WO2014155409A1 - 射出成形方法、及び、射出成形装置 - Google Patents

射出成形方法、及び、射出成形装置 Download PDF

Info

Publication number
WO2014155409A1
WO2014155409A1 PCT/JP2013/001998 JP2013001998W WO2014155409A1 WO 2014155409 A1 WO2014155409 A1 WO 2014155409A1 JP 2013001998 W JP2013001998 W JP 2013001998W WO 2014155409 A1 WO2014155409 A1 WO 2014155409A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
fiber
reinforcing fiber
resin
injection
Prior art date
Application number
PCT/JP2013/001998
Other languages
English (en)
French (fr)
Inventor
良次 岡部
苅谷 俊彦
戸田 直樹
宗宏 信田
Original Assignee
三菱重工プラスチックテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工プラスチックテクノロジー株式会社 filed Critical 三菱重工プラスチックテクノロジー株式会社
Priority to PCT/JP2013/001998 priority Critical patent/WO2014155409A1/ja
Priority to CN201380063795.4A priority patent/CN104870160B/zh
Priority to US14/758,518 priority patent/US9821498B2/en
Priority to EP13880290.5A priority patent/EP2979837B1/en
Priority to JP2015507669A priority patent/JP5894336B2/ja
Publication of WO2014155409A1 publication Critical patent/WO2014155409A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/20Injection nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0005Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/22Component parts, details or accessories; Auxiliary operations
    • B29B7/24Component parts, details or accessories; Auxiliary operations for feeding
    • B29B7/248Component parts, details or accessories; Auxiliary operations for feeding with plungers for introducing the material, e.g. from below
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • B29B7/428Parts or accessories, e.g. casings, feeding or discharging means
    • B29B7/429Screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • B29B7/845Venting, degassing or removing evaporated components in devices with rotary stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • B29B7/905Fillers or reinforcements, e.g. fibres with means for pretreatment of the charges or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/18Feeding the material into the injection moulding apparatus, i.e. feeding the non-plastified material into the injection unit
    • B29C45/1816Feeding auxiliary material, e.g. colouring material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/47Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
    • B29C45/50Axially movable screw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/58Details
    • B29C45/60Screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/58Details
    • B29C45/62Barrels or cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/7646Measuring, controlling or regulating viscosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C2045/466Means for plasticising or homogenising the moulding material or forcing it into the mould supplying the injection unit directly by a compounder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76494Controlled parameter
    • B29C2945/76595Velocity
    • B29C2945/76605Velocity rotational movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76655Location of control
    • B29C2945/76658Injection unit
    • B29C2945/76665Injection unit screw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76822Phase or stage of control
    • B29C2945/76829Feeding
    • B29C2945/76832Feeding raw materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76822Phase or stage of control
    • B29C2945/76859Injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles

Definitions

  • the present invention relates to a method for injection molding a resin containing reinforcing fibers.
  • Molded products of fiber reinforced resin which has been strengthened by containing reinforced fibers, are used in various applications.
  • a thermoplastic resin is melted by rotation of a screw in a cylinder which is a plasticizing device, and fibers are kneaded therein, and then injected into a mold of the injection molding device.
  • the reinforcing fibers are uniformly dispersed in the resin.
  • the conditions for kneading may be strict, but conversely, the shearing force on the kneaded product is increased, thereby cutting the reinforcing fibers. If it does so, the fiber length after shaping
  • a supply port for supplying the thermoplastic resin raw material to the cylinder, a supply port for supplying the fiber material, and a vent for removing gas contained in the resin A plasticizing device having a cylinder and a screw each provided with a mouth has been proposed (Patent Document 2).
  • the fiber cutting in the plasticizing process of the fiber reinforced resin mainly occurs in the first half of the plasticizing apparatus, that is, the resin pellet supply section and the compression section. Therefore, in the plasticizing apparatus, the fiber material supply port is connected to the thermoplastic resin. Is provided after the compression part, which melts sufficiently.
  • JP 2012-56173 A Japanese Patent Laid-Open No. 3-76614
  • the inventor has confirmed that the reinforcing fibers can be dispersed fairly uniformly by selecting the injection molding conditions and the specifications of the reinforcing fibers to be added.
  • a cylinder and a screw each having a supply port for supplying a thermoplastic resin raw material and a supply port for supplying a fiber material, which are similar to the plasticizing device shown in Patent Document 2, in particular.
  • the molding used it was experienced that a region where the content of reinforcing fibers was clearly smaller than other regions evenly dispersed occurred in unspecified portions of the fiber reinforced resin molded product.
  • the present invention provides an injection molding method of a resin material that prevents or suppresses variation in the content of reinforcing fibers and that provides stable molding quality.
  • the present inventors have found that the injection process after the thermoplastic resin is melted is involved. That is, in the injection process, the screw is advanced while the rotation of the screw is stopped, and the molten resin containing the reinforcing fibers is discharged toward the mold.
  • the reinforcing fiber is supplied from a hopper provided at the top of the cylinder, which is a plasticizing device.
  • the reinforcing fiber is naturally moved by its own weight with the groove between the flights of the screw directed downward. It will move when dropped.
  • the reinforcing fibers are easily entangled in the raw material hopper.
  • the fiber length when the fiber length is 2 mm or more, it tends to be difficult to fall naturally.
  • the fiber length is 4 mm or more, if the reinforcing fiber is filled in the hopper, the natural falling of the reinforcing fiber into the screw groove becomes difficult. For this reason, the fiber cannot fall into the screw during the injection process in which the flight passes at high speed and blocks the hopper hole. Even if the reinforcing fibers fall into the screw grooves through the flights passing at high speed, the molten resin adheres to the grooves between the flights, so that the molten resin becomes a resistance and the reinforcing fibers move downward. It is not easy to move toward. Therefore, during the injection process, a region having a low reinforcing fiber content is generated in the region below the groove between the flights.
  • the present invention made there includes a cylinder having a discharge nozzle formed on the front side, a single-screw screw rotatably provided inside the cylinder, and a fiber supply device for filling the reinforcing fiber into the cylinder.
  • This is a method of injection molding while supplying reinforcing fibers and resin raw materials individually and while supplying the reinforcing fibers from the front side of the resin raw materials, and by reversing the screw while rotating forward, the resin raw materials are melted.
  • the reinforcing fiber is supplied into the cylinder.
  • the reinforcing fiber is supplied into the screw so that the reinforcing fiber enters the screw groove regardless of the state in the raw material hopper or the screw groove even in the injection process. Even if it is a case where it supplies, the area
  • the screw is rotated forward or reverse.
  • the screw is rotated forward or reverse, so that the screw groove portion positioned below the screw can be phase-replaced to face the vent hole.
  • the reinforcing fiber can be filled in the entire periphery of the screw.
  • a gap for filling the reinforcing fiber can be formed below the screw, so that the reinforcing fiber can be moved to the lower region.
  • the first method includes a vent hole penetrating from the outer peripheral surface to the inner peripheral surface of the cylinder body in order to supply the reinforcing fiber from the front side of the resin raw material. It is preferable to set the reverse rotation speed of the screw so that the movement of the screw flight is less than or equal to one flight length of the flight.
  • the retraction speed of the screw and the screw speed are adjusted so that the angle ⁇ 2 of the screw groove traveling speed based on the reverse rotation of the screw matches the lead angle ⁇ 1 of the flight of the screw. It is preferable to set the reverse rotation speed. If the screw flight in the projection area of the vent hole does not move at the same relative position in the projection area of the vent hole, the screw rotates so that the entire circumference of the screw groove passing under the vent hole faces the vent hole.
  • the region where the reinforcing fiber is not filled in the screw groove can be eliminated.
  • the present invention includes a cylinder in which a discharge nozzle is formed on the front side, a single screw screw rotatably provided inside the cylinder, a fiber supply unit that fills the cylinder with reinforcing fibers, and a fiber supply unit.
  • It can also be regarded as an injection molding apparatus provided with a resin supply hopper that is provided on the rear side and supplies a resin raw material into the cylinder.
  • This injection molding apparatus melts the resin raw material by reversing the screw while rotating it forward, and kneads the reinforced fiber into the molten resin raw material to obtain a predetermined amount of a kneaded product,
  • the reinforcing fiber is supplied into the cylinder.
  • the injection process is to discharge the kneaded material from the discharge nozzle by moving the screw forward.
  • the reinforcing fiber is supplied into the cylinder even in the injection process, the area of the screw groove with a small amount of reinforcing fiber can be reduced. Therefore, according to this invention, it can prevent that the area
  • the injection molding in this embodiment is shown, (a) corresponds to (b) in FIG. 3, (b) is a diagram for explaining a preferred traveling speed of the screw groove in this embodiment.
  • the schematic structure of the measurement unit of this embodiment is shown, (a) shows the state which is not measuring, (b) has shown the state which is measuring.
  • (A) shows pressure management information, and (b) shows fiber content-viscosity information. It is a figure which shows the example of the plasticization unit which concerns on this embodiment.
  • the injection molding machine 1 As shown in FIG. 1, the injection molding machine 1 according to the present embodiment includes a mold clamping unit 100, a plasticizing unit 200, and a control unit 50 that controls the operation of these units.
  • the mold clamping unit 100 is fixedly mounted on a base frame 101 and a fixed die plate 105 to which a fixed mold 103 is attached, and a sliding member 107 such as a rail or a sliding plate by operation of a hydraulic cylinder 113.
  • a movable die plate 111 that moves in the middle and left and right directions and has a movable die 109 attached thereto, and a plurality of tie bars 115 that connect the fixed die plate 105 and the movable die plate 111 are provided.
  • the fixed die plate 105 is provided with a hydraulic cylinder 117 for mold clamping coaxially with each tie bar 115, and one end of each tie bar 115 is connected to a ram 119 of the hydraulic cylinder 117.
  • Each of these elements performs a necessary operation in accordance with an instruction from the control unit 50.
  • the general operation of the mold clamping unit 100 is as follows. First, the movable die plate 111 is moved to the position of the two-dot chain line in the figure by the operation of the hydraulic cylinder 113 for opening and closing the mold, and the movable mold 109 is brought into contact with the fixed mold 103. Next, the male screw portion 121 of each tie bar 115 and the half nut 123 provided on the movable die plate 111 are engaged to fix the movable die plate 111 to the tie bar 115. Then, the pressure of the hydraulic oil in the oil chamber on the movable die plate 111 side in the hydraulic cylinder 117 is increased, and the fixed mold 103 and the movable mold 109 are tightened.
  • the screw 10 of this embodiment is a system which supplies the thermoplastic resin pellet P and the reinforced fiber F separately to a screw longitudinal direction so that it may mention later, the full length of the screw 10 or the full length of the plasticizing unit 200 is long. Prone. For this reason, the present embodiment is configured as described above, which can be installed even in a narrow space where a mold clamping device of a toggle link system or a mold clamping cylinder on the back of a movable die plate cannot be installed.
  • a mold clamping unit 100 having the following is shown.
  • the configuration of the mold clamping unit 100 shown here is merely an example, and does not prevent other configurations from being applied or replaced.
  • the hydraulic cylinder 113 is shown as the mold opening / closing actuator.
  • the mold opening / closing actuator is a member that converts a rotary motion such as a ball screw or a rack and pinion into a linear motion, a servo motor, or an induction motor.
  • a combination with an electric motor such as a motor may be used. Needless to say, it may be replaced with a toggle link type clamping unit by electric drive or hydraulic drive.
  • the plasticizing unit 200 includes a cylindrical heating cylinder 201, a discharge nozzle 203 provided on the front side of the heating cylinder 201, a screw 10 provided inside the heating cylinder 201, and a fiber supply to which reinforcing fibers F are supplied.
  • the apparatus 213 and the resin supply hopper 207 to which the resin pellet P is supplied are provided.
  • the fiber supply device 213 is connected to a vent hole 206 provided in front of the resin supply hopper 207.
  • the screw 10 has a two-stage design similar to a so-called gas vent type screw. Specifically, on the rear side of the screw 10, a first stage 21 including a supply unit 23 and a compression unit 24, a supply unit 25 connected to the first stage 21, and a second stage 22 including a compression unit 26 are provided.
  • the resin is melted (molten resin M), and in the second stage 22, the molten resin M and the reinforcing fibers F are mixed and dispersed.
  • the pressure of the molten resin M in the heating cylinder 201 that is high pressure due to compression at the terminal end (front end) of the first stage 21 is applied to the terminal end (front end) of the first stage 21.
  • the purpose is to reduce the pressure by directly or indirectly connecting the supply section 25 which is a deep groove section of the second stage 22 via a throttle channel.
  • the plasticizing unit 200 also includes a first electric motor 209 that moves the screw 10 forward or backward, a second electric motor 211 that rotates the screw 10 forward or backward, and a pellet supply that supplies the resin pellet P to the resin supply hopper 207.
  • Device 215. Each of these elements performs a necessary operation in accordance with an instruction from the control unit 50.
  • the side on which the molten resin M is injected is the front, and the side on which the raw materials (reinforced fibers, resin pellets) are supplied is the rear.
  • the general operation of the plasticizing unit 200 is as follows.
  • the screw 10 provided inside the heating cylinder 201 is rotated, the reinforcing fiber F supplied from the fiber supply device 213 through the vent hole 206 and the thermoplastic resin supplied from the resin supply hopper 207 are formed.
  • the pellet (resin pellet P) is sent to the discharge nozzle 203 side on the front side of the heating cylinder 201.
  • the resin pellets P (molten resin M) heated from the conveying unit and gradually starting to melt are kneaded with the reinforcing fibers F, and then the fixed mold 103 and the movable mold 109 of the mold clamping unit 100 are mixed. A predetermined amount is injected into the cavity formed therebetween.
  • the basic operation of the screw 10 is that the injection is performed by moving forward after the screw 10 is moved backward while receiving the back pressure as the resin pellet P melts.
  • other configurations such as providing a heater for melting the resin pellets P on the outside of the heating cylinder 201 are not prevented from being applied or replaced.
  • the injection molding machine 1 including the above elements performs injection molding according to the following procedure.
  • the injection molding is performed by closing the movable mold 109 and the fixed mold 103 and clamping at a high pressure, and plasticizing the resin pellet P by heating and melting in the heating cylinder 201.
  • a plasticizing step an injection step of injecting and filling the plasticized molten resin M into a cavity formed by the movable mold 109 and the fixed mold 103, and until the molten resin M filled in the cavity is solidified.
  • a holding process for cooling, a mold opening process for opening the mold, and a taking-out process for taking out the molded product that has been cooled and solidified in the cavity are carried out, and the above-mentioned processes are performed sequentially or partially in parallel. Completes one cycle.
  • plasticizing step resin pellets P are supplied from a resin supply hopper 207 behind the heating cylinder 201.
  • the screw 10 is positioned in front of the heating cylinder 201, and the screw 10 is moved backward from the initial position while being rotated ("plasticization start" in FIG. 2).
  • plasticization start in FIG. 2
  • the resin pellet P supplied between the screw 10 and the heating cylinder 201 is gradually melted while being heated by receiving a shearing force, and is conveyed forward.
  • the rotation (direction) of the screw 10 in the plasticizing step is assumed to be normal rotation.
  • the reinforcing fiber F is supplied from the fiber supply device 213.
  • the reinforcing fibers F are kneaded and dispersed in the molten resin M and conveyed forward together with the molten resin M.
  • the resin 10 is conveyed to the front of the heating cylinder 201, and the molten resin M is discharged from the screw and collected in front of the screw 10.
  • the screw 10 is moved backward by a balance between the resin pressure of the molten resin M accumulated in front of the screw 10 and the back pressure that suppresses the screw 10 from moving backward.
  • the rotation and retraction of the screw 10 are stopped (FIG. 2 “Plasticization completed”).
  • FIG. 2 schematically shows the state of the resin (resin pellet P, molten resin M) and reinforcing fiber F in four stages of “unmelted resin”, “resin melt”, “fiber dispersion”, and “fiber dispersion complete”. Shown separately.
  • “fiber dispersion completion” in front of the screw 10 indicates a state in which the reinforcing fibers F are dispersed in the molten resin M and used for injection, and “fiber dispersion” It shows that the supplied reinforcing fiber F is dispersed in the molten resin M with the rotation of the screw 10.
  • “Resin melting” indicates that the resin pellets P are gradually melted by receiving shearing force, and “unmelted resin” is subjected to shearing force but has not yet been melted.
  • the resin melt region shown in FIG. 2B is behind the fiber supply device 213 that supplies the reinforcing fibers F, so that the reinforcing fibers F are supplied to the grooves of the screw 10 in this region. It is a state that has not been done.
  • the screw 10 is advanced as shown in FIG. Then, the backflow prevention valve (not shown) provided at the tip of the screw 10 is closed, and the pressure of the molten resin M (resin pressure) accumulated in front of the screw 10 is increased, and the molten resin M is discharged from the discharge nozzle 203. Is discharged toward the cavity.
  • the reinforcing fiber F is supplied into the heating cylinder 201 by the fiber supply device 213 even during the injection process. Hereinafter, this point will be described.
  • the screw 10 advances from the position shown in FIG. 2 (b) to the position shown in FIG. 2 (c) or the position shown in FIG. 3 (a).
  • the reinforcing fiber F is not filled in the groove of the screw 10 in the resin melting region shown in FIG. 2B, but conventionally, the reinforcing fiber F is a raw material hopper attached to the vent hole 206 which is an inlet.
  • the reinforcing fiber F is filled in the screw 10. Can not.
  • the molten resin M is adhered around the screw 10, so that FIG. As shown, the reinforcing fiber F supplied from the fiber supply device 213 sticks to the molten resin M. It is difficult to fill the supplied reinforcing fiber F along the upper part of the screw 10 and down through the groove of the screw 10. Alternatively, the molten resin M cannot be conveyed by rotating the screw, and the molten resin M in the groove of the screw 10 hangs down below the screw 10 due to gravity and accumulates between the heating cylinder 201.
  • the screw 10 advances without being sufficiently filled with the reinforcing fiber F in the groove of the screw 10 in the resin melting region shown in FIG. 2B, and the resin melting region passes through the fiber supply device 213 during the injection process.
  • the molten resin M below the heating cylinder 201 does not contain the reinforcing fiber F, and the injection process is completed.
  • the reinforcing fiber F when the reinforcing fiber F is supplied into the screw by the fiber supply device 213 during the injection process, the reinforcing fiber F can be delivered to the lower side of the heating cylinder 201. That is, although the flight of the screw 10 intermittently blocks the vent hole 206, or the molten resin M adheres to the entire periphery of the screw 10, or the molten resin M accumulates below the screw 10. However, since the reinforcing fiber F supplied by a predetermined amount from the fiber supply device 213 is filled in the groove of the screw 10, the reinforcing fiber F can be distributed around the screw 10. Therefore, as shown in FIG.2 (d), according to this embodiment, the area
  • the supply of the reinforcing fiber F from the fiber supply device 213 during the injection process is preferably performed over the entire period of the injection process, but may be stopped only for a part of the period, such as intermittent supply.
  • the supply rate may be changed continuously or stepwise.
  • the timing and amount of supply from the fiber supply device 213 are set to a timer (not shown), a screw position sensor, the first motor 209 and the second motor 211. Control may be performed with high accuracy using various sensors such as a rotary encoder provided in the above.
  • the fiber feeder 213 that supplies the reinforcing fiber F into the heating cylinder 201 can use a screw-type or piston-type measuring feeder.
  • the fiber supply device 213 may be directly connected to the heating cylinder 201 to supply the reinforcing fiber F directly into the heating cylinder 201, or the fiber supply hopper 205 may be provided in the vent hole 206 to provide the fiber supply device 213.
  • the reinforcing fiber F may be supplied to the fiber supply hopper 205.
  • the reinforcing fiber F When the weighing feeder is directly connected to the heating cylinder 201, the reinforcing fiber F can be forcibly filled into the heating cylinder 201 by the weighing feeder. Therefore, even if the reinforcing fiber F is entangled in the vent hole 206, a predetermined amount is obtained.
  • the reinforcing fiber F can be filled in the groove of the screw 10 by the supply amount. Thereby, content (rate) of the reinforced fiber F mixed with the molten resin M within the groove
  • a single-axis feeder with a single screw can be used as a multi-axis feeder with a plurality of screws.
  • a multi-axial feeder that has a strong conveying force for measuring and stably supplying the reinforcing fibers F and that can suppress slippage between the reinforcing fibers F and the feeder is preferable.
  • a simple biaxial feeder is preferable in terms of cost, design and control.
