for preventing reflection is preferably 250 to 800 nm, more preferably 400 to 700 nm, and particularly preferably 550 ⁇ 100 nm.
  • the wavelength ⁇ ′ for giving strong reflection is not particularly limited, and examples thereof include visible light, infrared light, and ultraviolet light bands. Among them, infrared light is a heat ray shielding material.
  • the heat ray shielding material of the present invention preferably has a wavelength ⁇ ′ of 700 to 2500 nm, more preferably 800 to 1500 nm, and particularly preferably 900 to 1200 nm. preferable.
  • a strong reflection is given to a wavelength of less than 700 nm, the red reflected light is conspicuous and leads to a decrease in visible light transmittance.
  • reflection is given to a wavelength greater than 2500 nm, the solar spectrum has almost no energy of 2500 nm or more, and therefore the effect as a heat ray shielding material is reduced.
  • the intermediate layer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • it contains a matting agent and a surfactant, and may further contain other components as necessary. .
  • the heat ray shielding material of the present invention may have a laminated structure including at least one intermediate layer, a metal particle-containing layer, and an infrared absorbing compound-containing layer, and including at least one lower layer (described later).
  • the refractive index of each layer and the thickness of the coating film are designed so as to satisfy any one of the above formulas (1-1) to (6-1), thereby reducing reflection at a specific wavelength (visible light Is preferable from the viewpoint of improving the visible light transmittance) and enhancing the reflection in the infrared wavelength region.
  • the metal particle-containing layer is a layer containing at least one metal particle.
  • the metal particles are preferably flat metal particles (flat metal particles), and preferably segregate the flat metal particles on one surface of the metal particle-containing layer.
  • the metal particles preferably have 60% by number or more of flat metal particles, and more preferably have 60% by number or more of hexagonal or circular plate metal particles.
  • hexagonal to circular plate-like metal particles are present as one surface of the metal particle-containing layer (the surface of the substrate when the heat ray shielding material of the present invention has a substrate).
  • the main planes of hexagonal or circular plate-like metal particles are preferably plane-oriented in the range of average 0 ° to ⁇ 30 °, and plane-oriented in the range of average 0 ° to ⁇ 20 °.
  • the plane orientation is particularly preferably in the range of 0 ° to ⁇ 10 ° on average.
  • the plate-like metal particles whose plane orientation is in the range of 0 ° to ⁇ 30 ° on average is preferably 50% by number or more, more preferably 70% by number or more of the total plate-like metal particles, More preferably, it is 90% by number or more.
  • the material of the metal particles is not particularly limited and can be appropriately selected according to the purpose. From the viewpoint of high heat ray (near infrared) reflectance, silver, gold, aluminum, copper, rhodium, nickel, Platinum or the like is preferable, and silver is more preferable among them.
  • the tabular metal particles are not particularly limited as long as they are particles composed of two main planes (see FIGS. 7A and 7B), and can be appropriately selected according to the purpose, for example, hexagonal shape, circular shape, Examples include a triangle shape. Among these, in terms of high visible light transmittance, a polygonal shape or a circular shape having a hexagonal shape or more is more preferable, and a hexagonal shape or a circular shape is particularly preferable.
  • the circular shape means a shape in which the number of sides having a length of 50% or more of the average equivalent circle diameter of flat metal particles described later is 0 per flat metal particle. Say.
  • the circular plate-like metal particles are not particularly limited as long as the plate-like metal particles have no corners and are round when viewed from above the main plane with a transmission electron microscope (TEM). It can be appropriately selected depending on the case.
  • the hexagonal shape refers to a shape in which the number of sides having a length of 20% or more of the average equivalent circle diameter of the flat metal particles described later is 6 per flat metal particle. To tell. The same applies to other polygons.
  • the hexagonal plate-like metal particles are not particularly limited as long as they are hexagonal when the plate-like metal particles are observed from above the main plane with a transmission electron microscope (TEM), and are appropriately selected according to the purpose.
  • the hexagonal corner may be acute or dull, but the corner is preferably dull in that the absorption in the visible light region can be reduced.
  • the corner is preferably dull in that the absorption in the visible light region can be reduced.
  • the hexagonal or circular plate-like metal particles are preferably 60% by number or more, more preferably 65% by number or more based on the total number of metal particles. Preferably, 70% by number or more is particularly preferable.
  • the proportion of the flat metal particles is 60% by number or more, the visible light transmittance is increased.
  • the hexagonal or circular plate-like metal particles have a main plane on one surface of the metal particle-containing layer (when the heat ray shielding material has a substrate, the surface of the substrate).
  • the plane orientation is preferably in the range of average 0 ° to ⁇ 30 °, more preferably the plane is oriented in the range of average 0 ° to ⁇ 20 °, and the average is 0 ° to ⁇ 10 °. It is particularly preferable that the surface is oriented in a range.
  • the plate-like metal particles whose plane orientation is in the range of 0 ° to ⁇ 30 ° on average is preferably 50% by number or more, more preferably 70% by number or more of the total plate-like metal particles, More preferably, it is 90% by number or more.
  • the state of the presence of the flat metal particles is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably arranged as shown in FIGS. 6C to 6F described later.
  • FIG. 6A to FIG. 6F are schematic cross-sectional views showing the existence state of the metal particle-containing layer containing flat metal particles in the heat ray shielding material of the present invention.
  • 6D to 6F show the state of the presence of the flat metal particles 11 in the metal particle-containing layer 1.
  • FIG. 6A is a diagram for explaining an angle ( ⁇ ⁇ ) formed by the plane of the base material and the main plane of the tabular metal particles 11 (the plane that determines the equivalent circle diameter D).
  • FIG. 6B shows the existence range f in the depth direction of the heat ray shielding material of the metal particle-containing layer 1.
  • the angle ( ⁇ ⁇ ) formed between the surface of the base material and the main plane (plane that determines the equivalent circle diameter D) of the tabular metal particles 11 or the extension line of the main plane is a predetermined value in the plane orientation described above.
  • the plane orientation means a state where the inclination angle ( ⁇ ⁇ ) shown in FIG. 6A is small when the cross section of the heat ray shielding material is observed.
  • FIG. 6C shows the main surface of the base metal particles 11 and the surface of the base metal particles 11. A state where the flat surface is in contact, that is, a state where ⁇ is 0 ° is shown.
  • ⁇ in FIG. 6A exceeds ⁇ 30 °
  • a predetermined wavelength of the heat ray shielding material for example, near the visible light region long wavelength side
  • the main plane of the flat metal particles is plane-oriented with respect to one surface of the metal particle-containing layer (the surface of the substrate when the heat ray shielding material has a substrate)
  • the surface of the substrate when the heat ray shielding material has a substrate there is no particular limitation.
  • a suitable cross section is prepared, and a metal particle-containing layer (a base material when the heat ray shielding material has a base material) and flat metal particles in this section It may be a method of observing and evaluating.
  • a microtome or a focused ion beam is used to prepare a cross-section sample or a cross-section sample of the heat ray shielding material, and this is used for various microscopes (for example, a field emission scanning electron microscope (FE-SEM), a transmission electron microscope (TEM), etc.), and a method of evaluating from an image obtained by observation.
  • FE-SEM field emission scanning electron microscope
  • TEM transmission electron microscope
  • the surface of the metal particle-containing layer in the sample (the surface of the base material when the heat ray shielding material has a base material)
  • the surface of the metal particle-containing layer in the sample there is no particular limitation as long as it can confirm whether or not the main plane is plane-oriented, and it can be appropriately selected according to the purpose. Examples thereof include observation using FE-SEM, TEM, and the like.
  • observation may be performed by FE-SEM
  • observation may be performed by TEM.
  • TEM When evaluating by FE-SEM, it is preferable to have a spatial resolution with which the shape and inclination angle ( ⁇ ⁇ in FIG. 6A) of the flat metal particles can be clearly determined.
  • the projected area of the particles can be obtained by a known method of measuring the area on an electron micrograph and correcting the photographing magnification.
  • the equivalent circle diameter is represented by the diameter of a circle having an area equal to the projected area of individual particles obtained by the method.
  • a particle size distribution (particle size distribution) is obtained by the statistics of the equivalent circle diameter D of 200 flat metal particles, and the average particle diameter (average equivalent circle diameter) can be obtained by calculating the arithmetic average.
  • the coefficient of variation in the particle size distribution of the flat metal particles can be obtained by a value (%) obtained by dividing the standard deviation of the particle size distribution by the above-mentioned average particle diameter (average circle equivalent diameter).
  • the coefficient of variation in the particle size distribution of the flat metal particles is preferably 35% or less, more preferably 30% or less, and particularly preferably 20% or less.
  • the coefficient of variation is preferably 35% or less because the reflection wavelength region of heat rays in the heat ray shielding material becomes sharp.
  • the size of the metal particles is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the average particle size is preferably 10 to 500 nm, more preferably 20 to 300 nm, and even more preferably 50 to 200 nm.
  • the thickness of the tabular metal particles is preferably 14 nm or less, more preferably 5 to 14 nm, and particularly preferably 5 to 12 nm.
  • the aspect ratio of the flat metal particles is not particularly limited and may be appropriately selected depending on the intended purpose. However, since the reflectance in the infrared light region having a wavelength of 800 nm to 1,800 nm increases, 6 ⁇ 40 are preferred, and 10 to 35 are more preferred. When the aspect ratio is less than 6, the reflection wavelength becomes smaller than 800 nm, and when it exceeds 40, the reflection wavelength becomes longer than 1,800 nm, and sufficient heat ray reflectivity may not be obtained.
  • the aspect ratio means a value obtained by dividing the average particle diameter (average circle equivalent diameter) of the flat metal particles by the average particle thickness of the flat metal particles.
  • the particle thickness corresponds to the distance between the main planes of the flat metal particles, and is, for example, as shown as a in FIG. 7A and FIG. be able to.
  • the method for measuring the average particle thickness by the AFM is not particularly limited and can be appropriately selected according to the purpose. For example, a particle dispersion containing tabular metal particles is dropped onto a glass substrate and dried. And a method of measuring the thickness of one particle.
  • the method for measuring the average particle thickness by the TEM is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a particle dispersion containing flat metal particles is dropped on a silicon substrate and dried. Thereafter, a coating process by carbon vapor deposition or metal vapor deposition is performed, a cross-section is created by focused ion beam (FIB) processing, and the cross-section is observed by TEM to measure the thickness of the particles.
  • FIB focused ion beam
  • the coating film thickness d of the metal particle-containing layer containing the flat metal particles is preferably 5 to 120 nm, more preferably 7 to 80 nm, and more preferably 10 to 40 nm. It is particularly preferred.
  • the hexagonal to circular flat metal particles 80 is preferably present in the range of d / 2 from the surface of the metal particle-containing layer, more preferably in the range of d / 3, and the hexagonal to circular plate-like metal particles More preferably, 60% by number or more is exposed on one surface of the metal particle-containing layer. That the flat metal particles are present in the range of d / 2 from the surface of the metal particle-containing layer means that at least a part of the flat metal particles is included in the range of d / 2 from the surface of the metal particle-containing layer.
  • FIG. 6D means that the flat metal particles described in FIG. 6D in which some of the flat metal particles protrude from the surface of the metal particle-containing layer are also flat plates existing in the range of d / 2 from the surface of the metal particle-containing layer. Treated as metal particles.
  • FIG. 6D means that a part of the thickness direction of each flat metal particle is buried in the metal particle-containing layer, and each flat metal particle is stacked on the surface of the metal particle-containing layer.
  • 6B to 6D are schematic views showing the case where the thickness d of the metal particle-containing layer is d> D / 2.
  • FIG. 6B includes 80% by number or more of the plate-like metal particles in the range of f.
  • the flat metal particle presence distribution in the metal particle-containing layer can be measured, for example, from an image obtained by SEM observation of a cross-sectional sample of the heat ray shielding material.
  • the coating film thickness d of the metal particle-containing layer is preferably d ⁇ D / 2 with respect to the average equivalent circle diameter D of the metal particles, more preferably d ⁇ D / 4. d ⁇ D / 8 is more preferable.
  • 6E and 6F are schematic views showing a case where the thickness d of the metal particle-containing layer is d ⁇ D / 2.
  • the plasmon resonance wavelength of the metal constituting the flat metal particles 11 in the metal particle-containing layer 1 is ⁇
  • the refractive index of the medium in the metal particle-containing layer 1 is n.
  • the metal particle-containing layer 1 is preferably present in the range of ( ⁇ / n) / 4 in the depth direction from the horizontal plane of the heat ray shielding material. Within this range, the effect of increasing the amplitude of the reflected wave by the phase of the reflected wave at the interface between the upper and lower metal particle-containing layers of the heat ray shielding material is sufficiently large, and the visible light transmittance and the maximum heat ray Reflectivity is good.
  • the plasmon resonance wavelength ⁇ of the metal constituting the flat metal particles in the metal particle-containing layer is not particularly limited and can be appropriately selected according to the purpose. However, in terms of imparting heat ray reflection performance, 400 nm to 2 , 500 nm, and more preferably 700 nm to 2500 nm from the viewpoint of imparting visible light transmittance.
  • the metal particle-containing layer preferably contains a polymer, and more preferably contains a transparent polymer.
  • the polymer include polyvinyl acetal resin, polyvinyl alcohol resin, polyvinyl butyral resin, polyacrylate resin, polymethyl methacrylate resin, polycarbonate resin, polyvinyl chloride resin, (saturated) polyester resin, polyurethane resin, gelatin, and cellulose. And polymers such as natural polymers.
  • the main polymer of the polymer is preferably a polyvinyl alcohol resin, a polyvinyl butyral resin, a polyvinyl chloride resin, a (saturated) polyester resin, a polyurethane resin, and preferably the polyester resin and the polyurethane resin.
  • 80% by number or more of hexagonal or circular plate-like metal particles are more preferable from the viewpoint of being easily present in a range of d / 2 from the surface of the metal particle-containing layer, and are polyester resins and polyurethane resins. It is particularly preferable from the viewpoint of further improving the rubbing resistance of the heat ray shielding material.
  • a saturated polyester resin is more particularly preferable from the viewpoint of imparting excellent weather resistance since it does not contain a double bond. Moreover, it is more preferable to have a hydroxyl group or a carboxyl group at the molecular terminal from the viewpoint of obtaining high hardness, durability, and heat resistance by curing with a water-soluble / water-dispersible curing agent or the like.
  • Commercially available polymers can be preferably used as the polymer, and examples thereof include PLUSCOAT Z-867, which is a water-soluble polyester resin manufactured by Kyoyo Chemical Industry Co., Ltd.
  • the main polymer of the polymer contained in the metal-containing layer refers to a polymer component occupying 50% by mass or more of the polymer contained in the metal-containing layer.
  • the content of the polyester resin and the polyurethane resin with respect to the metal particles contained in the metal particle-containing layer is preferably 1 to 10000% by mass, more preferably 10 to 1000% by mass, and 20 to 500% by mass. It is particularly preferred that By setting the binder contained in the metal particle-containing layer to be in the above range or more, physical properties such as rubbing resistance can be improved.
  • the refractive index n of the medium is preferably 1.4 to 1.7.
  • the thickness of the hexagonal or circular plate-like metal particles when the thickness of the hexagonal or circular plate-like metal particles is a, 80% or more of the hexagonal or circular plate-like metal particles are a / in the thickness direction. It is preferable that 10 or more is covered with the polymer, a / 10 to 10a in the thickness direction is more preferably covered with the polymer, and a / 8 to 4a is covered with the polymer. Particularly preferred.
  • the hexagonal or circular plate-like metal particles are buried in the metal particle-containing layer at a certain ratio or more, whereby the rubbing resistance can be further increased. That is, the aspect of FIG. 6C and FIG. 6E is more preferable than the aspect of FIG. 6D and FIG. 6F for the heat ray shielding material of this invention.
  • the area ratio [(B / A) ⁇ 100], which is the ratio of the value B, is preferably 15% or more, and more preferably 20% or more. When the area ratio is less than 15%, the maximum reflectance of the heat ray is lowered, and the heat shielding effect may not be sufficiently obtained.
  • the area ratio can be measured, for example, by performing image processing on an image obtained by SEM observation of the heat ray shielding base material from above or an image obtained by AFM (atomic force microscope) observation. .
  • the arrangement of the flat metal particles in the metal particle-containing layer is preferably uniform.
  • the variation coefficient of the closest interparticle distance is preferably as small as possible, preferably 30% or less, more preferably 20% or less, more preferably 10% or less, and ideally 0%.
  • the distance between the closest particles can be measured by observing the coated surface of the metal particle-containing layer with an SEM or the like.
  • the flat metal particles are arranged in the form of a metal particle-containing layer containing flat metal particles, as shown in FIGS. 6A to 6F.
  • the metal particle-containing layer may be composed of a single layer as shown in FIGS. 6A to 6F, or may be composed of a plurality of metal particle-containing layers. When comprised with a several metal particle content layer, it becomes possible to provide the shielding performance according to the wavelength range
  • the heat ray shielding material of the present invention has a thickness d of the outermost metal particle-containing layer at least in the outermost metal particle-containing layer. It is preferable that 80% by number or more of the hexagonal or circular tabular metal particles are present in the range of d ′ / 2 from the surface of the outermost metal particle-containing layer.
  • each layer of the metal particle-containing layer can be measured, for example, by observing a cross-sectional sample of the heat ray shielding material with a SEM or observing a cross-sectional slice sample with a TEM.
  • the boundary of another layer and the said metal-particle content layer is determined by the same method. And the thickness d of the metal particle-containing layer can be determined.
  • the boundary between the metal particle-containing layer and the metal particle-containing layer is usually determined by an SEM observation image. And the thickness d of the metal particle-containing layer can be determined.
  • the method for synthesizing the flat metal particles is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a liquid phase method such as a chemical reduction method, a photochemical reduction method, or an electrochemical reduction method may have a hexagonal shape. It is mentioned as what can synthesize
  • a liquid phase method such as a chemical reduction method or a photochemical reduction method is particularly preferable in terms of shape and size controllability.
  • hexagonal to triangular tabular metal particles After synthesizing hexagonal to triangular tabular metal particles, for example, by performing etching treatment with a dissolved species that dissolves silver such as nitric acid and sodium sulfite, aging treatment by heating, etc., hexagonal to triangular tabular shapes are obtained. Hexagonal or circular tabular metal particles may be obtained by blunting the corners of the metal particles.
  • the metal particles for example, Ag
  • the metal particles may be crystal-grown in a flat shape.
  • the flat metal particles may be subjected to further treatment in order to impart desired characteristics.
  • the further treatment is not particularly limited and may be appropriately selected depending on the purpose.
  • the formation of a high refractive index shell layer the addition of various additives such as a dispersant and an antioxidant may be included. Can be mentioned.
  • the flat metal particles may be coated with a high refractive index material having high visible light region transparency in order to further enhance visible light region transparency.
  • a high refractive index material is not particularly limited and may be appropriately selected depending on the purpose, for example, TiO x, BaTiO 3, ZnO, etc. SnO 2, ZrO 2, NbO x and the like.
  • an SiO 2 or polymer shell layer is appropriately formed. Further, the metal oxide layer may be formed on the shell layer.
  • TiO x is used as a material for the high refractive index metal oxide layer, since TiO x has photocatalytic activity, there is a concern of deteriorating the matrix in which the plate-like metal particles are dispersed. After forming the TiO x layer on the flat metal particles, an SiO 2 layer may be appropriately formed.
  • the metal particle-containing layer contains a polymer and the main polymer of the polymer is a polyester resin
  • a crosslinking agent from the viewpoint of film strength.
  • the crosslinking agent is not particularly limited, and examples thereof include epoxy-based, isocyanate-based, melamine-based, carbodiimide-based, and oxazoline-based crosslinking agents. Of these, carbodiimide and oxazoline crosslinking agents are preferred. Specific examples of the carbodiimide-based crosslinking agent include Carbodilite V-02-L2 (manufactured by Nisshinbo Chemical Co., Ltd.).
  • the surfactant a known surfactant such as an anionic or nonionic surfactant can be used as a specific example of the surfactant.
  • Lapisol A-90 manufactured by NOF Corporation
  • NAROACTY HN-100 manufactured by Sanyo Chemical Industries.
  • the surfactant is preferably contained in an amount of 0.05 to 10% by weight, more preferably 0.1 to 5% by weight, based on the total binder in the metal particle-containing layer.
  • the tabular metal particles may adsorb an antioxidant such as mercaptotetrazole or ascorbic acid in order to prevent oxidation of metals such as silver constituting the tabular metal particles.
  • an oxidation sacrificial layer such as Ni may be formed on the surface of the flat metal particles. Further, it may be covered with a metal oxide film such as SiO 2 for the purpose of blocking oxygen.
  • the flat metal particles are, for example, a low molecular weight dispersant, a high molecular weight dispersant or the like containing at least one of an N element such as a quaternary ammonium salt and amines, an S element, and a P element. A dispersant may be added.
  • the flat metal particle dispersion contains a preservative from the viewpoint of improving the visible light transmittance while maintaining the heat shielding performance.
  • the reason why the visible light transmittance can be improved while maintaining the heat shielding performance by containing the preservative is unknown.
  • the present inventors have found that the rot phenomenon due to microorganisms is related to the stability over time, and by introducing a preservative, the time-lapse of the plate-like metal particle dispersion liquid. It has been found that stability can be improved.
  • the stability over time of the flat metal particle dispersion is improved, the storage of the flat metal particle dispersion becomes substantially possible, and the flat metal particle dispersion is made and stored and supplied to the application all at once.
  • the productivity of the heat ray shielding material of the present invention described later is remarkably improved.
  • the conventional flat metal particle dispersion has poor stability over time and is not suitable for mass production. Especially when silver is used, the antibacterial property exhibited by silver was expected, but the conventional flat metal particle dispersion The metal particle dispersion had poor stability over time.
  • the filterability of the tabular metal particle dispersion can be improved by introducing a preservative into the tabular metal particle dispersion.
  • the filterability means that the increase in pressure when passing through the filtration filter is remarkably improved, and it becomes possible to feed a large amount continuously for a long time.
  • a filtration filter is put in the middle of the liquid feed to aggregate particles and dust Can be removed, and a high-quality heat ray shielding material according to the present invention, which will be described later, can be provided in a large area.
  • the problem of productivity drop due to stoppage of liquid feeding due to an increase in filtration pressure, that is, stoppage of coating is also solved.
  • the conventional flat metal particle dispersion liquid has poor filterability, and when passing through the filter, the pressure rises and the liquid cannot be fed, so it is difficult to capture and remove the aggregated particles and dust with the filter, It was not easy to obtain a heat ray shielding material with little coating surface failure.
  • By improving the stability over time and the filterability of the plate-like metal particle dispersion a large amount of coating raw materials are prepared and applied at once to give high productivity and high quality with less surface failure. It becomes possible to provide a heat ray shielding material in a large area.
  • the preservative is preferably a compound represented by the following general formula (11) or the following general formula (12), and is represented by the following general formula (11). More preferably, it is a compound.
  • R 13 is a hydrogen atom, an alkyl group, an alkenyl group, an aralkyl group, an aryl group, a heterocyclic group, (R 16 ) (R 17 ) —N—C ( ⁇ O) — or (R 16 ) (R 17 ) —N—C ( ⁇ S) —, wherein R 14 and R 15 each independently represent a hydrogen atom, an alkyl group, an aryl group, a cyano group, a heterocyclic group, an alkylthio group, or an alkylsulfoxy group.
  • R 14 and R 15 may be bonded to each other to form an aromatic ring, and R 16 and R 17 each independently represents a hydrogen atom, an alkyl group, an aryl group or an aralkyl group. .)
  • R 20 represents a lower alkylene group.
  • X represents a halogen atom, a nitro group, a hydroxy group, a cyano group, a lower alkyl group, a lower alkoxy group, —COR 21 , —N (R 22 ) ( R 23 ) or —SO 2 M.
  • R 21 represents a hydrogen atom, —O M, a lower alkyl group, an aryl group, an aralkyl group, a lower alkoxy group, an aryloxy group, an aralkyloxy group, or —N (R 24 ) ( R 25 )
  • R 22 and R 23 each independently represents a hydrogen atom, a lower alkyl group, an aryl group, an aralkyl group, —COR 26 or —SO 2 R 26, and may be the same or different from each other.
  • R 24 and R 25 each independently represent a hydrogen atom, a lower alkyl group, an aryl group, or an aralkyl group, and may be the same or different from each other.
  • R 26 represents a lower alkyl group, an aryl group or an aralkyl group
  • M represents a hydrogen atom, an alkali metal atom and an atomic group necessary for forming a monovalent cation
  • p represents 0 or 1.
  • Q represents an integer from 0 to 5.
  • R 13 represents a hydrogen atom, a linear or branched substituted or unsubstituted alkyl group (for example, methyl, ethyl, tert-butyl, n-octadecyl, 2-hydroxyethyl, 2-carboxyethyl, 2-cyanoethyl, sulfobutyl, N N-dimethylaminoethyl), substituted or unsubstituted cyclic alkyl groups (eg cyclohexyl, 3-methylcyclohexyl, 2-oxocyclopentyl), substituted or unsubstituted alkenyl groups (eg allyl, methylallyl), substituted or unsubstituted Aralkyl groups (eg benzyl, p-methoxybenzyl, o-chlorobenzyl, p-iso-propylbenzyl), substituted or unsubstituted aryl groups (eg phen
  • R 14 and R 15 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group (eg, methyl, ethyl, chloromethyl, 2-hydroxyethyl, tert-butyl, n-octyl), substituted or unsubstituted cyclic alkyl Groups (eg cyclohexyl, 2-oxocyclopentyl), substituted or unsubstituted aryl groups (eg phenyl, 2-methylphenyl, 3,4-dichlorophenyl, naphthyl, 4-nitrophenyl, 4-aminophenyl, 3-acetamidophenyl) , Cyano group, heterocyclic group (for example, 2-imidazolyl, 2-thiazolyl, 2-pyridyl), substituted or unsubstituted alkylthio group (for example, methylthio, 2-cyanoethylthio, 2-ethoxycarbonylthio
  • R 16 and R 17 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group (eg, methyl, ethyl, iso-propyl, 2-cyanoethyl, 2-n-butoxycarbonylethyl, 2-cyanoethyl), substituted or unsubstituted Substituted aryl groups (eg phenyl, naphthyl, 2-methoxyphenyl, m-nitrophenyl, 3,5-dichlorophenyl, 3-acetamidophenyl), substituted or unsubstituted aralkyl groups (eg benzyl, phenethyl, p-iso-propyl) Benzyl, o-chlorobenzyl, m-methoxybenzyl).
  • aryl groups eg phenyl, naphthyl, 2-methoxyphenyl, m-nitrophenyl, 3,5-dichloropheny
  • R 13 represents a hydrogen atom or a lower alkyl group
  • R 14 and R 15 are bonded to each other to form an aromatic ring
  • R 13 is a hydrogen atom.
  • R 14 and R 15 are more preferably bonded to each other to form a benzene ring.
  • R 20 represents a lower alkylene group (for example, ethylene group, propylene group, methylethylene group, etc.), and an alkylene group having 1 to 6 carbon atoms is particularly preferable.
  • X is a halogen atom (eg, chlorine atom, bromine atom, fluorine atom), nitro group, hydroxyl group, cyano group, lower alkyl group (eg, methyl, ethyl, iso-propyl, tert-butyl), lower alkoxy group —COR 21 , — N (R 22 ) (R 23 ) or —SO 2 M is represented.
  • R 21 represents a hydrogen atom, -O M, a lower alkyl group (eg, methyl, n-butyl, tert-octyl), an aryl group (eg, phenyl, 4-chlorophenyl, 3-nitrophenyl), an aralkyl group (eg, benzyl, p-iso-propylbenzyl, o-methylbenzyl), lower alkoxy groups (eg methoxy, n-butoxy, 2-methoxyethoxy), aryloxy groups (eg phenoxy, naphthoxy, 4-nitrophenoxy), aralkyloxy groups (eg Represents benzyloxy, p-chlorobenzyloxy, or —N (R 24 ) (R 25 ).
  • aralkyl group eg, methyl, n-butyl, tert-octyl
  • an aryl group eg, phenyl, 4-chlorophen
  • R 22 and R 23 are each independently a hydrogen atom, a lower alkyl group (eg, methyl, ethyl, 2-ethylhexyl), an aryl group (eg, phenyl, naphthyl, 2-methoxyphenyl, 3-acetamidophenyl), an aralkyl group ( For example, benzyl, o-chlorobenzyl), —COR 26 or —SO 2 R 26 may be the same or different.
  • a lower alkyl group eg, methyl, ethyl, 2-ethylhexyl
  • an aryl group eg, phenyl, naphthyl, 2-methoxyphenyl, 3-acetamidophenyl
  • an aralkyl group For example, benzyl, o-chlorobenzyl
  • —COR 26 or —SO 2 R 26 may be the same or different.
  • R 24 and R 25 are each independently a hydrogen atom, a lower alkyl group (eg, methyl, iso-propyl, 2-cyanoethyl), an aryl group (eg, phenyl, 4-ethoxycarbonylphenyl, 3-nitrophenyl), an aralkyl group ( For example, benzyl, p-chlorobenzyl) may be the same or different.
  • R 26 represents a lower alkyl group (eg, ethyl, 2-methoxyethyl, 2-hydroxyethyl) or an aryl group (eg, phenyl, naphthyl, 4-sulfophenyl, 4-carboxyphenyl).
  • M represents a hydrogen atom, an alkali metal atom (for example, sodium or potassium) and an atomic group necessary for forming a monovalent cation (for example, an ammonium cation or a phosphonium cation).
  • p represents 0 or 1;
  • q represents an integer of 0 to 5.
  • R 20 is an alkyl group represented by 1 to 3 carbon atoms
  • X is a lower alkyl group
  • p is 1
  • q is a compound represented by 0 or 1.
  • the preservative is a compound represented by the general formula (11)
  • the addition amount of the preservative is suitably in the range of 1 to 500 ppm with respect to the total weight of the dispersion
  • the range of 10 to 5000 ppm is appropriate with respect to the total weight of the dispersion.
  • the preservative may be dissolved in water or an organic solvent such as methanol, isopropurate, acetone, or ethylene glycol, and may be added as a solution to the flat metal particle dispersion of the present invention, or a high-boiling solvent, low-boiling point. After dissolving in a solvent or a mixed solvent of both, and then emulsifying and dispersing in the presence of a surfactant, it may be added to the flat metal particle dispersion of the present invention.
  • an organic solvent such as methanol, isopropurate, acetone, or ethylene glycol
  • an antifoaming agent in the steps of preparing the plate-like metal particles and redispersing.
  • the reaction solution and the coarse dispersion may be vigorously stirred.
  • foaming is often promoted by the presence of a surfactant or a dispersant.
  • the antifoaming agent can be selected from general ones such as surfactants, polyethers, esters, higher alcohols, mineral oils, and silicones.
  • surfactants are preferably used because they can exhibit a high defoaming effect when added in a small amount and are excellent in stability over time.
  • those having high lipophilicity and easily spreading on the liquid surface that is, those having a low HLB value are preferably used.
  • the HLB value is preferably 7 or less, more preferably 5 or less, and most preferably 3 or less.
  • Pluronic 31R1 manufactured by BASF
  • the heat ray shielding material of the present invention has an infrared absorbing compound-containing layer containing a compound having absorption in the infrared region.
  • the layer containing a compound having absorption in the infrared region is also referred to as an infrared absorbing compound-containing layer.
  • the infrared absorbing compound-containing layer may serve as another functional layer.
  • the absorption peak wavelength of the infrared absorbing compound is preferably shorter than the reflection peak wavelength of the metal particles from the viewpoint of efficiently shielding heat rays.
  • the heat ray shielding material of the present invention preferably contains 10 to 190 mg / m 2 of the infrared absorbing compound in the infrared absorbing compound-containing layer.
  • dye contained in the said infrared rays absorption compound content layer into the range of 190 mg / m ⁇ 2 > or less, the planar shape of a heat ray shielding material can be improved.
  • a method for controlling the pigment contained in the infrared absorbing compound-containing layer within this range a method of adjusting the pigment coating amount when the infrared absorbing compound-containing layer is formed by coating can be used.
  • the upper limit of the content of the dye contained in the infrared absorbing compound-containing layer is preferably 150 mg / m 2 or less from the viewpoint of improving the surface shape, and 120 mg / m 2 or less of the heat ray shielding material. It is more preferable from the viewpoint of increasing the maximum reflectance and suppressing the transmittance at the maximum reflection wavelength, and particularly preferably 100 mg / m 2 or less.
  • the lower limit value of the content of the infrared ray absorbing compound contained in the infrared ray absorbing compound-containing layer is 10 mg / m 2 or more to increase the maximum reflectance of the heat ray shielding material, and the transmittance at the maximum reflection wavelength. Is preferably 20 mg / m 2 or more, more preferably 30 mg / m 2 or more, and particularly preferably 30 mg / m 2 or more.
  • the transmittance at the maximum reflection wavelength is lowered, and the ratio of the absorbance to the reflectance at the maximum reflection wavelength is reduced.
  • it is preferably 0.15 to 1.0 g / cm 3 , more preferably 0.15 to 0.40 g / cm 3 , and 0.15 to 0.30 g / cm 3 . More particularly preferred.
  • the thickness of the infrared absorbing compound-containing layer is preferably 200 nm or less from the viewpoint of improving the surface shape, more preferably 50 to 200 nm, and more preferably 100 to 200 nm. This is particularly preferable from the viewpoint of increasing the maximum reflectance and reducing the transmittance at the maximum reflection wavelength.
  • the refractive index of the infrared absorbing compound-containing layer is not particularly limited, but although it is related to the film thickness, the conditions (1-1), (2-1), (3-1), (4-1), ( 5-1), adjusting the refractive index by adjusting the composition so as to satisfy (6-1), or adjusting the thickness can increase the visible light transmittance and the infrared light reflectance. To preferred.
  • the infrared-absorbing compound-containing layer may be disposed adjacent to the support or may be disposed via another layer therebetween. That is, in the heat ray shielding material of the present invention, the infrared absorbing compound-containing layer may be disposed adjacent to the support, and the infrared absorbing compound-containing layer is opposite to the surface having the metal particle-containing layer. It may have at least one layer (lower layer) on the surface. The lower layer will be described later.
  • the infrared absorbing compound is not particularly limited as long as it has absorption in the infrared region, and a known dye can be used.
  • the pigment include dyes and pigments, and infrared pigments are preferable.
  • the pigment is not particularly limited, and a known pigment can be used.
  • a known pigment can be used.
  • pigments described in JP-A-2005-17322, [0032] to [0039] and the like can be mentioned.
  • limiting in particular in the said dye A well-known dye can be used. Dyes that can be stably dissolved or dispersed in an aqueous dispersion of the polymer are preferred, and these dyes preferably have a water-soluble group.
  • water-soluble group examples include a carboxyl group and a salt thereof, a sulfo group and a salt thereof.
  • water-soluble dyes such as cyanine dyes and barbituric acid oxonol dyes described below can be applied as aqueous solutions without dissolving them in organic solvents. preferable. These dyes are preferably used as aggregates, and particularly preferably used as J aggregates. By using a J-aggregate, it becomes easy to set the absorption wavelength of a dye having an absorption maximum in the visible region in a desired near-infrared region in a non-association state. Moreover, durability, such as heat resistance of a dye, heat-and-moisture resistance, and light resistance, can be improved.
  • the dye is preferably an infrared absorbing dye from the viewpoint of selectively reflecting heat rays (near infrared rays).
  • the infrared absorbing dye include a near infrared absorbing dye described in JP-A-2008-181096, JP-A-2001-228324, JP-A-2009-244493, and the like, and JP-A 2010-90313. Near infrared absorbing compounds and the like can be preferably used.
  • the infrared absorbing pigment include cyanine dyes, oxonol dyes, and pyrrolopyrrole compounds.
  • the infrared absorbing compound is preferably a compound represented by the following general formula (1) or a compound represented by the following general formula (2).
  • the pyrrolopyrrole compound represented is more preferable from the viewpoint of enhancing the fastness and improving the storage stability.
  • Z 1 and Z 2 are each independently a non-metallic atom group that forms a 5- or 6-membered nitrogen-containing heterocycle.
  • R 1 and R 2 are each independently a fatty group.
  • L 1 is a methine chain composed of 3 methines.
  • a and b are each independently 0 or 1.
  • R 1a and R 1b may be the same or different and each independently represents an alkyl group, an aryl group or a heteroaryl group.
  • R 2 and R 3 each independently represent a hydrogen atom. Or at least one is an electron-withdrawing group, and R 2 and R 3 may combine to form a ring, and
  • R 4 represents a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, a substituted group Represents a boron or metal atom, and may be a covalent bond or a coordinate bond with at least one group of R 1a , R 1b and R 3.
  • the preferred range of the compound represented by the general formula (1) is the same as the preferred range of the general formula (I) in JP-A-2001-228324.
  • the preferred range of the compound represented by the general formula (2) is the same as the preferred range of the general formula (1) in JP-A-2009-263614.
  • Cyanine dye is preferably a methine dye such as a pentamethine cyanine dye, a heptamethine cyanine dye, or a nonamethine cyanine dye, and a methine dye described in JP-A-2001-228324 is preferred.
  • a methine dye such as a pentamethine cyanine dye, a heptamethine cyanine dye, or a nonamethine cyanine dye
  • a methine dye described in JP-A-2001-228324 is preferred.
  • the cyclic group of the cyanine dye those having a thiazole ring, an indolenine ring or a benzoindolenine ring are preferable.
  • Examples of the cyanine dye used in the present invention include the cyanine dye represented by the general formula (1), that is, the general formula (I) of JP-A-2001-228324, and among them, a pentamethine cyanine dye.
  • Heptamethine cyanine dyes or nonamethine cyanine dyes (especially their aggregates) are preferred, and pentamethine cyanine dye, heptamethine cyanine dye or nonamethine cyanine represented by the general formula (II) of JP-A No. 2001-228324 Dyes (particularly, aggregates thereof) are more preferable, and heptamethine cyanine dyes represented by the general formula (II) in JP-A-2001-228324 are particularly preferable.
