WO2014154125A1 - 一种实现源漏栅非对称自对准的射频功率器件及制造方法 - Google Patents

一种实现源漏栅非对称自对准的射频功率器件及制造方法 Download PDF

Info

Publication number
WO2014154125A1
WO2014154125A1 PCT/CN2014/074011 CN2014074011W WO2014154125A1 WO 2014154125 A1 WO2014154125 A1 WO 2014154125A1 CN 2014074011 W CN2014074011 W CN 2014074011W WO 2014154125 A1 WO2014154125 A1 WO 2014154125A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate
drain
source
gallium nitride
layer
Prior art date
Application number
PCT/CN2014/074011
Other languages
English (en)
French (fr)
Inventor
王鹏飞
刘晓勇
张卫
孙清清
周鹏
Original Assignee
复旦大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201310098145.5A external-priority patent/CN103219376B/zh
Priority claimed from CN201310098164.8A external-priority patent/CN103219377B/zh
Priority claimed from CN201310098173.7A external-priority patent/CN103219378B/zh
Application filed by 复旦大学 filed Critical 复旦大学
Priority to US14/651,992 priority Critical patent/US20160013304A1/en
Publication of WO2014154125A1 publication Critical patent/WO2014154125A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30612Etching of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3081Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66522Unipolar field-effect transistors with an insulated gate, i.e. MISFET with an active layer made of a group 13/15 material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41758Source or drain electrodes for field effect devices for lateral devices with structured layout for source or drain region, i.e. the source or drain region having cellular, interdigitated or ring structure or being curved or angular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds

Definitions

  • Radio frequency power device for realizing source-drain gate asymmetric self-alignment and manufacturing method thereof
  • the invention belongs to the field of radio frequency power devices, and particularly relates to an RF power device and a manufacturing method for realizing asymmetric self-alignment of a source-drain gate. Background technique
  • High Electron Mobility Transistors are widely regarded as one of the most promising high-speed electronic devices. Due to its ultra-high speed, low power consumption and low noise (especially at low temperatures), it can greatly meet the special needs of ultra-high-speed computers and signal processing, satellite communications, etc. Therefore, HEMT devices have received extensive attention. As a new generation of microwave and millimeter wave devices, HEMT devices offer unparalleled advantages in terms of frequency, gain and efficiency. After more than 10 years of development, HEMT devices have excellent microwave and millimeter wave characteristics, and have become the main components of microwave millimeter wave low noise amplifiers in the field of satellite communication, radio astronomy and other fields from 2 to 100 GHz. At the same time, HEMT devices are also used to fabricate the core components of microwave mixers, oscillators and broadband traveling wave amplifiers.
  • the manufacturing process mainly includes: First, manufacturing source and drain electrodes. Photolithography ohmic contact window, electron beam evaporation to form a multilayer electrode structure, stripping process to form source and drain contacts, using rapid thermal annealing (RTA) equipment, forming a good source under 900 °C: 30 Sec argon protection , leakage ohmic contact.
  • RTA rapid thermal annealing
  • the area to be etched is then photolithographically patterned and a step of etching is performed using a reactive ion beam etching (RIE) device.
  • RIE reactive ion beam etching
  • the Schottky barrier gate metal is formed by photolithography, electron beam evaporation, and lift-off processes.
  • this method of the back gate process is difficult to achieve precise alignment of the gate and source and drain positions of the HEMT device, resulting in drift of product parameters. Disclosure of invention
  • the object of the present invention is to provide an RF power device for realizing a source-drain gate asymmetric self-alignment and a manufacturing method thereof, so as to realize self-alignment of the gate, source and drain positions of the RF power device, and reduce product parameters. Drift, enhancing the electrical performance of RF power devices.
  • the invention provides an RF power device for realizing a source-drain gate asymmetric self-alignment, comprising: a gallium nitride aluminum buffer layer, a gallium nitride channel layer and a gallium nitride aluminum isolation layer sequentially formed on a substrate. And a gate dielectric layer formed over the gallium nitride aluminum isolation layer;
  • a gate stack region formed over the gate dielectric layer, including a gate electrode and a passivation layer over the gate electrode;
  • a first gate spacer formed on each side of the gate stack region; a drain and a source respectively formed on outer sides of the first gate spacers on both sides of the gate stack region;
  • a second gate spacer formed between the first gate spacer and the drain on a side of the drain.
  • the source and the drain are located on the gallium nitride aluminum isolation layer and are formed of an alloy material.
  • the source and the drain are located in the gallium nitride aluminum isolation layer, and are formed by a silicon ion doping region in the gallium nitride aluminum isolation layer.
  • the source and the drain are located on the gallium nitride channel layer, and are formed of a silicon-doped gallium nitride or gallium nitride aluminum material.
  • the invention also provides a method for manufacturing an RF power device for realizing a source-drain gate asymmetric self-alignment as described above, the specific steps are as follows:
  • a gallium nitride aluminum buffer layer, a gallium nitride channel layer, and a gallium nitride aluminum isolation layer on the substrate using a photoresist as an etch barrier layer, sequentially etching the gallium nitride aluminum isolation layer, and nitrogen a gallium channel layer, a gallium nitride aluminum buffer layer to form an active region, and then stripped;
  • the photoresist is used as an etch barrier layer, and the exposed second insulating film and the first conductive film are sequentially etched away, and then the first conductive film and the second insulating film are not etched away.
  • the remaining polysilicon is etched away and the exposed first insulating film is continued to be etched away.
  • the manufacturing method of the RF power device for realizing the source-drain gate asymmetric self-alignment as described above further includes:
  • the manufacturing method of the RF power device for realizing the source-drain gate asymmetric self-alignment as described above further includes:
  • the field plate is toward the second gate spacer and at the gate Extending on the passivation layer.
  • the manufacturing method of the RF power device for realizing the source-drain gate asymmetric self-alignment as described above further includes:
  • the field plate is toward the second gate spacer and at the gate Extending on the passivation layer.
  • the second insulating film, the third insulating film, and the fourth insulating film are each of silicon oxide or silicon nitride.
  • the invention discloses a source-drain gate asymmetric self-aligned RF power device, which utilizes a gate spacer to achieve self-alignment of gate, drain and source positions, thereby reducing drift of product parameters, and at the same time,
  • the pole is protected by the passivation layer, and the source and the drain of the device can be formed directly by the alloying process, the ion implantation process or the epitaxial process after the gate is formed, the source and drain parasitic resistance are reduced, and the electrical power of the RF power device is enhanced. performance.
  • 1 is a cross-sectional view showing a first embodiment of an RF power device for realizing a source-drain gate asymmetric self-alignment according to the present invention.
  • 2 is a cross-sectional view showing a second embodiment of an RF power device for implementing a source-drain gate asymmetric self-alignment according to the present invention.
  • FIG 3 is a cross-sectional view showing a third embodiment of an RF power device for implementing a source-drain gate asymmetric self-alignment according to the present invention.
  • FIG. 4 is an embodiment of an array of radio frequency power devices comprising a source-drain gate asymmetric self-aligned RF power device disclosed in the present invention, wherein FIG. 4b is a top view of the RF power device array, and FIG. 4a is a diagram A cross-sectional view of the structure shown in 4b along the line AA.
  • FIG. 21 are process flow diagrams showing a method of fabricating a source-drain gate asymmetric self-aligned RF power device according to the present invention. The best way to implement the invention
  • the substrate of the present invention for implementing a source-drain gate asymmetric self-aligned RF power device includes a substrate 200 and a gallium nitride buffer layer 201 formed on the substrate 200, in gallium nitride A gallium nitride aluminum buffer layer 202, a gallium nitride channel layer 203, and a gallium nitride aluminum spacer layer 204 are sequentially formed on the buffer layer 201.
  • a gate dielectric layer 205 is formed over the gallium nitride aluminum spacer 204, and a gate stack region of the device is formed over the gate dielectric layer 205, the gate stack region including the gate 206 and over the gate 206
  • a passivation layer 207 is formed.
  • a first gate spacer 208 is formed on each side of the gate stack region.
  • a drain 211 and a source 212 are also formed outside the first gate spacers on both sides of the gate stack region, respectively.
  • a second gate spacer 209 is formed between the first gate spacer 208 and the drain 211 near the drain 211 side.
  • a field plate 214 of the device is also formed over the first gate spacer 208 adjacent to the drain 21 1 side, and a portion of the field plate 214 is connected to the source 212 and is in the direction of the current channel length of the device.
  • the field plate 214 extends over the second gate spacer 209 and the passivation layer 207.
  • a contact body 21 3 for draining the drain 211 of the drain electrode 21 1 to the external electrode is also formed over the drain electrode 211.
  • a drain 211 and a source 212 are formed over the gallium nitride channel layer 203, and the drain 211 and the source 212 are formed. It is formed of a silicon-doped gallium nitride or a gallium nitride aluminum material.
  • the drain 211 and the source 212 are formed in the gallium aluminum nitride spacer 204, and the drain 21 1 and the source 212 are formed. Nitrogen A silicon ion doped region within the gallium aluminum spacer 204 is formed.
  • the drain 211 and the source 212 are formed over the gallium aluminum nitride spacer 204, and the drain 211 and the source 212 are formed.
  • the drain 211 and the source 212 are formed.
  • the drain 211 and the source 212 are formed.
  • a plurality of RF power devices for implementing a source-drain gate asymmetric self-alignment of the present invention may also constitute an RF power device array
  • FIG. 4 is an asymmetric self-alignment of the source-drain gate shown in FIG. 1 disclosed by the present invention.