  • a biaxial screw feeder 214 is provided in the heating cylinder 201 to forcibly supply the reinforcing fiber F into the groove of the screw 10. Needless to say, there is no problem even if a single-screw screw feeder is used even when directly connected to the heating cylinder 201. Further, as a method for supplying the reinforcing fiber F to the biaxial screw feeder 214, continuous fibers, so-called roving fibers, may be directly fed into the biaxial screw feeder 214, or chopped fibers that have been cut to a predetermined length in advance. May be input.
  • the chopped fiber When the chopped fiber is introduced, it may be conveyed to the vicinity of the fiber insertion port of the measuring feeder with the roving fiber, and may be input to the measuring feeder immediately after cutting the roving fiber in the vicinity of the fiber input port. Thereby, since the chopped fiber which is easily scattered is not exposed until the molding machine is charged, workability can be improved.
  • a roving cutter 218 is provided in the vicinity of the fiber insertion port of the biaxial screw feeder 214. The roving cutter 218 cuts the roving fiber into a chopped fiber, and then supplies the chopped fiber to the biaxial screw feeder 214.
  • the roving cutter 218 is a rotary cutter that rotates toward the biaxial screw feeder 214.
  • the cut chopped fiber can be directly put into the screw groove of the biaxial screw feeder 214 without using the storage member of the reinforcing fiber F such as a hopper, using the rotational force of the cutter.
  • the chopped fibers can be fed into the biaxial screw feeder 214 with little entanglement immediately after cutting, so the chopped fibers can be efficiently bited into the biaxial screw feeder 214 and stabilized from the biaxial screw feeder 214.
  • the chopped fiber can be supplied into the groove of the screw 10.
  • twin-screw extruder type feeder screw in which the screw flight and the groove mesh with each other, is independent of the partition or has no partition. May be independent feeder screws without interfering with each other.
  • the direction of rotation of the screw may be the same or different.
  • the reinforcing fiber F can be supplied by providing a single-screw screw feeder 216 in communication with the vent hole 206.
  • the reinforced fiber F is forcibly supplied into the groove of the screw 10 also by the single-screw screw feeder 216.
  • the supply amount of the reinforcing fiber F supplied during the injection process from the biaxial screw feeder 214 or the single axial screw feeder 216 is as follows. An example of the determination method will be described.
  • the backward speed of the screw 10 in the plasticizing process is calculated from the position change information of the screw 10 detected by a screw position sensor (not shown).
  • a ratio between the screw forward speed in the injection process and the screw reverse speed calculated in the first step is calculated.
  • the ratio of each speed to the reverse speed of the screw 10 at the plasticizing process calculated in the first step is calculated.
  • the ratio of the plasticizing process and the screw 10 in the injection process calculated in the second step, and the biaxial screw feeder during the plasticizing process set in advance so that the molded product has a desired fiber content Supply of reinforcing fiber F supplied from biaxial screw feeder 214 or single screw feeder 216 during the injection process by multiplying the supply amount or supply speed of reinforcing fiber F supplied from 214 or monoaxial screw feeder 216 Calculate the reference value of the quantity or supply speed.
  • the correction coefficient is multiplied by the reference value of the supply amount or the supply speed of the reinforcing fiber F supplied from the biaxial screw feeder 214 or the single axial screw feeder 216 during the injection process calculated in the third step,
  • the operating condition value of the supply amount of the reinforcing fiber F supplied from the biaxial screw feeder 214 or the single axial screw feeder 216 during the injection process is determined.
  • the injection process is multi-stage speed control
  • the operating condition value of the supply amount of the reinforcing fiber F is determined by multiplying each speed by a correction coefficient, and the reinforcing fiber F is supplied from the feeder every time the injection speed is switched. Switch the amount.
  • the above correction coefficient may be obtained theoretically or may be obtained based on experiments.
  • the correction coefficient may be set separately for each speed, or may be the same value.
  • the supply amount of the reinforcing fiber F supplied from the biaxial screw feeder 214 or the single axial screw feeder 216 is obtained by experimentally determining the dispersion distribution of the reinforcing fibers in the molded product, and the reinforcement in the molded product based on the experimental result.
  • the operating condition value of the supply amount for supplying the reinforcing fibers F from the biaxial screw feeder 214 to the screw 10 during the injection stroke may be determined so that the dispersion of the fiber content falls within the desired content tolerance range.
  • the determination method of the supply amount of the reinforcing fiber F supplied from the biaxial screw feeder 214 or the single axial screw feeder 216 during the injection process the above determination method may be selected without departing from the gist of the present invention. It is possible to appropriately change to other methods.
  • a belt feeder 217 can be used as the fiber supply device 213, for example, as shown in FIG.
  • the reinforcing fiber F can be supplied to the fiber supply hopper 205 by a predetermined amount (FIG. 7B).
  • the supply amount of the reinforcing fiber F is not entangled in the vent hole 206, specifically, the vent hole 206 is not filled.
  • the reinforcing fibers F can be filled in the screw 10 without closing the vent hole 206.
  • the screw 10 is reversed during the injection process in order to further smoothly supply the reinforcing fibers F using the injection molding machine 1 of the first embodiment.
  • a description will be given centering on differences from the first embodiment.
  • the rotation of the screw 10 was stopped during the injection process.
  • the reinforcing fiber F may not be supplied smoothly. That is, even if the fiber supply device 213 shown in the first embodiment is used, when the supply force of the fiber supply device 213 is small, the resin resistance in the groove of the screw 10 cannot be overcome, and the reinforcement is performed during the injection process. The fiber F cannot be filled below the screw 10.
  • the reinforcing fiber F attached to the molten resin M is also screwed by reversing the screw 10 as shown in FIG. It is conveyed toward the lower side of the heating cylinder 201 while being pushed into the ten grooves.
  • the molten resin M accumulated below the screw 10 rotates the screw 10, so that a gap can be generated in which the reinforcing fibers F can be transported in the groove of the screw 10 and enter the groove below the screw 10. Therefore, the reinforcing fiber F can be spread around the screw 10 by reversing the screw 10 while moving it forward.
  • the region in front of the fiber supply device 213 includes the reinforcing fibers F without leakage.
  • the rotation of the screw 10 during the injection process is preferably performed over the entire period of the injection process. However, the screw 10 may be stopped for a part of the period, such as intermittently reverse, or reverse rotation and normal rotation may be performed. It may be switched alternately, or the rotational speed may be changed continuously or stepwise.
  • the reversal of the screw 10 is provided with a timer (not shown), a screw position sensor, the first electric motor 209 and the second electric motor 211 for the rotation timing and speed. You may control with high precision using various sensors, such as a rotary encoder.
  • the control unit 50 may control the first electric motor 209 that moves the screw 10 forward or backward and the second electric motor 211 that rotates the screw 10 forward or backward in synchronization. .
  • the speed at which the screw 10 is advanced is V1
  • the speed at which the screw 10 is reversely rotated is V2.
  • the lead angle of the flight 11 of the screw 10 is ⁇ 1.
  • the angle ⁇ 2 formed by the screw groove traveling speed V3 defined by the forward speed V1 and the rotational speed V2 is made to coincide with the lead angle ⁇ 1.
  • the relative position of the flight 11 with respect to the vent hole 206 to which the reinforcing fiber F is supplied from the fiber supply device 213 can be made constant. Then, the reinforcing fiber F can be continuously pushed into the groove of the screw 10 without unevenness.
  • the forward speed V1 and the rotational speed V2 can be specified by the following, since the lead angle ⁇ 1 is known, preferable conditions can be set by adjusting the forward speed V1 and the rotational speed V2.
  • the flight 11 of the screw 10 that is in the projection region of the vent hole 206, that is, visible from the vent hole 206, is one of the flights 11 during the injection process.
  • the rotation may be controlled at the reverse rotation speed of the screw 10 so as not to move beyond the lead length.
  • the flight 11 of the screw 10 that can be seen from the vent hole 206 appears to have a moving amount of the flight 11 equal to or less than the length of one lead during the injection process.
  • the reversing speed is equal to or higher than the reversing speed at which the screw 10 rotates twice during the time t0.
  • the amount of movement of the flight 11 of the screw 10 visible from the vent hole 206 during the injection process is equal to or less than one lead length.
  • a negative pressure generating device such as a vacuum pump is connected to the vent hole 206 to make the inside of the vent hole 206 a negative pressure, volatilization from the outside air that has entered the cylinder together with the reinforcing fiber F, or resin and resin additives. Since the gas to be discharged can be discharged to the outside of the cylinder, it is possible to prevent molding defects such as silver, voids, and black spot foreign matter due to oxidative degradation of the resin, and contamination of the mold.
  • the vent hole 206 is provided in front of the vent hole 206 for supplying the reinforcing fiber F. Further, a through hole extending from the outer peripheral surface of the cylinder to the inner peripheral surface may be provided.
  • the fiber content C is measured in the injection molding machine 2 during the plasticizing process.
  • the injection molding machine 2 according to the present embodiment further includes a measurement unit 300 (FIG. 5) in addition to the elements of the injection molding machine 1 of the first embodiment and the second embodiment.
  • the operation of the measurement unit 300 can be controlled by the control unit 50. Since the plasticizing step and the injection step in the injection molding machine 2 are the same as those in the first embodiment and the second embodiment, the differences from the first embodiment and the second embodiment will be mainly described.
  • the measurement unit 300 is used to measure the amount of reinforcing fibers (fiber content) contained in the molten resin reaching the discharge nozzle 203.
  • the measuring unit 300 is provided in the vicinity of the discharge nozzle 203 of the plasticizing unit 200.
  • the measuring unit 300 includes a branch passage 301 branched from the discharge passage 204 in the discharge nozzle 203, an on-off valve 321 provided on the branch passage 301, and a resin reservoir 305 for temporarily storing the molten resin flowing through the branch passage 301. And a thermometer 307 and a pressure gauge 309 for measuring the temperature and pressure of the molten resin stored in the resin reservoir 305, and an actuator 311 for applying pressure to the molten resin stored in the resin reservoir 305.
  • the specific form of the measurement unit 300 is not restricted to what was mentioned above, and if it can measure the pressure P1 of the molten resin M, it will not interfere even if another form is employ
  • the discharge passage 204 is provided with an on-off valve 322 downstream of the branch portion of the branch passage 301 in the direction in which the molten resin flows.
  • One end of a return passage 315 is connected to the resin reservoir 305, and the other end of the return passage 315 is connected to the discharge passage 204 of the discharge nozzle 203.
  • the other end of the return passage 315 is connected to the discharge passage 204 downstream of the on-off valve 322.
  • An opening / closing valve 323 is provided in the return passage 315.
  • the portion inside the resin reservoir block 306 constitutes a throttle 316.
  • the on-off valves 321, 322, and 323, the thermometer 307, and the pressure gauge 309 of the measurement unit 300 are connected to the control unit 50.
  • the control unit 50 sends an open / close command signal to the on-off valves 321, 322, and 323 depending on whether or not the measurement is necessary.
  • the molten resin M is drawn into the resin reservoir 305 through the branch passage 301 of the measuring unit 300.
  • the control part 50 calculates
  • the molten resin stored in the resin reservoir 305 is returned to the discharge passage 204 through the return passage 315.
  • the fiber content can be determined, for example, as follows based on the viscosity of the molten resin.
  • the fiber content C of the molten resin and the viscosity ⁇ of the resin are in a proportional relationship.
  • the viscosity ⁇ can be obtained by the following formula (1).
  • pressure P1, V, L, R, and Rc are known values. Therefore, by measuring the pressure P1, the viscosity ⁇ of the molten resin M can be obtained.
  • the speed V is a constant speed.
  • Viscosity ⁇ (P1 / V ⁇ L) ⁇ (R / Rc) (1)
  • P1 Pressure of molten resin (Pa) in the resin reservoir 305
  • V Pushing speed V (mm / sec) of the actuator 311
  • L Length of the aperture 316 (mm)
  • Rc radius of the resin reservoir 305 (mm)
  • R radius of the aperture 316 (mm)
  • the fiber content C of the measured molten resin is specified. can do.
  • information content-viscosity information
  • the control unit 50 acquires the pressure P1 measured by the pressure gauge 309, the control unit 50 can obtain the fiber content C by collating with the content-viscosity information stored in its own database.
  • FIG. 6B shows three types of content-viscosity information as an example. Since the content-viscosity information can vary depending on the physical properties of the resin and the properties of the reinforcing fiber, the content-viscosity according to the combination of the resin (A, B, C) and the fiber (d, e, f). Information is set.
  • Viscosity ⁇ varies depending on the temperature of the resin. Therefore, the temperature should be specified in the content-viscosity information, and the control unit 50 stores information on this temperature (measured temperature T) together with the content-viscosity information.
  • the measurement unit 300 is provided with a heater 317 around the resin reservoir 305 in order to maintain the molten resin stored in the resin reservoir 305 at the measurement temperature T.
  • the control unit 50 collates the temperature information acquired from the thermometer 307 with the measured temperature T, and adjusts the heating of the molten resin by the heater 317 as necessary.
  • the measurement unit 300 controls the opening / closing of the on-off valves 321 to 323 as follows. [When measuring] On-off valve 321: Closed (OFF) On-off valve 322: Open (ON) On-off valve 323: Closed (OFF)
  • the molten resin M flows from the discharge passage 204 through the branch passage 301 into the resin reservoir 305.
  • the actuator 311 is operated at a constant speed V to apply pressure to the molten resin M in the resin reservoir 305.
  • the on-off valve 323 is opened, and the molten resin M is pushed out from the resin reservoir 305.
  • the control unit 50 acquires the pressure P1 measured by the pressure gauge 309, and the control unit 50 stores the pressure P1 and obtains the fiber content C as described above.
  • the extruded molten resin M is returned to the discharge passage 204 through the return passage 315. Thereafter, as shown in FIG. 5A, the on-off valve 321 is opened and the on-off valve 322 is closed, so that preparation for shifting to the injection process is completed.
  • the control unit 50 stores the pressure P1 for each cycle and compares it with the pressure management information shown in FIG.
  • the control unit 50 instructs the fiber supply device 213 to adjust the supply amount of the reinforcing fiber F so that the acquired pressure P1 does not deviate from the pressure management information.
  • the pressure management information includes a management value upper limit and a management value lower limit.
  • the present invention has been described based on the embodiment.
  • the configuration described in the above embodiment may be selected or changed to another configuration as long as it does not depart from the gist of the present invention.
  • the rotation of the screw during the injection process is not limited to reverse rotation, and even if it is normal rotation, the groove region located below the screw can be phase-replaced with the position facing the vent hole 206. Therefore, the effect which can reduce the area
  • the molten resin M in the groove at the front end of the screw 10 is conveyed backward by the reverse rotation of the screw 10, and the pressure of the molten resin M at the front end of the screw 10. Decreases.
  • bubbles may be generated in the molten resin M and appear on the surface of the molded product, resulting in molding failure.
  • the screw 10 is normally rotated during the injection process, the effect of filling the reinforcing fiber F into the groove of the screw 10 below the vent hole 206 without lowering the pressure at the tip of the screw 10 can be obtained. .
  • the start of forward rotation is indicated. It is considered effective to delay from the start of 10 forwards.
  • Examples of the delay control for starting the forward rotation of the screw 10 include detecting the time-up of the timer, the arrival of the advance amount of the screw 10 to a predetermined value, and the arrival of the electric motor torque for injection and the predetermined value of the hydraulic pressure. Conceivable.
  • the fiber supply device 213 and the resin supply hopper 207 are fixed to the heating cylinder 201, but can be a movable hopper that moves in the axial direction of the screw 10.
  • a multi-axis type measuring feeder is used for the fiber supply device 213, a plurality of feeders are connected in parallel in the longitudinal direction of the screw 10, and the feeder for supplying the reinforcing fiber F is switched and used in the plasticizing process. May be.
  • the reinforcing fiber F is supplied from a feeder arranged on the tip side of the screw 10 and the screw 10 and the fiber are discharged as the screw 10 moves backward in the plasticizing process.
  • the feeder for supplying the reinforcing fibers F may be sequentially switched to the rear side so that the relative position of the feeder screw does not change. Thereby, the supply position of the reinforcing fiber F to the screw 10 can be made constant regardless of the change in the relative position of the heating cylinder 201 and the screw 10 due to the backward movement of the screw 10 and the advancement of the screw 10 at the time of injection. Specifically, the position of the fiber supply feeder screw when plasticization is completed, that is, the position of the last screw groove filled with the reinforcing fiber F, is moved to the next plasticization at the screw position advanced by injection.
  • the reinforcing fiber F can be continuously supplied to the screw groove in front of the fiber supply device 213, and in the groove of the screw 10 in front of the fiber supply device 213. This is effective for preventing or suppressing the generation of the region not filled with the reinforcing fiber F.
  • the method of switching the feeder screw may be simple ON / OFF control, or the rotational speed of adjacent screw feeders may be changed in cooperation. Specifically, as the screw moves backward, the rotational speed of the front screw feeder may be gradually decreased and the rotational speed of the rear screw feeder may be gradually increased.
  • the screw 10 is shown as a two-stage type, but the inside of the screw 10 is conveyed from the resin supply hopper 207 by limiting the amount of resin pellets P supplied from the resin supply hopper 207.
  • the fiber supply device 213 When the molten resin M or a semi-molten resin containing an unmelted resin reaches the fiber supply device 213, a space that can be filled with the reinforcing fiber F can be provided in the groove of the screw 10; A screw shape may be used.
  • tip part of the screw 10 is shown, when the reinforcing fiber F is easy to defibrate, it is not necessary to provide mixing.
  • the resin and reinforcing fiber applied to the present invention are not particularly limited, and are known resins such as general-purpose resins such as polypropylene and polyethylene, engineering plastics such as polyamide and polycarbonate, and glass fibers and carbon fibers. Widely includes known materials such as known reinforcing fibers such as bamboo fiber and hemp fiber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