  • the oxonol dye is preferably an oxonol dye represented by the general formula (II) of JP-A No. 2009-244493, and more preferably a barbituric acid oxonol dye having a barbituric acid ring.
  • Examples of oxonol dyes represented by the general formula (II) in JP-A-2009-244493 are shown below, but the present invention is not limited to the following specific examples.
  • the pyrrolopyrrole compound As the pyrrolopyrrole compound, the pyrrolopyrrole compound represented by the above general formula (2), that is, the general formula (1) of JP2009-263614A or JP2010-90313A is exemplified. A pyrrolopyrrole compound represented by any one of the general formulas (2), (3), and (4) described in JP-A-2009-263614 and 2010-90313 is more preferable.
  • pyrrolopyrrole compound (dye) represented by the general formula (2) that is, any one of the general formulas (1) to (4) in JP2009-263614A and JP2010-90313A is described below. Specific examples will be shown, but the present invention is not limited to the following specific examples.
  • the heat ray shielding material of the present invention preferably contains a polymer in the infrared absorbing compound-containing layer.
  • the polymer can be used as a so-called binder in the infrared absorbing compound-containing layer.
  • the mass ratio of the polymer to the dye (polymer / dye ratio) in the infrared absorbing compound-containing layer is 5 or less, the transmittance at the maximum reflection wavelength is lowered, and the maximum reflection is achieved. This is preferable from the viewpoint of reducing the ratio of the absorptance to the reflectance at the wavelength.
  • the mass ratio of the polymer to the dye in the infrared absorbing compound-containing layer is more preferably 0.1 to 4, particularly preferably 0.2 to 3.0, and 0.5 to 3. More preferably, it is 0.
  • the preferred range of the content of the polymer contained in the infrared absorbing compound-containing layer is also related to the preferred range of the mass ratio of the polymer to the dye, but for example from the planar viewpoint that it is 350 mg / m 2 or less. Preferably, it is 30 mg / m 2 or more from the viewpoint of close contact with the support.
  • the type of the polymer is not particularly limited, and a known polymer can be used, and a transparent polymer is more preferable.
  • the polymer include polyvinyl acetal resin, polyvinyl alcohol resin, polyvinyl butyral resin, polyacrylate resin, polymethyl methacrylate resin, polycarbonate resin, polyvinyl chloride resin, (saturated) polyester resin, polyurethane resin, gelatin, and cellulose.
  • polymers such as natural polymers.
  • the polymer is preferably polyester, polyurethane, or polyacrylate resin, and polyester or polyurethane is more preferable from the viewpoint of adhesion to the support.
  • the polymer is an aqueous dispersion from the viewpoint of environmental influence and the reduction of coating cost.
  • the heat ray shielding material of this invention contains the said filler in at least any layer of an infrared rays absorption compound content layer and an intermediate
  • the kind and content of the filler contained in the infrared absorbing compound-containing layer are the same as the kind and content of the filler contained in the intermediate layer, and the preferred range is also the same.
  • the heat ray shielding material of the present invention preferably has a support.
  • limiting in particular as said support body A well-known support body can be used.
  • the support is not particularly limited as long as it is an optically transparent support and can be appropriately selected according to the purpose.
  • the visible light transmittance is 70% or more, preferably 80% or more. And those with high transmittance in the near infrared region.
  • the shape includes a flat plate shape, and the structure may be a single layer structure or a laminated structure, and the size may be the size of the heat ray shielding material. It can be appropriately selected according to the above.
  • the material for the support is not particularly limited and may be appropriately selected depending on the intended purpose.
  • polyolefin resins such as polyethylene, polypropylene, poly-4-methylpentene-1, polybutene-1, polyethylene terephthalate
  • Polyester resins such as polyethylene naphthalate
  • polycarbonate resins polyvinyl chloride resins
  • polyphenylene sulfide resins polyether sulfone resins
  • polyethylene sulfide resins polyphenylene ether resins
  • styrene resins acrylic resins
  • polyamides examples thereof include a film made of a cellulose resin such as a cellulose resin, a polyimide resin, and cellulose acetate, or a laminated film thereof.
  • a polyethylene terephthalate film is particularly preferable.
  • the thickness of the support is not particularly limited and may be appropriately selected depending on the purpose of use of the heat ray shielding material. Usually, the thickness is about 10 ⁇ m to 500 ⁇ m, but the thinner is preferable from the viewpoint of thinning. preferable.
  • the thickness of the support is preferably 10 ⁇ m to 100 ⁇ m, more preferably 20 to 75 ⁇ m, and particularly preferably 35 to 75 ⁇ m. When the thickness of the support is sufficiently thick, adhesion failure tends to hardly occur. Moreover, when the thickness of the said support body is thin enough, when it bonds together to a building material or a motor vehicle as a heat ray shielding material, there exists a tendency for the construction as it is not too strong and to become easy to construct.
  • the support when the support is sufficiently thin, the visible light transmittance is increased, and the raw material cost tends to be suppressed.
  • the refractive index nC at the wavelength ⁇ where the reflection of the layer C is to be prevented is larger than the refractive index nB at the wavelength ⁇ where the reflection of the layer B is to be prevented. This is preferable from the viewpoint that optical interference with the reflected light occurs and a better antireflection effect can be obtained.
  • the layer C is a support
  • a support having a refractive index of 1.5 or more, which is higher than ordinary glass (refractive index n is 1.5 or less) at a wavelength ⁇ to prevent reflection It is preferable from the viewpoint that the refractive index can be easily larger than the refractive index n2 of the layer B and can be used as the layer C by making use of the refractive index of the support itself.
  • the heat ray shielding material of the present invention preferably has a pressure-sensitive adhesive layer (hereinafter also referred to as a pressure-sensitive adhesive layer).
  • the adhesive layer may include an ultraviolet absorber.
  • the material that can be used for forming the adhesive layer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • An adhesive layer made of these materials can be formed by coating.
  • an antistatic agent, a lubricant, an antiblocking agent and the like may be added to the adhesive layer.
  • the thickness of the adhesive layer is preferably 0.1 ⁇ m to 10 ⁇ m.
  • the functional film includes a hard coat layer having hard coat properties.
  • the hard coat layer can contain metal oxide particles.
  • the kind and formation method can be selected suitably according to the objective, For example, acrylic resin, silicone resin, melamine resin, urethane resin, alkyd resin And thermosetting or photocurable resins such as fluorine-based resins.
  • the thickness of the hard coat layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 ⁇ m to 50 ⁇ m.
  • the hard coat layer may contain the metal oxide particles.
  • the hard coat layer may be provided on the outermost surface of the film for the purpose of protecting the outermost surface of the heat ray shielding material. Specifically, after the heat ray shielding material is bonded to the window glass, the surface of the heat ray shielding material opposite to the window glass is exposed to the environment, and the exposed surface is soiled or scratched by human contact. Since there is a possibility of entering, it is preferable to install the hard coat layer having a high physical strength in order to protect the exposed surface.
  • the heat ray shielding material of the present invention in order to prevent oxidation / sulfurization of the plate-like metal particles due to mass transfer and to provide scratch resistance, the heat ray shielding material of the present invention comprises the hexagonal or circular plate-like metal particles. It may have an overcoat layer in close contact with the surface of the metal particle-containing layer that is exposed. Moreover, you may have an overcoat layer between the said metal particle content layer and the below-mentioned ultraviolet absorption layer.
  • the heat ray shielding material of the present invention prevents contamination of the manufacturing process due to peeling off of the tabular metal particles, disordered arrangement of the tabular metal particles during coating of another layer
  • An overcoat layer may be provided for preventing the above.
  • the overcoat layer may contain an ultraviolet absorber.
  • the overcoat layer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the overcoat layer contains a binder, a matting agent, and a surfactant, and further contains other components as necessary. It becomes.
  • the binder is not particularly limited and may be appropriately selected depending on the purpose.
  • the thickness of the overcoat layer is preferably 0.01 ⁇ m to 1,000 ⁇ m, more preferably 0.02 ⁇ m to 500 ⁇ m, particularly preferably 0.1 to 10 ⁇ m, and particularly preferably 0.2 to 5 ⁇ m.
  • a back coat layer may be provided on the surface of the support opposite to the metal particle-containing layer.
  • the backcoat layer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the backcoat layer may be a layer containing a compound having absorption in the infrared region, or may be a metal oxide particle-containing layer described later.
  • the preferred composition and thickness in the case of a layer containing a compound having absorption in the infrared region or a metal oxide particle-containing layer described later are the same as the preferred composition and thickness of the overcoat layer.
  • ⁇ Lower Layer In the heat ray shielding material of the present invention, having at least one layer (hereinafter, also referred to as a lower layer) between the infrared absorbing compound-containing layer and the support, rather than visible light transmittance, This is preferable from the viewpoint of giving priority to the improvement of the change in the reflection intensity after wet heat aging.
  • the lower layer the same binder materials, fillers and additives as in the intermediate layer can be used, and the preferred ranges are also the same.
  • the refractive index of the lower layer is not particularly limited, but although it is related to the film thickness, the conditions (1-1), (2-1), (3-1), (4-1), (5-1) Therefore, it is preferable to adjust the refractive index by adjusting the composition so as to satisfy (6-1) or to adjust the thickness from the viewpoint of increasing the visible light transmittance and increasing the infrared light reflectance.
  • the layer between the support and the metal particle-containing layer, that is, the lower layer, the infrared absorbing compound-containing layer, and the intermediate layer are collectively referred to as an undercoat layer. To give each layer a function.
  • the heat ray shielding material of the present invention preferably has a layer containing an ultraviolet absorber.
  • the layer containing the ultraviolet absorber can be appropriately selected depending on the purpose, and may be an adhesive layer, or a layer (for example, an overcoat) between the adhesive layer and the metal particle-containing layer. Layer). In any case, it is preferable that the ultraviolet absorber is added to a layer disposed on the side irradiated with sunlight with respect to the metal particle-containing layer.
  • the ultraviolet absorber is not particularly limited and may be appropriately selected depending on the purpose.
  • a benzophenone ultraviolet absorber a benzotriazole ultraviolet absorber, a triazine ultraviolet absorber, a salicylate ultraviolet absorber, Examples include cyanoacrylate ultraviolet absorbers. These may be used individually by 1 type and may use 2 or more types together.
  • the benzophenone-based ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 2,4droxy-4-methoxy-5-sulfobenzophenone.
  • the benzotriazole ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the triazine-based ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include mono (hydroxyphenyl) triazine compounds, bis (hydroxyphenyl) triazine compounds, and tris (hydroxyphenyl) triazine compounds. Etc. Examples of the mono (hydroxyphenyl) triazine compound include 2- [4-[(2-hydroxy-3-dodecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethyl).
  • Phenyl) -1,3,5-triazine 2- [4-[(2-hydroxy-3-tridecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) ) -1,3,5-triazine, 2- (2,4-dihydroxyphenyl) -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2- (2-hydroxy- 4-isooctyloxyphenyl) -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2- (2-hydroxy-4-dodecyloxyphenyl) -4,6-bis ( 2,4-dimethylphenyl) -1,3,5-triazine, etc.
  • Examples of the bis (hydroxyphenyl) triazine compound include 2,4-bis (2-hydroxy-4-propyloxyphenyl) -6- (2,4-dimethylphenyl) -1,3,5-triazine, 2 , 4-Bis (2-hydroxy-3-methyl-4-propyloxyphenyl) -6- (4-methylphenyl) -1,3,5-triazine, 2,4-bis (2-hydroxy-3-methyl) -4-hexyloxyphenyl) -6- (2,4-dimethylphenyl) -1,3,5-triazine, 2-phenyl-4,6-bis [2-hydroxy-4- [3- (methoxyheptaethoxy ) -2-hydroxypropyloxy] phenyl] -1,3,5-triazine and the like.
  • tris (hydroxyphenyl) triazine compound examples include 2,4-bis (2-hydroxy-4-butoxyphenyl) -6- (2,4-dibutoxyphenyl) -1,3,5-triazine, 2 , 4,6-Tris (2-hydroxy-4-octyloxyphenyl) -1,3,5-triazine, 2,4,6-tris [2-hydroxy-4- (3-butoxy-2-hydroxypropyloxy) ) Phenyl] -1,3,5-triazine, 2,4-bis [2-hydroxy-4- [1- (isooctyloxycarbonyl) ethoxy] phenyl] -6- (2,4-dihydroxyphenyl) -1 , 3,5-triazine, 2,4,6-tris [2-hydroxy-4- [1- (isooctyloxycarbonyl) ethoxy] phenyl] -1,3,5-triazine, 2,4-bis [2 -Hydroxy-4
  • the salicylate-based ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include phenyl salicylate, p-tert-butylphenyl salicylate, p-octylphenyl salicylate, Examples include 2-ethylhexyl salicylate.
  • the cyanoacrylate-based ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the binder is not particularly limited and may be appropriately selected depending on the intended purpose, but preferably has higher visible light transparency and higher solar transparency, and examples thereof include acrylic resin, polyvinyl butyral, and polyvinyl alcohol. .
  • the ultraviolet absorbing layer formed between the heat ray source and the flat metal particles is 450 nm to 1,500 nm. It is preferable to select a material that does not absorb light or to reduce the thickness of the ultraviolet absorbing layer.
  • the thickness of the ultraviolet absorbing layer is preferably 0.01 ⁇ m to 1,000 ⁇ m, more preferably 0.02 ⁇ m to 500 ⁇ m.
  • the thickness is less than 0.01 ⁇ m, ultraviolet absorption may be insufficient, and when it exceeds 1,000 ⁇ m, the visible light transmittance may be reduced.
  • the content of the ultraviolet absorbing layer varies depending on the ultraviolet absorbing layer to be used and cannot be generally defined, but it is preferable to appropriately select a content that gives a desired ultraviolet transmittance in the heat ray shielding material of the present invention.
  • the ultraviolet transmittance is preferably 5% or less, and more preferably 2% or less. When the ultraviolet transmittance exceeds 5%, the color of the flat metal particle layer may change due to ultraviolet rays of sunlight.
  • the heat ray shielding material of the present invention is preferable from the viewpoint of balance between heat ray shielding and production cost even if it contains at least one kind of metal oxide particles in order to absorb long wave infrared rays. In this case, it is preferable that metal oxide particles are included in the back surface layer of the hard coat layer or other support.
  • the heat ray shielding material of the present invention is arranged so that the flat metal particle-containing layer is on the incident direction side of heat rays such as sunlight, a part of the heat rays are reflected by the metal particle-containing layer, but some of the heat rays are To Penetrate. As shown in FIG.
  • ATO Abbreviated as “ATO”
  • ZnO 2 zinc oxide
  • ZnO 2 zinc antimonate
  • titanium oxide indium oxide
  • tin oxide lanthanum hexaboride
  • Cs 0.33 cesium tungsten oxide
  • WO 3 hereinafter abbreviated as “CWO”.
  • ITO, ATO, CWO, and lanthanum hexaboride (LaB 6 ) are more preferable in that heat ray absorbing ability is excellent and a heat ray shielding material having a wide range of heat ray absorbing ability can be produced by combining with flat metal particles.
  • ITO is particularly preferable in that infrared rays of 1,200 nm or more are shielded by 90% or more and visible light transmittance is 90% or more.
  • the volume average particle size of the primary particles of the metal oxide particles is preferably 0.1 ⁇ m or less in order not to reduce the visible light transmittance.
  • a shape of the said metal oxide particle According to the objective, it can select suitably, For example, spherical shape, needle shape, plate shape, etc. are mentioned.
  • the content of the metal oxide particles is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1 g / m 2 to 20 g / m 2 , and preferably 0.5 g / m 2 to 10 g. / M 2 is more preferable, and 1.0 g / m 2 to 4.0 g / m 2 is more preferable. If the content is less than 0.1 g / m 2 , the amount of solar radiation felt on the skin may increase, and if it exceeds 20 g / m 2 , the visible light transmittance may deteriorate.
  • the content of the metal oxide particles is, for example, by measuring the number and average particle diameter of the metal oxide particles in a certain area from the observation of the super foil section TEM image and the surface SEM image of the heat ray shielding layer, It can be calculated by dividing the mass (g) calculated based on the number and average particle diameter and the specific gravity of the metal oxide particles by the constant area (m 2 ).
  • metal oxide fine particles in a certain area of the metal oxide particle-containing layer are eluted in methanol, and the mass (g) of the metal oxide fine particles measured by fluorescent X-ray measurement is divided by the constant area (m 2 ). This can also be calculated.
  • the method for producing the heat ray shielding material of the present invention is not particularly limited and can be appropriately selected according to the purpose.
  • a dispersion having the dye on the surface of the lower layer such as the support examples thereof include a method of coating with a dip coater, a die coater, a slit coater, a bar coater, a gravure coater, and the like, and a method of plane orientation by a method such as an LB film method, a self-organization method, and spray coating.
  • the infrared absorbing compound-containing layer is preferably formed by coating. That is, the infrared ray absorbing compound-containing layer is preferably a dye coating layer. Among them, the method of applying with a bar coater is preferable.
  • the infrared absorbing compound-containing layer is formed by coating
  • other additives such as a solvent and a surfactant may be added to the coating solution in addition to the infrared absorbing compound and the polymer.
  • the solvent is not particularly limited and water or a known organic solvent can be used.
  • the solvent may be used in combination of two or more, in addition to being used alone. In the present invention, specifically, it is more preferable to use as an aqueous solvent in which water and methanol are combined.
  • Examples of other additives include surfactants and additives described in paragraph numbers [0027] to [0031] of JP-A-2005-17322.
  • the surfactant is not particularly limited, but may be any of aliphatic, aromatic, and fluorine surfactants, and may be any nonionic, anionic, or cationic surfactant.
  • Examples of the surfactant include those described in JP 2011-218807 A.
  • As the surfactant specifically, Rapisol A-90 manufactured by Nippon Oil & Fats Co., Ltd., NAROACTY CL95 manufactured by Sanyo Chemical Industries, Ltd., and the like are preferably used.
  • the surfactants may be used in combination of two or more in addition to being used alone.
  • the preferred ranges of the infrared absorbing compound coating amount and the polymer coating amount are the contents of the infrared absorbing compound and the polymer included in the infrared absorbing compound-containing layer, respectively. The same as the preferable range of the amount.
  • the infrared absorbing compound-containing layer is formed by coating, it is preferable to form the infrared absorbing compound-containing layer by applying the coating liquid and then drying and solidifying by a known method. As a drying method, drying by heating is preferable.
  • Method for forming metal particle-containing layer The method for forming the metal particle-containing layer of the present invention is not particularly limited and may be appropriately selected depending on the purpose.
  • the dispersion having the flat metal particles on the surface of the lower layer such as the substrate A method of applying a liquid (flat metal particle dispersion) with a dip coater, a die coater, a slit coater, a bar coater, a gravure coater, or the like, a method of aligning the surface by a method such as LB film method, self-organization method, spray coating, Is mentioned.
  • a pressure roller such as a calendar roller or a laminating roller.
  • the overcoat layer is preferably formed by coating.
  • the coating method at this time is not particularly limited, and a known method can be used.
  • a dispersion containing the ultraviolet absorber can be used as a dip coater, a die coater, a slit coater, a bar coater, a gravure coater, or the like. The method of apply
  • coating by etc. is mentioned.
  • the hard coat layer is preferably formed by coating.
  • the coating method at this time is not particularly limited, and a known method can be used.
  • a dispersion containing the ultraviolet absorber can be used as a dip coater, a die coater, a slit coater, a bar coater, a gravure coater, or the like. The method of apply
  • coating by etc. is mentioned.
  • the adhesive layer is preferably formed by coating. For example, it can be laminated on the surface of the lower layer such as the substrate, the metal particle-containing layer, or the ultraviolet absorbing layer.
  • the coating method at this time A well-known method can be used.
  • a film in which the pressure-sensitive adhesive is previously applied and dried on a release film is prepared, and the film is left in a dry state by laminating the pressure-sensitive adhesive surface of the film and the heat ray shielding material surface of the present invention. It is possible to laminate the pressure-sensitive adhesive layer.
  • a well-known method can be used.
  • Window glass As an example shown in FIG. 5A, when using the heat-shielding material of the present invention to provide functionality to existing window glass, it is preferable to laminate an adhesive and paste it on the indoor side of the window glass. .
  • the infrared reflection layer is installed on the sunlight side as much as possible because it can reflect the infrared rays to be incident on the room in advance.
  • the metal particle containing layer is installed on the sunlight incidence side.
  • a pressure-sensitive adhesive layer is provided on the metal particle-containing layer or a functional layer such as an overcoat layer provided on the metal particle-containing layer, and bonded to the window glass via the pressure-sensitive adhesive layer.
  • a heat ray shielding material When a heat ray shielding material is attached to a window glass, a heat ray shielding material provided by coating or laminating an adhesive layer is prepared, and a surfactant (on the surface of the window glass and the pressure ray adhesive layer of the heat ray shielding material is previously prepared). After spraying an aqueous solution containing mainly anionic), a heat ray shielding material may be installed on the window glass through the adhesive layer. Until the moisture evaporates, the adhesive force of the pressure-sensitive adhesive layer decreases, so that the position of the heat ray shielding material can be adjusted on the glass surface.
  • the water remaining between the window glass and the heat ray shielding material is swept from the glass center toward the edge by using a squeegee or the like.
  • the heat ray shielding material can be fixed. In this way, it is possible to install the heat ray shielding material on the window glass.
  • FIG. 5B for example, two glass plates, two polyvinyl butyral interlayer films (PVB sheets) for laminated glass, and the heat ray shielding material are prepared to produce a laminated glass body.
  • PVB sheet first sheet
  • heat ray shielding material PVB sheet
  • glass plate second sheet
  • This laminated body is preliminarily pressure-bonded at 95 ° C. for 30 minutes under vacuum, and then pressure-bonded with heating under conditions of 1.3 MPa and 120 ° C. in an autoflavor to obtain a laminated glass to which a heat ray shielding material is applied. be able to.
  • FIG. 5B for example, two glass plates, two polyvinyl butyral interlayer films (PVB sheets) for laminated glass, and the heat ray shielding material are prepared to produce a laminated glass body.
  • PVB sheet first sheet
  • heat ray shielding material PVB sheet
  • second sheet glass plate
  • the heat ray shielding material has the base material 40, but the base material is not necessarily required when the interlayer film for laminated glass body using the heat ray shielding material is formed, and the heat ray formed on the surface of the base material.
  • the laminated body of the heat ray shielding material may be incorporated into the laminated glass body intermediate film after the laminated body of the shielding material is peeled off from the base material, and the laminated body for laminated glass incorporating the thus obtained laminated body of the heat ray shielding material.
  • a laminated glass body may be formed in the same procedure as described above, and a laminated glass body to which a heat ray shielding material is applied may be formed.
  • the heat ray shielding material of the present invention is not particularly limited as long as it is an embodiment used for selectively reflecting (absorbing as necessary) heat rays (near infrared rays), and may be appropriately selected according to the purpose.
  • the film include a vehicle film and a laminated structure, a building material film and a laminated structure, and an agricultural film. Among these, in terms of energy saving effect, a vehicle film and a laminated structure, a building material film and a laminated structure are preferable.
  • 0.68 L of 8.0 g / L polystyrene sulfonic acid aqueous solution was added, and 0.041 L of sodium borohydride aqueous solution prepared to 23 g / L using 0.04 N sodium hydroxide aqueous solution was further added.
  • 13 L of 0.10 g / L silver nitrate aqueous solution was added at 5.0 L / min.
  • 1.0 L of 10 g / L trisodium citrate (anhydride) aqueous solution and 11 L of ion exchange water were added, and 0.68 L of 80 g / L potassium hydroquinone sulfonate aqueous solution was further added.
  • the absorption peak wavelength was 900 nm and the full width at half maximum was 270 nm. Met.
  • the obtained silver tabular grain dispersion liquid A was stored in a 20 L container of Union Container Type II (manufactured by Low Density Polyethylene, distributor: ASONE Co., Ltd.) and stored at 30 ° C.
  • a 0.2 mM NaOH aqueous solution was added to the precipitated silver tabular grains to make a total of 400 g, and the mixture was hand-stirred with a stirring rod to obtain a coarse dispersion.
  • 24 coarse dispersions were prepared to a total of 9600 g, added to a SUS316L tank and mixed.
  • 10 cc of a 10 g / L solution of Pluronic 31R1 manufactured by BASF
  • the dispersion liquid A was subjected to desalting treatment and redispersion treatment to prepare a silver tabular grain dispersion liquid B.
  • the spectral transmittance of the tabular silver particle dispersion B was measured by the same method as that for the tabular silver particle dispersion A, the absorption peak wavelength and the half width were almost the same as those of the tabular silver particle dispersion A.
  • the obtained silver tabular grain dispersion liquid A was stored in a 20 L container of Union Container II type and stored at 30 ° C.
  • Silver tabular grain dispersion liquid B was dropped on a silicon substrate and dried, and the individual thicknesses of the tabular silver grains were measured by the FIB-TEM method. Ten silver tabular grains in the silver tabular grain dispersion B were measured, and the average thickness was 8 nm.
  • coating liquid I1 for intermediate layer -Visible light reflectance reduction high refractive index coating liquid- Aqueous urethane resin: Hydran HW350 (Manufactured by DIC Corporation, solid content 30% by mass) 11.77 parts by mass
  • Surfactant B NAROACTY CL-95 (Manufactured by Sanyo Chemical Industry Co., Ltd., diluted with 1% solid content ion exchange water) 1.11 parts by weight crosslinking agent: Carbodilite V-02-L2 (Nisshinbo Chemical Co., Ltd., solid content concentration 20% by mass ion-exchanged water dilution) 7.56 parts by weight distilled water 73.27 parts by weight
  • aqueous dye dispersion BD-10- Water was added to 3 parts by mass of pyrrolopyrrole dye (D-10) having the structure shown below and 2 parts by mass of DisperBYK2091 (manufactured by Big Chemie) to make 100 parts by mass. Further, 50 parts by mass of 0.1 mm ⁇ zirconia beads were added, and the mixture was treated with a planetary ball mill at 300 rpm for 5 hours to produce an aqueous dye dispersion BD-10 composed of pyrrolopyrrole dye (D-10) fine particles. did. Thereafter, beads were separated and removed from the water product by filtration. When the obtained fine particles were observed with an electron microscope, they were irregular fine particles having an average particle diameter of 40 nm.
  • a dye aqueous dispersion BD-28 was prepared in the same manner as the dye aqueous dispersion BD-10, except that the pyrrolopyrrole dye (D-10) was changed to a pyrrolopyrrole dye (D-28) having the structure shown below. .
  • the obtained fine particles were observed with an electron microscope and found to be irregular fine particles having an average particle diameter of 60 nm.
  • surfactant B NAROACTY CL-95 (Manufactured by Sanyo Chemical Industry Co., Ltd., diluted with 1% solid content ion exchange water) 1.19 parts by mass Dye water-soluble dispersion BD-28 2.60 parts by mass Methanol 26.84 parts by mass Distilled water 65.36 parts by mass
  • coating liquid D4 for containing an infrared absorbing compound -Infrared absorbing compound-containing low refractive index coating liquid- Aqueous urethane resin: Hydran HW350 (Manufactured by DIC Corporation, solid content 30% by mass) 1.29 parts by mass hollow silica particles: through rear 4110 (Average particle size 60 nm, JGC Catalysts & Chemicals Co., Ltd., solid content 20% by mass) 3.16 parts by mass Surfactant B: NAROACTY CL-95 (Manufactured by Sanyo Chemical Industry Co., Ltd., diluted with 1% solid content ion exchange water) 1.19 parts by mass Dye water-soluble dispersion BD-28 1.26 parts by mass Methanol 26.84 parts by mass Distilled water 65.36 parts by mass
  • surfactant B NAROACTY CL-95 (Manufactured by Sanyo Chemical Industry Co., Ltd., diluted with 1% solid content ion exchange water) 1.19 parts by mass
  • Dye water-soluble dispersion BD-10 2.60 parts by mass Methanol 26.84 parts by mass Distilled water 65.36 parts by mass
  • colloidal silica fine particles Snowtex XL (average particle size 50 nm) (Nissan Chemical Industry Co., Ltd., diluted with 10% solids by distilled water) 0.0033 parts by mass Colloidal silica fine particle dispersion A 0.079 parts by mass Acrylic polymer aqueous dispersion: AS-563A (Daicel Finechem Co., Ltd., solid content 27.5% by mass) 0.13 parts by weight wax: cellosol 524 (Manufactured by Chukyo Yushi Co., Ltd., diluted with 3% solids by distilled water) 0.78 parts by mass Crosslinker: Carbodilite V-02-L2 (Nisshinbo Chemical Co., Ltd., diluted with distilled water with a solid concentration of 20% by mass) 0.46 parts by mass of surfactant A: Lipal 870P (Manufactured by Lion Corporation, diluted with distilled water at a solid content of 1% by mass) 0.63 parts by mass
  • colloidal silica fine particle dispersion A- 0.10 kg of Aerosil OX-50 (manufactured by Nippon Aerosil Co., Ltd.), a colloidal silica fine particle with an average primary particle diameter of 40 nm, is weighed into a SUS304 container, 0.9 kg of ion-exchanged water is added, and a desktop quick Using a homomixer LR-1 (manufactured by Mizuho Kogyo Co., Ltd.), coarse dispersion was performed at 3000 rpm for 60 minutes.
  • ITO paint PI-3 (Mitsubishi Materials Kasei Co., Ltd.) is made of ITO (tin-doped indium oxide), dispersant, polyacrylate, initiator, toluene, 4-hydroxy-4-methyl-2-pentanone, 2- It is a heat ray-cut paint mainly composed of methyl-1-propanol and ethanol.
  • the ITO content is 28% by mass.
  • a roll-shaped PET film (Cosmo Shine A4300 manufactured by Toyobo Co., Ltd., width: 1320 mm, thickness: 75 ⁇ m, double-sided easy-adhesive layer treatment, refractive index: 1.66) is conveyed at a speed of 15 m / min and supported.
  • the infrared absorbing compound-containing layer coating solution D2 is applied on one side of the body using a wire bar to 10.6 cc / m 2 and dried at 130 ° C. to provide an infrared absorbing compound-containing layer. It was.
  • the film thickness after coating and drying was 205 nm and the refractive index was 1.40.
  • the density of the infrared absorbing compound in the infrared absorbing compound-containing layer (expressed as dye density in Table 1) was 0.20 g / cm 3 .
  • the content density of the infrared compound in the infrared absorbing compound-containing layer was calculated from the thickness of the infrared absorbing compound-containing layer and the content of the infrared absorbing compound in the solid content in the coating solution.
  • the coating liquid I1 is applied on the infrared absorbing compound-containing layer so as to be 5.30 cc / m 2 using a wire bar, and subjected to a drying treatment at 140 ° C., An intermediate layer was provided.
  • the film thickness after coating and drying was 200 nm, and the refractive index was 1.60.
  • the coated support was wound up under the temperature and humidity conditions of 23 ⁇ 2 ° C. and 70 ⁇ 5% RH to obtain a coated film A in roll form.
  • the coated film A in roll form is conveyed at a speed of 15 m / min, and the coating liquid M1 of the metal particle-containing layer is applied on the intermediate layer so as to be 10.6 cc / m 2 using a wire bar.
  • a drying treatment was performed at 140 ° C. to provide a metal particle-containing layer containing silver tabular grains.
  • the film thickness after coating and drying was 10 nm.
  • the protective layer coating solution O1 is applied onto the metal particle-containing layer using a wire bar so as to be 5.30 cc / m 2, and a drying treatment is performed at 135 ° C.
  • An overcoat layer (protective layer) was provided.
  • the film thickness after coating and drying was 33 nm and the refractive index was 1.51.
  • the coated support was wound under temperature and humidity conditions of 23 ⁇ 2 ° C. and relative humidity 55 ⁇ 5% to obtain a coated film B in roll form.
  • the winding length was 2200 m.
  • the back surface first layer coating solution B1 is applied and dried using a slot die coating method. It apply
  • the back surface second layer coating solution B2 is applied onto the back surface first layer using a slot die coating method so that the film thickness after coating and drying UV curing is 3 ⁇ m. And a drying treatment at 80 ° C.
  • the dried coating layer is irradiated with 500 mJ / cm 2 of ultraviolet light under atmospheric pressure using a 160 W / cm high-pressure mercury lamp (manufactured by Eye Graphics Co., Ltd.), and metal oxidation is performed.
  • a 3 ⁇ m hard coat layer (back surface second layer) was provided on the product particle-containing layer (back surface first layer). In this way, a hard coat layer having a refractive index of 1.66 was obtained.
  • Example 101 which is a heat ray heat shielding material was produced.
  • the average thickness is determined by measuring the difference between before and after coating as a thickness using a laser microscope VK-8510 (manufactured by Keyence Co., Ltd.), and observing the cross section of the heat ray shielding material with SEM or TEM.
  • the method of calculating by the above, the method of calculating by performing cross-section cutting and observation by the FIB-TEM method, and the method of measuring the reflection spectrum and calculating by fitting were used as appropriate.
  • coating and observing only one object layer to the film used as a support body was also used suitably.
  • a roll-shaped PET film (Cosmo Shine A4300 manufactured by Toyobo Co., Ltd., width: 1320 mm, thickness: 75 ⁇ m, double-sided easy-adhesive layer treatment) is conveyed at a speed of 15 m / min, and a lower layer is formed on one side of the support.
  • the coating liquid U1 was applied using a wire bar to 6.9 cc / m 2 and dried at 140 ° C. to provide a lower layer.
  • the film thickness after coating and drying was 132 nm, and the refractive index was 1.85.
  • the coating solution D2 for the infrared absorbing compound-containing layer is coated on the lower layer so as to be 5.3 cc / m 2 using a wire bar, and dried at 130 ° C.
  • An absorbing compound-containing layer was provided.
  • the film thickness after coating and drying was 102 nm and the refractive index was 1.40.
  • the coating solution I3 for the first intermediate layer is applied onto the infrared absorbing compound-containing layer using a wire bar so that the film thickness after coating and drying is 135 nm, A drying treatment was performed at 140 ° C.
  • the coating liquid I2 for the second intermediate layer was applied using a wire bar so that the film thickness after coating and drying was 102 nm, and a drying treatment was performed at 140 ° C.
  • the third intermediate layer coating solution I3 is applied using a wire bar so that the film thickness after coating and drying is 185 nm, and is subjected to a drying treatment at 140 ° C. to form three intermediate layers. Formed. After the three intermediate layers were coated, the coated support was wound up under temperature and humidity conditions of 23 ⁇ 2 ° C. and a relative humidity of 70 ⁇ 5% to obtain a coated film C in roll form.
  • the coated film C in roll form is conveyed at a speed of 15 m / min, and the coating liquid M1 of the metal particle-containing layer is applied onto the intermediate layer so as to be 10.6 cc / m 2 using a wire bar, A drying treatment was performed at 140 ° C. to provide a metal particle-containing layer containing silver tabular grains. The film thickness after coating and drying was 10 nm.
  • the protective layer coating solution O1 is applied onto the metal particle-containing layer using a wire bar so as to be 5.30 cc / m 2, and a drying treatment is performed at 135 ° C.
  • An overcoat layer (protective layer) was provided.
  • the film thickness after coating and drying was 33 nm and the refractive index was 1.51.
  • the coated support was wound under temperature and humidity conditions of 23 ⁇ 2 ° C. and relative humidity 55 ⁇ 5% to obtain a coated film B in roll form.
  • the winding length was 2200 m.
  • the back surface first layer coating solution B1 is applied and dried using a slot die coating method. It apply
  • the dried coating layer was cured by irradiating 300 mJ / cm 2 of ultraviolet rays under atmospheric pressure using a 160 W / cm metal halide lamp (manufactured by Eye Graphics Co., Ltd.).
  • An oxide particle-containing layer (back surface first layer) was provided, and wound up under temperature and humidity conditions of 23 ⁇ 2 ° C. and 55 ⁇ 5% RH.
  • the heat ray shielding material 104 was produced.
  • the VLT value and the SC value of the heat ray shielding material change with a certain relationship.
  • the VLT value decreases and the SC value decreases (this indicates that the amount of transmitted light decreases to darken and the heat ray shielding ability increases). That is, when comparing between test samples, it is necessary to compare the VLT value with the same SC value (or compare the SC value with the same VLT value).
  • a plurality of heat ray shielding material sample groups are prepared by appropriately changing the coating amount of the metal particle-containing layer, and the VLT value and SC value of each sample are obtained. Then, a VLT value at a desired SC value is obtained by a function (approximate curve) obtained by plotting data of the heat ray shielding material sample group. Thereby, a valid evaluation can be performed.
  • the other heavy release separator (silicone-coated PET) of PD-S1 is peeled off, and a soda-lime silicate glass (sheet glass) using a 0.5% by weight diluted solution of Real Perfect (manufactured by Lintec Co., Ltd.), which is a film construction solution. (Thickness: 3 mm) and optical characteristics were evaluated.
  • the said plate glass uses the thing which wiped off the dirt with isopropyl alcohol, and dried naturally, and when bonded, it is pressure-bonded with a surface pressure of 0.5 kg / cm 2 using a rubber roller in an environment of 25 ° C. and 65% RH. did.
  • These heat ray shielding material sample groups (glass bonded) were used as test samples.
  • the visible light transmittance and shielding coefficient of the heat ray shielding material can be changed depending on the amount of coating at the time of forming the metal particle-containing layer.
  • a large number of heat ray shielding materials were produced by changing the coating amount of the coating solution for the metal particle-containing layer including the plate-like metal particle-containing solution of each example and comparative example.
  • the visible light transmittance and the shielding coefficient were calculated by the method.
  • the transmission spectrum and reflection spectrum of the heat ray shielding material prepared in each example and comparative example were measured using an ultraviolet-visible-near infrared spectrometer (manufactured by JASCO Corporation, V-670, using integrating sphere unit ISN-723). Visible light transmittance and shielding factor were calculated according to JIS R 3106 and JIS A 5759.
  • VLT visible light transmittance
  • the smaller change in the reflectance means that the heat shielding performance of the heat ray shielding material is less changed before and after the wet heat aging.
  • the window glass with a heat ray shielding material of the example group of the present invention was visually confirmed to be highly transparent.
  • a laminated glass body to which heat ray shielding material is applied was produced in the following manner.
  • two glass plates, two polyvinyl butyral interlayer films (PVB sheet) for laminated glass, and the heat ray shielding material are prepared, and the glass plate (first sheet), PVB sheet (1 Sheet), a heat ray shielding material, a PVB sheet (second sheet), and a glass plate (second sheet).
  • This laminated body is preliminarily pressure-bonded at 95 ° C.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Laminated Bodies (AREA)
  • Optical Filters (AREA)

