WO2014155660A1 - 水再生システム及び脱塩処理装置、並びに、水再生方法 - Google Patents

水再生システム及び脱塩処理装置、並びに、水再生方法 Download PDF

Info

Publication number
WO2014155660A1
WO2014155660A1 PCT/JP2013/059496 JP2013059496W WO2014155660A1 WO 2014155660 A1 WO2014155660 A1 WO 2014155660A1 JP 2013059496 W JP2013059496 W JP 2013059496W WO 2014155660 A1 WO2014155660 A1 WO 2014155660A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
concentration
unit
supply
desalting
Prior art date
Application number
PCT/JP2013/059496
Other languages
English (en)
French (fr)
Inventor
英夫 鈴木
裕 中小路
上村 一秀
歩積 音在
健 寺▲崎▼
Original Assignee
三菱重工メカトロシステムズ株式会社
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工メカトロシステムズ株式会社, 三菱重工業株式会社 filed Critical 三菱重工メカトロシステムズ株式会社
Priority to CA2907563A priority Critical patent/CA2907563A1/en
Priority to SG11201507298SA priority patent/SG11201507298SA/en
Priority to JP2015507865A priority patent/JP6162221B2/ja
Priority to US14/779,562 priority patent/US20160039688A1/en
Priority to PCT/JP2013/059496 priority patent/WO2014155660A1/ja
Priority to CN201380075018.1A priority patent/CN105050963B/zh
Publication of WO2014155660A1 publication Critical patent/WO2014155660A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4691Capacitive deionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/54Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/25Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/422Electrodialysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/22Eliminating or preventing deposits, scale removal, scale prevention
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Definitions