  • An embodiment of an array of RF power devices comprising RF power devices wherein FIG. 4b is a top view of the RF power device array, and FIG. 4a is a cross-sectional view of the structure of FIG. 4b taken along line AA.
  • two adjacent RF-power devices that implement source-drain asymmetrical self-alignment share a source 212 or share a drain 211.
  • the method for manufacturing an RF power device for realizing a source-drain gate asymmetric self-aligned RF power device and the RF power device array for realizing a source-drain gate asymmetric self-aligned RF power device are consistent, as described below. It is a process flow for preparing the RF power device array structure of the present invention.
  • a gallium nitride aluminum buffer layer 202 having a thickness of about 40 nm, a gallium nitride channel layer 203 having a thickness of about 40 nm, and a thickness of about 22 nm are sequentially deposited on the substrate.
  • FIG. 5a is a top view of the structure formed
  • FIG. 5b is a cross-sectional view of the structure shown in FIG. 5a along the line B-B.
  • the substrate described in this embodiment includes a substrate 200 and a gallium nitride buffer layer 201 formed on the substrate 200, and the substrate 200 may be silicon, silicon carbide or aluminum oxide.
  • a first insulating film 205, a first conductive film and a second insulating film are sequentially deposited on the exposed surface of the formed structure, and a photolithography is deposited on the second insulating film.
  • Glue masking, exposing, and developing define the position of the gate stack region of the device, and then etching the exposed second insulating film and the first conductive film in sequence by using the photoresist as an etch barrier.
  • the etched first conductive film and the second insulating film form a gate stack region including a gate 206 of the device and a passivation layer 207 over the gate.
  • FIG. 4a is a top view of the structure formed
  • FIG. 6b is a cross-sectional view of the structure shown in FIG. 6a along line CC.
  • the first insulating film 205 may be silicon oxide, silicon nitride, hafnium oxide or aluminum oxide as a gate dielectric layer of the device, and preferably has a thickness of 8 nm.
  • the gate 206 may be a chromium-containing, or nickel-containing, or niobium-containing alloy such as a nickel gold alloy, a chromium tungsten alloy, a palladium alloy, a platinum alloy, a nickel platinum alloy, or a nickel palladium gold alloy.
  • the passivation layer 207 may be silicon oxide or silicon nitride.
  • a third insulating film is deposited on the exposed surface of the formed structure, and then The formed third insulating film is etched to form a first gate spacer on both sides of the gate stack region
  • the gate spacers 208 can be silicon oxide or silicon nitride.
  • a polysilicon film 210 is deposited on the exposed surface of the formed structure, as shown in FIG.
  • the formed polysilicon film 210 is then etched back as shown in FIG.
  • the GaN RF power device array by controlling the distance between the gate and the gate, when the polysilicon film 21 0 is etched, only the polysilicon at the defined source position is not etched, and The polysilicon film at other locations is etched away.
  • a fourth insulating film is deposited on the exposed surface of the formed structure, and the formed fourth insulating film is etched to form a second gate spacer 209 on one side of the gate stack region, such as Figure 10 shows.
  • the remaining polysilicon film 210 is etched away, and the exposed first insulating film 205 and the gallium nitride aluminum spacer 204 are further etched away to expose the gallium nitride channel layer 203, as shown in FIG.
  • FIG. Fig. 12 is a top plan view of the formed structure, and a broken line frame 303 indicates the position of the formed pattern.
  • a silicon-doped gallium nitride or gallium nitride aluminum is grown by an epitaxial process, a source 212 and a drain 211 of the device are formed over the exposed gallium nitride channel layer 203, and the photoresist is stripped and Remove polycrystalline gallium nitride, as shown in Figure 13.
  • a new layer of photoresist is deposited on the exposed surface of the formed structure and mask, exposure, and shape define the position of the device field plate, source and drain, and then a second conductive film is deposited.
  • the second conductive film may be a titanium aluminum alloy, a nickel aluminum alloy, a nickel platinum alloy or a nickel gold alloy.
  • the second conductive film deposited on the photoresist is then removed by the well-known lif t-of f process, while leaving a second conductive film that is not deposited over the photoresist, near the drain.
  • a field plate 214 of the device is formed on the 211-side first gate spacer 208. The field plate 214 is connected to the source 212, and a contact body 21 3 having a drain connected to the external electrode is formed. Shown.
  • the RF power device array structure shown in FIG. 14 corresponds to the RF power device structure of the source-drain gate asymmetric self-alignment shown in FIG.
  • the exposed first insulating film 205 may be etched instead of the gallium nitride aluminum.
  • the isolation layer 204 is etched as shown in FIG.
  • a layer of photoresist is then deposited over the exposed surface of the formed structure and masked, exposed, developed to form a pattern, exposing the source and drain locations in a pattern, as shown in FIG. Figure 16 is a top plan view of the formed structure, and a broken line frame 303 indicates the position of the formed pattern.
  • silicon ions are implanted into the gallium nitride aluminum spacer 204 by an ion implantation process to form the source 212 and the drain 21 1 of the device, and the photoresist is stripped and subjected to rapid heat treatment, as shown in FIG.
  • a new layer of photoresist is deposited on the exposed surface of the formed structure and mask, exposure, and shape define the position of the device field plate, source and drain, and then a second conductive film is deposited.
  • the second conductive film may be a titanium aluminum alloy, a nickel aluminum alloy, a nickel platinum alloy or a nickel gold alloy.
  • the second conductive film deposited on the photoresist is then removed by the well-known lif t-off process, while the second conductive film not deposited over the photoresist is retained to be on the drain 211.
  • a field plate 214 of the device is formed over the side first gate sidewall, and the field plate 214 is connected to the source 212 while forming a contact 213 of the drain connected to the drain electrode, as shown in FIG.
  • the RF power device array structure shown in Figure 18 corresponds to the RF power device structure of the source-drain gate asymmetric self-alignment shown in Figure 2.
  • the exposed first insulating film 205 is further etched away to expose the gallium nitride aluminum isolation layer 204. Thereafter, the ion implantation process may be omitted, and a layer of photoresist is directly deposited on the exposed surface of the formed structure and masked, exposed, developed to form a pattern, and the positions of the source and the drain are respectively defined, as shown in the figure. 19 is shown.
  • Figure 19 is a top plan view of the formed structure, with dashed boxes 301, 302 indicating the locations of the formed drain and source patterns, respectively.
  • the source 212 and the drain 211 of the device are formed over the gallium nitride aluminum spacer 204 by an l if t-off process and an alloying process, as shown in FIG.
  • the process is as follows: firstly deposit a conductive film, such as titanium/aluminum/nickel/gold alloy, and then remove the conductive film deposited on the photoresist by the lif t-off process, while leaving no deposition on the light. The conductive film on the engraved layer is then subjected to high temperature thermal annealing to form a good source and drain contact.
  • a conductive film such as titanium/aluminum/nickel/gold alloy
  • a new layer of photoresist is deposited on the exposed surface of the formed structure and mask, exposure, and shape define the position of the device field plate, source and drain, and then a second conductive film is deposited.
  • the second conductive film may be a titanium aluminum alloy, a nickel aluminum alloy, a nickel platinum alloy or a nickel gold alloy.
  • the second conductive film deposited on the photoresist is removed by the l if t-off process, while the second conductive film not deposited on the photoresist is left to be adjacent to the drain 211.
  • a field plate 214 of the device is formed over the first gate spacer, and the field plate 214 is connected to the source 212 while forming a contact 213 of the drain connected to the drain electrode, as shown in FIG.
  • the RF power device array structure shown in FIG. 21 corresponds to the RF power device structure of the source-drain gate asymmetric self-alignment shown in FIG.
  • the invention discloses a source-drain gate asymmetric self-aligned RF power device, which utilizes a gate spacer to achieve self-alignment of gate, drain and source positions, thereby reducing drift of product parameters, and at the same time,
  • the pole is protected by a passivation layer, and the source and drain of the device can be formed directly by an alloying process, an ion implantation process or an epitaxial process after the gate is formed, thereby reducing source and drain parasitic resistance and enhancing the electrical power of the RF power device. performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明属于射频功率器件技术领域,具体涉及一种实现源漏栅非对称自对准的射频功率器件及其制造方法。本发明的实现源漏栅非对称自对准的射频功率器件,利用栅极侧墙来实现栅极、漏极与源极位置的自对准,减小了产品参数的漂移,同时,由于栅极被钝化层保护,可以在栅极形成之后通过合金化工艺、外延工艺或者离子注入工艺来形成器件的源极与漏极,工艺过程简单,降低了源、漏寄生电阻,增强了射频功率器件的电学性能。