Abstract

This heat ray shielding material comprises: a metal particle-containing layer that contains at least one kind of metal particles; an infrared absorbing compound-containing layer that contains an infrared absorbing compound; and at least one intermediate layer that is arranged between the metal particle-containing layer and the infrared absorbing compound-containing layer. This heat ray shielding material contains a filler in the infrared absorbing compound-containing layer and/or in the intermediate layer. Consequently, this heat ray shielding material has high heat ray shielding ability, high visible light transmittance and excellent wet heat durability.

Description

熱線遮蔽材ならびに熱線遮蔽材を用いた窓ガラス、合わせガラス用中間膜および合わせガラスHeat ray shielding material, window glass using heat ray shielding material, interlayer film for laminated glass and laminated glass
 本発明は、熱線遮蔽材ならびに熱線遮蔽材を用いた窓ガラス、合わせガラス用中間膜および合わせガラスに関する。特に、遮熱性能、可視光透過率、湿熱耐久性がともに優れる熱線遮蔽材に関する。 The present invention relates to a heat ray shielding material, a window glass using the heat ray shielding material, an interlayer film for laminated glass, and a laminated glass. In particular, the present invention relates to a heat ray shielding material having excellent heat shielding performance, visible light transmittance, and wet heat durability.
 近年、二酸化炭素削減のための省エネルギー施策の一つとして、自動車や建物の窓に対する熱線遮蔽性付与材料が開発されている。熱線遮蔽性(日射熱取得率)の観点からは、吸収した光の室内への再放射(吸収した日射エネルギーの約1/3量)がある熱線吸収型より、再放射がない熱線反射型が望ましく、様々な提案がなされている。自動車や建物の窓への適用を考えた場合、市場においては、見た目が高透明で、かつ、熱線遮蔽性能が高いことが好ましいとされている。さらに、耐久性に優れた熱線遮蔽材が好ましいとされている。 In recent years, heat ray shielding materials for automobiles and building windows have been developed as an energy-saving measure for reducing carbon dioxide. From the viewpoint of the heat ray shielding property (acquisition rate of solar heat), the heat ray reflection type without re-radiation is better than the heat ray absorption type with re-radiation of absorbed light into the room (about 1/3 of the absorbed solar energy). Various proposals have been made. When considering application to windows of automobiles and buildings, it is preferable in the market that the appearance is highly transparent and the heat ray shielding performance is high. Furthermore, a heat ray shielding material excellent in durability is considered preferable.
 例えば特許文献1では、Ag微粒子による光の共振波長を粒子サイズにより長波化させる場合、粒子サイズ増加に伴って可視光波長域の乱反射が大きくなるという不具合に対し、Ag微粒子層の下層に高誘電率の誘電体層を設けることにより、微粒子サイズをそのままに共振波長を長波化することで近赤外線を反射できるという電波透過性波長選択板が記載されている。 For example, in Patent Document 1, when the resonance wavelength of light due to Ag fine particles is made longer by the particle size, a high dielectric constant is formed in the lower layer of the Ag fine particle layer in response to a problem that irregular reflection in the visible light wavelength region increases as the particle size increases. A radio wave transmissive wavelength selection plate is described in which near-infrared light can be reflected by providing a dielectric layer having a refractive index and increasing the resonance wavelength while keeping the particle size as it is.
 また、特許文献2には、少なくとも1種の金属粒子を含有する金属粒子含有層を有してなり、前記金属粒子が、六角形状又は円形状の平板状金属粒子を60個数%以上有し、前記平板状金属粒子の主平面が、前記金属粒子含有層の一方の表面に対して0°~±30°の範囲で面配向していることを特徴とする熱線遮蔽材により、反射波長選択性及び反射帯域選択性が高く、反射を防止したい波長における透過性に優れた熱線遮蔽材の提供ができることが記載されている。特許文献3では、透明基材フィルム上に、近赤外線吸収色素および、シリカ微粒子を含有する近赤外線吸収層を設けてなる近赤外線カットフィルムが記載されており、フィルム巻き取り性(滑り性)に優れ、ヘイズが小さく、粒子感がなく、可視光平均透過率、近赤外線透過率(850nm、950nm)、耐熱性、耐光性に優れた近赤外線カットフィルムを提供することができると記載されている。 Patent Document 2 has a metal particle-containing layer containing at least one kind of metal particles, and the metal particles have hexagonal or circular plate-like metal particles of 60 number% or more, Reflection wavelength selectivity is achieved by a heat ray shielding material, wherein the main plane of the flat metal particles is plane-oriented in the range of 0 ° to ± 30 ° with respect to one surface of the metal particle-containing layer. In addition, it is described that it is possible to provide a heat ray shielding material that has high selectivity in the reflection band and excellent transparency at a wavelength at which reflection is desired to be prevented. Patent Document 3 describes a near-infrared cut film in which a near-infrared-absorbing dye and a near-infrared-absorbing layer containing silica fine particles are provided on a transparent substrate film, and the film winding property (sliding property) is described. It is described that it is possible to provide a near-infrared cut film that is excellent, has a small haze, has no particle feeling, and has an excellent average visible light transmittance, near-infrared transmittance (850 nm, 950 nm), heat resistance, and light resistance. .
特開2006-110807号公報JP 2006-110807 A 特開2011-118347号公報JP 2011-118347 A 特開2008-284741号公報JP 2008-284741 A
 しかし、特許文献1の構成により得られた電波透過性波長選択板は十分な高透明・低ヘイズなものとは言えず、さらなる改善が望まれた。赤外光吸収材料との併用について開示も示唆もなかった。また、特許文献2に記載の方法には、さらなる可視光透過率の向上の目的で、銀粒子含有層よりも下層に屈折率調整層を設けるなどの検討は何らされていなかった。
 さらに、特許文献3に記載の近赤外線カットフィルムは赤外線吸収型であり、赤外線反射型の熱線遮蔽材と比較すると熱貫流率が高く、熱線遮蔽性能が劣る。また、特許文献3には特定サイズのシリカ微粒子を、ヘイズを悪化させるフィルム巻き取り性(滑り性)を付与するために用いられているが、シリカ微粒子を赤外線吸収層の屈折率調整等に用いることに関しては開示も示唆もなかった。
However, the radio wave transmission wavelength selection plate obtained by the configuration of Patent Document 1 cannot be said to be sufficiently transparent and low haze, and further improvement has been desired. There was no disclosure or suggestion about the combined use with an infrared light absorbing material. In addition, the method described in Patent Document 2 has not been studied at all such as providing a refractive index adjustment layer below the silver particle-containing layer for the purpose of further improving the visible light transmittance.
Furthermore, the near-infrared cut film described in Patent Document 3 is an infrared absorption type, and has a high heat transmissivity and inferior heat ray shielding performance as compared with an infrared reflection type heat ray shielding material. Patent Document 3 uses silica fine particles of a specific size for imparting film winding property (sliding property) that deteriorates haze, but the silica fine particles are used for adjusting the refractive index of the infrared absorption layer. There was no disclosure or suggestion.
 本発明は、従来における前記諸問題を解決し、従来技術よりもより良い遮熱性能、可視光透過率、湿熱耐久性を有する熱線遮蔽材を提供することを目的とする。 An object of the present invention is to solve the conventional problems and to provide a heat ray shielding material having better heat shielding performance, visible light transmittance, and wet heat durability than conventional techniques.
上述の課題を解決するために本発明者らが鋭意検討したところ、金属粒子含有層、赤外線吸収化合物含有層を有し、該2層の間に少なくとも1層以上の中間層を有し、赤外線吸収化合物含有層または中間層の少なくとも一方にフィラーを含有させることで、従来技術と比較して、熱線遮蔽能が高く、可視光透過率が高く、湿熱耐久性に優れる熱線遮蔽材を提供できることを見出し、本発明を完成させるに至った。 In order to solve the above-described problems, the present inventors diligently studied to have a metal particle-containing layer and an infrared-absorbing compound-containing layer, and to have at least one intermediate layer between the two layers. By including a filler in at least one of the absorbing compound-containing layer or the intermediate layer, it is possible to provide a heat ray shielding material that has higher heat ray shielding ability, higher visible light transmittance, and superior wet heat durability compared to the conventional technology. The headline and the present invention have been completed.
 前記課題を解決するための具体的な手段である本発明は、以下のとおりである。
<1>少なくとも1種の金属粒子を含有する金属粒子含有層と、赤外線吸収化合物を含有する赤外線吸収化合物含有層とを有し、前記金属粒子含有層と前記赤外線吸収化合物含有層との間に少なくとも1層以上の中間層を有し、前記赤外線吸収化合物含有層または前記中間層の少なくとも一方にフィラーを含有することを特徴とする熱線遮蔽材。
<2>前記赤外線吸収化合物が、赤外線吸収顔料である<1>の熱線遮蔽材。
<3>前記赤外線吸収化合物が、下記一般式(2)で表される化合物である<1>または<2>の熱線遮蔽材。
Figure JPOXMLDOC01-appb-C000002
(一般式(2)中、R1a及びR1bは同じであっても異なってもよく、各々独立にアルキル基、アリール基またはヘテロアリール基を表す。R及びRは各々独立に水素原子または置換基を表し、少なくとも一方は電子吸引性基であり、R及びRは結合して環を形成してもよい。Rは水素原子、アルキル基、アリール基、ヘテロアリール基、置換ホウ素または金属原子を表し、R1a、R1bおよびRの少なくとも1以上の基と共有結合もしくは配位結合してもよい。)
<4>前記金属粒子が、平板状の金属粒子を60個数%以上有する<1>~<3>のいずれかの熱線遮蔽材。
<5>前記平板状の金属粒子が、銀平板粒子である<4>の熱線遮蔽材。
<6>前記平板状の金属粒子が、六角形状乃至円形状の平板状金属粒子であり、前記六角形状乃至円形状の平板状の金属粒子のうち、主平面が前記金属粒子含有層の一方の表面に対して平均0°~±30°の範囲で面配向している平板状金属粒子が、全平板状金属粒子の50個数%以上である<4>または<5>の熱線遮蔽材。
<7>前記赤外線吸収化合物含有層が、前記フィラーと前記赤外線吸収化合物とを含む<1>~<6>のいずれかの熱線遮蔽材。
<8>前記フィラーが、酸化チタン、酸化ジルコニウム、酸化亜鉛、合成非晶質シリカ、コロイダルシリカ、中空シリカ、多孔質シリカ、フッ化マグネシウム、中空フッ化マグネシウムからなる群選ばれる少なくとも1種である<1>~<7>のいずれかの熱線遮蔽材。
<9>前記中間層が、ポリエステル樹脂またはポリウレタン樹脂を含む<1>~<8>のいずれかの熱線遮蔽材。
<10>前記中間層の厚みが、20nm以上である<1>~<9>のいずれかの熱線遮蔽材。
<11>前記赤外線吸収化合物含有層における前記赤外線吸収化合物の密度が、0.25g/cm以上である<1>~<10>のいずれかの熱線遮蔽材。
<12>前記金属粒子含有層の前記中間層を有する側の面と反対側の面上にオーバーコート層を有する<1>~<11>のいずれかの熱線遮蔽材。
<13>前記赤外線吸収化合物含有層の前記金属粒子含有層を有する側の面と反対側の面側に、さらに支持体を有する<1>~<12>のいずれかの熱線遮蔽材。
<14>前記支持体がポリエチレン、ポリプロピレン、ポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート系樹脂、ポリ塩化ビニル系樹脂、ポリフェニレンサルファイド系樹脂、ポリエーテルサルフォン系樹脂、ポリエチレンサルファイド系樹脂、ポリフェニレンエーテル系樹脂、スチレン系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、セルロース系樹脂のいずれかである<12>または<13>の熱線遮蔽材。
<15>前記赤外線吸収化合物含有層と前記支持体の間に、少なくとも1層以上の層を有する<13>または<14>の熱線遮蔽材。
<16>前記支持体の金属粒子含有層を有する側の面と反対側の面上に、さらにハードコート層を有する<13>~<15>のいずれかの熱線遮蔽材。
<17>前記ハードコート層に金属酸化物粒子を含む<16>の熱線遮蔽材。
<18>前記金属酸化物粒子が、錫ドープ酸化インジウム(ITO)、アンチモンドープ酸化錫(ATO)、セシウムタングステン酸化物(CWO)から選ばれる1種以上である<17>の熱線遮蔽材。
<19>前記金属粒子含有層の前記中間層を有する側の面と反対側の面上に、さらに粘着剤層を有する<1>~<18>のいずれかの熱線遮蔽材。
<20>前記粘着剤層を介し、<19>に記載の熱線遮蔽材をガラス表面に設置した窓ガラス。
<21><1>~<19>のいずれかの熱線遮蔽材を含むことを特徴とする合わせガラス用中間膜。
<22><1>~<19>のいずれかの熱線遮蔽材を含む合わせガラス。
<23><21>の合わせガラス用中間膜と、少なくとも2枚のガラス板を有し、前記2枚のガラス中に前記合わせガラス用中間膜が挿入されたことを特徴とする<22>の合わせガラス。
The present invention which is a specific means for solving the above-described problems is as follows.
<1> A metal particle-containing layer containing at least one metal particle and an infrared-absorbing compound-containing layer containing an infrared-absorbing compound, and between the metal-particle-containing layer and the infrared-absorbing compound-containing layer A heat ray shielding material comprising at least one intermediate layer and containing a filler in at least one of the infrared absorbing compound-containing layer or the intermediate layer.
<2> The heat ray shielding material according to <1>, wherein the infrared absorbing compound is an infrared absorbing pigment.
<3> The heat ray shielding material according to <1> or <2>, wherein the infrared absorbing compound is a compound represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000002
(In General Formula (2), R 1a and R 1b may be the same or different and each independently represents an alkyl group, an aryl group or a heteroaryl group. R 2 and R 3 each independently represent a hydrogen atom. Or at least one is an electron-withdrawing group, and R 2 and R 3 may combine to form a ring, and R 4 represents a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, a substituted group Represents a boron or metal atom, and may be a covalent bond or a coordinate bond with at least one group of R 1a , R 1b and R 3. )
<4> The heat ray shielding material according to any one of <1> to <3>, wherein the metal particles have 60% by number or more of flat metal particles.
<5> The heat ray shielding material according to <4>, wherein the tabular metal particles are silver tabular grains.
<6> The plate-like metal particles are hexagonal or circular plate-like metal particles, and among the hexagonal or circular plate-like metal particles, a main plane is one of the metal particle-containing layers. The heat ray shielding material according to <4> or <5>, wherein the flat metal particles whose plane orientation is in an average range of 0 ° to ± 30 ° with respect to the surface is 50% by number or more of all the flat metal particles.
<7> The heat ray shielding material according to any one of <1> to <6>, wherein the infrared absorbing compound-containing layer includes the filler and the infrared absorbing compound.
<8> The filler is at least one selected from the group consisting of titanium oxide, zirconium oxide, zinc oxide, synthetic amorphous silica, colloidal silica, hollow silica, porous silica, magnesium fluoride, and hollow magnesium fluoride. The heat ray shielding material according to any one of <1> to <7>.
<9> The heat ray shielding material according to any one of <1> to <8>, wherein the intermediate layer contains a polyester resin or a polyurethane resin.
<10> The heat ray shielding material according to any one of <1> to <9>, wherein the intermediate layer has a thickness of 20 nm or more.
<11> The heat ray shielding material according to any one of <1> to <10>, wherein the infrared absorbing compound-containing layer has a density of the infrared absorbing compound of 0.25 g / cm 3 or more.
<12> The heat ray shielding material according to any one of <1> to <11>, further comprising an overcoat layer on a surface opposite to the surface having the intermediate layer of the metal particle-containing layer.
<13> The heat ray shielding material according to any one of <1> to <12>, further comprising a support on the surface of the infrared absorbing compound-containing layer opposite to the surface having the metal particle-containing layer.
<14> The support is polyethylene, polypropylene, polyolefin resin, polyethylene terephthalate, polyethylene naphthalate, polycarbonate resin, polyvinyl chloride resin, polyphenylene sulfide resin, polyether sulfone resin, polyethylene sulfide resin, polyphenylene The heat ray shielding material according to <12> or <13>, which is any one of an ether resin, a styrene resin, an acrylic resin, a polyamide resin, a polyimide resin, and a cellulose resin.
<15> The heat ray shielding material according to <13> or <14>, which has at least one layer between the infrared absorbing compound-containing layer and the support.
<16> The heat ray shielding material according to any one of <13> to <15>, further comprising a hard coat layer on the surface opposite to the surface having the metal particle-containing layer of the support.
<17> The heat ray shielding material according to <16>, wherein the hard coat layer contains metal oxide particles.
<18> The heat ray shielding material according to <17>, wherein the metal oxide particles are at least one selected from tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), and cesium tungsten oxide (CWO).
<19> The heat ray shielding material according to any one of <1> to <18>, further comprising an adhesive layer on a surface opposite to the surface having the intermediate layer of the metal particle-containing layer.
The window glass which installed the heat ray shielding material as described in <19> on the glass surface through the <20> above-mentioned adhesive layer.
<21> An interlayer film for laminated glass comprising the heat ray shielding material according to any one of <1> to <19>.
<22> Laminated glass containing the heat ray shielding material according to any one of <1> to <19>.
<23><21> An interlayer film for laminated glass and at least two glass plates, wherein the interlayer film for laminated glass is inserted into the two sheets of glass Laminated glass.
 本発明によれば、熱線遮蔽能が高く、可視光透過率が高く、湿熱耐久性に優れる熱線遮蔽材を提供することができる。 According to the present invention, a heat ray shielding material having high heat ray shielding ability, high visible light transmittance, and excellent wet heat durability can be provided.
図1は、本発明の熱線遮蔽材の一例を示す概略図である。FIG. 1 is a schematic view showing an example of the heat ray shielding material of the present invention. 図2は、本発明の熱線遮蔽材の他の一例を示す概略図である。FIG. 2 is a schematic view showing another example of the heat ray shielding material of the present invention. 図3Aは、本発明の熱線遮蔽材の他の一例を示す概略図である。FIG. 3A is a schematic view showing another example of the heat ray shielding material of the present invention. 図3Bは、本発明の熱線遮蔽材の他の一例を示す概略図である。FIG. 3B is a schematic view showing another example of the heat ray shielding material of the present invention. 図4は、本発明の熱線遮蔽材の他の一例を示す概略図である。FIG. 4 is a schematic view showing another example of the heat ray shielding material of the present invention. 図5Aは、本発明の熱線遮蔽材を窓ガラスに設置した例を示す概略図である。FIG. 5A is a schematic view showing an example in which the heat ray shielding material of the present invention is installed on a window glass. 図5Bは、本発明の熱線遮蔽材を用いた合わせガラスの例を示す概略図である。FIG. 5B is a schematic view showing an example of a laminated glass using the heat ray shielding material of the present invention. 図6Aは、本発明の熱線遮蔽材において、平板状金属粒子を含む金属粒子含有層の存在状態を示した概略断面図であって、平板状金属粒子を含む金属粒子含有層(基材の平面とも平行)と平板状金属粒子の主平面(円相当径Dを決定する面)とのなす角度(θ)を説明する図を示す。FIG. 6A is a schematic cross-sectional view showing a state of existence of a metal particle-containing layer containing flat metal particles in the heat ray shielding material of the present invention, wherein the metal particle-containing layer containing flat metal particles (plane of the substrate) The figure explaining the angle ((theta)) which the main plane (surface which determines the equivalent circle diameter D) of a flat metal particle and a flat metal particle forms. 図6Bは、本発明の熱線遮蔽材において、平板状金属粒子を含む金属粒子含有層の存在状態を示した概略断面図であって、金属粒子含有層の熱線遮蔽材の深さ方向における平板状金属粒子の存在領域を示す図である。FIG. 6B is a schematic cross-sectional view showing the existence state of the metal particle-containing layer containing flat metal particles in the heat ray shielding material of the present invention, and is a flat plate shape in the depth direction of the heat ray shielding material of the metal particle-containing layer. It is a figure which shows the presence area | region of a metal particle. 図6Cは、本発明の熱線遮蔽材において、平板状金属粒子を含む金属粒子含有層の存在状態の他の一例を示した概略断面図である。FIG. 6C is a schematic cross-sectional view showing another example of the existence state of the metal particle-containing layer containing flat metal particles in the heat ray shielding material of the present invention. 図6Dは、本発明の熱線遮蔽材において、平板状金属粒子を含む金属粒子含有層の存在状態の他の一例を示した概略断面図である。FIG. 6D is a schematic cross-sectional view showing another example of the presence state of the metal particle-containing layer containing flat metal particles in the heat ray shielding material of the present invention. 図6Eは、本発明の熱線遮蔽材において、平板状金属粒子を含む金属粒子含有層の存在状態の他の一例を示した概略断面図である。FIG. 6E is a schematic cross-sectional view showing another example of the presence state of the metal particle-containing layer containing flat metal particles in the heat ray shielding material of the present invention. 図6Fは、本発明の熱線遮蔽材において、平板状金属粒子を含む金属粒子含有層の存在状態の他の一例を示した概略断面図である。FIG. 6F is a schematic cross-sectional view showing another example of the presence state of the metal particle-containing layer containing flat metal particles in the heat ray shielding material of the present invention. 図7Aは、本発明の熱線遮蔽材に好ましく用いられる平板状金属粒子の形状の一例を示した概略斜視図であって、円形状の平板状金属粒子を示す。FIG. 7A is a schematic perspective view showing an example of the shape of a flat metal particle preferably used in the heat ray shielding material of the present invention, and shows a circular flat metal particle. 図7Bは、本発明の熱線遮蔽材に好ましく用いられる平板状金属粒子の形状の一例を示した概略斜視図であって、六角形状の平板状金属粒子を示す。FIG. 7B is a schematic perspective view showing an example of the shape of flat metal particles preferably used for the heat ray shielding material of the present invention, and shows hexagonal flat metal particles.
 以下、本発明の熱線遮蔽材について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
Hereinafter, the heat ray shielding material of the present invention will be described in detail.
The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
[熱線遮蔽材]
 本発明の熱線遮蔽材は、少なくとも1種の金属粒子を含有する金属粒子含有層と、赤外線吸収化合物を含有する赤外線吸収化合物含有層とを有し、前記金属粒子含有層と前記赤外線吸収化合物含有層との間に少なくとも1層以上の中間層を有し、前記赤外線吸収化合物含有層または前記中間層の少なくとも一方にフィラーを含有することを特徴とする。
 このような構成をとることにより、熱線遮蔽能が高く、可視光透過率が高く、湿熱耐久性に優れる熱線遮蔽材となる。
[Heat ray shielding material]
The heat ray shielding material of the present invention has a metal particle-containing layer containing at least one metal particle and an infrared-absorbing compound-containing layer containing an infrared-absorbing compound, the metal-particle-containing layer and the infrared-absorbing compound-containing It has at least one or more intermediate layers between the layers, and at least one of the infrared absorbing compound-containing layer or the intermediate layer contains a filler.
By adopting such a configuration, the heat ray shielding material has high heat ray shielding ability, high visible light transmittance, and excellent wet heat durability.
 本発明の構成で、従来技術と比較して熱線遮蔽能が高く、可視光透過率が高く、湿熱耐久性に優れる熱線遮蔽材を提供できたことは、以下の機能を組み合わせたことによると考えている。
 本発明における中間層の役割は2つあると考えている。中間層の1つ目の役割は、赤外線吸収化合物含有層と金属粒子含有層の間に中間層が設置されることによる、赤外線吸収化合物と金属粒子の接触による相互作用を弱めることにあると考えている。特に湿熱をかけた条件下では、微量の赤外線吸収化合物の溶解・拡散が生じ、金属粒子含有層に赤外線吸収化合物が浸透し、金属粒子と赤外線吸収化合物間の相互作用(酸化還元反応など)をもつことがありうるが、赤外線吸収化合物含有層と金属粒子含有層の間に中間層を設置することにより、この浸透を遅らせる、または、遮断することができ、湿熱耐久性の向上が得られたと考えている。
With the configuration of the present invention, it was considered that the heat ray shielding material having higher heat ray shielding ability, higher visible light transmittance and superior wet heat durability compared with the prior art could be provided by combining the following functions: ing.
It is considered that there are two roles of the intermediate layer in the present invention. The first role of the intermediate layer is considered to be to weaken the interaction caused by the contact between the infrared absorbing compound and the metal particles due to the installation of the intermediate layer between the infrared absorbing compound-containing layer and the metal particle-containing layer. ing. In particular, under the condition of applying heat and humidity, a small amount of infrared absorbing compound is dissolved and diffused, the infrared absorbing compound penetrates into the metal particle containing layer, and the interaction between the metal particle and the infrared absorbing compound (redox reaction, etc.) occurs. Although it may have, by installing an intermediate layer between the infrared ray absorbing compound-containing layer and the metal particle-containing layer, this permeation can be delayed or blocked, and improvement in wet heat durability was obtained. thinking.
 中間層の2つ目の役割は、平滑な表面を得ることにあると考えている。赤外線吸収化合物含有層を塗工した場合、赤外線吸収化合物含有層表面に赤外線吸収化合物の微小な突出によるランダムで微小な凹凸が形成されることが分かった。微小な凹凸表面上に金属粒子含有層を塗工した場合、凸部上には金属粒子が配置されにくく、凹凸表面形状に沿って金属粒子の配列の乱れが生じることが分かった。それに対し、赤外線吸収化合物含有層と金属粒子含有層の間に中間層を設置することにより、赤外線吸収化合物含有層の微小な凹凸表面形状を打ち消し、平滑な中間層表面を得ることができ、その平滑な中間層表面上に金属粒子層を塗工した場合には、金属粒子は均一な配列を取って塗工されていたことを見出した。金属粒子の配列の均一性は光学性能の性能に寄与することが知られており、粒子間距離が均一になることで、より一層の可視光透過率と熱線遮蔽能の向上効果が得られた。
 以上、中間層は上記2つの機能を同時に発現するものと考えている。
It is considered that the second role of the intermediate layer is to obtain a smooth surface. It was found that when the infrared absorbing compound-containing layer was applied, random and minute irregularities were formed on the surface of the infrared absorbing compound-containing layer due to minute protrusions of the infrared absorbing compound. It was found that when the metal particle-containing layer was applied on a minute uneven surface, the metal particles were hardly arranged on the convex part, and the arrangement of the metal particles was disturbed along the uneven surface shape. On the other hand, by setting the intermediate layer between the infrared absorbing compound-containing layer and the metal particle-containing layer, the minute uneven surface shape of the infrared absorbing compound-containing layer can be canceled, and a smooth intermediate layer surface can be obtained. It was found that when the metal particle layer was applied on the surface of the smooth intermediate layer, the metal particles were applied in a uniform arrangement. It is known that the uniformity of the arrangement of metal particles contributes to the performance of the optical performance, and the effect of improving the visible light transmittance and the heat ray shielding ability was obtained by making the distance between the particles uniform. .
As described above, the intermediate layer is considered to exhibit the above two functions simultaneously.
 さらに、中間層または赤外線吸収化合物含有層の少なくとも一方にフィラーを含むことで、驚くべきことに更なる湿熱耐久性の向上効果が得られることを見出した。詳細は明らかでないが、フィラーが赤外線吸収化合物の層中の拡散を抑制する効果を有すると考えている。また、中間層または赤外線吸収化合物含有層の少なくとも一方にフィラーを含有することで、両層間に屈折率差を付けることができ、それにより可視光波長域の反射低減、赤外線波長域の反射増大の効果を付与することができる。
 このようにして、中間層の設置、および、中間層または赤外線吸収化合物含有層の少なくとも一方にフィラーを含む構成を取ることで、熱線遮蔽能および光学性能向上と湿熱耐久性向上の効果を、少ない層構成で実現できることが分かった。
Furthermore, it has been found that a further improvement effect of wet heat durability can be obtained by including a filler in at least one of the intermediate layer or the infrared ray absorbing compound-containing layer. Although details are not clear, it is considered that the filler has an effect of suppressing diffusion in the layer of the infrared absorbing compound. In addition, by containing a filler in at least one of the intermediate layer or the infrared absorbing compound-containing layer, a refractive index difference can be given between both layers, thereby reducing reflection in the visible light wavelength region and increasing reflection in the infrared wavelength region. An effect can be imparted.
In this way, the installation of the intermediate layer and the configuration including the filler in at least one of the intermediate layer or the infrared ray absorbing compound-containing layer can reduce the effects of improving the heat ray shielding ability, optical performance, and wet heat durability. It was found that this can be realized with a layer structure.
<熱線遮蔽材の特性>
 本発明の熱線遮蔽材は、700~1200nmにおける平均熱線反射率が5%以上であることが好ましく、7%以上であることがより好ましく、8%以上であることが特に好ましく、10%以上であることがより特に好ましい。
<Characteristics of heat ray shielding material>
The heat ray shielding material of the present invention preferably has an average heat ray reflectance at 700 to 1200 nm of 5% or more, more preferably 7% or more, particularly preferably 8% or more, and 10% or more. More particularly preferred.
 本発明の熱線遮蔽材は、少なくともひとつの層が800~2000nmの領域に透過スペクトルの最低ピークを有することが、熱線透過率を低くする観点から好ましい。前記透過スペクトルの最低ピーク波長は、750~1400nmの帯域に存在することがより好ましく、800~1100nmの帯域に存在することが特に好ましい。また、本発明の熱線遮蔽材は金属粒子含有層が800~2000nmの領域に透過スペクトルの最低ピークを有することが好ましい。 In the heat ray shielding material of the present invention, it is preferable from the viewpoint of lowering the heat ray transmittance that at least one layer has the lowest peak of the transmission spectrum in a region of 800 to 2000 nm. The minimum peak wavelength of the transmission spectrum is more preferably in the band of 750 to 1400 nm, and particularly preferably in the band of 800 to 1100 nm. In the heat ray shielding material of the present invention, the metal particle-containing layer preferably has the lowest peak of the transmission spectrum in the region of 800 to 2000 nm.
 本発明の熱線遮蔽材は、極大反射波長が700~1800nmの帯域に存在することが熱線反射の効率を上げる観点から好ましい。前記極大反射波長は、750~1400nmの帯域に存在することがより好ましく、800~1100nmの帯域に存在することが特に好ましい。 The heat ray shielding material of the present invention preferably has a maximum reflection wavelength in the band of 700 to 1800 nm from the viewpoint of increasing the efficiency of heat ray reflection. The maximum reflection wavelength is more preferably in the band of 750 to 1400 nm, and particularly preferably in the band of 800 to 1100 nm.
 本発明の熱線遮蔽材の可視光線透過率としては、60%以上であることが好ましく、65%以上であることがより好ましく、70%以上であることが特に好ましい。前記可視光線透過率が、60%以上であると、例えば、自動車用ガラスや建物用ガラスとして用いた時に、外部が見やすくなる観点で好ましい。
 本発明の熱線遮蔽材の紫外線透過率としては、5%以下が好ましく、2%以下がより好ましい。
The visible light transmittance of the heat ray shielding material of the present invention is preferably 60% or more, more preferably 65% or more, and particularly preferably 70% or more. When the visible light transmittance is 60% or more, for example, when it is used as glass for automobiles or glass for buildings, it is preferable from the viewpoint that the outside becomes easy to see.
The ultraviolet ray transmittance of the heat ray shielding material of the present invention is preferably 5% or less, more preferably 2% or less.
<熱線遮蔽材の構成>
 本発明の熱線遮蔽材は、金属粒子含有層、赤外線吸収化合物含有層を有し、該2層の間に少なくとも1層以上の中間層を有し、赤外線吸収化合物含有層または中間層の少なくとも一方にフィラーを含有する。さらに、必要に応じて、オーバーコート層、粘着層、紫外線吸収層、支持体(以下、基材ともいう)、金属酸化物粒子含有層、バックコート層、ハードコート層、断熱層、保護層などのその他の層を有する態様も好ましい。
 本発明の熱線遮蔽材は、基材上に前記の熱線遮蔽材の構成を有する積層体を形成してもよく、仮支持体上に前記の熱線遮蔽材の構成を有する積層体を形成した後、前記仮支持体と積層体の界面で剥離することで、前記の熱線遮蔽材の構成を有する積層体を取り出しても良い。このようにして取り出した前記の熱線遮蔽材の構成を有する積層体を合わせガラス用中間膜に組み込み、前記の熱線遮蔽材の構成を有する積層体を組み込んだ合わせガラス用中間膜を用いて合わせガラス体を作成することで、熱線遮蔽機能を有する合わせガラス体を形成することができる。
 以下、図面をもとに本発明の熱線遮蔽材の好ましい構成について説明する。
<Configuration of heat ray shielding material>
The heat ray shielding material of the present invention has a metal particle-containing layer and an infrared absorbing compound-containing layer, and has at least one intermediate layer between the two layers, and at least one of the infrared absorbing compound-containing layer and the intermediate layer. Contains a filler. Furthermore, if necessary, an overcoat layer, an adhesive layer, an ultraviolet absorbing layer, a support (hereinafter also referred to as a substrate), a metal oxide particle-containing layer, a backcoat layer, a hard coat layer, a heat insulating layer, a protective layer, etc. An embodiment having other layers is also preferable.
The heat ray shielding material of the present invention may form a laminate having the configuration of the heat ray shielding material on a substrate, or after forming a laminate having the configuration of the heat ray shielding material on a temporary support. The laminate having the configuration of the heat ray shielding material may be taken out by peeling at the interface between the temporary support and the laminate. The laminated body having the configuration of the heat ray shielding material taken out in this manner is incorporated into an interlayer film for laminated glass, and the laminated glass using the interlayer film for laminated glass incorporating the laminated body having the configuration of the heat ray shielding material. By producing the body, a laminated glass body having a heat ray shielding function can be formed.
Hereinafter, the preferable structure of the heat ray shielding material of this invention is demonstrated based on drawing.
 本発明の熱線遮蔽材の層構成としては、図1に一例を示すように、熱線遮蔽材100は、基材40上に、金属粒子含有層1、中間層2、および赤外線吸収化合物含有層3の順で積層している態様が挙げられる。本発明の熱線遮蔽材は中間層2または赤外線吸収化合物含有層3の少なくとも一方にフィラーを含有する。 As an example of the layer structure of the heat ray shielding material of the present invention, as shown in FIG. 1, the heat ray shielding material 100 includes a metal particle-containing layer 1, an intermediate layer 2, and an infrared absorbing compound-containing layer 3 on a substrate 40. The aspect laminated | stacked in this order is mentioned. The heat ray shielding material of the present invention contains a filler in at least one of the intermediate layer 2 or the infrared absorbing compound-containing layer 3.
 図2は、本発明の他の一例であり、中間層が2層以上の例の態様であり、基材40上に赤外線吸収化合物含有層3、中間層2C、中間層2B、中間層2A、および金属粒子含有層1の順で積層している態様である。中間層2A~2Cまたは赤外線吸収化合物含有層3の少なくとも一層にフィラーを含有する。フィラーを含有する層が複数であってもよい。 FIG. 2 is another example of the present invention, which is an embodiment of an example in which the intermediate layer has two or more layers. On the substrate 40, the infrared absorbing compound-containing layer 3, the intermediate layer 2C, the intermediate layer 2B, the intermediate layer 2A, And the metal particle-containing layer 1 are stacked in this order. At least one of the intermediate layers 2A to 2C or the infrared absorbing compound-containing layer 3 contains a filler. There may be a plurality of layers containing a filler.
 図3Aは、本発明の他の一例であり、赤外線吸収化合物含有層3が中間層2および下層4に挟持されている態様である。また、図3Bは、本発明の他の一例であり、図2の態様からさらに下層4A、4Bを含む態様である。 FIG. 3A is another example of the present invention, in which the infrared absorbing compound-containing layer 3 is sandwiched between the intermediate layer 2 and the lower layer 4. Moreover, FIG. 3B is another example of this invention, and is an aspect further including lower layer 4A, 4B from the aspect of FIG.
 図4は、図1の態様にオーバーコート層5、粘着剤層6、ハードコート層7を設置した場合の態様である。代表として図1の態様を用いたが、図2、図3A、図3Bの態様にオーバーコート層5、粘着剤層6、ハードコート層7を設置した場合の態様であってもよい。 FIG. 4 shows an embodiment in which an overcoat layer 5, an adhesive layer 6, and a hard coat layer 7 are installed in the embodiment of FIG. Although the embodiment of FIG. 1 is used as a representative, an embodiment in which the overcoat layer 5, the pressure-sensitive adhesive layer 6, and the hard coat layer 7 are installed in the embodiments of FIGS. 2, 3A, and 3B may be used.
 図5Aに示すように、図4の態様の熱線遮蔽材を粘着剤層6を介して窓ガラス8に設置したときの態様であってもよい。なお、図5A中の上部は室外側であり、下部が室内側である。 As shown in FIG. 5A, the heat ray shielding material of the embodiment of FIG. 4 may be installed on the window glass 8 through the adhesive layer 6. In addition, the upper part in FIG. 5A is the outdoor side, and the lower part is the indoor side.
 また、図5Bに示すように、図1の態様にオーバーコート層を設置した熱線遮蔽材の両面をPVB9、ガラス10で挟みこみ、合わせガラス化したときの態様である。なお、図5B中の上部は室外側であり、下部が室内側である。 Moreover, as shown to FIG. 5B, it is an aspect when both surfaces of the heat ray shielding material which installed the overcoat layer in the aspect of FIG. In addition, the upper part in FIG. 5B is the outdoor side, and the lower part is the indoor side.
<中間層>
 本発明の熱線遮蔽材は、前記金属粒子含有層と前記赤外線吸収化合物含有層との間に少なくとも1層以上からなる中間層を設けてなることを特徴とする。また、本発明の熱線遮蔽材は、中間層および赤外線吸収化合物含有層の少なくともいずれかにフィラーを含有する。
 本発明では、中間層を有することで、熱線遮蔽能が高く、可視光透過率が高く、湿熱耐久性に優れる熱線遮蔽材となる。
<Intermediate layer>
The heat ray shielding material of the present invention is characterized in that an intermediate layer comprising at least one layer is provided between the metal particle-containing layer and the infrared absorbing compound-containing layer. Moreover, the heat ray shielding material of this invention contains a filler in at least any one of an intermediate | middle layer and an infrared rays absorption compound content layer.
In the present invention, the intermediate layer provides a heat ray shielding material having high heat ray shielding ability, high visible light transmittance, and excellent wet heat durability.
 本発明における中間層を構成する材料としては、金属薄膜、金属酸化物薄膜、またはポリマー含有層の何れかであってもよい。電磁波透過性の観点からは、金属酸化物薄膜もしくはポリマー含有層であることが好ましく、生産性の観点から、水系塗布が容易なポリマー含有層であることが好ましい。中間層に用いるポリマー(バインダー)は、透明ポリマーであることが好ましく、前記ポリマーとしては、例えば、ポリビニルアセタール樹脂、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリアクリレート樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート樹脂、ポリ塩化ビニル樹脂、(飽和)ポリエステル樹脂、ポリウレタン樹脂、ゼラチンやセルロース等の天然高分子等の高分子などが挙げられる。その中でも、本発明では、前記ポリマーの主ポリマーがポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリ塩化ビニル樹脂、(飽和)ポリエステル樹脂、ポリウレタン樹脂であることが好ましく、中でも(飽和)ポリエステル樹脂、ポリウレタン樹脂が好ましい。
 中間層に用いる前記ポリマーが水性分散物であることが、環境影響の観点と、塗布コスト低減の点から好ましい。
 中間層に用いる前記ポリマーとして、水溶性ポリエステル樹脂であるプラスコートZ-592(互応化学工業(株)製)、水溶性ポリウレタン樹脂であるハイドランHW-350(DIC(株)製)などを好ましく用いることができる。
The material constituting the intermediate layer in the present invention may be a metal thin film, a metal oxide thin film, or a polymer-containing layer. From the viewpoint of electromagnetic wave permeability, a metal oxide thin film or a polymer-containing layer is preferable, and from the viewpoint of productivity, a polymer-containing layer that can be easily applied in water is preferable. The polymer (binder) used for the intermediate layer is preferably a transparent polymer. Examples of the polymer include polyvinyl acetal resin, polyvinyl alcohol resin, polyvinyl butyral resin, polyacrylate resin, polymethyl methacrylate resin, polycarbonate resin, poly Examples thereof include vinyl chloride resins, (saturated) polyester resins, polyurethane resins, and polymers such as natural polymers such as gelatin and cellulose. Among them, in the present invention, the main polymer of the polymer is preferably a polyvinyl alcohol resin, a polyvinyl butyral resin, a polyvinyl chloride resin, a (saturated) polyester resin, or a polyurethane resin. preferable.
It is preferable that the polymer used for the intermediate layer is an aqueous dispersion from the viewpoint of environmental impact and the reduction of coating cost.
As the polymer used for the intermediate layer, a water-soluble polyester resin, Pluscoat Z-592 (manufactured by Kyoyo Chemical Industry Co., Ltd.), a water-soluble polyurethane resin, Hydran HW-350 (manufactured by DIC Corporation), or the like is preferably used. be able to.
 中間層の厚みとしては、20nm以上であることが好ましく、30nm以上であることがより好ましく、40nm以上であることがさらに好ましい。上限については特に制限はないが、1000nmである。中間層の厚みが20nm未満である場合、赤外線吸収化合物の拡散を遅らせる効果が低くなることがある。
 なお、中間層が2層以上からなる場合は、各層の合計の厚みが上記範囲内であることが好ましい。
The thickness of the intermediate layer is preferably 20 nm or more, more preferably 30 nm or more, and further preferably 40 nm or more. Although there is no restriction | limiting in particular about an upper limit, it is 1000 nm. When the thickness of the intermediate layer is less than 20 nm, the effect of delaying the diffusion of the infrared absorbing compound may be reduced.
In addition, when an intermediate | middle layer consists of two or more layers, it is preferable that the total thickness of each layer is in the said range.
-フィラー-
 本発明の熱線遮蔽材は、前記中間層と前記赤外線吸収化合物含有層の少なくとも一方にフィラーを含有する。
 前記フィラーとしては、酸化チタン、酸化ジルコニウム、酸化亜鉛、合成非晶質シリカ、コロイダルシリカ、中空シリカ、多孔質シリカ、フッ化マグネシウム、中空フッ化マグネシウムからなる群から少なくとも一つ以上から選ばれてなることが好ましい。中でも、酸化チタン、酸化ジルコニウム、中空シリカ、フッ化マグネシウムを用いることがより好ましい。
 前記中間層と前記赤外線吸収化合物含有層の少なくとも一方に前記フィラーを含有させることで、フィラーを含有する層の屈折率を調整することが可能であり好ましい。隣り合う層間で屈折率差を付与することが好ましく、屈折率差と各層の膜厚を調整することにより、多層光学干渉膜を設計することができる。多層光学干渉膜を適切に設計することにより、例えば、可視光波長域の反射低減や赤外線波長域の反射増強の効果を付与することが可能である。
-Filler-
The heat ray shielding material of the present invention contains a filler in at least one of the intermediate layer and the infrared absorbing compound-containing layer.
The filler is selected from at least one selected from the group consisting of titanium oxide, zirconium oxide, zinc oxide, synthetic amorphous silica, colloidal silica, hollow silica, porous silica, magnesium fluoride, and hollow magnesium fluoride. It is preferable to become. Among these, it is more preferable to use titanium oxide, zirconium oxide, hollow silica, and magnesium fluoride.
By including the filler in at least one of the intermediate layer and the infrared absorbing compound-containing layer, the refractive index of the layer containing the filler can be adjusted, which is preferable. It is preferable to provide a refractive index difference between adjacent layers, and a multilayer optical interference film can be designed by adjusting the refractive index difference and the film thickness of each layer. By appropriately designing the multilayer optical interference film, for example, it is possible to provide an effect of reducing reflection in the visible light wavelength region and enhancing reflection in the infrared wavelength region.
 本発明の熱線遮蔽材に用いられるフィラーの平均粒子径は200nm以下であり、好ましくは100nm以下、より好ましくは60nm以下である。フィラーの平均粒子径が200nm以上であると、フィラーを含有する層の薄膜化が難しく、光学干渉設計まで考えた場合好ましくない。 The average particle size of the filler used in the heat ray shielding material of the present invention is 200 nm or less, preferably 100 nm or less, more preferably 60 nm or less. When the average particle size of the filler is 200 nm or more, it is difficult to make the layer containing the filler thin, and it is not preferable when optical interference design is considered.
 中間層におけるフィラーの含有量としては、10~250mg/mであることが好ましく、30~150mg/mであることがより好ましく、40~100mg/mであることがさらに好ましい。 The filler content in the intermediate layer is preferably 10 to 250 mg / m 2 , more preferably 30 to 150 mg / m 2 , and even more preferably 40 to 100 mg / m 2 .
 中間層にバインダーとフィラーとを有する場合、フィラーのバインダーに対する質量比が、0.1~2.5であることが好ましく、0.1~2.0であることがより好ましく、0.5~1.5であることが特に好ましい。フィラーのバインダーに対する質量比が0.1より小さいと赤外線吸収化合物の金属粒子含有層への浸透を防止する効果が低く、湿熱経時耐性が悪くなるため好ましくなく、フィラーのバインダーに対する質量比が2.5よりも大きいと中間層の膜物性強度が弱くなるため好ましくない。 When the intermediate layer has a binder and a filler, the mass ratio of the filler to the binder is preferably 0.1 to 2.5, more preferably 0.1 to 2.0, and more preferably 0.5 to A ratio of 1.5 is particularly preferred. If the mass ratio of the filler to the binder is less than 0.1, the effect of preventing the infrared absorbing compound from penetrating into the metal particle-containing layer is low, and the wet heat aging resistance deteriorates. If it is larger than 5, the film physical strength of the intermediate layer becomes weak, which is not preferable.
 中間層としては、図2に一例を示すように、屈折率が異なる層をそれぞれ積層させ、2層以上の多層構造としてもよい。屈折率が異なる層を有することで、可視光波長域の反射低減や赤外線波長域の反射増強の効果を付与することが可能である。屈折率が異なる層の調整方法としては、屈折率が高い酸化ジルコニウムを含有する層と、屈折率が低い中空シリカを含有する層を積層させる方法、屈折率が高いバインダーを含む層と、屈折率が低いバインダーを含む層とを積層させる方法等が挙げられる。 As the intermediate layer, as shown in an example in FIG. 2, layers having different refractive indexes may be laminated to form a multilayer structure of two or more layers. By having layers having different refractive indexes, it is possible to provide an effect of reducing reflection in the visible light wavelength region and enhancing reflection in the infrared wavelength region. As a method for adjusting layers having different refractive indexes, a method comprising laminating a layer containing zirconium oxide having a high refractive index and a layer containing hollow silica having a low refractive index, a layer containing a binder having a high refractive index, and a refractive index And a method of laminating a layer containing a low binder.
 本発明の多層構造の好ましい態様としては、図1に示すように、屈折率がn1である中間層を層Aとして有し、屈折率がn2である層を層B(赤外線吸収化合物含有層)として有し、層Cを支持体として有し、条件(1-1)または条件(2-1)を満たす態様も好適に挙げられる。
 条件(1-1):n1<n2、かつ、下記式(1-1)を満たす。
式(1-1)
 3λ/8 + mλ/2 -A <n1×d1<3λ/8 + mλ/2 +A
(式(1-1)中、mは0以上の整数を表し、λは反射を防止したい波長(単位:nm)を表し、n1は層Aの屈折率を表し、d1は層Aの厚み(単位:nm)を表す。n1×d1は所定の値±A以内に収まることが好ましく、Aはλ/8、λ/12、λ/16のいずれかを表し、Aが小さいほど反射防止の干渉効果を得られる最適条件に近づくために好ましい。)
条件(2-1):n1>n2、かつ、下記式(2-1)を満たす。
式(2-1)
 λ/8 + mλ/2 -A <n1×d1<λ/8 + mλ/2 +A
(式(2-1)中、mは0以上の整数を表し、λは反射を防止したい波長(単位:nm)を表し、n1は層Aの屈折率を表し、d1は層Aの厚み(単位:nm)を表す。n1×d1は所定の値±A以内に収まることが好ましく、Aはλ/8、λ/12、λ/16のいずれかを表し、Aが小さいほど反射防止の干渉効果を得られる最適条件に近づくために好ましい。)
As a preferred embodiment of the multilayer structure of the present invention, as shown in FIG. 1, an intermediate layer having a refractive index of n1 is provided as a layer A, and a layer having a refractive index of n2 is a layer B (infrared absorbing compound-containing layer). And a layer C as a support and satisfying the condition (1-1) or the condition (2-1) are also preferred.
Condition (1-1): n1 <n2 and the following formula (1-1) is satisfied.
Formula (1-1)
3λ / 8 + mλ / 2−A <n1 × d1 <3λ / 8 + mλ / 2 + A
(In the formula (1-1), m represents an integer of 0 or more, λ represents a wavelength (unit: nm) desired to prevent reflection, n1 represents the refractive index of the layer A, and d1 represents the thickness of the layer A ( (Unit: nm) n1 × d1 is preferably within a predetermined value ± A, and A represents any one of λ / 8, λ / 12, and λ / 16, and the smaller A is, the more anti-reflection interference is. (It is preferable to approach the optimum condition for obtaining the effect.)
Condition (2-1): n1> n2 and the following formula (2-1) is satisfied.
Formula (2-1)
λ / 8 + mλ / 2−A <n1 × d1 <λ / 8 + mλ / 2 + A
(In Formula (2-1), m represents an integer of 0 or more, λ represents a wavelength (unit: nm) desired to prevent reflection, n1 represents the refractive index of layer A, and d1 represents the thickness of layer A ( (Unit: nm) n1 × d1 is preferably within a predetermined value ± A, and A represents any one of λ / 8, λ / 12, and λ / 16, and the smaller A is, the more anti-reflection interference is. (It is preferable to approach the optimum condition for obtaining the effect.)
 前記条件(1-1)または条件(2-1)の好ましい範囲について説明する。なお、以下の前記式(1-1)または条件(2-1)の好ましい範囲は、図1の構成以外の本発明の多層構造においても同様である。前記式(1-1)および前記式(2-1)中、mは0以上の整数を表し、0~5の整数であることが製造コストや膜厚のロバスト性の観点から好ましい。前記mは、熱線遮蔽材として本発明の多層構造を用いたときに可視光反射抑制と近赤外光の反射増強を両立した設計ができる観点からは1~5の整数であることがより好ましく、1であることが可視光反射抑制と1000nm付近の近赤外線の反射増強の観点から特に好ましい。なお、反射増強については、後述する式(5-1)を満たすように前記層Bの屈折率および厚みを制御することで、達成することができる。また、m>5であると膜厚が大きくなりすぎ、膜厚の精密な制御が難しくなることから生産性の観点でm<=5が好ましい。一方、前記mは、斜め入射光の色味変化を小さくする観点や反射光増大を抑制する観点からは、0とすることが好ましいときもある。 The preferable range of the condition (1-1) or the condition (2-1) will be described. The preferred range of the following formula (1-1) or condition (2-1) is the same in the multilayer structure of the present invention other than the configuration of FIG. In the formula (1-1) and the formula (2-1), m represents an integer of 0 or more, and an integer of 0 to 5 is preferable from the viewpoint of manufacturing cost and film thickness robustness. The m is more preferably an integer of 1 to 5 from the viewpoint of achieving both a visible light reflection suppression and a near infrared light reflection enhancement when the multilayer structure of the present invention is used as a heat ray shielding material. 1 is particularly preferred from the viewpoints of suppressing reflection of visible light and enhancing reflection of near-infrared rays near 1000 nm. The reflection enhancement can be achieved by controlling the refractive index and thickness of the layer B so as to satisfy the formula (5-1) described later. Further, if m> 5, the film thickness becomes too large, and precise control of the film thickness becomes difficult, so m <= 5 is preferable from the viewpoint of productivity. On the other hand, it is sometimes preferable that m is 0 from the viewpoint of reducing the color change of obliquely incident light and suppressing the increase in reflected light.
 図1の構成ではさらに、前記層Bが条件(3-1)または条件(4-1)を満たすことが、より良い反射防止効果を得る観点から好ましい。 In the configuration of FIG. 1, it is further preferable from the viewpoint of obtaining a better antireflection effect that the layer B satisfies the condition (3-1) or the condition (4-1).
条件(3-1):n1<n2、かつ、下記式(3-1)を満たす。
式(3-1)
  λ/4 + Lλ/4 - A ≦n2×d2≦ λ/4 + Lλ/4 + A
(式(3-1)中、Lは1以上の整数を表し、λは反射を防止したい波長(単位:nm)を表し、n2は層Bの屈折率を表し、d2は層Bの厚み(単位:nm)を表す。n2×d2は所定の値±A以内に収まることが好ましく、Aはλ/8、λ/12、λ/16のいずれかを表し、Aが小さいほど反射防止の干渉効果を得られる最適条件に近づくために好ましい。)
Condition (3-1): n1 <n2 and the following formula (3-1) is satisfied.
Formula (3-1)
λ / 4 + Lλ / 4 − A ≦ n2 × d2 ≦ λ / 4 + Lλ / 4 + A
(In Formula (3-1), L represents an integer of 1 or more, λ represents a wavelength (unit: nm) desired to prevent reflection, n2 represents the refractive index of layer B, and d2 represents the thickness of layer B ( (Unit: nm) n2 × d2 preferably falls within a predetermined value ± A, and A represents any one of λ / 8, λ / 12, and λ / 16, and the smaller A is, the more anti-reflection interference is. (It is preferable to approach the optimum condition for obtaining the effect.)
条件(4-1):n1<n2、かつ、下記式(4-1)を満たす。
式(4-1)
 Lλ/4 - A ≦n2×d2≦Lλ/4 + A
(式(4-1)中、Lは1以上の整数を表し、λは反射を防止したい波長(単位:nm)を表し、n2は層Bの屈折率を表し、d2は層Bの厚み(単位:nm)を表す。n2×d2は所定の値±A以内に収まることが好ましく、Aはλ/8、λ/12、λ/16のいずれかを表し、Aが小さいほど反射防止の干渉効果を得られる最適条件に近づくために好ましい。)
 条件(3-1)または条件(4-1)の好ましい範囲について説明する。なお、以下の前記式(3-1)または条件(4-1)の好ましい範囲は、図1の構成以外の本発明の多層構造においても同様である。
 前記式(3-1)または前記式(4-1)中、Lは1以上の整数を表し、1~5であることが好ましく、1であることが斜め入射光に対する色味変化を小さくする観点からより好ましい。
Condition (4-1): n1 <n2 and the following formula (4-1) is satisfied.
Formula (4-1)
Lλ / 4−A ≦ n2 × d2 ≦ Lλ / 4 + A
(In the formula (4-1), L represents an integer of 1 or more, λ represents a wavelength (unit: nm) desired to prevent reflection, n2 represents the refractive index of the layer B, and d2 represents the thickness of the layer B ( (Unit: nm) n2 × d2 preferably falls within a predetermined value ± A, and A represents any one of λ / 8, λ / 12, and λ / 16, and the smaller A is, the more anti-reflection interference is. (It is preferable to approach the optimum condition for obtaining the effect.)
A preferable range of the condition (3-1) or the condition (4-1) will be described. The preferred range of the following formula (3-1) or condition (4-1) is the same in the multilayer structure of the present invention other than the configuration of FIG.
In the formula (3-1) or the formula (4-1), L represents an integer of 1 or more, and is preferably 1 to 5, with 1 reducing the color change with respect to obliquely incident light. More preferable from the viewpoint.
 図1の構成ではさらに、前記層Bが下記式(5-1)または下記式(6-1)を満たすことが、強い反射を持たせたい波長λ’における反射を増強させる観点から好ましい。
式(5-1)
 λ/4 + kλ’/4 - B ≦n2×d2≦ λ/4 + kλ’/4 + B
(式(5-1)中、kは1以上の整数を表し、λ’は強い反射を持たせたい波長(単位:nm)を表し、n2は層Bの屈折率を表し、d2は層Bの厚み(単位:nm)を表す。n2×d2は所定の値±B以内に収まることが好ましく、Bはλ’/8、λ’/12、λ’/16のいずれかを表し、Bが小さいほど反射増強の干渉効果を得られる最適条件に近づくために好ましい。)
In the configuration of FIG. 1, it is further preferable that the layer B satisfies the following formula (5-1) or the following formula (6-1) from the viewpoint of enhancing the reflection at the wavelength λ ′ where a strong reflection is desired.
Formula (5-1)
λ / 4 + kλ ′ / 4 − B ≦ n2 × d2 ≦ λ / 4 + kλ ′ / 4 + B
(In the formula (5-1), k represents an integer of 1 or more, λ ′ represents a wavelength (unit: nm) desired to have strong reflection, n2 represents the refractive index of the layer B, and d2 represents the layer B. N2 × d2 is preferably within a predetermined value ± B, B represents any one of λ ′ / 8, λ ′ / 12, and λ ′ / 16, and B represents (The smaller the value, the closer to the optimum condition for obtaining the interference effect of reflection enhancement.)
式(6-1)
 kλ’/4 - B ≦n2×d2≦kλ’/4 + B
(式(6-1)中、kは1以上の整数を表し、λ’は強い反射を持たせたい波長(単位:nm)を表し、n2は層Bの屈折率を表し、d2は層Bの厚み(単位:nm)を表す。n2×d2は所定の値±B以内に収まることが好ましく、Bはλ’/8、λ’/12、λ’/16のいずれかを表し、Bが小さいほど反射増強の干渉効果を得られる最適条件に近づくために好ましい。)
 前記式(5-1)または前記式(6-1)の好ましい範囲について説明する。なお、以下の前記式(5-1)または前記式(6-1)の好ましい範囲は、図1の構成以外の本発明の多層構造においても同様である。
 前記式(5-1)または前記式(6-1)中、kは1以上の整数を表し、1~5であることが好ましく、1であることが斜め入射光に対する色味変化を小さくする観点からより好ましい。
Formula (6-1)
kλ ′ / 4−B ≦ n2 × d2 ≦ kλ ′ / 4 + B