  • the present invention relates to a water regeneration system, a desalting apparatus, and a water regeneration method.
  • Industrial wastewater from the plant is subjected to purification treatment such as removal of heavy metal components and suspended particles, and decomposition and removal of organic substances.
  • purification treatment such as removal of heavy metal components and suspended particles, and decomposition and removal of organic substances.
  • the purified treated water is reused as industrial water.
  • a desalting process is performed to remove ions contained in the waste water.
  • a desalination treatment is performed to remove ions contained in the water.
  • a reverse osmosis membrane type desalting apparatus As a desalting apparatus, a reverse osmosis membrane type desalting apparatus, a desalting apparatus (for example, Patent Document 1), and the like are known.
  • the reverse osmosis membrane desalting apparatus has a reverse osmosis membrane (RO membrane) inside.
  • RO membrane reverse osmosis membrane
  • the reverse osmosis membrane allows only water to permeate. Water (treated water) that has passed through the reverse osmosis membrane is reused as industrial water or the like.
  • the ions that could not pass through the reverse osmosis membrane become concentrated water (concentrated water).
  • This concentrated water is discharged out of the system of the water treatment device by being discharged from the reverse osmosis membrane type desalination device.
  • the scale component including the scale component ions in the concentrated water becomes equal to or higher than the saturation solubility, and scale is generated.
  • a liquid to be treated or a liquid having a lower ion concentration than the liquid to be treated is passed between the electrodes, ions are removed from between the electrodes, and the ionic components are discharged as concentrated water. (Regeneration process). Thereafter, the desalting process and the regeneration process are repeated.
  • the treated water contains calcium carbonate (CaCO 3 ), gypsum (CaSO 4 ), calcium fluoride (CaF 2 ), and silica (SiO 2 ) as salinity. These will precipitate as crystalline solid content (scale) when exceeding saturation solubility. For example, in the case of calcium carbonate, when 275 mg / l is contained at pH 7.3, the scale is precipitated because the solubility is exceeded. However, even if this solution is prepared, no scale is deposited after 10 minutes, and it is deposited after 1 day.
  • the scale components are continuously removed by the membrane. Therefore, the ion concentration on the concentrated water side is always high in operation with a high water recovery rate. As a result, the scale is deposited.
  • concentrated water exists between the electrodes due to desorption of ions from the electrodes in the regeneration process. If the regeneration process is within 10 minutes, the desalting process starts before scale precipitation. Since the concentration of the scale component in the water between the electrodes becomes less than the saturation solubility due to the start of the desalting process, scale precipitation is prevented. Due to this characteristic, the desalination apparatus as described in Patent Document 1 is advantageous in that a high water recovery rate (recoverable water recovery rate) can be obtained compared to the reverse osmosis membrane type desalination device. is there.
  • the scale component has an ion concentration exceeding the saturation solubility, the higher the ion concentration, the shorter the scale is generated.
  • the scale does not precipitate after 10 minutes, but deposits after one day.
  • the scale precipitates within 10 minutes.
  • the deposited scale blocks the internal flow passage (electrode passage) of the desalination treatment apparatus, and the liquid to be treated cannot flow at a predetermined flow rate. For this reason, it is calculated
  • An object of the present invention is to provide a water regeneration system and a desalination treatment apparatus that can reliably prevent the occurrence of scale even when the ion concentration becomes high during the regeneration process, and a water regeneration method using the same. .
  • a first aspect of the present invention includes a pair of opposing electrodes that are charged with opposite polarities, an inter-electrode channel that is positioned between the electrodes and that allows water to be treated to contain ions, and each A desalting unit that includes an ion-exchange membrane installed on the inter-electrode channel side of the electrode, and that performs a desalting process for adsorbing the ions to the electrode and a regeneration process for desorbing the ions from the electrode; A treated water discharge path provided on the downstream side of the desalting unit, for discharging the treated water from which the ions have been removed during the desalting treatment from the desalting unit, and provided on the downstream side of the desalting unit, A concentrated water discharge path for discharging the concentrated water containing the ions released from the electrode during processing from the desalting unit, a scale inhibitor in the desalting unit, and a scale component ion that is the ion serving as a scale component
  • the supply start time for supplying at least one of the above, the supply stop time for the supply unit to stop the supply of at least one of the scale inhibitor and the low ion concentration water, and the supply start time and the supply stop are acquired.
  • a control unit that causes the supply unit to supply at least one of the scale inhibitor and the low ion concentration water over time is acquired.
  • a pair of opposing electrodes that are charged with opposite polarities, an inter-electrode channel that is positioned between the electrodes and that allows water to be treated containing ions to flow therethrough, and
  • a desalting unit that includes an ion-exchange membrane installed on the inter-electrode channel side of the electrode, and that performs a desalting process for adsorbing the ions to the electrode and a regeneration process for desorbing the ions from the electrode;
  • a treated water discharge path provided on the downstream side of the desalting unit, for discharging the treated water from which the ions have been removed during the desalting treatment from the desalting unit, and provided on the downstream side of the desalting unit,
  • a concentrated water discharge path for discharging the concentrated water containing the ions released from the electrode during processing from the desalting unit, a scale inhibitor in the desalting unit, and a scale component ion that is the ion serving as a scale component
  • the supply start time for supplying at least one of the above, the supply stop time for the supply unit to stop the supply of at least one of the scale inhibitor and the low ion concentration water, and the supply start time and the supply stop are acquired.
  • a control unit that causes the supply unit to supply at least one of the scale inhibitor and the low ion concentration water over time is acquired.
  • a pair of opposing electrodes that are charged with opposite polarities, an inter-electrode flow channel that is located between the electrodes and that allows treatment water containing ions to flow therethrough, and
  • a desalting step for generating treated water by adsorbing the ions in the treated water to the electrode;
  • a regeneration step of desorbing the adsorbed ions and releasing them into the inter-electrode flow channel, and discharging the concentrated water containing the desorbed ions from the desalting unit; and a descaling unit with a scale inhibitor, and A supply step in which at least one of low ion concentration water whose concentration of scale component ions, which are the scale component ions, is lower than that of the concentrated water, is supplied, and the supply step is performed in the desalting unit.
  • the supply start time when the supply of at least one of the scale inhibitor and the low ion concentration water is started, and the supply of at least one of the scale inhibitor and the low ion concentration water is stopped.
  • the supply start step in which supply of at least one of the scale inhibitor and the low ion concentration water is started at the supply start time, and the supply start step,
  • a supply stopping step in which at least one of the scale inhibitor and the low ion concentration water is stopped during the supply stop time.
  • the control unit obtains the supply start time and supply stop time of the scale inhibitor and / or low ion concentration water using the scale component concentration in the concentrated water.
  • the scale inhibitor and / or the low ion concentration water is supplied from the supply unit to the desalting unit.
  • the scale inhibitor and / or the low ion concentration water is supplied to the desalting unit in the period between the supply start time and the supply stop time acquired in the acquisition step.
  • the supply unit is installed upstream of the desalination unit, and the control unit determines the time when the concentration of the scale component has reached the first threshold and the water to be treated. Is obtained from the residence time in which the salt is retained in the desalting unit, and the concentration of the scale component is a value that is not less than 0.5 times and not more than 1 time the first threshold value. It is possible to obtain the supply stop time from the time when the pressure reaches the time and the residence time.
  • the supply start time is acquired from the time when the concentration of the scale component reaches the first threshold and the residence time during which the water to be treated stays in the desalination unit.
  • the supply stop time is acquired from the time when the concentration of the scale component has reached the second threshold value which is 0.5 times or more and 1 time or less of the first threshold value and the residence time. be able to.
  • the first threshold value is a saturation density value of the scale component or a value higher than the saturation density value of the scale component.
  • the supply unit is connected to the inter-electrode flow path, and the control unit uses the time when the concentration of the scale component has reached the first threshold as the supply start time. While acquiring, the time when the density
  • the time when the concentration of the scale component in the treated water passing through the inter-electrode flow path reaches a first threshold is obtained as the supply start time. And the time when the concentration of the scale component in the water to be treated passing through the inter-electrode flow path reaches a second threshold value that is not less than 0.5 times and not more than 1 time the first threshold value. Can be obtained as the supply stop time.
  • the concentration of the scale component in the desalination unit is accurately reflected in the supply of the scale inhibitor and the low ion concentration water. Therefore, scale generation can be reliably prevented.
  • the apparatus further includes a circulation unit that circulates at least one of the concentrated water and the treated water discharged from the desalination unit to the supply unit, and the control unit includes the scale. At least one of the concentrated water and the treated water having a low concentration of component ions may be supplied to the supply unit through the circulation unit as the low ion concentration water and supplied from the supply unit to the desalting unit. good.
  • At least one of the concentrated water having a low concentration of scale component ions and the treated water may be supplied as the low ion concentration water.
  • control unit may control the flow rate of the low ion concentration water based on the concentration of the scale component in the desalting unit.
  • the flow rate of the low ion concentration water may be controlled so that the concentration of the scale component in the desalting unit is equal to or lower than the first threshold value.
  • the flow rate of the low ion concentration water is changed based on the scale component concentration in the desalting part, it is not necessary to supply unnecessarily low ion concentration water, so the amount of low ion concentration water used can be suppressed. .
  • the treated water is used as low ion concentration water, it is possible to suppress a decrease in the water recovery rate.
  • a measuring unit that measures the concentration of the scale component ions is installed downstream of the desalting unit, or is connected to the interelectrode flow path, and the measuring unit is The concentration of the scale component ions is measured, and the control unit obtains the concentration of the scale component from the concentration of the scale component ions measured by the measurement unit, and starts the supply based on the concentration of the scale component You may acquire time and the said supply stop time.
  • the concentration of the scale component ions in the concentrated water after passing through the inter-electrode flow path, or the scale component ions in the treated water passing through the inter-electrode flow path may be acquired.
  • the supply start time and the supply stop time are acquired using the scale component concentration acquired from the concentration of the scale component ions measured by the measurement unit, when the quality of the water to be treated changes, It can be selected that the supply amount of the scale inhibitor and the low ion concentration water is changed according to the water quality or that the scale inhibitor and the low ion concentration water are not supplied when the supply of the scale inhibitor and the low ion concentration water is not necessary. That is, the supply of scale inhibitor and low ion concentration water can be made efficient.
  • the supply of scale inhibitor and / or low ion concentration water can be managed with higher accuracy. It becomes possible to do.
  • FIG. 1 shows an example of a block diagram of the water reclamation system.
  • the water regeneration system 1 includes a pretreatment unit 2, an organic matter treatment unit 3, and a desalination treatment device 4 from the upstream side.
  • the pretreatment unit 2 receives the water to be treated such as river water or waste water from the plant, and removes oil, heavy metals, suspended particles, etc. in the water to be treated. When the content of these substances is small, the pretreatment unit 2 can be omitted.
  • the organic matter treatment unit 3 decomposes the organic matter in the for-treatment water treated by the pretreatment unit 2.
  • the organic matter treatment unit 3 is configured by appropriately combining a biological treatment unit that decomposes and removes organic matter using microorganisms, a chemical oxidation treatment unit that chemically oxidizes organic matter, activated carbon, and an ultraviolet treatment device. .
  • the biological treatment unit includes a treatment device using a membrane separation activated sludge method (MBR: Membrane Bio-Reactor) and a treatment device using a biofilm method (BFR: Bio-Film Reactor).
  • MLR membrane separation activated sludge method
  • BFR Bio-Film Reactor
  • MBR a membrane having pores of about 0.1 ⁇ m is immersed in the feed water in the biological reaction tank.
  • Microorganisms are present in the feed water in the biological reaction tank, and the microorganisms decompose organic substances in the feed water.
  • Microorganisms useful for sludge treatment in the biological reaction tank are about 0.25 ⁇ m at the minimum. Therefore, the feed water in the biological reaction tank is solid-liquid separated into feed water and microorganisms by the membrane, and only the feed water is discharged from the MBR.
  • a support having a microorganism film formed on the surface is installed inside.
  • the microorganisms on the surface of the support come into contact with the supply water, the microorganisms decompose organic substances in the supply water.
  • the operation of MBR and BFR is controlled according to the amount of organic matter (COD) in the feed water.
  • COD organic matter
  • the COD in the supply water is low, only the MBR is operated.
  • the BFR is operated in parallel with the MBR.
  • the biological treatment unit can be omitted.
  • Chemical oxidation treatment includes a method of supplying hypochlorous acid and hydrogen peroxide to the water to be treated, and a method of irradiating the water to be treated with ozone.
  • the desalting apparatus 4 includes a desalting unit 10, a supply unit 20, and a control unit 40.
  • a plurality of desalting treatment apparatuses 4 may be connected in series, parallel, or a combination of series and arrangement.
  • the desalting unit 10 includes a pair of opposed porous electrodes 11 and 13 and an interelectrode channel 15 through which supply water can flow between the electrodes.
  • An anion exchange membrane 12 is installed on the side surface of the electrode 11 between the electrodes, and a cation exchange membrane 14 is installed on the side surface of the electrode 13 between the electrodes.
  • a discharge path 22 is provided on the downstream side of the desalting unit 10.
  • the discharge path 22 is branched into a treated water discharge path 23 and a concentrated water discharge path 24 in the middle of the path.
  • Valves V ⁇ b> 1 and V ⁇ b> 2 are installed in the treated water discharge path 23 and the concentrated water discharge path 24, respectively.
  • the supply unit 20 is connected to a pipe through which the water to be treated flows on the upstream side of the desalting unit 10. From the viewpoint of reducing the supply amount of the scale inhibitor and low ion concentration water, the position where the supply unit 20 is connected to the pipe is preferably in the vicinity of the desalting unit 10.
  • the supply unit 20 includes a tank 21 and a valve V3.
  • the supply part 20 can also be set as the structure which arrange
  • FIG. 3 shows an example in which only one supply unit 20 is provided. However, when supplying both the scale inhibitor and the low ion concentration water, two supply units 20 are provided and each tank 21 is provided.
  • the scale inhibitor and low ionic water are stored separately.
  • As the scale inhibitor a chelate scale inhibitor or a phosphonic acid scale inhibitor (for example, manufactured by Ondeo Nalco Company, product name: PC191, manufactured by Kimic Chemtech (s) PTE LTD, product name: Kimic SI) can be used.
  • Low ion concentration water is water having a lower concentration of ions (scale component ions) that are scale components than concentrated water.
  • the scale component ions are alkaline earth metal ions, metal ions such as Mg 2+, and anions such as SO 4 2 ⁇ , CO 3 2 ⁇ , and F ⁇ . These ions form salts that are sparingly soluble in water. Silica ions are also scale component ions.
  • the low ion concentration water is, for example, ion-exchanged water, permeated water of a reverse osmosis membrane desalting apparatus, or the like.
  • FIG. 3 is an example in which the measurement unit 30 is installed in the discharge path 22.
  • the measuring unit 30 measures the concentration of ions contained in the water discharged from the desalting unit 10.
  • the measuring unit 30 does not necessarily have to be permanently installed in the desalting apparatus 4 being processed.
  • the water to be treated mainly contains Ca 2+ and silica ions as scale component ions. Accordingly, the ions to be measured here are calcium ions (Ca 2+ ) and silica ions. Therefore, the measurement unit 10 is a densitometer that measures Ca 2+ and silica ions in the treated water. In this case, SO 4 2 ⁇ , CO 3 2 ⁇ , and F ⁇ bonded to Ca 2+ may be measured together with the ions.
  • an electrical conductivity meter may be installed as the measuring unit 30 to acquire the electrical conductivity of the water discharged from the desalting unit 10.
  • the saturation concentration varies depending on the pH of the water to be treated. Therefore, a pH meter is installed as the measuring unit 30, the saturated concentration of the scale component is estimated from the pH of the water discharged from the desalting unit 10, and the time for starting the supply of the scale inhibitor and the low ion concentration water is stopped. It may be used to acquire time.
  • the control unit 40 is, for example, a computer.
  • the control unit 40 is connected to the desalting unit 10, the measuring unit 30, and the valves V1 to V3.
  • scale component concentration schematically indicates the concentration of the scale component in the interelectrode flow path of the desalting unit 10.
  • the controller 40 applies a voltage to each of the electrodes 11 and 13 so that the electrode 11 becomes positive and the electrode 13 becomes negative.
  • the above energized state is referred to as “positive” in FIGS.
  • the control unit 40 opens the valve V1 and closes the valves V2 and V3.
  • Water to be treated containing ions flows into the desalting unit 10 where the electrodes 11 and 13 are energized.
  • the electrodes 11 and 13 are energized.
  • negative ions in the water to be treated permeate the anion exchange membrane 12 and are adsorbed on the electrode 11, and positive ions pass through the cation exchange membrane 14. It penetrates and is adsorbed on the electrode 13. Thereby, ions are removed from the water to be treated.
  • the treated water from which ions have been removed is discharged from the desalting unit 10 as treated water, passes through the treated water discharge passage 23, is discharged out of the desalinating apparatus, and is collected.
  • the control unit 40 After performing the desalting step for a predetermined time, the control unit 40 applies a voltage to each of the electrodes 11 and 13 so that the electrode 11 becomes negative and the electrode 13 becomes positive. That is, the electrode is in a “reverse” energized state. The control unit 40 reverses the energized state of the electrodes 11 and 13 and simultaneously closes the valve V1 and opens the valve V2. Thereby, the regeneration process is started.
  • the ions adsorbed in the desalting step are desorbed from the electrodes 11 and 13 and released to the interelectrode channel 15.
  • the released ions are discharged from the desalting unit 10 by allowing a fluid to flow through the inter-electrode flow path 15 during a supply process described later.
  • water having a low ion concentration such as clean water (fresh water) or treated water is supplied and discharged from the desalting unit 10 together with the ions released to the interelectrode flow path 15.
  • the water discharged from the desalting unit 10 passes through the concentrated water discharge path 24 as concentrated water and is discharged out of the system of the desalting apparatus 4.
  • the desalting step and the regeneration step described above are performed alternately every predetermined time. For example, the desalting step is performed for 1 to 10 minutes, and the regeneration step is performed for 1 to 5 minutes.
  • the desalting unit 10 contains both the scale inhibitor or the low ion concentration water, or both the scale inhibitor and the low ion concentration water. Supplied.
  • the control unit 40 acquires a period during which the scale inhibitor and / or the low ion concentration water is supplied from the supply unit 20 into the water to be treated based on the concentration of the scale component.