Description

一种实现源漏栅非对称自对准的射频功率器件及制造方法 技术领域
本发明属于射频功率器件领域, 具体涉及一种实现源漏栅非对称自对准 的射频功率器件及制造方法。 背景技术
高电子迁移率晶体管 (H igh E lect ron Mob i l i ty Trans i s tors , HEMT ) 被普遍认为是最有发展前途的高速电子器件之一。 由于具有超高速、低功耗、 低噪声的特点(尤其在低温下), 能极大地满足超高速计算机及信号处理、 卫 星通信等用途上的特殊需求, 故而 HEMT 器件受到广泛的重视。 作为新一代 微波及毫米波器件, HEMT 器件无论是在频率、 增益还是在效率方面都表现出 无与伦比的优势。 经过 10 多年的发展, HEMT 器件已经具备了优异的微波、 毫米波特性,已成为 2 ~ 100 GHz的卫星通信、 射电天文等领域中的微波毫米 波低噪声放大器的主要器件。 同时, HEMT 器件也是用来制作微波混频器、 振 荡器和宽带行波放大器的核心部件。
目前氮化镓基的 HEMT射频功率器件大多釆用后栅工艺制造, 其制造的 工艺流程主要包括: 首先制造源、 漏电极。 光刻欧姆接触窗口, 利用电子束 蒸发形成多层电极结构, 剥离工艺形成源、 漏接触, 使用快速热退火(RTA) 设备, 在 900 °C:、 30 Sec氩气保护条件下形成良好的源、 漏欧姆接触。 然后 光刻出需刻蚀掉的区域, 并使用反应离子束刻蚀(RIE)设备, 通入氯化硼, 刻 蚀台阶。最后再次利用光刻、 电子束蒸发和剥离工艺形成肖特基势垒栅金属。 但是随着器件尺寸的缩小,这种后栅工艺的方法难以实现 HEMT器件的栅极与 源极、 漏极位置的精确对准, 造成产品参数的漂移。 发明的公开
本发明的目的在于提出一种实现源漏栅非对称自对准的射频功率器件及 其制造方法, 以实现射频功率器件的栅极与源极、 漏极位置的自对准, 减小 产品参数的漂移, 增强射频功率器件的电学性能。
本发明提出了一种实现源漏栅非对称自对准的射频功率器件, 包括: 在衬底上依次形成的氮化镓铝緩冲层、氮化镓沟道层、氮化镓铝隔离层; 以及, 在所述氮化镓铝隔离层之上形成的栅介质层;
在所述栅介质层之上形成的栅叠层区, 包括栅极以及位于栅极之上的钝 化层;
在所述栅叠层区的两侧分别形成的第一栅极侧墙; 在位于所述栅叠层区两侧的所述第一栅极侧墙的外侧分别形成的漏极和 源极;
靠近所述漏极一侧的所述第一栅极侧墙与所述漏极之间形成的第二栅极 侧墙。
进一步地, 在靠近所述漏极一侧的所述第一栅极侧墙之上形成的与所述 源极相连的场板, 且在器件的电流沟道长度方向上, 所述场板向所述第二栅 极侧墙以及所述位于栅极之上的钝化层上延伸。
进一步地, 所述源极和漏极位于所述氮化镓铝隔离层之上, 由合金材料 形成。
进一步地, 所述源极和漏极位于所述氮化镓铝隔离层内, 由所述氮化镓 铝隔离层内的硅离子掺杂区形成。
进一步地, 所述源极和漏极位于所述氮化镓沟道层之上, 由掺杂硅的氮 化镓或者氮化镓铝材料形成。
本发明还提供有一种如上所述的实现源漏栅非对称自对准的射频功率器 件的制造方法, 具体步骤如下:
在衬底上依次淀积氮化镓铝緩冲层、 氮化镓沟道层、 氮化镓铝隔离层; 以光刻胶作为刻蚀阻挡层, 依次刻蚀氮化镓铝隔离层、 氮化镓沟道层、 氮化镓铝緩冲层以形成有源区, 之后去胶;
在所形成的结构的暴露表面上依次淀积第一层绝缘薄膜、 第一层导电薄 膜、 第二层绝缘薄膜;
进行光刻、 显影定义出器件的栅叠层区的位置;
以光刻胶作为刻蚀阻挡层, 依次刻蚀掉暴露出的第二层绝缘薄膜和第一 层导电薄膜, 之后去胶, 未被刻蚀掉的第一层导电薄膜和第二层绝缘薄膜形 成栅叠层区, 所述栅叠层区包括器件的栅极以及位于栅极之上的钝化层; 在所形成的结构的暴露表面上淀积第三层绝缘薄膜, 并刻蚀所形成的第 三层绝缘薄膜在栅叠层区的两侧分别形成第一栅极侧墙;
在所形成的结构的暴露表面上淀积一层多晶硅, 并对所形成的多晶硅进 行回刻, 其中, 仅源极位置处的多晶硅没有被刻蚀掉;
在所形成的结构的暴露表面上淀积第四层绝缘薄膜, 并刻蚀所形成的第 四层绝缘薄膜在栅叠层区靠近漏极的一侧形成第二栅极侧墙;
刻蚀掉剩余的多晶硅, 并继续刻蚀掉暴露出的第一层绝缘薄膜。
如上所述的实现源漏栅非对称自对准的射频功率器件的制造方法, 还包 括:
通过光刻工艺形成图形, 分别定义出源极和漏极的位置;
通过 l if t-off 工艺和合金化工艺形成器件的源极和漏极; 在靠近漏极一侧的第一栅极侧墙之上形成与源极相连的场板, 且在器件 的电流沟道长度方向上, 该场板向第二栅极侧墙以及位于栅极之上的钝化层 上延伸。
如上所述的实现源漏栅非对称自对准的射频功率器件的制造方法, 还包 括:
通过光刻工艺形成图形, 以一个图形暴露出源极和漏极的位置; 通过离子注入工艺向氮化镓铝隔离层中注入硅离子以形成器件的源极和 漏极;
在靠近漏极一侧的第一栅极侧墙之上形成与源极相连的场板, 且在器件 的电流沟道长度方向上, 该场板向第二栅极侧墙以及位于栅极之上的钝化层 上延伸。
如上所述的实现源漏栅非对称自对准的射频功率器件的制造方法, 还包 括:
继续刻蚀掉暴露出的氮化镓铝隔离层以暴露出所形成的氮化镓沟道层; 通过光刻工艺形成图形, 以一个图形暴露出源极和漏极的位置; 通过外延工艺生长掺杂硅的氮化镓或者氮化镓铝, 在暴露出的氮化镓沟 道层之上形成器件的源极和漏极;
在靠近漏极一侧的第一栅极侧墙之上形成与源极相连的场板, 且在器件 的电流沟道长度方向上, 该场板向第二栅极侧墙以及位于栅极之上的钝化层 上延伸。
如上所述的实现源漏栅非对称自对准的射频功率器件的制造方法, 所述 第一层绝缘薄膜为氧化硅、 氮化硅、 氧化铪或者三氧化二铝中的任意一种, 所述第二层绝缘薄膜、 第三层绝缘薄膜和第四层绝缘薄膜分别为氧化硅或者 氮化硅中的任意一种。