(In formula (6-1), k represents an integer of 1 or more, λ ′ represents a wavelength (unit: nm) desired to have strong reflection, n2 represents the refractive index of layer B, and d2 represents layer B. N2 × d2 is preferably within a predetermined value ± B, B represents any one of λ ′ / 8, λ ′ / 12, and λ ′ / 16, and B is It is preferable that the smaller the value is, the closer to the optimum condition for obtaining the reflection enhancing interference effect.)
A preferred range of the formula (5-1) or the formula (6-1) will be described. The preferred range of the following formula (5-1) or formula (6-1) is the same in the multilayer structure of the present invention other than the configuration of FIG.
In the formula (5-1) or the formula (6-1), k represents an integer of 1 or more, and is preferably 1 to 5, with 1 being small in color change with respect to obliquely incident light. More preferable from the viewpoint.
 前記強い反射を防止したい波長λは特に制限はなく、例えば、可視光、紫外光の各帯域などを挙げることができ、その中でも可視光であることが可視光透過率を高める観点から好ましく、本発明の熱線遮蔽材は、前記反射を防止したい波長λが250~800nmであることが好ましく、400~700nmであることがより好ましく、550±100nmであることが特に好ましい。
 前記強い反射を持たせたい波長λ’は特に制限はなく、例えば、可視光、赤外光、紫外光の各帯域などを挙げることができ、その中でも赤外光であることが熱線遮蔽材として用いる観点から好ましく、本発明の熱線遮蔽材は、前記反射を持たせたい波長λ’が700~2500nmであることが好ましく、800~1500nmであることがより好ましく、900~1200nmであることが特に好ましい。
 700nm未満の波長に強い反射を持たせると、赤色の反射光が強く目立ち、可視光透過率の減少につながる。一方で、2500nmより大きい波長に反射を持たせると、太陽光スペクトルに2500nm以上のエネルギーがほとんどないため、熱線遮蔽材としての効果が小さくなる。
The wavelength λ for preventing the strong reflection is not particularly limited, and examples thereof include visible light and ultraviolet light bands. Among them, visible light is preferable from the viewpoint of increasing visible light transmittance. In the heat ray shielding material of the present invention, the wavelength λ for preventing reflection is preferably 250 to 800 nm, more preferably 400 to 700 nm, and particularly preferably 550 ± 100 nm.
The wavelength λ ′ for giving strong reflection is not particularly limited, and examples thereof include visible light, infrared light, and ultraviolet light bands. Among them, infrared light is a heat ray shielding material. From the viewpoint of use, the heat ray shielding material of the present invention preferably has a wavelength λ ′ of 700 to 2500 nm, more preferably 800 to 1500 nm, and particularly preferably 900 to 1200 nm. preferable.
When a strong reflection is given to a wavelength of less than 700 nm, the red reflected light is conspicuous and leads to a decrease in visible light transmittance. On the other hand, when reflection is given to a wavelength greater than 2500 nm, the solar spectrum has almost no energy of 2500 nm or more, and therefore the effect as a heat ray shielding material is reduced.
 前記中間層としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、マット剤、及び界面活性剤を含有し、更に必要に応じてその他の成分を含有してもよい。 The intermediate layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it contains a matting agent and a surfactant, and may further contain other components as necessary. .
<積層構成>
 本発明の熱線遮蔽材は、少なくとも一層以上の中間層、金属粒子含有層、および赤外線吸収化合物含有層を有し、少なくとも一層以上の下層(後述)からなる積層構成であってもよい。積層する際には各層の屈折率と塗布膜厚みを前記式(1-1)~(6-1)のいずれかの条件を満たすように設計することが、特定波長の反射を低減(可視光の反射低減であれば、可視光透過率を向上)させる観点、および、赤外線波長域の反射増強をさせる観点で好ましい。特に隣接する層間で、できるだけ大きい屈折率差を与え、前記式(1-1)~(6-1)のいずれかの条件を満たすことが、上記観点の効果をより強く得られるため好ましい。
<Laminated structure>
The heat ray shielding material of the present invention may have a laminated structure including at least one intermediate layer, a metal particle-containing layer, and an infrared absorbing compound-containing layer, and including at least one lower layer (described later). When laminating, the refractive index of each layer and the thickness of the coating film are designed so as to satisfy any one of the above formulas (1-1) to (6-1), thereby reducing reflection at a specific wavelength (visible light Is preferable from the viewpoint of improving the visible light transmittance) and enhancing the reflection in the infrared wavelength region. In particular, it is preferable to provide a refractive index difference as large as possible between adjacent layers and satisfy any one of the formulas (1-1) to (6-1) because the effect of the above viewpoint can be obtained more strongly.
<金属粒子含有層>
 前記金属粒子含有層は、少なくとも1種の金属粒子を含有する層である。前記金属粒子は、平板状金属粒子(平板状の金属粒子)であることが好ましく、前記金属粒子含有層の一方の表面に平板状金属粒子を偏析させることが好ましい。
<Metal particle content layer>
The metal particle-containing layer is a layer containing at least one metal particle. The metal particles are preferably flat metal particles (flat metal particles), and preferably segregate the flat metal particles on one surface of the metal particle-containing layer.
-1-1.金属粒子-
 本発明の熱線遮蔽材では、前記金属粒子は、平板状の金属粒子を60個数%以上有することが好ましく、六角形状乃至円形状の平板状金属粒子を60個数%以上有することがより好ましい。
 前記金属粒子含有層において、六角形状乃至円形状の平板状金属粒子の存在形態としては、金属粒子含有層の一方の表面(本発明の熱線遮蔽材が基材を有する場合は、基材表面)に対して六角形状乃至円形状の平板状金属粒子の主平面が平均0°~±30°の範囲で面配向していることが好ましく、平均0°~±20°の範囲で面配向していることがより好ましく、平均0°~±10°の範囲で面配向していることが特に好ましい。
 また、平均0°~±30°の範囲で面配向している平板状金属粒子が、全平板状金属粒子の50個数%以上であることが好ましく、70個数%以上であることがより好ましく、90個数%以上であることがさらに好ましい。
 前記金属粒子の材料としては、特に制限はなく、目的に応じて適宜選択することができるが、熱線(近赤外線)の反射率が高い点から、銀、金、アルミニウム、銅、ロジウム、ニッケル、白金などが好ましく、その中でも銀がより好ましい。
1-1. Metal particles
In the heat ray shielding material of the present invention, the metal particles preferably have 60% by number or more of flat metal particles, and more preferably have 60% by number or more of hexagonal or circular plate metal particles.
In the metal particle-containing layer, hexagonal to circular plate-like metal particles are present as one surface of the metal particle-containing layer (the surface of the substrate when the heat ray shielding material of the present invention has a substrate). On the other hand, the main planes of hexagonal or circular plate-like metal particles are preferably plane-oriented in the range of average 0 ° to ± 30 °, and plane-oriented in the range of average 0 ° to ± 20 °. More preferably, the plane orientation is particularly preferably in the range of 0 ° to ± 10 ° on average.
Further, the plate-like metal particles whose plane orientation is in the range of 0 ° to ± 30 ° on average is preferably 50% by number or more, more preferably 70% by number or more of the total plate-like metal particles, More preferably, it is 90% by number or more.
The material of the metal particles is not particularly limited and can be appropriately selected according to the purpose. From the viewpoint of high heat ray (near infrared) reflectance, silver, gold, aluminum, copper, rhodium, nickel, Platinum or the like is preferable, and silver is more preferable among them.
-1-2.平板状金属粒子-
 前記平板状金属粒子としては、2つの主平面からなる粒子(図7A及び図7B参照)であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、六角形状、円形状、三角形状などが挙げられる。これらの中でも、可視光透過率が高い点で、六角形状以上の多角形状~円形状であることがより好ましく、六角形状または円形状であることが特に好ましい。
 本明細書中、円形状とは、後述する平板状の金属粒子の平均円相当径の50%以上の長さを有する辺の個数が1個の平板状金属粒子当たり0個である形状のことを言う。前記円形状の平板状金属粒子としては、透過型電子顕微鏡(TEM)で平板状金属粒子を主平面の上方から観察した際に、角が無く、丸い形状であれば特に制限はなく、目的に応じて適宜選択することができる。
 本明細書中、六角形状とは、後述する平板状金属粒子の平均円相当径の20%以上の長さを有する辺の個数が1個の平板状金属粒子当たり6個である形状のことを言う。なお、その他の多角形についても同様である。前記六角形状の平板状金属粒子としては、透過型電子顕微鏡(TEM)で平板状金属粒子を主平面の上方から観察した際に、六角形状であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、六角形状の角が鋭角のものでも、鈍っているものでもよいが、可視光域の吸収を軽減し得る点で、角が鈍っているものであることが好ましい。角の鈍りの程度としては、特に制限はなく、目的に応じて適宜選択することができる。
-1-2. Flat metal particles
The tabular metal particles are not particularly limited as long as they are particles composed of two main planes (see FIGS. 7A and 7B), and can be appropriately selected according to the purpose, for example, hexagonal shape, circular shape, Examples include a triangle shape. Among these, in terms of high visible light transmittance, a polygonal shape or a circular shape having a hexagonal shape or more is more preferable, and a hexagonal shape or a circular shape is particularly preferable.
In the present specification, the circular shape means a shape in which the number of sides having a length of 50% or more of the average equivalent circle diameter of flat metal particles described later is 0 per flat metal particle. Say. The circular plate-like metal particles are not particularly limited as long as the plate-like metal particles have no corners and are round when viewed from above the main plane with a transmission electron microscope (TEM). It can be appropriately selected depending on the case.
In the present specification, the hexagonal shape refers to a shape in which the number of sides having a length of 20% or more of the average equivalent circle diameter of the flat metal particles described later is 6 per flat metal particle. To tell. The same applies to other polygons. The hexagonal plate-like metal particles are not particularly limited as long as they are hexagonal when the plate-like metal particles are observed from above the main plane with a transmission electron microscope (TEM), and are appropriately selected according to the purpose. For example, the hexagonal corner may be acute or dull, but the corner is preferably dull in that the absorption in the visible light region can be reduced. There is no restriction | limiting in particular as a grade of the dullness of an angle | corner, According to the objective, it can select suitably.
 前記金属粒子含有層に存在する金属粒子のうち、六角形状乃至円形状の平板状金属粒子は、金属粒子の全個数に対して、60個数%以上であることが好ましく、65個数%以上がより好ましく、70個数%以上が特に好ましい。前記平板状金属粒子の割合が、60個数%以上であると、可視光線透過率が高くなる。 Of the metal particles present in the metal particle-containing layer, the hexagonal or circular plate-like metal particles are preferably 60% by number or more, more preferably 65% by number or more based on the total number of metal particles. Preferably, 70% by number or more is particularly preferable. When the proportion of the flat metal particles is 60% by number or more, the visible light transmittance is increased.
[1-2-1.面配向]
 本発明の熱線遮蔽材において、前記六角形状乃至円形状の平板状金属粒子は、その主平面が金属粒子含有層の一方の表面(熱線遮蔽材が基材を有する場合は、基材表面)に対して、平均0°~±30°の範囲で面配向していることが好ましく、平均0°~±20°の範囲で面配向していることがより好ましく、平均0°~±10°の範囲で面配向していることが特に好ましい。また、平均0°~±30°の範囲で面配向している平板状金属粒子が、全平板状金属粒子の50個数%以上であることが好ましく、70個数%以上であることがより好ましく、90個数%以上であることがさらに好ましい。
 前記平板状金属粒子の存在状態は、特に制限はなく、目的に応じて適宜選択することができるが、後述する図6C~Fのように並んでいることが好ましい。
[1-2-1. Planar orientation]
In the heat ray shielding material of the present invention, the hexagonal or circular plate-like metal particles have a main plane on one surface of the metal particle-containing layer (when the heat ray shielding material has a substrate, the surface of the substrate). On the other hand, the plane orientation is preferably in the range of average 0 ° to ± 30 °, more preferably the plane is oriented in the range of average 0 ° to ± 20 °, and the average is 0 ° to ± 10 °. It is particularly preferable that the surface is oriented in a range. Further, the plate-like metal particles whose plane orientation is in the range of 0 ° to ± 30 ° on average is preferably 50% by number or more, more preferably 70% by number or more of the total plate-like metal particles, More preferably, it is 90% by number or more.
The state of the presence of the flat metal particles is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably arranged as shown in FIGS. 6C to 6F described later.
 ここで、図6A~図6Fは、本発明の熱線遮蔽材において、平板状金属粒子を含む金属粒子含有層の存在状態を示した概略断面図である。図6D~図6Fは、金属粒子含有層1中における平板状金属粒子11の存在状態を示す。図6Aは、基材の平面と平板状金属粒子11の主平面(円相当径Dを決める面)とのなす角度(±θ)を説明する図である。図6Bは、金属粒子含有層1の熱線遮蔽材の深さ方向における存在範囲fを示すものである。 Here, FIG. 6A to FIG. 6F are schematic cross-sectional views showing the existence state of the metal particle-containing layer containing flat metal particles in the heat ray shielding material of the present invention. 6D to 6F show the state of the presence of the flat metal particles 11 in the metal particle-containing layer 1. FIG. 6A is a diagram for explaining an angle (± θ) formed by the plane of the base material and the main plane of the tabular metal particles 11 (the plane that determines the equivalent circle diameter D). FIG. 6B shows the existence range f in the depth direction of the heat ray shielding material of the metal particle-containing layer 1.
 図6Aにおいて、基材の表面と、平板状金属粒子11の主平面(円相当径Dを決める面)または主平面の延長線とのなす角度(±θ)は、前記の面配向における所定の範囲に対応する。即ち、面配向とは、熱線遮蔽材の断面を観察した際、図6Aに示す傾角(±θ)が小さい状態をいい、特に、図6Cは、基材の表面と平板状金属粒子11の主平面とが接している状態、即ち、θが0°である状態を示す。基材の表面に対する平板状金属粒子11の主平面の面配向の角度、即ち図6Aにおけるθが±30°を超えると、熱線遮蔽材の所定の波長(例えば、可視光域長波長側から近赤外光領域)の反射率が低下してしまう。 In FIG. 6A, the angle (± θ) formed between the surface of the base material and the main plane (plane that determines the equivalent circle diameter D) of the tabular metal particles 11 or the extension line of the main plane is a predetermined value in the plane orientation described above. Corresponds to the range. That is, the plane orientation means a state where the inclination angle (± θ) shown in FIG. 6A is small when the cross section of the heat ray shielding material is observed. In particular, FIG. 6C shows the main surface of the base metal particles 11 and the surface of the base metal particles 11. A state where the flat surface is in contact, that is, a state where θ is 0 ° is shown. When the angle of the plane orientation of the main plane of the flat metal particles 11 with respect to the surface of the base material, that is, θ in FIG. 6A exceeds ± 30 °, a predetermined wavelength of the heat ray shielding material (for example, near the visible light region long wavelength side) The reflectance in the infrared light region is reduced.
 前記金属粒子含有層の一方の表面(熱線遮蔽材が基材を有する場合は、基材表面)に対して平板状金属粒子の主平面が面配向しているかどうかの評価としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、適当な断面切片を作製し、この切片における金属粒子含有層(熱線遮蔽材が基材を有する場合は、基材)及び平板状金属粒子を観察して評価する方法であってもよい。具体的には、熱線遮蔽材を、ミクロトーム、集束イオンビーム(FIB)を用いて熱線遮蔽材の断面サンプルまたは断面切片サンプルを作製し、これを、各種顕微鏡(例えば、電界放射型走査電子顕微鏡(FE-SEM)、透過型電子顕微鏡(TEM)等)を用いて観察して得た画像から評価する方法などが挙げられる。 As an evaluation of whether or not the main plane of the flat metal particles is plane-oriented with respect to one surface of the metal particle-containing layer (the surface of the substrate when the heat ray shielding material has a substrate), there is no particular limitation. Can be appropriately selected according to the purpose. For example, a suitable cross section is prepared, and a metal particle-containing layer (a base material when the heat ray shielding material has a base material) and flat metal particles in this section It may be a method of observing and evaluating. Specifically, as a heat ray shielding material, a microtome or a focused ion beam (FIB) is used to prepare a cross-section sample or a cross-section sample of the heat ray shielding material, and this is used for various microscopes (for example, a field emission scanning electron microscope ( FE-SEM), a transmission electron microscope (TEM), etc.), and a method of evaluating from an image obtained by observation.
 前記の通り作製した断面サンプルまたは断面切片サンプルの観察としては、サンプルにおいて金属粒子含有層の一方の表面(熱線遮蔽材が基材を有する場合は、基材表面)に対して平板状金属粒子の主平面が面配向しているかどうかを確認し得るものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、FE-SEM、TEMなどを用いた観察が挙げられる。前記断面サンプルの場合は、FE-SEMにより、前記断面切片サンプルの場合は、TEMにより観察を行ってもよい。FE-SEMで評価する場合は、平板状金属粒子の形状と傾角(図6Aの±θ)が明瞭に判断できる空間分解能を有することが好ましい。 As the observation of the cross-section sample or cross-section sample prepared as described above, the surface of the metal particle-containing layer in the sample (the surface of the base material when the heat ray shielding material has a base material) There is no particular limitation as long as it can confirm whether or not the main plane is plane-oriented, and it can be appropriately selected according to the purpose. Examples thereof include observation using FE-SEM, TEM, and the like. In the case of the cross section sample, observation may be performed by FE-SEM, and in the case of the cross section sample, observation may be performed by TEM. When evaluating by FE-SEM, it is preferable to have a spatial resolution with which the shape and inclination angle (± θ in FIG. 6A) of the flat metal particles can be clearly determined.
[1-2-2.平均粒子径(平均円相当径)および変動係数]
 粒子の投影面積を電子顕微鏡写真上での面積を測定し、撮影倍率を補正する公知の方法により得ることができる。円相当径は、該方法により得られた個々の粒子の投影面積と等しい面積を有する円の直径で表される。200個の平板状金属粒子の円相当径Dの統計で粒径分布(粒度分布)が得られ、算術平均を計算することで平均粒子径(平均円相当径)を求めることができる。前記平板状金属粒子の粒度分布における変動係数は、粒度分布の標準偏差を前述の平均粒子径(平均円相当径))で割った値(%)で求めることができる。
 本発明の熱線遮蔽材において、平板状金属粒子の粒度分布における変動係数としては、35%以下が好ましく、30%以下がより好ましく、20%以下が特に好ましい。前記変動係数が、35%以下であることが熱線遮蔽材における熱線の反射波長域がシャープになることから好ましい。
 前記金属粒子の大きさとしては、特に制限はなく、目的に応じて適宜選択することができ、平均粒子径は10~500nmが好ましく、20~300nmがより好ましく、50~200nmがさらに好ましい。
[1-2-2. Average particle diameter (average equivalent circle diameter) and coefficient of variation]
The projected area of the particles can be obtained by a known method of measuring the area on an electron micrograph and correcting the photographing magnification. The equivalent circle diameter is represented by the diameter of a circle having an area equal to the projected area of individual particles obtained by the method. A particle size distribution (particle size distribution) is obtained by the statistics of the equivalent circle diameter D of 200 flat metal particles, and the average particle diameter (average equivalent circle diameter) can be obtained by calculating the arithmetic average. The coefficient of variation in the particle size distribution of the flat metal particles can be obtained by a value (%) obtained by dividing the standard deviation of the particle size distribution by the above-mentioned average particle diameter (average circle equivalent diameter).
In the heat ray shielding material of the present invention, the coefficient of variation in the particle size distribution of the flat metal particles is preferably 35% or less, more preferably 30% or less, and particularly preferably 20% or less. The coefficient of variation is preferably 35% or less because the reflection wavelength region of heat rays in the heat ray shielding material becomes sharp.
The size of the metal particles is not particularly limited and may be appropriately selected depending on the intended purpose. The average particle size is preferably 10 to 500 nm, more preferably 20 to 300 nm, and even more preferably 50 to 200 nm.
[1-2-3.平板状金属粒子の厚み・アスペクト比]
 本発明の熱線遮蔽材では、前記平板状金属粒子の厚みは14nm以下であることが好ましく、5~14nmであることがより好ましく、5~12nmであることが特に好ましい。
 前記平板状金属粒子のアスペクト比としては、特に制限はなく、目的に応じて適宜選択することができるが、波長800nm~1,800nmの赤外光領域での反射率が高くなる点から、6~40が好ましく、10~35がより好ましい。前記アスペクト比が6未満であると反射波長が800nmより小さくなり、40を超えると、反射波長が1,800nmより長くなり、十分な熱線反射能が得られないことがある。
 前記アスペクト比は、平板状金属粒子の平均粒子径(平均円相当径)を平板状金属粒子の平均粒子厚みで除算した値を意味する。粒子厚みは、平板状金属粒子の主平面間距離に相当し、例えば、図7A及び図7Bにaとして示す通りであり、原子間力顕微鏡(AFM)や透過型電子顕微鏡(TEM)により測定することができる。
 前記AFMによる平均粒子厚みの測定方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ガラス基板に平板状金属粒子を含有する粒子分散液を滴下し、乾燥させて、粒子1個の厚みを測定する方法などが挙げられる。
 前記TEMによる平均粒子厚みの測定方法としては、特に制限は無く、目的に応じて適宜選択することができ、例えば、シリコン基板上に平板状金属粒子を含有する粒子分散液を滴下し、乾燥させた後、カーボン蒸着、金属蒸着による被覆処理を施し、集束イオンビーム(FIB)加工により断面切片を作成し、該断面をTEMによる観察することにより、粒子の厚み測定を行う方法などが挙げられる。
[1-2-3. Thickness and aspect ratio of flat metal particles]
In the heat ray shielding material of the present invention, the thickness of the tabular metal particles is preferably 14 nm or less, more preferably 5 to 14 nm, and particularly preferably 5 to 12 nm.
The aspect ratio of the flat metal particles is not particularly limited and may be appropriately selected depending on the intended purpose. However, since the reflectance in the infrared light region having a wavelength of 800 nm to 1,800 nm increases, 6 ~ 40 are preferred, and 10 to 35 are more preferred. When the aspect ratio is less than 6, the reflection wavelength becomes smaller than 800 nm, and when it exceeds 40, the reflection wavelength becomes longer than 1,800 nm, and sufficient heat ray reflectivity may not be obtained.
The aspect ratio means a value obtained by dividing the average particle diameter (average circle equivalent diameter) of the flat metal particles by the average particle thickness of the flat metal particles. The particle thickness corresponds to the distance between the main planes of the flat metal particles, and is, for example, as shown as a in FIG. 7A and FIG. be able to.
The method for measuring the average particle thickness by the AFM is not particularly limited and can be appropriately selected according to the purpose. For example, a particle dispersion containing tabular metal particles is dropped onto a glass substrate and dried. And a method of measuring the thickness of one particle.
The method for measuring the average particle thickness by the TEM is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a particle dispersion containing flat metal particles is dropped on a silicon substrate and dried. Thereafter, a coating process by carbon vapor deposition or metal vapor deposition is performed, a cross-section is created by focused ion beam (FIB) processing, and the cross-section is observed by TEM to measure the thickness of the particles.
[1-2-4.金属粒子含有層の厚み、平板状金属粒子の存在範囲]
 本発明の熱線遮蔽材において、前記平板状金属粒子を含有する金属粒子含有層の塗布膜厚みdは、5~120nmであることが好ましく、7~80nmであることがより好ましく、10~40nmであることが特に好ましい。
 本発明の熱線遮蔽材では、金属粒子含有層の塗布膜厚みdが金属粒子の平均円相当直径Dに対し、d>D/2の場合、前記六角形状乃至円形状の平板状金属粒子の80個数%以上が、前記金属粒子含有層の表面からd/2の範囲に存在することが好ましく、d/3の範囲に存在することがより好ましく、前記六角形状乃至円形状の平板状金属粒子の60個数%以上が前記金属粒子含有層の一方の表面に露出していることが更に好ましい。平板状金属粒子が金属粒子含有層の表面からd/2の範囲に存在するとは、平板状金属粒子の少なくとも一部が金属粒子含有層の表面からd/2の範囲に含まれていることを意味する。すなわち、平板状金属粒子の一部が、金属粒子含有層の表面よりも突出している図6Dに記載される平板状金属粒子も、金属粒子含有層の表面からd/2の範囲に存在する平板状金属粒子として扱う。なお、図6Dは、各平板状金属粒子の厚み方向のごく一部が金属粒子含有層に埋没してことを意味し、各平板状金属粒子が金属粒子含有層の表面上に積まれているわけではない。図6B~図6Dは前記金属粒子含有層の厚みdがd>D/2である場合を表した模式図であり、特に図6Bは平板状金属粒子の80個数%以上がfの範囲に含まれており、f<d/2であることを表した図である。
 また、平板状金属粒子が前記金属粒子含有層の一方の表面に露出しているとは、平板状金属粒子の一方の表面の一部が、金属粒子含有層の表面よりも突出していることを意味する。
 ここで、前記金属粒子含有層中の平板状金属粒子存在分布は、例えば、熱線遮蔽材の断面試料をSEM観察した画像より測定することができる。
 本発明の熱線遮蔽材では、金属粒子含有層の塗布膜厚みdは金属粒子の平均円相当径Dに対し、d<D/2の場合が好ましく、より好ましくはd<D/4であり、d<D/8がさらに好ましい。金属粒子含有層の塗布厚みを下げるほど、平板状金属粒子の面配向の角度範囲が0°に近づきやすくなり、平板状金属粒子によるプラズモン反射効果を最大限に活用できるため好ましい。また、金属粒子含有層の塗布厚みを下げるほど、各平板状金属粒子の厚み方向の配置バラツキが小さくなり、同一面内高さに並びやすくなり、平板状金属粒子によるプラズモン反射効果を最大限に活用できるため好ましい。図6E、図6Fは前記金属粒子含有層の厚みdがd<D/2である場合を表した模式図である。
[1-2-4. Thickness of metal particle-containing layer, existence range of flat metal particles]
In the heat ray shielding material of the present invention, the coating film thickness d of the metal particle-containing layer containing the flat metal particles is preferably 5 to 120 nm, more preferably 7 to 80 nm, and more preferably 10 to 40 nm. It is particularly preferred.
In the heat ray shielding material of the present invention, when the coating film thickness d of the metal particle-containing layer is d> D / 2 with respect to the average equivalent circle diameter D of the metal particles, the hexagonal to circular flat metal particles 80 The number% or more is preferably present in the range of d / 2 from the surface of the metal particle-containing layer, more preferably in the range of d / 3, and the hexagonal to circular plate-like metal particles More preferably, 60% by number or more is exposed on one surface of the metal particle-containing layer. That the flat metal particles are present in the range of d / 2 from the surface of the metal particle-containing layer means that at least a part of the flat metal particles is included in the range of d / 2 from the surface of the metal particle-containing layer. means. That is, the flat metal particles described in FIG. 6D in which some of the flat metal particles protrude from the surface of the metal particle-containing layer are also flat plates existing in the range of d / 2 from the surface of the metal particle-containing layer. Treated as metal particles. In addition, FIG. 6D means that a part of the thickness direction of each flat metal particle is buried in the metal particle-containing layer, and each flat metal particle is stacked on the surface of the metal particle-containing layer. Do not mean. 6B to 6D are schematic views showing the case where the thickness d of the metal particle-containing layer is d> D / 2. In particular, FIG. 6B includes 80% by number or more of the plate-like metal particles in the range of f. It is a diagram showing that f <d / 2.
Further, the fact that the flat metal particles are exposed on one surface of the metal particle-containing layer means that a part of one surface of the flat metal particles protrudes from the surface of the metal particle-containing layer. means.
Here, the flat metal particle presence distribution in the metal particle-containing layer can be measured, for example, from an image obtained by SEM observation of a cross-sectional sample of the heat ray shielding material.
In the heat ray shielding material of the present invention, the coating film thickness d of the metal particle-containing layer is preferably d <D / 2 with respect to the average equivalent circle diameter D of the metal particles, more preferably d <D / 4. d <D / 8 is more preferable. The lower the coating thickness of the metal particle-containing layer, the more the angle range of planar orientation of the tabular metal particles tends to approach 0 °, and the plasmon reflection effect by the tabular metal particles can be utilized to the maximum. In addition, as the coating thickness of the metal particle-containing layer is decreased, the variation in the thickness direction of each flat metal particle is reduced, and it becomes easier to line up in the same in-plane height, maximizing the plasmon reflection effect by the flat metal particles. It is preferable because it can be utilized. 6E and 6F are schematic views showing a case where the thickness d of the metal particle-containing layer is d <D / 2.
 本発明の熱線遮蔽材において、図6Bに示すように、金属粒子含有層1における平板状金属粒子11を構成する金属のプラズモン共鳴波長をλとし、金属粒子含有層1における媒質の屈折率をnとするとき、前記金属粒子含有層1が、熱線遮蔽材の水平面からの深さ方向において、(λ/n)/4の範囲で存在することが好ましい。この範囲内であると、熱線遮蔽材の上側と下側のそれぞれの金属粒子含有層の界面での反射波の位相により反射波の振幅が強めあう効果が十分大きく、可視光透過率及び熱線最大反射率が良好となる。
 前記金属粒子含有層における平板状金属粒子を構成する金属のプラズモン共鳴波長λは、特に制限はなく、目的に応じて適宜選択することができるが、熱線反射性能を付与する点で、400nm~2,500nmであることが好ましく、可視光透過率を付与する点から、700nm~2,500nmであることがより好ましい。
In the heat ray shielding material of the present invention, as shown in FIG. 6B, the plasmon resonance wavelength of the metal constituting the flat metal particles 11 in the metal particle-containing layer 1 is λ, and the refractive index of the medium in the metal particle-containing layer 1 is n. In this case, the metal particle-containing layer 1 is preferably present in the range of (λ / n) / 4 in the depth direction from the horizontal plane of the heat ray shielding material. Within this range, the effect of increasing the amplitude of the reflected wave by the phase of the reflected wave at the interface between the upper and lower metal particle-containing layers of the heat ray shielding material is sufficiently large, and the visible light transmittance and the maximum heat ray Reflectivity is good.
The plasmon resonance wavelength λ of the metal constituting the flat metal particles in the metal particle-containing layer is not particularly limited and can be appropriately selected according to the purpose. However, in terms of imparting heat ray reflection performance, 400 nm to 2 , 500 nm, and more preferably 700 nm to 2500 nm from the viewpoint of imparting visible light transmittance.
[1-2-5.金属粒子含有層の媒質]
 前記金属粒子含有層における媒質としては、特に制限はなく、目的に応じて適宜選択することができる。本発明の熱線遮蔽材は、前記金属粒子含有層がポリマーを含むことが好ましく、透明ポリマーを含むことがより好ましい。前記ポリマーとしては、例えば、ポリビニルアセタール樹脂、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリアクリレート樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート樹脂、ポリ塩化ビニル樹脂、(飽和)ポリエステル樹脂、ポリウレタン樹脂、ゼラチンやセルロース等の天然高分子等の高分子などが挙げられる。その中でも、本発明では、前記ポリマーの主ポリマーがポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリ塩化ビニル樹脂、(飽和)ポリエステル樹脂、ポリウレタン樹脂であることが好ましく、ポリエステル樹脂およびポリウレタン樹脂であることが前記六角形状乃至円形状の平板状金属粒子の80個数%以上を前記金属粒子含有層の表面からd/2の範囲に存在させやすい観点からより好ましく、ポリエステル樹脂およびポリウレタン樹脂であることが本発明の熱線遮蔽材のこすり耐性をより改善する観点から特に好ましい。
 前記ポリエステル樹脂の中でも、飽和ポリエステル樹脂であることが二重結合を含まないために優れた耐候性を付与できる観点からより特に好ましい。また、分子末端に水酸基またはカルボキシル基を持つことが、水溶性・水分散性の硬化剤等で硬化させることで高い硬度・耐久性・耐熱性を得られる観点から、より好ましい。
 前記ポリマーとしては、商業的に入手できるものを好ましく用いることもでき、例えば、互応化学工業(株)製の水溶性ポリエステル樹脂である、プラスコートZ-867などを挙げることができる。
 また、本明細書中、前記金属含有層に含まれる前記ポリマーの主ポリマーとは、前記金属含有層に含まれるポリマーの50質量%以上を占めるポリマー成分のことを言う。
 前記金属粒子含有層に含まれる前記金属粒子に対する前記ポリエステル樹脂およびポリウレタン樹脂の含有量が1~10000質量%であることが好ましく、10~1000質量%であることがより好ましく、20~500質量%であることが特に好ましい。前記金属粒子含有層に含まれるバインダーを上記範囲以上とすることで、こすり耐性性等の物理特性を改善することができる。
 前記媒質の屈折率nは、1.4~1.7であることが好ましい。
 本発明の熱線遮蔽材は、前記六角形状乃至円形状の平板状金属粒子の厚みをaとしたとき、前記六角形状乃至円形状の平板状金属粒子の80個数%以上が、厚み方向のa/10以上を前記ポリマーに覆われていることが好ましく、厚み方向のa/10~10aを前記ポリマーに覆われていることがより好ましく、a/8~4aを前記ポリマーに覆われていることが特に好ましい。このように前記六角形状乃至円形状の平板状金属粒子が前記金属粒子含有層に一定割合以上埋没していることにより、よりこすり耐性を高めることができる。すなわち、本発明の熱線遮蔽材は、図6Dや図6Fの態様よりも、図6Cや図6Eの態様の方が好ましい。
[1-2-5. Medium of metal particle containing layer]
There is no restriction | limiting in particular as a medium in the said metal particle content layer, According to the objective, it can select suitably. In the heat ray shielding material of the present invention, the metal particle-containing layer preferably contains a polymer, and more preferably contains a transparent polymer. Examples of the polymer include polyvinyl acetal resin, polyvinyl alcohol resin, polyvinyl butyral resin, polyacrylate resin, polymethyl methacrylate resin, polycarbonate resin, polyvinyl chloride resin, (saturated) polyester resin, polyurethane resin, gelatin, and cellulose. And polymers such as natural polymers. Among them, in the present invention, the main polymer of the polymer is preferably a polyvinyl alcohol resin, a polyvinyl butyral resin, a polyvinyl chloride resin, a (saturated) polyester resin, a polyurethane resin, and preferably the polyester resin and the polyurethane resin. 80% by number or more of hexagonal or circular plate-like metal particles are more preferable from the viewpoint of being easily present in a range of d / 2 from the surface of the metal particle-containing layer, and are polyester resins and polyurethane resins. It is particularly preferable from the viewpoint of further improving the rubbing resistance of the heat ray shielding material.
Among the polyester resins, a saturated polyester resin is more particularly preferable from the viewpoint of imparting excellent weather resistance since it does not contain a double bond. Moreover, it is more preferable to have a hydroxyl group or a carboxyl group at the molecular terminal from the viewpoint of obtaining high hardness, durability, and heat resistance by curing with a water-soluble / water-dispersible curing agent or the like.
Commercially available polymers can be preferably used as the polymer, and examples thereof include PLUSCOAT Z-867, which is a water-soluble polyester resin manufactured by Kyoyo Chemical Industry Co., Ltd.
Moreover, in this specification, the main polymer of the polymer contained in the metal-containing layer refers to a polymer component occupying 50% by mass or more of the polymer contained in the metal-containing layer.
The content of the polyester resin and the polyurethane resin with respect to the metal particles contained in the metal particle-containing layer is preferably 1 to 10000% by mass, more preferably 10 to 1000% by mass, and 20 to 500% by mass. It is particularly preferred that By setting the binder contained in the metal particle-containing layer to be in the above range or more, physical properties such as rubbing resistance can be improved.
The refractive index n of the medium is preferably 1.4 to 1.7.
In the heat ray shielding material of the present invention, when the thickness of the hexagonal or circular plate-like metal particles is a, 80% or more of the hexagonal or circular plate-like metal particles are a / in the thickness direction. It is preferable that 10 or more is covered with the polymer, a / 10 to 10a in the thickness direction is more preferably covered with the polymer, and a / 8 to 4a is covered with the polymer. Particularly preferred. As described above, the hexagonal or circular plate-like metal particles are buried in the metal particle-containing layer at a certain ratio or more, whereby the rubbing resistance can be further increased. That is, the aspect of FIG. 6C and FIG. 6E is more preferable than the aspect of FIG. 6D and FIG. 6F for the heat ray shielding material of this invention.
[1-2-6.平板状金属粒子の面積率]
 熱線遮蔽材を上から見た時の基材の面積A(金属粒子含有層に対して垂直方向から見たときの前記金属粒子含有層の全投影面積A)に対する平板状金属粒子の面積の合計値Bの割合である面積率〔(B/A)×100〕としては、15%以上が好ましく、20%以上がより好ましい。前記面積率が、15%未満であると、熱線の最大反射率が低下してしまい、遮熱効果が十分に得られないことがある。
 ここで、前記面積率は、例えば熱線遮蔽材基材を上からSEM観察で得られた画像や、AFM(原子間力顕微鏡)観察で得られた画像を画像処理することにより測定することができる。
[1-2-6. Area ratio of flat metal particles]
The total area of the flat metal particles relative to the area A of the base material when viewed from above (the total projected area A of the metal particle-containing layer when viewed from the direction perpendicular to the metal particle-containing layer). The area ratio [(B / A) × 100], which is the ratio of the value B, is preferably 15% or more, and more preferably 20% or more. When the area ratio is less than 15%, the maximum reflectance of the heat ray is lowered, and the heat shielding effect may not be sufficiently obtained.
Here, the area ratio can be measured, for example, by performing image processing on an image obtained by SEM observation of the heat ray shielding base material from above or an image obtained by AFM (atomic force microscope) observation. .
[1-2-7平板状金属粒子の配列]
 前記金属粒子含有層における平板状金属粒子の配列は均一であることが好ましい。ここで言う配列の均一とは、各粒子に対する最近接粒子までの距離(最近接粒子間距離)を粒子の中心間距離で数値化した際、各々の粒子の最近接粒子間距離の変動係数(=標準偏差÷平均値)が小さいことを差す。最近接粒子間距離の変動係数は小さいほど好ましく、好ましくは30%以下、より好ましくは20%以下、より好ましくは10%以下、理想的には0%である。最近接粒子間距離の変動係数が大きい場合には、前記金属粒子含有層内で平板状金属粒子の粗密や粒子間の凝集が生じ、ヘイズが悪化する傾向があるため好ましくない。最近接粒子間距離は金属粒子含有層塗布面をSEMなどで観察することにより測定が可能である。
[1-2-7 Arrangement of Tabular Metal Particles]
The arrangement of the flat metal particles in the metal particle-containing layer is preferably uniform. The uniformity of the array mentioned here is the coefficient of variation of the distance between the nearest particles of each particle when the distance to the nearest particle for each particle (distance between the nearest particles) is expressed by the distance between the centers of the particles. = Standard deviation ÷ average value) is small. The variation coefficient of the closest interparticle distance is preferably as small as possible, preferably 30% or less, more preferably 20% or less, more preferably 10% or less, and ideally 0%. When the coefficient of variation of the distance between nearest neighbor particles is large, it is not preferable because flat metal particles and aggregation between particles occur in the metal particle-containing layer and haze tends to deteriorate. The distance between the closest particles can be measured by observing the coated surface of the metal particle-containing layer with an SEM or the like.
[1-2-8.金属粒子含有層の層構成]
 本発明の熱線遮蔽材において、平板状金属粒子は、図6A~図6Fに示すように、平板状金属粒子を含む金属粒子含有層の形態で配置される。
 前記金属粒子含有層としては、図6A~図6Fに示すように単層で構成されてもよく、複数の金属粒子含有層で構成されてもよい。複数の金属粒子含有層で構成される場合、遮熱性能を付与したい波長帯域に応じた遮蔽性能を付与することが可能となる。なお、前記金属粒子含有層が複数の金属粒子含有層で構成される場合、本発明の熱線遮蔽材は、少なくとも最表面の金属粒子含有層において、該最表面の金属粒子含有層の厚みをd’としたとき、前記六角形状乃至円形状の平板状金属粒子の80個数%以上が、該最表面の金属粒子含有層の表面からd’/2の範囲に存在することが好ましい。
[1-2-8. Layer structure of metal particle-containing layer]
In the heat ray shielding material of the present invention, the flat metal particles are arranged in the form of a metal particle-containing layer containing flat metal particles, as shown in FIGS. 6A to 6F.
The metal particle-containing layer may be composed of a single layer as shown in FIGS. 6A to 6F, or may be composed of a plurality of metal particle-containing layers. When comprised with a several metal particle content layer, it becomes possible to provide the shielding performance according to the wavelength range | band which wants to provide heat insulation performance. When the metal particle-containing layer is composed of a plurality of metal particle-containing layers, the heat ray shielding material of the present invention has a thickness d of the outermost metal particle-containing layer at least in the outermost metal particle-containing layer. It is preferable that 80% by number or more of the hexagonal or circular tabular metal particles are present in the range of d ′ / 2 from the surface of the outermost metal particle-containing layer.
 ここで、前記金属粒子含有層の各層の厚みは、例えば、熱線遮蔽材の断面サンプルをSEM観察したり、断面切片サンプルをTEM観察することにより測定することができる。 Here, the thickness of each layer of the metal particle-containing layer can be measured, for example, by observing a cross-sectional sample of the heat ray shielding material with a SEM or observing a cross-sectional slice sample with a TEM.
 また、熱線遮蔽材の前記金属粒子含有層の上に、例えば後述するオーバーコート層などの他の層を有する場合においても、他の層と前記金属粒子含有層の境界は同様の方法によって決定することができ、前記金属粒子含有層の厚みdを決定することができる。なお、前記金属粒子含有層に含まれるポリマーと同じ種類のポリマーを用いて、前記金属粒子含有層の上にコーティングをする場合は通常はSEM観察した画像によって前記金属粒子含有層との境界を判別できることができ、前記金属粒子含有層の厚みdを決定することができる。 Moreover, even when it has other layers, such as an overcoat layer mentioned later, on the said metal-particle content layer of a heat ray shielding material, the boundary of another layer and the said metal-particle content layer is determined by the same method. And the thickness d of the metal particle-containing layer can be determined. When coating the metal particle-containing layer using the same type of polymer as the polymer contained in the metal particle-containing layer, the boundary between the metal particle-containing layer and the metal particle-containing layer is usually determined by an SEM observation image. And the thickness d of the metal particle-containing layer can be determined.
[1-2-9.平板状金属粒子の合成方法]
 前記平板状金属粒子の合成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、化学還元法、光化学還元法、電気化学還元法等の液相法などが六角形状乃至円形状の平板状金属粒子を合成し得るものとして挙げられる。これらの中でも、形状とサイズ制御性の点で、化学還元法、光化学還元法などの液相法が特に好ましい。六角形~三角形状の平板状金属粒子を合成後、例えば、硝酸、亜硫酸ナトリウム等の銀を溶解する溶解種によるエッチング処理、加熱によるエージング処理などを行うことにより、六角形~三角形状の平板状金属粒子の角を鈍らせて、六角形状乃至円形状の平板状金属粒子を得てもよい。
[1-2-9. Method for synthesizing flat metal particles]
The method for synthesizing the flat metal particles is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a liquid phase method such as a chemical reduction method, a photochemical reduction method, or an electrochemical reduction method may have a hexagonal shape. It is mentioned as what can synthesize | combine thru | or circular flat metal particles. Among these, a liquid phase method such as a chemical reduction method or a photochemical reduction method is particularly preferable in terms of shape and size controllability. After synthesizing hexagonal to triangular tabular metal particles, for example, by performing etching treatment with a dissolved species that dissolves silver such as nitric acid and sodium sulfite, aging treatment by heating, etc., hexagonal to triangular tabular shapes are obtained. Hexagonal or circular tabular metal particles may be obtained by blunting the corners of the metal particles.
 前記平板状金属粒子の合成方法としては、前記の他、予めフィルム、ガラスなどの透明基材の表面に種晶を固定後、平板状に金属粒子(例えばAg)を結晶成長させてもよい。 As the method for synthesizing the flat metal particles, in addition to the above, after seed crystals are fixed in advance on the surface of a transparent substrate such as a film or glass, the metal particles (for example, Ag) may be crystal-grown in a flat shape.
 本発明の熱線遮蔽材において、平板状金属粒子は、所望の特性を付与するために、更なる処理を施してもよい。前記更なる処理としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、高屈折率シェル層の形成、分散剤、酸化防止剤等の各種添加剤を添加することなどが挙げられる。 In the heat ray shielding material of the present invention, the flat metal particles may be subjected to further treatment in order to impart desired characteristics. The further treatment is not particularly limited and may be appropriately selected depending on the purpose. For example, the formation of a high refractive index shell layer, the addition of various additives such as a dispersant and an antioxidant may be included. Can be mentioned.
-1-2-9-1.高屈折率シェル層の形成-
 前記平板状金属粒子は、可視光域透明性を更に高めるために、可視光域透明性が高い高屈折率材料で被覆されてもよい。
 前記高屈折率材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、TiO、BaTiO、ZnO、SnO、ZrO、NbOなどが挙げられる。
-1-2-9-1. Formation of high refractive index shell layer
The flat metal particles may be coated with a high refractive index material having high visible light region transparency in order to further enhance visible light region transparency.
As the high refractive index material is not particularly limited and may be appropriately selected depending on the purpose, for example, TiO x, BaTiO 3, ZnO, etc. SnO 2, ZrO 2, NbO x and the like.
 前記被覆する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、Langmuir、2000年、16巻、p.2731-2735に報告されているようにテトラブトキシチタンを加水分解することにより銀の平板状金属粒子の表面にTiO層を形成する方法であってもよい。 There is no restriction | limiting in particular as said coating method, According to the objective, it can select suitably, For example, Langmuir, 2000, 16 volumes, p. As reported in 2731-2735, a method of forming a TiO x layer on the surface of silver tabular metal particles by hydrolyzing tetrabutoxy titanium may be used.
 また、前記平板状金属粒子に直接高屈折率金属酸化物層シェルを形成することが困難な場合は、前記の通り平板状金属粒子を合成した後、適宜SiOやポリマーのシェル層を形成し、更に、このシェル層上に前記金属酸化物層を形成してもよい。TiOを高屈折率金属酸化物層の材料として用いる場合には、TiOが光触媒活性を有することから、平板状金属粒子を分散するマトリクスを劣化させてしまう懸念があるため、目的に応じて平板状金属粒子にTiO層を形成した後、適宜SiO層を形成してもよい。 Further, when it is difficult to form a high refractive index metal oxide layer shell directly on the flat metal particles, after synthesizing the flat metal particles as described above, an SiO 2 or polymer shell layer is appropriately formed. Further, the metal oxide layer may be formed on the shell layer. When TiO x is used as a material for the high refractive index metal oxide layer, since TiO x has photocatalytic activity, there is a concern of deteriorating the matrix in which the plate-like metal particles are dispersed. After forming the TiO x layer on the flat metal particles, an SiO 2 layer may be appropriately formed.
-1-2-9-2.各種添加物の添加-
 本発明の熱線遮蔽材において、前記金属粒子含有層がポリマーを含み、前記ポリマーの主ポリマーがポリエステル樹脂である場合には、架橋剤を添加することが膜強度の観点から好ましい。前記架橋剤としては特に制限はなく、エポキシ系、イソシアネート系、メラミン系、カルボジイミド系、オキサゾリン系等の架橋剤を挙げることができる。これらの中でカルボジイミド系及びオキサゾリン系架橋剤が好ましい。カルボジイミド系架橋剤の具体例としては、例えばカルボジライトV-02-L2(日清紡ケミカル(株)製)などがある。前記金属粒子含有層中の全バインダーに対して1~20質量%の架橋剤由来の成分を含有することが好ましく、より好ましくは2~20質量%である。
 また、本発明の熱線遮蔽材において、前記金属粒子含有層がポリマーを含む場合、添加することがハジキの発生を抑えて良好な面状な層が得られる観点から好ましい。界面活性剤を前記界面活性剤としては、アニオン系やノニオン系等の公知の界面活性剤を用いることができる界面活性剤の具体例としては、例えばラピゾールA-90(日本油脂(株)製)、ナロアクティーHN-100(三洋化成工業(株)製)などがある。前記金属粒子含有層中の全バインダーに対して0.05~10質量%の界面活性剤を含有することが好ましく、より好ましくは0.1~5質量%である。
-1-2-9-2. Addition of various additives-
In the heat ray shielding material of the present invention, when the metal particle-containing layer contains a polymer and the main polymer of the polymer is a polyester resin, it is preferable to add a crosslinking agent from the viewpoint of film strength. The crosslinking agent is not particularly limited, and examples thereof include epoxy-based, isocyanate-based, melamine-based, carbodiimide-based, and oxazoline-based crosslinking agents. Of these, carbodiimide and oxazoline crosslinking agents are preferred. Specific examples of the carbodiimide-based crosslinking agent include Carbodilite V-02-L2 (manufactured by Nisshinbo Chemical Co., Ltd.). It is preferable to contain 1 to 20% by mass of a crosslinking agent-derived component with respect to the total binder in the metal particle-containing layer, and more preferably 2 to 20% by mass.
Moreover, in the heat ray shielding material of this invention, when the said metal particle content layer contains a polymer, it is preferable from a viewpoint from which generation | occurrence | production of a repellency is suppressed and a favorable planar layer is obtained. As the surfactant, a known surfactant such as an anionic or nonionic surfactant can be used as a specific example of the surfactant. For example, Lapisol A-90 (manufactured by NOF Corporation) And NAROACTY HN-100 (manufactured by Sanyo Chemical Industries). The surfactant is preferably contained in an amount of 0.05 to 10% by weight, more preferably 0.1 to 5% by weight, based on the total binder in the metal particle-containing layer.
 前記平板状金属粒子は、該平板状金属粒子を構成する銀などの金属の酸化を防止するために、メルカプトテトラゾール、アスコルビン酸等の酸化防止剤を吸着していてもよい。また、酸化防止を目的として、Ni等の酸化犠牲層が平板状金属粒子の表面に形成されていてもよい。また、酸素を遮断することを目的として、SiOなどの金属酸化物膜で被覆されていてもよい。
 前記平板状金属粒子は、分散性付与を目的として、例えば、4級アンモニウム塩、アミン類等のN元素、S元素、及びP元素の少なくともいずれかを含む低分子量分散剤、高分子量分散剤などの分散剤を添加してもよい。
The tabular metal particles may adsorb an antioxidant such as mercaptotetrazole or ascorbic acid in order to prevent oxidation of metals such as silver constituting the tabular metal particles. Further, for the purpose of preventing oxidation, an oxidation sacrificial layer such as Ni may be formed on the surface of the flat metal particles. Further, it may be covered with a metal oxide film such as SiO 2 for the purpose of blocking oxygen.
For the purpose of imparting dispersibility, the flat metal particles are, for example, a low molecular weight dispersant, a high molecular weight dispersant or the like containing at least one of an N element such as a quaternary ammonium salt and amines, an S element, and a P element. A dispersant may be added.
防腐剤:
 本発明の熱線遮蔽材を作製する際、平板状金属粒子分散液に防腐剤を含有することが、遮熱性能を維持しつつ、可視光透過率も改善する観点から好ましい。なお、防腐剤を含有させたことにより、遮熱性能を維持しつつ、可視光透過率を改善できた理由は不明である。
 さらに、いかなる理論に拘泥するものもないが、微生物による腐敗現象が経時安定性に関連していることを本発明者らは見出し、防腐剤を導入することにより、平板状金属粒子分散液の経時安定性を改良できることを見出した。平板状金属粒子分散液の経時安定性が改良されると、平板状金属粒子分散液の保存が実質的に可能となり、平板状金属粒子分散液を造り貯めて一度にまとめて塗布に供給することで、後述する本発明の熱線遮蔽材の生産性が著しく向上する。なお、従来の平板状金属粒子分散液は経時安定性が悪く、大量生産には適さないものであり、特に銀を用いた場合は銀の奏する抗菌性が期待されていたものの、従来の平板状金属粒子分散液は経時安定性が悪かった。
 またさらに、いかなる理論に拘泥するものもないが、防腐剤を平板状金属粒子分散液に導入することにより、平板状金属粒子分散液の濾過性を向上させることができる。ここでいう濾過性とは、濾過フィルターに通液する際の圧力上昇が著しく改善されて、長時間連続で(多量の)送液をすることが可能になることをいう。平板状金属粒子分散液の濾過性を向上させることにより平板状金属粒子分散物を原料に用いて調製した液を塗布に供給する際に、その送液途中に濾過フィルターを入れて凝集粒子や塵埃を除去することができ、面状故障が少ない高品質な後述する本発明の熱線遮蔽材を大面積で提供することができる。また、濾過圧力上昇による送液停止すなわち塗布停止による生産性低下の問題も解決される。なお、従来の平板状金属粒子分散液は濾過性が悪く、濾過フィルターに通液すると圧力上昇して送液ができなくなるため、凝集粒子や塵埃を濾過フィルターで捕捉除去することが困難であり、塗布面状故障の少ない熱線遮蔽材料を得ることは容易ではなかった。
 平板状金属粒子分散液の経時安定性改良と濾過性の改良により、塗布原材料を多量に準備して一度にまとめて塗布することで高い生産性を付与し、且つ面状故障の少ない高品質な熱線遮蔽材料を大面積で提供することが可能になる。
Preservative:
When producing the heat ray shielding material of the present invention, it is preferable that the flat metal particle dispersion contains a preservative from the viewpoint of improving the visible light transmittance while maintaining the heat shielding performance. The reason why the visible light transmittance can be improved while maintaining the heat shielding performance by containing the preservative is unknown.
Furthermore, although there is nothing to be bound by any theory, the present inventors have found that the rot phenomenon due to microorganisms is related to the stability over time, and by introducing a preservative, the time-lapse of the plate-like metal particle dispersion liquid. It has been found that stability can be improved. If the stability over time of the flat metal particle dispersion is improved, the storage of the flat metal particle dispersion becomes substantially possible, and the flat metal particle dispersion is made and stored and supplied to the application all at once. Thus, the productivity of the heat ray shielding material of the present invention described later is remarkably improved. In addition, the conventional flat metal particle dispersion has poor stability over time and is not suitable for mass production. Especially when silver is used, the antibacterial property exhibited by silver was expected, but the conventional flat metal particle dispersion The metal particle dispersion had poor stability over time.
Furthermore, although there is nothing to be bound by any theory, the filterability of the tabular metal particle dispersion can be improved by introducing a preservative into the tabular metal particle dispersion. The filterability here means that the increase in pressure when passing through the filtration filter is remarkably improved, and it becomes possible to feed a large amount continuously for a long time. When supplying a liquid prepared by using a flat metal particle dispersion as a raw material by improving the filterability of the flat metal particle dispersion to the coating, a filtration filter is put in the middle of the liquid feed to aggregate particles and dust Can be removed, and a high-quality heat ray shielding material according to the present invention, which will be described later, can be provided in a large area. In addition, the problem of productivity drop due to stoppage of liquid feeding due to an increase in filtration pressure, that is, stoppage of coating is also solved. In addition, the conventional flat metal particle dispersion liquid has poor filterability, and when passing through the filter, the pressure rises and the liquid cannot be fed, so it is difficult to capture and remove the aggregated particles and dust with the filter, It was not easy to obtain a heat ray shielding material with little coating surface failure.
By improving the stability over time and the filterability of the plate-like metal particle dispersion, a large amount of coating raw materials are prepared and applied at once to give high productivity and high quality with less surface failure. It becomes possible to provide a heat ray shielding material in a large area.
 本発明の平板状金属粒子分散液は、前記防腐剤が、下記一般式(11)または下記一般式(12)で表される化合物であることが好ましく、下記一般式(11)で表される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000003

