WO2014155633A1 - 加工工具用硬質被膜および硬質被膜被覆金属加工工具 - Google Patents

加工工具用硬質被膜および硬質被膜被覆金属加工工具 Download PDF

Info

Publication number
WO2014155633A1
WO2014155633A1 PCT/JP2013/059400 JP2013059400W WO2014155633A1 WO 2014155633 A1 WO2014155633 A1 WO 2014155633A1 JP 2013059400 W JP2013059400 W JP 2013059400W WO 2014155633 A1 WO2014155633 A1 WO 2014155633A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard coating
tool
hard
hard film
atomic ratio
Prior art date
Application number
PCT/JP2013/059400
Other languages
English (en)
French (fr)
Inventor
正俊 櫻井
メイ ワン
敏弘 大地
須藤 祐司
小池 淳一
翔子 小宮山
Original Assignee
オーエスジー株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オーエスジー株式会社, 国立大学法人東北大学 filed Critical オーエスジー株式会社
Priority to US14/775,419 priority Critical patent/US9551062B2/en
Priority to EP13880426.5A priority patent/EP2980265A4/en
Priority to KR1020157027265A priority patent/KR101740845B1/ko
Priority to CN201380075029.XA priority patent/CN105051245B/zh
Priority to JP2015507823A priority patent/JP6120430B2/ja
Priority to PCT/JP2013/059400 priority patent/WO2014155633A1/ja
Publication of WO2014155633A1 publication Critical patent/WO2014155633A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides

Definitions

  • the present invention relates to a hard coating for a tool provided on a surface of a metal working tool and a metal working tool, and in particular, improves its lubricity while maintaining its wear resistance, welding resistance, and oxidation resistance. Regarding technology.
  • the surface of metal working tools such as cutting tools that process workpieces by cutting with drills, taps, etc., and rolling tools that process workpieces by plastic deformation such as rolling taps, are wear resistant.
  • a hard coating for a tool is coated.
  • TiN, TiAlN, and AlCrN coatings are widely used, and improvements are made to further improve the performance.
  • it is the hard laminated film described in Patent Document 1.
  • oxidation and welding resistance are still not sufficient, and tool life may be reached relatively early.
  • Patent Document 2 proposes a single-layer hard coating for a cutting tool made of a nitride or carbonitride of Ti a Cr b Al c Mo 1- abc. According to this, in the atomic ratio, 0.2 ⁇ a ⁇ 0.7, 0.01 ⁇ b ⁇ 0.2, 0.01 ⁇ c ⁇ 0.2, 0.1 ⁇ (1-ab ⁇ c), and the total film thickness is in the range of 0.2 ⁇ m ⁇ total film ⁇ 10.0 ⁇ m, thereby obtaining a hard coating for a cutting tool having both wear resistance and welding resistance. It is said that.
  • the present invention has been made against the background of the above circumstances, and an object of the present invention is to provide a hard coating for a tool having excellent wear resistance, welding resistance, and smoothness. .
  • the present inventors have made a TiCrMoWV-based carbide, nitride, or carbonitride hard coating having a phase having a NaCl-type crystal structure as a main phase. It has been found that when oxygen is introduced, crystal grains constituting the hard coating become minute and the surface thereof becomes smooth, and a hard coating with improved wear resistance due to a low friction coefficient can be obtained. The present invention has been obtained based on such knowledge.
  • the gist of the present invention is a hard coating for a tool provided on the surface of a tool, which is a TiCrMoWV having a NaCl-type crystal structure as a main phase having fine crystals by introducing oxygen. It is characterized by being an oxycarbide, oxynitride, or oxycarbonitride.
  • the oxycarbide, oxynitride, or oxycarbonitride of TiCrMoWV mainly composed of a phase having a NaCl type crystal structure is introduced by introducing oxygen. Since it has fine crystals, the surface of the hard coating is extremely smooth and a low coefficient of friction can be obtained, so that a hard coating for a tool having wear resistance, welding resistance and smoothness can be obtained. Such a hard coating for a tool has excellent smoothness and a low coefficient of friction, so that the tool life is extended.
  • the oxycarbide of TiCrMoWV is expressed as (Ti a Cr b Mo c W d V e ) 1-xy C x O y , and an atomic ratio thereof is 0.2.
  • ⁇ a ⁇ 0.7, 0.01 ⁇ b ⁇ 0.4, 0.05 ⁇ c ⁇ 0.5, 0 ⁇ d ⁇ 0.05, 0 ⁇ e 1 ⁇ abcd ⁇ 0 .05, 0.3 ⁇ x + y ⁇ 0.6, and 0 ⁇ y ⁇ 0.15.
  • the crystals constituting the hard coating become fine and the surface of the hard coating becomes very smooth, so that a hard coating for a tool having both wear resistance, welding resistance and smoothness can be obtained.
  • the atomic ratio is out of the numerical range, it is considered that sufficient wear resistance and welding resistance cannot be obtained and the tool life is shortened.
  • the atomic ratio a of Ti is less than 0.2, the hard coating becomes soft, and when it exceeds 0.7, Mo and W are reduced and the welding resistance is deteriorated.
  • the atomic ratio b of Cr is less than 0.01, oxidation resistance cannot be obtained, and if it exceeds 0.4, the hard coating becomes brittle.
  • the atomic ratio c of Mo is less than 0.05, welding resistance cannot be obtained, and if it exceeds 0.5, the amount of Ti is less than 0.2, and the hard coating becomes soft.
  • the atomic ratio d of W is an essential element for increasing the lubricity, and therefore needs to exceed 0. However, if it exceeds 0.05, the hard coating becomes soft.
  • the atomic ratio e of V is an essential element for improving the lubricity, so it is necessary to exceed 0. However, if it exceeds 0.05, the amorphous film increases and the hard coating is softened.
  • the atomic ratio x + y of C and O is less than 0.3, the crystal of the hard coating does not become small and the hard coating does not become hard, but if it exceeds 0.6, amorphous is formed and the hard coating does not become hard.
  • the atomic ratio y of O is indispensable for hardening the hard coating and reducing the crystal grains, but when it exceeds 0.15, amorphous is formed and softened.
  • the crystal constituting the hard coating becomes fine and the surface of the hard coating becomes very smooth, a hard coating for tools having both wear resistance, welding resistance and smoothness can be obtained.
  • the atomic ratio a of Ti is less than 0.2, the hard coating becomes soft, and when it exceeds 0.7, Mo and W are reduced and the welding resistance is deteriorated.
  • the atomic ratio b of Cr is less than 0.01, oxidation resistance cannot be obtained, and if it exceeds 0.4, the hard coating becomes brittle.
  • the atomic ratio c of Mo is less than 0.05, MoO welding resistance cannot be obtained, and if it exceeds 0.5, the amount of Ti is less than 0.2 and the hard coating becomes soft.
  • the atomic ratio d of W is an essential element for increasing the lubricity, and therefore needs to exceed 0. However, if it exceeds 0.05, the hard coating becomes soft.
  • the atomic ratio e of V is an essential element for improving the lubricity, so it is necessary to exceed 0. However, if it exceeds 0.05, the amorphous film increases and the hard coating is softened.
  • the atomic ratio x + y + z of C, N, and O is less than 0.3, the crystal of the hard coating does not become small and the hard coating does not become hard, but when it exceeds 0.6, amorphous is formed and the hard coating does not become hard. .
  • the atomic ratio y of N is indispensable for hardening the hard coating, but if it exceeds 0.5, C decreases and the hard coating does not harden.
  • the atomic ratio z of O is indispensable for hardening the hard coating and reducing the crystal grains, but when it exceeds 0.15, amorphous is formed and softened.
  • the hard coating becomes soft, and when it exceeds 0.7, Mo and W are reduced and the welding resistance is deteriorated.
  • the atomic ratio b of Cr is less than 0.01, oxidation resistance cannot be obtained, and if it exceeds 0.4, the hard coating becomes brittle.
  • the atomic ratio c of Mo is less than 0.05, welding resistance cannot be obtained, and if it exceeds 0.5, the amount of Ti is less than 0.2, and the hard coating becomes soft.
  • the atomic ratio d of W is an essential element for increasing the lubricity, and therefore needs to exceed 0. However, if it exceeds 0.05, the hard coating becomes soft.
  • the atomic ratio e of V is an essential element for improving the lubricity, so it is necessary to exceed 0. However, if it exceeds 0.05, the amorphous film increases and the hard coating is softened. If the atomic ratio x + y of N and O is less than 0.3, the crystal of the hard coating does not become small and the hard coating does not become hard, but if it exceeds 0.6, the amorphous increases and the hard coating does not become hard.
  • the atomic ratio y of O is indispensable for hardening the hard coating and reducing the crystal grains, but when it exceeds 0.15, an amorphous is formed and the hard coating does not become hard.
  • the hard coating for a tool is obtained by coating the surface of a tool base material with a single layer having a thickness of 0.2 to 10.0 ⁇ m.
  • the hard coating for tools having high wear resistance, welding resistance and smoothness can be obtained with few steps, the tool becomes inexpensive. If the thickness of the hard coating for a tool is less than 0.2 ⁇ m, sufficient wear resistance and welding resistance may not be obtained, whereas if it exceeds 10.0 ⁇ m, the toughness is reduced and chipping is lost. Or peeling or the like may occur easily.
  • the tool hard coating may be a laminate of a plurality of layers on the surface of the tool base material.
  • the tool hard coating is provided on the surface, Mo, W and V are contained in the coating, so that Mo has a low friction coefficient on the coating surface due to wear oxidation.
  • An oxide containing W and V is formed, and a coating film having excellent welding resistance and high hardness can be obtained. That is, it is possible to provide a hard film-coated cutting tool having excellent wear resistance, welding resistance, and smoothness.
  • the hard coating for a tool according to the present invention includes, in addition to a rolling tap for plastic processing of a metal, an end mill, a drill, a face mill, a full mill, a reamer, a cutting tap, etc. for processing a metal by cutting. It is suitably applied to the surface coating of various metal working tools such as non-rotating cutting tools such as cutting tools, dies, etc. in addition to rotating cutting tools.
  • various metal working tools such as non-rotating cutting tools such as cutting tools, dies, etc. in addition to rotating cutting tools.
  • cemented carbide or high-speed tool steel is preferably used, but other materials may be used, and the hard coating for a tool of the present invention is made of various materials. Widely applied to structured metal working tools.