 強化繊維の含有量が安定して得られる、樹脂材料の射出成形方法を提供する。 本発明の射出成形方法は、前方側に吐出ノズル203が形成された加熱シリンダ201と、加熱シリンダ201の内部に回転可能に設けられた単軸のスクリュ10と、強化繊維Fを加熱シリンダ201内に充填する繊維供給装置213と、を備え、強化繊維Fと樹脂原料を個別に、かつ、強化繊維Fを樹脂原料よりも前方側から供給しながら射出成形する方法であって、スクリュ10を正転させながら後退させることで、樹脂原料を溶融するとともに、溶融された樹脂原料に強化繊維Fを混錬して、所定量の混錬物を得る可塑化工程と、スクリュ10を前進させることで混錬物を吐出ノズル203から吐出させる射出工程と、を備える。そして、射出工程において、強化繊維Fを加熱シリンダ201内に供給することを特徴とする。

Description

射出成形方法、及び、射出成形装置
 本発明は、強化繊維を含む樹脂の射出成形方法に関する。
 強化繊維を含有させることにより強度を高めた繊維強化樹脂の成形品が各種の用途に用いられている。その成形品を射出成形で得るには、可塑化装置であるシリンダ内でスクリュの回転により熱可塑性樹脂を溶融し、それに繊維を混練した後に、射出成形装置の金型に射出される。
 強化繊維による強度向上の効果を得るためには、強化繊維が樹脂の中に均一に分散していることが望まれる。均一分散を果たすためには、混練の条件を厳しくすればよいが、逆に、混練物へのせん断力が高まり、これにより、強化繊維が切断されてしまう。そうすると、当初の繊維長よりも成形後の繊維長が大幅に短くなってしまい、得られた繊維強化樹脂成形品は、所望の特性を満足することができなくなるおそれがある(特許文献1)。したがって、混練時に適度なせん断力が得られる射出成形の条件を選択することが必要になる。
 また、可塑化工程における繊維の切断を防ぐために、シリンダに熱可塑性樹脂原料を供給するための供給口、繊維材料を供給するための供給口、樹脂中に含まれるガス分を除去するためのベント口をそれぞれ設けたシリンダとスクリュを備えた可塑化装置が提案されている(特許文献2)。
 繊維強化樹脂の可塑化工程における繊維の切断は、主に可塑化装置の前半、すなわち樹脂ペレットの供給部及び圧縮部で発生するため、可塑化装置においては繊維材料の供給口を、熱可塑性樹脂が十分に溶融する、圧縮部以降に設けている。
特開2012-56173号公報 特開平3-76614号公報
 本発明者は、射出成形の条件、加えられる強化繊維の仕様を選択することにより、強化繊維を相当程度に均一に分散できることを確認している。一方で、特に特許文献2に示された可塑化装置に類似する、熱可塑性樹脂原料を供給するための供給口と、繊維材料を供給するための供給口とをそれぞれ個別に有するシリンダおよびスクリュを用いた成形において、均一に分散された他の領域に比べて強化繊維の含有量が明らかに少ない領域が、繊維強化樹脂成形品の不特定箇所に生じることを経験した。一つの成形品内において強化繊維の含有量の分布にバラツキがあると、局部的に強度の低い箇所が発生し、その成形品は設計上の強度が得られない虞があるとともに、冷却固化時の樹脂の収縮度合いが安定せず、大きな反りやヒケなどの成形不良が発生する虞がある。
 本発明は、強化繊維の含有量のバラツキを防止あるいは抑制し、安定した成形品質が得られる、樹脂材料の射出成形方法を提供する。
 本発明者らは、強化繊維の含有量が明らかに少ない領域が生じる原因を調査した結果、熱可塑性樹脂が溶融した後の射出工程が関与していることを知見した。つまり、射出工程は、スクリュの回転を停めたままでスクリュを前進させて、強化繊維を含む溶融樹脂を金型に向けて吐出するものである。通常、強化繊維は可塑化装置であるシリンダの上部に設けたホッパから供給されるが、スクリュの回転が停止されているので、強化繊維は自重によってスクリュのフライト間の溝を下方に向けて自然落下により移動することになる。ところが、強化繊維は原料ホッパ内で絡み合い易い。特に繊維長が2mm以上で自然落下しにくい傾向が出始め、繊維長が4mm以上では、強化繊維がホッパ内に充満されていると、強化繊維のスクリュ溝内への自然落下が困難になる。このため、高速でフライトが通過してホッパ孔を封鎖する射出工程中は、繊維がスクリュ内に落下できない。また高速で通過するフライトの間を通ってスクリュの溝内に強化繊維が落下しても、フライト間の溝には溶融した樹脂が付着しているため、溶融樹脂が抵抗となり強化繊維が下方に向けて移動することは容易でない。したがって、射出工程の間、フライト間の溝の下方の領域には強化繊維の含有量の少ない領域が生じるのである。
 そこでなされた本発明は、前方側に吐出ノズルが形成されたシリンダと、シリンダの内部に回転可能に設けられた単軸のスクリュと、強化繊維をシリンダ内に充填する繊維供給装置と、を備え、強化繊維と樹脂原料を個別に、かつ、強化繊維を樹脂原料よりも前方側から供給しながら射出成形する方法であって、スクリュを正転させながら後退させることで、樹脂原料を溶融するとともに、溶融された樹脂原料に強化繊維を混錬して、所定量の混錬物を得る可塑化工程と、スクリュを前進させることで混錬物を吐出ノズルから吐出させる射出工程と、を備え、射出工程において、強化繊維をシリンダ内に供給することを特徴とする。
 本発明は、射出工程においても原料ホッパ内やスクリュ溝内の状態によらずに強化繊維がスクリュ溝内に入るように強化繊維をスクリュ内に供給するので、長さが2mm以上の強化繊維を供給する場合であっても強化繊維量が少ないスクリュ溝の領域を低減できる。
 本発明の射出工程において、スクリュを正転または逆転させることが好ましい。
 射出工程において強化繊維を供給する際に、スクリュを正転または逆転させるので、スクリュの下方に位置したスクリュ溝部を位相置換してベント孔に対向できる。これにより、スクリュ溝表面に樹脂が付着していてもスクリュ全周に強化繊維を充填することができる。また、スクリュの回転により下方に停留した溶融樹脂を搬送できるので、スクリュの下方に強化繊維を充填する隙間を作ることができるので、強化繊維を下方の領域に移動させることができる。
 本発明の射出工程において、強化繊維が供給されるベント孔の下を通過するスクリュ溝の全域全周に繊維を充填するためには、ベント孔の下のスクリュ溝に連続して強化繊維を充填させるのが効果的である。そこで本発明の射出成形方法では、以下の第1の手法と第2の手法を提案する。
 第1の手法は、強化繊維を樹脂原料よりも前方側から供給するために、シリンダの胴部に外周面から内周面に貫通したベント孔を備え、射出工程において、ベント孔の投影領域におけるスクリュのフライトの移動が、フライトの1リード長分以下となるように、スクリュの逆転速度を設定することが好ましい。
 射出工程中に、当該投影領域におけるフライトが、フライトの1リード長分を超えて移動してしまうと、スクリュ溝内にベント孔に対向せず、強化繊維が充填されない領域が発生するからである。
 また、第2の手法は、射出工程において、スクリュが逆転されることに基づくスクリュ溝の進行速度の角度θ2を、スクリュのフライトのリード角θ1に一致させるように、スクリュの後退速度及びスクリュの逆転速度を設定することが好ましい。
 ベント孔の投影領域でスクリュのフライトが、ベント孔の投影領域における相対位置が同じ位置で動かないようにすると、ベント孔下を通過するスクリュ溝全周がベント孔に対向するようにスクリュが回転しながら移動する状態となるので、スクリュ溝内に強化繊維が充填されていない領域を無くすことができる。
 また、本発明の射出工程において、可塑化工程におけるスクリュの回転速度と同じ条件で、スクリュを逆転させることも好ましい。
 スクリュ回転数の設定項目を増やさないシンプルな制御を行うことができるためである。
 これらの好ましい形態は、以下の射出成形装置にも適用できることは言うまでもない。
 本発明は、前方側に吐出ノズルが形成されたシリンダと、シリンダの内部に回転可能に設けられた単軸のスクリュと、強化繊維をシリンダ内に充填する繊維供給部と、繊維供給部よりも後方側に設けられ、樹脂原料をシリンダ内に供給する樹脂供給ホッパと、を備える射出成形装置としても捉えることができる。
 この射出成形装置は、スクリュを正転させながら後退させることで、樹脂原料を溶融するとともに、溶融された樹脂原料に強化繊維を混錬して、所定量の混錬物を得る可塑化工程と、スクリュを前進させることで混錬物を吐出ノズルから吐出させる射出工程とを行うが、射出工程において、強化繊維がシリンダ内に供給されることを特徴とする。
 本発明によれば、射出工程においても、強化繊維をシリンダ内に供給するので、強化繊維量が少ないスクリュ溝の領域を低減できる。したがって、本発明によると、成形品内に強化繊維の含有量の少ない領域が生じるのを防止できる。また、これにより、安定した成形品質を得ることができる。
本実施形態に係る射出成形装置の構成を示す図である。 本実施形態における射出成形の各手順の樹脂の溶融状態を模式的に示す図であり、(a)は可塑化開始当初、(b)は可塑化完了時、(c)は射出完了時、及び(d)は次のサイクルのための可塑化開始時を示している。 従来の射出成形の手順の樹脂の溶融状態を模式的に示す図であり、(a)は図2の(c)に対応する射出完了時、(b)は射出時の問題点を示す図、(c)は図2の(d)に対応する可塑化開始時を示している。 本実施形態における射出成形を示し、(a)は図3の(b)に対応し、(b)は本実施形態において好ましいスクリュ溝の進行速度を説明する図である。 本実施形態の計測ユニットの概略構成を示し、(a)は計測していない状態を示し、(b)は計測している状態を示している。 (a)は圧力管理情報を示し、(b)は繊維含有量-粘度情報を示している。 本実施形態に係る可塑化ユニットの例を示す図である。
 以下、添付図面に示す実施の形態に基づいてこの発明を詳細に説明する。
[第1実施形態]
 本実施形態に係る射出成形機1は、図1に示すように、型締ユニット100と、可塑化ユニット200と、これらのユニットの動作を制御する制御部50と、を備えている。
 型締ユニット100は、ベースフレーム101上に固設されるとともに固定金型103が取り付けられた固定ダイプレート105と、油圧シリンダ113の作動によってレールや摺動板などの摺動部材107上を図中左右方向に移動するとともに可動金型109が取り付けられた可動ダイプレート111と、固定ダイプレート105と可動ダイプレート111とを連結する複数のタイバー115とを備えている。固定ダイプレート105には、各タイバー115と同軸に型締め用の油圧シリンダ117が設けられており、各タイバー115の一端は当該油圧シリンダ117のラム119に接続されている。
 これらの各要素は制御部50の指示にしたがって必要な動作を行なう。
 型締ユニット100の概略の動作は以下の通りである。
 まず、型開閉用の油圧シリンダ113の作動により可動ダイプレート111を図中の二点鎖線の位置まで移動させて可動金型109を固定金型103に当接させる。次いで、各タイバー115の雄ねじ部121と可動ダイプレート111に設けられた半割りナット123を係合させて、可動ダイプレート111をタイバー115に固定する。そして、油圧シリンダ117内の可動ダイプレート111側の油室の作動油の圧力を高めて、固定金型103と可動金型109とを締め付ける。このようにして型締めを行った後に、可塑化ユニット200から金型のキャビティ内に溶融樹脂Mを射出して成形品を成形する。
 なお、本実施形態のスクリュ10は後述するように熱可塑性の樹脂ペレットPと強化繊維Fをスクリュ長手方向に個別に供給する方式であるため、スクリュ10の全長もしくは可塑化ユニット200の全長が長くなりやすい。このため、本実施形態は、トグルリンク方式や可動ダイプレートの背面に型締めシリンダを備えた方式の型締め装置が設置できないような狭いスペースでも、設置ができる省スペース化が可能な前述した構成を有する型締ユニット100を示した。しかし、ここで示した型締ユニット100の構成はあくまで一例に過ぎず、他の構成を適用し、あるいは置換することを妨げない。例えば、本実施形態では型開閉用のアクチュエータとして油圧シリンダ113を示したが、型開閉用のアクチュエータをボールねじやラック・アンド・ピニオンなどの回転運動を直線運動に変換させる部材とサーボモータや誘導モータなどの電動モータとの組み合わせに代えてもよい。また、電動駆動あるいは油圧駆動によるトグルリンク式型締ユニットに代えてもよいことは言うまでもない。
 可塑化ユニット200は、筒型の加熱シリンダ201と、加熱シリンダ201の前方側に設けた吐出ノズル203と、加熱シリンダ201の内部に設けられたスクリュ10と、強化繊維Fが供給される繊維供給装置213と、樹脂ペレットPが供給される樹脂供給ホッパ207とを備えている。繊維供給装置213は、樹脂供給ホッパ207よりも前方側に設けられているベント孔206に連結されている。また、スクリュ10は、いわゆるガスベント式スクリュと同様の2ステージ型のデザインとなっている。具体的にはスクリュ10の後方側に、供給部23、圧縮部24を備えた第1ステージ21と、第1ステージ21に連結した供給部25、圧縮部26を備えた第2ステージ22を有するデザインとなっている。第1ステージ21で樹脂を溶融(溶融樹脂M)し、第2ステージ22で溶融樹脂Mと強化繊維Fを混合、分散させる。第1ステージ21の終端部(前側端)で圧縮により高圧となっている加熱シリンダ201内の溶融樹脂Mの圧力を、強化繊維Fを充填するために第1ステージ21の終端(前側端)に第2ステージ22の深溝部である供給部25を直接的あるいは更に絞り流路を介して間接的に連結させて減圧することを目的としている。また、可塑化ユニット200は、スクリュ10を前進又は後退させる第1電動機209と、スクリュ10を正転又は逆転させる第2電動機211と、樹脂供給ホッパ207に対して樹脂ペレットPを供給するペレット供給装置215と、を備えている。これらの各要素は制御部50の指示にしたがって必要な動作を行なう。なお、可塑化ユニット200において、溶融樹脂Mが射出される側を前、原料(強化繊維、樹脂ペレット)が供給される側を後とする。
 可塑化ユニット200の概略の動作は以下の通りである。
 加熱シリンダ201の内部に設けられたスクリュ10が回転されると、繊維供給装置213からベント孔206を介して供給された強化繊維F、および、樹脂供給ホッパ207から供給された熱可塑性樹脂からなるペレット(樹脂ペレットP)は、加熱シリンダ201の前方側の吐出ノズル203側へ送り出される。この過程において、搬送部から加熱され、徐々に溶融し始めた樹脂ペレットP(溶融樹脂M)は強化繊維Fと混錬された後に、型締ユニット100の固定金型103と可動金型109の間に形成されるキャビティへ所定量だけ射出される。なお、樹脂ペレットPの溶融に伴いスクリュ10が背圧を受けながら後退した後に、前進することで射出を行なうというスクリュ10の基本動作を伴うことは言うまでもない。また、加熱シリンダ201の外側には、樹脂ペレットPの溶融のためにヒータを設けるなど、他の構成を適用し、あるいは置換することを妨げない。
 以上の要素を備える射出成形機1は、以下の手順で射出成形を行なう。
 射出成形は、よく知られているように、可動金型109と固定金型103を閉じて高圧で型締めする型締工程と、樹脂ペレットPを加熱シリンダ201内で加熱、溶融して可塑化させる可塑化工程と、可塑化された溶融樹脂Mを、可動金型109と固定金型103により形成されるキャビティに射出、充填する射出工程と、キャビティに充填された溶融樹脂Mが固化するまで冷却する保持工程と、金型を開放する型開き工程と、キャビティ内で冷却固化された成形品を取り出す取り出し工程と、を備え、上述した各工程をシーケンシャルに、あるいは一部平行させて実施して1サイクルが完了する。
 続いて、本実施形態が関連する可塑化工程と射出工程について説明する。