如上所述的实现源漏栅非对称自对准的射频功率器件的制造方法, 所述 的第一层导电薄膜为含铬、 含镍或者含鵠的合金。
本发明的实现源漏栅非对称自对准的射频功率器件, 利用栅极侧墙来实 现栅极、 漏极与源极位置的自对准, 减小了产品参数的漂移, 同时, 由于栅 极被钝化层保护, 可以在栅极形成之后直接通过合金化工艺、 离子注入工艺 或者外延工艺来形成器件的源极与漏极, 降低了源、 漏寄生电阻, 增强了射 频功率器件的电学性能。 附图的简要说明
图 1为本发明所公开的实现源漏栅非对称自对准的射频功率器件的第一 个实施例的剖面图。 图 2为本发明所公开的实现源漏栅非对称自对准的射频功率器件的第二 个实施例的剖面图。
图 3为本发明所公开的实现源漏栅非对称自对准的射频功率器件的第三 个实施例的剖面图。
图 4为由本发明所公开的实现源漏栅非对称自对准的射频功率器件组成 的射频功率器件阵列的一个实施例,其中, 图 4b为该射频功率器件阵列的俯 视图示意图, 图 4a为图 4b所示结构沿 A-A线的剖面图。
图 5至图 21为本发明的实现源漏栅非对称自对准的射频功率器件的制造 方法的工艺流程图。 实现本发明的最佳方式
下面结合附图与具体实施方式对本发明作进一步详细的说明, 在图中, 为了方便说明,放大或缩小了层和区域的厚度,所示大小并不代表实际尺寸。 尽管这些图并不能完全准确的反映出器件的实际尺寸, 但是它们还是完整的 反映了区域和组成结构之间的相互位置, 特别是组成结构之间的上下和相邻 关系。
图 1至图 3为本发明所提出的实现源漏栅非对称自对准的射频功率器件 的三个实施例, 它们是沿器件电流沟道长度方向的剖面图。 如图 1至图 3所 示, 本发明的实现源漏栅非对称自对准的射频功率器件的衬底包括基底 200 和在基底 200上形成的氮化镓緩冲层 201, 在氮化镓緩冲层 201之上依次形 成有氮化镓铝緩冲层 202、氮化镓沟道层 203和氮化镓铝隔离层 204。在氮化 镓铝隔离层 204之上形成有栅介质层 205, 在栅介质层 205之上形成有器件 的栅叠层区, 所述栅叠层区包括栅极 206 和在栅极 206 之上形成的钝化层 207。 在栅叠层区的两侧分别形成有第一栅极侧墙 208。 在位于所述栅叠层区 两侧的所述第一栅极侧墙的外侧还分别形成有漏极 211和源极 212。 在靠近 漏极 211—侧的第一栅极侧墙 208与漏极 211之间形成有第二栅极侧墙 209。 而在靠近漏极 21 1—侧的第一栅极侧墙 208之上还形成有器件的场板 214, 场板 214中的一部分与源极 212相连, 且在器件的电流沟道长度方向上, 场 板 214向第二栅极侧墙 209和钝化层 207上延伸。 在漏极 211之上还形成有 用于将漏极 21 1与外部电极相连接的漏极 211的接触体 21 3。
在图 1所示的实现源漏栅非对称自对准的射频功率器件的实施例中, 漏 极 211和源极 212形成于氮化镓沟道层 203之上, 漏极 211和源极 212由掺 杂硅的氮化镓或者氮化镓铝材料形成。
在图 2所示的实现源漏栅非对称自对准的射频功率器件的实施例中, 漏 极 211和源极 212形成于氮化镓铝隔离层 204内, 漏极 21 1和源极 212由氮 化镓铝隔离层 204内的硅离子掺杂区形成。
在图 3所示的实现源漏栅非对称自对准的射频功率器件的实施例中, 漏 极 211和源极 212形成于氮化镓铝隔离层 204之上, 漏极 211和源极 212通 常由合金材料形成。
由多个本发明的实现源漏栅非对称自对准的射频功率器件还可以组成射 频功率器件阵列, 图 4为由本发明所公开的如图 1所示的实现源漏栅非对称 自对准的射频功率器件组成的射频功率器件阵列的一个实施例, 其中, 图 4b 为该射频功率器件阵列的俯视图示意图, 图 4a为图 4b所示结构沿 A-A线的 剖面图。 在图 4所示的射频功率器件阵列的实施例中, 相邻的两个实现源漏 栅非对称自对准的射频功率器件共用了一个源极 212 或者共用了一个漏极 211。
本发明所提出的实现源漏栅非对称自对准的射频功率器件及由本实现源 漏栅非对称自对准的射频功率器件组成的射频功率器件阵列的制造方法是一 致的, 以下所叙述的是制备本发明的射频功率器件阵列结构的工艺流程。
首先,如图 5所示,在衬底上依次淀积形成厚度约为 40纳米的氮化镓铝 緩冲层 202、厚度约为 40纳米的氮化镓沟道层 203、厚度约为 22纳米的氮化 镓铝隔离层 204, 然后在氮化镓铝隔离层 204之上淀积一层光刻胶并掩膜、 曝光、 显影定义出有源区的位置, 然后以光刻胶作为刻蚀阻挡层依次刻蚀掉 暴露出的氮化镓铝隔离层 204、氮化镓沟道层 203、氮化镓铝緩冲层 202以形 成有源区, 然后剥除光刻胶。 其中, 图 5a为所形成结构的俯视图示意图, 图 5b为图 5a所示结构沿 B-B线的剖面图。
本实施例中所述的衬底包括基底 200和在基底 200上形成的氮化镓緩冲 层 201, 基底 200可以为硅、 碳化硅或者为三氧化二铝。
接下来, 在所形成的结构的暴露表面上依次淀积形成第一层绝缘薄膜 205、第一层导电薄膜和第二层绝缘薄膜,并在第二层绝缘薄膜之上淀积一层 光刻胶并掩膜、 曝光、 显影定义出器件的栅叠层区的位置, 然后以光刻胶作 为刻蚀阻挡层依次刻蚀掉暴露的第二层绝缘薄膜和第一层导电薄膜, 未被刻 蚀掉的第一层导电薄膜和第二层绝缘薄膜形成栅叠层区, 其包括器件的栅极 206以及位于栅极之上的钝化层 207, 剥除光刻胶后如图 6所示, 其中图 4a 为所形成结构的俯视图示意图, 图 6b为图 6a所示结构沿 C-C线的剖面图。
第一层绝缘薄膜 205可以为氧化硅、氮化硅、氧化铪或者为三氧化二铝, 作为器件的栅介质层, 其厚度优选为 8纳米。 栅极 206可以为含铬、 或者含 镍、 或者含鵠的合金, 比如为镍金合金、 铬钨合金、 钯金合金、 铂金合金、 镍铂金合金或者为镍钯金合金。 钝化层 207可以为氧化硅或者为氮化硅。