(一般式(11)中、R13は水素原子、アルキル基、アルケニル基、アラルキル基、アリール基、複素環基、(R16)(R17)-N-C(=O)-または(R16)(R17)-N-C(=S)-を表す。R14およびR15はそれぞれ独立して水素原子、アルキル基、アリール基、シアノ基、複素環基、アルキルチオ基、アルキルスルホキシ基またはアルキルスルホニル基を表し、R14とR15は互いに結合して芳香環を形成してもよい。R16およびR17はそれぞれ独立して水素原子、アルキル基、アリール基またはアラルキル基を表す。)
Figure JPOXMLDOC01-appb-C000004

(一般式(12)中、R20は低級アルキレン基を表す。Xはハロゲン原子、ニトロ基、ヒドロキシ基、シアノ基、低級アルキル基、低級アルコキシ基、-COR21、-N(R22)(R23)または-SOMを表す。R21は水素原子、-〇M、低級アルキル基、アリール基、アラルキル基、低級アルコキシ基、アリールオキシ基、アラルキルオキシ基または-N(R24)(R25)を表す。R22およびR23はそれぞれ独立して水素原子、低級アルキル基、アリール基、アラルキル基、-COR26または-SO26を表し、互いに同じであっても異なっていてもよい。R24およびR25はそれぞれ独立して水素原子、低級アルキル基、アリール基、アラルキル基を表し、互いに同じであっても異なっていてもよい。R26は低級アルキル基、アリール基またはアラルキル基を表す。Mは水素原子、アルカリ金属原子及び1価のカチオンを形成するために必要な原子群を表す。pは0または1を表す。qは0から5までの整数を表す。)
In the flat metal particle dispersion of the present invention, the preservative is preferably a compound represented by the following general formula (11) or the following general formula (12), and is represented by the following general formula (11). More preferably, it is a compound.
Figure JPOXMLDOC01-appb-C000003

(In the general formula (11), R 13 is a hydrogen atom, an alkyl group, an alkenyl group, an aralkyl group, an aryl group, a heterocyclic group, (R 16 ) (R 17 ) —N—C (═O) — or (R 16 ) (R 17 ) —N—C (═S) —, wherein R 14 and R 15 each independently represent a hydrogen atom, an alkyl group, an aryl group, a cyano group, a heterocyclic group, an alkylthio group, or an alkylsulfoxy group. R 14 and R 15 may be bonded to each other to form an aromatic ring, and R 16 and R 17 each independently represents a hydrogen atom, an alkyl group, an aryl group or an aralkyl group. .)
Figure JPOXMLDOC01-appb-C000004

(In the general formula (12), R 20 represents a lower alkylene group. X represents a halogen atom, a nitro group, a hydroxy group, a cyano group, a lower alkyl group, a lower alkoxy group, —COR 21 , —N (R 22 ) ( R 23 ) or —SO 2 M. R 21 represents a hydrogen atom, —O M, a lower alkyl group, an aryl group, an aralkyl group, a lower alkoxy group, an aryloxy group, an aralkyloxy group, or —N (R 24 ) ( R 25 ) R 22 and R 23 each independently represents a hydrogen atom, a lower alkyl group, an aryl group, an aralkyl group, —COR 26 or —SO 2 R 26, and may be the same or different from each other. R 24 and R 25 each independently represent a hydrogen atom, a lower alkyl group, an aryl group, or an aralkyl group, and may be the same or different from each other. R 26 represents a lower alkyl group, an aryl group or an aralkyl group, M represents a hydrogen atom, an alkali metal atom and an atomic group necessary for forming a monovalent cation, and p represents 0 or 1. Q represents an integer from 0 to 5.)
 前記一般式(11)で表される化合物について記述する。
Figure JPOXMLDOC01-appb-C000005
The compound represented by the general formula (11) will be described.
Figure JPOXMLDOC01-appb-C000005
 R13は水素原子、直鎖もしくは分岐鎖の置換または未置換のアルキル基(例えばメチル、エチル、tert-ブチル、n-オクタデシル、2-ヒドロキシエチル、2-カルボキシエチル、2-シアノエチル、スルホブチル、N、N-ジメチルアミノエチル)、置換または未置換の環状アルキル基(例えばシクロヘキシル、3-メチルシクロヘキシル、2-オキソシクロペンチル)、置換または未置換のアルケニル基(例えばアリル、メチルアリル)、置換または未置換のアラルキル基(例えばベンジル、p-メトキシベンジル、o-クロロベンジル、p-iso-プロピルベンジル)、置換または未置換のアリール基(例えばフェニル、ナフチル、o-メチルフェニル、m-ニトロフェニル、3.4-ジクロロフェニル)、複素環基(2-イミダゾリル、2-フリル、2-チアゾリル、2-ピリジル)、(R16)(R17)-N-C(=O)-または(R16)(R17)-N-C(=S)を表す。 R 13 represents a hydrogen atom, a linear or branched substituted or unsubstituted alkyl group (for example, methyl, ethyl, tert-butyl, n-octadecyl, 2-hydroxyethyl, 2-carboxyethyl, 2-cyanoethyl, sulfobutyl, N N-dimethylaminoethyl), substituted or unsubstituted cyclic alkyl groups (eg cyclohexyl, 3-methylcyclohexyl, 2-oxocyclopentyl), substituted or unsubstituted alkenyl groups (eg allyl, methylallyl), substituted or unsubstituted Aralkyl groups (eg benzyl, p-methoxybenzyl, o-chlorobenzyl, p-iso-propylbenzyl), substituted or unsubstituted aryl groups (eg phenyl, naphthyl, o-methylphenyl, m-nitrophenyl, 3.4 -Dichlorophenyl), heterocyclic group (2- Imidazolyl, 2-furyl, 2-thiazolyl, 2-pyridyl), (R 16 ) (R 17 ) —NC (═O) — or (R 16 ) (R 17 ) —N—C (═S) To express.
 R14およびR15はそれぞれ独立して水素原子、置換または未置換のアルキル基(例えばメチル、エチル、クロロメチル、2-ヒドロキシエチル、tert-ブチル、n-オクチル)、置換または未置換の環状アルキル基(例えばシクロヘキシル、2-オキソシクロペンチル)、置換または未置換のアリール基(例えばフェニル、2-メチルフェニル、3,4-ジクロロフェニル、ナフチル、4-ニトロフェニル、4-アミノフェニル、3-アセトアミドフェニル)、シアノ基、複素環基(例えば2-イミダゾリル、2-チアゾリル、2-ピリジル)、置換または未置換のアルキルチオ基(例えばメチルチオ、2-シアノエチルチオ、2-エトキシカルボニルチオ)、置換または未置換のアリールチオ基(例えばフェニルチオ、2-カルボキシフェニルチオ、p-メトキシフェニルチオ)、置換または未置換のアルキルスルホキシ基(例えばメチルスルホキシ-ヒドロキシエチルスルホキシ)、置換または未置換のアルキルスルホニル基(例えばメチルスルホニル、2-ブロモエチルスルホニル)を表し、R14とR15は互いに結合して芳香環を形成してもよい。
 R16およびR17はそれぞれ独立して水素原子、置換または未置換のアルキル基(例えばメチル、エチル、iso-プロピル、2-シアノエチル、2-n-ブトキシカルボニルエチル、2-シアノエチル)、置換または未置換のアリール基(例えばフェニル、ナフチル、2-メトキシフェニル、m-ニトロフェニル、3,5-ジクロロフェニル、3-アセトアミドフェニル)、置換または未置換のアラルキル基(例えばベンジル、フェネチル、p-iso-プロピルベンジル、o-クロロベンジル、m-メトキシベンジル)を表わす。
 さらに、上記一般式(11)で好ましいのは、R13は、水素原子、低級アルキル基を表わし、R14およびR15は互いに結合して芳香環を形成する場合であり、R13が水素原子を表し、R14およびR15は互いに結合してベンゼン環を形成する場合がより好ましい。
R 14 and R 15 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group (eg, methyl, ethyl, chloromethyl, 2-hydroxyethyl, tert-butyl, n-octyl), substituted or unsubstituted cyclic alkyl Groups (eg cyclohexyl, 2-oxocyclopentyl), substituted or unsubstituted aryl groups (eg phenyl, 2-methylphenyl, 3,4-dichlorophenyl, naphthyl, 4-nitrophenyl, 4-aminophenyl, 3-acetamidophenyl) , Cyano group, heterocyclic group (for example, 2-imidazolyl, 2-thiazolyl, 2-pyridyl), substituted or unsubstituted alkylthio group (for example, methylthio, 2-cyanoethylthio, 2-ethoxycarbonylthio), substituted or unsubstituted Arylthio groups (eg phenylthio, 2-cal Xylphenylthio, p-methoxyphenylthio), substituted or unsubstituted alkylsulfoxy groups (eg methylsulfoxy-hydroxyethylsulfoxy), substituted or unsubstituted alkylsulfonyl groups (eg methylsulfonyl, 2-bromoethylsulfonyl) R 14 and R 15 may be bonded to each other to form an aromatic ring.
R 16 and R 17 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group (eg, methyl, ethyl, iso-propyl, 2-cyanoethyl, 2-n-butoxycarbonylethyl, 2-cyanoethyl), substituted or unsubstituted Substituted aryl groups (eg phenyl, naphthyl, 2-methoxyphenyl, m-nitrophenyl, 3,5-dichlorophenyl, 3-acetamidophenyl), substituted or unsubstituted aralkyl groups (eg benzyl, phenethyl, p-iso-propyl) Benzyl, o-chlorobenzyl, m-methoxybenzyl).
Furthermore, in the general formula (11), it is preferable that R 13 represents a hydrogen atom or a lower alkyl group, R 14 and R 15 are bonded to each other to form an aromatic ring, and R 13 is a hydrogen atom. R 14 and R 15 are more preferably bonded to each other to form a benzene ring.
 次に、前記一般式(11)で表される化合物の代表的具体例を以下に示すが、前記一般式(11)で表される化合物はこれらの具体例によって限定されるものではない。なお、以下の具体例は特開平3-119347号公報の一般式(II)で表される化合物の具体例と同様である。
 なお、以下の化合物の中でも、本発明では化合物II-25または化合物II-44を用いることが好ましく、化合物II-25を用いることがより好ましい。
Next, typical specific examples of the compound represented by the general formula (11) are shown below, but the compound represented by the general formula (11) is not limited to these specific examples. The following specific examples are the same as the specific examples of the compound represented by the general formula (II) in JP-A-3-119347.
Of the following compounds, compound II-25 or compound II-44 is preferably used in the present invention, and compound II-25 is more preferably used.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 次に、一般式(12)で表される化合物について説明する。
Figure JPOXMLDOC01-appb-C000012
Next, the compound represented by General formula (12) is demonstrated.
Figure JPOXMLDOC01-appb-C000012
 一般式(12)において、R20は低級アルキレン基(例えばエチレン基、プロピレン基、メチルエチレン基など)を表わし、特に炭素数1から6までのアルキレン基が好ましい。
 Xはハロゲン原子(例えば塩素原子、臭素原子フッ素原子)、ニトロ基、ヒドロキシル基、シアノ基、低級アルキル基(例えばメチル、エチル、iso-プロピル、tert-ブチル)、低級アルコキシ基-COR21、-N(R22)(R23)または-SOMを表す。
 R21は水素原子、-〇M、低級アルキル基(例えばメチル、n-ブチル、tert-オクチル)、アリ-ル基(例えばフェニル、4-クロロフェニル、3-ニトロフェニル)、アラルキル基(例えばベンジル、p-iso-プロピルベンジル、o-メチルベンジル)、低級アルコキシ基(例えばメトキシ、n-ブトキシ、2-メトキシエトキシ)、アリールオキシ基(例えばフェノキシ、ナフトキシ、4-ニトロフェノキシ)、アラルキルオキシ基(例えばベンジルオキシ、p-クロロベンジルオキシ、または-N(R24)(R25)を表す。
 R22およびR23はそれぞれ独立して、水素原子、低級アルキル基(例えばメチル、エチル、2-エチルヘキシル)、アリール基(例えばフェニル、ナフチル、2-メトキシフェニル、3-アセトアミドフェニル)、アラルキル基(例えばベンジル、o-クロロベンジル)、-COR26または-SO26を表し、互いに同じであっても異なっていてもよい。
 R24およびR25はそれぞれ独立して水素原子、低級アルキル基(例えばメチル、iso-プロピル、2-シアノエチル)、アリール基(例えばフェニル、4-エトキシカルボニルフェニル、3-ニトロフェニル)、アラルキル基(例えばベンジル、p-クロロベンジル)を表し、互いに同じであっても異なっていてもよい。
 R26は低級アルキル基(例えばエチル、2-メトキシエチル、2-ヒドロキシエチル)、アリ-ル基(例えばフェニル、ナフチル、4-スルホフェニル、4-カルボキシフェニル)を表す。
 Mは水素原子、アルカリ金属原子(例えばナトリウム、カリウム)及び1価のカチオンを形成するために必要な原子群(例えばアンモニウムカチオン、ホスホニウムカチオン)を表す。
 pは0または1を表す。
 qは0から5までの整数を表す。
In the general formula (12), R 20 represents a lower alkylene group (for example, ethylene group, propylene group, methylethylene group, etc.), and an alkylene group having 1 to 6 carbon atoms is particularly preferable.
X is a halogen atom (eg, chlorine atom, bromine atom, fluorine atom), nitro group, hydroxyl group, cyano group, lower alkyl group (eg, methyl, ethyl, iso-propyl, tert-butyl), lower alkoxy group —COR 21 , — N (R 22 ) (R 23 ) or —SO 2 M is represented.
R 21 represents a hydrogen atom, -O M, a lower alkyl group (eg, methyl, n-butyl, tert-octyl), an aryl group (eg, phenyl, 4-chlorophenyl, 3-nitrophenyl), an aralkyl group (eg, benzyl, p-iso-propylbenzyl, o-methylbenzyl), lower alkoxy groups (eg methoxy, n-butoxy, 2-methoxyethoxy), aryloxy groups (eg phenoxy, naphthoxy, 4-nitrophenoxy), aralkyloxy groups (eg Represents benzyloxy, p-chlorobenzyloxy, or —N (R 24 ) (R 25 ).
R 22 and R 23 are each independently a hydrogen atom, a lower alkyl group (eg, methyl, ethyl, 2-ethylhexyl), an aryl group (eg, phenyl, naphthyl, 2-methoxyphenyl, 3-acetamidophenyl), an aralkyl group ( For example, benzyl, o-chlorobenzyl), —COR 26 or —SO 2 R 26 may be the same or different.
R 24 and R 25 are each independently a hydrogen atom, a lower alkyl group (eg, methyl, iso-propyl, 2-cyanoethyl), an aryl group (eg, phenyl, 4-ethoxycarbonylphenyl, 3-nitrophenyl), an aralkyl group ( For example, benzyl, p-chlorobenzyl) may be the same or different.
R 26 represents a lower alkyl group (eg, ethyl, 2-methoxyethyl, 2-hydroxyethyl) or an aryl group (eg, phenyl, naphthyl, 4-sulfophenyl, 4-carboxyphenyl).
M represents a hydrogen atom, an alkali metal atom (for example, sodium or potassium) and an atomic group necessary for forming a monovalent cation (for example, an ammonium cation or a phosphonium cation).
p represents 0 or 1;
q represents an integer of 0 to 5.
 上記一般式(12)で記述される低級アルキル基、低級アルコキシ基の好ましい炭素数は1から8までの範囲のものである。さらに好ましくは、R20は、1から3までの炭素数で表わされるアルキル基、Xは、低級アルキル基、pは1、qは、0または1で表わされる化合物である。 The preferred number of carbon atoms of the lower alkyl group and lower alkoxy group described by the general formula (12) is in the range of 1 to 8. More preferably, R 20 is an alkyl group represented by 1 to 3 carbon atoms, X is a lower alkyl group, p is 1, and q is a compound represented by 0 or 1.
 前記一般式(12)で表される化合物の代表的具体例を示すが、前記一般式(12)で表される化合物はこれらに限定されるものではない。なお、以下の具体例は特開平3-119347号公報の一般式(IV)で表される化合物の具体例と同様である。
 なお、以下の化合物の中でも、本発明では化合物IV-1または化合物IV-18を用いることが好ましく、化合物IV-18を用いることがより好ましい。
Although the typical example of a compound represented by the said General formula (12) is shown, the compound represented by the said General formula (12) is not limited to these. The following specific examples are the same as the specific examples of the compound represented by the general formula (IV) in JP-A-3-119347.
Of the following compounds, compound IV-1 or compound IV-18 is preferably used in the present invention, and compound IV-18 is more preferably used.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 これらの例示化合物の大部分は試薬として市販されており、容易に入手することが可能であり、また既存の合成法で容易に合成することも可能である。例えばJ.Am.Chem.Soc.,第41巻、669頁(1919)に記載の方法でm=1の化合物の一部は容易に合成することが可能である。
 前記防腐剤の添加量は、前記防腐剤が前記一般式(11)で表される化合物である場合は分散液の総重量に対して1~500ppmの範囲が適当であり、前記防腐剤が前記一般式(12)で表される化合物である場合は分散液の総重量に対して10~5000ppmの範囲が適当である。
Most of these exemplified compounds are commercially available as reagents, can be easily obtained, and can be easily synthesized by existing synthesis methods. For example, J. et al. Am. Chem. Soc. 41, page 669 (1919), a part of the compound with m = 1 can be easily synthesized.
When the preservative is a compound represented by the general formula (11), the addition amount of the preservative is suitably in the range of 1 to 500 ppm with respect to the total weight of the dispersion, In the case of the compound represented by the general formula (12), the range of 10 to 5000 ppm is appropriate with respect to the total weight of the dispersion.
 前記防腐剤は水又はメタノール、イソプロパツール、アセトン、エチレングリコール等の有機溶媒に溶解し、溶液として本発明の平板状金属粒子分散液中に添加してもよく、あるいは高沸点溶媒、低沸点溶媒もしくは両者の混合溶媒に溶解したのち、界面活性剤の存在下乳化分散したのち、本発明の平板状金属粒子分散液に添加する等の方法によってもよい。 The preservative may be dissolved in water or an organic solvent such as methanol, isopropurate, acetone, or ethylene glycol, and may be added as a solution to the flat metal particle dispersion of the present invention, or a high-boiling solvent, low-boiling point. After dissolving in a solvent or a mixed solvent of both, and then emulsifying and dispersing in the presence of a surfactant, it may be added to the flat metal particle dispersion of the present invention.
消泡剤:
 本発明では、平板状金属粒子の調製や再分散の工程において、消泡剤を使用することが好ましい。粒子の調製や再分散においては、反応液や粗分散液を激しく撹拌することがある。対象となる液の性質に依存するが、表面張力を低下させる物質の存在により泡が安定化されるので、界面活性剤や分散剤などの存在により発泡が促進されることが多い。
 このような液に対して気液界面の存在下で激しい撹拌を行う場合や、メカニカルシールの代わりに加圧シールを用いた設備を使用する場合など、著しい発泡を生じることがある。開放系であれば、泡が容器から溢れるなどの問題が発生するし、溢れないにしても泡の上部で分散剤などが乾燥により皮膜を形成するなど、好ましくない事態を招くことがある。閉鎖系においても、泡の中に取り込まれた粒子は、以降の粒子成長あるいは分散の操作から外れることになり、均一性を損ねる原因となってしまう。
Antifoam:
In the present invention, it is preferable to use an antifoaming agent in the steps of preparing the plate-like metal particles and redispersing. In the preparation and redispersion of the particles, the reaction solution and the coarse dispersion may be vigorously stirred. Although depending on the properties of the target liquid, since the foam is stabilized by the presence of a substance that lowers the surface tension, foaming is often promoted by the presence of a surfactant or a dispersant.
When such a liquid is vigorously stirred in the presence of a gas-liquid interface, or when equipment using a pressure seal is used instead of a mechanical seal, significant foaming may occur. If it is an open system, problems such as foam overflowing from the container may occur, and even if it does not overflow, an unfavorable situation may occur, such as a film formed by drying of the dispersant or the like above the foam. Even in a closed system, the particles taken into the bubbles will be removed from the subsequent particle growth or dispersion operation, which will cause a loss of uniformity.
 消泡剤としては、界面活性剤、ポリエーテル系、エステル系、高級アルコール系、ミネラルオイル系、シリコーン系など、一般的なものから選択して用いることができる。中でも界面活性剤は少量の添加で高い消泡効果を発揮でき、且つ経時安定性に優れているので好ましく用いられる。
 水系に用いる場合、親油性が高く液体表面に広がりやすいもの、すなわちHLB値の低いものが好ましく用いられる。水系に用いる場合、HLB値で7以下のものが好ましく、5以下のものが更に好ましく、3以下のものが最も好ましい。
 消泡剤としては、市販のものを用いることもでき、例えば、Pluronic31R1(BASF社製)などを好ましく用いることができる。
The antifoaming agent can be selected from general ones such as surfactants, polyethers, esters, higher alcohols, mineral oils, and silicones. Among these, surfactants are preferably used because they can exhibit a high defoaming effect when added in a small amount and are excellent in stability over time.
When used in an aqueous system, those having high lipophilicity and easily spreading on the liquid surface, that is, those having a low HLB value are preferably used. When used in an aqueous system, the HLB value is preferably 7 or less, more preferably 5 or less, and most preferably 3 or less.
As the antifoaming agent, a commercially available product can be used, and for example, Pluronic 31R1 (manufactured by BASF) can be preferably used.
<赤外線吸収化合物含有層>
 本発明の熱線遮蔽材は、赤外領域に吸収を有する化合物を含有する赤外線吸収化合物含有層を有する。以下、赤外領域に吸収を有する化合物を含有する層のことを、赤外線吸収化合物含有層ともいう。なお、赤外線吸収化合物含有層は、他の機能層の役割を果たしてもよい。
<Infrared absorbing compound-containing layer>
The heat ray shielding material of the present invention has an infrared absorbing compound-containing layer containing a compound having absorption in the infrared region. Hereinafter, the layer containing a compound having absorption in the infrared region is also referred to as an infrared absorbing compound-containing layer. The infrared absorbing compound-containing layer may serve as another functional layer.
 前記赤外線吸収化合物の吸収ピーク波長は、前記金属粒子の反射ピーク波長よりも短波であることが、熱線を効率的に遮蔽する観点から好ましい。 The absorption peak wavelength of the infrared absorbing compound is preferably shorter than the reflection peak wavelength of the metal particles from the viewpoint of efficiently shielding heat rays.
 本発明の熱線遮蔽材は、前記赤外線吸収化合物含有層において、前記赤外線吸収化合物が10~190mg/m含まれることが好ましい。前記赤外線吸収化合物含有層中に含まれる色素を190mg/m以下の範囲とすることにより、熱線遮蔽材の面状を改善することができる。前記赤外線吸収化合物含有層中に含まれる色素をこの範囲に制御する方法としては、前記赤外線吸収化合物含有層を塗布により製膜するときに、色素塗布量を調整する方法などを用いることができる。
 前記赤外線吸収化合物含有層中に含まれる色素の含有量の上限値は、150mg/m以下であることが面状を改善する観点から好ましく、120mg/m以下であることが熱線遮蔽材の極大反射率を高め、かつ極大反射波長での透過率を抑制する観点からより好ましく、100mg/m以下であることが特に好ましい。
 一方、前記赤外線吸収化合物含有層中に含まれる赤外線吸収化合物の含有量の下限値は、10mg/m以上であることが熱線遮蔽材の極大反射率を高め、かつ極大反射波長での透過率を抑制する観点から好ましく、20mg/m以上であることが同様の観点からより好ましく、30mg/m以上であることが同様の観点から特に好ましい。
The heat ray shielding material of the present invention preferably contains 10 to 190 mg / m 2 of the infrared absorbing compound in the infrared absorbing compound-containing layer. By making the pigment | dye contained in the said infrared rays absorption compound content layer into the range of 190 mg / m < 2 > or less, the planar shape of a heat ray shielding material can be improved. As a method for controlling the pigment contained in the infrared absorbing compound-containing layer within this range, a method of adjusting the pigment coating amount when the infrared absorbing compound-containing layer is formed by coating can be used.
The upper limit of the content of the dye contained in the infrared absorbing compound-containing layer is preferably 150 mg / m 2 or less from the viewpoint of improving the surface shape, and 120 mg / m 2 or less of the heat ray shielding material. It is more preferable from the viewpoint of increasing the maximum reflectance and suppressing the transmittance at the maximum reflection wavelength, and particularly preferably 100 mg / m 2 or less.
On the other hand, the lower limit value of the content of the infrared ray absorbing compound contained in the infrared ray absorbing compound-containing layer is 10 mg / m 2 or more to increase the maximum reflectance of the heat ray shielding material, and the transmittance at the maximum reflection wavelength. Is preferably 20 mg / m 2 or more, more preferably 30 mg / m 2 or more, and particularly preferably 30 mg / m 2 or more.
 前記赤外線吸収化合物含有層における前記赤外線吸収化合物の密度が0.10g/cm以上であることが極大反射波長での透過率を低くし、極大反射波長での反射率に対する吸収率の割合を低くする観点から好ましく、0.15~1.0g/cmであることがより好ましく、0.15~0.40g/cmであることが特に好ましく、0.15~0.30g/cmであることがより特に好ましい。 When the density of the infrared absorbing compound in the infrared absorbing compound-containing layer is 0.10 g / cm 3 or more, the transmittance at the maximum reflection wavelength is lowered, and the ratio of the absorbance to the reflectance at the maximum reflection wavelength is reduced. In view of the above, it is preferably 0.15 to 1.0 g / cm 3 , more preferably 0.15 to 0.40 g / cm 3 , and 0.15 to 0.30 g / cm 3 . More particularly preferred.
(赤外線吸収化合物含有層の構成)
 本発明の熱線遮蔽材は、前記赤外線吸収化合物含有層の膜厚が200nm以下であることが面状を改善する観点から好ましく、50~200nmであることがより好ましく、100~200nmであることが極大反射率を高め、かつ極大反射波長での透過率を低減する観点から特に好ましい。
 前記赤外線吸収化合物含有層の屈折率は特に制限はないが、膜厚とも関連するものの、前記条件(1-1)、(2-1)、(3-1)、(4-1)、(5-1)、(6-1)を満たすように組成を変更して屈折率を調整したり、厚みを調整したりすることが、可視光透過率を高め、赤外光反射率を高める観点から好ましい。
(Configuration of infrared absorbing compound-containing layer)
In the heat ray shielding material of the present invention, the thickness of the infrared absorbing compound-containing layer is preferably 200 nm or less from the viewpoint of improving the surface shape, more preferably 50 to 200 nm, and more preferably 100 to 200 nm. This is particularly preferable from the viewpoint of increasing the maximum reflectance and reducing the transmittance at the maximum reflection wavelength.
The refractive index of the infrared absorbing compound-containing layer is not particularly limited, but although it is related to the film thickness, the conditions (1-1), (2-1), (3-1), (4-1), ( 5-1), adjusting the refractive index by adjusting the composition so as to satisfy (6-1), or adjusting the thickness can increase the visible light transmittance and the infrared light reflectance. To preferred.
 前記赤外線吸収化合物含有層は、前記支持体に隣接して配置されていても、間に他の層を介して配置されていてもよい。すなわち、本発明の熱線遮蔽材は、前記赤外線吸収化合物含有層が前記支持体と隣接して配置されていてもよく、前記赤外線吸収化合物含有層が金属粒子含有層を有する側の面と反対側の面上に少なくとも1層以上の層(下層)を有していてもよい。下層については、後述する。 The infrared-absorbing compound-containing layer may be disposed adjacent to the support or may be disposed via another layer therebetween. That is, in the heat ray shielding material of the present invention, the infrared absorbing compound-containing layer may be disposed adjacent to the support, and the infrared absorbing compound-containing layer is opposite to the surface having the metal particle-containing layer. It may have at least one layer (lower layer) on the surface. The lower layer will be described later.
(赤外線吸収化合物)
 前記赤外線吸収化合物としては、赤外領域に吸収を有していれば特に制限はなく、公知の色素を用いることができる。前記色素としては、染料、顔料などを挙げることができ、赤外線吸収顔料であることが好ましい。
 前記顔料は、特に制限は無く、公知の顔料を用いることができる。例えば、特開2005-17322号公報の[0032]~[0039]等に記載の顔料を挙げることができる。
 前記染料は、特に制限は無く、公知の染料を用いることができる。ポリマーの水性分散物中に安定に溶解ないし分散し得る染料であることが好ましく、また、これら染料は、水溶性基を有することが好ましい。水溶性基としては、カルボキシル基及びその塩、スルホ基及びその塩等が挙げられる。さらに、後述のシアニン系染料やバルビツール酸オキソノール系染料に代表される水溶性の染料は、有機溶剤に溶かすことなく水溶液にして塗布できる点で、環境影響の観点と、塗布コスト低減の点から好ましい。また、これら染料は、会合体として利用することが好ましく、特にJ会合体として利用することが好ましい。J会合体とすることで非会合状態においては可視域に吸収極大を有する染料の吸収波長を所望の近赤外線領域に設定することが容易になる。また、染料の耐熱性や耐湿熱性、耐光性等の耐久性を向上させることができる。また、これらの染料の水溶性を調節し、難溶性ないし不溶性とすることによって、あるいは換言するとレーキ染料として利用することも好ましい形態である。これにより染料の耐熱性や耐湿熱性、耐光性等の耐久性を向上させることができ、好ましい。
(Infrared absorbing compound)
The infrared absorbing compound is not particularly limited as long as it has absorption in the infrared region, and a known dye can be used. Examples of the pigment include dyes and pigments, and infrared pigments are preferable.
The pigment is not particularly limited, and a known pigment can be used. For example, pigments described in JP-A-2005-17322, [0032] to [0039] and the like can be mentioned.
There is no restriction | limiting in particular in the said dye, A well-known dye can be used. Dyes that can be stably dissolved or dispersed in an aqueous dispersion of the polymer are preferred, and these dyes preferably have a water-soluble group. Examples of the water-soluble group include a carboxyl group and a salt thereof, a sulfo group and a salt thereof. In addition, water-soluble dyes such as cyanine dyes and barbituric acid oxonol dyes described below can be applied as aqueous solutions without dissolving them in organic solvents. preferable. These dyes are preferably used as aggregates, and particularly preferably used as J aggregates. By using a J-aggregate, it becomes easy to set the absorption wavelength of a dye having an absorption maximum in the visible region in a desired near-infrared region in a non-association state. Moreover, durability, such as heat resistance of a dye, heat-and-moisture resistance, and light resistance, can be improved. It is also a preferred form to adjust the water solubility of these dyes so that they are hardly soluble or insoluble, or in other words, to be used as lake dyes. Thereby, durability, such as heat resistance of a dye, heat-and-moisture resistance, and light resistance, can be improved, and it is preferable.
 本発明の熱線遮蔽材は、前記色素が赤外線吸収色素であることが、熱線(近赤外線)を選択的に反射する観点から好ましい。
 前記赤外線吸収色素としては、特開2008-181096号公報、特開2001-228324号公報、特開2009-244493号公報などに記載の近赤外線吸収染料や、特開2010-90313号公報に記載の近赤外線吸収化合物などを好ましく用いることができる。
 前記赤外線吸収色素としては、例えば、シアニン染料、オキソノール染料、ピロロピロール化合物が挙げられる。
In the heat ray shielding material of the present invention, the dye is preferably an infrared absorbing dye from the viewpoint of selectively reflecting heat rays (near infrared rays).
Examples of the infrared absorbing dye include a near infrared absorbing dye described in JP-A-2008-181096, JP-A-2001-228324, JP-A-2009-244493, and the like, and JP-A 2010-90313. Near infrared absorbing compounds and the like can be preferably used.
Examples of the infrared absorbing pigment include cyanine dyes, oxonol dyes, and pyrrolopyrrole compounds.
 本発明の熱線遮蔽材は、前記赤外線吸収化合物が、下記一般式(1)で表される化合物または下記一般式(2)で表される化合物であることが好ましく、前記一般式(2)で表されるピロロピロール化合物であることが、堅牢性を高めて保存性を改善する観点からより好ましい。
Figure JPOXMLDOC01-appb-C000017

(一般式(1)中、ZおよびZは、それぞれ独立に5員または6員の含窒素複素環を形成する非金属原子群である。RおよびRは、それぞれ独立に、脂肪族基または芳香族基である。Lは、3個のメチンからなるメチン鎖である。aおよびbは、それぞれ独立に0または1である。)
Figure JPOXMLDOC01-appb-C000018
(一般式(2)中、R1a及びR1bは同じであっても異なってもよく、各々独立にアルキル基、アリール基またはヘテロアリール基を表す。R及びRは各々独立に水素原子または置換基を表し、少なくとも一方は電子吸引性基であり、R及びRは結合して環を形成してもよい。Rは水素原子、アルキル基、アリール基、ヘテロアリール基、置換ホウ素または金属原子を表し、R1a、R1bおよびRの少なくとも1以上の基と共有結合もしくは配位結合してもよい。)
In the heat ray shielding material of the present invention, the infrared absorbing compound is preferably a compound represented by the following general formula (1) or a compound represented by the following general formula (2). The pyrrolopyrrole compound represented is more preferable from the viewpoint of enhancing the fastness and improving the storage stability.
Figure JPOXMLDOC01-appb-C000017

(In the general formula (1), Z 1 and Z 2 are each independently a non-metallic atom group that forms a 5- or 6-membered nitrogen-containing heterocycle. R 1 and R 2 are each independently a fatty group. L 1 is a methine chain composed of 3 methines. A and b are each independently 0 or 1.)
Figure JPOXMLDOC01-appb-C000018
(In General Formula (2), R 1a and R 1b may be the same or different and each independently represents an alkyl group, an aryl group or a heteroaryl group. R 2 and R 3 each independently represent a hydrogen atom. Or at least one is an electron-withdrawing group, and R 2 and R 3 may combine to form a ring, and R 4 represents a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, a substituted group Represents a boron or metal atom, and may be a covalent bond or a coordinate bond with at least one group of R 1a , R 1b and R 3. )
 前記一般式(1)で表される化合物の好ましい範囲は、特開2001-228324号公報の一般式(I)の好ましい範囲と同様である。
 前記一般式(2)で表される化合物の好ましい範囲は、特開2009-263614号公報の一般式(1)の好ましい範囲と同様である。
The preferred range of the compound represented by the general formula (1) is the same as the preferred range of the general formula (I) in JP-A-2001-228324.
The preferred range of the compound represented by the general formula (2) is the same as the preferred range of the general formula (1) in JP-A-2009-263614.
(1)シアニン染料
 前記シアニン染料としては、ペンタメチンシアニン染料、ヘプタメチンシアニン染料、ノナメチンシアニン染料等のメチン染料が好ましく、特開2001-228324号公報等に記載のメチン染料が好ましい。シアニン染料の環基としてはチアゾール環、インドレニン環又はベンゾインドレニン環を有するものが好ましい。
(1) Cyanine dye The cyanine dye is preferably a methine dye such as a pentamethine cyanine dye, a heptamethine cyanine dye, or a nonamethine cyanine dye, and a methine dye described in JP-A-2001-228324 is preferred. As the cyclic group of the cyanine dye, those having a thiazole ring, an indolenine ring or a benzoindolenine ring are preferable.
 本発明に用いられる前記シアニン染料としては、前記一般式(1)、すなわち特開2001-228324号公報の一般式(I)で表されるシアニン染料を挙げることができ、その中でもペンタメチンシアニン染料、ヘプタメチンシアニン染料またはノナメチンシアニン染料(特にそれらの会合体)が好ましく、特開2001-228324号公報の一般式(II)で表されるペンタメチンシアニン染料、ヘプタメチンシアニン染料またはノナメチンシアニン染料(特にそれらの会合体)がより好ましく、特開2001-228324号公報の一般式(II)で表されるヘプタメチンシアニン染料が特に好ましい。 Examples of the cyanine dye used in the present invention include the cyanine dye represented by the general formula (1), that is, the general formula (I) of JP-A-2001-228324, and among them, a pentamethine cyanine dye. Heptamethine cyanine dyes or nonamethine cyanine dyes (especially their aggregates) are preferred, and pentamethine cyanine dye, heptamethine cyanine dye or nonamethine cyanine represented by the general formula (II) of JP-A No. 2001-228324 Dyes (particularly, aggregates thereof) are more preferable, and heptamethine cyanine dyes represented by the general formula (II) in JP-A-2001-228324 are particularly preferable.
 以下に、前記一般式(1)で表される化合物のうち、特開2001-228324号公報の一般式(II)で表されるヘプタメチンシアニン染料の具体例を示すが、本発明は下記具体例に限定されるものではない。 Specific examples of the heptamethine cyanine dye represented by the general formula (II) of JP-A-2001-228324 among the compounds represented by the general formula (1) are shown below. It is not limited to examples.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 
Figure JPOXMLDOC01-appb-C000022
 