 可塑化工程では、樹脂ペレットPを加熱シリンダ201の後方の樹脂供給ホッパ207から供給する。可塑化開始当初ではスクリュ10は、加熱シリンダ201の前方に位置しており、その初期位置からスクリュ10を回転させながら後退させる(図2「可塑化開始」)。スクリュ10を回転させることで、スクリュ10と加熱シリンダ201の間に供給された樹脂ペレットPは、せん断力を受けて加熱されながら徐々に溶融して、前方に向けて搬送される。なお、本発明では可塑化工程におけるスクリュ10の回転(向き)を正転とする。溶融樹脂Mが繊維供給装置213まで搬送されたならば、強化繊維Fを繊維供給装置213から供給する。スクリュ10の回転に伴い、強化繊維Fは溶融樹脂Mに混錬、分散して溶融樹脂Mとともに前方に搬送される。樹脂ペレットP、強化繊維Fの供給を継続するとともに、スクリュ10を回転し続けると、加熱シリンダ201の前方に搬送され、溶融樹脂Mがスクリュから吐出されスクリュ10の前方に溜まる。スクリュ10の前方に溜まった溶融樹脂Mの樹脂圧力とスクリュ10の後退を抑制する背圧とのバランスによってスクリュ10を後退させる。必要な量の溶融樹脂Mが溜まったところで、スクリュ10の回転及び後退を停止する(図2「可塑化完了」)。
 図2は、樹脂(樹脂ペレットP,溶融樹脂M)と強化繊維Fの状態を、「未溶融樹脂」、「樹脂溶融」、「繊維分散」及び「繊維分散完了」の4段階に模式的に区別して示している。「可塑化完了」の段階では、スクリュ10よりも前方の「繊維分散完了」は、溶融樹脂Mの中に強化繊維Fが分散され、射出に供される状態を示し、「繊維分散」は、スクリュ10の回転に伴い、供給された強化繊維Fが溶融樹脂Mに分散されていることを示す。また、「樹脂溶融」は、樹脂ペレットPがせん断力を受けることで徐々に溶融し、「未溶融樹脂」はせん断力を受けるが、未だ溶融するには到っていないことを示している。
 可塑化工程完了時は、図2(b)に示す樹脂溶融領域は、強化繊維Fを供給する繊維供給装置213よりも後方にあるため、この領域のスクリュ10の溝には強化繊維Fは供給されていない状態である。
 射出工程に入ると、図2(c)に示すように、スクリュ10を前進させる。そうすると、スクリュ10の先端部に備えられている図示しない逆流防止弁が閉鎖することで、スクリュ10の前方に溜まった溶融樹脂Mの圧力(樹脂圧力)が上昇し、溶融樹脂Mは吐出ノズル203からキャビティに向けて吐出される。
 本実施形態では、射出工程中においても、繊維供給装置213によって加熱シリンダ201内に強化繊維Fを供給する。以下、この点において説明する。
 図2(b)の位置から、図2(c)の位置あるいは図3(a)の位置にまでスクリュ10は前進する。このとき、図2(b)に示す樹脂溶融領域のスクリュ10の溝内に、強化繊維Fは充填されていないが、従来、強化繊維Fは投入口であるベント孔206に取り付けられた原料ホッパ内で絡み合い易いため、スクリュ10の長手方向に並んでいるフライトがベント孔206を高速で断続的に通過してベント孔206を略封鎖する射出工程中は、強化繊維Fをスクリュ10内に充填できない。また、高速で通過するフライトの間を通ってスクリュ10の溝内に強化繊維Fが落下しても、スクリュ10の周囲には、溶融樹脂Mが付着しているため、図3(b)に示すように、繊維供給装置213から供給された強化繊維Fが溶融樹脂Mに貼り付いてしまう。供給された強化繊維Fはスクリュ10の上部に貼り付いたままで、スクリュ10の溝内を伝って下方に充填するのは困難である。あるいは、スクリュ回転による溶融樹脂Mの搬送ができずに、スクリュ10の溝内の溶融樹脂Mは重力によってスクリュ10の下方に垂れ落ちて加熱シリンダ201との間に溜まる。このため、供給された強化繊維Fは垂れ落ちた溶融樹脂Mに塞がれてスクリュ10の下方に充填するのは困難である。したがって、図2(b)に示した樹脂溶融領域のスクリュ10の溝内には強化繊維Fが十分充填されないままスクリュ10が前進し、射出工程中に樹脂溶融領域は繊維供給装置213を通過して、更に前方に達するため、図3(a)に示すように、加熱シリンダ201の下方の溶融樹脂Mには、強化繊維Fが含まれずに、射出工程が終了する。
 射出工程が終了して、次の成形サイクルのために可塑化ユニット200により可塑化を進めると、図3(c)に示すように、強化繊維Fを含まない部分Nが生じてしまう。
 なお、樹脂ペレットPを供給する領域では、この問題は生じない。当該領域は、樹脂ペレットPが溶融しておらず、かつ、スクリュ10の表面温度も樹脂ペレットPが溶融する温度よりも十分低いため、スクリュ10の周囲に溶融樹脂Mが存在しない(図2(b)の右側)。したがって、樹脂ペレットPは自重によりスクリュ10の溝内、特にスクリュ10の下方に流れ落ちることができる。
 これに対して、射出工程中に繊維供給装置213によって強化繊維Fをスクリュ内に供給すると、加熱シリンダ201の下方にも、強化繊維Fを送り届けることができる。つまり、スクリュ10のフライトが断続的にベント孔206を封鎖するものの、あるいは、スクリュ10の全周囲には溶融樹脂Mが付着しているものの、あるいは、溶融樹脂Mがスクリュ10の下方に溜まっているものの、繊維供給装置213から所定の量だけ供給される強化繊維Fがスクリュ10の溝内に充填されるので、スクリュ10の周囲に強化繊維Fを行き渡らせることができる。したがって、図2(d)に示すように、本実施形態によると、繊維供給装置213よりも前方の領域は、強化繊維Fを漏れなく含むことになる。なお、射出工程中の繊維供給装置213からの強化繊維Fの供給は、射出工程の全期間に亘って行うことが好ましいが、断続的に供給するなど、一部の期間だけ停止させてもよいし、供給速度を連続的あるいは段階的に変化させてもよい。また、安定して良品成形を行うことを容易にするために、繊維供給装置213からの供給のタイミングと供給量をタイマー(図示しない)や、スクリュ位置センサー、第1電動機209および第2電動機211に備えた回転エンコーダなどの各種センサーを用いて高精度に制御してもよい。
 また、強化繊維Fを加熱シリンダ201内に供給する繊維供給装置213は、スクリュ式あるいはピストン式などの計量フィーダーを用いることができる。この場合、加熱シリンダ201に繊維供給装置213を直接連結させ、加熱シリンダ201内に直接強化繊維Fを供給してもよいし、ベント孔206に繊維供給用ホッパ205を設けて、繊維供給装置213から強化繊維Fを繊維供給用ホッパ205に供給してもよい。
 計量フィーダーを加熱シリンダ201に直接連結する場合は、計量フィーダーによって強化繊維Fを強制的に加熱シリンダ201内に充填することができるので、ベント孔206内で強化繊維Fが絡み合ったとしても所定の供給量で、強化繊維Fをスクリュ10の溝内に充填できる。これにより、スクリュ10の溝内で溶融樹脂Mと混合する強化繊維Fの含有量(率)を任意にかつ容易に管理できる。
 スクリュ式計量フィーダーを用いる場合は、スクリュが1本の単軸型のフィーダーでもスクリュが複数本の複数軸型フィーダーを用いることができる。溶融樹脂Mへの混合率を所定の値にするために強化繊維Fを計量し安定して供給する搬送力が強く強化繊維Fとフィーダー間の滑りを抑制できる複数軸型フィーダーが好ましく、特に構造がシンプルな2軸型フィーダーがコスト的にも設計的にも制御的にも好ましい。
 そこで、本実施形態は、図1に示すように、2軸型スクリュフィーダー214を加熱シリンダ201に設け、強化繊維Fをスクリュ10の溝内に強制的に供給する。なお、加熱シリンダ201に直接連結する場合においても単軸型のスクリュフィーダーを用いても支障がないことは言うまでもない。
 また、2軸型スクリュフィーダー214への強化繊維Fの供給方法は、2軸型スクリュフィーダー214に連続繊維、いわゆるロービング繊維を直接投入してもよいし、予め所定長さに切断されたチョップド繊維を投入してもよい。
 チョップド繊維を投入する場合は、計量フィーダーの繊維投入口付近までロービング繊維で搬送し、繊維投入口付近でロービング繊維を切断した直後に上記の計量フィーダーに投入してもよい。これにより、飛散しやすいチョップド繊維を成形機投入まで暴露することがないので作業性を向上できる。
 本実施形態では、2軸型スクリュフィーダー214の繊維投入口付近に、ロービングカッター218を設ける。ロービングカッター218により、ロービング繊維を切断し、チョップド繊維にしてから2軸型スクリュフィーダー214に供給する。
 また、ロービングカッター218は、2軸型スクリュフィーダー214に向けて回転する回転式カッターのものを使用する。これにより、切断したチョップド繊維をカッターの回転力を利用して、ホッパなどの強化繊維Fの貯留部材を介することなく、直接2軸型スクリュフィーダー214のスクリュ溝内に投入できる。これにより、切断直後の絡み合いの少ない状態のままチョップド繊維を2軸型スクリュフィーダー214に投入できるので、2軸型スクリュフィーダー214に効率よくチョップド繊維を食い込ませて、2軸型スクリュフィーダー214から安定してスクリュ10の溝内にチョップド繊維を供給できる。
 なお、複数軸型のフィーダーにおいてスクリュ式の計量フィーダーを用いる場合は、スクリュのフライトと溝が互いに噛み合う、いわゆる、2軸押出成形機式のフィーダースクリュでも、隔壁により独立した、あるいは、隔壁が無いが互いに干渉することなく独立したフィーダースクリュでもよい。2軸押出成形機式のフィーダースクリュを用いる場合のスクリュの回転方向は、同方向でも異方向でもよい。
 また、図7(a)に示すように、単軸型スクリュフィーダー216をベント孔206に連通して設けて強化繊維Fを供給することもできる。単軸型スクリュフィーダー216によっても、強化繊維Fはスクリュ10の溝内に強制的に供給される。
 次に、上記のとおり強制的に強化繊維Fをスクリュ10の溝内に供給する場合において、2軸型スクリュフィーダー214あるいは単軸型スクリュフィーダー216から射出工程時に供給する強化繊維Fの供給量の決定の手法の一例を説明する。
 第1ステップとして、図示しないスクリュ位置センサーで検知したスクリュ10の位置変化情報から可塑化工程におけるスクリュ10の後退速度を算出する。
 第2ステップで、射出工程におけるスクリュの前進速度と第1ステップで算出したスクリュ10の後退速度との比を算出する。射出工程が複数段速度制御の場合は、各速度に対して第1ステップで算出した可塑化工程時のスクリュ10の後退速度との比を算出する。
 第3ステップで、第2ステップで算出した可塑化工程と射出工程のスクリュ10の比と、成形品が所望の繊維含有率となるように予め設定されている可塑化工程時に2軸型スクリュフィーダー214あるいは単軸型スクリュフィーダー216から供給される強化繊維Fの供給量あるいは供給速度を掛け合わせて、射出工程時に2軸型スクリュフィーダー214あるいは単軸型スクリュフィーダー216から供給する強化繊維Fの供給量あるいは供給速度の基準値を算出する。
 第4ステップで、第3ステップで算出した射出工程時に2軸型スクリュフィーダー214あるいは単軸型スクリュフィーダー216から供給する強化繊維Fの供給量あるいは供給速度の基準値に補正係数を掛け合わせて、2軸型スクリュフィーダー214あるいは単軸型スクリュフィーダー216から射出工程時に供給する強化繊維Fの供給量の運転条件値を決定する。射出工程が複数段速度制御の場合は、各速度に対して補正係数を掛け合わせて強化繊維Fの供給量の運転条件値を決定し、射出速度を切り替える毎にフィーダーからの強化繊維Fの供給量も切り替える。なお、上記の補正係数は理論的に求めても、実験に基づいて求めてもどちらでも良い。また、射出工程が複数段速度制御の場合は、補正係数を各速度に対してそれぞれ別個に設定しても良いし、同一値でも良い。
 また、2軸型スクリュフィーダー214あるいは単軸型スクリュフィーダー216から供給する強化繊維Fの供給量は、成形品内の強化繊維の含有分布バラツキを実験により求め、実験結果に基づき成形品内の強化繊維の含有分布バラツキが所望の含有率許容範囲に入るように、射出行程中に2軸型スクリュフィーダー214から強化繊維Fをスクリュ10に供給する供給量の運転条件値を決定してもよい。
 なお、2軸型スクリュフィーダー214あるいは単軸型スクリュフィーダー216から射出工程時に供給する強化繊維Fの供給量の決定手法は、本発明の主旨を逸脱しない限り、上記の決定手法を取捨選択したり、他の手法に適宜変更することが可能である。
 一方、繊維供給用ホッパ205を使用する場合は、繊維供給装置213として、例えば図7(b)に示すように、ベルトフィーダ217を用いることができる。ベルトフィーダ217の搬送速度を調節することにより、強化繊維Fを所定の量だけ繊維供給用ホッパ205に供給できる(図7(b))。
 ここで、繊維供給装置213から繊維供給用ホッパ205に強化繊維Fを供給する場合は、ベント孔206内で強化繊維Fが絡み合わない程度の供給量、具体的にはベント孔206を充満させない程度に強化繊維Fの供給量に制限することによって、ベント孔206内を閉塞させることなく、強化繊維Fをスクリュ10内に充填できる。これにより、強化繊維Fに負荷を与えることなく、スクリュ10の溝内に供給できるので、スクリュ10の溝内に投入する前の繊維折損を抑制できる。
[第2実施形態]
本実施形態は、第1実施形態の射出成形機1を用いて、更に強化繊維Fの供給を円滑に行なうために、射出工程の間、スクリュ10を逆転させる。第1実施形態と異なる点を中心に説明する。
 従来、射出工程の間はスクリュ10の回転を停止させていた。ところが、これでは強化繊維Fを円滑に供給できない場合がある。つまり、第1実施形態で示した繊維供給装置213を用いても、繊維供給装置213の供給力が小さい場合などは、スクリュ10の溝内の樹脂抵抗を乗り越えられず、射出工程の間、強化繊維Fはスクリュ10の下方に充填することができない。
 これに対して、射出工程中にスクリュ10を逆転させる本実施形態によると、図4(a)に示すように、スクリュ10を逆転させることで、溶融樹脂Mに貼り付いた強化繊維Fもスクリュ10の溝内に押込まれながら、加熱シリンダ201の下方に向けて搬送される。あるいは、スクリュ10の下方に溜まった溶融樹脂Mがスクリュ10を回転させることで、スクリュ10の溝内を搬送されスクリュ10の下方の溝内に強化繊維Fの入り込める隙間を発生させることができる。よって、スクリュ10を前進させながら逆転させることで、スクリュ10の周囲に強化繊維Fを行き渡らせることができる。この間、強化繊維Fを溶融樹脂Mに混錬させているということもできる。したがって、本実施形態によると、繊維供給装置213よりも前方の領域は、強化繊維Fを漏れなく含むことになる。なお、射出工程中のスクリュ10の回転は、射出工程の全期間に亘って行うことが好ましいが、断続的に逆転するなど、一部の期間だけ停止させてもよいし、逆転と正転を交互に切り替えたり、回転速度を連続的あるいは段階的に変化させてもよい。また、安定して良品成形を行うことを容易にするために、スクリュ10の逆転は、回転のタイミングと速度を図示しないタイマーや、スクリュ位置センサー、第1電動機209および第2電動機211に備えた回転エンコーダなどの各種センサーを用いて高精度に制御してもよい。
 スクリュ10を逆転させる好ましい条件は以下の通りである。なお、好ましい条件を実現するには、制御部50が、スクリュ10を前進又は後退させる第1電動機209と、スクリュ10を正転又は逆転させる第2電動機211と、を同期して制御すればよい。
 スクリュ10を逆転させる場合、スクリュ10を前進させる速度(前進速度)をV1、スクリュ10を逆転させる速度(回転速度)をV2とする。また、スクリュ10のフライト11のリード角をθ1とする。この場合、図4(b)に示すように、前進速度V1と回転速度V2から規定されるスクリュ溝の進行速度V3のなす角度θ2をリード角θ1と一致させることが好ましい。この条件を満足すれば、繊維供給装置213から強化繊維Fが供給されるベント孔206に対するフライト11の相対的な位置(あるいはベント孔206から見えるフライト11の位置)を一定にすることができる。そうすれば、強化繊維Fをスクリュ10の溝にむらなく連続的に押込むことができる。
 前進速度V1と回転速度V2は以下により特定することができる一方、リード角θ1は既知であるから、前進速度V1と回転速度V2を調整することにより、好ましい条件を設定できる。
  D=スクリュ10の外径(mm)