接下来, 在所形成的结构的暴露表面上淀积形成第三层绝缘薄膜, 接着 对所形成的第三层绝缘薄膜进行回刻以在栅叠层区的两侧形成第一栅极侧墙
208 , 如图 7所示。 栅极侧墙 208可以为氧化硅或者为氮化硅。
接下来,在所形成的结构的暴露表面上淀积一层多晶硅薄膜 21 0,如图 8 所示。 然后对所形成的多晶硅薄膜 210进行回刻, 如图 9所示。
在氮化镓射频功率器件阵列中, 通过控制栅极与栅极之间的距离, 在对 多晶硅薄膜 21 0进行刻蚀时,仅被定义的源极位置处的多晶硅没有被刻蚀掉, 而其它位置处的多晶硅薄膜被刻蚀掉。
接下来, 在所形成的结构的暴露表面上淀积形成第四层绝缘薄膜, 并刻 蚀所形成的第四层绝缘薄膜在栅叠层区的一侧形成第二栅极侧墙 209, 如图 1 0所示。 接着, 刻蚀掉剩余的多晶硅薄膜 210, 并继续刻蚀掉暴露出的第一 层绝缘薄膜 205和氮化镓铝隔离层 204, 以露出氮化镓沟道层 203, 如图 11 所示。
接下来, 在所形成的结构的暴露表面上淀积一层光刻胶并掩膜、 曝光、 显影形成图形, 以一个图形暴露出源极和漏极的位置, 如图 12所示。 图 12 为所形成结构的俯视图示意图, 虚线框 303表示所形成图形的位置。
接下来, 通过外延工艺生长掺杂硅的氮化镓或者氮化镓铝, 在暴露出的 氮化镓沟道层 203之上形成器件的源极 212和漏极 211, 剥除光刻胶并去掉 多晶氮化镓, 如图 1 3所示。
最后,在所形成的结构的暴露表面上淀积一层新的光刻胶并掩膜、曝光、 形影定义出器件场板、 源极和漏极的位置, 接着淀积第二层导电薄膜, 第二 层导电薄膜可以为钛铝合金、 镍铝合金、 镍铂合金或者为镍金合金。 然后通 过业界所熟知的 l i f t-of f 工艺去掉淀积在光刻胶之上的第二层导电薄膜,而 保留没有淀积在光刻胶之上的第二层导电薄膜, 在靠近漏极 211—侧的第一 栅极侧墙 208之上形成器件的场板 214, 场板 214与源极 212相连, 同时形 成漏极与外部电极相连接的漏极的接触体 21 3, 如图 14所示。
图 14所示的射频功率器件阵列结构对应着图 1所示的实现源漏栅非对称 自对准的射频功率器件结构。
在图 4至图 14描述的射频功率器件阵列结构的制造方法中,在刻蚀掉剩 余的多晶硅薄膜 210后, 可以仅刻蚀掉暴露出的第一层绝缘薄膜 205, 而不 对氮化镓铝隔离层 204进行刻蚀,如图 15所示。然后在所形成的结构的暴露 表面上淀积一层光刻胶并掩膜、 曝光、 显影形成图形, 以一个图形暴露出源 极和漏极的位置, 如图 16所示。 图 16为所形成结构的俯视图示意图, 虚线 框 303表示所形成图形的位置。
接下来, 通过离子注入工艺向氮化镓铝隔离层 204中注入硅离子以形成 器件的源极 212和漏极 21 1, 剥除光刻胶后进行快速热处理, 如图 17所示。 最后,在所形成的结构的暴露表面上淀积一层新的光刻胶并掩膜、曝光、 形影定义出器件场板、 源极和漏极的位置, 接着淀积第二层导电薄膜, 第二 层导电薄膜可以为钛铝合金、 镍铝合金、 镍铂合金或者为镍金合金。 然后通 过业界所熟知的 l i f t-off 工艺去掉淀积在光刻胶之上的第二层导电薄膜,而 保留没有淀积在光刻胶之上的第二层导电薄膜, 以在漏极 211侧第一栅极侧 墙之上形成器件的场板 214, 场板 214与源极 212相连, 同时形成漏极与外 部电极相连接的漏极的接触体 213, 如图 18所示。
图 18所示的射频功率器件阵列结构对应着图 2所示的实现源漏栅非对称 自对准的射频功率器件结构。
在上述的氮化镓射频功率器件阵列结构的制造方法中, 在刻蚀掉剩余的 多晶硅薄膜 210后, 并继续刻蚀掉暴露出的第一层绝缘薄膜 205以露出氮化 镓铝隔离层 204后, 可以不进行离子注入工艺, 而在所形成的结构的暴露表 面上直接淀积一层光刻胶并掩膜、 曝光、 显影形成图形, 分别定义出源极和 漏极的位置,如图 19所示。图 19为所形成结构的俯视图示意图,虚线框 301、 302分别表示所形成的漏极图形和源极图形的位置。
接下来,通过 l if t-off 工艺和合金化工艺在氮化镓铝隔离层 204之上形 成器件的源极 212和漏极 211, 如图 20所示。 其过程为: 首先淀积一层导电 薄膜, 比如为钛 /铝 /镍 /金合金, 然后通过 l i f t-off 工艺去掉淀积在光刻胶 之上的导电薄膜, 而保留没有淀积在光刻胶之上的导电薄膜, 再通过高温热 退火形成良好的源、 漏接触。
最后,在所形成的结构的暴露表面上淀积一层新的光刻胶并掩膜、曝光、 形影定义出器件场板、 源极和漏极的位置, 接着淀积第二层导电薄膜, 第二 层导电薄膜可以为钛铝合金、 镍铝合金、 镍铂合金或者为镍金合金。 然后通 过 l if t-off 工艺去掉淀积在光刻胶之上的第二层导电薄膜,而保留没有淀积 在光刻胶之上的第二层导电薄膜, 以在靠近漏极 211 —侧的第一栅极侧墙之 上形成器件的场板 214, 场板 214与源极 212相连, 同时形成漏极与外部电 极相连接的漏极的接触体 213, 如图 21所示。
图 21所示的射频功率器件阵列结构对应着图 3所示的实现源漏栅非对称 自对准的射频功率器件结构。
如上所述, 在不偏离本发明精神和范围的情况下, 还可以构成许多有很 大差别的实施例。 应当理解, 除了如所附的权利要求所限定的, 本发明不限 于在说明书中所述的具体实例。 工业应用性 本发明的实现源漏栅非对称自对准的射频功率器件, 利用栅极侧墙来实 现栅极、 漏极与源极位置的自对准, 减小了产品参数的漂移, 同时, 由于栅 极被钝化层保护, 可以在栅极形成之后直接通过合金化工艺、 离子注入工艺 或者外延工艺来形成器件的源极与漏极, 降低了源、 漏寄生电阻, 增强了射 频功率器件的电学性能。