  • the hard coating for a tool of the present invention is provided so as to cover a part or all of the surface of the tool, and preferably, a blade part or plastic working involved in metal processing in the tool. Provided in the section.
  • a sputtering method is preferably used, but other physical vapor deposition methods (PVD method) such as an arc ion plating method, a plasma CVD method, A chemical vapor deposition method (CVD method) such as a thermal CVD method can also be used.
  • PVD method physical vapor deposition methods
  • CVD method chemical vapor deposition method
  • thermal CVD method thermal CVD method
  • FIG. 1 is a front view of a rolling tap 10 which is an example of a coated metal working tool to which a hard coating 30 for a tool according to the present invention is applied, viewed from a direction perpendicular to an axis.
  • 2 is an enlarged cross-sectional view taken along the line II-II in FIG.
  • the rolling tap 10 of this embodiment includes a shank 12 attached to a main shaft via a chuck (not shown), and a processing portion 16 that forms a female screw by being screwed into a prepared hole.
  • the tool base material (base material) 18 is made of high-speed tool steel.
  • this high-speed tool steel for example, a high-speed tool steel corresponding to SKH58 specified in JIS is used, and the content and ratio thereof are C: 1.0, Cr: 4.0, Mo: 8.8, W : 1.8, V: 2.0, and the remainder is substantially Fe.
  • the processing part 16 has a polygonal columnar shape consisting of sides curved outward, and in this embodiment has a substantially square columnar cross section, and the outer peripheral surface has a surface layer part of a pilot hole in a metal workpiece.
  • a male screw 22 is provided for encircling and plastically deforming the female screw, that is, rolling.
  • the thread of the male screw 22 has a cross-sectional shape corresponding to the shape of the groove of the female screw to be formed, and is provided at a certain height along the winding of the lead angle corresponding to the female screw. ing.
  • the processed portion 16 includes four margin portions M in which the threads of the male screw 22 protrude outward in the radial direction to process the female screw, and four relief portions 24 having a smaller diameter than the margin portion M.
  • the size of the margin portion M is set to be the same size as the female screw to be formed or larger than the female screw in consideration of elastic recovery against plastic deformation.
  • the processed portion 16 includes a complete thread portion 26 in which the diameter of the screw thread is constant in the axial direction, and a biting portion 28 that decreases in diameter toward the distal end side.
  • FIG. 2 is a cross-sectional view taken along the winding at the valley bottom of the groove of the external thread 22.
  • FIG. 3 shows an enlarged cross-sectional view of the surface portion of the rolling tap 10 in which the hard coating 30 is coated on the surface of the processed portion 16 of the rolling tap 10 with a predetermined film thickness t.
  • the hatched portion in FIG. 1 indicates a portion where the hard coating 30 is provided in the rolling tap 10.
  • the hard coating 30 rubs against a metal workpiece under a relatively high pressure that causes the inner peripheral surface of the pilot hole to be plastically deformed when the rolling tap 10 forms a female screw on the inner peripheral surface of the pilot hole. Be made.
  • the hard coating 30 has fine crystals of 100 nm or less by introduction of oxygen and has a phase having a NaCl-type crystal structure as a main phase, TiCrMoWV acid carbide (Ti a Cr b Mo c W d V e ) 1-x -y C x O y, acid carbonitride TiCrMoWV (Ti a Cr b Mo c W d V e) 1-x-y-z C x N y O z, or oxynitride of TiCrMoWV (Ti a Cr b Mo c W d V e ) 1-xy N x O y
  • FIG. 4 is a schematic configuration diagram (schematic diagram) illustrating a sputtering apparatus 40 that is preferably used when forming the hard coating 30 of the present embodiment.
  • a negative constant bias voltage for example, about ⁇ 50 to ⁇ 60 V
  • a negative constant bias voltage for example, about ⁇ 100 V
  • the bias power source 44 to cause the argon ions Ar + to collide with the target 48 to cause Ti, Cr, Mo, Strike out constituent elements such as W and V.
  • the voltage applied by the power source 50 and the bias power source 44 is controlled by the controller 46.
  • the pressure in the chamber 42 is controlled to about 0.5 Pa, for example.
  • V and TiN, TiCN, TiO, MoO, etc. and are attached to the surface of the tool base material 18 as a hard coating 30 with a predetermined thickness.
  • FIG. 5 shows a plurality of types of hard coatings with different atomic compositions and film thicknesses t applied to the test tap used in the durability evaluation test 1, and the durability test results (number of processed holes and It is a chart which shows together (determination).
  • the conventional products 1 to 6 include a hard coating that contains Ti but does not contain W, V, and O, and the test products 1 to 12 are the same as the products of the present invention.
  • the crystal grain size of the hard coating formed on the surface of the test tap was evaluated by observing the structure using a TEM (transmission electron microscope). Since the crystal grains have a shape extending in the direction perpendicular to the surface of the base material, the cross section of the hard coating is imaged using a TEM, and the width of the crystal parallel to the surface of the base material of the crystal extending in the vertical direction is The dimensions were measured at 10 points, and the average value was measured as the crystal grain size of the hard coating of each test tap.
  • Inventive products 1 to 45 exhibited fine crystal grains of 40 to 90 nm.
  • the conventional products 1 to 6 and the test products 1 to 12 were at least 120 nm or more, and both showed values exceeding 100 nm.
  • the oxygen O introduced in the sputtering process is basically arranged at some atomic sites in the NaCl-type crystal structure shown in FIG. 6 (part of small atom sites in the crystal structure shown in FIG. 6).
  • the grain growth is suppressed due to the uneven distribution of oxygen in the crystal grain boundaries, and the crystal grain size of the hard coating is reduced as a factor of crystal grain refinement.
  • the fine crystal grain size contributes to reducing the friction coefficient, improving the lubricity of the hard coating, and extending the durable life of the rolling tap.
  • the conventional products 1 to 8 include a hard coating containing at least Ti but not W, V, or O.
  • the test products 1 to 10 are the products of the present invention.
  • a hard coating containing the same metal elements (Ti, Cr, Mo, W, V) and C, N, O, but having an atomic ratio outside the scope of the present invention is used.
  • the hard coatings of the products 1 to 45 of the present invention evaluated as acceptable products have a range of 2.0 to 10.0 ⁇ m, and the chemical composition thereof is (Ti a Cr b Mo c W d V e ) 1-xy TiCrMoWV oxycarbonitride expressed as -z C x N y O z , and the atomic ratio is 0.2 ⁇ a ⁇ 0.7, 0.01 ⁇ b ⁇ 0.4, 0.05 ⁇ c.
  • the crystal grain size of the hard coating formed on the surface of the test tap is measured by observing the structure using a TEM (transmission electron microscope) and measuring the crystal grain size. evaluated.
  • Inventive products 1 to 45 exhibited fine crystal grains of 40 to 90 nm.
  • the conventional products 1 to 8 and the test products 1 to 10 were at least 120 nm or more, and both showed values exceeding 100 nm.
  • FIG. 8 shows a plurality of types of hard coatings with different atomic compositions and film thicknesses t applied to the test tap used in this durability evaluation test, and the durability test results (number of processed holes and judgment) of each test tap. ).
  • the conventional products 1 to 8 contain at least Ti, C, and N, but use a hard coating that does not contain O, and the test products 1 to 10 are the products of the present invention.
  • a hard coating containing the same metal elements (Ti, Cr, Mo, W, V), N, and O, but having an atomic ratio outside the scope of the present invention is used.
  • the crystal grain size of the hard coating formed on the surface of the test tap is measured by observing the structure using a TEM (transmission electron microscope) to measure the crystal grain size. And evaluated. Inventive products 1 to 45 exhibited fine crystal grains of 40 to 90 nm. On the other hand, the conventional products 1 to 8 and the test products 1 to 10 were at least 120 nm or more, and both showed values exceeding 100 nm.
  • TiCrMoWV oxycarbide, oxynitride, or oxycarbonitride having a phase having a NaCl-type crystal structure as a main phase Since the object has fine crystals due to the introduction of oxygen, the surface of the hard coating is extremely smooth and a low coefficient of friction is obtained, so it can have both wear resistance, welding resistance and smoothness. In addition to wear and welding resistance, it has excellent smoothness and a low coefficient of friction, resulting in a long tool life.
  • the hard coating 30 of the present example is formed by coating the surface of the rolling tap 10 with a single layer having a thickness of 0.2 to 10.0 ⁇ m, it has high wear resistance, welding resistance, and smoothness. Since the hard coating 30 having a thickness is obtained in a few steps, the rolling tap 10 becomes inexpensive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical Vapour Deposition (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Drilling Tools (AREA)
  • Physical Vapour Deposition (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)