 aD=スクリュ10のフライト11のリード(mm)
 nD=射出ストローク(mm)
 射出時間=t(sec)
 上記のようにすると、tanθ1=aD/πD、tanθ2=V1/V2と表されるので、θ1=θ2となる逆転速度V20は、V20=πV1/aとなる。
 他の好ましい条件として、可塑化工程時のスクリュ溝の進行速度をV4とすると、スクリュ溝の進行速度V3を、大きさは進行速度V4と同じにするが、向きを逆(180°反転)にしてもよい。そうすれば、可塑化工程でスクリュ溝に供給されたのと等量の強化繊維Fを供給できる。
 また、高速で前進する射出工程において、スクリュ10の前進速度V1と回転速度V2をθ1=θ2となるように制御することは電動サーボモータによる駆動など、高精度な駆動制御系を必要とする。しかし、油圧駆動など高精度な駆動制御系を有しない射出成形機においては、ベント孔206の投影領域にある、つまりベント孔206から見える、スクリュ10のフライト11が射出工程中にフライト11の1リード長分を超えて移動しないように、スクリュ10の逆転速度で回転制御してもよい。
 スクリュ10を逆転してベント孔206から見えるスクリュ10のフライト11が射出工程中にフライト11の1リード長分を超えて移動しないようにするスクリュ10の逆回転速度は、下記の通り求めることができる。
 スクリュ10が前進速度V1でフライト11の1リード分前進する時間t0は、t0=aD/V1と表される。
 時間t0の間にベント孔206から見えるスクリュ10のフライト11の位置が変わらないように見える逆転速度は、時間t0の間にスクリュが1周する速度である。そして、これは、θ1=θ2となる速度でありV20である。
 時間t0の間にスクリュ10が2周すれば、ベント孔206から見えるスクリュ10のフライト11が射出工程中にフライト11の1リード長分だけ後方に移動するように見える。
 よって、時間t0の間にスクリュが2周する逆転速度V21は、V21=2×V20と表される。
 また、時間t0の間にスクリュ10が半周しかしなければ、ベント孔206から見えるスクリュ10のフライト11が射出工程中にフライト11の1リード長分だけ前方に移動するように見える。
 よって、時間t0の間にスクリュ10が半周する逆転速度V22は、V22=V20/2と表すことができる。
 したがって、ベント孔206から見えるスクリュ10のフライト11が射出工程中にフライト11の移動量が1リード長分以下であるように見える、スクリュ10の逆転速度範囲は、時間t0の間にスクリュが半周する逆転速度以上で、かつ、時間t0の間にスクリュ10が2周する逆転速度以下になる。
 そうすると、ベント孔206から見えるスクリュ10のフライト11の、射出工程中の移動量が1リード長分以下となる、スクリュ10の回転速度V2の範囲は、V21=V20/2≦V2≦V22=2×V20である。
 したがって、πV1/2a≦V2≦2πV1/aの範囲で運転することで、ベント孔206の下を通過するスクリュ溝を、連続した溝としてベント孔206に対向させることできるので、強化繊維Fが充填されない領域の発生を防止あるいは抑制できる。
 また、ベント孔206に真空ポンプなどの負圧発生装置を連通させてベント孔206内部を負圧とすれば、強化繊維Fと共にシリンダ内部に入り込んだ外気、または樹脂および樹脂の添加剤からの揮発するガスをシリンダの外部に排出できるので、シルバーやボイド、および樹脂の酸化劣化による黒点異物などの成形不良や金型の汚れを防止することが出来る。また、強化繊維Fと共にシリンダ内部に入り込んだ外気、または樹脂および樹脂の添加剤からの揮発するガスをシリンダの外部に排出するために、強化繊維Fを供給するためのベント孔206よりも前方に、更にシリンダ外周面から内周面に至る貫通孔を設けてもよい。
[第3実施形態]
 本実施形態では、射出成形機2において、可塑化工程中に、繊維含有量Cの計測を行なう。
 本実施形態に係る射出成形機2は、第1実施形態および第2実施形態の射出成型機1の要素に、さらに、計測ユニット300(図5)を備える。なお、この計測ユニット300の動作は制御部50で制御することができる。
 射出成型機2における可塑化工程および射出工程は、第1実施形態および第2実施形態と同様であるため、第1実施形態および第2実施形態と相違する点を中心に説明する。
 計測ユニット300は、図5に示すように、吐出ノズル203に至る溶融樹脂に含まれる強化繊維の量(繊維含有量)を計測するのに用いられる。計測ユニット300は、可塑化ユニット200の吐出ノズル203の近傍に設けられる。
 計測ユニット300は、吐出ノズル203内の吐出通路204から分岐した分岐通路301と、分岐通路301上に設けられる開閉弁321と、分岐通路301を流れてきた溶融樹脂を一時的に貯える樹脂溜まり305と、樹脂溜まり305に貯えられる溶融樹脂の温度、圧力を計測する温度計307、圧力計309と、樹脂溜まり305に貯えられる溶融樹脂に圧力を付与するアクチュエータ311と、を備えている。なお、計測ユニット300の具体的な形態は上述したものに限るものではなく、溶融樹脂Mの圧力P1を測定できるのであれば、他の形態を採用しても支障ない。
 吐出通路204には、分岐通路301の分岐部分よりも溶融樹脂が流れる向きの下流に開閉弁322が設けられている。また、樹脂溜まり305には戻り通路315の一端が接続されており、戻り通路315の他端は、吐出ノズル203の吐出通路204に接続される。戻り通路315の他端は、開閉弁322よりも下流において吐出通路204に接続される。戻り通路315には、開閉弁323が設けられている。戻り通路315のうちで、樹脂溜まりブロック306の内部の部分は絞り316を構成する。
 計測ユニット300の開閉弁321,322及び323、並びに、温度計307及び圧力計309は制御部50に接続されている。
 制御部50は、当該計測の要・否に応じて開閉弁321,322及び323に対して開・閉の指令信号を送る。開閉弁321,322及び323の開・閉を制御することで、溶融樹脂Mを計測ユニット300の分岐通路301を介して樹脂溜まり305に引き込む。引き込まれた溶融樹脂Mの温度、圧力を温度計307及び圧力計309で計測すると、計測された温度、圧力に関する情報は制御部50に送信される。制御部50は、取得した温度、圧力に関する情報に基づいて、繊維含有量を求める。
 繊維含有量が求められると、樹脂溜まり305に貯えられていた溶融樹脂は、戻り通路315を通って、吐出通路204に戻される。
 繊維含有量は、溶融樹脂の粘度に基づいて、例えば以下のようにして求めることができる。
 溶融樹脂の繊維含有量Cと当該樹脂の粘度ηとは比例関係にある。
 一方、粘度ηは、下記の式(1)により求めることができる。なお、式(1)において、圧力P1を除き、V、L、R及びRcは既知の値であるから、圧力P1を計測すれば、当該溶融樹脂Mの粘度ηを求めることができる。なお、速度Vは一定速とされる。
 粘度η=(P1/V・L)×(R/Rc) … (1)
 P1:樹脂溜まり305における溶融樹脂の圧力(Pa)
 V:アクチュエータ311の押込み速度V(mm/sec)
 L:絞り316の長さ(mm)
 Rc:樹脂溜まり305の半径(mm)
 R:絞り316の半径(mm)
 したがって、射出成形に供される樹脂における繊維含有量と粘度ηの関係を予め把握しておき、計測ユニット300を用いて粘度ηを計測すれば、計測された溶融樹脂の繊維含有量Cを特定することができる。
 そのためには、例えば、図6(b)に示す繊維含有量Cと粘度ηを対応付けた情報(含有量-粘度情報)を実験的に求め、この含有量-粘度情報を制御部50にデータベースとして記憶しておく。
 制御部50は、圧力計309で計測された圧力P1を取得すると、自己のデータベースに記憶されている含有量-粘度情報と照合することで、繊維含有量Cを求めることができる。
 図6(b)には、例として、3種類の含有量-粘度情報を示している。含有量-粘度情報は、樹脂の物性及び強化繊維の物性により変動しうるものであるため、樹脂(A,B,C)及び繊維(d,e,f)の組み合わせに応じた含有量-粘度情報が設定される。
 粘度ηは、当該樹脂の温度によっても変動する。したがって、含有量-粘度情報は温度が特定されるべきであり、制御部50はこの温度(計測温度T)に関する情報を、含有量-粘度情報とともに記憶している。一方、計測ユニット300は、樹脂溜まり305に貯められる溶融樹脂を計測温度Tに維持するために、樹脂溜まり305の周囲に加熱ヒータ317を設けている。制御部50は、温度計307から取得した温度情報を計測温度Tと照合し、必要に応じて加熱ヒータ317による溶融樹脂の加熱を調整する。
 続いて、繊維含有量Cの計測の手順について説明する。
 繊維含有量Cの計測を行なわないときには、図5(a)に示すように、計測ユニット300は、開閉弁321~323が以下のように開閉が制御されている。したがって、溶融樹脂Mは、樹脂溜まり305にはたまらない。
[非計測時]
 開閉弁321:開(ON)
 開閉弁322:閉(OFF)
 開閉弁323:閉(OFF)
 計測を行なうときには、図5(b)に示すように、計測ユニット300は、開閉弁321~323を以下のように開閉が制御される。
[計測時]
 開閉弁321:閉(OFF)
 開閉弁322:開(ON)
 開閉弁323:閉(OFF)
 開閉弁321~323をこのように制御することで、吐出通路204から溶融樹脂Mは、分岐通路301を通って樹脂溜まり305に流れこむ。樹脂溜まり305に所定量の溶融樹脂Mが充填されたならば、アクチュエータ311を一定の速度Vで動作させて、樹脂溜まり305の溶融樹脂Mに圧力を加える。アクチュエータ311の動作と同時に、開閉弁323を開き、樹脂溜まり305から溶融樹脂Mを押し出す。この過程で圧力計309により計測された圧力P1を制御部50が取得し、制御部50は、前述したように、圧力P1を記憶するとともに、繊維含有量Cを求める。押し出された溶融樹脂Mは戻り通路315を通って、吐出通路204に戻される。以後、図5(a)に示すように、開閉弁321を開き、また、開閉弁322を閉じることで、射出工程への移行準備が整う。
 射出工程が終了したならば、保持工程、成形品取り出し工程を経て、次の射出成形サイクルが行なわれる。次のサイクル以降においても、可塑化工程における圧力(繊維含有量)の計測、射出工程においてスクリュ10の逆転を同様に行う。
 制御部50は、サイクル毎に圧力P1を記憶しておくとともに、図6(a)に示す圧力管理情報と比較する。制御部50は、取得する圧力P1が圧力管理情報から外れないように、繊維供給装置213に強化繊維Fの供給量の調整を指示する。圧力管理情報は、管理値上限と管理値下限を含んでおり、圧力P1が管理値上限または管理値下限に近づくと、次の射出成形サイクルにおいてはそれに対応して、強化繊維Fの供給量を減らすかまたは増やす。これにより、溶融樹脂Mの繊維含有量Cを成形運転中に監視し、所定の範囲内となるように成形サイクル毎に制御できるので、成形品の品質バラツキを低減することができる。
 以上、本発明を実施形態に基づいて説明したが、本発明の主旨を逸脱しない限り、上記実施の形態で挙げた構成を取捨選択したり、他の構成に適宜変更することが可能である。
 例えば、射出工程時のスクリュの回転は、逆転に限らず正転であっても、スクリュ下方に位置する溝領域をベント孔206に対向する位置に位相置換させることができる。したがって、上記の実施形態と同様の強化繊維Fが充填されていない領域を低減できる効果を得ることができる。
 ところで、射出工程時に逆転する場合は、スクリュ10の逆転によりスクリュ10の先端部の溝内の溶融樹脂Mが後部側に逆流搬送されることになり、スクリュ10の先端部の溶融樹脂Mの圧力が低下する。このとき、樹脂の種類や逆転の条件によっては、溶融樹脂M中に気泡が発生し成形品表面に現れて成形不良となる場合がある。しかし、射出工程時にスクリュ10を正転させる場合は、スクリュ10の先端部の圧力を低下させることなく、ベント孔206下部のスクリュ10の溝内に強化繊維Fを充填できる効果も得ることができる。
 なお、このスクリュ10の正転に伴うスクリュ10の先端部の溶融樹脂Mの圧力上昇によって、スクリュ10の先端部に備えられた図示しない逆流防止弁の閉鎖が遅れる場合は、正転開始をスクリュ10の前進開始から遅延することが有効であると考える。スクリュ10の正転開始の遅延制御としては、タイマーのタイムアップやスクリュ10の前進量の所定値への到達や射出のための電動モータトルクや油圧力の所定値への到達を検知するなどが考えられる。
 本実施形態の可塑化ユニット200は、繊維供給装置213及び樹脂供給ホッパ207を加熱シリンダ201に対して固定させているが、スクリュ10の軸方向に移動する可動式のホッパにすることができる。特に繊維供給装置213に複数軸型の計量フィーダーを用いた場合は、スクリュ10の長手方向に複数のフィーダーを平行に連結配置し、可塑化工程において強化繊維Fを供給するフィーダーを切り替えて使用してもよい。具体的には可塑化工程開始時は、スクリュ10の先端側に配置したフィーダーから強化繊維Fを供給し、可塑化工程においてスクリュ10が後退するのに伴い、スクリュ10と繊維が吐出してくるフィーダースクリュの相対位置が変化しないように、強化繊維Fを供給するフィーダーを後方側に順々に切り替えていってもよい。これによって、スクリュ10の後退および射出時のスクリュ10の前進による、加熱シリンダ201とスクリュ10の相対位置の変化にかかわらず、スクリュ10に対する強化繊維Fの供給位置を一定とすることができる。具体的には、可塑化が完了したときの繊維供給フィーダースクリュの位置、つまり、強化繊維Fが充填されている最後部のスクリュ溝の位置を、射出により前進したスクリュ位置において、次の可塑化開始時の繊維供給フィーダースクリュの位置と一致させることができるので、繊維供給装置213より前方のスクリュ溝に連続して強化繊維Fを供給でき、繊維供給装置213より前方のスクリュ10の溝内で強化繊維Fが充填されていない領域の発生の防止あるいは抑制に有効である。また、フィーダースクリュの切り替え方は、単なるON/OFF制御でも良いし、隣り合うスクリュフィーダーの回転数を連携して変化させてもよい。具体的にはスクリュの後退に伴い前方側のスクリュフィーダーの回転数を徐々に低下させるとともに後方側のスクリュフィーダーの回転数を徐々に増加させてもよい。
 また、本実施形態において、スクリュ10を2ステージタイプの形状で示したが、樹脂供給ホッパ207からの樹脂ペレットPの供給量を制限することで、樹脂供給ホッパ207からスクリュ10内を搬送された溶融樹脂Mあるいは未溶融状態の樹脂を含む半溶融樹脂が繊維供給装置213に達したときに、スクリュ10の溝内に強化繊維Fを充填できる空隙を設けることができる場合は、1ステージタイプのスクリュ形状を用いてもよい。また、スクリュ10の先端部にミキシングを設けた図を示しているが、強化繊維Fが解繊しやすい場合は、ミキシングを設けなくてもよい。
 また、本発明に適用される樹脂、強化繊維は、特に限定されるものでなく、ポリプロピレンやポリエチレンなどの汎用樹脂や、ポリアミドやポリカーボネートなどのエンジニアリングプラスチックなどの公知の樹脂、およびガラス繊維、炭素繊維、竹繊維、麻繊維などの公知の強化繊維など、公知の材質を広く包含している。
1,2 射出成型機
10  スクリュ
11  フライト
21  第1ステージ
22  第2ステージ
23,25 供給部
24,26 圧縮部
100 型締ユニット
103 固定金型
105 固定ダイプレート
107 摺動部材
109 可動金型
111 可動ダイプレート
200 可塑化ユニット
201 加熱シリンダ
203 吐出ノズル
205 繊維供給用ホッパ
206 ベント孔
207 樹脂供給ホッパ
213 繊維供給装置
214 2軸型スクリュフィーダー
215 ペレット供給装置
216 単軸型スクリュフィーダー
217 ベルトフィーダ
218 ロービングカッター
311 アクチュエータ
317 加熱ヒータ
F   強化繊維
M   溶融樹脂
P   樹脂ペレット
V1  前進速度
V2  回転速度
V3,V4 進行速度