Claims

权利要求
1. 一种实现源漏栅非对称自对准的射频功率器件, 包括:
在衬底上依次形成的氮化镓铝緩冲层、 氮化镓沟道层、 氮化镓铝隔 离层;
以及, 在所述氮化镓铝隔离层之上形成的栅介质层;
其特征在于, 还包括:
在所述栅介质层之上形成的栅叠层区, 包括栅极以及位于栅极之上 的钝化层;
在所述栅叠层区的两侧分别形成的第一栅极侧墙;
在位于所述栅叠层区两侧的所述第一栅极侧墙的外侧分别形成的 漏极和源极;
在靠近所述漏极一侧的所述第一栅极侧墙与所述漏极之间形成的 第二栅极侧墙。
2. 如权利要求 1所述的实现源漏栅非对称自对准的射频功率器件, 其特征 在于, 在靠近所述漏极一侧的所述第一栅极侧墙之上形成的与所述源极 相连的场板, 且在器件的电流沟道长度方向上, 所述场板向所述第二栅 极侧墙以及所述位于栅极之上的钝化层上延伸。
3. 如权利要求 1所述的实现源漏栅非对称自对准的射频功率器件, 其特征 在于,所述源极和漏极位于所述氮化镓铝隔离层之上, 由合金材料形成。
4. 如权利要求 1所述的实现源漏栅非对称自对准的射频功率器件, 其特征 在于, 所述源极和漏极位于所述氮化镓铝隔离层内, 由所述氮化镓铝隔 离层内的硅离子掺杂区形成。
5. 如权利要求 1所述的实现源漏栅非对称自对准的射频功率器件, 其特征 在于, 所述源极和漏极位于所述氮化镓沟道层之上, 由掺杂硅的氮化镓 或者氮化镓铝材料形成。
6. 一种如权利要求 1所述的实现源漏栅非对称自对准的射频功率器件的制 造方法, 其特征在于, 具体步骤如下:
在衬底上依次淀积氮化镓铝緩冲层、 氮化镓沟道层、 氮化镓铝隔离 层; 以光刻胶作为刻蚀阻挡层, 依次刻蚀氮化镓铝隔离层、 氮化镓沟道 层、 氮化镓铝緩冲层以形成有源区, 之后去胶;
在所形成的结构的暴露表面上依次淀积第一层绝缘薄膜、 第一层导 电薄膜、 第二层绝缘薄膜;
进行光刻、 显影定义出器件的栅叠层区的位置;
以光刻胶作为刻蚀阻挡层, 依次刻蚀掉暴露出的第二层绝缘薄膜和 第一层导电薄膜, 之后去胶, 未被刻蚀掉的第一层导电薄膜和第二层绝 缘薄膜形成栅叠层区, 所述栅叠层区包括器件的栅极以及位于栅极之上 的钝化层;
在所形成的结构的暴露表面上淀积第三层绝缘薄膜, 并刻蚀所形成 的第三层绝缘薄膜在栅叠层区的两侧分别形成第一栅极侧墙;
在所形成的结构的暴露表面上淀积一层多晶硅, 并对所形成的多晶 硅进行回刻, 其中, 仅源极位置处的多晶硅没有被刻蚀掉;
在所形成的结构的暴露表面上淀积第四层绝缘薄膜, 并刻蚀所形成 的第四层绝缘薄膜在栅叠层区靠近漏极的一侧形成第二栅极侧墙; 刻蚀掉剩余的多晶硅, 并继续刻蚀掉暴露出的第一层绝缘薄膜。
7. 如权利要求 6所述的实现源漏栅非对称自对准的射频功率器件的制造方 法, 其特征在于, 还包括:
通过光刻工艺形成图形, 分别定义出源极和漏极的位置; 通过 l if t-off 工艺和合金化工艺形成器件的源极和漏极; 在靠近漏极一侧的第一栅极侧墙之上形成与源极相连的场板, 且在 器件的电流沟道长度方向上, 该场板向第二栅极侧墙以及位于栅极之上 的钝化层上延伸。
8. 如权利要求 6所述的实现源漏栅非对称自对准的射频功率器件的制造方 法, 其特征在于, 还包括:
通过光刻工艺形成图形, 以一个图形暴露出源极和漏极的位置; 通过离子注入工艺向氮化镓铝隔离层中注入硅离子以形成器件的 源极和漏极;
在靠近漏极一侧的第一栅极侧墙之上形成与源极相连的场板, 且在 器件的电流沟道长度方向上, 该场板向第二栅极侧墙以及位于栅极之上 的钝化层上延伸。 9. 如权利要求 6所述的实现源漏栅非对称自对准的射频功率器件的制造方 法, 其特征在于, 还包括:
继续刻蚀掉暴露出的氮化镓铝隔离层以暴露出所形成的氮化镓沟 道层;
通过光刻工艺形成图形, 以一个图形暴露出源极和漏极的位置; 通过外延工艺生长掺杂硅的氮化镓或者氮化镓铝, 在暴露出的氮化 镓沟道层之上形成器件的源极和漏极;
在靠近漏极一侧的第一栅极侧墙之上形成与源极相连的场板, 且在 器件的电流沟道长度方向上, 该场板向第二栅极侧墙以及位于栅极之上 的钝化层上延伸。 0. 如权利要求 6所述的实现源漏栅非对称自对准的射频功率器件的制造方 法, 其特征在于, 所述第一层绝缘薄膜为氧化硅、 氮化硅、 氧化铪或者 三氧化二铝中的任意一种, 所述第二层绝缘薄膜、 第三层绝缘薄膜和第 四层绝缘薄膜分别为氧化硅或者氮化硅中的任意一种。 1. 如权利要求 6所述的实现源漏栅非对称自对准的射频功率器件的制造方 法, 其特征在于, 所述的第一层导电薄膜为含铬、含镍或者含鵠的合金。
PCT/CN2014/074011 2013-03-25 2014-03-25 一种实现源漏栅非对称自对准的射频功率器件及制造方法 WO2014154125A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/651,992 US20160013304A1 (en) 2013-03-25 2014-03-25 A radio frequency power device for implementing asymmetric self-alignment of the source, drain and gate and the production method thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201310098145.5A CN103219376B (zh) 2013-03-25 2013-03-25 氮化镓射频功率器件及其制备方法
CN201310098164.8 2013-03-25
CN201310098173.7 2013-03-25
CN201310098164.8A CN103219377B (zh) 2013-03-25 2013-03-25 一种实现源漏栅非对称自对准的射频功率器件及其制备方法
CN201310098173.7A CN103219378B (zh) 2013-03-25 2013-03-25 一种低寄生电阻射频功率器件及其制备方法
CN201310098145.5 2013-03-25

Publications (1)

Publication Number Publication Date
WO2014154125A1 true WO2014154125A1 (zh) 2014-10-02

Family

ID=51622457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074011 WO2014154125A1 (zh) 2013-03-25 2014-03-25 一种实现源漏栅非对称自对准的射频功率器件及制造方法

Country Status (2)

Country Link
US (1) US20160013304A1 (zh)
WO (1) WO2014154125A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108807509A (zh) * 2018-06-13 2018-11-13 中山大学 一种高耐压高导通性能p型栅极常关型hemt器件及其制备方法
CN117410319B (zh) * 2023-12-12 2024-03-26 烟台睿创微纳技术股份有限公司 一种hemt器件及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101604704A (zh) * 2008-06-13 2009-12-16 张乃千 Hemt器件及其制造方法
US20100127275A1 (en) * 2008-11-26 2010-05-27 Furukawa Electric Co., Ltd. Gan-based field effect transistor and method of manufacturing the same
WO2012158464A2 (en) * 2011-05-17 2012-11-22 Hrl Laboratories, Llc Gan hemts with a back gate connected to the source
CN103208518A (zh) * 2013-03-25 2013-07-17 复旦大学 一种源漏非对称自对准的射频功率器件及其制备方法
CN103219376A (zh) * 2013-03-25 2013-07-24 复旦大学 氮化镓射频功率器件及其制备方法
CN103219369A (zh) * 2013-03-25 2013-07-24 复旦大学 一种低寄生电阻高电子迁移率器件及其制备方法
CN103219377A (zh) * 2013-03-25 2013-07-24 复旦大学 一种实现源漏栅非对称自对准的射频功率器件及其制备方法
CN103219378A (zh) * 2013-03-25 2013-07-24 复旦大学 一种低寄生电阻射频功率器件及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8283699B2 (en) * 2006-11-13 2012-10-09 Cree, Inc. GaN based HEMTs with buried field plates

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101604704A (zh) * 2008-06-13 2009-12-16 张乃千 Hemt器件及其制造方法
US20100127275A1 (en) * 2008-11-26 2010-05-27 Furukawa Electric Co., Ltd. Gan-based field effect transistor and method of manufacturing the same
WO2012158464A2 (en) * 2011-05-17 2012-11-22 Hrl Laboratories, Llc Gan hemts with a back gate connected to the source
CN103208518A (zh) * 2013-03-25 2013-07-17 复旦大学 一种源漏非对称自对准的射频功率器件及其制备方法
CN103219376A (zh) * 2013-03-25 2013-07-24 复旦大学 氮化镓射频功率器件及其制备方法
CN103219369A (zh) * 2013-03-25 2013-07-24 复旦大学 一种低寄生电阻高电子迁移率器件及其制备方法
CN103219377A (zh) * 2013-03-25 2013-07-24 复旦大学 一种实现源漏栅非对称自对准的射频功率器件及其制备方法
CN103219378A (zh) * 2013-03-25 2013-07-24 复旦大学 一种低寄生电阻射频功率器件及其制备方法

Also Published As

Publication number Publication date
US20160013304A1 (en) 2016-01-14

Similar Documents

Publication Publication Date Title
EP1843390B1 (en) Semiconductor device provided with mis structure and method for manufacturing the same
WO2014154120A1 (zh) 一种采用先栅工艺的高电子迁移率器件及其制造方法
JP2007081371A (ja) 不定形高電子移動度トランジスタの製造方法
CN111430458B (zh) 多沟道绝缘鳍式栅复合槽栅的AlGaAs/GaAs高电子迁移率晶体管及其制备方法
KR20010093444A (ko) 비등방성 식각을 이용한 서브마이크론 게이트 제조 방법
JPH03292744A (ja) 化合物半導体装置およびその製造方法
CN103219376A (zh) 氮化镓射频功率器件及其制备方法
US20240213322A1 (en) Field effect transistor, preparation method thereof, and electronic circuit
CN103219369A (zh) 一种低寄生电阻高电子迁移率器件及其制备方法
WO2014154125A1 (zh) 一种实现源漏栅非对称自对准的射频功率器件及制造方法
CN108649069A (zh) 漏扩展结构的射频GaN/AlGaN器件及其制备方法
JP2001093913A (ja) 電界効果型トランジスタおよびその製造方法、ならびにバイポーラトランジスタおよびその製造方法
CN103219378A (zh) 一种低寄生电阻射频功率器件及其制备方法
CN113436975B (zh) 一种半导体器件及制备方法
CN113451129B (zh) 一种高电子迁移率晶体管及制备方法
CN111430459B (zh) AlGaAs/GaAs高电子迁移率晶体管及制备方法
CN103208518A (zh) 一种源漏非对称自对准的射频功率器件及其制备方法
CN111463259B (zh) 高电子迁移率场效应晶体管及其制备方法
CN113793806A (zh) 一种半导体器件及制备方法
CN103219379A (zh) 一种采用先栅工艺的高电子迁移率器件及其制备方法
US8536645B2 (en) Trench MOSFET and method for fabricating same
CN103219377A (zh) 一种实现源漏栅非对称自对准的射频功率器件及其制备方法
CN113540229B (zh) 半导体器件及其制作方法
CN117393597B (zh) Hemt器件及其制备方法
KR100488475B1 (ko) 초고주파반도체소자의제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14772768

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14651992

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14772768

Country of ref document: EP

Kind code of ref document: A1