  • the measurement unit 30 is permanently installed in the desalination treatment apparatus 4, and the concentration of the scale component ions is acquired by the measurement unit 30 while performing the processing. You may acquire the density
  • the measurement part 30 measures and acquires the density
  • the measurement unit 30 transmits the acquired ion concentration to the control unit 40.
  • the concentration of the scale component is determined from the cation concentration and the anion concentration. Is acquired.
  • the concentration of only the cation or the anion may be measured, and the scale component concentration may be obtained from the solubility product of the scale component.
  • the ion concentration with the larger concentration fluctuation is preferably measured.
  • the concentration of SO 4 2 ⁇ is assumed to be constant. At this time, the concentration of SO 4 2 ⁇ is preferably set to a higher value.
  • concentration of Ca 2+ measured by the measurement unit 30 the concentration of CaSO 4 with respect to the saturation solubility is estimated from the solubility product, and the concentration of CaSO 4 is acquired. Concentrations are acquired in the same manner for other scale components.
  • the correlation between the electrical conductivity and the scale component concentration is acquired in advance and stored in the control unit 40.
  • the value of the electrical conductivity measured by the measuring unit 30 is transmitted to the control unit 40, and the control unit 40 acquires the scale component concentration from the correlation.
  • the control unit 40 stores a scale component concentration threshold A (first threshold).
  • the threshold A is a saturation density value of the scale component or a value higher than the saturation density value. Specifically, the threshold A is a value in the range of 1 to 1000 times the saturation concentration of the scale component, preferably a value in the range of 100 to 200 times.
  • the threshold value A When a value higher than the saturated concentration value is set as the threshold value A, the time required until scale deposition is confirmed in advance by a test, and the concentration is such that the time until scale deposition is sufficiently long.
  • the control unit 40 sets the scale obtained from the measured value of the measuring unit 30 by setting the time when the n ⁇ 1th desalting step is started as 0 in the n ⁇ 1 (n ⁇ 2) th desalting step and regeneration step. The time t1 n ⁇ 1 when the component concentration reaches the threshold A is acquired.
  • the actual scale component concentration in the water to be treated in the desalting unit 10 is the time for which the water to be treated stays in the desalting unit 10 (retention time). Measurement is performed by the measurement unit 30 with a delay of the minute.
  • the control unit 40 obtains the time t1 n ⁇ 1 -tr as the supply start time T1 n for releasing V3 in the n-th desalting step and regeneration step, and stores it in the memory.
  • the control unit 40 is obtained from the measurement value of the measurement unit 30 with the time when the n ⁇ 1th desalting step is started as 0 in the n ⁇ 1 (n ⁇ 2) th desalting step and regeneration step.
  • the time t2 n ⁇ 1 when the scale component concentration reaches the threshold value A ′ (second threshold value) is acquired.
  • the control unit 40 monitors the change in the scale component concentration with time, and can determine that the concentration is increasing as the threshold value A and that the concentration is decreasing as the threshold value A ′.
  • the time when the scale component concentration reaches the threshold value A ′ in the desalting unit 10 is t2 n ⁇ 1 -tr.
  • the control unit 40 acquires the time t2 n ⁇ 1 -tr as the supply stop time T2 n during which the V3 is closed in the n-th desalting step and the regeneration step, and stores it in the memory.
  • the control part 40 becomes the period Ta during which supply of a scale inhibitor and / or low ion concentration water is implemented between T1 n and T2 n .
  • the control unit 40 opens the valve V3 at the acquired supply start time T1 n .
  • Control unit 40 closes the valve V3 in the obtained supply stop time T2 n.
  • the timing chart of FIG. 4, there is supply start time T1 n during regeneration step is an example of a case where there is a supply start time during the regeneration step T1 n and the supply stop time T2 n.
  • the timing chart of FIG. 5 is an example when there is a supply start time T1 n during the desalting process and there is a supply stop time T2 n during the regeneration process.
  • the controller 40 opens and closes the valve V3 in the n-th desalting step and the regeneration step, and at the same time, the supply start time T1 n + 1 and the supply stop time T2 n + 1 in the n + 1-th desalting step and regeneration step by the above-described steps. And the period Ta is determined.
  • the control unit 40 opens and closes the valve V3 at the supply start time T1 n and the supply stop time T2 n acquired by a separate test such as a trial run.
  • the supply start time T1 n and the supply stop time T2 n may be acquired by the following method using the scale component concentrations acquired in the (n-1) th process.
  • the control unit 40 acquires the scale component concentrations C1 and C2 at time t1 n-1 -tr and time t2 n-1 -tr, respectively, in the (n-1) th desalting step and regeneration step.
  • control unit 40 acquires the time when the scale component concentration reaches C1 as the supply start time T1 n .
  • the valve V3 is opened at the acquired supply start time T1 n .
  • scale components concentration acquires the time has been reached as the supply stop time T2 n to C2.
  • Control unit 40 closes the valve V3 in the obtained supply stop time T2 n.
  • the time change in the concentration of the scale component ions is acquired in advance by the measurement unit 30 during the preliminary test, the trial operation, or the adjustment operation.
  • the time for the desalting step and the regeneration step is set in advance. Therefore, the time for performing the desalting step or the regeneration step is associated with the time change of the scale component ion concentration.
  • the concentration of the scale component is acquired from the ion concentration change acquired in advance in the same manner as in the supply step described above, and the supply start time T1 n and the supply stop time T2 n in the n-th desalting step and regeneration step. Is acquired.
  • the control unit 40 does not acquire the supply start time T1 n and the supply stop time T2 n .
  • the valve V3 is not opened in the n-th desalting step and regeneration step.
  • the control unit 40 may circulate only the low ion concentration water in the desalting unit 10 during the period Ta, or if the scale component concentration can maintain the saturated concentration or less, the low ion concentration water and the water to be treated are mixed. It may be distributed.
  • the flow rate of the low ion concentration water supplied according to the scale component concentration may be controlled using the threshold value A.
  • the valve V3 is a valve whose opening degree can be adjusted. While the valve V3 is opened and low ion concentration water is supplied in the (n-1) th desalting step and regeneration step, the measuring unit 30 monitors the concentration of the scale component ions. When the scale component concentration acquired from the scale component ions measured by the measurement unit 30 is equal to or higher than the threshold value A, the control unit 40 increases the opening of the valve V3 in the nth desalting step and the supply step in the regeneration step. And increase the flow rate of the low ion concentration water.
  • the control unit 40 can also intermittently supply the low ion concentration water.
  • a time interval for repeating the opening and closing of the valve V3 during the period Ta is input in advance, and the control unit 40 performs this time interval in the n-th desalting step and the regeneration step. Then, the valve V3 is opened and closed. This time interval is appropriately set based on the fluctuation of the scale component concentration of the desalting unit 10 acquired in a trial run or the like.
  • the control unit 40 sets the plurality of supply start times T1.
  • n and the supply stop time T2 n acquires n and the supply stop time T2 n. That is, a plurality of periods Ta in the n-th desalting step and the regeneration step are acquired.
  • the valve V3 is opened and closed at each supply start time T1 n and supply stop time T2 n , and low ion concentration water is intermittently supplied to the desalting unit 10. .
  • control unit can also control the flow rate of the low ion concentration water using the threshold A ′ (0.5 to less than 1 times the threshold A). In this case, it is possible to reliably prevent the scale component concentration of the desalting part from exceeding the saturation concentration.
  • the control unit 40 supplies a predetermined amount of the scale inhibitor to the water to be treated or the low ion concentration water during the period Ta.
  • the scale inhibitor is conveyed into the desalting unit 10 by the flow of the water to be treated or the low ion concentration water, so that the scale inhibitor is supplied to the desalting unit 10.
  • the scale inhibitor may be conveyed into the desalting unit 10 in the period Ta.
  • the water to be treated may be supplied continuously or intermittently.
  • Conveying the scale inhibitor with low ion concentration water means a case where two supply units 20 are provided.
  • the supply unit 20 for storing the low ion concentration water is installed on the upstream side of the supply unit 20 for storing the scale inhibitor.
  • the control unit 40 sets the valves V3 of the two supply units 20 at the supply start time T1 n and the supply stop time T2 n described above. Opening and closing may be performed simultaneously. That is, the control unit 40 supplies the scale inhibitor and the low ion concentration water to the desalting unit 10 at the same timing.
  • control part 40 can also shift supply start time of scale inhibitor, and supply start time of low ion concentration water.
  • control unit 40 opens and closes the valve V3 at the supply start time T1 n and the supply stop time T2 n acquired as described above for the supply unit 20 in which the scale inhibitor is stored. .
  • the controller 40 uses the threshold A ′′ to obtain the supply start time T1 n ′′ and the supply start time T2 n ′′ of the valve V3 ′ of the supply unit 20 ′ in which the low ion concentration water is stored. Then, the control unit 40 opens and closes the valve V3 ′ at the supply start time T1 n ′′ and the supply stop time T2 n ′′ of the n-th desalting step and regeneration step, and removes the low ion concentration water from the desalting unit 10. To supply.
  • the control unit 40 When supplying low ion concentration water first, the control unit 40 opens and closes the valve V3 at the supply start time T1 n and the supply stop time T2 n acquired as described above for the supply unit 20 ′. If the scale component concentration in the desalting unit 10 reaches the threshold value A even if low ion concentration water is supplied in the (n-1) th desalting step and regeneration step, the control unit 40 stores the scale inhibitor. The supply start time T1 n ′′ and the supply start time T2 n ′′ of the valve V3 of the supply unit 20 are acquired.
  • control unit 40 opens and closes the valve V3 at the supply start time T1 n ′′ and the supply stop time T2 n ′′ of the n-th desalting step and regeneration step, and supplies the scale inhibitor to the desalting unit 10. To do.
  • control part 40 adjusts the supply amount of low ion concentration water similarly to the above-mentioned, or supplies low ion concentration water intermittently. be able to.
  • the control unit 40 is a pump that supplies the treated water to the desalting unit 10 (not shown). ) And the desalting unit 10 are stopped.
  • a plurality of desalting units 4 are arranged in parallel, one desalting unit 10 is stopped, and the desalting process and the regeneration process in the other desalting units 10 are continued.
  • the control unit 40 closes the valve V1 and opens the valve V2.
  • the valve V1 is closed and the valve V2 is opened.
  • the control unit 40 acquires the concentration of the scale component in the (n-1) th desalting step and the regeneration step.
  • concentration of the scale component the value of the ion concentration measured by the measurement unit 30 during operation may be used, or a preliminary test result or the like may be used.
  • the control unit 40 From the concentration of the scale component in the (n-1) th desalting step and the regeneration step, the control unit 40 reaches the threshold value A ′ in the desalting unit 10 in the same manner as the supply step during the operation. The time is acquired as the supply stop time T2 n and stored in the memory. Then, in the feed stop time T2 n acquired, closing the valve V3.
  • desalination unit 10 is stopped with the valve V3 is closed.
  • the desalting unit 10 stops in a state where the scale component concentration of the interelectrode flow path 15 of the desalting unit 10 is high the interelectrode flow path 15 is maintained in a state where the scale component concentration is high for a long time, and scale is likely to precipitate. It becomes.
  • the measuring unit 30 measures the scale component ion concentration after the time Tsn, and transmits it to the control unit 40.
  • Control unit 40 acquires the scale component concentration from the scale components ion concentration at time Ts n after the time T, and compares the scale component concentration and the threshold value A.
  • the controller 40 determines that the scale component concentration at the time T has reached the threshold value A, the controller 40 opens the valve V3 and supplies the scale inhibitor and / or low-concentration ionized water from the supply unit 20.
  • the measuring unit 30 closes the valve V3.
  • the control unit 40 acquires the scale component concentration when the desalting unit 10 is stopped from the above time change.
  • the control unit 40 estimates the scale component concentration in the desalting unit after the desalting unit is stopped from the acquired scale component concentration and the above-described variation with time.
  • the control unit 40 opens the valve V3 and supplies the scale inhibitor and / or the low ion concentration water from the supply unit 20. If it is predicted that the threshold value A ′ will be reached, the control unit 40 closes the valve V3 and stops the supply of the scale inhibitor and / or the low ion concentration water from the supply unit 20.
  • the scale inhibitor and / or the desalting step, the regeneration step, and / or the desalting unit are stopped in a period corresponding to the scale component concentration in the desalting unit 10 at any time. It is possible to supply low ion concentration water.
  • the desalting ability is reduced because ions adsorbed on the electrodes 11 and 13 are not sufficiently desorbed in the regeneration step, scale components are deposited, solids are deposited, and the like. . Accordingly, maintenance of the desalting apparatus 4 such as electrode replacement is periodically performed. The maintenance is performed when the ion concentration measured by the measuring unit 30 in the desalting process exceeds a predetermined value or after a predetermined use time (for example, one month) has elapsed. When the maintenance time is managed by the use time, the use time may be set according to the value of the ion concentration measured by the measurement unit 30 in the desalting process.
  • FIG. 6 is a schematic view of a desalting apparatus according to the second embodiment. 6, the same components as those in FIG. 3 are denoted by the same reference numerals.
  • the desalination apparatus of 2nd Embodiment can also comprise the water reproduction
  • a circulation unit 150 is installed.
  • the circulation unit 150 includes a pipe 151 that connects the discharge path 22 and the tank 21 of the supply unit 20, and a valve V ⁇ b> 4 between the discharge path 22 and the tank 21.
  • the valve V4 is connected to the control unit 140.
  • the measuring unit 30 does not necessarily have to be permanently installed in the desalinating apparatus 104 being processed.
  • the control unit 140 of the second embodiment stores a scale component concentration threshold value B.
  • the threshold value B can be set as appropriate in consideration of the quality of the water to be treated.
  • the threshold value B is set to a value less than 1 time, preferably within a range of 0.1 to 0.5 times the saturation density value of the scale component.
  • the control unit 140 opens the valve V4 simultaneously with the start of the regeneration process (closing of the valve V1). However, in the second embodiment, the valve V2 is not opened simultaneously with the start of the regeneration process. Accordingly, the concentrated water is stored in the tank 21 from the discharge path 22 via the circulation unit 150.
  • the controller 140 closes the valve V4 and opens the valve V2 at time T3 when the scale component concentration acquired from the ions acquired by the measuring unit 30 reaches the threshold value B. Thereby, storage of concentrated water is stopped.
  • the above process may be performed based on the time change of the concentration of the scale component ions acquired by the measurement unit 30 during the preliminary test, the test operation, or the adjustment operation.
  • the time change of the scale component concentration is acquired from the time change of the ion concentration acquired in advance, and the time T4 when the scale component concentration reaches the threshold B is acquired.
  • the control unit stores the concentrated water during the time T4 from the start of regeneration.
  • concentrated water having a low scale component concentration stored in the tank 21 is supplied to the desalting unit 10 as low ion concentration water.
  • the supply method is the same as in the first embodiment.
  • concentration of the scale component remaining in the desalination part 10 at the initial stage and the final stage of the regeneration process is low. For this reason, even if the concentrated water discharged at the initial stage and the final stage of the regeneration process is circulated to the desalting unit 10, there is no possibility that the scale component concentration exceeds the threshold A and scale is generated.
  • part of the concentrated water can be used, and it is not necessary to supply clean water from outside the system as low ion concentration water. Can do.
  • 3rd Embodiment is the structure which circulates and uses a part of treated water as low ion concentration water in the desalination processing apparatus 104.
  • FIG. 1 is the structure which circulates and uses a part of treated water as low ion concentration water in the desalination processing apparatus 104.
  • the controller 140 closes the valve V1 and opens the valve V4 during the desalting step described in the first embodiment. Thereby, treated water is supplied into the tank 21 from the discharge path 22 via the circulation part 150, and storage of treated water is started.
  • the control unit 140 closes the valve V4 and opens the valve V1 after a predetermined time elapses or when the treated water in the tank 21 reaches a specified amount. Thereby, storage of treated water is stopped.
  • the control unit 140 supplies treated water stored in the tank 21 to the desalting unit 10 as low ion concentration water in the same process as in the first embodiment.
  • the amount of treated water to be circulated can be reduced by controlling the flow rate of treated water as low ion concentration water according to the scale component concentration in the desalting unit 10. As a result, it is also possible to suppress the amount of water supplied from outside the system without significantly reducing the recovery rate.
  • control unit 140 stores both the treated water and the concentrated water having a low scale component ion concentration in the tank 21 according to the steps described in the second embodiment and the third embodiment, and treats the treated water as the low ion concentration water and A mixture of concentrated water having a low scale component ion concentration may be supplied.
  • FIG. 7 is a schematic view of a desalting apparatus according to the fourth embodiment. 7, the same components as those in FIG. 3 are denoted by the same reference numerals.
  • the desalination apparatus of 4th Embodiment can also comprise the water reproduction
  • the 7 includes a measuring unit 30 and a supply unit 20 connected to a desalting unit 110.
  • the supply unit 20 can supply the scale inhibitor and the low ion concentration water into the water to be treated flowing through the inter-electrode channel.
  • the two supply units 20 are connected to the desalting unit 110.
  • the measuring unit 30 does not necessarily need to be permanently installed in the desalinating apparatus 204 that is being processed.
  • the concentration of scale component ions in the for-treatment water that actually circulates in the desalting unit 110 is detected. That is, the measurement delay corresponding to the residence time does not occur as in the first embodiment.
  • the control unit 240 uses the time t1 n ⁇ 1 acquired in the n ⁇ 1th desalting step and the regeneration step as the nth desalting step. Obtained as the supply start time T1 n at which V3 is released in the salt process and the regeneration process. Similarly acquisition, control unit 240, a time obtained by n-1 th desalting step and regeneration step t2 n-1, as the supply stop time T2 n closing the V3 at n-th desalting step and regeneration step To do.
  • the controller 40 determines a period Ta between the time T1 n and T2 n during which the scale inhibitor and / or the low ion concentration water is supplied.
  • the control unit 240 causes the supply unit 20 to supply a predetermined amount of scale inhibitor and / or low ion concentration water to the treated water during the period Ta during the desalting process and the regeneration process.
  • the supplying process is performed in the same process as in the first embodiment except for the process of determining the period Ta described above.
  • determination of Ta may use the concentration of scale component ions measured by the measurement unit 30 while performing processing.
  • the scale component concentration is obtained from the concentration of the scale component ions measured in advance during the preliminary test, the test operation, or the adjustment operation, and the timing for supplying the scale inhibitor and / or the low ion concentration water is obtained.
  • the scale inhibitor and / or low ion concentration water may be supplied at the acquired timing.
  • a circulation part is provided in the same way as in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 脱塩処理の再生工程でのスケールの析出を確実に防止する。本発明の水再生システム(1)及び脱塩処理装置(4)は、脱塩部(10)、被処理水にスケール防止剤を供給する供給部(20)、及び、制御部(40)を備える。制御部(40)は、脱塩部(10)内でのスケール成分の濃度に基づいて、スケール防止剤及び低イオン濃度水のうち少なくとも一方の供給開始時間と供給停止時間とを取得し、供給開始時間と供給停止時間との間で供給部(20)にスケール防止剤及び低イオン濃度水のうち少なくとも一方の供給を実施させる。