Abstract

 優れた耐摩耗性及び耐溶着性と平滑性とを兼ね備えた加工工具用硬質被膜を提供する。 本実施例の転造タップ10に固着された硬質被膜30によれば、NaCl型結晶構造を有する相を主相とするTiCrMoWVの酸炭化物、酸窒化物、または、酸炭窒化物が、酸素の導入による100nm以下の微細結晶を有することから、硬質被膜の表面が極めて滑らかとなって低摩擦係数が得られるので、耐摩耗性及び耐溶着性と平滑性とを兼ね備えることができ、耐摩耗性及び耐溶着性に加えて平滑性に優れていて低摩擦係数が低いので、工具寿命が長くなる。

Description

加工工具用硬質被膜および硬質被膜被覆金属加工工具
 本発明は、金属加工工具の表面に被覆して設けられる工具用硬質被膜および金属加工工具に関し、特に、その耐摩耗性、耐溶着性、耐酸化性を維持しつつ、その潤滑性を向上させる技術に関する。
 ドリルやタップ等の切削により被加工材を加工する切削加工工具、転造タップ等の塑性変形させることにより被加工材を加工する転造加工工具などの金属加工工具の表面には、耐摩耗性を向上させるために工具用硬質被膜が被覆されている。この工具用硬質被膜としては、TiN系、TiAlN系、及びAlCrN系のコーティングが広く用いられており、その性能を更に向上させるために改良が図られている。例えば、特許文献1に記載された硬質積層被膜がそれである。しかし、被削材の種類や切削条件によっては酸化性や耐溶着性については未だ十分ではなく、比較的早期に工具寿命に至る場合があった。
 これに対して、特許文献2において、TiCrAlMo1-a-b-cの窒化物又は炭窒化物からなる単層の切削工具用硬質被膜が提案されている。これによれば、原子比において、0.2≦a≦0.7、0.01≦b≦0.2、0.01≦c≦ 0.2、0.1≦(1-a-b-c)という範囲内とされ、総膜厚が0.2μm≦総膜厚≦10.0μmという範囲内とされることにより、耐摩耗性および耐溶着性を兼ね備えた切削工具用硬質被膜が得られるとされている。
特開2006-336032号公報 特開2012-115923号公報
 しかし、上記特許文献2に記載された従来の硬質被膜においても、金属加工工具の耐久性について未だ十分に得られない場合があり、未だ改良の余地があった。このような従来の硬質被膜は、耐摩耗性および耐溶着性は得られるものの、結晶粒が比較的大きくて表面の平滑性すなわち低摩擦性が十分に得られないという問題があった。すなわち、優れた耐摩耗性及び耐溶着性と平滑性とを兼ね備えた工具用硬質被膜の開発が求められていた。
 本発明は、以上の事情を背景として為されたものであり、その目的とするところは、優れた耐摩耗性及び耐溶着性と平滑性とを兼ね備えた工具用硬質被膜を提供することにある。
 本発明者等は、以上の事情を背景として種々研究を重ねた結果、NaCl型結晶構造を有する相を主相とするTiCrMoWV系の炭化物、窒化物、または、炭窒化物の硬質被膜の生成時に、酸素を導入すると、硬質被膜を構成する結晶粒が微小となってその表面が滑らかとなり、低摩擦係数により耐摩耗性が向上した硬質被膜が得られることを見出した。本発明は、このような知見に基づいて得られたものである。
 すなわち、本発明の要旨とするところは、工具の表面に被覆して設けられる工具用硬質被膜であって、酸素の導入により微細結晶を有する、NaCl型結晶構造を有する相を主相とするTiCrMoWVの酸炭化物、酸窒化物、または、酸炭窒化物であることを特徴とする。
 このように構成された本発明の工具用硬質被膜によれば、NaCl型結晶構造を有する相を主相とするTiCrMoWVの酸炭化物、酸窒化物、または、酸炭窒化物が、酸素の導入により微細結晶を有することから、硬質被膜の表面が極めて滑らかとなって低摩擦係数が得られるので、耐摩耗性及び耐溶着性と平滑性とを兼ね備えた工具用硬質被膜が得られる。このような工具用硬質被膜は、平滑性に優れていて低摩擦係数が低いので、工具寿命が長くなる。
 ここで、好適には、前記TiCrMoWVの酸炭化物は、(TiaCrbMo1-x-yとして表わされるものであり、その原子比は、0.2≦a≦0.7、0.01≦b≦0.4、0.05≦c≦0.5、0<d≦0.05、0<e=1-a-b-c-d≦0.05、0.3≦x+y≦0.6、0<y≦0.15である。このようにすれば、硬質被膜を構成する結晶が微細となって硬質被膜の表面が極めて滑らかとなるので、耐摩耗性及び耐溶着性と平滑性とを兼ね備えた工具用硬質被膜が得られる。上記原子比の数値範囲から外れる場合には、十分な耐摩耗性及び耐溶着性が得られず、工具寿命が短くなることが考えられる。Tiの原子比aは、0.2を下回ると硬質被膜が軟らかくなり、0.7を上回るとMo、Wが少なくなって耐溶着性が劣化する。Crの原子比bは、0.01を下まわると耐酸化性が得られず、0.4を上まわると硬質被膜が脆くなる。Moの原子比cは、0.05を下まわると耐溶着性が得られず、0.5を上まわるとTiの量が0.2を下回ることになって硬質被膜が軟らかくなる。Wの原子比dは、潤滑性を高くするための必須の元素であるため0を越える必要があるが、0.05を上まわると硬質被膜が軟らかくなる。Vの原子比eは、潤滑性を高めるために必須の元素であるため0を越える必要があるが、0.05を上まわるとアモルファスが多くなるので硬質被膜が軟化する。CおよびOの原子比x+yは、0.3を下まわると硬質被膜の結晶が小さくならずまた硬質被膜が硬くならないが、0.6を上まわるとアモルファスが形成され硬質被膜が硬くならない。Oの原子比yは、硬質被膜を硬くし且つ結晶粒を小さくする上で必須のものであるが、0.15を上まわるとアモルファスが形成され軟化する。
 また、好適には、前記TiCrMoWVの酸炭窒化物は、(TiaCrbMo1-x-y-zとして表わされるものであり、その原子比は、0.2≦a≦0.7、0.01≦b≦0.4、0.05≦c≦0.5、0<d≦0.05、0<e=1-a-b-c-d≦0.05、0.3≦x+y+z≦0.6、0<y≦0.5,0<z≦0.15である。このようにすれば、硬質被膜を構成する結晶が微細となって硬質被膜の表面が極めて滑らかとなるので、耐摩耗性及び耐溶着性と平滑性とを兼ね備えた工具用硬質被膜が得られる。Tiの原子比aは、0.2を下回ると硬質被膜が軟らかくなり、0.7を上回るとMo、Wが少なくなって耐溶着性が劣化する。Crの原子比bは、0.01を下まわると耐酸化性が得られず、0.4を上まわると硬質被膜が脆くなる。Moの原子比cは、0.05を下まわるとMoO耐溶着性が得られず、0.5を上まわるとTiの量が0.2を下回ることになって硬質被膜が軟らかくなる。Wの原子比dは、潤滑性を高くするための必須の元素であるため0を越える必要があるが、0.05を上まわると硬質被膜が軟らかくなる。Vの原子比eは、潤滑性を高めるために必須の元素であるため0を越える必要があるが、0.05を上まわるとアモルファスが多くなるので硬質被膜が軟化する。C、NおよびOの原子比x+y+zは、0.3を下まわると硬質被膜の結晶が小さくならずまた硬質被膜が硬くならないが、0.6を上まわるとアモルファスが形成され硬質被膜が硬くならない。Nの原子比yは、硬質被膜を硬くする上で必須のものであるが、0.5を上まわるとCが少なくなって硬質被膜が硬くならない。Oの原子比zは、硬質被膜を硬くし且つ結晶粒を小さくする上で必須のものであるが、0.15を上まわるとアモルファスが形成され軟化する。
 また、好適には、前記TiCrMoWVの酸窒化物は、(TiaCrbMo1-x-yとして表わされるものであり、その原子比は、0.2≦a≦0.7、0.01≦b≦0.4、0.05≦c≦0.5、0<d≦0.05、0<e=1-a-b-c-d≦0.05、0.3≦x+y≦0.6、0<y≦0.15である。このようにすれば、硬質被膜を構成する結晶が微細となって硬質被膜の表面が極めて滑らかとなるので、耐摩耗性及び耐溶着性と平滑性とを兼ね備えた工具用硬質被膜が得られる。Tiの原子比aは、0.2を下回ると硬質被膜が軟らかくなり、0.7を上回るとMo、Wが少なくなって耐溶着性が劣化する。Crの原子比bは、0.01を下まわると耐酸化性が得られず、0.4を上まわると硬質被膜が脆くなる。Moの原子比cは、0.05を下まわると耐溶着性が得られず、0.5を上まわるとTiの量が0.2を下回ることになって硬質被膜が軟らかくなる。Wの原子比dは、潤滑性を高くするための必須の元素であるため0を越える必要があるが、0.05を上まわると硬質被膜が軟らかくなる。Vの原子比eは、潤滑性を高めるために必須の元素であるため0を越える必要があるが、0.05を上まわるとアモルファスが多くなるので硬質被膜が軟化する。NおよびOの原子比x+yは、0.3を下まわると硬質被膜の結晶が小さくならずまた硬質被膜が硬くならないが、0.6を上まわるとアモルファスが増加して硬質被膜が硬くならない。Oの原子比yは、硬質被膜を硬くし且つ結晶粒を小さくする上で必須のものであるが、0.15を上まわるとアモルファスが形成され硬質被膜が硬くならない。
 また、好適には、前記工具用硬質被膜は、工具母材の表面を0.2乃至10.0μmの厚みの単層で被膜したものである。このようにすれば、高い耐摩耗性及び耐溶着性と平滑性とを有する工具用硬質被膜が少ない工程で得られるので、工具が安価となる。この工具用硬質被膜の膜厚が0.2μm未満である場合には十分な耐摩耗性及び耐溶着性が得られなくなるおそれがある一方、10.0μmを超える場合には靱性が低下して欠けや剥離等が発生し易くなるおそれがある。膜厚を0.2μm以上10.0μm以下の範囲内とすることで、耐摩耗性及び耐溶着性を保証するのに必要十分な厚さを有し、欠けや剥離等が発生し難い硬質被膜を構成することができる。