Claims (10)

  1.  前方側に吐出ノズルが形成されたシリンダと、前記シリンダの内部に回転可能に設けられた単軸のスクリュと、強化繊維を前記シリンダ内に充填する繊維供給装置と、を備え、
     前記強化繊維と樹脂原料を個別に、かつ、前記強化繊維を前記樹脂原料よりも前方側から供給しながら射出成形する方法であって、
     前記スクリュを正転させながら後退させることで、前記樹脂原料を溶融するとともに、溶融された前記樹脂原料に前記強化繊維を混錬して、所定量の混錬物を得る可塑化工程と、
     前記スクリュを前進させることで前記混錬物を前記吐出ノズルから吐出させる射出工程と、を備え、
     前記射出工程において、前記強化繊維を前記シリンダ内に供給することを特徴とする射出成形方法。
  2.  前記射出工程において、前記スクリュを正転又は逆転させる、
     ことを特徴とする請求項1に記載の射出成形方法。
  3.  前記強化繊維を前記樹脂原料よりも前方側から供給するために、前記シリンダの胴部に外周面から内周面に貫通したベント孔を備え、
     前記射出工程において、
     前記ベント孔の投影領域における前記スクリュの前記フライトの移動が、
     前記フライトの1リード長分以下となるように、前記スクリュの逆転速度を設定する、
    ことを特徴とする請求項2に記載の射出成形方法。
  4.  前記射出工程において、
     前記スクリュが前記逆転されることに基づくスクリュ溝の進行速度の角度θ2を、
     前記スクリュのフライトのリード角θ1に一致させるように、前記スクリュの後退速度及び前記スクリュの逆転速度を設定する、
     ことを特徴とする請求項2又は3に記載の射出成形方法。
  5.  前記射出工程において、
     前記可塑化工程における前記スクリュの回転速度と同じ条件で、前記スクリュを逆転させる、
     ことを特徴とする請求項2に記載の射出成形方法。
  6.  前方側に吐出ノズルが形成されたシリンダと、前記シリンダの内部に回転可能に設けられた単軸のスクリュと、強化繊維をシリンダ内に充填する繊維供給装置と、前記繊維供給装置よりも後方側に設けられ、樹脂原料を前記シリンダ内に供給する樹脂供給ホッパと、を備える射出成形装置であって、
     前記スクリュを正転させながら後退させることで、前記樹脂原料を溶融するとともに、溶融された前記樹脂原料に前記強化繊維を混錬して、所定量の混錬物を得る可塑化工程と、
     前記スクリュを前進させることで前記混錬物を前記吐出ノズルから吐出させる射出工程と、を行い、
     前記射出工程において、前記強化繊維を前記シリンダ内に供給される、
     ことを特徴とする射出成形装置。
  7.  前記射出工程において、前記スクリュを正転または逆転させる、
     ことを特徴とする請求項6に記載の射出成形装置。
  8.  前記強化繊維を前記樹脂原料よりも前方側から供給するために、前記シリンダは胴部に外周面から内周面に貫通したベント孔を備え、
     前記射出工程において、
     前記ベント孔の投影領域における前記スクリュのフライトの移動が、前記フライトの1リード長分以下となるように、前記スクリュの逆転速度を設定する、
     ことを特徴とする請求項7に記載の射出成形装置。
  9.  前記射出工程において、
     前記スクリュが前記逆転されることに基づくスクリュ溝の進行速度の角度θ2を、
     前記スクリュのフライトのリード角θ1に一致させるように、前記スクリュの後退速度及び前記スクリュの逆転速度を設定する、
     ことを特徴とする請求項7又は8に記載の射出成形装置。
  10.  前記射出工程において、
     前記可塑化工程における前記スクリュの回転速度と同じ条件で、前記スクリュを逆転させる、
    ことを特徴とする請求項7に記載の射出成形装置。
PCT/JP2013/001998 2013-03-25 2013-03-25 射出成形方法、及び、射出成形装置 WO2014155409A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2013/001998 WO2014155409A1 (ja) 2013-03-25 2013-03-25 射出成形方法、及び、射出成形装置
CN201380063795.4A CN104870160B (zh) 2013-03-25 2013-03-25 注射成型方法以及注射成型装置
US14/758,518 US9821498B2 (en) 2013-03-25 2013-03-25 Injection molding method and injection molding device
EP13880290.5A EP2979837B1 (en) 2013-03-25 2013-03-25 Injection molding method
JP2015507669A JP5894336B2 (ja) 2013-03-25 2013-03-25 射出成形方法、及び、射出成形装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/001998 WO2014155409A1 (ja) 2013-03-25 2013-03-25 射出成形方法、及び、射出成形装置