Description

水再生システム及び脱塩処理装置、並びに、水再生方法
 本発明は、水再生システム及び脱塩処理装置、並びに、水再生方法に関する。
 プラントからの工業排水に対して、重金属成分や浮遊粒子などの除去や、有機物の分解除去などの浄化処理が施される。工業用水の確保が困難な場所においては、浄化処理された処理水は工業用水に再利用される。この場合は、重金属成分や浮遊粒子、有機物などが除去された後、排水中に含まれるイオン分を除去する脱塩処理が施される。
 また、河川水や地下水を利用する際に、塩分が多いことにより支障がある場合に、水中に含まれるイオン分を除去する脱塩処理が施される。
 脱塩処理装置としては、逆浸透膜式脱塩装置や脱塩処理装置(例えば特許文献1)などが知られている。
 逆浸透膜式脱塩装置は、内部に逆浸透膜(RO膜)を有する。逆浸透膜式脱塩装置にイオンを含む水が流入すると、逆浸透膜は水のみを透過させる。逆浸透膜を透過した水(処理水)は、工業用水等として再利用される。逆浸透膜の上流側では、逆浸透膜を通過できなかったイオンが濃縮された水(濃縮水)となる。この濃縮水は、逆浸透膜式脱塩装置から排出されることにより、水処理装置の系外に排出される。流入水に対する処理水の割合を高くすると、濃縮水中のスケール成分イオンを含んで構成されるスケール成分が飽和溶解度以上になり、スケールが発生する。
 特許文献1に記載されている脱塩処理装置では、まず、一対の電極間に互いに逆極性の電圧が印加される。この状態で電極間を被処理液が流通すると、イオン成分が電極に吸着される(脱塩工程)。この脱塩工程により、処理水が回収される。電極のイオン吸着性能が飽和状態に近づいたところで、電極が短絡されるかイオン吸着時と逆の電圧が印加されると、吸着したイオン成分が電極から脱離される。イオン成分の脱離と同時に、あるいは脱離後に、被処理液もしくは被処理液よりイオン濃度の低い液を電極間に流通させて、電極間からイオンが除去してイオン成分が濃縮水として排出される(再生工程)。以後、脱塩工程と再生工程が繰り返えされる。
 被処理水(排水、河川水、地下水など)には、塩分として炭酸カルシウム(CaCO)、石膏(CaSO)、フッ化カルシウム(CaF)、シリカ(SiO)が含まれる。これらは、飽和溶解度を超えると結晶性の固形分(スケール)として析出する。例えば炭酸カルシウムの場合、pH7.3で275mg/lを含むと、飽和溶解度を超えているためスケールが析出する。しかし、この溶液を調製しても10分後であればスケールは析出せず、1日後に析出する。
 逆浸透膜式脱塩装置では、膜によりスケール成分を連続的に除去するため、高い水回収率の運転では濃縮水側のイオン濃度は常に高く、飽和溶解度以上で長時間(1日以上)保たれるため、スケールが析出する。
 脱塩処理装置では、再生工程において、電極からのイオンの脱離により電極間には濃縮水が存在する。再生工程が10分以内であれば、スケール析出前に脱塩工程が始まる。脱塩工程開始により電極間の水中のスケール成分濃度は飽和溶解度未満となるため、スケール析出が防止される。この特性により、特許文献1に記載されるような脱塩処理装置は、逆浸透膜式脱塩装置に比べて高い水回収率(再利用可能な水の回収率)が得られる点で有利である。
特許4090635号公報
 一方で、脱塩処理装置への供給水量に対する処理水(脱塩水)量の割合を高くすると、再生工程時にイオンの大部分が濃縮水に含まれることになるので、濃縮水のイオン濃度が高くなる。スケール成分が飽和溶解度を超えるイオン濃度である場合、イオン濃度が高いほど短時間でスケールが発生する。例えば、pH6.2でフッ素濃度18.5mg/l、カルシウム濃度675mg/lの水溶液では、スケールは10分後であれば析出しないが、1日後に析出する。しかし、pH6.2でフッ素濃度37mg/l、カルシウム濃度1350mg/lの水溶液では、スケールは10分以内に析出する。
 析出したスケールによって脱塩処理装置の内部流通路(電極間流路)が閉塞され、被処理液が所定の流量で流通することができなくなる。このため、高度にイオンが濃縮された濃縮水が生成する場合でも、スケールが析出しないことが求められている。
 本発明は、再生工程時にイオン濃度が高くなった場合でもスケールの発生を確実に防止することができる水再生システム及び脱塩処理装置、これを用いた水再生方法を提供することを目的とする。
 本発明の第1の態様は、互いに逆極性に帯電される一対の対向する電極、該電極の間に位置しイオンを含む被処理水が流通可能とされる電極間流路、及び、各々の前記電極の前記電極間流路側に設置されるイオン交換膜を含み、前記電極に前記イオンを吸着させる脱塩処理と前記電極から前記イオンを脱離させる再生処理とを行う脱塩部と、前記脱塩部の下流側に設けられ、前記脱塩処理時に前記イオンが除去された処理水を前記脱塩部から排出させる処理水排出路と、前記脱塩部の下流側に設けられ、前記再生処理時に前記電極から放出された前記イオンを含む濃縮水を前記脱塩部から排出させる濃縮水排出路と、前記脱塩部にスケール防止剤、及び、スケール成分となる前記イオンであるスケール成分イオンの濃度が前記濃縮水よりも低い低イオン濃度水のうち少なくとも一方を供給する供給部と、前記脱塩部内での前記スケール成分の濃度に基づいて、前記供給部が前記脱塩部に前記スケール防止剤及び前記低イオン濃度水のうち少なくとも一方を供給する供給開始時間と、前記供給部が前記スケール防止剤及び前記低イオン濃度水のうち少なくとも一方の供給を停止する供給停止時間を取得し、前記供給開始時間と前記供給停止時間との間で前記供給部にスケール防止剤及び前記低イオン濃度水の少なくとも一方の供給を実施させる制御部とを含む水再生システムである。
 本発明の第2の態様は、互いに逆極性に帯電される一対の対向する電極、該電極の間に位置しイオンを含む被処理水が流通可能とされる電極間流路、及び、各々の前記電極の前記電極間流路側に設置されるイオン交換膜を含み、前記電極に前記イオンを吸着させる脱塩処理と前記電極から前記イオンを脱離させる再生処理とを行う脱塩部と、前記脱塩部の下流側に設けられ、前記脱塩処理時に前記イオンが除去された処理水を前記脱塩部から排出させる処理水排出路と、前記脱塩部の下流側に設けられ、前記再生処理時に前記電極から放出された前記イオンを含む濃縮水を前記脱塩部から排出させる濃縮水排出路と、前記脱塩部にスケール防止剤、及び、スケール成分となる前記イオンであるスケール成分イオンの濃度が前記濃縮水よりも低い低イオン濃度水のうち少なくとも一方を供給する供給部と、前記脱塩部内での前記スケール成分の濃度に基づいて、前記供給部が前記脱塩部に前記スケール防止剤及び前記低イオン濃度水のうち少なくとも一方を供給する供給開始時間と、前記供給部が前記スケール防止剤及び前記低イオン濃度水のうち少なくとも一方の供給を停止する供給停止時間を取得し、前記供給開始時間と前記供給停止時間との間で前記供給部にスケール防止剤及び前記低イオン濃度水の少なくとも一方の供給を実施させる制御部とを含む脱塩処理装置である。
 本発明の第3の態様は、互いに逆極性に帯電される一対の対向する電極、該電極の間に位置しイオンを含む被処理水が流通可能とされる電極間流路、及び、各々の前記電極の前記電極間流路側に設置されるイオン交換膜を有する脱塩部において、前記電極に前記被処理水中の前記イオンを吸着させて処理水を生成させる脱塩工程と、前記電極から前記吸着されたイオンを脱離させ前記電極間流路に放出させ、前記脱離したイオンを含む濃縮水を前記脱塩部から排出させる再生工程と、前記脱塩部に、スケール防止剤、及び、スケール成分となる前記イオンであるスケール成分イオンの濃度が前記濃縮水よりも低い低イオン濃度水のうち少なくとも一方が供給される供給工程とを含み、前記供給工程が、前記脱塩部内での前記スケール成分の濃度に基づいて、前記スケール防止剤及び前記低イオン濃度水のうち少なくとも一方の供給が開始される供給開始時間と、前記スケール防止剤及び前記低イオン濃度水のうち少なくとも一方の供給が停止される供給停止時間とが取得される取得工程と、前記供給開始時間に前記スケール防止剤及び前記低イオン濃度水のうち少なくとも一方の供給が開始される供給開始工程と、前記供給開始工程の後に、前記供給停止時間に前記スケール防止剤及び前記低イオン濃度水のうち少なくとも一方の供給が停止される供給停止工程と、を含む水再生方法である。
 再生処理では電極に吸着されたイオンが電極間流路に放出されることにより、濃縮水中のスケール成分濃度が高くなる。また、脱塩部への供給水量が規定以下である場合や処理水量が規定値に到達して処理水を製造する必要が無い場合などには、脱塩処理が再開されず脱塩部が停止する。このような場合は、スケール成分濃度が飽和濃度を超える濃縮水が電極間流路に長時間滞留することになる。
 本発明の水再生システム及び脱塩処理装置では、制御部が濃縮水中のスケール成分濃度を用いてスケール防止剤及び/または低イオン濃度水の供給開始時間及び供給停止時間を取得している。そして、供給開始時間及び供給停止時間の間の期間で、供給部から脱塩部にスケール防止剤及び/または低イオン濃度水が供給される。本発明の水再生方法では、上記取得工程で取得された供給開始時間及び供給停止時間の間の期間で、脱塩部にスケール防止剤及び/または低イオン濃度水が供給される。
 こうすることにより、再生工程時や脱塩部の停止時に脱塩部内の電極間流路においてスケール成分の濃度が飽和濃度を超えた場合でも、スケール発生を確実に防止できる。更に、効率良くスケール防止剤及び/または低イオン濃度水の供給を行うことができるので、運転コストを低減させることができる。
 上記第1の態様または第2の態様において、前記供給部が前記脱塩部の上流に設置され、前記制御部が、前記スケール成分の濃度が第1の閾値に到達した時間と前記被処理水が前記脱塩部に滞留する滞留時間とから前記供給開始時間を取得するとともに、前記スケール成分の濃度が、前記第1の閾値の0.5倍以上1倍以下の値である第2の閾値に到達した時間と前記滞留時間とから前記供給停止時間とを取得することができる。
 上記第3の態様において、前記取得工程において、前記スケール成分の濃度が第1の閾値に到達した時間と前記被処理水が前記脱塩部に滞留する滞留時間とから前記供給開始時間が取得されるとともに、前記スケール成分の濃度が、前記第1の閾値の0.5倍以上1倍以下の値である第2の閾値に到達した時間と前記滞留時間とから前記供給停止時間が取得されることができる。
 上記態様では、水が脱塩部に滞留する滞留時間を考慮して、スケール防止剤及び低濃度イオン水のうち少なくとも一方の供給を開始する時間と停止する時間とを取得する。ここで、第1の閾値とは、スケール成分の飽和濃度値、あるいは、スケール成分の飽和濃度値よりも高い値である。
 こうすることにより、脱塩部内でのスケール成分濃度をスケール防止剤及び/または低イオン濃度水供給に精度良く反映させることが可能である。
 上記第1の態様または第2の態様において、前記供給部が前記電極間流路に接続され、前記制御部が、前記スケール成分の濃度が第1の閾値に到達した時間を前記供給開始時間として取得するとともに、前記スケール成分の濃度が、前記第1の閾値の0.5倍以上1倍以下の値である第2の閾値に到達した時間を前記供給停止時間として取得することができる。
 上記第3の態様において、前記取得工程において、前記電極間流路を通過している前記被処理水中の前記スケール成分の濃度が第1の閾値に到達した時間が前記供給開始時間として取得されるとともに、前記電極間流路を通過している前記被処理水中の前記スケール成分の濃度が、前記第1の閾値の0.5倍以上1倍以下の値である第2の閾値に到達した時間が前記供給停止時間として取得されることができる。
 このようにスケール防止剤や低イオン濃度水を脱塩部に直接供給すれば、滞留時間等を考慮しなくても済む。従って、上記構成において脱塩部内のスケール成分の濃度から供給開始時間及び供給停止時間を決定すれば、脱塩部内でのスケール成分の濃度をスケール防止剤や低イオン濃度水の供給に精度良く反映させることが可能であり、スケール発生を確実に防止することができる。
 上記第1の態様または第2の態様において、前記脱塩部から排出された前記濃縮水及び前記処理水の少なくとも一方を前記供給部に循環させる循環部を更に備え、前記制御部が、前記スケール成分イオンの濃度が低い前記濃縮水及び前記処理水の少なくとも一方を、前記低イオン濃度水として前記循環部を通じて前記供給部に送給させて、前記供給部から前記脱塩部に供給させても良い。
 上記第3の態様では、前記供給工程において、前記スケール成分イオンの濃度が低い前記濃縮水及び前記処理水の少なくとも一方が、前記低イオン濃度水として供給されても良い。
 再生処理の初期及び終期の脱塩部内に残留するイオン濃度は低い。このため、再生処理の初期及び終期での濃縮水を低イオン濃度水として脱塩部に循環させても、スケール成分の濃度が飽和濃度に到達しないので、スケールが発生する恐れが無い。また、脱塩工程で生成する処理水もイオン濃度が低減されているため、低イオン濃度水として使用できる。このような構成を採用することによって、系外からの清浄な水の供給量が抑えられ、効率良く水再生を実施することができる。
 上記第1の態様または第2の態様において、前記制御部が、前記脱塩部内の前記スケール成分の濃度に基づいて、前記低イオン濃度水の流量を制御しても良い。
 上記第3の態様において、前記供給工程において、前記脱塩部内の前記スケール成分の濃度が前記第1の閾値以下となるように、前記低イオン濃度水の流量が制御されても良い。
 このように、脱塩部内のスケール成分濃度に基づいて低イオン濃度水の流量を変えれば、必要以上の低イオン濃度水を供給することがなくなるので、低イオン濃度水使用量を抑えることができる。特に処理水を低イオン濃度水として利用する場合には、水回収率の低下を抑えることが可能となる。
 上記第1の態様または第2の態様において、前記スケール成分イオンの濃度を計測する計測部が、前記脱塩部の下流に設置され、あるいは、前記電極間流路に接続され、前記計測部が前記スケール成分イオンの濃度を計測し、前記制御部が、前記計測部で計測される前記スケール成分イオンの濃度から前記スケール成分の濃度を取得し、前記スケール成分の濃度に基づいて、前記供給開始時間と前記供給停止時間とを取得しても良い。
 上記第3の態様において、前記電極間流路を通過した後の前記濃縮水中の前記スケール成分イオンの濃度、または、前記電極間流路を通過している前記被処理水中の前記スケール成分イオンの濃度が計測される計測工程を更に含み、前記取得工程において、前記計測された前記スケール成分イオンの濃度から前記スケール成分の濃度を取得され、前記スケール成分の濃度に基づいて、前記供給開始時間及び前記供給停止時間が取得されても良い。
 このように、計測部により計測されたスケール成分イオンの濃度から取得したスケール成分濃度を用いて供給開始時間及び供給停止時間が取得される構成とすると、被処理水の水質が変動した場合に、水質に応じてスケール防止剤や低イオン濃度水の供給量を変えたり、スケール防止剤及び低イオン濃度水の供給が必要ない場合には供給しないとの選択を行うことができる。すなわち、スケール防止剤や低イオン濃度水の供給を効率化させることができる。
 また、電極間の電極間流路に計測部を接続して電極間を流通する被処理水中のイオン濃度を計測すると、より高精度にスケール防止剤及び/または低イオン濃度水の供給量を管理することが可能となる。
 本発明では、脱塩部内のスケール成分の濃度によりスケール防止剤及び/または低イオン濃度水の供給を制御するので、スケール析出を確実に防止することができる。また、スケール防止剤及び/または低イオン濃度水を過剰に供給しなくて済み、効率良く水再生を実施することができる。
水再生システムのブロック図である。 脱塩部の概略図である。 第1実施形態の脱塩処理装置の概略図である。 第1実施形態の脱塩処理装置の運転方法を説明するタイミングチャートの例である。 第1実施形態の脱塩処理装置の運転方法を説明するタイミングチャートの別の例である。 第2実施形態の脱塩処理装置の概略図である。 第4実施形態の脱塩処理装置の概略図である。
 図1に水再生システムのブロック図の一例を示す。水再生システム1は、上流側から前処理部2、有機物処理部3、及び、脱塩処理装置4を備える。
 前処理部2は、河川水やプラントからの排水等の被処理水を受け入れ、被処理水中の油分、重金属類、浮遊粒子などを除去する。これらの物質の含有量が少ない場合は、前処理部2を省略することができる。
 有機物処理部3は、前処理部2で処理された被処理水中の有機物を分解処理する。有機物処理部3は、微生物を用いて有機物を分解除去する生物処理部と、有機物を化学的に酸化処理する化学酸化処理部と、活性炭と、紫外線処理装置とを、適宜組み合わせた構成とされる。
 生物処理部は、膜分離活性汚泥法を用いた処理装置(MBR:Membrane Bio-Reactor)、及び、生物膜法を用いた処理装置(BFR:Bio-Film Reactor)を含む。
 MBRは、0.1μm程度の孔を有する膜が生物反応槽中の供給水に浸漬される。生物反応槽中の供給水に微生物が存在し、微生物が供給水中の有機物を分解する。生物反応槽中の汚泥処理に役立つ微生物は、最小で0.25μm程度である。従って、生物反応槽中の供給水は、上記膜により供給水と微生物とに固液分離され、供給水のみがMBRから排出される。
 BFRでは、表面に微生物の膜が形成された支持体が内部に設置される。支持体表面の微生物が供給水と接触した時に、微生物が供給水中の有機物を分解処理する。
 MBRとBFRとを組み合わせた構成の場合には、供給水中の有機物量(COD)に応じて、MBR及びBFRの運転が制御される。例えば、供給水中のCODが低い場合にはMBRのみを運転する。CODの変動が大きくなった場合には、MBRと並行してBFRを稼働させる。
 被処理水中の有機物量が少ない場合は、生物処理部を省略できる。
 化学酸化処理としては、次亜塩素酸や過酸化水素を被処理水に供給する方法や、被処理水にオゾン照射を行う方法がある。
<第1実施形態>
 図2,3は、脱塩処理装置4の概略図である。脱塩処理装置4は、脱塩部10、供給部20、及び制御部40を備える。図1の水再生システムでは、複数の脱塩処理装置4が直列、並列、または、直列と配列とが組み合わされて連結される構成とされても良い。
 図2に示すように、脱塩部10は、一対の対向する多孔質の電極11,13と、電極の間を供給水が流通可能な電極間流路15とを備える。電極11の電極間流路側面には陰イオン交換膜12が設置され、電極13の電極間流路側面には陽イオン交換膜14が設置される。
 図3に示すように、脱塩部10の下流側に排出路22が設けられる。排出路22は、経路の途中で処理水排出路23と濃縮水排出路24とに分岐される。処理水排出路23及び濃縮水排出路24に、それぞれバルブV1,V2が設置される。
 図3において、供給部20は、脱塩部10の上流側で被処理水が流通する配管に接続される。スケール防止剤や低イオン濃度水の供給量削減の観点から、供給部20が配管に接続される位置は、脱塩部10の近傍とすることが好ましい。
 供給部20は、タンク21とバルブV3とで構成される。なお、供給部20は、バルブの代わりにポンプを配置する構成、あるいは、ポンプとバルブを併用する構成とすることもできる。
 タンク21内には、スケール防止剤または低イオン濃度水が貯蔵される。図3では供給部20が1つのみ設けられる例が示されているが、スケール防止剤及び低イオン濃度水の両方を供給する場合には、2つの供給部20が設けられ、それぞれのタンク21にスケール防止剤及び低イオン濃度水が別々に貯蔵される。
 スケール防止剤は、キレート系スケール防止剤やホスホン酸系スケール防止剤(例えば、Ondeo Nalco Company製、商品名:PC191、Kimic Chemitech(s) PTE LTD製、商品名:Kimic SI)が使用できる。
 低イオン濃度水は、濃縮水よりもスケール成分となるイオン(スケール成分イオン)の濃度が低い水である。スケール成分イオンは、アルカリ土類金属イオン、Mg2+などの金属イオンや、SO 2-,CO 2-,Fなどの陰イオンである。これらのイオンは水に対して難溶性の塩を形成する。また、シリカイオンもスケール成分イオンである。本実施形態において、低イオン濃度水は、例えばイオン交換水、逆浸透膜式脱塩装置の透過水などとされる。
 図3は、排出路22に計測部30が設置される例である。計測部30は、脱塩部10から排出された水に含まれるイオンの濃度を計測する。計測部30は、必ずしも処理中の脱塩処理装置4に常設されなくても良い。
 被処理水中には、スケール成分イオンとしてCa2+及びシリカイオンが主として含まれる。従って、ここで計測対象となるイオンはカルシウムイオン(Ca2+)及びシリカイオンである。従って、計測部10は、処理水中のCa2+やシリカイオンを計測する濃度計とされる。この場合、上記イオンとともに、Ca2+と結合するSO 2-、CO 2-、Fを計測しても良い。
 あるいは、計測部30として電気伝導度計を設置し、脱塩部10から排出された水の電気伝導度を取得しても良い。
 また、被処理水のpHにより飽和濃度が変化する。そこで、計測部30としてpH計を設置し、脱塩部10から排出された水のpHからスケール成分の飽和濃度を推定し、スケール防止剤や低イオン濃度水の供給を開始する時間及び停止する時間の取得に使用しても良い。
 制御部40は例えばコンピュータとされる。制御部40は、脱塩部10、計測部30、及び、バルブV1~V3に接続される。
 第1実施形態の水再生方法を以下で説明する。図4,5は、脱塩処理装置の運転方法を説明するタイミングチャートである。図4において「スケール成分濃度」は、脱塩部10の電極間流路におけるスケール成分の濃度を概略的に示している。
(脱塩工程)
 制御部40は、電極11がプラスに、電極13がマイナスになるように、各電極11,13に電圧を印加させる。上記の通電状態を、図4,5では「正」と称する。制御部40は、バルブV1を開放するとともに、バルブV2,V3を閉鎖する。
 イオンを含む被処理水が電極11,13が通電された脱塩部10に流入する。被処理水が電極11,13間の電極間流路15を通過すると、被処理水中のマイナスイオンが陰イオン交換膜12を透過して電極11に吸着し、プラスイオンが陽イオン交換膜14を透過して電極13に吸着する。これにより、被処理水中からイオンが除去される。
 イオンが除去された被処理水は、処理水として脱塩部10から排出され、処理水排出路23を通過し、脱塩処理装置の系外へ排出されて回収される。
(再生工程)
 脱塩工程を所定時間実施した後、制御部40は、電極11がマイナスに、電極13がプラスになるように、各電極11,13に電圧を印加する。すなわち、電極は「逆」の通電状態となる。制御部40は、電極11,13の通電状態を逆にするのと同時に、バルブV1を閉鎖するとともにバルブV2を開放する。これにより、再生工程が開始される。
 再生工程において、脱塩工程で吸着されたイオンが電極11,13から脱離され、電極間流路15に放出される。放出されたイオンは、後述する供給工程時に電極間流路15に流体を流通させることにより、脱塩部10から排出される。
 再生工程の終了時には、清浄な水(清水)や処理水などのイオン濃度が低い水が供給され、電極間流路15に放出されたイオンとともに脱塩部10から排出される。この再生工程により、電極11,13及び電極間流路15に残留するイオン量は大幅に低減される。脱塩部10から排出された水は、濃縮水として濃縮水排出路24を通過して脱塩処理装置4の系外へ排出される。
 上記の脱塩工程と再生工程は、所定時間毎に交互に実施される。例えば、脱塩工程は1~10分間実施され、再生工程は1~5分実施される。
 図4に示すように、再生工程でイオンが電極間流路15に放出されることにより、脱塩部10内(電極間流路15内)のイオン濃度が増大することになる。脱塩部10内のスケール成分の濃度が飽和濃度を超えると、スケールが析出しやすい状況となる。そこで、本実施形態では、脱塩部10内のスケール成分濃度が所定値を超えると、脱塩部10にスケール防止剤または低イオン濃度水、あるいは、スケール防止剤及び低イオン濃度水の両方が供給される。
 制御部40は、スケール成分の濃度に基づいて、供給部20から被処理水中にスケール防止剤及び/または低イオン濃度水を供給する期間を取得する。本実施形態では、図3に示すように脱塩処理装置4に計測部30を常設し、処理を行いながら計測部30でスケール成分イオンの濃度を取得し、スケール成分イオンの濃度からスケール成分の濃度を取得して、スケール防止剤及び/または低イオン濃度水を供給する期間を取得しても良い。あるいは、予備試験時、試運転時または調整運転時にのみ計測部30を設置してスケール成分イオンの濃度の時間変化を取得しておき、その濃度を用いてスケール成分の濃度の変化を取得して、実際の水処理におけるスケール防止剤及び/または低イオン濃度水を供給する期間を取得しても良い。
 まず、処理中に計測部30で取得されたスケール成分イオンの濃度からスケール防止剤及び/または低イオン濃度水を供給する期間を取得する方法を説明する。
 (計測工程)
 計測部30は脱塩工程中及び再生工程中の脱塩部10から排出された水中に含まれるスケール成分となるイオンの濃度を計測し取得する。計測部30は、取得したイオンの濃度を制御部40に送信する。
 (供給工程)
 脱塩部10の運転中にスケール防止剤または低イオン濃度水、あるいは、スケール防止剤及び低イオン濃度水の両方を供給する供給工程を説明する。
 制御部40は、計測部30から送信されたスケール成分イオンの濃度を用いて、スケール成分の濃度を取得する。
 上述のように、Ca2+などの陽イオン及びSO 2-、CO 2-、Fなどの陰イオンの濃度がそれぞれ計測された場合は、陽イオン濃度及び陰イオン濃度からスケール成分の濃度が取得される。
 あるいは、陽イオンまたは陰イオンのみの濃度が計測されて、スケール成分の溶解度積からスケール成分濃度が取得されても良い。この場合、濃度変動の大きい方のイオン濃度が計測されると良い。例えば、CaSOの場合、溶解度積はK=[Ca][SO4]である。SO 2-の濃度は一定であると仮定される。この時、SO 2-の濃度が高めの値に設定されると良い。計測部30で計測されたCa2+の濃度を用いて、溶解度積から飽和溶解度に対するCaSOの濃度が推定され、CaSOの濃度が取得される。他のスケール成分についても同様にして濃度が取得される。
 電気伝導度とスケール成分濃度との間には正の相関関係がある。予め電気伝導度とスケール成分濃度との相関が取得され、制御部40に格納される。計測部30が計測した電気伝導度の値が制御部40に送信され、制御部40が上記相関関係からスケール成分濃度を取得する。
 制御部40は、スケール成分濃度の閾値A(第1の閾値)を格納する。閾値Aは、スケール成分の飽和濃度値、あるいは、飽和濃度値より高い値である。具体的に、閾値Aはスケール成分の飽和濃度の1倍~1000倍の範囲内の値、好ましくは100倍~200倍の範囲内の値である。飽和濃度値より高い値を閾値Aとして設定する場合は、事前にスケール析出までの所要時間を試験により確認し、スケール析出までの時間が十分長い時間となる濃度とする。
 制御部40は、n-1(n≧2)回目の脱塩工程及び再生工程で、n-1回目の脱塩工程が開始された時間を0として、計測部30の計測値から取得したスケール成分濃度が閾値Aに到達した時間t1n-1を取得する。
 計測部30は脱塩部10の下流に設置されるため、脱塩部10内の被処理水中の実際のスケール成分濃度は、脱塩部10内に被処理水が滞留する時間(滞留時間)分だけ遅れて計測部30で計測されることになる。滞留時間trは、式(1)で表される。
   tr=W/Q  …(1)
     W:脱塩部の保有水量(m
     Q:供給水流量(m/h)
 すなわち、脱塩部10内でスケール成分濃度が閾値Aに到達した時間は、t1n-1-trである。制御部40は、時間t1n-1-trをn回目の脱塩工程及び再生工程でV3を開放する供給開始時間T1として取得し、メモリに格納する。
 制御部40は、n-1(n≧2)回目の脱塩工程及び再生工程で、n-1回目の脱塩工程が開始された時間を0として、計測部30の計測値から取得されたスケール成分濃度が閾値A’(第2の閾値)に到達した時間t2n-1を取得する。閾値A’は、閾値Aの0.5~1倍の範囲内の値である。なお、1倍の場合はA=A’を意味する。この場合は、制御部40はスケール成分濃度の経時変動をモニタリングし、濃度が増加している場合を閾値A、濃度が減少している場合を閾値A’と判断することができる。
 上記と同様に、脱塩部10内でスケール成分濃度が閾値A’に到達した時間はt2n-1-trである。制御部40は、時間t2n-1-trをn回目の脱塩工程及び再生工程でV3を閉鎖する供給停止時間T2として取得し、メモリに格納する。
 上記工程により、制御部40は、T1とT2の間がスケール防止剤及び/または低イオン濃度水の供給が実施される期間Taとなる。
 制御部40は、n回目の脱塩工程及び再生工程において、取得された供給開始時間T1でバルブV3を開放する。制御部40は、取得された供給停止時間T2でバルブV3を閉鎖する。図4のタイミングチャートは、再生工程中に供給開始時間T1があり、再生工程中に供給開始時間T1及び供給停止時間T2がある場合の例である。図5のタイミングチャートは、脱塩工程中に供給開始時間T1があり、再生工程中に供給停止時間T2がある場合の例である。
 制御部40は、n回目の脱塩工程及び再生工程において、バルブV3の開閉を行うと同時に、上述の工程によりn+1回目の脱塩工程及び再生工程における供給開始時間T1n+1及び供給停止時間T2n+1を取得し、期間Taを決定する。
 1回目の再生工程の場合は、試運転等の別途行う試験により取得された供給開始時間T1及び供給停止時間T2で、制御部40がバルブV3の開放及び閉鎖を行う。
 供給開始時間T1及び供給停止時間T2は、n-1回目の工程で取得したスケール成分濃度を用いて以下の方法により取得しても良い。
 制御部40は、n-1回目の脱塩工程及び再生工程で、時間t1n-1-tr及び時間t2n-1-trでのスケール成分濃度C1,C2をそれぞれ取得する。
 制御部40は、n回目の脱塩工程及び再生工程において、スケール成分濃度がC1に到達した時刻を供給開始時間T1として取得する。取得された供給開始時間T1でバルブV3を開放する。同様に、スケール成分濃度がC2に到達した時刻を供給停止時間T2として取得する。制御部40は、取得された供給停止時間T2でバルブV3を閉鎖する。
 予備試験あるいは試運転を行う場合には、予備試験時、試運転時、または、調整運転時に計測部30によりスケール成分イオンの濃度の時間変化を予め取得する。
 脱塩工程及び再生工程の時間は予め設定されている。従って、脱塩工程あるいは再生工程を行う時間と、スケール成分イオン濃度の時間変化とが関連付けられる。予め取得されたイオンの濃度変化から、上述の供給工程と同様の手法にて、スケール成分濃度が取得され、n回目の脱塩工程及び再生工程での供給開始時間T1及び供給停止時間T2が取得される。
 上述のように脱塩工程及び再生工程は数分~十数分のサイクルで繰り返されるため、被処理水の水質はn-1回目とn回目とで緩やかに変動していく。n-1回目の脱塩工程及び再生工程で計測部30が計測したスケール成分濃度が閾値Aに到達しない場合、制御部40は供給開始時間T1及び供給停止時間T2を取得しない。この場合、n回目の脱塩工程及び再生工程ではバルブV3は開放されない。