 また、好適には、前記工具用硬質被膜は、工具母材の表面において複数層が積層されたものであってもよい。この場合、複数層のうちのすべてが本発明の工具用硬質被膜である必要はなく、すくなくとも最上層が本発明の工具用硬質被膜であればよい。
 また、好適には、工具用硬質被膜が表面に被覆して設けられたものであるため、被膜中にMo、WおよびVを含有することで摩耗酸化により被膜表面に低摩擦係数を有するMo、WおよびVを含む酸化物が形成され、耐溶着性に優れると共に高硬度の被膜が得られる。すなわち、優れた耐摩耗性、耐溶着性、平滑性を兼ね備えた硬質被膜被覆切削工具を提供することができる。
 また、好適には、本発明の工具用硬質被膜は、金属を塑性加工する転造タップの他に、切削により金属を加工するエンドミル、ドリル、正面フライス、総型フライス、リーマ、切削タップ等の回転切削工具の他、バイト等の非回転式の切削工具、ダイス等、種々の金属加工工具の表面コーティングに好適に適用される。また、工具母材すなわち硬質被膜が設けられる部材の材質としては、超硬合金や高速度工具鋼が好適に用いられるが、他の材料でもよく、本発明の工具用硬質被膜は種々の材料から構成された金属加工工具に広く適用される。
 また、好適には、本発明の工具用硬質被膜は、工具の一部乃至全部の表面に被覆して設けられるものであり、好適には、その工具において金属加工に関与する刃部又は塑性加工部に設けられる。
 また、好適には、本発明の工具用硬質被膜の形成方法としては、スパッタリング法が好適に用いられるが、アークイオンプレーティング法等の他の物理蒸着法(PVD法)や、プラズマCVD法、熱CVD法等の化学蒸着法(CVD法)を用いることもできる。
本発明の一実施例の硬質被膜被覆が被覆された工具の一実施例である転造タップを軸心に垂直な方向から見た正面図である。 図1の転造タップのうち本発明の一例の工具用硬質被膜がコーティングされている加工部の断面形状を示す断面図である。 図2の工具用硬質被膜がコーティングされている加工部の表面を拡大して説明する拡大図である。 図1乃至図3の工具用硬質被膜を形成する際に好適に用いられるスパッタリング装置を説明する概略構成図である。 図1乃至図3に示す工具用硬質被膜がTiCrMoWVの酸炭化物で構成されている場合の耐久性性能を評価する耐久性評価試験1に用いられた各試験タップの、硬質被膜の原子組成および膜厚と耐久性試験結果(加工穴数及び判定)とを併せて示す図表である。 図1乃至図3に示す工具用硬質被膜の主相であるNaCl型結晶構造を説明する図である。 図1乃至図3に示す工具用硬質被膜がTiCrMoWVの酸炭窒化物で構成されている場合の耐久性性能を評価する耐久性評価試験1に用いられた各試験タップの、硬質被膜の原子組成および膜厚と耐久性試験結果(加工穴数及び判定)とを併せて示す図表である。 図1乃至図3に示す工具用硬質被膜がTiCrMoWVの酸窒化物で構成されている場合の耐久性性能を評価する耐久性評価試験1に用いられた各試験タップの、硬質被膜の原子組成および膜厚と耐久性試験結果(加工穴数及び判定)とを併せて示す図表である。
 以下、本発明の好適な実施例を図面に基づいて詳細に説明する。
 図1は、本発明の工具用硬質被膜30が適用された被覆金属加工工具の一例である転造タップ10を軸心に垂直な方向から見た正面図である。また、図2は図1のII-II視断面を拡大して示す横断面図である。図1および図2に示すように、本実施例の転造タップ10は、図示しないチャックを介して主軸に取り付けられるシャンク12と、下穴内にねじ込まれることによりめねじを形成する加工部16とを同軸上に一体に備えており、工具母材(基材)18は高速度工具鋼にて構成されている。この高速度工具鋼は、たとえばJISに規定のSKH58相当の高速度工具鋼が用いられており、その含有成分および割合はC:1.0、Cr:4.0、Mo:8.8、W:1.8、V:2.0で、残りが実質的にFeである。
 加工部16は、外側へ湾曲した辺からなる多角柱形状、本実施例では略四角柱形状の断面を成しているとともに、その外周面には、金属製被加工物の下穴の表層部に食い込んで塑性変形させることによりめねじを盛上げ加工すなわち転造加工するおねじ22が設けられている。おねじ22のねじ山は、形成すべきめねじの溝の形状に対応した断面形状を成しており、そのめねじに対応するリード角のつる巻き線に沿って一定の高さ寸法で設けられている。すなわち、加工部16には、おねじ22のねじ山が径方向の外側へ突き出してめねじを加工する4箇所のマージン部Mと、そのマージン部Mよりも小径の4箇所の逃げ部24とが、それぞれ軸心Oと平行に軸方向へ連なるように、軸心Oまわりにおいて交互に且つ等角度間隔で設けられているのである。マージン部Mの寸法は、形成すべきめねじと同じ寸法か、或いは塑性変形に対する弾性復帰を考慮して、めねじよりも大き目に設定される。また、この加工部16は、軸方向においてねじ山の径寸法が一定の完全山部26と、先端側へ向かうに従って径寸法が小さくなる食付き部28とを備えている。なお、図2 は、おねじ22の溝の谷底においてつる巻き線に沿って切断した断面図である。
 このような転造タップ10の加工部16は、優れた耐摩耗性、耐溶着性、および平滑性を有する硬質被膜30により0.2乃至10.0μmの厚みで単層で被覆されている。図3は、硬質被膜30が所定の膜厚tで転造タップ10の加工部16の表面にコーティングされた転造タップ10の表面部分を拡大して示す断面図を示している。図1の斜線部は、転造タップ10において硬質被膜30が設けられた部分を示している。この硬質被膜30は、転造タップ10により下穴の内周面に雌ねじを形成する転造加工に際して、下穴の内周面を塑性変形させる比較的高い圧力下で金属製被加工材と摩擦させられる。
 硬質被膜30は、酸素の導入により100nm以下の微細結晶を有し、NaCl型結晶構造を有する相を主相とする、TiCrMoWVの酸炭化物(TiaCrbMo1-x-y、TiCrMoWVの酸炭窒化物(TiaCrbMo1-x-y-z、または、TiCrMoWVの酸窒化物(TiaCrbMo1-x-yから構成されている。
 図4は、本実施例の硬質被膜30を形成する際に好適に用いられるスパッタリング装置40を説明する概略構成図(模式図)である。このスパッタリング装置40によるスパッタリング工程では、硬質被膜30を構成している元素Ti、Cr、Mo、W、Vを含むターゲット48に電源50により負の一定のバイアス電圧(例えば-50~-60V程度)を印加するとともに、バイアス電源44により工具母材18に負の一定のバイアス電圧(例えば-100V程度)を印加することにより、アルゴンイオンAr+を上記ターゲット48に衝突させてTi、Cr、Mo、W、V等の構成元素を叩き出す。上記電源50及びバイアス電源44により印加される電圧はコントローラ46により制御される。チャンバ42内はたとえば0.5Pa程度に圧力制御され、そのチャンパ42内には、アルゴンガスの他に窒素ガス(N)、炭化水素ガス(CH、C)、酸素ガス(O)等の反応ガスがたとえば100ml/min程度の所定の流量で選択的に導入され、その窒素原子N、炭素原子C或いは酸素原子Oがターゲット38から叩き出されたTi、Cr、Mo、W、Vと結合してTiN、TiCN、TiO、MoO等となり、工具母材18の表面に硬質被膜30として所定厚みで付着させられる。
[耐久性評価試験1]
 続いて、酸素の導入により100nm以下の微細結晶を有する、NaCl型結晶構造を有する相を主相とするTiCrMoWVの酸炭化物から成る硬質被膜30の耐摩耗性、耐溶着性、および平滑性の効果を検証するために本発明者等が行った耐久性評価試験について説明する。本発明者等は、工具径6(mmφ)の転造タップに図5に示す原子組成および膜厚tの異なる複数種類の硬質被膜をコーティングして試験タップ(本発明品1~45、従来品1~6、試験(比較)品1~12)を作成し、各試験タップについて以下の転造加工条件で転造ねじ加工を行い、評価した。図5は、この耐久性評価試験1に用いられた試験タップに被着された、原子組成および膜厚tの異なる複数種類の硬質被膜と、各試験タップの耐久性試験結果(加工穴数及び判定)を併せて示す図表である。なお、上記試験タップのうち、従来品1乃至6は、Tiを含むが、W、V、Oを含まない硬質被膜が用いられたものであり、試験品1乃至12は、本発明品と同じ金属元素(Ti、Cr、Mo、W、V)とC、Oとを含むが、原子比が本発明品の範囲から外れる硬質被膜が用いられたものである。
[ねじ転造加工条件]
・機械:縦型マシニングセンタ
・試験品:ハイス転造タップ 工具径6(mmφ)
・被削材:S45C(JIS規格)
・切削方法:雌ねじ加工
・切削速度:15(m/min)
・加工深さ:12mm(下穴:16mmの止まり穴)
・切削油:水溶性
 図5において、転造加工されためねじが規格内にある場合に合格穴とし、その合格穴が2000個以上加工できた試験タップを合格品として評価した。本発明品1~45はいずれも合格品として評価され、従来品1~6および試験品1~12はいずれも不合格品として評価された。合格品として評価された本発明品1~45の硬質被膜は、1.7~10.0μmの範囲であり、その化学組成が(TiaCrbMo1-x-yとして表わされるTiCrMoWVの酸炭化物であり、その原子比は、0.2≦a≦0.7、0.01≦b≦0.4、0.05≦c≦0.5、0<d≦0.05、0<e=1-a-b-c-d≦0.05、0.3≦x+y≦0.6、0<y≦0.15として表わされるものである。これにより、硬質被膜を構成する結晶が微細となって硬質被膜の表面が極めて滑らかとなるので、耐摩耗性及び耐溶着性と平滑性とを兼ね備えた加工工具用硬質被膜が得られる。
 また、上記試験タップの表面に形成された硬質被膜の結晶粒径を、TEM(透過型電子顕微鏡)を用いて組織観察を行なって評価した。結晶粒は母材表面に対して垂直方向に伸びた形状を有しているため、硬質被膜の断面をTEMを用いて撮像し、その垂直方向に伸びた結晶の母材表面に平行な幅の寸法を10点測定してその平均値を、各試験タップの硬質被膜の結晶粒径として測定した。本発明品1~45は40~90nmの微細結晶粒を呈していた。一方、従来品1~6および試験品1~12は少なくとも120nm以上であっていずれも100nmを上まわる値を示していた。スパッタの過程で導入された酸素Oは、基本的には図6に示すNaCl型結晶構造中の一部の原子サイト(図6に示した結晶構造において、小さな原子のサイトの一部)に配置すると考えられるが、結晶粒微細化の要因として、酸素の結晶粒界への偏在により粒成長が抑制され、硬質被膜の結晶粒径を小さくしたことなどが推定される。この結晶粒径が微細であることが、摩擦係数を小さくして硬質被膜の潤滑性を高め、転造タップの耐久寿命を長くしていることに寄与していると推定される。
[耐久性評価試験2]
 次に、酸素の導入により微細結晶を有する、NaCl型結晶構造を有する相を主相とするTiCrMoWVの酸炭窒化物から成る硬質被膜30の耐摩耗性、耐溶着性、および平滑性の効果を検証するために本発明者等が行った耐久性評価試験2について説明する。耐久性評価試験1と同様に、本発明者等は、工具径6(mmφ)の転造タップに図5に示す原子組成および膜厚tの異なる複数種類の硬質被膜をコーティングして試験タップ(本発明品1~45、従来品1~8、試験(比較)品1~10)を作成し、各試験タップについて前記と同様のねじ転造加工条件で転造ねじ加工を行い、評価した。図7は、この耐久性評価試験に用いられた試験タップに被着された、原子組成および膜厚tの異なる複数種類の硬質被膜と、各試験タップの耐久性試験結果(加工穴数及び判定)を併せて示す図である。なお、上記試験タップのうち、従来品1乃至8は、少なくともTiを含むが、W、V、Oを含まない硬質被膜が用いられたものであり、試験品1乃至10は、本発明品と同じ金属元素(Ti、Cr、Mo、W、V)とC、N、Oとを含むが、原子比が本発明品の範囲から外れる硬質被膜が用いられたものである。
 図7において、図5の場合と同様に、転造加工されためねじが規格内にある場合に合格穴とし、その合格穴が2000個以上加工できた試験タップを合格品として評価した。本発明品1~45はいずれも合格品として評価され、従来品1~8および試験品1~10はいずれも不合格品として評価された。合格品として評価された本発明品1~45の硬質被膜は、2.0~10.0μmの範囲であり、その化学組成が(TiaCrbMo1-x-y-zとして表わされるTiCrMoWVの酸炭窒化物であり、その原子比は、0.2≦a≦0.7、0.01≦b≦0.4、0.05≦c≦0.5、0<d≦0.05、0<e=1-a-b-c-d≦0.05、0.3≦x+y+z≦0.6、0<y≦0.5、0<z≦0.15として表わされるものである。これにより、硬質被膜を構成する結晶が微細となって硬質被膜の表面が極めて滑らかとなるので、耐摩耗性及び耐溶着性と平滑性とを兼ね備えた加工工具用硬質被膜が得られる。
 また、耐久性評価試験1と同様に、上記試験タップの表面に形成された硬質被膜の結晶粒径を、TEM(透過型電子顕微鏡)を用いて組織観察を行なって結晶粒径を測定して評価した。本発明品1~45は40~90nmの微細結晶粒を呈していた。一方、従来品1~8および試験品1~10は少なくとも120nm以上であっていずれも100nmを上まわる値を示していた。
[耐久性評価試験3]
 さらに、酸素の導入により微細結晶を有する、NaCl型結晶構造を有する相を主相とするTiCrMoWVの酸窒化物から成る硬質被膜30の耐摩耗性、耐溶着性、および平滑性の効果を検証するために本発明者等が行った耐久性評価試験3について説明する。耐久性評価試験1、2と同様に、本発明者等は、工具径6(mmφ)の転造タップに図5に示す原子組成および膜厚tの異なる複数種類の硬質被膜をコーティングして試験タップ(本発明品1~45、従来品1~8、試験(比較)品1~10)を作成し、各試験タップについて前記と同様のねじ転造加工条件で転造ねじ加工を行い、評価した。図8は、この耐久性評価試験に用いられた試験タップに被着された、原子組成および膜厚tの異なる複数種類の硬質被膜と、各試験タップの耐久性試験結果(加工穴数及び判定)を併せて示す図である。なお、上記試験タップのうち、従来品1乃至8は、少なくともTi、C、Nを含むが、Oを含まない硬質被膜が用いられたものであり、試験品1乃至10は、本発明品と同じ金属元素(Ti、Cr、Mo、W、V)とN、Oとを含むが、原子比が本発明品の範囲から外れる硬質被膜が用いられたものである。
 図8において、図5、図7の場合と同様に、転造加工されためねじが規格内にある場合に合格穴とし、その合格穴が2000個以上加工できた試験タップを合格品として評価した。本発明品1~45はいずれも合格品として評価され、従来品1~8および試験品1~10はいずれも不合格品として評価された。合格品として評価された本発明品1~45の硬質被膜は、3.7~9.5μmの範囲であり、その化学組成が(TiaCrbMo1-x-yとして表わされるTiCrMoWVの酸窒化物であり、その原子比は、0.2≦a≦0.7、0.01≦b≦0.4、0.05≦c≦0.5、0<d≦0.05、0<e=1-a-b-c-d≦0.05、0.3≦x+y≦0.6、0<y≦0.15として表わされるものである。これにより、硬質被膜を構成する結晶が微細となって硬質被膜の表面が極めて滑らかとなるので、耐摩耗性及び耐溶着性と平滑性とを兼ね備えた加工工具用硬質被膜が得られる。
 また、耐久性評価試験1、2と同様に、上記試験タップの表面に形成された硬質被膜の結晶粒径を、TEM(透過型電子顕微鏡)を用いて組織観察を行なって結晶粒径を測定して評価した。本発明品1~45は40~90nmの微細結晶粒を呈していた。一方、従来品1~8および試験品1~10は少なくとも120nm以上であっていずれも100nmを上まわる値を示していた。
 上述のように、本実施例の転造タップ10に固着された硬質被膜30によれば、NaCl型結晶構造を有する相を主相とするTiCrMoWVの酸炭化物、酸窒化物、または、酸炭窒化物が、酸素の導入により微細結晶を有することから、硬質被膜の表面が極めて滑らかとなって低摩擦係数が得られるので、耐摩耗性及び耐溶着性と平滑性とを兼ね備えることができ、耐摩耗性及び耐溶着性に加えて平滑性に優れていて低摩擦係数が低いので、工具寿命が長くなる。
 また、硬質被膜30が、TiCrMoWVの酸炭化物(TiaCrbMo1-x-yから構成される場合は、その原子比は、0.2≦a≦0.7、0.01≦b≦0.4、0.05≦c≦0.5、0<d≦0.05、0<e=1-a-b-c-d≦0.05、0.3≦x+y≦0.6、0<y≦0.15であるので、硬質被膜30を構成する結晶が微細となって硬質被膜の表面が極めて滑らかとなるので、耐摩耗性及び耐溶着性と平滑性とを兼ね備えることができる。
 また、硬質被膜30が、TiCrMoWVの酸炭窒化物(TiaCrbMo1-x-y-zから構成される場合は、その原子比は、0.2≦a≦0.7、0.01≦b≦0.4、0.05≦c≦0.5、0<d≦0.05、0<e=1-a-b-c-d≦0.05、0.3≦x+y+z≦0.6、0<y≦0.5,0<z≦0.15であるので、硬質被膜30を構成する結晶が微細となって硬質被膜の表面が極めて滑らかとなるので、耐摩耗性及び耐溶着性と平滑性とを兼ね備えることができる。
 また、硬質被膜30が、TiCrMoWVの酸窒化物は、(TiaCrbMo1-x-yから構成される場合は、その原子比は、0.2≦a≦0.7、0.01≦b≦0.4、0.05≦c≦0.5、0<d≦0.05、0<e=1-a-b-c-d≦0.05、0.3≦x+y≦0.6、0<y≦0.15であるので、硬質被膜30を構成する結晶が微細となって硬質被膜の表面が極めて滑らかとなるので、耐摩耗性及び耐溶着性と平滑性とを兼ね備えることができる。
 また、本実施例の硬質被膜30は、転造タップ10の表面を0.2乃至10.0μmの厚みの単層で被膜したものであるので、高い耐摩耗性及び耐溶着性と平滑性とを有する硬質被膜30が少ない工程で得られるので、転造タップ10が安価となる。
 以上、本発明の好適な実施例を図面に基づいて詳細に説明したが、本発明はこれに限定されるものではなく、その趣旨を逸脱しない範囲内において種々の変更が加えられて実施されるものである。
10:転造タップ(硬質被膜被覆金属加工工具)
18:工具母材
30:硬質被膜(工具用硬質被膜)
 

Claims (7)

  1.  工具の表面に被覆して設けられる工具用硬質被膜であって、
     酸素の導入により微細結晶を有する、NaCl型結晶構造を有する相を主相とするTiCrMoWVの酸炭化物、酸窒化物、または、酸炭窒化物であることを特徴とする工具用硬質被膜。
  2.  前記TiCrMoWVの酸炭化物は、(TiaCrbMocWdVe)1-x-yCxOyとして表わされるものであり、
     その原子比は、0.2≦a≦0.7、0.01≦b≦0.4、0.05≦c≦0.5、0<d≦0.05、0<e=1-a-b-c-d≦0.05、0.3≦x+y≦0.6、0<y≦0.15であることを特徴とする請求項1の工具用硬質被膜。
  3.  前記TiCrMoWVの酸炭窒化物は、(TiaCrbMocWdVe)1-x-yCxNyOzとして表わされるものであり、
     その原子比は、0.2≦a≦0.7、0.01≦b≦0.4、0.05≦c≦0.5、0<d≦0.05、0<e=1-a-b-c-d≦0.05、0.3≦x+y+z≦0.6、0<y≦0.5,0<z≦0.15であることを特徴とする請求項1の工具用硬質被膜。
  4.  前記TiCrMoWVの酸窒化物は、(TiaCrbMocWdVe)1-x-yNxOyとして表わされるものであり、
     その原子比は、0.2≦a≦0.7、0.01≦b≦0.4、0.05≦c≦0.5、0<d≦0.05、0<e=1-a-b-c-d≦0.05、0.3≦x+y≦0.6、0<y≦0.15であることを特徴とする請求項1の工具用硬質被膜。
  5.  前記工具用硬質被膜は、100nm以下の結晶粒径を有することを特徴とする請求項1乃至4のいずれか1の工具用硬質被膜。
  6.  前記工具用硬質被膜は、前記工具の表面を0.2乃至10.0μmの厚みの単層で被覆したものである請求項1乃至5のいずれか1の工具用硬質被膜。
  7.  請求項1乃至6のいずれか1に記載の工具用硬質被膜が表面に被覆して設けられたことを特徴とする硬質被膜被覆金属加工工具。
     
PCT/JP2013/059400 2013-03-28 2013-03-28 加工工具用硬質被膜および硬質被膜被覆金属加工工具 WO2014155633A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/775,419 US9551062B2 (en) 2013-03-28 2013-03-28 Hard film for machining tools and hard film-coated metal machining tool
EP13880426.5A EP2980265A4 (en) 2013-03-28 2013-03-28 HART FILM FOR MACHINE MACHINES AND HARDWARE COATED MACHINING TOOL
KR1020157027265A KR101740845B1 (ko) 2013-03-28 2013-03-28 가공 공구용 경질 피막 및 경질 피막 피복 금속 가공 공구
CN201380075029.XA CN105051245B (zh) 2013-03-28 2013-03-28 加工工具用硬质被膜及硬质被膜被覆金属加工工具
JP2015507823A JP6120430B2 (ja) 2013-03-28 2013-03-28 加工工具用硬質被膜および硬質被膜被覆金属加工工具
PCT/JP2013/059400 WO2014155633A1 (ja) 2013-03-28 2013-03-28 加工工具用硬質被膜および硬質被膜被覆金属加工工具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/059400 WO2014155633A1 (ja) 2013-03-28 2013-03-28 加工工具用硬質被膜および硬質被膜被覆金属加工工具

Publications (1)

Publication Number Publication Date
WO2014155633A1 true WO2014155633A1 (ja) 2014-10-02

Family

ID=51622701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059400 WO2014155633A1 (ja) 2013-03-28 2013-03-28 加工工具用硬質被膜および硬質被膜被覆金属加工工具

Country Status (6)

Country Link
US (1) US9551062B2 (ja)
EP (1) EP2980265A4 (ja)
JP (1) JP6120430B2 (ja)
KR (1) KR101740845B1 (ja)
CN (1) CN105051245B (ja)
WO (1) WO2014155633A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015103580A1 (de) * 2015-03-11 2016-09-15 Endress + Hauser Flowtec Ag Magnetisch-induktives Durchflussmessgerät mit verringerter Stromaufnahme
US10842330B2 (en) * 2017-07-06 2020-11-24 Omachron Intellectual Property Inc. Handheld surface cleaning apparatus
US10631693B2 (en) * 2017-07-06 2020-04-28 Omachron Intellectual Property Inc. Handheld surface cleaning apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001090835A (ja) * 1999-09-24 2001-04-03 Teikoku Piston Ring Co Ltd 硬質皮膜及びそれを被覆した摺動部材並びにその製造方法
JP2004115826A (ja) * 2002-09-24 2004-04-15 Shojiro Miyake 硬質炭素皮膜摺動部材及びその製造方法
JP2006336032A (ja) 2005-05-31 2006-12-14 Osg Corp 硬質積層被膜、および硬質積層被膜被覆工具
JP2008063654A (ja) * 2006-08-09 2008-03-21 Kobe Steel Ltd 硬質皮膜及び硬質皮膜被覆材
WO2010150411A1 (ja) * 2009-06-26 2010-12-29 オーエスジー株式会社 硬質被膜、および硬質被膜被覆工具
JP2012115923A (ja) 2010-11-30 2012-06-21 Osg Corp 切削工具用硬質被膜及び硬質被膜被覆切削工具

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05133672A (ja) * 1991-11-11 1993-05-28 Matsushita Refrig Co Ltd 冷蔵庫
JP3373590B2 (ja) * 1993-06-03 2003-02-04 株式会社リケン 摺動部材
JP3179645B2 (ja) * 1993-11-19 2001-06-25 東芝タンガロイ株式会社 耐摩耗性被覆部材
JP2003165003A (ja) * 2001-11-28 2003-06-10 Hitachi Tool Engineering Ltd 硬質皮膜被覆部材
JP3621943B2 (ja) * 2003-07-25 2005-02-23 三菱重工業株式会社 高耐摩耗性高硬度皮膜
JP4513058B2 (ja) * 2004-08-10 2010-07-28 日立金属株式会社 鋳造用部材
JP4495568B2 (ja) * 2004-11-01 2010-07-07 株式会社神戸製鋼所 硬質皮膜
JP5014656B2 (ja) 2006-03-27 2012-08-29 国立大学法人東北大学 プラズマ処理装置用部材およびその製造方法
CN100558552C (zh) * 2006-08-09 2009-11-11 株式会社神户制钢所 硬质皮膜及硬质皮膜被覆材
JP4668214B2 (ja) * 2007-01-17 2011-04-13 株式会社神戸製鋼所 成形用金型
JP4714186B2 (ja) * 2007-05-31 2011-06-29 ユニオンツール株式会社 被覆切削工具
JP5234931B2 (ja) * 2008-06-23 2013-07-10 株式会社神戸製鋼所 硬質皮膜被覆部材および成形用冶工具
JP5027760B2 (ja) * 2008-08-20 2012-09-19 株式会社神戸製鋼所 硬質皮膜形成部材
JP2011058045A (ja) * 2009-09-10 2011-03-24 Jfe Steel Corp 粒子分散強化鋼およびその製造方法
JP5502677B2 (ja) * 2009-09-28 2014-05-28 日立金属株式会社 潤滑特性に優れた金属塑性加工用工具およびその製造方法
RU2013128471A (ru) * 2010-11-23 2014-12-27 Секо Тулз Аб Режущая пластина с покрытием
JP5348223B2 (ja) 2011-11-08 2013-11-20 株式会社タンガロイ 被覆部材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001090835A (ja) * 1999-09-24 2001-04-03 Teikoku Piston Ring Co Ltd 硬質皮膜及びそれを被覆した摺動部材並びにその製造方法
JP2004115826A (ja) * 2002-09-24 2004-04-15 Shojiro Miyake 硬質炭素皮膜摺動部材及びその製造方法
JP2006336032A (ja) 2005-05-31 2006-12-14 Osg Corp 硬質積層被膜、および硬質積層被膜被覆工具
JP2008063654A (ja) * 2006-08-09 2008-03-21 Kobe Steel Ltd 硬質皮膜及び硬質皮膜被覆材
WO2010150411A1 (ja) * 2009-06-26 2010-12-29 オーエスジー株式会社 硬質被膜、および硬質被膜被覆工具
JP2012115923A (ja) 2010-11-30 2012-06-21 Osg Corp 切削工具用硬質被膜及び硬質被膜被覆切削工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2980265A4 *

Also Published As

Publication number Publication date
EP2980265A4 (en) 2016-11-30
CN105051245B (zh) 2017-05-17
KR20150126648A (ko) 2015-11-12
US9551062B2 (en) 2017-01-24
JPWO2014155633A1 (ja) 2017-02-16
US20160017478A1 (en) 2016-01-21
CN105051245A (zh) 2015-11-11
JP6120430B2 (ja) 2017-04-26
KR101740845B1 (ko) 2017-05-26
EP2980265A1 (en) 2016-02-03

Similar Documents

Publication Publication Date Title
JP4738974B2 (ja) 表面被覆切削工具
JP2015530270A (ja) PVDによるTiAlCrSiN被膜を有する工具
JP7061603B2 (ja) 多層硬質皮膜被覆切削工具
WO2017037955A1 (ja) 硬質被膜および硬質被膜被覆部材
WO2018078731A1 (ja) 硬質被膜および硬質被膜被覆部材
WO2017037956A1 (ja) 硬質被膜および硬質被膜被覆部材
JP2006181706A (ja) 表面被覆切削工具およびその製造方法
WO2014129273A1 (ja) 表面被覆切削工具およびその製造方法
JP6120430B2 (ja) 加工工具用硬質被膜および硬質被膜被覆金属加工工具
JP5315526B2 (ja) 表面被覆切削工具
JP5315527B2 (ja) 表面被覆切削工具
JP2007084899A (ja) 被覆部材、被覆部材の被覆方法
JP6168539B2 (ja) 硬質潤滑被膜および硬質潤滑被膜被覆工具
JP5610219B2 (ja) 切削工具用硬質被膜及び硬質被膜被覆切削工具
WO2018037648A1 (ja) 表面被覆切削工具およびその製造方法
JP5610218B2 (ja) 切削工具用硬質被膜及び硬質被膜被覆切削工具
JP2010076082A (ja) 表面被覆切削工具
JP6099225B2 (ja) 硬質潤滑被膜および硬質潤滑被膜被覆工具
JP5144850B2 (ja) 硬質被膜および硬質被膜被覆工具
JP6168540B2 (ja) 硬質潤滑被膜および硬質潤滑被膜被覆工具
JP6099224B2 (ja) 硬質潤滑被膜および硬質潤滑被膜被覆工具
JP5995029B2 (ja) 工具用硬質被膜、その製造方法、および硬質被膜被覆金属加工工具
JP2010082704A (ja) 表面被覆切削工具
JP3447052B2 (ja) 耐摩耗皮膜被覆工具
WO2013153640A1 (ja) 切削工具用硬質被膜及び硬質被膜被覆切削工具

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380075029.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880426

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14775419

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015507823

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157027265

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013880426

Country of ref document: EP