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
(2)オキソノール染料
 前記オキソノール染料としては、特開2009-244493号公報の一般式(II)で表されるオキソノール染料が好ましく、その中でもバルビツール酸環を有するバルビツール酸オキソノール染料がより好ましい。
 以下に、特開2009-244493号公報の一般式(II)で表されるオキソノール染料の例を示すが、本発明は下記具体例に限定されるものではない。
(2) Oxonol Dye The oxonol dye is preferably an oxonol dye represented by the general formula (II) of JP-A No. 2009-244493, and more preferably a barbituric acid oxonol dye having a barbituric acid ring.
Examples of oxonol dyes represented by the general formula (II) in JP-A-2009-244493 are shown below, but the present invention is not limited to the following specific examples.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
(3)ピロロピロール化合物
 前記ピロロピロール化合物としては、前記一般式(2)、すなわち特開2009-263614号公報や特開2010-90313号公報の一般式(1)で表されるピロロピロール化合物が好ましく、特開2009-263614号公報や特開2010-90313号公報の一般式(2)、(3)又は(4)のいずれかで表されるピロロピロール化合物がより好ましい。
(3) The pyrrolopyrrole compound As the pyrrolopyrrole compound, the pyrrolopyrrole compound represented by the above general formula (2), that is, the general formula (1) of JP2009-263614A or JP2010-90313A is exemplified. A pyrrolopyrrole compound represented by any one of the general formulas (2), (3), and (4) described in JP-A-2009-263614 and 2010-90313 is more preferable.
 以下に、前記一般式(2)、すなわち特開2009-263614号公報や特開2010-90313号公報の一般式(1)~(4)のいずれかで表されるピロロピロール化合物(色素)の具体例を示すが、本発明は下記具体例に限定されるものではない。 Hereinafter, the pyrrolopyrrole compound (dye) represented by the general formula (2), that is, any one of the general formulas (1) to (4) in JP2009-263614A and JP2010-90313A is described below. Specific examples will be shown, but the present invention is not limited to the following specific examples.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
(ポリマー)
 本発明の熱線遮蔽材は、前記赤外線吸収化合物含有層中にポリマーを含むことが好ましい。前記ポリマーは、前記赤外線吸収化合物含有層中において、いわゆるバインダーとして用いることができる。
 本発明の熱線遮蔽材は、前記赤外線吸収化合物含有層中における前記色素に対する前記ポリマーの質量比(ポリマー/色素比)が5以下であることが極大反射波長での透過率を低くし、極大反射波長での反射率に対する吸収率の割合を低くする観点から好ましい。前記赤外線吸収化合物含有層中における前記色素に対する前記ポリマーの質量比は、0.1~4であることがより好ましく、0.2~3.0であることが特に好ましく、0.5~3.0であることがより特に好ましい。
(polymer)
The heat ray shielding material of the present invention preferably contains a polymer in the infrared absorbing compound-containing layer. The polymer can be used as a so-called binder in the infrared absorbing compound-containing layer.
In the heat ray shielding material of the present invention, when the mass ratio of the polymer to the dye (polymer / dye ratio) in the infrared absorbing compound-containing layer is 5 or less, the transmittance at the maximum reflection wavelength is lowered, and the maximum reflection is achieved. This is preferable from the viewpoint of reducing the ratio of the absorptance to the reflectance at the wavelength. The mass ratio of the polymer to the dye in the infrared absorbing compound-containing layer is more preferably 0.1 to 4, particularly preferably 0.2 to 3.0, and 0.5 to 3. More preferably, it is 0.
 前記赤外線吸収化合物含有層中に含まれるポリマーの含有量の好ましい範囲は、前記色素に対する前記ポリマーの質量比の好ましい範囲とも関連するが、例えば350mg/m以下であることが面状の観点から好ましく、30mg/m以上であることが支持体との密着の観点から好ましい。 The preferred range of the content of the polymer contained in the infrared absorbing compound-containing layer is also related to the preferred range of the mass ratio of the polymer to the dye, but for example from the planar viewpoint that it is 350 mg / m 2 or less. Preferably, it is 30 mg / m 2 or more from the viewpoint of close contact with the support.
 前記ポリマーの種類としては特に制限は無く、公知のポリマーを用いることがで、透明ポリマーを用いることがより好ましい。前記ポリマーとしては、例えば、ポリビニルアセタール樹脂、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリアクリレート樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート樹脂、ポリ塩化ビニル樹脂、(飽和)ポリエステル樹脂、ポリウレタン樹脂、ゼラチンやセルロース等の天然高分子等の高分子などが挙げられる。その中でも、本発明の熱線遮蔽材は、前記ポリマーがポリエステル、ポリウレタン、ポリアクリレート樹脂であることが好ましく、ポリエステルまたはポリウレタンが支持体との密着の観点からより好ましい。 The type of the polymer is not particularly limited, and a known polymer can be used, and a transparent polymer is more preferable. Examples of the polymer include polyvinyl acetal resin, polyvinyl alcohol resin, polyvinyl butyral resin, polyacrylate resin, polymethyl methacrylate resin, polycarbonate resin, polyvinyl chloride resin, (saturated) polyester resin, polyurethane resin, gelatin, and cellulose. And polymers such as natural polymers. Among them, in the heat ray shielding material of the present invention, the polymer is preferably polyester, polyurethane, or polyacrylate resin, and polyester or polyurethane is more preferable from the viewpoint of adhesion to the support.
 本発明の熱線遮蔽材は、前記ポリマーが水性分散物であることが、環境影響の観点と、塗布コスト低減の点から好ましい。 In the heat ray shielding material of the present invention, it is preferable that the polymer is an aqueous dispersion from the viewpoint of environmental influence and the reduction of coating cost.
 本発明では、前記ポリマーとして、水溶性ポリエステル樹脂であるプラスコートZ-592(互応化学工業(株)製)、水溶性ポリウレタン樹脂であるハイドランHW-350(DIC(株)製)などを好ましく用いることができる。 In the present invention, as the polymer, Plus Coat Z-592 (manufactured by Kyoyo Chemical Co., Ltd.) which is a water-soluble polyester resin, Hydran HW-350 (manufactured by DIC Corporation), which is a water-soluble polyurethane resin, and the like are preferably used. be able to.
(フィラー)
 また、本発明の熱線遮蔽材は、赤外線吸収化合物含有層および中間層の少なくともいずれかの層に前記フィラーを含有し、赤外線吸収化合物含有層に前記フィラーを含むことが好ましい。
 赤外線吸収化合物含有層に含まれるフィラーの種類や含有量は、中間層に含まれるフィラーの種類や含有量と同様であり、好ましい範囲も同様である。
(Filler)
Moreover, it is preferable that the heat ray shielding material of this invention contains the said filler in at least any layer of an infrared rays absorption compound content layer and an intermediate | middle layer, and contains the said filler in an infrared rays absorption compound content layer.
The kind and content of the filler contained in the infrared absorbing compound-containing layer are the same as the kind and content of the filler contained in the intermediate layer, and the preferred range is also the same.
<支持体>
 本発明の熱線遮蔽材は、支持体を有することが好ましい。
 前記支持体としては特に制限は無く公知の支持体を用いることができる。
 前記支持体としては、光学的に透明な支持体であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、可視光線透過率が70%以上のもの、好ましくは80%以上のもの、近赤外線域の透過率が高いものなどが挙げられる。
<Support>
The heat ray shielding material of the present invention preferably has a support.
There is no restriction | limiting in particular as said support body, A well-known support body can be used.
The support is not particularly limited as long as it is an optically transparent support and can be appropriately selected according to the purpose. For example, the visible light transmittance is 70% or more, preferably 80% or more. And those with high transmittance in the near infrared region.
 前記支持体としては、その形状、構造、大きさ、材料などについては、特に制限はなく、目的に応じて適宜選択することができる。前記形状としては、例えば、平板状などが挙げられ、前記構造としては、単層構造であってもよいし、積層構造であってもよく、前記大きさとしては、前記熱線遮蔽材の大きさなどに応じて適宜選択することができる。
 前記支持体の材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリエチレン、ポリプロピレン、ポリ4-メチルペンテン-1、ポリブテン-1等のポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリカーボネート系樹脂、ポリ塩化ビニル系樹脂、ポリフェニレンサルファイド系樹脂、ポリエーテルサルフォン系樹脂、ポリエチレンサルファイド系樹脂、ポリフェニレンエーテル系樹脂、スチレン系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、セルロースアセテート等のセルロース系樹脂などからなるフィルム又はこれらの積層フィルムが挙げられる。これらの中で、特にポリエチレンテレフタレートフィルムが好適である。
There is no restriction | limiting in particular about the shape, a structure, a magnitude | size, material, etc. as said support body, According to the objective, it can select suitably. Examples of the shape include a flat plate shape, and the structure may be a single layer structure or a laminated structure, and the size may be the size of the heat ray shielding material. It can be appropriately selected according to the above.
The material for the support is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include polyolefin resins such as polyethylene, polypropylene, poly-4-methylpentene-1, polybutene-1, polyethylene terephthalate, Polyester resins such as polyethylene naphthalate; polycarbonate resins, polyvinyl chloride resins, polyphenylene sulfide resins, polyether sulfone resins, polyethylene sulfide resins, polyphenylene ether resins, styrene resins, acrylic resins, polyamides Examples thereof include a film made of a cellulose resin such as a cellulose resin, a polyimide resin, and cellulose acetate, or a laminated film thereof. Among these, a polyethylene terephthalate film is particularly preferable.
 前記支持体の厚みとしては、特に制限はなく、熱線遮蔽材の使用目的に応じて適宜選択することができ、通常は10μm~500μm程度であるが薄膜化の要請の観点からはより薄い方が好ましい。前記支持体の厚みは10μm~100μmであることが好ましく、20~75μmであることがより好ましく、35~75μmであることが特に好ましい。前記支持体の厚みが十分に厚いと、接着故障が起き難くなる傾向にある。また、前記支持体の厚みが十分に薄いと、熱線遮蔽材として建材や自動車に貼り合わせる際、材料としての腰が強過ぎず、施工し易くなる傾向にある。更に、支持体が十分に薄いことにより、可視光透過率が増加し、原材料費を抑制できる傾向にある。
 また、支持体での反射を抑制したい場合、すなわち支持体を前記層Cとして用いる場合は、屈折率1.55以上の支持体を用いることがより好ましい。
 前記層Cの反射を防止したい波長λにおける屈折率nCが、前記層Bの反射を防止したい波長λにおける屈折率nBよりも大きいことが、層Bおよび層Cの間においても、前記熱線反射層の反射光との光学干渉が起き、より良い反射防止効果を得ることができる観点から好ましい。特に前記層Cが支持体である場合、反射を防止したい波長λにおける屈折率が通常のガラス(屈折率nが1.5以下)より大きい屈折率1.5以上の支持体を用いることで、層Bの屈折率n2よりも大きな屈折率としやすく、支持体自体の屈折率を活かして層Cとして用いることができる観点から好ましい。
The thickness of the support is not particularly limited and may be appropriately selected depending on the purpose of use of the heat ray shielding material. Usually, the thickness is about 10 μm to 500 μm, but the thinner is preferable from the viewpoint of thinning. preferable. The thickness of the support is preferably 10 μm to 100 μm, more preferably 20 to 75 μm, and particularly preferably 35 to 75 μm. When the thickness of the support is sufficiently thick, adhesion failure tends to hardly occur. Moreover, when the thickness of the said support body is thin enough, when it bonds together to a building material or a motor vehicle as a heat ray shielding material, there exists a tendency for the construction as it is not too strong and to become easy to construct. Furthermore, when the support is sufficiently thin, the visible light transmittance is increased, and the raw material cost tends to be suppressed.
Moreover, when it is desired to suppress reflection on the support, that is, when the support is used as the layer C, it is more preferable to use a support having a refractive index of 1.55 or more.
The refractive index nC at the wavelength λ where the reflection of the layer C is to be prevented is larger than the refractive index nB at the wavelength λ where the reflection of the layer B is to be prevented. This is preferable from the viewpoint that optical interference with the reflected light occurs and a better antireflection effect can be obtained. In particular, when the layer C is a support, by using a support having a refractive index of 1.5 or more, which is higher than ordinary glass (refractive index n is 1.5 or less) at a wavelength λ to prevent reflection, It is preferable from the viewpoint that the refractive index can be easily larger than the refractive index n2 of the layer B and can be used as the layer C by making use of the refractive index of the support itself.
<その他の層・成分>
<<粘着剤層>>
 本発明の熱線遮蔽材は、粘着剤層(以下、粘着層ともいう)を有することが好ましい。前記粘着層は、紫外線吸収剤を含むことができる。
 前記粘着層の形成に利用可能な材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリビニルブチラール(PVB)樹脂、アクリル樹脂、スチレン/アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、シリコーン樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの材料からなる粘着層は、塗布により形成することができる。
 さらに、前記粘着層には帯電防止剤、滑剤、ブロッキング防止剤などを添加してもよい。
 前記粘着層の厚みとしては、0.1μm~10μmが好ましい。
<Other layers and ingredients>
<< Adhesive layer >>
The heat ray shielding material of the present invention preferably has a pressure-sensitive adhesive layer (hereinafter also referred to as a pressure-sensitive adhesive layer). The adhesive layer may include an ultraviolet absorber.
The material that can be used for forming the adhesive layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, polyvinyl butyral (PVB) resin, acrylic resin, styrene / acrylic resin, urethane resin, polyester Examples thereof include resins and silicone resins. These may be used individually by 1 type and may use 2 or more types together. An adhesive layer made of these materials can be formed by coating.
Furthermore, an antistatic agent, a lubricant, an antiblocking agent and the like may be added to the adhesive layer.
The thickness of the adhesive layer is preferably 0.1 μm to 10 μm.
<<ハードコート層>>
 耐擦傷性を付加するために、機能性フィルムがハードコート性を有するハードコート層を含むことも好適である。ハードコート層には金属酸化物粒子を含むことができる。
 前記ハードコート層としては、特に制限はなく、目的に応じて適宜その種類も形成方法も選択することができ、例えば、アクリル系樹脂、シリコーン系樹脂、メラミン系樹脂、ウレタン系樹脂、アルキド系樹脂、フッ素系樹脂等の熱硬化型又は光硬化型樹脂などが挙げられる。前記ハードコート層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、1μm~50μmが好ましい。前記ハードコート層上に更に反射防止層及び/又は防眩層を形成すると、耐擦傷性に加え、反射防止性及び/又は防眩性を有する機能性フィルムが得られ好適である。また、前記ハードコート層に前記金属酸化物粒子を含有してもよい。
 ハードコート層は熱線遮蔽材の最表面を保護する目的でフィルム最表面に設置してもよい。具体的には、窓ガラス等への熱線遮蔽材の貼合後、窓ガラスとの反対面の熱線遮蔽材の表面は環境に暴露され、暴露された表面は人の接触等により汚れやキズが入る可能性があるため、暴露された表面を保護するために、物理強度の高い前記ハードコート層を設置することが好ましい。
<< Hard coat layer >>
In order to add scratch resistance, it is also preferable that the functional film includes a hard coat layer having hard coat properties. The hard coat layer can contain metal oxide particles.
There is no restriction | limiting in particular as said hard-coat layer, The kind and formation method can be selected suitably according to the objective, For example, acrylic resin, silicone resin, melamine resin, urethane resin, alkyd resin And thermosetting or photocurable resins such as fluorine-based resins. The thickness of the hard coat layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 μm to 50 μm. When an antireflection layer and / or an antiglare layer are further formed on the hard coat layer, a functional film having antireflection properties and / or antiglare properties in addition to scratch resistance is preferably obtained. The hard coat layer may contain the metal oxide particles.
The hard coat layer may be provided on the outermost surface of the film for the purpose of protecting the outermost surface of the heat ray shielding material. Specifically, after the heat ray shielding material is bonded to the window glass, the surface of the heat ray shielding material opposite to the window glass is exposed to the environment, and the exposed surface is soiled or scratched by human contact. Since there is a possibility of entering, it is preferable to install the hard coat layer having a high physical strength in order to protect the exposed surface.
<<オーバーコート層>>
 本発明の熱線遮蔽材において、物質移動による平板状金属粒子の酸化・硫化を防止し、耐擦傷性を付与するため、本発明の熱線遮蔽材は、前記六角形状乃至円形状の平板状金属粒子が露出している方の前記金属粒子含有層の表面に密接するオーバーコート層を有していてもよい。また、前記金属粒子含有層と後述の紫外線吸収層との間にオーバーコート層を有していてもよい。本発明の熱線遮蔽材は特に平板状金属粒子が金属粒子含有層の表面に偏在するため場合は、平板状金属粒子の剥落による製造工程のコンタミ防止、別層塗布時の平板状金属粒子配列乱れの防止、などのため、オーバーコート層を有していてもよい。
 前記オーバーコート層には紫外線吸収剤を含んでもよい。前記オーバーコート層としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、バインダー、マット剤、及び界面活性剤を含有し、更に必要に応じてその他の成分を含有してなる。前記バインダーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アクリル系樹脂、シリコーン系樹脂、メラミン系樹脂、ウレタン系樹脂、アルキド系樹脂、フッ素系樹脂等の熱硬化型又は光硬化型樹脂などが挙げられる。前記オーバーコート層の厚みとしては、0.01μm~1,000μmが好ましく、0.02μm~500μmがより好ましく、0.1~10μmが特に好ましく、0.2~5μmがより特に好ましい。
<< Overcoat layer >>
In the heat ray shielding material of the present invention, in order to prevent oxidation / sulfurization of the plate-like metal particles due to mass transfer and to provide scratch resistance, the heat ray shielding material of the present invention comprises the hexagonal or circular plate-like metal particles. It may have an overcoat layer in close contact with the surface of the metal particle-containing layer that is exposed. Moreover, you may have an overcoat layer between the said metal particle content layer and the below-mentioned ultraviolet absorption layer. The heat ray shielding material of the present invention, especially when tabular metal particles are unevenly distributed on the surface of the metal particle-containing layer, prevents contamination of the manufacturing process due to peeling off of the tabular metal particles, disordered arrangement of the tabular metal particles during coating of another layer An overcoat layer may be provided for preventing the above.
The overcoat layer may contain an ultraviolet absorber. The overcoat layer is not particularly limited and may be appropriately selected depending on the intended purpose.For example, the overcoat layer contains a binder, a matting agent, and a surfactant, and further contains other components as necessary. It becomes. The binder is not particularly limited and may be appropriately selected depending on the purpose. For example, thermosetting of acrylic resin, silicone resin, melamine resin, urethane resin, alkyd resin, fluorine resin, etc. Mold or photo-curable resin. The thickness of the overcoat layer is preferably 0.01 μm to 1,000 μm, more preferably 0.02 μm to 500 μm, particularly preferably 0.1 to 10 μm, and particularly preferably 0.2 to 5 μm.
<<バックコート層>>
 一方、本発明の熱線遮蔽材において、前記支持体の前記金属粒子含有層とは反対側の面上に、バックコート層を有していてもよい。前記バックコート層としては、特に制限はなく、目的に応じて適宜選択することができるが、前記赤外領域に吸収を有する化合物を含む層としてもよく、後述の金属酸化物粒子含有層としてもよいが、前記赤外領域に吸収を有する化合物を含む層や後述の金属酸化物粒子含有層ではない場合の好ましい組成や厚みは、前記オーバーコート層の好ましい組成や厚みと同様である。
<< Backcoat layer >>
On the other hand, in the heat ray shielding material of the present invention, a back coat layer may be provided on the surface of the support opposite to the metal particle-containing layer. The backcoat layer is not particularly limited and may be appropriately selected depending on the intended purpose. However, the backcoat layer may be a layer containing a compound having absorption in the infrared region, or may be a metal oxide particle-containing layer described later. However, the preferred composition and thickness in the case of a layer containing a compound having absorption in the infrared region or a metal oxide particle-containing layer described later are the same as the preferred composition and thickness of the overcoat layer.
<<下層>>
 本発明の熱線遮蔽材において、前記赤外線吸収化合物含有層と前記支持体の間に、少なくとも1層以上の層(以下、下層ともいう)を有していることが、可視光透過率よりも、湿熱経時後の反射強度の変化の改善を優先する観点からは、好ましい。
 下層としては、中間層と同様のバインダー材料、フィラー、添加剤を使用することができ、好ましい範囲も同様である。
 前記下層の屈折率は特に制限はないが、膜厚とも関連するものの、前記条件(1-1)、(2-1)、(3-1)、(4-1)、(5-1)、(6-1)を満たすように組成を変更して屈折率を調整したり、厚みを調整したりすることが、可視光透過率を高め、赤外光反射率を高める観点から好ましい。なお、前記支持体と前記金属粒子含有層間の層、すなわち前記下層、前記赤外線吸収化合物含有層および前記中間層を総称して、アンダーコート層と言われるが、本発明はいわゆるアンダーコート層を多層化して各層に機能を持たせている。
<<< Lower Layer >>>
In the heat ray shielding material of the present invention, having at least one layer (hereinafter, also referred to as a lower layer) between the infrared absorbing compound-containing layer and the support, rather than visible light transmittance, This is preferable from the viewpoint of giving priority to the improvement of the change in the reflection intensity after wet heat aging.
As the lower layer, the same binder materials, fillers and additives as in the intermediate layer can be used, and the preferred ranges are also the same.
The refractive index of the lower layer is not particularly limited, but although it is related to the film thickness, the conditions (1-1), (2-1), (3-1), (4-1), (5-1) Therefore, it is preferable to adjust the refractive index by adjusting the composition so as to satisfy (6-1) or to adjust the thickness from the viewpoint of increasing the visible light transmittance and increasing the infrared light reflectance. The layer between the support and the metal particle-containing layer, that is, the lower layer, the infrared absorbing compound-containing layer, and the intermediate layer are collectively referred to as an undercoat layer. To give each layer a function.
<<紫外線吸収剤>>
 本発明の熱線遮蔽材は、紫外線吸収剤が含まれている層を有することが好ましい。
 前記紫外線吸収剤を含有する層は、目的に応じて適宜選択することができ、粘着層であってもよく、また、前記粘着層と前記金属粒子含有層との間の層(例えば、オーバーコート層など)であってもよい。いずれの場合も、前記紫外線吸収剤は、前記金属粒子含有層に対して、太陽光が照射される側に配置される層に添加されることが好ましい。
<< UV absorber >>
The heat ray shielding material of the present invention preferably has a layer containing an ultraviolet absorber.
The layer containing the ultraviolet absorber can be appropriately selected depending on the purpose, and may be an adhesive layer, or a layer (for example, an overcoat) between the adhesive layer and the metal particle-containing layer. Layer). In any case, it is preferable that the ultraviolet absorber is added to a layer disposed on the side irradiated with sunlight with respect to the metal particle-containing layer.
 前記紫外線吸収剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤、サリチレート系紫外線吸収剤、シアノアクリレート系紫外線吸収剤などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 The ultraviolet absorber is not particularly limited and may be appropriately selected depending on the purpose. For example, a benzophenone ultraviolet absorber, a benzotriazole ultraviolet absorber, a triazine ultraviolet absorber, a salicylate ultraviolet absorber, Examples include cyanoacrylate ultraviolet absorbers. These may be used individually by 1 type and may use 2 or more types together.
 前記ベンゾフェノン系紫外線吸収剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、2,4ドロキシ-4-メトキシ-5-スルホベンゾフェノンなどが挙げられる。 The benzophenone-based ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 2,4droxy-4-methoxy-5-sulfobenzophenone.
 前記ベンゾトリアゾール系紫外線吸収剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、2-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-4-メチル-6-tert-ブチルフェノール(チヌビン326)、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-ターシャリーブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3-5-ジターシャリーブチルフェニル)-5-クロロベンゾトリアゾールなどが挙げられる。 The benzotriazole ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose. For example, 2- (5-chloro-2H-benzotriazol-2-yl) -4-methyl-6 -Tert-butylphenol (tinuvin 326), 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-tertiarybutylphenyl) benzotriazole, 2- (2-hydroxy-3- 5-ditertiary butylphenyl) -5-chlorobenzotriazole and the like.
 前記トリアジン系紫外線吸収剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、モノ(ヒドロキシフェニル)トリアジン化合物、ビス(ヒドロキシフェニル)トリアジン化合物、トリス(ヒドロキシフェニル)トリアジン化合物などが挙げられる。
 前記モノ(ヒドロキシフェニル)トリアジン化合物としては、例えば、2-[4-[(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-[(2-ヒドロキシ-3-トリデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-(2,4-ジヒドロキシフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-(2-ヒドロキシ-4-イソオクチルオキシフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-(2-ヒドロキシ-4-ドデシルオキシフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジンなどが挙げられる。前記ビス(ヒドロキシフェニル)トリアジン化合物としては、例えば、2,4-ビス(2-ヒドロキシ-4-プロピルオキシフェニル)-6-(2,4-ジメチルフェニル)-1,3,5-トリアジン、2,4-ビス(2-ヒドロキシ-3-メチル-4-プロピルオキシフェニル)-6-(4-メチルフェニル)-1,3,5-トリアジン、2,4-ビス(2-ヒドロキシ-3-メチル-4-ヘキシルオキシフェニル)-6-(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-フェニル-4,6-ビス[2-ヒドロキシ-4-[3-(メトキシヘプタエトキシ)-2-ヒドロキシプロピルオキシ]フェニル]-1,3,5-トリアジンなどが挙げられる。前記トリス(ヒドロキシフェニル)トリアジン化合物としては、例えば、2,4-ビス(2-ヒドロキシ-4-ブトキシフェニル)-6-(2,4-ジブトキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4,6-トリス[2-ヒドロキシ-4-(3-ブトキシ-2-ヒドロキシプロピルオキシ)フェニル]-1,3,5-トリアジン、2,4-ビス[2-ヒドロキシ-4-[1-(イソオクチルオキシカルボニル)エトキシ]フェニル]-6-(2,4-ジヒドロキシフェニル)-1,3,5-トリアジン、2,4,6-トリス[2-ヒドロキシ-4-[1-(イソオクチルオキシカルボニル)エトキシ]フェニル]-1,3,5-トリアジン、2,4-ビス[2-ヒドロキシ-4-[1-(イソオクチルオキシカルボニル)エトキシ]フェニル]-6-[2,4-ビス[1-(イソオクチルオキシカルボニル)エトキシ]フェニル]-1,3,5-トリアジンなどが挙げられる。
The triazine-based ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include mono (hydroxyphenyl) triazine compounds, bis (hydroxyphenyl) triazine compounds, and tris (hydroxyphenyl) triazine compounds. Etc.
Examples of the mono (hydroxyphenyl) triazine compound include 2- [4-[(2-hydroxy-3-dodecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethyl). Phenyl) -1,3,5-triazine, 2- [4-[(2-hydroxy-3-tridecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) ) -1,3,5-triazine, 2- (2,4-dihydroxyphenyl) -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2- (2-hydroxy- 4-isooctyloxyphenyl) -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2- (2-hydroxy-4-dodecyloxyphenyl) -4,6-bis ( 2,4-dimethylphenyl) -1,3,5-triazine, etc. Is mentioned. Examples of the bis (hydroxyphenyl) triazine compound include 2,4-bis (2-hydroxy-4-propyloxyphenyl) -6- (2,4-dimethylphenyl) -1,3,5-triazine, 2 , 4-Bis (2-hydroxy-3-methyl-4-propyloxyphenyl) -6- (4-methylphenyl) -1,3,5-triazine, 2,4-bis (2-hydroxy-3-methyl) -4-hexyloxyphenyl) -6- (2,4-dimethylphenyl) -1,3,5-triazine, 2-phenyl-4,6-bis [2-hydroxy-4- [3- (methoxyheptaethoxy ) -2-hydroxypropyloxy] phenyl] -1,3,5-triazine and the like. Examples of the tris (hydroxyphenyl) triazine compound include 2,4-bis (2-hydroxy-4-butoxyphenyl) -6- (2,4-dibutoxyphenyl) -1,3,5-triazine, 2 , 4,6-Tris (2-hydroxy-4-octyloxyphenyl) -1,3,5-triazine, 2,4,6-tris [2-hydroxy-4- (3-butoxy-2-hydroxypropyloxy) ) Phenyl] -1,3,5-triazine, 2,4-bis [2-hydroxy-4- [1- (isooctyloxycarbonyl) ethoxy] phenyl] -6- (2,4-dihydroxyphenyl) -1 , 3,5-triazine, 2,4,6-tris [2-hydroxy-4- [1- (isooctyloxycarbonyl) ethoxy] phenyl] -1,3,5-triazine, 2,4-bis [2 -Hydroxy-4- [1- (isooctyloxy) Carbonyl) ethoxy] phenyl] -6- [2,4-bis [1- (iso-octyloxy) ethoxy] phenyl] -1,3,5-triazine.
 前記サリチレート系紫外線吸収剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フェニルサリチレート、p-tert-ブチルフェニルサリチレート、p-オクチルフェニルサリチレート、2-エチルヘキシルサリチレートなどが挙げられる。 The salicylate-based ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include phenyl salicylate, p-tert-butylphenyl salicylate, p-octylphenyl salicylate, Examples include 2-ethylhexyl salicylate.
 前記シアノアクリレート系紫外線吸収剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、2-エチルヘキシル-2-シアノ-3,3-ジフェニルアクリレート、エチル-2-シアノ-3,3-ジフェニルアクリレートなどが挙げられる。 The cyanoacrylate-based ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose. For example, 2-ethylhexyl-2-cyano-3,3-diphenylacrylate, ethyl-2-cyano-3 , 3-diphenyl acrylate and the like.
 前記バインダーとしては、特に制限はなく、目的に応じて適宜選択することができるが、可視光透明性や日射透明性が高い方が好ましく、例えば、アクリル樹脂、ポリビニルブチラール、ポリビニルアルコールなどが挙げられる。なお、バインダーが熱線を吸収すると、平板状金属粒子による反射効果が弱まってしまうことから、熱線源と平板状金属粒子との間に形成される紫外線吸収層としては、450nm~1,500nmの領域に吸収を持たない材料を選択したり、該紫外線吸収層の厚みを薄くしたりすることが好ましい。
 前記紫外線吸収層の厚みとしては、0.01μm~1,000μmが好ましく、0.02μm~500μmがより好ましい。前記厚みが、0.01μm未満であると、紫外線の吸収が足りなくなることがあり、1,000μmを超えると、可視光の透過率が下がることがある。
 前記紫外線吸収層の含有量としては、用いる紫外線吸収層によって異なり、一概に規定することができないが、本発明の熱線遮蔽材において所望の紫外線透過率を与える含有量を適宜選択することが好ましい。
 前記紫外線透過率としては、5%以下が好ましく、2%以下がより好ましい。前記紫外線透過率が、5%を超えると、太陽光の紫外線により前記平板状金属粒子層の色味が変化することがある。
The binder is not particularly limited and may be appropriately selected depending on the intended purpose, but preferably has higher visible light transparency and higher solar transparency, and examples thereof include acrylic resin, polyvinyl butyral, and polyvinyl alcohol. . When the binder absorbs heat rays, the reflection effect by the flat metal particles is weakened. Therefore, the ultraviolet absorbing layer formed between the heat ray source and the flat metal particles is 450 nm to 1,500 nm. It is preferable to select a material that does not absorb light or to reduce the thickness of the ultraviolet absorbing layer.
The thickness of the ultraviolet absorbing layer is preferably 0.01 μm to 1,000 μm, more preferably 0.02 μm to 500 μm. When the thickness is less than 0.01 μm, ultraviolet absorption may be insufficient, and when it exceeds 1,000 μm, the visible light transmittance may be reduced.
The content of the ultraviolet absorbing layer varies depending on the ultraviolet absorbing layer to be used and cannot be generally defined, but it is preferable to appropriately select a content that gives a desired ultraviolet transmittance in the heat ray shielding material of the present invention.
The ultraviolet transmittance is preferably 5% or less, and more preferably 2% or less. When the ultraviolet transmittance exceeds 5%, the color of the flat metal particle layer may change due to ultraviolet rays of sunlight.
<<金属酸化物粒子>>
 本発明の熱線遮蔽材は、長波赤外線を吸収するために、少なくとも1種の金属酸化物粒子を含有していても熱線遮蔽と製造コストのバランスの観点からは好ましい。この場合、ハードコート層またはその他の支持体の裏面層に金属酸化物粒子を含むことが好ましい。平板状金属粒子含有層が太陽光などの熱線の入射方向側となるように本発明の熱線遮蔽材を配置したときに、金属粒子含有層で熱線の一部を反射するが一部の熱線は透過する。図5Aのように金属酸化物粒子を含有するハードコート層7を金属粒子含有層の塗布面とは反対側の基材表面に設けた場合、金属粒子含有層を透過した熱線の一部をハードコート層7でさらに吸収することができ、この構成では熱線遮蔽材を透過する熱量をさらに低減することができるため好ましい。
 前記金属酸化物粒子の材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、錫ドープ酸化インジウム(以下、「ITO」と略記する。)、アンチモンドープ酸化錫(以下、「ATO」と略記する。)、酸化亜鉛、アンチモン酸亜鉛、酸化チタン、酸化インジウム、酸化錫、酸化アンチモン、ガラスセラミックス、6硼化ランタン(LaB)、セシウムタングステン酸化物(Cs0.33WO、以下「CWO」と略記する。)などが挙げられる。これらの中でも、熱線吸収能力に優れ、平板状金属粒子と組み合わせることにより幅広い熱線吸収能を有する熱線遮蔽材が製造できる点で、ITO、ATO、CWO、6硼化ランタン(LaB)がより好ましく、1,200nm以上の赤外線を90%以上遮蔽し、可視光透過率が90%以上である点で、ITOが特に好ましい。
 前記金属酸化物粒子の一次粒子の体積平均粒径としては、可視光透過率を低下させないため、0.1μm以下が好ましい。
 前記金属酸化物粒子の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、球状、針状、板状などが挙げられる。
<< Metal oxide particles >>
The heat ray shielding material of the present invention is preferable from the viewpoint of balance between heat ray shielding and production cost even if it contains at least one kind of metal oxide particles in order to absorb long wave infrared rays. In this case, it is preferable that metal oxide particles are included in the back surface layer of the hard coat layer or other support. When the heat ray shielding material of the present invention is arranged so that the flat metal particle-containing layer is on the incident direction side of heat rays such as sunlight, a part of the heat rays are reflected by the metal particle-containing layer, but some of the heat rays are To Penetrate. As shown in FIG. 5A, when the hard coat layer 7 containing metal oxide particles is provided on the surface of the substrate opposite to the coated surface of the metal particle-containing layer, a part of the heat rays transmitted through the metal particle-containing layer is hard. It can be further absorbed by the coat layer 7, and this configuration is preferable because the amount of heat transmitted through the heat ray shielding material can be further reduced.
There is no restriction | limiting in particular as a material of the said metal oxide particle, According to the objective, it can select suitably, For example, a tin dope indium oxide (henceforth "ITO"), antimony dope tin oxide (henceforth). , Abbreviated as “ATO”), zinc oxide, zinc antimonate, titanium oxide, indium oxide, tin oxide, antimony oxide, glass ceramics, lanthanum hexaboride (LaB 6 ), cesium tungsten oxide (Cs 0.33). WO 3 , hereinafter abbreviated as “CWO”). Among these, ITO, ATO, CWO, and lanthanum hexaboride (LaB 6 ) are more preferable in that heat ray absorbing ability is excellent and a heat ray shielding material having a wide range of heat ray absorbing ability can be produced by combining with flat metal particles. In particular, ITO is particularly preferable in that infrared rays of 1,200 nm or more are shielded by 90% or more and visible light transmittance is 90% or more.
The volume average particle size of the primary particles of the metal oxide particles is preferably 0.1 μm or less in order not to reduce the visible light transmittance.
There is no restriction | limiting in particular as a shape of the said metal oxide particle, According to the objective, it can select suitably, For example, spherical shape, needle shape, plate shape, etc. are mentioned.
 前記金属酸化物粒子の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、0.1g/m~20g/mが好ましく、0.5g/m~10g/mがより好ましく、1.0g/m~4.0g/mがより好ましい。
 前記含有量が、0.1g/m未満であると、肌に感じる日射量が上昇することがあり、20g/mを超えると、可視光透過率が悪化することがある。一方、前記含有量が、1.0g/m~4.0g/mであると、上記2点を回避できる点で有利である。
 なお、前記金属酸化物粒子の含有量は、例えば、前記熱線遮蔽層の超箔切片TEM像及び表面SEM像の観察から、一定面積における金属酸化物粒子の個数及び平均粒子径を測定し、該個数及び平均粒子径と、金属酸化物粒子の比重とに基づいて算出した質量(g)を、前記一定面積(m)で除することにより算出することができる。また、前記金属酸化物粒子含有層の一定面積における金属酸化物微粒子をメタノールに溶出させ、蛍光X線測定により測定した金属酸化物微粒子の質量(g)を、前記一定面積(m)で除することにより算出することもできる。
The content of the metal oxide particles is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1 g / m 2 to 20 g / m 2 , and preferably 0.5 g / m 2 to 10 g. / M 2 is more preferable, and 1.0 g / m 2 to 4.0 g / m 2 is more preferable.
If the content is less than 0.1 g / m 2 , the amount of solar radiation felt on the skin may increase, and if it exceeds 20 g / m 2 , the visible light transmittance may deteriorate. On the other hand, when the content is 1.0 g / m 2 to 4.0 g / m 2, it is advantageous in that the above two points can be avoided.
The content of the metal oxide particles is, for example, by measuring the number and average particle diameter of the metal oxide particles in a certain area from the observation of the super foil section TEM image and the surface SEM image of the heat ray shielding layer, It can be calculated by dividing the mass (g) calculated based on the number and average particle diameter and the specific gravity of the metal oxide particles by the constant area (m 2 ). Further, metal oxide fine particles in a certain area of the metal oxide particle-containing layer are eluted in methanol, and the mass (g) of the metal oxide fine particles measured by fluorescent X-ray measurement is divided by the constant area (m 2 ). This can also be calculated.
<熱線遮蔽材の製造方法>
 本発明の熱線遮蔽材を製造する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記支持体などの下層の表面上に、前記色素を有する分散液を、ディップコーター、ダイコーター、スリットコーター、バーコーター、グラビアコーター等により塗布する方法、LB膜法、自己組織化法、スプレー塗布などの方法で面配向させる方法が挙げられる。前記赤外線吸収化合物含有層は塗布により形成されてなることが好ましい。すなわち、前記赤外線吸収化合物含有層は、色素塗布層であることが好ましい。さらにその中でもバーコーターにより塗布する方法が好ましい。
<Method for producing heat ray shielding material>
The method for producing the heat ray shielding material of the present invention is not particularly limited and can be appropriately selected according to the purpose.For example, a dispersion having the dye on the surface of the lower layer such as the support, Examples thereof include a method of coating with a dip coater, a die coater, a slit coater, a bar coater, a gravure coater, and the like, and a method of plane orientation by a method such as an LB film method, a self-organization method, and spray coating. The infrared absorbing compound-containing layer is preferably formed by coating. That is, the infrared ray absorbing compound-containing layer is preferably a dye coating layer. Among them, the method of applying with a bar coater is preferable.
 前記赤外線吸収化合物含有層を塗布により形成する場合、塗布液には前記赤外線吸収化合物や、前記ポリマーの他、溶媒や界面活性剤などのその他の添加剤を添加してもよい。 In the case where the infrared absorbing compound-containing layer is formed by coating, other additives such as a solvent and a surfactant may be added to the coating solution in addition to the infrared absorbing compound and the polymer.
 前記溶媒としては、特に制限はなく水や公知の有機溶媒を用いることができ、例えば、水、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、アセトン、メチルアルコール、N-プロピルアルコール、1-プロピルアルコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、シクロヘキサノン、シクロヘキサノール、乳酸エチル、乳酸メチル、カプロラクタム、等の種々のものを用いることができる。本発明では、環境影響の観点と、塗布コスト低減の点から水性の溶媒を用いることが好ましい。
 前記溶媒は、1種単独で用いる以外に2種以上を組合せて用いてもよい。本発明では、具体的には水とメタノールを組み合わせた水性の溶媒として用いることがより好ましい。
The solvent is not particularly limited and water or a known organic solvent can be used. For example, water, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, acetone, methyl alcohol, N-propyl alcohol, 1-propyl alcohol, Various things such as propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, cyclohexanone, cyclohexanol, ethyl lactate, methyl lactate, and caprolactam can be used. In the present invention, it is preferable to use an aqueous solvent from the viewpoint of environmental influence and the point of reducing coating cost.
The solvent may be used in combination of two or more, in addition to being used alone. In the present invention, specifically, it is more preferable to use as an aqueous solvent in which water and methanol are combined.
 その他の添加剤としては、特開2005-17322号公報の段落番号[0027]~[0031]に記載の界面活性剤や添加剤が挙げられる。
 前記界面活性剤は特に限定されないが、脂肪族、芳香族、フッ素系のいずれの界面活性剤でもよく、また、ノニオン系、アニオン系、カチオン系のいずれの界面活性剤でもよい。前記界面活性剤としては、特開2011-218807号公報に記載のものなどを挙げることができる。
 前記界面活性剤としては、具体的には、日本油脂(株)製のラピゾールA-90、三洋化成工業(株)製のナロアクティーCL95等が好ましく用いられる。
 前記界面活性剤は、1種単独で用いる以外に2種以上を組合せて用いてもよい。
Examples of other additives include surfactants and additives described in paragraph numbers [0027] to [0031] of JP-A-2005-17322.
The surfactant is not particularly limited, but may be any of aliphatic, aromatic, and fluorine surfactants, and may be any nonionic, anionic, or cationic surfactant. Examples of the surfactant include those described in JP 2011-218807 A.
As the surfactant, specifically, Rapisol A-90 manufactured by Nippon Oil & Fats Co., Ltd., NAROACTY CL95 manufactured by Sanyo Chemical Industries, Ltd., and the like are preferably used.
The surfactants may be used in combination of two or more in addition to being used alone.
 前記赤外線吸収化合物含有層を塗布により形成する場合、赤外線吸収化合物塗布量およびポリマー塗布量の好ましい範囲は、それぞれ前記赤外線吸収化合物含有層中に含まれる前記赤外線吸収化合物の含有量および前記ポリマーの含有量の好ましい範囲とそれぞれ同様である。 When the infrared absorbing compound-containing layer is formed by coating, the preferred ranges of the infrared absorbing compound coating amount and the polymer coating amount are the contents of the infrared absorbing compound and the polymer included in the infrared absorbing compound-containing layer, respectively. The same as the preferable range of the amount.
 前記赤外線吸収化合物含有層を塗布により形成する場合、前記塗布液を塗布後、公知の方法で乾燥して、固化し、前記赤外線吸収化合物含有層を形成することが好ましい。乾燥方法としては、加熱による乾燥が好ましい。 When the infrared absorbing compound-containing layer is formed by coating, it is preferable to form the infrared absorbing compound-containing layer by applying the coating liquid and then drying and solidifying by a known method. As a drying method, drying by heating is preferable.
-1.金属粒子含有層の形成方法-
 本発明の金属粒子含有層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記基材などの下層の表面上に、前記平板状金属粒子を有する分散液(平板状金属粒子分散液)を、ディップコーター、ダイコーター、スリットコーター、バーコーター、グラビアコーター等により塗布する方法、LB膜法、自己組織化法、スプレー塗布などの方法で面配向させる方法が挙げられる。
-1. Method for forming metal particle-containing layer
The method for forming the metal particle-containing layer of the present invention is not particularly limited and may be appropriately selected depending on the purpose. For example, the dispersion having the flat metal particles on the surface of the lower layer such as the substrate. A method of applying a liquid (flat metal particle dispersion) with a dip coater, a die coater, a slit coater, a bar coater, a gravure coater, or the like, a method of aligning the surface by a method such as LB film method, self-organization method, spray coating, Is mentioned.
 なお、面配向を促進するために、平板状金属粒子を塗布後、カレンダーローラーやラミローラーなどの圧着ローラーを通すことにより促進させてもよい。 In addition, in order to promote the plane orientation, after applying the flat metal particles, it may be promoted by passing through a pressure roller such as a calendar roller or a laminating roller.
-2.オーバーコート層の形成方法-
 オーバーコート層は、塗布により形成することが好ましい。このときの塗布方法としては、特に限定はなく、公知の方法を用いることができ、例えば、前記紫外線吸収剤を含有する分散液を、ディップコーター、ダイコーター、スリットコーター、バーコーター、グラビアコーター等により塗布する方法などが挙げられる。
-2. Formation method of overcoat layer
The overcoat layer is preferably formed by coating. The coating method at this time is not particularly limited, and a known method can be used. For example, a dispersion containing the ultraviolet absorber can be used as a dip coater, a die coater, a slit coater, a bar coater, a gravure coater, or the like. The method of apply | coating by etc. is mentioned.
-3.ハードコート層の形成方法-
 ハードコート層は、塗布により形成することが好ましい。このときの塗布方法としては、特に限定はなく、公知の方法を用いることができ、例えば、前記紫外線吸収剤を含有する分散液を、ディップコーター、ダイコーター、スリットコーター、バーコーター、グラビアコーター等により塗布する方法などが挙げられる。
-3. Formation method of hard coat layer
The hard coat layer is preferably formed by coating. The coating method at this time is not particularly limited, and a known method can be used. For example, a dispersion containing the ultraviolet absorber can be used as a dip coater, a die coater, a slit coater, a bar coater, a gravure coater, or the like. The method of apply | coating by etc. is mentioned.
-4.粘着層の形成方法-
 前記粘着層は、塗布により形成することが好ましい。例えば、前記基材、前記金属粒子含有層、前記紫外線吸収層などの下層の表面上に積層することができる。このときの塗布方法としては、特に限定はなく、公知の方法を用いることができる。
 粘着剤を予め離型フィルム上に塗工及び乾燥させたフィルムを作製しておいて、当該フィルムの粘着剤面と本発明の熱線遮蔽材表面とをラミネートすることにより、ドライな状態のままの粘着剤層を積層をすることが可能である。このときのラミネートの方法としては、特に限定はなく、公知の方法を用いることができる。
-4. Formation method of adhesive layer
The adhesive layer is preferably formed by coating. For example, it can be laminated on the surface of the lower layer such as the substrate, the metal particle-containing layer, or the ultraviolet absorbing layer. There is no limitation in particular as the coating method at this time, A well-known method can be used.
A film in which the pressure-sensitive adhesive is previously applied and dried on a release film is prepared, and the film is left in a dry state by laminating the pressure-sensitive adhesive surface of the film and the heat ray shielding material surface of the present invention. It is possible to laminate the pressure-sensitive adhesive layer. There is no limitation in particular as the lamination method at this time, A well-known method can be used.
[窓ガラス]
 図5Aに一例を示したように、本発明の熱線遮蔽材を使って、既設窓ガラスの類に機能性付与する場合は、粘着剤を積層して窓ガラスの室内側に貼り付けることが好ましい。その際、赤外線反射層をなるべく太陽光側に設置されている方が、室内へ入射しようとする赤外線をあらかじめ反射できるため好ましく、この観点において金属粒子含有層を太陽光入射側に設置されるように粘着剤層を積層することが好ましい。具体的には金属粒子含有層の上、または、金属粒子含有層上に設けられたオーバーコート層等の機能層の上に粘着剤層を設け、その粘着剤層を介して窓ガラスへ貼合することが好ましい。窓ガラスに熱線遮蔽材を貼り付ける際、粘着剤層を塗工、あるいは、ラミネートにより設けた熱線遮蔽材を準備し、あらかじめ窓ガラス表面と前記熱線遮蔽材の粘着剤層表面に界面活性剤(主にアニオン系)を含んだ水溶液を噴霧してから、粘着剤層を介して窓ガラスに熱線遮蔽材を設置すると良い。水分が蒸発するまでの間、粘着剤層の粘着力は落ちるため、ガラス表面では熱線遮蔽材の位置の調整が可能である。窓ガラスに対する前記熱線遮蔽材の貼り付け位置が定まった後、スキージー等を用いて窓ガラスと前記熱線遮蔽材の間に残る水分をガラス中央から端部に向けて掃き出すことにより、窓ガラス表面に前記熱線遮蔽材を固定できる。このようにして、窓ガラスに熱線遮蔽材を設置することが可能である。
[Window glass]
As an example shown in FIG. 5A, when using the heat-shielding material of the present invention to provide functionality to existing window glass, it is preferable to laminate an adhesive and paste it on the indoor side of the window glass. . In that case, it is preferable that the infrared reflection layer is installed on the sunlight side as much as possible because it can reflect the infrared rays to be incident on the room in advance. From this viewpoint, the metal particle containing layer is installed on the sunlight incidence side. It is preferable to laminate a pressure-sensitive adhesive layer. Specifically, a pressure-sensitive adhesive layer is provided on the metal particle-containing layer or a functional layer such as an overcoat layer provided on the metal particle-containing layer, and bonded to the window glass via the pressure-sensitive adhesive layer. It is preferable to do. When a heat ray shielding material is attached to a window glass, a heat ray shielding material provided by coating or laminating an adhesive layer is prepared, and a surfactant (on the surface of the window glass and the pressure ray adhesive layer of the heat ray shielding material is previously prepared). After spraying an aqueous solution containing mainly anionic), a heat ray shielding material may be installed on the window glass through the adhesive layer. Until the moisture evaporates, the adhesive force of the pressure-sensitive adhesive layer decreases, so that the position of the heat ray shielding material can be adjusted on the glass surface. After the position where the heat ray shielding material is attached to the window glass is determined, the water remaining between the window glass and the heat ray shielding material is swept from the glass center toward the edge by using a squeegee or the like. The heat ray shielding material can be fixed. In this way, it is possible to install the heat ray shielding material on the window glass.
[合わせガラス用中間膜、合わせガラス]
 図5Bに一例を示したように、合わせガラス体の作製には、2枚のガラス板、2枚の合わせガラス用ポリビニルブチラール中間膜シート(PVBシート)、前記熱線遮蔽材を準備し、ガラス板(1枚目)、PVBシート(1枚目)、熱線遮蔽材、PVBシート(2枚目)、ガラス板(2枚目)の順に重ねる。この積層体を真空下、95℃で30分間予備圧着を行い、その後、オートフレーブ内で1.3MPa、120℃の条件で加熱しながら圧着処理することで熱線遮蔽材を適用した合わせガラスを得ることができる。図5Bは熱線遮蔽材が基材40を有する例であるが、熱線遮蔽材を用いた合わせガラス体用中間膜を作成する際に基材は必ずしも必要がなく、基材の表面に形成した熱線遮蔽材の積層体を基材から剥離してから合わせガラス体中間膜に熱線遮蔽材の積層体を組み込んでもよく、このようにして得られた熱線遮蔽材の積層体を組み込んだ合わせガラス用中間膜を用いて、上記と同様の手順で合わせガラス体を作成し、熱線遮蔽材を適用した合わせガラス体を形成してもよい。
[Interlayer film for laminated glass, laminated glass]
As shown in FIG. 5B, for example, two glass plates, two polyvinyl butyral interlayer films (PVB sheets) for laminated glass, and the heat ray shielding material are prepared to produce a laminated glass body. (First sheet), PVB sheet (first sheet), heat ray shielding material, PVB sheet (second sheet), and glass plate (second sheet) are stacked in this order. This laminated body is preliminarily pressure-bonded at 95 ° C. for 30 minutes under vacuum, and then pressure-bonded with heating under conditions of 1.3 MPa and 120 ° C. in an autoflavor to obtain a laminated glass to which a heat ray shielding material is applied. be able to. FIG. 5B is an example in which the heat ray shielding material has the base material 40, but the base material is not necessarily required when the interlayer film for laminated glass body using the heat ray shielding material is formed, and the heat ray formed on the surface of the base material. The laminated body of the heat ray shielding material may be incorporated into the laminated glass body intermediate film after the laminated body of the shielding material is peeled off from the base material, and the laminated body for laminated glass incorporating the thus obtained laminated body of the heat ray shielding material. Using a film, a laminated glass body may be formed in the same procedure as described above, and a laminated glass body to which a heat ray shielding material is applied may be formed.
 本発明の熱線遮蔽材は、熱線(近赤外線)を選択的に反射(必要に応じて吸収)するために使用される態様であれば、特に制限はなく、目的に応じて適宜選択すればよく、例えば、乗り物用フィルムや貼合せ構造体、建材用フィルムや貼合せ構造体、農業用フィルムなどが挙げられる。これらの中でも、省エネルギー効果の点で、乗り物用フィルムや貼合せ構造体、建材用フィルムや貼合せ構造体であることが好ましい。 The heat ray shielding material of the present invention is not particularly limited as long as it is an embodiment used for selectively reflecting (absorbing as necessary) heat rays (near infrared rays), and may be appropriately selected according to the purpose. Examples of the film include a vehicle film and a laminated structure, a building material film and a laminated structure, and an agricultural film. Among these, in terms of energy saving effect, a vehicle film and a laminated structure, a building material film and a laminated structure are preferable.
 以下に実施例を挙げて本発明の特徴を更に具体的に説明する。
 以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
The features of the present invention will be described more specifically with reference to the following examples.
The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
<平板状金属粒子の調製と評価>
-平板状金属粒子分散液の調製-
 NTKR-4(日本金属工業(株)製)製の反応容器にイオン交換水13Lを計量し、SUS316L製のシャフトにNTKR-4製のプロペラ4枚およびNTKR-4製のパドル4枚を取り付けたアジターを備えるチャンバーを用いて撹拌しながら、10g/Lのクエン酸三ナトリウム(無水物)水溶液1.0Lを添加して35℃に保温した。8.0g/Lのポリスチレンスルホン酸水溶液0.68Lを添加し、更に0.04Nの水酸化ナトリウム水溶液を用いて23g/Lに調製した水素化ホウ素ナトリウム水溶液0.041Lを添加した。0.10g/Lの硝酸銀水溶液13Lを5.0L/minで添加した。
 10g/Lのクエン酸三ナトリウム(無水物)水溶液1.0Lとイオン交換水11Lを添加して、更に80g/Lのヒドロキノンスルホン酸カリウム水溶液0.68Lを添加した。撹拌を800rpmに上げて、0.10g/Lの硝酸銀水溶液8.1Lを0.95L/minで添加した後、30℃に降温した。
 44g/Lのメチルヒドロキノン水溶液8.0Lを添加し、次いで、後述する40℃のゼラチン水溶液を全量添加した。撹拌を1200rpmに上げて、後述する亜硫酸銀白色沈殿物混合液を全量添加した。
 調製液のpH変化が止まった段階で、1NのNaOH水溶液5.0Lを0.33L/minで添加した。その後、2.0g/Lの1-(m-スルホフェニル)-5-メルカプトテトラゾールナトリウム水溶液(NaOHとクエン酸(無水物)とを用いてpH=7.0±1.0に調節して溶解した)0.18Lを添加し、更に70g/Lの1,2-ベンズイソチアゾリン-3-オン(NaOHで水溶液をアルカリ性に調節して溶解した)0.078Lを添加した。このようにして銀平板粒子分散液Aを調製した。
<Preparation and evaluation of flat metal particles>
-Preparation of flat metal particle dispersion-
Ion exchange water 13L was weighed in a reaction vessel made of NTKR-4 (manufactured by Nippon Metal Industry Co., Ltd.), and four NTKR-4 propellers and four NTKR-4 paddles were attached to a SUS316L shaft. While stirring using a chamber equipped with an agitator, 1.0 L of a 10 g / L aqueous solution of trisodium citrate (anhydrous) was added and kept at 35 ° C. 0.68 L of 8.0 g / L polystyrene sulfonic acid aqueous solution was added, and 0.041 L of sodium borohydride aqueous solution prepared to 23 g / L using 0.04 N sodium hydroxide aqueous solution was further added. 13 L of 0.10 g / L silver nitrate aqueous solution was added at 5.0 L / min.
1.0 L of 10 g / L trisodium citrate (anhydride) aqueous solution and 11 L of ion exchange water were added, and 0.68 L of 80 g / L potassium hydroquinone sulfonate aqueous solution was further added. Stirring was increased to 800 rpm, 8.1 L of a 0.10 g / L silver nitrate aqueous solution was added at 0.95 L / min, and then the temperature was lowered to 30 ° C.
A 44 g / L methylhydroquinone aqueous solution (8.0 L) was added, and then a 40 ° C. gelatin aqueous solution described later was added in its entirety. The stirring was increased to 1200 rpm, and the whole amount of a silver sulfite white precipitate mixture described later was added.
When the pH change of the preparation solution stopped, 5.0 L of 1N NaOH aqueous solution was added at 0.33 L / min. Thereafter, 2.0 g / L of 1- (m-sulfophenyl) -5-mercaptotetrazole sodium aqueous solution (NaOH and citric acid (anhydride) was used to adjust the pH to 7.0 ± 1.0 and dissolve. 0.18 L was added, and 0.078 L of 70 g / L 1,2-benzisothiazolin-3-one (the aqueous solution was adjusted to be alkaline with NaOH) was added. In this way, a silver tabular grain dispersion liquid A was prepared.
-ゼラチン水溶液の調製-
SUS316L製の溶解タンクにイオン交換水16.7Lを計量した。SUS316L製のアジターで低速撹拌を行いながら、脱イオン処理を施したアルカリ処理牛骨ゼラチン(GPC重量平均分子量20万)1.4kgを添加した。更に、脱イオン処理、蛋白質分解酵素処理、および過酸化水素による酸化処理を施したアルカリ処理牛骨ゼラチン(GPC重量平均分子量2.1万)0.91kgを添加した。その後40℃に昇温し、ゼラチンの膨潤と溶解を同時に行って完全に溶解させた。
-Preparation of aqueous gelatin solution-
16.7 L of ion-exchanged water was weighed into a dissolution tank made of SUS316L. While performing low-speed stirring with an agitator made of SUS316L, 1.4 kg of alkali-treated beef bone gelatin (GPC weight average molecular weight 200,000) subjected to deionization treatment was added. Furthermore, 0.91 kg of alkali-treated beef bone gelatin (GPC weight average molecular weight 21,000) subjected to deionization treatment, proteolytic enzyme treatment, and oxidation treatment with hydrogen peroxide was added. Thereafter, the temperature was raised to 40 ° C., and gelatin was swollen and dissolved simultaneously to completely dissolve it.
-亜硫酸銀白色沈殿物混合液の調製-
SUS316L製の溶解タンクにイオン交換水8.2Lを計量し、100g/Lの硝酸銀水溶液8.2Lを添加した。SUS316L製のアジターで高速撹拌を行いながら、140g/Lの亜硫酸ナトリウム水溶液2.7Lを短時間で添加して、亜硫酸銀の白色沈澱物を含む混合液を調製した。この混合液は、使用する直前に調製した。
-Preparation of silver sulfite white precipitate mixture-
In a dissolution tank made of SUS316L, 8.2 L of ion-exchanged water was weighed, and 8.2 L of a 100 g / L silver nitrate aqueous solution was added. While stirring at a high speed with an agitator made of SUS316L, 2.7 L of 140 g / L sodium sulfite aqueous solution was added in a short time to prepare a mixed solution containing a silver sulfite white precipitate. This mixture was prepared immediately before use.
 銀平板粒子分散液Aをイオン交換水で希釈し、分光光度計((株)日立製作所製U-3500)を用いて分光吸収を測定したところ、吸収ピーク波長は900nmであり、半値全幅は270nmであった。
 銀平板粒子分散液Aの物理特性は、25℃においてpH=9.4(アズワン(株)製KR5Eで測定)、電気伝導度8.1mS/cm(東亜ディーケーケー(株)製CM-25Rで測定)、粘度2.1mPa・s((株)エー・アンド・デイ製SV-10で測定)であった。得られた銀平板粒子分散液Aは、ユニオンコンテナーII型(低密度ポリエチレン製、販売元:アズワン(株))の20Lの容器に収納し、30℃で貯蔵した。
When the tabular silver particle dispersion A was diluted with ion-exchanged water and spectral absorption was measured using a spectrophotometer (U-3500, manufactured by Hitachi, Ltd.), the absorption peak wavelength was 900 nm and the full width at half maximum was 270 nm. Met.
The physical properties of the tabular silver particle dispersion A were measured at 25 ° C. with pH = 9.4 (measured with KR5E manufactured by ASONE Co., Ltd.) and electrical conductivity of 8.1 mS / cm (measured with CM-25R manufactured by Toa DKK Co., Ltd.). ) And a viscosity of 2.1 mPa · s (measured with SV-10 manufactured by A & D Co., Ltd.). The obtained silver tabular grain dispersion liquid A was stored in a 20 L container of Union Container Type II (manufactured by Low Density Polyethylene, distributor: ASONE Co., Ltd.) and stored at 30 ° C.
-平板状金属粒子分散液の脱塩および再分散-
 前述の銀平板粒子分散液Aを遠沈管に800g採取して、1NのNaOHおよび/または1Nの硫酸を用いて25℃でpH=9.2±0.2に調整した。遠心分離機(日立工機(株)製himacCR22GIII、アングルローターR9A)を用いて、35℃に設定して9000rpm60分間の遠心分離操作を行った後、上澄液を784g捨てた。沈殿した銀平板粒子に0.2mMのNaOH水溶液を加えて合計400gとし、撹拌棒を用いて手撹拌して粗分散液にした。これと同様の操作で24本分の粗分散液を調製して合計9600gとし、SUS316L製のタンクに添加して混合した。更に、Pluronic31R1(BASF社製)の10g/L溶液(メタノール:イオン交換水=1:1(体積比)の混合液で希釈)を10cc添加した。プライミクス(株)製オートミクサー20型(撹拌部はホモミクサーMARKII)を用いて、タンク中の粗分散液混合物に9000rpmで120分間のバッチ式分散処理を施した。分散中の液温は50℃に保った。分散後、25℃に降温してから、プロファイルIIフィルター(日本ポール(株)製、製品型式MCY1001Y030H13)を用いてシングルパスの濾過を行った。
-Desalting and redispersion of flat metal particle dispersion-
800 g of the above-mentioned silver tabular grain dispersion A was collected in a centrifuge tube and adjusted to pH = 9.2 ± 0.2 at 25 ° C. with 1N NaOH and / or 1N sulfuric acid. Using a centrifuge (HimacCR22GIII, angle rotor R9A, manufactured by Hitachi Koki Co., Ltd.), centrifugation was performed at 9000 rpm for 60 minutes at 35 ° C., and 784 g of the supernatant was discarded. A 0.2 mM NaOH aqueous solution was added to the precipitated silver tabular grains to make a total of 400 g, and the mixture was hand-stirred with a stirring rod to obtain a coarse dispersion. In the same manner as this, 24 coarse dispersions were prepared to a total of 9600 g, added to a SUS316L tank and mixed. Furthermore, 10 cc of a 10 g / L solution of Pluronic 31R1 (manufactured by BASF) (diluted with a mixed solution of methanol: ion exchange water = 1: 1 (volume ratio)) was added. Using an automixer type 20 (manufactured by homomixer MARKII) manufactured by Primix Co., Ltd., a batch dispersion treatment was performed on the crude dispersion mixture in the tank at 9000 rpm for 120 minutes. The liquid temperature during dispersion was kept at 50 ° C. After dispersion, the temperature was lowered to 25 ° C., and then single-pass filtration was performed using a profile II filter (manufactured by Nippon Pole Co., Ltd., product model MCY1001Y030H13).
このようにして、分散液Aに脱塩処理および再分散処理を施して、銀平板粒子分散液Bを調製した。
 銀平板粒子分散液Bの分光透過率を、銀平板粒子分散液Aと同様の方法で測定したところ、吸収ピーク波長および半値幅は銀平板粒子分散液Aとほぼ同じ結果であった。
分散液Bの物理特性は、25℃においてpH=7.6、電気伝導度0.37mS/cm、粘度1.1mPa・sであった。得られた銀平板粒子分散液Aは、ユニオンコンテナーII型の20Lの容器に収納し、30℃で貯蔵した。
In this manner, the dispersion liquid A was subjected to desalting treatment and redispersion treatment to prepare a silver tabular grain dispersion liquid B.
When the spectral transmittance of the tabular silver particle dispersion B was measured by the same method as that for the tabular silver particle dispersion A, the absorption peak wavelength and the half width were almost the same as those of the tabular silver particle dispersion A.
The physical properties of Dispersion B were pH = 7.6, electrical conductivity of 0.37 mS / cm, and viscosity of 1.1 mPa · s at 25 ° C. The obtained silver tabular grain dispersion liquid A was stored in a 20 L container of Union Container II type and stored at 30 ° C.
-平板状金属粒子の評価-
銀平板粒子分散液Aの中には、六角形状乃至円形状および三角形状の平板粒子が生成していることを確認した。銀平板粒子分散液AのTEM観察により得られた像を、画像処理ソフトImageJに取り込み、画像処理を施した。数視野のTEM像から任意に抽出した500個の粒子に関して画像解析を行い、同面積円相当直径を算出した。これらの母集団に基づき統計処理した結果、平均直径は120nmであった。
 レーザー回折・散乱式の粒子径・粒度分布測定装置マイクロトラックMT3300II(日機装(株)製、粒子透過性は反射に設定)を用いて銀平板粒子分散液Aを測定して、メジアン径D50=48nm、D10=33nm、D90=70nm、および平均粒径(体積加重)51nmの結果を得た。また、平板状の金属粒子を測定したところ97個数%であった。
銀平板粒子分散液Bを同様に測定したところ、粒度分布の形状も含め銀平板粒子分散液Aとほぼ同じ結果を得た。
-Evaluation of flat metal particles-
In the silver tabular grain dispersion liquid A, it was confirmed that hexagonal to circular and triangular tabular grains were formed. An image obtained by TEM observation of the tabular silver particle dispersion A was taken into image processing software ImageJ and subjected to image processing. Image analysis was performed on 500 particles arbitrarily extracted from TEM images of several fields of view, and the equivalent circle diameter was calculated. As a result of statistical processing based on these populations, the average diameter was 120 nm.
The silver tabular particle dispersion A was measured using a laser diffraction / scattering particle diameter / particle size distribution measuring apparatus Microtrac MT3300II (manufactured by Nikkiso Co., Ltd., particle permeability set to reflection), and the median diameter D50 = 48 nm. , D10 = 33 nm, D90 = 70 nm, and average particle size (volume weighted) 51 nm. Further, the flat metal particles were measured and found to be 97% by number.
When the silver tabular grain dispersion liquid B was measured in the same manner, almost the same results as the silver tabular grain dispersion liquid A were obtained, including the shape of the particle size distribution.
 銀平板粒子分散液Bをシリコン基板上に滴下して乾燥し、銀平板粒子の個々の厚みをFIB-TEM法により測定した。銀平板粒子分散液B中の銀平板粒子10個を測定して平均厚みは8nmであった。 Silver tabular grain dispersion liquid B was dropped on a silicon substrate and dried, and the individual thicknesses of the tabular silver grains were measured by the FIB-TEM method. Ten silver tabular grains in the silver tabular grain dispersion B were measured, and the average thickness was 8 nm.
<熱線遮蔽材の作製>
 以下、熱線遮蔽材の作製について記載する。塗布液調製に用いた原材料は、購入した素原料を希釈したり、あるいは分散物にするなど、適宜加工して使用した。
<Production of heat ray shielding material>
Hereinafter, it describes about preparation of a heat ray shielding material. The raw materials used for preparing the coating solution were used after appropriately processing, for example, by diluting purchased raw materials or making them into dispersions.
(金属粒子含有層用の塗布液M1の調製)
-銀平板粒子含有遮熱層塗布液-
水性ウレタン樹脂:ハイドランHW350
 (DIC(株)製、固形分30質量%)        0.27質量部
銀平板粒子分散液B                 16.24質量部
1-(メチルウレイドフェニル)-5-メルカプトテトラゾール
 (和光純薬工業(株)製、固形分2質量%のアルカリ性水溶液を調製)
                           0.61質量部
界面活性剤A:リパール870P
(ライオン(株)製、固形分1質量%イオン交換水希釈) 0.96質量部
界面活性剤B:ナロアクティーCL-95
 (三洋化成工業(株)製、固形分1質量%イオン交換水希釈)
                           1.19質量部
メタノール                     30.00質量部
蒸留水                       50.73質量部
(Preparation of coating solution M1 for the metal particle-containing layer)
-Silver tabular grain-containing thermal barrier coating liquid-
Aqueous urethane resin: Hydran HW350
(DIC Co., Ltd., solid content: 30% by mass) 0.27 parts by mass Silver tabular grain dispersion B 16.24 parts by mass 1- (methylureidophenyl) -5-mercaptotetrazole (Wako Pure Chemical Industries, Ltd.) Prepare an alkaline aqueous solution with a solid content of 2% by mass)
0.61 part by mass Surfactant A: Lipal 870P
(Manufactured by Lion Co., Ltd., diluted with ion exchange water with a solid content of 1% by mass) 0.96 parts by mass of surfactant B: Naroacty CL-95
(Manufactured by Sanyo Chemical Industry Co., Ltd., diluted with 1% solid content ion exchange water)
1.19 parts by mass Methanol 30.00 parts by mass Distilled water 50.73 parts by mass
(金属粒子含有層用の塗布液M2の調製)
-銀平板粒子含有遮熱層塗布液-
水性ウレタン樹脂:ハイドランHW350
 (DIC(株)製、固形分30質量%)        0.27質量部
銀平板粒子分散液B                 16.24質量部
1-(メチルウレイドフェニル)-5-メルカプトテトラゾール
 (和光純薬工業(株)製、固形分2質量%のアルカリ性水溶液を調製)
                           0.61質量部
界面活性剤A:リパール870P
(ライオン(株)製、固形分1質量%イオン交換水希釈) 0.96質量部
界面活性剤B:ナロアクティーCL-95
 (三洋化成工業(株)製、固形分1質量%イオン交換水希釈)
                           1.19質量部
ヘプタメチン染料(I-2)              0.66質量部
メタノール                     30.00質量部
蒸留水                       50.73質量部
(Preparation of coating solution M2 for metal particle-containing layer)
-Silver tabular grain-containing thermal barrier coating liquid-
Aqueous urethane resin: Hydran HW350
(DIC Co., Ltd., solid content: 30% by mass) 0.27 parts by mass Silver tabular grain dispersion B 16.24 parts by mass 1- (methylureidophenyl) -5-mercaptotetrazole (Wako Pure Chemical Industries, Ltd.) Prepare an alkaline aqueous solution with a solid content of 2% by mass)
0.61 part by mass Surfactant A: Lipal 870P
(Manufactured by Lion Co., Ltd., diluted with ion exchange water at a solid content of 1% by mass) 0.96 parts by mass Surfactant B: NAROACTY CL-95
(Manufactured by Sanyo Chemical Industry Co., Ltd., diluted with 1% solid content ion exchange water)
1.19 parts by mass Heptamethine dye (I-2) 0.66 parts by mass Methanol 30.00 parts by mass Distilled water 50.73 parts by mass
(中間層用の塗布液I1の調製)
-可視光反射率低減高屈折率塗布液-
水性ウレタン樹脂:ハイドランHW350
 (DIC(株)製、固形分30質量%)       11.77質量部
界面活性剤B:ナロアクティーCL-95
 (三洋化成工業(株)製、固形分1質量%イオン交換水希釈)
                           1.11質量部
架橋剤:カルボジライトV-02-L2
 (日清紡ケミカル(株)製、固形分濃度20質量%イオン交換水希釈)
                           7.56質量部
蒸留水                       73.27質量部
(Preparation of coating liquid I1 for intermediate layer)
-Visible light reflectance reduction high refractive index coating liquid-
Aqueous urethane resin: Hydran HW350
(Manufactured by DIC Corporation, solid content 30% by mass) 11.77 parts by mass Surfactant B: NAROACTY CL-95
(Manufactured by Sanyo Chemical Industry Co., Ltd., diluted with 1% solid content ion exchange water)
1.11 parts by weight crosslinking agent: Carbodilite V-02-L2
(Nisshinbo Chemical Co., Ltd., solid content concentration 20% by mass ion-exchanged water dilution)
7.56 parts by weight distilled water 73.27 parts by weight
(中間層用の塗布液I2の調製)
-可視光反射率低減低屈折率塗布液-
水性ウレタン樹脂:ハイドランHW350
 (DIC(株)製、固形分30質量%)        1.71質量部
中空シリカ粒子:スルーリア4110
 (平均粒子径60nm、日揮触媒化成(株)製、固形分20質量%)
                           3.16質量部
界面活性剤B:ナロアクティーCL-95
 (三洋化成工業(株)製、固形分1質量%イオン交換水希釈)
                           1.19質量部
メタノール                     26.84質量部
蒸留水                       67.10質量部
(Preparation of coating liquid I2 for intermediate layer)
-Low refractive index coating liquid with reduced visible light reflectance-
Aqueous urethane resin: Hydran HW350
(Manufactured by DIC Corporation, solid content 30% by mass) 1.71 parts by mass hollow silica particles: through rear 4110
(Average particle size 60 nm, JGC Catalysts & Chemicals Co., Ltd., solid content 20% by mass)
3.16 parts by mass Surfactant B: NAROACTY CL-95
(Manufactured by Sanyo Chemical Industry Co., Ltd., diluted with 1% solid content ion exchange water)
1.19 parts by weight Methanol 26.84 parts by weight Distilled water 67.10 parts by weight
(中間層用の塗布液I3の調製)
-可視光反射率低減高屈折率塗布液-
水性ウレタン樹脂:ハイドランHW350
 (DIC(株)製、固形分30質量%)       11.77質量部
ジルコニア微粒子:ナノユースZR-30BF
 (平均粒子径20nm、日産化学工業(株)製、固形分30質量%)
                           6.29質量部
界面活性剤B:ナロアクティーCL-95
 (三洋化成工業(株)製、固形分1質量%イオン交換水希釈)
                           1.11質量部
架橋剤:カルボジライトV-02-L2
 (日清紡ケミカル(株)製、固形分濃度20質量%イオン交換水希釈)
                           7.56質量部
蒸留水                       73.27質量部
(Preparation of coating liquid I3 for intermediate layer)
-Visible light reflectance reduction high refractive index coating liquid-
Aqueous urethane resin: Hydran HW350
(Manufactured by DIC Corporation, solid content: 30% by mass) 11.77 parts by mass of zirconia fine particles: Nanouse ZR-30BF
(Average particle size 20 nm, manufactured by Nissan Chemical Industries, Ltd., solid content 30% by mass)
6.29 parts by mass Surfactant B: NAROACTY CL-95
(Manufactured by Sanyo Chemical Industry Co., Ltd., diluted with 1% solid content ion exchange water)
1.11 parts by weight crosslinking agent: Carbodilite V-02-L2
(Nisshinbo Chemical Co., Ltd., solid content concentration 20% by mass ion-exchanged water dilution)
7.56 parts by weight distilled water 73.27 parts by weight
-色素水性分散液BD-10の調製-
 下記に示す構造のピロロピロール色素(D-10)3質量部と、DisperBYK2091(ビックケミー社製)2質量部とに、水を加え100質量部とした。これにさらに0.1mmφのジルコニアビーズを50質量部添加し、遊星型ボールミルにて300rpmで5時間処理を行い、ピロロピロール色素(D-10)微細粒子からなる色素水性分散液BD-10を作製した。その後、前記水分産物からビーズをろ過で分離除去した。得られた微細粒子を電子顕微鏡観察したところ、平均粒子径40nmの不定形微粒子であった。
Figure JPOXMLDOC01-appb-C000044
-Preparation of aqueous dye dispersion BD-10-
Water was added to 3 parts by mass of pyrrolopyrrole dye (D-10) having the structure shown below and 2 parts by mass of DisperBYK2091 (manufactured by Big Chemie) to make 100 parts by mass. Further, 50 parts by mass of 0.1 mmφ zirconia beads were added, and the mixture was treated with a planetary ball mill at 300 rpm for 5 hours to produce an aqueous dye dispersion BD-10 composed of pyrrolopyrrole dye (D-10) fine particles. did. Thereafter, beads were separated and removed from the water product by filtration. When the obtained fine particles were observed with an electron microscope, they were irregular fine particles having an average particle diameter of 40 nm.
Figure JPOXMLDOC01-appb-C000044
-色素水性分散液BD-28の調製-
 ピロロピロール色素(D-10)を下記に示す構造のピロロピロール色素(D-28)に変更した以外は、色素水性分散液BD-10と同様にして、色素水性分散液BD-28を調製した。得られた微細粒子を電子顕微鏡観察したところ、平均粒子径60nmの不定形微粒子であった。
-Preparation of aqueous dye dispersion BD-28-
A dye aqueous dispersion BD-28 was prepared in the same manner as the dye aqueous dispersion BD-10, except that the pyrrolopyrrole dye (D-10) was changed to a pyrrolopyrrole dye (D-28) having the structure shown below. . The obtained fine particles were observed with an electron microscope and found to be irregular fine particles having an average particle diameter of 60 nm.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
(赤外線吸収化合物含有用の塗布液D1の調製)
-赤外線吸収化合物含有高屈折率塗布液-
水性ウレタン樹脂:ハイドランHW350
 (DIC(株)製、固形分30質量%)        4.58質量部
界面活性剤B:ナロアクティーCL-95
 (三洋化成工業(株)製、固形分1質量%イオン交換水希釈)
                           1.19質量部
色素水溶性分散液BD-28              2.52質量部
メタノール                     25.94質量部
蒸留水                       64.63質量部
(Preparation of coating solution D1 for containing an infrared absorbing compound)
-High refractive index coating solution containing infrared absorbing compound-
Aqueous urethane resin: Hydran HW350
(Manufactured by DIC Corporation, solid content of 30% by mass) 4.58 parts by mass of surfactant B: NAROACTY CL-95
(Manufactured by Sanyo Chemical Industry Co., Ltd., diluted with 1% solid content ion exchange water)
1.19 parts by mass Dye water-soluble dispersion BD-28 2.52 parts by mass Methanol 25.94 parts by mass Distilled water 64.63 parts by mass
(赤外線吸収化合物含有用の塗布液D2の調製)
-赤外線吸収化合物含有低屈折率塗布液-
水性ウレタン樹脂:ハイドランHW350
 (DIC(株)製、固形分30質量%)        0.87質量部
中空シリカ粒子:スルーリア4110
 (平均粒子径60nm、日揮触媒化成(株)製、固形分20質量%)
                           3.16質量部
界面活性剤B:ナロアクティーCL-95
 (三洋化成工業(株)製、固形分1質量%イオン交換水希釈)
                           1.19質量部
色素水溶性分散液BD-28              2.52質量部
メタノール                     26.84質量部
蒸留水                       65.42質量部
(Preparation of coating solution D2 for containing an infrared absorbing compound)
-Infrared absorbing compound-containing low refractive index coating liquid-
Aqueous urethane resin: Hydran HW350
(Manufactured by DIC Corporation, solid content 30% by mass) 0.87 parts by mass Hollow silica particles: Through rear 4110
(Average particle size 60 nm, JGC Catalysts & Chemicals Co., Ltd., solid content 20% by mass)
3.16 parts by mass Surfactant B: NAROACTY CL-95
(Manufactured by Sanyo Chemical Industry Co., Ltd., diluted with 1% solid content ion exchange water)
1.19 parts by weight Dye water-soluble dispersion BD-28 2.52 parts by weight Methanol 26.84 parts by weight Distilled water 65.42 parts by weight
(赤外線吸収化合物含有用の塗布液D3の調製)
-赤外線吸収化合物含有高屈折率塗布液-
水性ウレタン樹脂:ハイドランHW350
 (DIC(株)製、固形分30質量%)        1.29質量部
ジルコニア微粒子:ナノユースZR-30BF
 (平均粒子径20nm、日産化学工業(株)製、固形分30質量%)
                           6.40質量部
界面活性剤B:ナロアクティーCL-95
 (三洋化成工業(株)製、固形分1質量%イオン交換水希釈)
                           1.19質量部
色素水溶性分散液BD-28              2.60質量部
メタノール                     26.84質量部
蒸留水                       65.36質量部
(Preparation of coating liquid D3 for containing infrared absorbing compound)
-High refractive index coating solution containing infrared absorbing compound-
Aqueous urethane resin: Hydran HW350
(Manufactured by DIC Corporation, solid content 30% by mass) 1.29 parts by mass of zirconia fine particles: nanouse ZR-30BF
(Average particle size 20 nm, manufactured by Nissan Chemical Industries, Ltd., solid content 30% by mass)
6. 40 parts by mass of surfactant B: NAROACTY CL-95
(Manufactured by Sanyo Chemical Industry Co., Ltd., diluted with 1% solid content ion exchange water)
1.19 parts by mass Dye water-soluble dispersion BD-28 2.60 parts by mass Methanol 26.84 parts by mass Distilled water 65.36 parts by mass
(赤外線吸収化合物含有用の塗布液D4の調製)
-赤外線吸収化合物含有低屈折率塗布液-
水性ウレタン樹脂:ハイドランHW350
 (DIC(株)製、固形分30質量%)        1.29質量部
中空シリカ粒子:スルーリア4110
 (平均粒子径60nm、日揮触媒化成(株)製、固形分20質量%)
                           3.16質量部
界面活性剤B:ナロアクティーCL-95
 (三洋化成工業(株)製、固形分1質量%イオン交換水希釈)
                           1.19質量部
色素水溶性分散液BD-28              1.26質量部
メタノール                     26.84質量部
蒸留水                       65.36質量部
(Preparation of coating liquid D4 for containing an infrared absorbing compound)
-Infrared absorbing compound-containing low refractive index coating liquid-
Aqueous urethane resin: Hydran HW350
(Manufactured by DIC Corporation, solid content 30% by mass) 1.29 parts by mass hollow silica particles: through rear 4110
(Average particle size 60 nm, JGC Catalysts & Chemicals Co., Ltd., solid content 20% by mass)
3.16 parts by mass Surfactant B: NAROACTY CL-95
(Manufactured by Sanyo Chemical Industry Co., Ltd., diluted with 1% solid content ion exchange water)
1.19 parts by mass Dye water-soluble dispersion BD-28 1.26 parts by mass Methanol 26.84 parts by mass Distilled water 65.36 parts by mass
(赤外線吸収化合物含有用の塗布液D5の調製)
-赤外線吸収化合物含有低屈折率塗布液-
水性ウレタン樹脂:ハイドランHW350
 (DIC(株)製、固形分30質量%)        0.45質量部
中空シリカ粒子:スルーリア4110
 (平均粒子径60nm、日揮触媒化成(株)製、固形分20質量%)
                           3.16質量部
界面活性剤B:ナロアクティーCL-95
 (三洋化成工業(株)製、固形分1質量%イオン交換水希釈)
                           1.19質量部
色素水溶性分散液BD-28              3.77質量部
メタノール                     26.84質量部
蒸留水                       64.59質量部
(Preparation of coating liquid D5 for containing an infrared absorbing compound)
-Infrared absorbing compound-containing low refractive index coating liquid-
Aqueous urethane resin: Hydran HW350
(DIC Co., Ltd., solid content: 30% by mass) 0.45 parts by mass Hollow silica particles: Through rear 4110
(Average particle size 60 nm, JGC Catalysts & Chemicals Co., Ltd., solid content 20% by mass)
3.16 parts by mass Surfactant B: NAROACTY CL-95
(Manufactured by Sanyo Chemical Industry Co., Ltd., diluted with 1% solid content ion exchange water)
1.19 parts by mass Dye water-soluble dispersion BD-28 3.77 parts by mass Methanol 26.84 parts by mass Distilled water 64.59 parts by mass
(赤外線吸収化合物含有用の塗布液D6の調製)
-赤外線吸収化合物含有高屈折率塗布液-
水性ウレタン樹脂:ハイドランHW350
 (DIC(株)製、固形分30質量%)        1.29質量部
ジルコニア微粒子:ナノユースZR-30BF
 (平均粒子径20nm、日産化学工業(株)製、固形分30質量%)
                           6.40質量部
界面活性剤B:ナロアクティーCL-95
 (三洋化成工業(株)製、固形分1質量%イオン交換水希釈)
                           1.19質量部
色素水溶性分散液BD-10              2.60質量部
メタノール                     26.84質量部
蒸留水                       65.36質量部
(Preparation of coating liquid D6 for containing infrared absorbing compound)
-High refractive index coating solution containing infrared absorbing compound-
Aqueous urethane resin: Hydran HW350
(Manufactured by DIC Corporation, solid content 30% by mass) 1.29 parts by mass of zirconia fine particles: nanouse ZR-30BF
(Average particle size 20 nm, manufactured by Nissan Chemical Industries, Ltd., solid content 30% by mass)
6. 40 parts by mass of surfactant B: NAROACTY CL-95
(Manufactured by Sanyo Chemical Industry Co., Ltd., diluted with 1% solid content ion exchange water)
1.19 parts by mass Dye water-soluble dispersion BD-10 2.60 parts by mass Methanol 26.84 parts by mass Distilled water 65.36 parts by mass
(赤外線吸収化合物含有用の塗布液D7の調製)
-赤外線吸収化合物含有低屈折率塗布液-
水性ウレタン樹脂:ハイドランHW350
 (DIC(株)製、固形分30質量%)        0.87質量部
中空シリカ粒子:スルーリア4110
 (平均粒子径60nm、日揮触媒化成(株)製、固形分20質量%)
                           3.16質量部
界面活性剤B:ナロアクティーCL-95
 (三洋化成工業(株)製、固形分1質量%イオン交換水希釈)
                           1.19質量部
色素水溶性分散液BD-10              2.52質量部
メタノール                     26.84質量部
蒸留水                       65.42質量部
(Preparation of coating solution D7 for containing infrared absorbing compound)
-Infrared absorbing compound-containing low refractive index coating liquid-
Aqueous urethane resin: Hydran HW350
(Manufactured by DIC Corporation, solid content 30% by mass) 0.87 parts by mass Hollow silica particles: Through rear 4110
(Average particle size 60 nm, JGC Catalysts & Chemicals Co., Ltd., solid content 20% by mass)
3.16 parts by mass Surfactant B: NAROACTY CL-95
(Manufactured by Sanyo Chemical Industry Co., Ltd., diluted with 1% solid content ion exchange water)
1.19 parts by weight Dye water-soluble dispersion BD-10 2.52 parts by weight Methanol 26.84 parts by weight Distilled water 65.42 parts by weight
(赤外線吸収化合物含有用の塗布液D8の調製)
-赤外線吸収化合物含有低屈折率塗布液-
水性ウレタン樹脂:ハイドランHW350
 (DIC(株)製、固形分30質量%)        1.29質量部
中空シリカ粒子:スルーリア4110
 (平均粒子径60nm、日揮触媒化成(株)製、固形分20質量%)
                           3.16質量部
界面活性剤B:ナロアクティーCL-95
 (三洋化成工業(株)製、固形分1質量%イオン交換水希釈)
                           1.19質量部
色素水溶性分散液BD-10              1.26質量部
メタノール                     26.84質量部
蒸留水                       65.36質量部
(Preparation of coating solution D8 for containing infrared absorbing compound)
-Infrared absorbing compound-containing low refractive index coating liquid-
Aqueous urethane resin: Hydran HW350
(Manufactured by DIC Corporation, solid content 30% by mass) 1.29 parts by mass hollow silica particles: through rear 4110
(Average particle size 60 nm, JGC Catalysts & Chemicals Co., Ltd., solid content 20% by mass)
3.16 parts by mass Surfactant B: NAROACTY CL-95
(Manufactured by Sanyo Chemical Industry Co., Ltd., diluted with 1% solid content ion exchange water)
1.19 parts by mass Dye water-soluble dispersion BD-10 1.26 parts by mass Methanol 26.84 parts by mass Distilled water 65.36 parts by mass
(下層用の塗布液U1の調製)
-可視光反射率低減高屈折率塗布液-
水性ウレタン樹脂:ハイドランHW350
 (DIC(株)製、固形分30質量%)       11.77質量部
界面活性剤B:ナロアクティーCL-95
 (三洋化成工業(株)製、固形分1質量%イオン交換水希釈)
                           1.11質量部
架橋剤:カルボジライトV-02-L2
 (日清紡ケミカル(株)製、固形分濃度20質量%イオン交換水希釈)
                           7.56質量部
蒸留水                       73.27質量部
(Preparation of coating solution U1 for the lower layer)
-Visible light reflectance reduction high refractive index coating liquid-
Aqueous urethane resin: Hydran HW350
(Manufactured by DIC Corporation, solid content 30% by mass) 11.77 parts by mass Surfactant B: NAROACTY CL-95
(Manufactured by Sanyo Chemical Industry Co., Ltd., diluted with 1% solid content ion exchange water)
1.11 parts by weight crosslinking agent: Carbodilite V-02-L2
(Nisshinbo Chemical Co., Ltd., solid content concentration 20% by mass ion-exchanged water dilution)
7.56 parts by weight distilled water 73.27 parts by weight
(下層用の塗布液U2の調製)
-可視光反射率低減低屈折率塗布液-
水性ウレタン樹脂:ハイドランHW350
 (DIC(株)製、固形分30質量%)        1.71質量部
中空シリカ粒子:スルーリア4110
 (平均粒子径60nm、日揮触媒化成(株)製、固形分20質量%)
                           3.16質量部
界面活性剤B:ナロアクティーCL-95
 (三洋化成工業(株)製、固形分1質量%イオン交換水希釈)
                           1.19質量部
メタノール                     26.84質量部
蒸留水                       67.10質量部
(Preparation of coating liquid U2 for the lower layer)
-Low refractive index coating liquid with reduced visible light reflectance-
Aqueous urethane resin: Hydran HW350
(Manufactured by DIC Corporation, solid content 30% by mass) 1.71 parts by mass hollow silica particles: through rear 4110
(Average particle size 60 nm, JGC Catalysts & Chemicals Co., Ltd., solid content 20% by mass)
3.16 parts by mass Surfactant B: NAROACTY CL-95
(Manufactured by Sanyo Chemical Industry Co., Ltd., diluted with 1% solid content ion exchange water)
1.19 parts by weight Methanol 26.84 parts by weight Distilled water 67.10 parts by weight
(保護層用塗布液O1の調製)
コロイド状シリカ微粒子:スノーテックスXL(平均粒子径50nm)
(日産化学工業(株)製、固形分10質量%蒸留水希釈)
                         0.0033質量部
コロイド状シリカ微粒子分散物A           0.079質量部
アクリルポリマー水分散物:AS-563A
 (ダイセルファインケム(株)製、固形分27.5質量%)
                           0.13質量部
ワックス:セロゾール524
(中京油脂(株)製、固形分3質量%蒸留水希釈)    0.78質量部
架橋剤:カルボジライトV-02-L2
 (日清紡ケミカル(株)製、固形分濃度20質量%蒸留水希釈)
                           0.46質量部
界面活性剤A:リパール870P
(ライオン(株)製、固形分1質量%蒸留水希釈)    0.63質量部
界面活性剤B:ナロアクティーCL-95
 (三洋化成工業(株)製、固形分1質量%蒸留水希釈) 0.87質量部
ウレタンポリマー水溶液:オレスターUD350
 (三井化学(株)製、固形分38質量%)       1.12質量部
蒸留水                       95.93質量部
(Preparation of protective layer coating solution O1)
Colloidal silica fine particles: Snowtex XL (average particle size 50 nm)
(Nissan Chemical Industry Co., Ltd., diluted with 10% solids by distilled water)
0.0033 parts by mass Colloidal silica fine particle dispersion A 0.079 parts by mass Acrylic polymer aqueous dispersion: AS-563A
(Daicel Finechem Co., Ltd., solid content 27.5% by mass)
0.13 parts by weight wax: cellosol 524
(Manufactured by Chukyo Yushi Co., Ltd., diluted with 3% solids by distilled water) 0.78 parts by mass Crosslinker: Carbodilite V-02-L2
(Nisshinbo Chemical Co., Ltd., diluted with distilled water with a solid concentration of 20% by mass)
0.46 parts by mass of surfactant A: Lipal 870P
(Manufactured by Lion Corporation, diluted with distilled water at a solid content of 1% by mass) 0.63 parts by mass of surfactant B: NAROACTY CL-95
(Manufactured by Sanyo Chemical Industries, Ltd., diluted with distilled water with a solid content of 1% by mass) 0.87 parts by mass Urethane polymer aqueous solution: Olester UD350
(Mitsui Chemicals, Inc., solid content 38% by mass) 1.12 parts by mass distilled water 95.93 parts by mass
-コロイド状シリカ微粒子分散物Aの調製-
 平均一次粒子径40nmのコロイド状シリカ微粒子であるアエロジルOX-50(日本アエロジル(株)製)0.10kgをSUS304製の容器に計量し、イオン交換水0.9kgを添加して、卓上型クイックホモミキサーLR-1(みづほ工業(株)製)を用いて3000rpmで60分間の粗分散を行った。引き続き、BRANSON社製(販売元:日本エマソン(株)ブランソン事業部)の超音波発振器(型式S-8540-12、40kHz)を備えた超音波分散槽に移して設定出力80%で4時間の分散を行って、固形分10質量%のコロイド状シリカ微粒子分散物Aを調製した。
 レーザー回折/散乱式粒子径分布測定装置LA-920((株)堀場製作所製)を用い、相対屈折率設定値を140a0001に設定して測定を行ったところ、平均粒子径は165nmであった。
-Preparation of colloidal silica fine particle dispersion A-
0.10 kg of Aerosil OX-50 (manufactured by Nippon Aerosil Co., Ltd.), a colloidal silica fine particle with an average primary particle diameter of 40 nm, is weighed into a SUS304 container, 0.9 kg of ion-exchanged water is added, and a desktop quick Using a homomixer LR-1 (manufactured by Mizuho Kogyo Co., Ltd.), coarse dispersion was performed at 3000 rpm for 60 minutes. Subsequently, it was transferred to an ultrasonic dispersion vessel equipped with an ultrasonic oscillator (model S-8540-12, 40 kHz) manufactured by BRANSON (distributor: Nihon Emerson Co., Ltd., Branson Division) for 4 hours at a set output of 80%. Dispersion was performed to prepare a colloidal silica fine particle dispersion A having a solid content of 10% by mass.
Measurement was performed using a laser diffraction / scattering particle size distribution measuring apparatus LA-920 (manufactured by Horiba, Ltd.) with the relative refractive index setting value set to 140a0001, and the average particle diameter was 165 nm.
(裏面第1層用塗布液B1の調製)
-金属酸化物粒子含有遮熱層-
ITO粒子分散液:PI-3
(三菱マテリアル電子化成(株)製、固形分40質量%、ITO含有量28
%)                          100質量部
(Preparation of back surface first layer coating solution B1)
-Thermal barrier layer containing metal oxide particles-
ITO particle dispersion: PI-3
(Mitsubishi Materials Electronics Chemical Co., Ltd., solid content 40% by mass, ITO content 28
%) 100 parts by mass
ITO塗料PI-3(三菱マテリアル化成(株)製)は、ITO(スズドープインジウム酸化物)、分散剤、ポリアクリレート、開始剤、トルエン、4-ヒドロキシ-4-メチル-2-ペンタノン、2-メチル-1-プロパノール、エタノールを主成分とする熱線カット塗料である。ITO含有量は28質量%である。 ITO paint PI-3 (Mitsubishi Materials Kasei Co., Ltd.) is made of ITO (tin-doped indium oxide), dispersant, polyacrylate, initiator, toluene, 4-hydroxy-4-methyl-2-pentanone, 2- It is a heat ray-cut paint mainly composed of methyl-1-propanol and ethanol. The ITO content is 28% by mass.
-熱線遮蔽材101の作製-
 支持体となるロール形態のPETフィルム(東洋紡(株)製コスモシャインA4300、幅:1320mm、厚み:75μm、両面易接着層処理、屈折率1.66)を15m/分の速度で搬送し、支持体の片面上に赤外線吸収化合物含有層用の塗布液D2をワイヤーバーを用いて10.6cc/mとなるように塗布し、130℃で乾燥処理を施して、赤外線吸収化合物含有層を設けた。塗布乾燥後の膜厚は205nmで、屈折率は1.40であった。赤外線吸収化合物含有層中の赤外線吸収化合物の含有密度(表1中では色素密度と表現)は、0.20g/cmであった。なお、前記赤外線吸収化合物含有層における前記赤外線化合物の含有密度は、赤外線吸収化合物含有層の厚みと、塗布液中の固形分量中の赤外線吸収化合物の含有量から算出して求めた。
-Production of heat ray shielding material 101-
A roll-shaped PET film (Cosmo Shine A4300 manufactured by Toyobo Co., Ltd., width: 1320 mm, thickness: 75 μm, double-sided easy-adhesive layer treatment, refractive index: 1.66) is conveyed at a speed of 15 m / min and supported. The infrared absorbing compound-containing layer coating solution D2 is applied on one side of the body using a wire bar to 10.6 cc / m 2 and dried at 130 ° C. to provide an infrared absorbing compound-containing layer. It was. The film thickness after coating and drying was 205 nm and the refractive index was 1.40. The density of the infrared absorbing compound in the infrared absorbing compound-containing layer (expressed as dye density in Table 1) was 0.20 g / cm 3 . The content density of the infrared compound in the infrared absorbing compound-containing layer was calculated from the thickness of the infrared absorbing compound-containing layer and the content of the infrared absorbing compound in the solid content in the coating solution.
 赤外線吸収化合物含有層の塗布乾燥に続けて、赤外線吸収化合物含有層上に塗布液I1をワイヤーバーを用いて5.30cc/mとなるように塗布し、140℃で乾燥処理を施して、中間層を設けた。塗布乾燥後の膜厚は200nmで、屈折率は1.60であった。中間層の塗布後、23±2℃、70±5%RHの温湿度条件下で塗布済支持体を巻き取り、ロール形態の塗布済フィルムAを得た。 Following the coating and drying of the infrared absorbing compound-containing layer, the coating liquid I1 is applied on the infrared absorbing compound-containing layer so as to be 5.30 cc / m 2 using a wire bar, and subjected to a drying treatment at 140 ° C., An intermediate layer was provided. The film thickness after coating and drying was 200 nm, and the refractive index was 1.60. After the application of the intermediate layer, the coated support was wound up under the temperature and humidity conditions of 23 ± 2 ° C. and 70 ± 5% RH to obtain a coated film A in roll form.
 次いで、ロール形態の塗布済フィルムAを15m/分の速度で搬送し、中間層上に金属粒子含有層の塗布液M1をワイヤーバーを用いて10.6cc/mとなるように塗布し、140℃で乾燥処理を施して、銀平板粒子を含む金属粒子含有層を設けた。塗布乾燥後の膜厚は10nmであった。
 金属粒子含有層の塗布乾燥に続けて、金属粒子含有層上に保護層の塗布液O1をワイヤーバーを用いて5.30cc/mとなるように塗布し、135℃で乾燥処理を施してオーバーコート層(保護層)を設けた。
 塗布乾燥後の膜厚は33nmで、屈折率は1.51であった。保護層の塗布後、23±2℃、相対湿度55±5%の温湿度条件下で塗布済支持体を巻き取り、ロール形態の塗布済フィルムBを得た。巻取長は2200mであった。
Next, the coated film A in roll form is conveyed at a speed of 15 m / min, and the coating liquid M1 of the metal particle-containing layer is applied on the intermediate layer so as to be 10.6 cc / m 2 using a wire bar. A drying treatment was performed at 140 ° C. to provide a metal particle-containing layer containing silver tabular grains. The film thickness after coating and drying was 10 nm.
Following the coating and drying of the metal particle-containing layer, the protective layer coating solution O1 is applied onto the metal particle-containing layer using a wire bar so as to be 5.30 cc / m 2, and a drying treatment is performed at 135 ° C. An overcoat layer (protective layer) was provided.
The film thickness after coating and drying was 33 nm and the refractive index was 1.51. After application of the protective layer, the coated support was wound under temperature and humidity conditions of 23 ± 2 ° C. and relative humidity 55 ± 5% to obtain a coated film B in roll form. The winding length was 2200 m.
 前記塗布済フィルムBの赤外線吸収化合物含有層から保護層が塗布された面とは反対の面(裏面)に、裏面第1層の塗布液B1をスロットダイ塗工方式を用いて塗布乾燥UV硬化後の膜厚が1.5μmとなるように塗布し、90℃で乾燥処理を施した。次いで、乾燥した塗布層に対して160W/cmのメタルハライドランプ(アイグラフィックス(株)製)を用いて、大気圧下で300mJ/cmの紫外線を照射することにより樹脂を硬化させて、金属酸化物粒子含有層(裏面第1層)を設けた。 On the surface (back surface) opposite to the surface coated with the protective layer from the infrared absorbing compound-containing layer of the coated film B, the back surface first layer coating solution B1 is applied and dried using a slot die coating method. It apply | coated so that a film thickness after that might be set to 1.5 micrometers, and the drying process was performed at 90 degreeC. Next, the dried coating layer was cured by irradiating 300 mJ / cm 2 of ultraviolet rays under atmospheric pressure using a 160 W / cm metal halide lamp (manufactured by Eye Graphics Co., Ltd.). An oxide particle-containing layer (back surface first layer) was provided.
 裏面第1層の塗布乾燥に続けて、裏面第1層上に裏面第2層の塗布液B2をスロットダイ塗工方式を用いて塗布乾燥UV硬化後の膜厚が3μmになるように塗布し、80℃で乾燥処理を施した。次いで、乾燥した塗布層に対して160W/cmの高圧水銀灯(アイグラフィックス(株)製)を用いて大気圧下で500mJ/cmの紫外線を照射することにより樹脂を硬化させて、金属酸化物粒子含有層(裏面第1層)上に3μmのハードコート層(裏面第2層)を設けた。このようにして、屈折率が1.66であるハードコート層を得た。 Following the coating and drying of the back surface first layer, the back surface second layer coating solution B2 is applied onto the back surface first layer using a slot die coating method so that the film thickness after coating and drying UV curing is 3 μm. And a drying treatment at 80 ° C. Next, the dried coating layer is irradiated with 500 mJ / cm 2 of ultraviolet light under atmospheric pressure using a 160 W / cm high-pressure mercury lamp (manufactured by Eye Graphics Co., Ltd.), and metal oxidation is performed. A 3 μm hard coat layer (back surface second layer) was provided on the product particle-containing layer (back surface first layer). In this way, a hard coat layer having a refractive index of 1.66 was obtained.
 このようにして、熱線遮熱材である実施例101の試料を作製した。なお、前記の平均厚みは、レーザー顕微鏡VK-8510((株)キーエンス製)を用いて塗布前と塗布後の差を厚みとして測定する方法、熱線遮蔽材の断面をSEMあるいはTEMで観察することにより算出する方法、FIB-TEM法で断面切削加工および観察を行って算出する方法、反射スペクトルを測定してフィッティングにより算出する方法を適宜使用した。また、支持体となるフィルムに対象層を1層だけ塗布して観察する手法も適宜使用した。10点測定の平均値を対象層の膜厚とした。 In this way, a sample of Example 101 which is a heat ray heat shielding material was produced. The average thickness is determined by measuring the difference between before and after coating as a thickness using a laser microscope VK-8510 (manufactured by Keyence Co., Ltd.), and observing the cross section of the heat ray shielding material with SEM or TEM. The method of calculating by the above, the method of calculating by performing cross-section cutting and observation by the FIB-TEM method, and the method of measuring the reflection spectrum and calculating by fitting were used as appropriate. Moreover, the method of apply | coating and observing only one object layer to the film used as a support body was also used suitably. The average value of 10-point measurement was taken as the thickness of the target layer.
-熱線遮蔽材104の作製-
 支持体となるロール形態のPETフィルム(東洋紡(株)製コスモシャインA4300、幅:1320mm、厚み:75μm、両面易接着層処理)を15m/分の速度で搬送し、支持体の片面上に下層用の塗布液U1をワイヤーバーを用いて6.9cc/mとなるように塗布し、140℃で乾燥処理を施して、下層を設けた。塗布乾燥後の膜厚は132nmで、屈折率は1.85であった。
-Production of heat ray shielding material 104-
A roll-shaped PET film (Cosmo Shine A4300 manufactured by Toyobo Co., Ltd., width: 1320 mm, thickness: 75 μm, double-sided easy-adhesive layer treatment) is conveyed at a speed of 15 m / min, and a lower layer is formed on one side of the support. The coating liquid U1 was applied using a wire bar to 6.9 cc / m 2 and dried at 140 ° C. to provide a lower layer. The film thickness after coating and drying was 132 nm, and the refractive index was 1.85.
 下層の塗布乾燥に続けて、下層上に赤外線吸収化合物含有層用の塗布液D2をワイヤーバーを用いて5.3cc/mとなるように塗布し、130℃で乾燥処理を施して、赤外線吸収化合物含有層を設けた。塗布乾燥後の膜厚は102nmで、屈折率は1.40であった。 Following the coating and drying of the lower layer, the coating solution D2 for the infrared absorbing compound-containing layer is coated on the lower layer so as to be 5.3 cc / m 2 using a wire bar, and dried at 130 ° C. An absorbing compound-containing layer was provided. The film thickness after coating and drying was 102 nm and the refractive index was 1.40.
 赤外線吸収化合物含有層の塗布乾燥に続けて、赤外線吸収化合物含有層上に第1の中間層用の塗布液I3をワイヤーバーを用いて塗布乾燥後の膜厚が135nmとなるように塗布し、140℃で乾燥処理を施した。乾燥後、第2の中間層用の塗布液I2をワイヤーバーを用いて塗布乾燥後の膜厚が102nmとなるように塗布し、140℃で乾燥処理を施した。乾燥後、さらに、第3の中間層用の塗布液I3をワイヤーバーを用いて塗布乾燥後の膜厚が185nmとなるように塗布し、140℃で乾燥処理を施すことで中間層3層を形成した。中間層3層の塗布後、23±2℃、相対湿度70±5%の温湿度条件下で塗布済支持体を巻き取り、ロール形態の塗布済フィルムCを得た。 Following the coating and drying of the infrared absorbing compound-containing layer, the coating solution I3 for the first intermediate layer is applied onto the infrared absorbing compound-containing layer using a wire bar so that the film thickness after coating and drying is 135 nm, A drying treatment was performed at 140 ° C. After drying, the coating liquid I2 for the second intermediate layer was applied using a wire bar so that the film thickness after coating and drying was 102 nm, and a drying treatment was performed at 140 ° C. After drying, further, the third intermediate layer coating solution I3 is applied using a wire bar so that the film thickness after coating and drying is 185 nm, and is subjected to a drying treatment at 140 ° C. to form three intermediate layers. Formed. After the three intermediate layers were coated, the coated support was wound up under temperature and humidity conditions of 23 ± 2 ° C. and a relative humidity of 70 ± 5% to obtain a coated film C in roll form.
 次いで、ロール形態の塗布済フィルムCを15m/分の速度で搬送し、中間層上に金属粒子含有層の塗布液M1をワイヤーバーを用いて10.6cc/mとなるように塗布し、140℃で乾燥処理を施して、銀平板粒子を含む金属粒子含有層を設けた。塗布乾燥後の膜厚は10nmであった。
 金属粒子含有層の塗布乾燥に続けて、金属粒子含有層上に保護層の塗布液O1をワイヤーバーを用いて5.30cc/mとなるように塗布し、135℃で乾燥処理を施してオーバーコート層(保護層)を設けた。
 塗布乾燥後の膜厚は33nmで、屈折率は1.51であった。保護層の塗布後、23±2℃、相対湿度55±5%の温湿度条件下で塗布済支持体を巻き取り、ロール形態の塗布済フィルムBを得た。巻取長は2200mであった。
Next, the coated film C in roll form is conveyed at a speed of 15 m / min, and the coating liquid M1 of the metal particle-containing layer is applied onto the intermediate layer so as to be 10.6 cc / m 2 using a wire bar, A drying treatment was performed at 140 ° C. to provide a metal particle-containing layer containing silver tabular grains. The film thickness after coating and drying was 10 nm.
Following the coating and drying of the metal particle-containing layer, the protective layer coating solution O1 is applied onto the metal particle-containing layer using a wire bar so as to be 5.30 cc / m 2, and a drying treatment is performed at 135 ° C. An overcoat layer (protective layer) was provided.
The film thickness after coating and drying was 33 nm and the refractive index was 1.51. After application of the protective layer, the coated support was wound under temperature and humidity conditions of 23 ± 2 ° C. and relative humidity 55 ± 5% to obtain a coated film B in roll form. The winding length was 2200 m.
 前記塗布済フィルムBの赤外線吸収化合物含有層から保護層が塗布された面とは反対の面(裏面)に、裏面第1層の塗布液B1をスロットダイ塗工方式を用いて塗布乾燥UV硬化後の膜厚が1.5μmとなるように塗布し、90℃で乾燥処理を施した。次いで、乾燥した塗布層に対して160W/cmのメタルハライドランプ(アイグラフィックス(株)製)を用いて、大気圧下で300mJ/cmの紫外線を照射することにより樹脂を硬化させて、金属酸化物粒子含有層(裏面第1層)を設け、23±2℃、55±5%RHの温湿度条件下で巻き取った。このようにして、熱線遮蔽材104を作製した。 On the surface (back surface) opposite to the surface coated with the protective layer from the infrared absorbing compound-containing layer of the coated film B, the back surface first layer coating solution B1 is applied and dried using a slot die coating method. It apply | coated so that a film thickness after that might be set to 1.5 micrometers, and the drying process was performed at 90 degreeC. Next, the dried coating layer was cured by irradiating 300 mJ / cm 2 of ultraviolet rays under atmospheric pressure using a 160 W / cm metal halide lamp (manufactured by Eye Graphics Co., Ltd.). An oxide particle-containing layer (back surface first layer) was provided, and wound up under temperature and humidity conditions of 23 ± 2 ° C. and 55 ± 5% RH. Thus, the heat ray shielding material 104 was produced.
-その他の実施例、比較例の熱線遮蔽材の作製-
 熱線遮蔽材101の作製、または熱線遮蔽材104の作製と同様の要領で各種塗布液を用い、下記表1に示した層構成で、下記表1の支持体欄から左側の層を順次、下記表1の順番で形成し、各実施例、各比較例の熱線遮蔽材を作製した。各塗布膜厚の調整はワイヤーバー塗布時の1m当たりの塗布液体積量の調整、および/または、各塗布液に用いられる蒸留水の添加量の調整により行った。なお、各実施例、各比較例は保護層、裏面第1層、裏面第2層、下層を実施例と同様の要領で設けている。また、下記表1中、第1中間層、第2中間層、第3中間層は便宜上、名付けてあるものであり、第3中間層のみを有する場合も当然ながら本発明の態様に含まれる。
-Preparation of heat ray shielding materials for other examples and comparative examples-
In the same manner as the production of the heat ray shielding material 101 or the production of the heat ray shielding material 104, various coating liquids are used. It formed in the order of Table 1, and produced the heat ray shielding material of each Example and each comparative example. Adjustment of each coating film thickness was performed by adjusting the volume of coating solution per 1 m 2 during wire bar coating and / or adjusting the amount of distilled water used in each coating solution. In each example and each comparative example, a protective layer, a first back layer, a second back layer, and a lower layer are provided in the same manner as in the examples. In Table 1 below, the first intermediate layer, the second intermediate layer, and the third intermediate layer are named for convenience, and the case of having only the third intermediate layer is also included in the aspect of the present invention.
―平板状金属粒子の面配向性評価―
 実施例、比較例で作成した熱線遮蔽材の断面切片サンプルをそれぞれ作成し、TEM観察により平板状金属粒子の面配向性を評価した。結果、比較例4、比較例5以外のサンプルでは、金属粒子含有層中の平板状金属粒子の面配向は0°~±10°以内であった。比較例4、比較例5の平板状金属粒子の面配向はそれぞれ、0°~±22°、0°~±17°であった。
-Evaluation of plane orientation of flat metal particles-
The cross-section sample of the heat ray shielding material produced by the Example and the comparative example was each created, and the plane orientation of the flat metal particle was evaluated by TEM observation. As a result, in the samples other than Comparative Example 4 and Comparative Example 5, the plane orientation of the flat metal particles in the metal particle-containing layer was within 0 ° to ± 10 °. The plane orientations of the flat metal particles of Comparative Example 4 and Comparative Example 5 were 0 ° to ± 22 ° and 0 ° to ± 17 °, respectively.
<熱線遮蔽材の評価>
(熱線遮蔽材の光学特性評価)
-遮蔽係数0.715における可視光透過率-
 光学特性として、JIS A 5759に記載の可視光透過率試験と遮蔽係数試験により求められる可視光透過率(VLT)と遮蔽係数(SC)を評価した。評価に必要な分光透過率や分光反射率の測定方法はJIS R 3106に記載の方法で行った。
<Evaluation of heat ray shielding material>
(Evaluation of optical properties of heat shielding material)
-Visible light transmittance at a shielding factor of 0.715-
As optical characteristics, a visible light transmittance (VLT) and a shielding coefficient (SC) obtained by a visible light transmittance test and a shielding coefficient test described in JIS A 5759 were evaluated. The measuring method of the spectral transmittance and the spectral reflectance necessary for the evaluation was performed by the method described in JIS R 3106.
 熱線遮蔽材試料101において、金属粒子含有層形成時の塗布量を変化させると熱線遮蔽材のVLT値とSC値が一定の関係を持って変化する。金属粒子含有層の塗布量を増やすと、VLT値は下がり、SC値は小さくなる(これは透過光量が減って暗くなると共に熱線遮蔽能力が上がることを示す)。すなわち、被検試料間の比較に際しては、SC値を同じにしてVLT値を比較する(あるいはVLT値を同じにしてSC値を比較する)必要がある。このために、金属粒子含有層の塗布量を適宜変化させることにより複数の熱線遮蔽材試料群を作製して個々の試料のVLT値とSC値を求め、VLTとSCをそれぞれ横軸と縦軸に取り熱線遮蔽材試料群のデータをプロットして得られる関数(近似曲線)により、所望のSC値におけるVLT値を求める。これにより正当な評価を行うことができる。 In the heat ray shielding material sample 101, when the coating amount at the time of forming the metal particle-containing layer is changed, the VLT value and the SC value of the heat ray shielding material change with a certain relationship. When the coating amount of the metal particle-containing layer is increased, the VLT value decreases and the SC value decreases (this indicates that the amount of transmitted light decreases to darken and the heat ray shielding ability increases). That is, when comparing between test samples, it is necessary to compare the VLT value with the same SC value (or compare the SC value with the same VLT value). For this purpose, a plurality of heat ray shielding material sample groups are prepared by appropriately changing the coating amount of the metal particle-containing layer, and the VLT value and SC value of each sample are obtained. Then, a VLT value at a desired SC value is obtained by a function (approximate curve) obtained by plotting data of the heat ray shielding material sample group. Thereby, a valid evaluation can be performed.
 以下、被検サンプルの作製方法について説明する。
 熱線遮蔽材試料101(実施例101)の熱線遮蔽材試料群に対して、それぞれの保護層表面を清浄にした後、粘着材(粘着層)を貼り合わせた。粘着材としてパナック(株)製パナクリーンPD-S1(粘着層25μm)を使用して、軽剥離セパレータ(シリコーンコートPET)を剥がして保護層表面に貼り合わせた。PD-S1の他方の重剥離セパレータ(シリコーンコートPET)を剥がし、フィルム施工液であるリアルパーフェクト(リンテック(株)製)の0.5質量%希釈液を使用してソーダ石灰珪酸塩ガラス(板ガラス厚み:3mm)と貼り合わせて光学特性の評価を行った。なお、前記板ガラスはイソプロピルアルコールで汚れを拭き取って自然乾燥したものを使用し、貼り合わせ時、25℃65%RHの環境下で、ゴムローラーを用いて0.5kg/cmの面圧で圧着した。これらの熱線遮蔽材試料群(ガラス貼り合わせ済)を被検試料とした。
Hereinafter, a method for producing a test sample will be described.
After the surface of each protective layer was cleaned with respect to the heat ray shielding material sample group of the heat ray shielding material sample 101 (Example 101), an adhesive material (adhesive layer) was bonded. Using Panaclean PD-S1 (adhesive layer 25 μm) manufactured by Panac Co., Ltd. as the adhesive, the light release separator (silicone-coated PET) was peeled off and bonded to the surface of the protective layer. The other heavy release separator (silicone-coated PET) of PD-S1 is peeled off, and a soda-lime silicate glass (sheet glass) using a 0.5% by weight diluted solution of Real Perfect (manufactured by Lintec Co., Ltd.), which is a film construction solution. (Thickness: 3 mm) and optical characteristics were evaluated. In addition, the said plate glass uses the thing which wiped off the dirt with isopropyl alcohol, and dried naturally, and when bonded, it is pressure-bonded with a surface pressure of 0.5 kg / cm 2 using a rubber roller in an environment of 25 ° C. and 65% RH. did. These heat ray shielding material sample groups (glass bonded) were used as test samples.
 金属粒子含有層を形成時の塗布量によって熱線遮蔽材の可視光透過率と遮蔽係数を変化させることができる。各実施例、各比較例において、各実施例および比較例の平板状金属粒子含有液を含む金属粒子含有層用の塗布液の塗布量を変化させて多数の熱線遮蔽材を作製し、以下の方法で可視光透過率と遮蔽係数を算出した。 The visible light transmittance and shielding coefficient of the heat ray shielding material can be changed depending on the amount of coating at the time of forming the metal particle-containing layer. In each example and each comparative example, a large number of heat ray shielding materials were produced by changing the coating amount of the coating solution for the metal particle-containing layer including the plate-like metal particle-containing solution of each example and comparative example. The visible light transmittance and the shielding coefficient were calculated by the method.
 各実施例、比較例において作製した熱線遮蔽材の透過スペクトル、反射スペクトルは紫外可視近赤外分光機(日本分光社製、V-670、積分球ユニットISN-723使用)を用いて測定し、JIS R 3106、JIS A 5759に従って可視光透過率、遮蔽係数を算定した。 The transmission spectrum and reflection spectrum of the heat ray shielding material prepared in each example and comparative example were measured using an ultraviolet-visible-near infrared spectrometer (manufactured by JASCO Corporation, V-670, using integrating sphere unit ISN-723). Visible light transmittance and shielding factor were calculated according to JIS R 3106 and JIS A 5759.
(1)可視光透過率
 各熱線遮蔽材について、380nm~780nmまで測定した各波長の透過率を、各波長の分光視感度により補正することで算出した。
(1) Visible light transmittance For each heat ray shielding material, the transmittance of each wavelength measured from 380 nm to 780 nm was calculated by correcting the transmittance with the spectral visibility of each wavelength.
(2)遮蔽係数の測定方法
 各熱線遮蔽材について、300nm~2500nmまで測定した各波長の透過率から、JISA5759記載の方法に基づき算出した。
(2) Measuring method of shielding coefficient Each heat ray shielding material was calculated from the transmittance of each wavelength measured from 300 nm to 2500 nm based on the method described in JISA5759.
 得られた可視光透過率と遮蔽係数を基に、x軸を可視光透過率(単位%)、y軸を遮蔽係数(単位なし)として、可視光透過率と遮蔽係数の関係をプロットしたグラフを作成した。
 プロットを一次曲線(直線)に近似し、得られた一次曲線で内挿して、ある遮蔽係数での可視光透過率の値(単位%)を求めた。本明細書中では、遮蔽係数0.715における可視光透過率を光学特性の評価に用いた。
 得られた結果を下記表に記載した。なお、下記表中の「可視光透過率」は、遮蔽係数0.715における可視光透過率を表す。
 また、得られた遮蔽係数0.715における可視光透過率(VLT)を以下の基準で評価した。
A: VLTが81%以上
B: VLTが80%以上81%未満
C: VLTが79%以上80%未満
D: VLTが79%未満
A graph plotting the relationship between the visible light transmittance and the shielding coefficient based on the obtained visible light transmittance and the shielding coefficient, with the x-axis being the visible light transmittance (unit%) and the y-axis being the shielding coefficient (no unit). It was created.
The plot was approximated to a linear curve (straight line), and the obtained linear curve was interpolated to obtain the value (unit%) of visible light transmittance at a certain shielding coefficient. In the present specification, the visible light transmittance at a shielding coefficient of 0.715 was used for evaluation of optical characteristics.
The results obtained are listed in the table below. “Visible light transmittance” in the following table represents the visible light transmittance at a shielding coefficient of 0.715.
Moreover, the visible light transmittance (VLT) in the obtained shielding coefficient 0.715 was evaluated according to the following criteria.
A: VLT is 81% or more B: VLT is 80% or more and less than 81% C: VLT is 79% or more and less than 80% D: VLT is less than 79%
(湿熱経時耐久性評価-湿熱経時前後での赤外線反射率の変化-)
 フロートガラスに熱線遮蔽材を貼り合せた状態で、温度50℃湿度95%の環境下に14日間経時させる前後で、反射スペクトルの測定を行い、湿熱経時前の800nmから1300nmの範囲の平均反射率R1[%]と、湿熱経時後の800nmから1300nmの範囲の平均反射率R2[%]とで、R2-R1を算出し、以下の基準で評価した。湿熱経時前後での赤外線反射率の変化は小さいほど好ましく、反射率の変化が小さいことは湿熱経時の前後で熱線遮蔽材の遮熱性能に変化が少ないことを表す。
A: R2-R1が3%未満
B: R2-R1が3%以上5%未満
C: R2-R1が5%以上
(Damp heat aging durability evaluation-Change in infrared reflectance before and after wet heat aging-)
The reflection spectrum was measured before and after aging for 14 days in an environment of temperature 50 ° C. and humidity 95% with the heat ray shielding material bonded to the float glass, and the average reflectance in the range from 800 nm to 1300 nm before aging with wet heat. R2-R1 was calculated from R1 [%] and average reflectance R2 [%] in the range of 800 nm to 1300 nm after wet heat aging, and evaluated according to the following criteria. The smaller the change in the infrared reflectance before and after the wet heat aging, the better. The smaller change in the reflectance means that the heat shielding performance of the heat ray shielding material is less changed before and after the wet heat aging.
A: R2-R1 is less than 3% B: R2-R1 is 3% or more and less than 5% C: R2-R1 is 5% or more
Figure JPOXMLDOC01-appb-T000046
 
Figure JPOXMLDOC01-appb-T000046
 
<熱線遮蔽材付き窓ガラスの作製>
 実施例101で作製した粘着層付き熱線遮蔽材群を用いて、以下の要領で建築の窓ガラス表面に貼合し、熱線遮蔽材付き窓ガラスを作製した。窓ガラスに熱線遮蔽材を貼り付ける際、あらかじめ窓ガラス表面と前記熱線遮蔽材の粘着剤層表面に界面活性剤(ポリオキシエチレンラウリルエーテル硫酸ナトリウム) 0.1質量%の水溶液を噴霧してから、粘着剤層を介して窓ガラスに熱線遮蔽材を設置した。水分が蒸発するまでの間、粘着剤層の粘着力は落ちるため、ガラス表面では熱線遮蔽材の位置の調整を行った。窓ガラスに対する前記熱線遮蔽材の貼り付け位置が定まった後、スキージー等を用いて窓ガラスと前記熱線遮蔽材の間に残る水分をガラス中央から、端部に向けて掃き出し、窓ガラス表面に前記熱線遮蔽材を固定した。このようにして、熱線遮蔽材を設置した窓ガラスを得た。
 比較例の群と比較して、本発明の実施例群の熱線遮蔽材付き窓ガラスは見た目が高透明であることが目視にて確認できた。
<Preparation of window glass with heat ray shielding material>
Using the heat ray shielding material group with the adhesion layer produced in Example 101, it bonded on the window glass surface of the building in the following ways, and produced the window glass with a heat ray shielding material. When pasting the heat ray shielding material on the window glass, a 0.1% by weight aqueous solution of a surfactant (polyoxyethylene lauryl ether sodium sulfate) is sprayed on the surface of the window glass and the adhesive layer surface of the heat ray shielding material in advance. The heat ray shielding material was installed on the window glass through the adhesive layer. Until the moisture evaporates, the adhesive strength of the pressure-sensitive adhesive layer decreases, so the position of the heat ray shielding material was adjusted on the glass surface. After the position where the heat ray shielding material is attached to the window glass is determined, moisture remaining between the window glass and the heat ray shielding material is swept from the glass center toward the edge using a squeegee or the like, A heat ray shielding material was fixed. Thus, the window glass which installed the heat ray shielding material was obtained.
Compared with the group of comparative examples, the window glass with a heat ray shielding material of the example group of the present invention was visually confirmed to be highly transparent.
<熱線遮蔽材を適用した合わせガラス体の作製>
 実施例101で作製した粘着層付与前の熱線遮蔽材群を用いて、以下の要領で熱線遮蔽を適用した合わせガラス体を作製した。合わせガラス体の作製には、2枚のガラス板、2枚の合わせガラス用ポリビニルブチラール中間膜シート(PVBシート)、前記熱線遮蔽材を準備し、ガラス板(1枚目)、PVBシート(1枚目)、熱線遮蔽材、PVBシート(2枚目)、ガラス板(2枚目)の順に重ねた。この積層体を真空下、95℃で30分間予備圧着を行い、その後、オートフレーブ内で1.3MPa、120℃の条件で加熱しながら圧着処理することで熱線遮蔽材を適用した合わせガラスを得た。
 比較例の群と比較して、本発明の実施例群の熱線遮蔽材を適用した合わせガラス体は見た目が高透明であることが目視にて確認できた。
<Production of laminated glass body to which heat ray shielding material is applied>
Using the heat ray shielding material group produced in Example 101 before application of the adhesive layer, a laminated glass body to which heat ray shielding was applied was produced in the following manner. For the production of the laminated glass body, two glass plates, two polyvinyl butyral interlayer films (PVB sheet) for laminated glass, and the heat ray shielding material are prepared, and the glass plate (first sheet), PVB sheet (1 Sheet), a heat ray shielding material, a PVB sheet (second sheet), and a glass plate (second sheet). This laminated body is preliminarily pressure-bonded at 95 ° C. for 30 minutes under vacuum, and then subjected to pressure-bonding treatment while heating at 1.3 MPa and 120 ° C. in an autoflavor to obtain a laminated glass to which a heat ray shielding material is applied. It was.
Compared with the group of comparative examples, it was confirmed visually that the laminated glass body to which the heat ray shielding material of the example group of the present invention was applied was highly transparent.
1   金属粒子含有層
2、2A、2B、2C   中間層
3   赤外線吸収化合物含有層
4、4A、4B   下層
5   オーバーコート層
6   粘着剤層
7   ハードコート層
8   窓ガラス
9   PVB(ポリビニルブチラール膜)
10  ガラス
11  平板状金属粒子
40  支持体(基材)
100 熱線遮蔽材
a   金属粒子の(平均)厚み
D   金属粒子の(平均)粒子径または(平均)円相当径
f   平板状金属粒子の深さ方向の存在範囲
DESCRIPTION OF SYMBOLS 1 Metal particle content layer 2, 2A, 2B, 2C Intermediate layer 3 Infrared absorption compound content layer 4, 4A, 4B Lower layer 5 Overcoat layer 6 Adhesive layer 7 Hard coat layer 8 Window glass 9 PVB (polyvinyl butyral film)
10 Glass 11 Flat metal particle 40 Support (base material)
100 Heat ray shielding material a (average) thickness D of metal particles (average) particle diameter of metal particles or (average) equivalent circle diameter f Existence range of flat metal particles in the depth direction

Claims (23)

  1.  少なくとも1種の金属粒子を含有する金属粒子含有層と、
     赤外線吸収化合物を含有する赤外線吸収化合物含有層とを有し、
     前記金属粒子含有層と前記赤外線吸収化合物含有層との間に少なくとも1層以上の中間層を有し、
     前記赤外線吸収化合物含有層または前記中間層の少なくとも一方にフィラーを含有することを特徴とする熱線遮蔽材。
    A metal particle-containing layer containing at least one metal particle;
    Having an infrared absorbing compound-containing layer containing an infrared absorbing compound,
    Having at least one intermediate layer between the metal particle-containing layer and the infrared absorbing compound-containing layer,
    A heat ray shielding material comprising a filler in at least one of the infrared absorbing compound-containing layer or the intermediate layer.
  2.  前記赤外線吸収化合物が、赤外線吸収顔料である請求項1に記載の熱線遮蔽材。 The heat ray shielding material according to claim 1, wherein the infrared absorbing compound is an infrared absorbing pigment.
  3.  前記赤外線吸収化合物が、下記一般式(2)で表される化合物である請求項1または2に記載の熱線遮蔽材。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(2)中、R1a及びR1bは同じであっても異なってもよく、各々独立にアルキル基、アリール基またはヘテロアリール基を表す。R及びRは各々独立に水素原子または置換基を表し、少なくとも一方は電子吸引性基であり、R及びRは結合して環を形成してもよい。Rは水素原子、アルキル基、アリール基、ヘテロアリール基、置換ホウ素または金属原子を表し、R1a、R1bおよびRの少なくとも1以上の基と共有結合もしくは配位結合してもよい。)
    The heat ray shielding material according to claim 1 or 2, wherein the infrared absorbing compound is a compound represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000001
    (In General Formula (2), R 1a and R 1b may be the same or different and each independently represents an alkyl group, an aryl group or a heteroaryl group. R 2 and R 3 each independently represent a hydrogen atom. Or at least one is an electron-withdrawing group, and R 2 and R 3 may combine to form a ring, and R 4 represents a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, a substituted group Represents a boron or metal atom, and may be a covalent bond or a coordinate bond with at least one group of R 1a , R 1b and R 3. )
  4.  前記金属粒子が、平板状の金属粒子を60個数%以上有する請求項1~3のいずれか1項に記載の熱線遮蔽材。 The heat ray shielding material according to any one of claims 1 to 3, wherein the metal particles have at least 60% by number of flat metal particles.
  5.  前記平板状の金属粒子が、銀平板粒子である請求項4に記載の熱線遮蔽材。 The heat ray shielding material according to claim 4, wherein the tabular metal particles are silver tabular grains.
  6.  前記平板状の金属粒子が、六角形状乃至円形状の平板状金属粒子であり、
     前記六角形状乃至円形状の平板状の金属粒子のうち、主平面が前記金属粒子含有層の一方の表面に対して平均0°~±30°の範囲で面配向している平板状の金属粒子が、全平板状金属粒子の50個数%以上である請求項4または5に記載の熱線遮蔽材。
    The flat metal particles are hexagonal or circular flat metal particles,
    Among the hexagonal or circular plate-like metal particles, the plate-like metal particles whose main plane is plane-oriented in an average range of 0 ° to ± 30 ° with respect to one surface of the metal particle-containing layer. The heat ray shielding material according to claim 4 or 5, wherein is at least 50% by number of all flat metal particles.
  7.  前記赤外線吸収化合物含有層が、前記フィラーと前記赤外線吸収化合物とを含む請求項1~6のいずれか1項に記載の熱線遮蔽材。 The heat ray shielding material according to any one of claims 1 to 6, wherein the infrared absorbing compound-containing layer contains the filler and the infrared absorbing compound.
  8.  前記フィラーが、酸化チタン、酸化ジルコニウム、酸化亜鉛、合成非晶質シリカ、コロイダルシリカ、中空シリカ、多孔質シリカ、フッ化マグネシウム、中空フッ化マグネシウムからなる群から選ばれる少なくとも1種である請求項1~7のいずれか1項に記載の熱線遮蔽材。 The filler is at least one selected from the group consisting of titanium oxide, zirconium oxide, zinc oxide, synthetic amorphous silica, colloidal silica, hollow silica, porous silica, magnesium fluoride, and hollow magnesium fluoride. 8. The heat ray shielding material according to any one of 1 to 7.
  9.  前記中間層が、ポリエステル樹脂またはポリウレタン樹脂を含む請求項1~8のいずれか1項に記載の熱線遮蔽材。 The heat ray shielding material according to any one of claims 1 to 8, wherein the intermediate layer contains a polyester resin or a polyurethane resin.
  10.  前記中間層の厚みが、20nm以上である請求項1~9のいずれか1項に記載の熱線遮蔽材。 The heat ray shielding material according to any one of claims 1 to 9, wherein the intermediate layer has a thickness of 20 nm or more.
  11.  前記赤外線吸収化合物含有層における前記赤外線吸収化合物の密度が、0.10g/cm以上である請求項1~10のいずれか1項に記載の熱線遮蔽材。 The heat ray shielding material according to any one of claims 1 to 10, wherein a density of the infrared absorbing compound in the infrared absorbing compound-containing layer is 0.10 g / cm 3 or more.
  12.  前記金属粒子含有層の前記中間層を有する側の面と反対側の面上にオーバーコート層を有する請求項1~11のいずれか1項に記載の熱線遮蔽材。 12. The heat ray shielding material according to claim 1, further comprising an overcoat layer on a surface opposite to the surface having the intermediate layer of the metal particle-containing layer.
  13.  前記赤外線吸収化合物含有層の前記金属粒子含有層を有する側の面と反対側の面側に、さらに支持体を有する請求項1~12のいずれか1項に記載の熱線遮蔽材。 The heat ray shielding material according to any one of claims 1 to 12, further comprising a support on the surface of the infrared absorbing compound-containing layer opposite to the surface having the metal particle-containing layer.
  14.  前記支持体がポリエチレン、ポリプロピレン、ポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート系樹脂、ポリ塩化ビニル系樹脂、ポリフェニレンサルファイド系樹脂、ポリエーテルサルフォン系樹脂、ポリエチレンサルファイド系樹脂、ポリフェニレンエーテル系樹脂、スチレン系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、セルロース系樹脂のいずれかである請求項12または13に記載の熱線遮蔽材。 The support is polyethylene, polypropylene, polyolefin resin, polyethylene terephthalate, polyethylene naphthalate, polycarbonate resin, polyvinyl chloride resin, polyphenylene sulfide resin, polyether sulfone resin, polyethylene sulfide resin, polyphenylene ether resin. The heat ray shielding material according to claim 12 or 13, which is any one of styrene resin, acrylic resin, polyamide resin, polyimide resin, and cellulose resin.
  15.  前記赤外線吸収化合物含有層と前記支持体の間に、少なくとも1層以上の層を有する請求項13または14に記載の熱線遮蔽材。 The heat ray shielding material according to claim 13 or 14, comprising at least one layer between the infrared absorbing compound-containing layer and the support.
  16.  前記支持体の金属粒子含有層を有する側の面と反対側の面上に、さらにハードコート層を有する請求項13~15のいずれか一項に記載の熱線遮蔽材。 The heat ray shielding material according to any one of claims 13 to 15, further comprising a hard coat layer on a surface opposite to the surface having the metal particle-containing layer of the support.
  17.  前記ハードコート層に金属酸化物粒子を含む請求項16に記載の熱線遮蔽材。 The heat ray shielding material according to claim 16, wherein the hard coat layer contains metal oxide particles.
  18.  前記金属酸化物粒子が、錫ドープ酸化インジウム(ITO)、アンチモンドープ酸化錫(ATO)、セシウムタングステン酸化物(CWO)から選ばれる1種以上である請求項17に記載の熱線遮蔽材。 The heat ray shielding material according to claim 17, wherein the metal oxide particles are at least one selected from tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), and cesium tungsten oxide (CWO).
  19.  前記金属粒子含有層の前記中間層を有する側の面と反対側の面上に、さらに粘着剤層を有する請求項1~18のいずれか1項に記載の熱線遮蔽材。 The heat ray shielding material according to any one of claims 1 to 18, further comprising an adhesive layer on a surface opposite to the surface having the intermediate layer of the metal particle-containing layer.
  20.  前記粘着剤層を介し、請求項19に記載の熱線遮蔽材をガラス表面に設置した窓ガラス。 A window glass in which the heat ray shielding material according to claim 19 is placed on the glass surface through the pressure-sensitive adhesive layer.
  21.  請求項1~19のいずれか1項に記載の熱線遮蔽材を含むことを特徴とする合わせガラス用中間膜。 An intermediate film for laminated glass, comprising the heat ray shielding material according to any one of claims 1 to 19.
  22.  請求項1~19のいずれか1項に記載の熱線遮蔽材を含む合わせガラス。 A laminated glass comprising the heat ray shielding material according to any one of claims 1 to 19.
  23.  請求項21に記載の合わせガラス用中間膜と、少なくとも2枚のガラス板を有し、前記2枚のガラス中に前記合わせガラス用中間膜が挿入されたことを特徴とする請求項22に記載の合わせガラス。 The interlayer film for laminated glass according to claim 21 and at least two glass plates, wherein the interlayer film for laminated glass is inserted into the two sheets of glass. Laminated glass.
PCT/JP2014/055718 2013-03-25 2014-03-06 Heat ray shielding material, windowpane using heat ray shielding material, intermediate film for laminated glass, and laminated glass WO2014156528A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-062541 2013-03-25
JP2013062541A JP2014184688A (en) 2013-03-25 2013-03-25 Heat-ray shielding material and window glass using heat-ray shielding material, interlayer film for laminated glass and laminated glass

Publications (1)

Publication Number Publication Date
WO2014156528A1 true WO2014156528A1 (en) 2014-10-02

Family

ID=51623517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055718 WO2014156528A1 (en) 2013-03-25 2014-03-06 Heat ray shielding material, windowpane using heat ray shielding material, intermediate film for laminated glass, and laminated glass

Country Status (2)

Country Link
JP (1) JP2014184688A (en)
WO (1) WO2014156528A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016168383A1 (en) 2015-04-14 2016-10-20 Face International Corporation Systems and methods for producing scattering selected wavelengths of electromagnetic energy
JP2017516139A (en) * 2014-04-29 2017-06-15 プレオティント エル エル シー Solar absorption control interlayer
CN107924955A (en) * 2015-04-14 2018-04-17 福斯国际公司 System and method for the electromagnetic energy for producing the wavelength for scattering selection
US11987682B2 (en) * 2018-04-12 2024-05-21 Shin-Etsu Chemical Co., Ltd. Photocatalyst transfer film and production method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6301242B2 (en) 2014-11-28 2018-03-28 富士フイルム株式会社 Infrared reflective pattern formation
US10830931B2 (en) * 2015-07-09 2020-11-10 Nippon Sheet Glass Company, Limited Infrared cut filter, imaging device, and method for producing infrared cut filter
KR101698319B1 (en) * 2015-10-27 2017-01-20 주식회사 지앤아이솔루션 Solar heat barrier coating solution composition
JP2017151176A (en) * 2016-02-22 2017-08-31 株式会社日本触媒 Light selective transmission filter
JP6580248B2 (en) * 2016-02-29 2019-09-25 富士フイルム株式会社 Ink composition and image forming method
WO2017150133A1 (en) * 2016-03-04 2017-09-08 富士フイルム株式会社 Infrared shielding material
JP6880592B2 (en) * 2016-08-04 2021-06-02 大日本印刷株式会社 Near-infrared shielding laminates, vehicle glass and vehicles
WO2018147468A1 (en) 2017-02-13 2018-08-16 富士フイルム株式会社 Inkjet ink composition, recorded matter and image recording method
WO2018147469A1 (en) 2017-02-13 2018-08-16 富士フイルム株式会社 Ink composition, ink set, image recording method, and recorded matter
KR20230055402A (en) 2020-09-23 2023-04-25 후지필름 가부시키가이샤 Compositions, films, optical filters, solid-state imaging devices, image display devices, infrared sensors, camera modules, compounds, and infrared absorbers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263614A (en) * 2008-03-30 2009-11-12 Fujifilm Corp Infrared absorptive compound and fine particles comprising the compound
WO2009147928A1 (en) * 2008-06-06 2009-12-10 コニカミノルタホールディングス株式会社 Heat shielding resin film and building construction member to which the film is bonded
JP2010090313A (en) * 2008-10-09 2010-04-22 Fujifilm Corp Near-infrared-absorbing composition and article having near-infrared-absorbing coating thereon
JP2011118347A (en) * 2009-11-06 2011-06-16 Fujifilm Corp Heat-ray shielding material
WO2012070477A1 (en) * 2010-11-22 2012-05-31 富士フイルム株式会社 Heat ray shielding material
JP2012215825A (en) * 2011-03-25 2012-11-08 Fujifilm Corp Heat ray shielding member and laminate structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263614A (en) * 2008-03-30 2009-11-12 Fujifilm Corp Infrared absorptive compound and fine particles comprising the compound
WO2009147928A1 (en) * 2008-06-06 2009-12-10 コニカミノルタホールディングス株式会社 Heat shielding resin film and building construction member to which the film is bonded
JP2010090313A (en) * 2008-10-09 2010-04-22 Fujifilm Corp Near-infrared-absorbing composition and article having near-infrared-absorbing coating thereon
JP2011118347A (en) * 2009-11-06 2011-06-16 Fujifilm Corp Heat-ray shielding material
WO2012070477A1 (en) * 2010-11-22 2012-05-31 富士フイルム株式会社 Heat ray shielding material
JP2012215825A (en) * 2011-03-25 2012-11-08 Fujifilm Corp Heat ray shielding member and laminate structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017516139A (en) * 2014-04-29 2017-06-15 プレオティント エル エル シー Solar absorption control interlayer
US10807346B2 (en) 2014-04-29 2020-10-20 Pleotint, L.L.C. Absorbing solar control interlayers
WO2016168383A1 (en) 2015-04-14 2016-10-20 Face International Corporation Systems and methods for producing scattering selected wavelengths of electromagnetic energy
CN107924955A (en) * 2015-04-14 2018-04-17 福斯国际公司 System and method for the electromagnetic energy for producing the wavelength for scattering selection
EP3284108A4 (en) * 2015-04-14 2018-12-05 Face International Corporation Systems and methods for producing scattering selected wavelengths of electromagnetic energy
CN107924955B (en) * 2015-04-14 2021-06-08 福斯国际公司 System and method for generating electromagnetic energy that scatters selected wavelengths
IL254961B1 (en) * 2015-04-14 2023-04-01 Face Int Corp Systems and methods for producing scattering selected wavelengths of electromagnetic energy
US11987682B2 (en) * 2018-04-12 2024-05-21 Shin-Etsu Chemical Co., Ltd. Photocatalyst transfer film and production method thereof

Also Published As

Publication number Publication date
JP2014184688A (en) 2014-10-02

Similar Documents

Publication Publication Date Title
WO2014156528A1 (en) Heat ray shielding material, windowpane using heat ray shielding material, intermediate film for laminated glass, and laminated glass
JP6284762B2 (en) Heat shield and window glass
JP5956291B2 (en) Multi-layer structure and laminated structure
WO2015083361A1 (en) Anti-reflective optical member
JP6013252B2 (en) Heat ray shielding material, interlayer film for laminated glass and laminated glass
JP5833518B2 (en) Heat ray shielding material
WO2013035802A1 (en) Heat ray shielding material
JP5771584B2 (en) Heat ray shielding material
JP5878059B2 (en) Infrared shielding film
WO2014038457A1 (en) Infrared blocking film
WO2013146355A1 (en) Heat-ray-shielding material and laminated structure
CN103460088A (en) Heat ray-shielding material
JP5922919B2 (en) Heat ray shielding material and bonded structure
WO2013039215A1 (en) Heat-ray shielding material
WO2014034518A1 (en) Optical filter and hot-wire shielding material
WO2014050581A1 (en) Flat metal particle dispersion liquid, method for manufacturing flat metal particle dispersion liquid, and heat-ray-shieldng material
WO2015033872A1 (en) Electromagnetic wave-permeable laminate
JP5878050B2 (en) Heat ray shielding material
WO2015129323A1 (en) Infrared-reflecting patterned body
JP2017128046A (en) Optical reflection film
JP5996992B2 (en) Metal particle dispersion and heat ray shielding material
WO2016006586A1 (en) Infrared-reflecting patterned body
JP2013210573A (en) Heat ray shield

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14773890

Country of ref document: EP

Kind code of ref document: A1