 供給部20のタンク21に低イオン濃度水が貯蔵される場合、バルブV3の開閉により、期間Taで所定量の低イオン濃度水が脱塩部10に供給される。これにより、電極間流路15を流通する水中のイオン濃度が低減し、スケール成分の濃度が飽和濃度値以下となって、スケール生成が防止できる。制御部40は、期間Taに脱塩部10に低イオン濃度水のみを流通させても良いし、スケール成分濃度が飽和濃度以下を保持できれば、低イオン濃度水と被処理水とを混合させて流通させても良い。
 なお、閾値Aを用いて、スケール成分濃度に応じて供給される低イオン濃度水の流量が制御されても良い。この場合、バルブV3は開度調節可能なバルブとされる。
 n-1回目の脱塩工程及び再生工程においてバルブV3が開放されて低イオン濃度水が供給されている間、計測部30はスケール成分イオンの濃度をモニタリングする。計測部30で計測されるスケール成分イオンから取得されるスケール成分濃度が閾値A以上である場合、制御部40は、n回目の脱塩工程及び再生工程における供給工程においてバルブV3の開度を増加させて、低イオン濃度水の流量を増加させる。
 供給工程において、制御部40は低イオン濃度水を間欠的に供給することもできる。この場合、制御部40のメモリには、期間Taの間にバルブV3の開放及び閉鎖を繰り返す時間間隔が予め入力されており、制御部40はn回目の脱塩工程及び再生工程でこの時間間隔でバルブV3の開閉を実行する。この時間間隔は、試運転等において取得された脱塩部10のスケール成分濃度の変動を基にして適宜設定される。
 あるいは、n-1回目の脱塩工程及び再生工程において、脱塩部10内のスケール成分濃度の値が閾値Aを挟んで変動するような場合には、制御部40は複数の供給開始時間T1及び供給停止時間T2を取得する。すなわち、n回目の脱塩工程及び再生工程での期間Taが複数取得される。そして、n回目の脱塩工程及び再生工程において、各々の供給開始時間T1及び供給停止時間T2でバルブV3が開閉されて、低イオン濃度水が脱塩部10に間欠的に供給される。
 上記の制御方法では、制御部が閾値A’(閾値Aの0.5倍から1倍未満)を用いて低イオン濃度水の流量を制御することもできる。この場合、脱塩部のスケール成分濃度が飽和濃度を超えるのを確実に防止することができる。
 タンク21にスケール防止剤が貯蔵される場合、制御部40は、期間Taで所定量のスケール防止剤を被処理水または低イオン濃度水に供給する。スケール防止剤は被処理水または低イオン濃度水の流れにより脱塩部10内に搬送されることにより、スケール防止剤が脱塩部10に供給される。スケール防止剤が存在すると、スケール成分の飽和濃度を超えても析出限界以下となるため、スケール生成が防止できる。
 スケール防止剤の効果を得るためには、期間Taでスケール防止剤が脱塩部10内に搬送されれば良い。このため、供給工程での被処理水の流量は、脱塩工程での被処理水の流量よりも少なくても十分である。被処理水は連続的に供給されても良いし、間欠的に供給しても良い。
 低イオン濃度水によりスケール防止剤を搬送させることは、供給部20を2つ設ける場合を意味する。この場合は、低イオン濃度水を貯蔵する供給部20が、スケール防止剤を貯蔵する供給部20よりも上流側に設置されることが好ましい。
 このように、供給工程でスケール防止剤と低イオン濃度水とを供給する場合は、制御部40は、上述した供給開始時間T1及び供給停止時間T2で2つの供給部20のバルブV3の開閉を同時に行っても良い。すなわち、制御部40は、スケール防止剤と低イオン濃度水とを同じタイミングで脱塩部10に供給する。
 あるいは、制御部40は、スケール防止剤の供給開始時間と低イオン濃度水の供給開始時間とをずらすこともできる。
 スケール防止剤を先に供給する場合、制御部40は、スケール防止剤が貯蔵される供給部20について上述のように取得した供給開始時間T1及び供給停止時間T2でバルブV3の開閉を行う。n-1回目の脱塩工程及び再生工程においてスケール防止剤を供給しても脱塩部10内のスケール成分濃度がスケール発生の恐れがある値(閾値A”とする)を超える場合には、制御部40は閾値A”を用いて低イオン濃度水が貯蔵される供給部20’のバルブV3’の供給開始時間T1”及び供給開始時間T2”を取得する。そして、制御部40は、n回目の脱塩工程及び再生工程の供給開始時間T1”及び供給停止時間T2”でバルブV3’の開放及び閉鎖を行い、低イオン濃度水を脱塩部10に供給する。
 低イオン濃度水を先に供給する場合、制御部40は、供給部20’について上述のように取得した供給開始時間T1及び供給停止時間T2でバルブV3の開閉を行う。n-1回目の脱塩工程及び再生工程において低イオン濃度水を供給しても脱塩部10内のスケール成分濃度が閾値Aに到達する場合には、制御部40はスケール防止剤が貯蔵される供給部20のバルブV3の供給開始時間T1”及び供給開始時間T2”を取得する。そして、制御部40は、n回目の脱塩工程及び再生工程の供給開始時間T1”及び供給停止時間T2”でバルブV3の開放及び閉鎖を行い、スケール防止剤を脱塩部10に供給する。
 なお、スケール防止剤及び低イオン濃度水の両方を供給する場合も、制御部40は、上述と同様にして低イオン濃度水の供給量を調整したり、低イオン濃度水を間欠的に供給することができる。
 次に、脱塩部10が停止した場合にスケール防止剤または低イオン濃度水を供給する供給工程を説明する。
 脱塩部10への被処理水供給量が規定値以下である場合や、処理水量が規定値に到達した場合、制御部40は、脱塩部10に被処理水を供給するポンプ(不図示)と脱塩部10とを停止させる。複数の脱塩部4を並列に配列した場合は、一の脱塩部10が停止され、他の脱塩部10での脱塩工程及び再生工程が継続される状態となる。
 脱塩部10が停止状態になると、制御部40はバルブV1を閉鎖し、バルブV2を開放する。再生時に脱塩部10が停止した場合は、バルブV1の閉鎖及びバルブV2の開放が維持される。
 n回目の脱塩工程及び再生工程中の時間Tsで停止したとする。
 Tsが期間Taの間である場合、バルブV3が開放された状態で脱塩部10が停止する。制御部40は、バルブV3の開放を維持させ、スケール防止剤及び/または低濃度イオン水の供給を継続させる。
 制御部40は、n-1回目の脱塩工程及び再生工程におけるスケール成分の濃度を取得している。このスケール成分の濃度の取得にあたっては、運転時に計測部30で計測されたイオン濃度の値を用いても良いし、予備試験結果等を用いても良い。制御部40は、n-1回目の脱塩工程及び再生工程におけるスケール成分の濃度から、上記運転中の供給工程と同様にして、脱塩部10内でスケール成分濃度が閾値A’に到達した時間を供給停止時間T2として取得し、メモリに格納する。そして、取得した供給停止時間T2において、バルブV3を閉鎖する。
 Tsが期間Taの間でない場合、バルブV3が閉鎖された状態で脱塩部10が停止する。脱塩部10の電極間流路15のスケール成分濃度が高い状態で脱塩部10が停止すると、電極間流路15はスケール成分濃度が高い状態が長時間維持され、スケールが析出しやすい状況となる。
 計測部30は、時間Tsn以後のスケール成分イオン濃度を計測し、制御部40に送信する。制御部40は、時間Ts以後の時間Tでのスケール成分イオン濃度からスケール成分濃度を取得し、スケール成分濃度と閾値Aとを比較する。制御部40は、時間Tでのスケール成分濃度が閾値Aに到達したと判断すると、バルブV3を開放し、供給部20からスケール防止剤及び/または低濃度イオン水を供給させる。計測部30は、バルブV3開放後にスケール成分濃度が閾値A’に到達すると、バルブV3を閉鎖する。上記の制御を行うことにより、脱塩部10の停止以降に脱塩部10内のスケール成分の濃度が上昇した場合でも、スケール析出を防止することが可能である。
 予備試験、試運転、または、調整運転を行う場合には、予備試験時、試運転時、または、調整運転時に計測部30によりスケール成分イオンの濃度の時間変化、及び、脱塩部停止後のスケール成分イオンの経時変動を予め計測して取得しておく。制御部40は、上記時間変化から脱塩部10が停止した時のスケール成分濃度を取得する。制御部40は、取得したスケール成分濃度と上記の経時変動とから、脱塩部停止後の脱塩部内のスケール成分濃度を推定する。推定スケール成分濃度が閾値Aに到達すると予想される場合、制御部40はバルブV3を開放し、供給部20からスケール防止剤及び/または低イオン濃度水を供給する。また、閾値A’に到達されると予想される場合は、制御部40はバルブV3を閉鎖し、供給部20からのスケール防止剤及び/または低イオン濃度水の供給を停止する。
 このように本実施形態に依れば、脱塩工程、再生工程、あるいは脱塩部の停止時のいずれにおいても、脱塩部10内のスケール成分濃度に応じた期間でスケール防止剤及び/または低イオン濃度水を供給することが可能である。
 脱塩工程と再生工程とを繰り返し実施すると、電極11,13に吸着したイオンが再生工程で十分に脱離されない、スケール成分が析出する、固形分が堆積する等により、脱塩能力が低下する。そこで、定期的に、電極交換等の脱塩処理装置4のメンテナンスを実施する。メンテナンスの実施は、脱塩工程で計測部30で計測されたイオン濃度が所定値を超えた場合、あるいは、所定の使用時間(例えば1か月)経過後に実施する。使用時間によりメンテナンス時期を管理する場合は、脱塩工程において計測部30で計測されるイオン濃度の値に応じて使用時間を設定すると良い。
<第2実施形態>
 図6は、第2実施形態の脱塩処理装置の概略図である。図6において、図3と同じ構成要素には同じ符号が付されている。第2実施形態の脱塩処理装置も、図1の水再生システム1を構成することができる。
 第2実施形態の脱塩処理装置104は、循環部150が設置される。循環部150は、排出路22と供給部20のタンク21とを連結する配管151、及び、排出路22とタンク21との間のバルブV4を有する。バルブV4は制御部140に接続する。
 第2実施形態においても、計測部30は、必ずしも処理中の脱塩処理装置104に常設されなくても良い。
 第2実施形態の制御部140は、スケール成分濃度の閾値Bを格納する。閾値Bは被処理水の水質を考慮して適宜設定可能である。例えば閾値Bは、スケール成分の飽和濃度値の1倍未満の値、好ましくは0.1~0.5倍の範囲内の値に設定される。
 以下では、脱塩処理装置104に計測部30が常設される場合を例に挙げて第2実施形態の脱塩処理装置104を用いた水再生方法を説明する。
 制御部140は、再生工程の開始(バルブV1の閉鎖)と同時に、バルブV4を開放する。但し、第2実施形態では、再生工程の開始と同時にバルブV2は開放されない。これにより、濃縮水が排出路22から循環部150を経由してタンク21内に貯蔵される。
 制御部140は、計測部30で取得したイオンから取得されるスケール成分濃度が閾値Bに到達した時間T3で、バルブV4を閉鎖し、バルブV2を開放する。これにより、濃縮水の貯蔵が停止される。
 上記の工程は、予備試験時、試運転時、あるいは調整運転時に計測部30により取得されたスケール成分イオンの濃度の時間変化に基づいて実施されても良い。この場合、予め取得されたイオンの濃度の時間変化からスケール成分濃度の時間変化を取得し、スケール成分濃度が閾値Bに到達した時間T4を取得する。実際の水処理運転では、制御部は再生開始時から時間T4の間において上記の濃縮水の貯蔵を実施する。
 本実施形態では、タンク21に貯蔵されたスケール成分濃度が低い濃縮水を、低イオン濃度水として脱塩部10に供給する。供給方法は、第1実施形態と同じである。再生工程の初期及び終期の脱塩部10内に残留するスケール成分濃度は低い。このため、再生工程の初期及び終期で排出された濃縮水を脱塩部10に循環させても、スケール成分の濃度が閾値Aを超えてスケールが発生する恐れが無い。
 このような構成を採用することによって、濃縮水の一部を利用することができ、低イオン濃度水として系外からの清浄な水を供給する必要がなくなるので、効率良く水再生を実施することができる。
<第3実施形態>
 第3実施形態は、脱塩処理装置104において、処理水の一部を低イオン濃度水として循環させて利用する構成である。
 制御部140は、第1実施形態で説明した脱塩工程中に、バルブV1を閉鎖するとともにバルブV4を開放する。これにより、処理水が排出路22から循環部150を経由してタンク21内に供給され、処理水の貯蔵が開始される。制御部140は、所定時間経過後、あるいは、タンク21内の処理水が規定量に到達した時に、バルブV4を閉鎖するとともにバルブV1を開放する。これにより処理水の貯蔵が停止される。
 制御部140は、第1実施形態と同様の工程で、タンク21に貯蔵された処理水を低イオン濃度水として脱塩部10に供給する。本実施形態の場合、脱塩部10内のスケール成分濃度に応じて、低イオン濃度水としての処理水の流量を制御すると、循環させる処理水の量を低減させることができる。この結果、回収率を大幅に低下させることなく、系外からの水の供給量も抑制することも可能となる。
 なお、制御部140は、第2実施形態及び第3実施形態で説明した工程により、処理水及びスケール成分イオン濃度が低い濃縮水の両方をタンク21に貯蔵し、低イオン濃度水として処理水及びスケール成分イオン濃度が低い濃縮水の混合液を供給しても良い。
<第4実施形態>
 図7は、第4実施形態の脱塩処理装置の概略図である。図7において、図3と同じ構成要素には同じ符号が付されている。第4実施形態の脱塩処理装置も、図1の水再生システム1を構成することができる。
 図7の脱塩処理装置204は、脱塩部110に計測部30及び供給部20が接続される。供給部20は、当該電極間流路を流通する被処理水中に、スケール防止剤や低イオン濃度水を供給可能となっている。スケール防止剤及び低イオン濃度水の両方を脱塩部110に供給する場合は、2つの供給部20が脱塩部110に接続される。なお、第4実施形態においても、計測部30は、必ずしも処理中の脱塩処理装置204に常設されなくても良い。
 第4実施形態の脱塩処理装置204では、実際に脱塩部110内を流通する被処理水中のスケール成分イオン濃度を検出する。すなわち、第1実施形態のように滞留時間分だけの計測遅れは発生しない。
 従って、第4実施形態の脱塩処理装置204を用いた水再生方法では、制御部240が、n-1回目の脱塩工程及び再生工程で取得した時間t1n-1を、n回目の脱塩工程及び再生工程でV3を開放する供給開始時間T1として取得する。同様に、制御部240が、n-1回目の脱塩工程及び再生工程で取得した時間t2n-1を、n回目の脱塩工程及び再生工程でV3を閉鎖する供給停止時間T2として取得する。制御部40は、T1とT2の間をスケール防止剤及び/または低イオン濃度水の供給が実施される期間Taと決定する。制御部240は、脱塩工程及び再生工程中の期間Taの間で供給部20に所定量のスケール防止剤及び/または低イオン濃度水を被処理水中に供給させる。
 第4実施形態では、上述の期間Taを決定する工程以外は、第1実施形態と同様の工程で供給工程が行われる。第4実施形態においても、Taの決定は、処理を行いながら計測部30で計測されたスケール成分イオンの濃度を用いても良い。または、予備試験時、試運転時、または調整運転時に予め計測されたスケール成分イオンの濃度からスケール成分濃度を得て、スケール防止剤及び/または低イオン濃度水を供給するタイミングを取得し、実際の水処理運転では取得したタイミングでスケール防止剤及び/または低イオン濃度水の供給を行っても良い。
 図7の脱塩処理装置204においても、図6と同様に循環部を設け、スケール成分の濃度が低い濃縮水、あるいは、処理水の一部を低イオン濃度水として再利用することができる。
 1 水再生システム
 2 前処理部
 3 有機物処理部
 4,104,204 脱塩処理装置
 10,110 脱塩部
 11,13 電極
 12 陰イオン交換膜
 14 陽イオン交換膜
 15 電極間流路
 20 供給部
 21 タンク
 22 排出路
 23 処理水排出路
 24 濃縮水排出路
 30 計測部
 40,140,240 制御部
 150 循環部
 151 配管

Claims (18)

  1.  互いに逆極性に帯電される一対の対向する電極、該電極の間に位置しイオンを含む被処理水が流通可能とされる電極間流路、及び、各々の前記電極の前記電極間流路側に設置されるイオン交換膜を含み、前記電極に前記イオンを吸着させる脱塩処理と前記電極から前記イオンを脱離させる再生処理とを行う脱塩部と、
     前記脱塩部の下流側に設けられ、前記脱塩処理時に前記イオンが除去された処理水を前記脱塩部から排出させる処理水排出路と、
     前記脱塩部の下流側に設けられ、前記再生処理時に前記電極から放出された前記イオンを含む濃縮水を前記脱塩部から排出させる濃縮水排出路と、
     前記脱塩部にスケール防止剤、及び、スケール成分となる前記イオンであるスケール成分イオンの濃度が前記濃縮水よりも低い低イオン濃度水のうち少なくとも一方を供給する供給部と、
     前記脱塩部内での前記スケール成分の濃度に基づいて、前記供給部が前記脱塩部に前記スケール防止剤及び前記低イオン濃度水のうち少なくとも一方を供給する供給開始時間と、前記供給部が前記スケール防止剤及び前記低イオン濃度水のうち少なくとも一方の供給を停止する供給停止時間を取得し、前記供給開始時間と前記供給停止時間との間で前記供給部にスケール防止剤及び前記低イオン濃度水の少なくとも一方の供給を実施させる制御部とを含む水再生システム。
  2.  前記供給部が前記脱塩部の上流に設置され、
     前記制御部が、前記スケール成分の濃度が第1の閾値に到達した時間と前記被処理水が前記脱塩部に滞留する滞留時間とから前記供給開始時間を取得するとともに、前記スケール成分の濃度が、前記第1の閾値の0.5倍以上1倍以下の値である第2の閾値に到達した時間と前記滞留時間とから前記供給停止時間とを取得する請求項1に記載の水再生システム。
  3.  前記供給部が前記電極間流路に接続され、
     前記制御部が、前記スケール成分の濃度が第1の閾値に到達した時間を前記供給開始時間として取得するとともに、前記スケール成分の濃度が、前記第1の閾値の0.5倍以上1倍以下の値である第2の閾値に到達した時間を前記供給停止時間として取得する請求項1に記載の水再生システム。
  4.  前記脱塩部から排出された前記濃縮水及び前記処理水の少なくとも一方を前記供給部に循環させる循環部を更に備え、
     前記制御部が、前記スケール成分イオンの濃度が低い前記濃縮水及び前記処理水の少なくとも一方を、前記低イオン濃度水として前記循環部を通じて前記供給部に送給させて、前記供給部から前記脱塩部に供給させる請求項1乃至請求項3のいずれかに記載の水再生システム。
  5.  前記制御部が、前記脱塩部内の前記スケール成分の濃度に基づいて、前記低イオン濃度水の流量を制御する請求項1乃至請求項4のいずれかに記載の水再生システム。
  6.  前記スケール成分イオンの濃度を計測する計測部が、前記脱塩部の下流に設置され、あるいは、前記電極間流路に接続され、
     前記計測部が前記スケール成分イオンの濃度を計測し、
     前記制御部が、前記計測部で計測される前記スケール成分イオンの濃度から前記スケール成分の濃度を取得し、前記スケール成分の濃度に基づいて、前記供給開始時間と前記供給停止時間とを取得する請求項1乃至請求項5のいずれかに記載の水再生システム。
  7.  互いに逆極性に帯電される一対の対向する電極、該電極の間に位置しイオンを含む被処理水が流通可能とされる電極間流路、及び、各々の前記電極の前記電極間流路側に設置されるイオン交換膜を含み、前記電極に前記イオンを吸着させる脱塩処理と前記電極から前記イオンを脱離させる再生処理とを行う脱塩部と、
     前記脱塩部の下流側に設けられ、前記脱塩処理時に前記イオンが除去された処理水を前記脱塩部から排出させる処理水排出路と、
     前記脱塩部の下流側に設けられ、前記再生処理時に前記電極から放出された前記イオンを含む濃縮水を前記脱塩部から排出させる濃縮水排出路と、
     前記脱塩部にスケール防止剤、及び、スケール成分となる前記イオンであるスケール成分イオンの濃度が前記濃縮水よりも低い低イオン濃度水のうち少なくとも一方を供給する供給部と、
     前記脱塩部内での前記スケール成分の濃度に基づいて、前記供給部が前記脱塩部に前記スケール防止剤及び前記低イオン濃度水のうち少なくとも一方を供給する供給開始時間と、前記供給部が前記スケール防止剤及び前記低イオン濃度水のうち少なくとも一方の供給を停止する供給停止時間を取得し、前記供給開始時間と前記供給停止時間との間で前記供給部にスケール防止剤及び前記低イオン濃度水の少なくとも一方の供給を実施させる制御部とを含む脱塩処理装置。
  8.  前記供給部が前記脱塩部の上流に設置され、
     前記制御部が、前記スケール成分の濃度が第1の閾値に到達した時間と前記被処理水が前記脱塩部に滞留する滞留時間とから前記供給開始時間を取得するとともに、前記スケール成分の濃度が、前記第1の閾値の0.5倍以上1倍以下の値である第2の閾値に到達した時間と前記滞留時間とから前記供給停止時間とを取得する請求項7に記載の脱塩処理装置。
  9.  前記供給部が前記電極間流路に接続され、
     前記制御部が、前記スケール成分の濃度が第1の閾値に到達した時間を前記供給開始時間として取得するとともに、前記スケール成分の濃度が前記第1の閾値の0.5倍以上1倍以下の値である第2の閾値に到達した時間を前記供給停止時間として取得する請求項7に記載の脱塩処理装置。
  10.  前記脱塩部から排出された前記濃縮水及び前記処理水の少なくとも一方を前記供給部に循環させる循環部を更に備え、
     前記制御部が、前記スケール成分イオンの濃度が低い前記濃縮水及び前記処理水の少なくとも一方を、前記低イオン濃度水として前記循環部を通じて前記供給部に送給させて、前記供給部から前記脱塩部に供給させる請求項7乃至請求項9のいずれかに記載の脱塩処理装置。
  11.  前記制御部が、前記脱塩部内の前記スケール成分の濃度に基づいて、前記低イオン濃度水の流量を制御する請求項7乃至請求項10のいずれかに記載の脱塩処理装置。
  12.  前記スケール成分イオンの濃度を計測する計測部が、前記脱塩部の下流に設置され、あるいは、前記電極間流路に接続され、
     前記計測部が前記スケール成分イオンの濃度を計測し、
     前記制御部が、前記計測部で計測される前記スケール成分イオンの濃度から前記スケール成分の濃度を取得し、前記スケール成分の濃度に基づいて、前記供給開始時間と前記供給停止時間とを取得する請求項6乃至請求項9のいずれかに記載の脱塩処理装置。
  13.  互いに逆極性に帯電される一対の対向する電極、該電極の間に位置しイオンを含む被処理水が流通可能とされる電極間流路、及び、各々の前記電極の前記電極間流路側に設置されるイオン交換膜を有する脱塩部において、前記電極に前記被処理水中の前記イオンを吸着させて処理水を生成させる脱塩工程と、
     前記電極から前記吸着されたイオンを脱離させ前記電極間流路に放出させ、前記脱離したイオンを含む濃縮水を前記脱塩部から排出させる再生工程と、
     前記脱塩部に、スケール防止剤、及び、スケール成分となる前記イオンであるスケール成分イオンの濃度が前記濃縮水よりも低い低イオン濃度水のうち少なくとも一方が供給される供給工程とを含み、
     前記供給工程が、
      前記脱塩部内での前記スケール成分の濃度に基づいて、前記スケール防止剤及び前記低イオン濃度水のうち少なくとも一方の供給が開始される供給開始時間と、前記スケール防止剤及び前記低イオン濃度水のうち少なくとも一方の供給が停止される供給停止時間とが取得される取得工程と、
      前記供給開始時間に前記スケール防止剤及び前記低イオン濃度水のうち少なくとも一方の供給が開始される供給開始工程と、
      前記供給開始工程の後に、前記供給停止時間に前記スケール防止剤及び前記低イオン濃度水のうち少なくとも一方の供給が停止される供給停止工程と、を含む水再生方法。
  14.  前記取得工程において、前記スケール成分の濃度が第1の閾値に到達した時間と前記被処理水が前記脱塩部に滞留する滞留時間とから前記供給開始時間が取得されるとともに、前記スケール成分の濃度が、前記第1の閾値の0.5倍以上1倍以下の値である第2の閾値に到達した時間と前記滞留時間とから前記供給停止時間が取得される請求項13に記載の水再生方法。
  15.  前記取得工程において、前記電極間流路を通過している前記被処理水中の前記スケール成分の濃度が第1の閾値に到達した時間が前記供給開始時間として取得されるとともに、前記電極間流路を通過している前記被処理水中の前記スケール成分の濃度が、前記第1の閾値の0.5倍以上1倍以下の値である第2の閾値に到達した時間が前記供給停止時間として取得される請求項13に記載の水再生方法。
  16.  前記供給工程において、前記スケール成分イオンの濃度が低い前記濃縮水及び前記処理水の少なくとも一方が、前記低イオン濃度水として供給される請求項13乃至請求項15のいずれかに記載の水再生方法。
  17.  前記供給工程において、前記脱塩部内の前記スケール成分の濃度が前記第1の閾値以下となるように、前記低イオン濃度水の流量が制御される請求項13乃至請求項16のいずれかに記載の水再生方法。
  18.  前記電極間流路を通過した後の前記濃縮水中の前記スケール成分イオンの濃度、または、前記電極間流路を通過している前記被処理水中の前記スケール成分イオンの濃度が計測される計測工程を更に含み、
     前記取得工程において、前記計測された前記スケール成分イオンの濃度から前記スケール成分の濃度を取得され、前記スケール成分の濃度に基づいて、前記供給開始時間及び前記供給停止時間が取得される請求項13乃至請求項17のいずれかに記載の水再生方法。
PCT/JP2013/059496 2013-03-29 2013-03-29 水再生システム及び脱塩処理装置、並びに、水再生方法 WO2014155660A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2907563A CA2907563A1 (en) 2013-03-29 2013-03-29 Water reclamation system and deionization treatment device, and water reclamation method
SG11201507298SA SG11201507298SA (en) 2013-03-29 2013-03-29 Water reclamation system and deionization treatment device, and water reclamation method
JP2015507865A JP6162221B2 (ja) 2013-03-29 2013-03-29 水再生システム及び脱塩処理装置、並びに、水再生方法
US14/779,562 US20160039688A1 (en) 2013-03-29 2013-03-29 Water reclamation system and deionization treatment device, and water reclamation method
PCT/JP2013/059496 WO2014155660A1 (ja) 2013-03-29 2013-03-29 水再生システム及び脱塩処理装置、並びに、水再生方法
CN201380075018.1A CN105050963B (zh) 2013-03-29 2013-03-29 水再生***及脱盐处理装置、以及水再生方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/059496 WO2014155660A1 (ja) 2013-03-29 2013-03-29 水再生システム及び脱塩処理装置、並びに、水再生方法

Publications (1)

Publication Number Publication Date
WO2014155660A1 true WO2014155660A1 (ja) 2014-10-02

Family

ID=51622724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059496 WO2014155660A1 (ja) 2013-03-29 2013-03-29 水再生システム及び脱塩処理装置、並びに、水再生方法

Country Status (6)

Country Link
US (1) US20160039688A1 (ja)
JP (1) JP6162221B2 (ja)
CN (1) CN105050963B (ja)
CA (1) CA2907563A1 (ja)
SG (1) SG11201507298SA (ja)
WO (1) WO2014155660A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016166168A1 (en) 2015-04-14 2016-10-20 Koninklijke Philips N.V. Electrosorption purification system with recirculation
WO2018008235A1 (ja) * 2016-07-07 2018-01-11 パナソニックIpマネジメント株式会社 水処理装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106045137A (zh) * 2016-01-29 2016-10-26 蔡雄 一种海水淡化方法及海水淡化***
KR102049726B1 (ko) * 2016-11-02 2019-11-28 미쓰비시덴키 가부시키가이샤 수처리 장치 및 수처리 방법
US20210114898A1 (en) * 2019-10-22 2021-04-22 Kyungdong Navien Co., Ltd. Apparatus and method for controlling water softener
JP7105290B2 (ja) * 2020-11-06 2022-07-22 大同メタル工業株式会社 回収システム
CN116829877B (zh) * 2021-02-02 2024-02-02 三菱电机株式会社 加湿装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000037691A (ja) * 1998-07-23 2000-02-08 Toto Ltd 電解水生成装置
US20070284313A1 (en) * 2006-06-12 2007-12-13 Jae Bong Lee Submerged-type electrosorption-based water purification apparatus and method thereof
JP2008259961A (ja) * 2007-04-12 2008-10-30 Kurita Water Ind Ltd 電気脱イオン装置及びその運転方法
WO2011043062A1 (ja) * 2009-10-09 2011-04-14 パナソニック株式会社 水処理装置および給湯機
JP2011140018A (ja) * 2010-01-07 2011-07-21 Samsung Electronics Co Ltd 脱イオン装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA200705509B (en) * 2005-01-27 2008-12-31 Unilever Plc Water softening device and method
WO2006128478A1 (en) * 2005-05-30 2006-12-07 Telefonaktiebolaget Lm Ericsson (Publ) Data unit relay device and method of controlling the same
US20140097095A1 (en) * 2012-10-05 2014-04-10 Pureline Treatment Systems, Llc Generation of variable concentrations of chlorine dioxide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000037691A (ja) * 1998-07-23 2000-02-08 Toto Ltd 電解水生成装置
US20070284313A1 (en) * 2006-06-12 2007-12-13 Jae Bong Lee Submerged-type electrosorption-based water purification apparatus and method thereof
JP2008259961A (ja) * 2007-04-12 2008-10-30 Kurita Water Ind Ltd 電気脱イオン装置及びその運転方法
WO2011043062A1 (ja) * 2009-10-09 2011-04-14 パナソニック株式会社 水処理装置および給湯機
JP2011140018A (ja) * 2010-01-07 2011-07-21 Samsung Electronics Co Ltd 脱イオン装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016166168A1 (en) 2015-04-14 2016-10-20 Koninklijke Philips N.V. Electrosorption purification system with recirculation
CN107531520A (zh) * 2015-04-14 2018-01-02 皇家飞利浦有限公司 具有再循环的电吸附净化***
US10968117B2 (en) 2015-04-14 2021-04-06 Koninklijke Philips N.V. Electrosorption purification system with recirculation
WO2018008235A1 (ja) * 2016-07-07 2018-01-11 パナソニックIpマネジメント株式会社 水処理装置

Also Published As

Publication number Publication date
CA2907563A1 (en) 2014-10-02
JPWO2014155660A1 (ja) 2017-02-16
JP6162221B2 (ja) 2017-07-12
CN105050963B (zh) 2017-10-27
US20160039688A1 (en) 2016-02-11
SG11201507298SA (en) 2015-10-29
CN105050963A (zh) 2015-11-11

Similar Documents

Publication Publication Date Title
JP6162221B2 (ja) 水再生システム及び脱塩処理装置、並びに、水再生方法
Damtie et al. Removal of fluoride in membrane-based water and wastewater treatment technologies: Performance review
JP5955389B2 (ja) 脱塩処理装置及び脱塩処理装置の運転方法
JP5909281B2 (ja) 水処理装置
JP5922406B2 (ja) 排水処理装置
WO2011010500A1 (ja) 造水システム
De Souza et al. Comparative analysis of physical cleaning operations for fouling control of hollow fiber membranes in drinking water treatment
JP5768959B2 (ja) 水処理装置
RU2466099C2 (ru) Способ получения питьевой воды и устройство для его реализации
TW200640563A (en) Regeneration of adsorption media within electrical purification apparatuses
JP2016107249A (ja) 超純水製造システム及び超純水製造方法
JP2013111559A (ja) 膜を用いて海水中の塩分を脱塩もしくは濃縮する装置に供給する前処理装置
KR20120035531A (ko) 축전식 탈염전극을 이용한 초순수 제조장치
WO2014129383A1 (ja) 水処理システム
KR20120082754A (ko) 수처리장치와 수처리장치의 역삼투막필터 세정방법
CN110902765A (zh) 高效水处理工艺
US20240091706A1 (en) Osmotic processes
JP7243039B2 (ja) 尿素監視装置及び純水製造装置
WO2018124289A1 (ja) 排ガス処理装置及び排ガス処理方法
NL2021733B1 (en) Method for the production of drinking water
JP6468384B1 (ja) 水処理装置
JPH1085755A (ja) 電気透析装置による脱塩方法
JP2007260638A (ja) 逆浸透膜を用いる水処理方法
Dhokai et al. Water Conservation in Thermal Power Plant by Using Combination of Membrane treatment and Deionization Route.
JP2019107591A (ja) 処理水の製造方法、水処理装置及び該水処理装置の運転方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380075018.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880220

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2907563

Country of ref document: CA

Ref document number: 2015507865

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14779562

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880220

Country of ref document: EP

Kind code of ref document: A1