Publications (1)

Publication Number Publication Date
WO2014155409A1 true WO2014155409A1 (ja) 2014-10-02

Family

ID=51622513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001998 WO2014155409A1 (ja) 2013-03-25 2013-03-25 射出成形方法、及び、射出成形装置

Country Status (5)

Country Link
US (1) US9821498B2 (ja)
EP (1) EP2979837B1 (ja)
JP (1) JP5894336B2 (ja)
CN (1) CN104870160B (ja)
WO (1) WO2014155409A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016147494A (ja) * 2014-11-25 2016-08-18 三菱重工プラスチックテクノロジー株式会社 射出成形方法、及び、強化繊維の開繊方法
CN105934321A (zh) * 2014-11-14 2016-09-07 三菱重工塑胶科技股份有限公司 注塑成形方法以及注塑成形机
CN106564171A (zh) * 2016-11-03 2017-04-19 广州天沅硅胶机械科技有限公司 一种螺杆炮筒
EP3269523A4 (en) * 2015-04-22 2018-10-24 Toyo Machinery & Metal Co. Ltd. Plasticizing unit
WO2019189300A1 (ja) 2018-03-28 2019-10-03 三井化学株式会社 高充填繊維強化樹脂組成物からなる射出成形体の製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5948478B2 (ja) * 2014-09-12 2016-07-06 東芝機械株式会社 可塑化装置、射出装置、成形装置、及び成形品の製造方法
ES2830756T3 (es) * 2015-03-12 2021-06-04 Husky Injection Molding Systems Ltd Molde de inyección que presenta un dispositivo de cierre de tapa en el molde
CN105965755B (zh) * 2016-04-25 2019-05-31 宁波双马机械工业有限公司 一种碳纤维成型工艺
CN105711044B (zh) * 2016-04-25 2018-12-28 宁波双马机械工业有限公司 一种配混结构及具有该结构的注塑设备
US10856203B2 (en) * 2017-01-19 2020-12-01 Qualcomm Incorporated Signaling for link aggregation setup and reconfiguration
CN106873536A (zh) * 2017-04-24 2017-06-20 深圳华数机器人有限公司 模内镶件取放料机器人控制***及方法
EP3446853B1 (en) * 2017-08-24 2020-12-16 Seiko Epson Corporation Shaping material supply device and three-dimensional shaping apparatus
DE102017123721A1 (de) * 2017-10-12 2019-04-18 Kraussmaffei Technologies Gmbh Verfahren zur Herstellung von faserverstärkten Kunststoff-Formteilen
DE102017126946A1 (de) * 2017-11-16 2019-05-16 Kraussmaffei Technologies Gmbh Verfahren zur Herstellung von Kunststoff-Formteilen
EP3774251B1 (en) 2018-03-30 2023-09-06 Toyota Motor Europe Conveying system and compounding system comprising the same
DE102018118883B3 (de) * 2018-08-03 2020-01-16 Kraussmaffei Technologies Gmbh Verfahren und Vorrichtung zur Herstellung eines faserverstärkten Plastifikats und Verwendung der Vorrichtung zur additiven Fertigung
DE102019115122A1 (de) * 2019-06-05 2020-12-10 Kraussmaffei Technologies Gmbh Verfahren zum Überwachen eines Füllstandes einer Zuführvorrichtung sowie Vorrichtung zum Durchführen des Verfahrens und Spritzgießmaschine/Extrudereinheit aufweisend eine solche Vorrichtung
CN112123676B (zh) * 2020-08-14 2022-07-05 苏州呈润电子有限公司 一种防开裂型嵌入式注塑装置及其加工工艺
JP2022154934A (ja) * 2021-03-30 2022-10-13 トヨタ自動車株式会社 射出成形機、積層造形装置及び圧力制御方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176540A (ja) * 1987-12-29 1989-07-12 Meiki Co Ltd 射出成形機
JPH02153714A (ja) * 1988-12-06 1990-06-13 Toyo Mach & Metal Co Ltd 射出成形装置
JPH0376614A (ja) 1989-08-21 1991-04-02 Sumitomo Chem Co Ltd 繊維強化熱可塑性樹脂成形品の製造方法
JPH04156320A (ja) * 1990-10-19 1992-05-28 Nissei Plastics Ind Co 射出成形方法
JPH08103921A (ja) * 1994-10-05 1996-04-23 Nissei Plastics Ind Co 脆性材入成形品の成形方法
JPH1071630A (ja) * 1996-08-30 1998-03-17 Nissei Plastics Ind Co 射出成形機
JP2012056173A (ja) 2010-09-08 2012-03-22 Toyota Motor Corp 繊維強化樹脂材の製造方法
JP2012511445A (ja) * 2008-12-10 2012-05-24 カイナート、レナーテ 塑性化可能な材料および繊維状添加材から成形品を製造する装置および製造方法
JP5095025B1 (ja) * 2012-04-27 2012-12-12 株式会社名機製作所 可塑化装置および可塑化方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4119044B2 (ja) * 1999-06-30 2008-07-16 株式会社日本製鋼所 熱可塑性樹脂発泡体の成形方法
JP3314053B2 (ja) * 1999-07-23 2002-08-12 住友重機械工業株式会社 射出装置
US7291297B2 (en) 2004-01-23 2007-11-06 Husky Injection Molding Systems Ltd. Injection molding method and apparatus for continuous plastication
DE102007020612B4 (de) * 2007-04-30 2010-07-29 Hähnle, Klaus Verfahren zum Betrieb einer Spritzgießmaschine sowie Steuereinheit hierfür

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176540A (ja) * 1987-12-29 1989-07-12 Meiki Co Ltd 射出成形機
JPH02153714A (ja) * 1988-12-06 1990-06-13 Toyo Mach & Metal Co Ltd 射出成形装置
JPH0376614A (ja) 1989-08-21 1991-04-02 Sumitomo Chem Co Ltd 繊維強化熱可塑性樹脂成形品の製造方法
JPH04156320A (ja) * 1990-10-19 1992-05-28 Nissei Plastics Ind Co 射出成形方法
JPH08103921A (ja) * 1994-10-05 1996-04-23 Nissei Plastics Ind Co 脆性材入成形品の成形方法
JPH1071630A (ja) * 1996-08-30 1998-03-17 Nissei Plastics Ind Co 射出成形機
JP2012511445A (ja) * 2008-12-10 2012-05-24 カイナート、レナーテ 塑性化可能な材料および繊維状添加材から成形品を製造する装置および製造方法
JP2012056173A (ja) 2010-09-08 2012-03-22 Toyota Motor Corp 繊維強化樹脂材の製造方法
JP5095025B1 (ja) * 2012-04-27 2012-12-12 株式会社名機製作所 可塑化装置および可塑化方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105934321A (zh) * 2014-11-14 2016-09-07 三菱重工塑胶科技股份有限公司 注塑成形方法以及注塑成形机
US10464246B2 (en) 2014-11-14 2019-11-05 U-Mhi Platech Co., Ltd. Injection molding method
JP2016147494A (ja) * 2014-11-25 2016-08-18 三菱重工プラスチックテクノロジー株式会社 射出成形方法、及び、強化繊維の開繊方法
EP3269523A4 (en) * 2015-04-22 2018-10-24 Toyo Machinery & Metal Co. Ltd. Plasticizing unit
US10780607B2 (en) 2015-04-22 2020-09-22 Toyo Machinery & Metal Co., Ltd. Plasticizing unit supplying a prescribed amount of fiber material pieces to heating cylinder using a vacuum or blower fiber transfer device
CN106564171A (zh) * 2016-11-03 2017-04-19 广州天沅硅胶机械科技有限公司 一种螺杆炮筒
CN106564171B (zh) * 2016-11-03 2018-12-25 广州天沅硅胶机械科技有限公司 一种螺杆炮筒
WO2019189300A1 (ja) 2018-03-28 2019-10-03 三井化学株式会社 高充填繊維強化樹脂組成物からなる射出成形体の製造方法

Also Published As

Publication number Publication date
US20160001477A1 (en) 2016-01-07
JP5894336B2 (ja) 2016-03-30
JPWO2014155409A1 (ja) 2017-02-16
EP2979837B1 (en) 2018-04-25
EP2979837A4 (en) 2016-11-30
EP2979837A1 (en) 2016-02-03
US9821498B2 (en) 2017-11-21
CN104870160A (zh) 2015-08-26
CN104870160B (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
JP5894336B2 (ja) 射出成形方法、及び、射出成形装置
JP6122979B2 (ja) 射出成形装置、及び、射出成形方法
US5773042A (en) Injection molding unit for long fiber-reinforced thermoplastic resin
JP5940740B1 (ja) 射出成形方法、及び、射出成形機
WO2016075846A1 (ja) 射出成形方法、及び、射出成形機
EP2735418B1 (en) Injection molding machine and raw material metering unit
JP5889493B1 (ja) 射出成形機及び射出成形方法
US10486351B2 (en) Screw, injection molding machine, and injection molding method
JP2013208866A (ja) 可塑化装置、射出装置、射出成形装置、押出機、及び成形品の製造方法
JP5913251B2 (ja) 繊維強化樹脂の射出成形装置および射出成形方法
CN1822942B (zh) 成形方法、清理方法以及成形机
JP5932159B1 (ja) 射出成形方法、射出成形機のスクリュ及び射出成形機
JP3608856B2 (ja) 長繊維強化熱可塑性樹脂の射出成形方法及び射出成形装置
JP2014184702A (ja) 射出成形方法、及び、射出成形装置
JP5889358B2 (ja) 射出成形機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015507669

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013880290

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14758518

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE