WO2014154017A1 - 一种摩擦电纳米传感器 - Google Patents

一种摩擦电纳米传感器 Download PDF

Info

Publication number
WO2014154017A1
WO2014154017A1 PCT/CN2014/000254 CN2014000254W WO2014154017A1 WO 2014154017 A1 WO2014154017 A1 WO 2014154017A1 CN 2014000254 W CN2014000254 W CN 2014000254W WO 2014154017 A1 WO2014154017 A1 WO 2014154017A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction layer
conductive element
layer
friction
sensor according
Prior art date
Application number
PCT/CN2014/000254
Other languages
English (en)
French (fr)
Inventor
林宗宏
王中林
Original Assignee
国家纳米科学中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家纳米科学中心 filed Critical 国家纳米科学中心
Publication of WO2014154017A1 publication Critical patent/WO2014154017A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/02Measuring coefficient of friction between materials

Definitions

  • the present invention relates to a sensor, particularly a triboelectric nanosensor fabricated using the principle of a friction nanogenerator.
  • BACKGROUND OF THE INVENTION Today, with the rapid development of microelectronics and materials technology, a large number of new miniature electronic devices with multiple functions and high integration have been continuously developed, and have shown unprecedented application prospects in various fields of daily life.
  • the sensor network will be the fundamental driving force for the future economic development. Sensing includes mechanical sensing, chemical sensing, biosensing and gas sensing.
  • a nanosensor is a device that uses a sensor device to convert a noteworthy molecular message (such as heavy metal content or a change in a specific biomolecule in a human body) into an electrical signal for recording analysis.
  • a noteworthy molecular message such as heavy metal content or a change in a specific biomolecule in a human body
  • nano-sensors need to be powered by an external power source, which not only consumes energy, but also the commonly used power sources are rechargeable or disposable batteries.
  • the size of these power sources is large, which limits the application range of nano-sensors.
  • the adverse effects on the environment after the battery is discarded also prompt people to find a more environmentally friendly source of power.
  • the present invention provides a triboelectric-based nanosensor capable of converting naturally occurring mechanical energy such as motion and vibration into electrical energy, and simultaneously incorporating an electronic transfer mechanism to realize a nanosensor technology that does not require an external power source.
  • the triboelectric nanosensor provided by the present invention includes: First conductive element,
  • the space holder is configured to face the upper surface of the second friction layer and the upper surface of the second friction layer and maintain a certain distance;
  • the first friction layer and the second friction layer can be at least partially contacted by an external force, and the original spacing is restored by the action of the space holder when the external force is cancelled, while passing through the first conductive element And outputting an electrical signal to the second conductive element;
  • the electrical signal can be changed after the second friction layer is combined with the target substance to be detected
  • the nanostructure can form an electron transfer between the two and the target substance to be detected;
  • the amount of change in the electrical signal is related to the type and/or concentration of the target substance to be detected
  • the nanostructures are capable of interacting with a target substance to be detected with high selectivity
  • the nanostructure is a nano-array composed of nanowires, nanosheets, nanorods, nanotubes and/or nanocones;
  • the nanostructure is a metal oxide
  • the nanostructure is selected from the group consisting of titanium dioxide, ferric oxide, triiron tetroxide and zirconium oxide;
  • the substance to be detected contains an ortho-dihydroxy group
  • the substance to be detected is selected from the group consisting of catechol, epicatechin, epigallocatechin, 3,4-dihydroxyphenylacetic acid, alizarin, ascorbic acid or dopamine.
  • the lower surface material of the first friction layer is an insulating material or a metal material; preferably, the insulating material is selected from the group consisting of aniline formaldehyde resin, polyacetal, ethyl cellulose, polyamide nylon 11, polyamide nylon 66 , wool and fabrics, silk and fabrics thereof, paper, polyethylene glycol succinate, cellulose, cellulose acetate, polyethylene glycol adipate, diallyl polyphthalate, regeneration Cellulose sponge, cotton and fabric, polyurethane elastomer, styrene-acrylonitrile copolymer, styrene-butadiene copolymer, wood, hard rubber, acetate, rayon, polymethyl methacrylate, polyethylene Alcohol, polyester, polyisobutylene, polyurethane elastic sponge, polyethylene terephthalate, polyvinyl butyral, buta
  • the insulating material is polytetrafluoroethylene or polydimethylsiloxane
  • the lower surface of the first friction layer is distributed with microstructures on the order of micrometers or submicrometers; preferably, the microstructures are selected from the group consisting of nanowires, nanorods, nanotubes, nanocones, nanoparticles, nanochannels , micron wire, micron rod, micro tube, micro cone, micro particle, micro groove;
  • the lower surface of the first friction layer has an embellishment or coating of nano material; preferably, the embellishment or coating of the nano material is selected from the group consisting of nanoparticles, nanotubes, nanowires and nanorods;
  • the first friction layer is a nano-array directly grown or chemically bonded on a lower surface of the first conductive element
  • the distance between the lower surface of the first friction layer and the upper surface of the second friction layer is more than an order of magnitude greater than the thickness of the first friction layer
  • the upper surface of the second friction layer has the same shape as the lower surface of the first friction layer, such that when an external force is applied, the lower surface of the first friction layer is in full contact with the upper surface of the second friction layer;
  • the first insulating support layer and/or the second insulating support layer is a plexiglass sheet, a polyethylene sheet or a polyvinyl chloride sheet;
  • the first conductive element and the second conductive element are selected from a metal, a conductive oxide or a conductive polymer;
  • the first conductive element and the second conductive element are selected from the group consisting of gold, silver, platinum, aluminum, nickel, copper, titanium, chromium or selenium, and an alloy formed of the above metal;
  • the invention provides a method for preparing the above triboelectric nanosensor, which comprises the following steps:
  • the in-situ growth method is selected from the group consisting of a hydrothermal reaction method, an epitaxial growth method, and an electrochemical etching method;
  • the in-situ growth method is a hydrothermal reaction method, and ultrasonic cleaning is performed on the nano-array formed by in-situ growth;
  • the hydrothermal reaction temperature is from 0 ° C to 250 O, more preferably from 50 ° C to 250 ° C, more preferably from 100 ° C to 200 ° C;
  • the reaction time is 10-30 hours, preferably 15-25 hours, preferably 24 hours; preferably, further comprising adding a first insulating support to the outer side of the first conductive element between steps (5) and (6) A layer and/or a step of attaching a second insulating support layer to the outside of the second conductive element.
  • the triboelectric nanosensor of the present invention has the following advantages: Firstly, the self-driven molecular sensing technology is realized by the principle of triboelectric nanogenerator for the first time in combination with the electron transfer mechanism, and the working mechanism of the triboelectric nanosensor is proved, so that those skilled in the art can guide the disclosure of the present invention.
  • the desired triboelectric nanosensor is prepared.
  • the present invention finds for the first time that the nanostructures are directly grown on the conductive elements, which can significantly improve the output performance of the electrical signals, and breaks the limitation that the friction layer is first prepared to form nanostructures on the surface of the friction layer, which greatly simplifies the preparation method. It reduces costs and provides a new way to optimize the output of electrical signals.
  • the triboelectric nanosensor of the present invention has a small size, self-driving characteristics, can be widely used in various fields, and saves energy, and is a green sensor device.
  • the triboelectric nanosensor of the present invention can adjust the nanostructure to adapt to changes in the target substance to be detected, and has convenient controllability.
  • the triboelectric nanosensor of the present invention can not only interact with the target substance to be detected with high selectivity, but also requires an electron transfer phenomenon between the target substance to be detected and the sensor, so that the electrical signal changes. Therefore, it has extremely high detection sensitivity.
  • the triboelectric nanosensor of the present invention is convenient to manufacture, low in cost, and easy to be industrially popularized and applied.
  • BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features and advantages of the present invention will become more apparent from the claims.
  • the same reference numerals are used throughout the drawings to refer to the same parts.
  • the drawings are not intentionally scaled to the actual size and the like, with emphasis on the gist of the present invention.
  • FIG. 1 is a schematic view showing a typical structure of a triboelectric nanosensor of the present invention
  • FIG. 2 is a schematic view showing a typical structure of a triboelectric nanosensor of the present invention subjected to an external force, wherein (a) the second friction layer is a nanostructure, and (b) the first friction layer and the second friction layer are both nanostructures. ;
  • 3 is a schematic view showing the working principle of the triboelectric nanosensor of the present invention
  • 4 is experimental data of electron transfer between a nanostructure of a triboelectric nanosensor of the present invention and a catechin to be detected, wherein (a) is an ultraviolet-visible absorption spectrum, and (b) is a cyclic voltammetry curve;
  • FIG. 5 is a schematic view showing another typical structure of the triboelectric nanosensor of the present invention, wherein (a) is a case where the space holder is located between the two insulating supports, and (b) is a case where the space holder is located outside the insulating support. ;
  • FIG. 6 is a schematic view showing another typical structure of a friction 3 ⁇ 4 nanosensor of the present invention
  • FIG. 7 is a cross-sectional view showing a typical structure of a friction 3 ⁇ 4 nanosensor of the present invention
  • FIG. 8 is a schematic diagram of a triboelectric nanosensor for detecting Measuring the open circuit voltage and short circuit current output obtained by catechin;
  • FIG. 9 is a diagram of a triboelectric nanosensor for detecting a concentration range of catechins according to an embodiment of the present invention.
  • Figure 10 is an electron micrograph of a titanium dioxide nano-array obtained by hydrothermal reaction at different temperatures
  • Figure 11 is an electron micrograph of a titanium dioxide nano-array before and after ultrasonic treatment
  • Figure 12 is a diagram showing the open circuit voltage output of the comparative example.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The technical solutions in the embodiments of the present invention will be clearly and completely described in the following with reference to the accompanying drawings. It is apparent that the described embodiments are only a part of the embodiments of the invention, rather than all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • the triboelectric nanosensor of the present invention utilizes the electron transfer between the nanostructure and the substance to be detected to affect the signal output of the friction nanogenerator, and selects a substance capable of forming a highly selective interaction with the substance to be detected as a friction layer. It can provide an output signal different from the original in the environment containing the substance to be detected, thereby achieving the purpose of detection.
  • a triboelectric nanosensor of the present invention comprising: a first conductive element 11, a first friction layer 12 placed in contact with a lower surface of the first conductive element 11, a second conductive element 21, and a second conductive element An array of nanostructures 40 grown directly on the upper surface of the surface 21 to form a second friction layer 22; an insulating space holder 30.
  • the insulating space holder 30 is used to connect the first conductive element 11 and the second conductive element 21 such that the first friction layer 12 and the second friction layer 22 face each other, and maintain a certain gap when no external force is applied.
  • the second friction layer 12 is in contact with the second friction layer 22 and has a slight tangential sliding due to the triboelectric effect. Surface charge transfer occurs between the first friction layer 12 and the second friction layer 22.
  • friction electrode sequence refers to the order in which the material is attracted to the charge according to the degree of attraction of the material.
  • the positive charge on the contact surface is from the surface of the material having a relatively negative polarity in the friction electrode sequence. Transfer to the surface of the material with a positive polarity in the friction electrode sequence.
  • the "contact charge” as used in the present invention refers to the charge on the surface of a material having a difference in polarity between two kinds of friction electrode sequences after contact friction and separation, and it is generally considered that the charge is only distributed on the surface of the material. The maximum depth of distribution is only about 10 nanometers. It should be noted that the sign of the contact charge is a sign of the net charge, that is, there may be a concentrated region of negative charge in a local region of the surface of the material with a positive contact charge, but the sign of the net charge of the entire surface is positive.
  • FIG. 3 a The principle of electrical signal output of the triboelectric nanosensor of the present invention is shown in FIG.
  • the first friction layer 12 When no external force is applied, the first friction layer 12 is separated from the second friction layer 22, as shown in FIG. 3 a; under the action of an external force (arrow), the first friction layer 12 and the second friction layer 22 are in contact with each other. Surface charge transfer occurs at the moment of contact, forming a surface contact charge, as shown in Figure 3b. Since the position of the material between the first friction layer 12 and the second friction layer 22 in the friction electrode sequence is different, the surface of the first friction layer 12 generates a negative charge, and the surface of the first friction layer 22 generates a positive charge, two kinds of charges. The amount of electricity is the same.
  • the nanosensor of the present invention outputs an electrical signal outward, and there must be two friction layer contact and separation processes. There is no special requirement for the contact area, but it is obvious that the larger the contact friction area, the more surface charge is generated. Therefore, the intensity of the electrical signal outputted to the outside is also greater.
  • the triboelectric nanosensor is placed in an environment to be detected, and since the nanostructure 40 forming the second friction layer 22 can interact with the target substance to be detected with high selectivity, the environment in the environment is selectively detected.
  • the target substance is attached to the second friction layer 22, and this action directly causes a change in the electrical signal generated during the contact friction between the nanostructure 40 and the first friction layer 12, and the change is related to the type of the target substance to be detected. / or concentration is related, because different kinds of target substances will have different electron transfer characteristics, and the greater the concentration of the target substance to be detected, the more substances that can be combined with the sensor, and the more influence on the second friction layer Large, this allows us to perceive the information of the target substance to be detected by the change of the electrical signal.
  • the above is the basic working principle of the triboelectric nanosensor of the present invention.
  • highly selective interaction means that when the same concentration of substances interacts with the nanostructures, the effect of the target substance to be detected is statistically significant. Specifically, the change in the output current density and voltage of the sensor before and after the target substance to be detected is at least three times the change value before and after the action of other environmental substances. This high selectivity is primarily due to the selective adsorption of the nanostructures 40 to the target species to be detected.
  • the influence of the target substance to be detected on the output electrical signal of the triboelectric nanosensor comes from two aspects: First, the electron transfer between the target substance to be detected and the nanostructure, which causes the nanostructure to be in the target substance to be detected. After the action, the number of electrons that can be transferred changes, so that the contact charge formed after the contact with the first friction layer 12 changes, and the externally output electrical signal is correspondingly enhanced or weakened. This electron transfer is most commonly promoted by the formation of chemical bonds. Therefore, a nanostructure capable of interacting with a target substance to be detected and forming a chemical bond is generally selected to constitute the sensor of the present invention, for example, when the target to be detected is adjacent.
  • the nanostructure used in the sensor is a metal oxide, preferably ferric oxide, triiron tetroxide, titanium dioxide and zirconium dioxide. Because the ortho-dihydroxy group reacts with the metal in the metal oxide to generate a Ligand-to-metal charge transfer, the action causes the target substance to be detected to transfer electrons to the nano metal oxide, such that The number of electrons that can be supplied is much higher than normal, and the number of transferred electrons after contact with the first friction layer 12 is increased. If the composition of the first friction layer 12 is an insulator at this time, the electrical signal output by the sensor will be Rising; if the composition of the first friction layer 12 is metal at this time, the electrical signal output by the sensor is weakened.
  • Figure 4 shows the UV absorption spectrum of the substance to be detected before and after binding to the nanostructure in the case where the nanostructure is a nano-titanium dioxide array and the substance to be detected is catechol (ie catechin) (Fig. 4 (a ) and cyclic voltammetry (Fig. 4 (b)), where (i) is before binding, (ii) is after binding, and Fig. 4 (a) is a small image inside the color change before and after bonding.
  • the photoresponse range of the titanium dioxide nano-array combined with catechol is broadened, and the edge of the conduction band is reduced from -0.54V to -0.62V, indicating that electrons are transferred from the defect energy level of catechol to titanium dioxide.
  • This experimental result is not only a direct evidence of electron transfer, but also provides a suitable method for screening the types of nanostructures in the field, so that people can also select the appropriate principles and methods according to the present invention when detecting other substances.
  • Nanostructures is not only a direct
  • Another aspect of the effect of the target substance to be detected on the output electrical signal of the triboelectric nanosensor is that the frictional property of the target substance to be detected and the second friction layer 22 are different, when the target to be detected After the substance is adsorbed, the target substance to be detected covers a portion of the surface of the second friction layer 22, so that the electron-acquisition ability of the entire friction surface in contact with the first friction layer 12 changes, thereby causing an electrical signal output from the sensor to be affected. It can be seen that the effects of these two aspects are related to the type and concentration of the object to be detected, and the electron transfer between the object to be detected and the second friction layer 22 is relatively easy and/or the triboelectric characteristics are greatly different.
  • the concentration of the target to be detected should be positively correlated with the amount of change in the output signal before the saturated adsorption amount is reached. Therefore, if other objects are to be detected in practical applications, the corresponding nanostructures are selected as the second friction layer 22 of the sensor of the present invention according to the above principles disclosed in the present invention according to their chemical and physical properties. can.
  • the main function of the first friction layer 12 and the second friction layer 22 is to generate an electrical signal output by friction, so that the two are respectively composed of materials having different triboelectric characteristics, which mean that the two are at the friction electrode.
  • the sequence is in a different position so that both can generate contact charges on the surface during the friction.
  • Conventional insulating materials have triboelectric properties, which can be used as materials for preparing the first friction layer 12 and the second friction layer 22 of the present invention.
  • some common insulating materials are listed and sorted from positive polarity to negative polarity according to the friction electrode sequence.
  • aniline formaldehyde resin polyoxymethylene, ethyl cellulose, polyamide 11, polyamide 6-6, wool and its woven fabric, silk and its fabric, paper, polyethylene glycol succinate, cellulose, cellulose Acetate, polyethylene glycol adipate, diallyl polyphthalate, regenerated cellulose sponge, cotton and its fabric, polyurethane elastomer, styrene-acrylonitrile copolymer, styrene-butyl Diene copolymer, wood, hard rubber, acetate, rayon, polymethyl methacrylate, polyvinyl alcohol, polyester (polyester), polyisobutylene, polyurethane elastic sponge, polyethylene terephthalate, Polyvinyl butyral, butadiene-acrylonitrile copolymer, neoprene, natural rubber, polyacrylonitrile, poly(vinylidene chloride-co-acrylonitrile), polybisphenol A carbonate, polychloroether, Poly
  • the conductors have triboelectric properties that tend to lose electrons relative to the insulator, and are often located at the end in the list of frictional electrode sequences. Therefore, the conductor can also be used as a raw material for preparing the first friction layer 12 or the second friction layer 22.
  • Commonly used conductors include metals, conductive oxides or conductive polymers, wherein the metals include gold, silver, platinum, aluminum, nickel, copper, titanium, chromium or selenium, and alloys formed from the above metals; conductive oxides commonly used as indium Tin oxide ITO and the like. Since the conductive material itself can be used as a conductive member, when the friction layer uses a conductive material, the conductive member and the corresponding friction layer can be combined into one.
  • the first friction layer 12 and the second friction layer 22 can be prepared according to actual needs, and a suitable material can be selected to obtain a better output effect.
  • the first friction layer 12 is polytetrafluoroethylene or polydimethylsiloxane and/or the second friction layer 22 is titanium dioxide, ferric oxide, triiron tetroxide or zirconium dioxide.
  • the existing nano-generators all adopt a film-like friction layer, or form a nano-structure on the surface of the film-like friction layer by etching or the like to increase the friction area.
  • the inventors have found for the first time that when the nanostructure 40 is directly grown on the conductive member or chemically bonded to the nanostructure 40 as a friction layer, the output performance of the electrical signal is greatly increased (see Embodiment 1 for details). Comparison with the data of Comparative Example 1).
  • the so-called direct growth means that the nanostructure is formed in situ on the surface of the conductive element; and the chemical bond means that the nanostructure is connected to the surface of the conductive element by a chemical bond, and the connection may be a process in which the nanostructure grows in situ on the surface of the conductive element.
  • the reason for the increase in electrical signal output performance may be that while the friction area is increased, the in-situ growth of the nanostructures is more closely related to the conductive elements, so that the transfer of electrons between the two is easier. The surface contact charge generated by the friction is more easily transferred to the conductive member, thereby increasing the electrical signal strength of the output.
  • first friction layer 12 is also composed of a nano array, and the first friction layer 12 and the second friction layer 22 are applied after an external force is applied.
  • the nano-arraps are interlaced and the friction area is further improved). Therefore, in the actual application process, one or two nanostructure friction layers directly grown on the surface of the conductive member can be selected and used in combination with cost and output performance requirements.
  • the method of in-situ growth of the nanostructures may employ a hydrothermal method, an epitaxial growth method, an electrochemical etching method, or the like.
  • Nanoarrays formed by nanowires, nanosheets, nanorods, nanotubes, and/or nanocones have excellent output properties.
  • the lower surface of the first friction layer 12 may be physically modified to have a surface distribution of micrometers or Microarray arrays on the order of microns.
  • Specific modification methods include photolithography, chemical etching, and ion etching.
  • the object can also be achieved by the embellishment or coating of the nano material, which can be selected from the group consisting of nanoparticles, nanotubes, nanowires and nanorods, and can selectively select gold nanoparticles, gold nanowires according to actual needs.
  • One method is to introduce a more electron-releasing functional group (ie, a strong electron donating group) to the first friction layer 12 on the surface of the positive polarity material, or to introduce a more electron-friendly functional group on the surface of the negative polarity material (
  • the strong electron-withdrawing group) can further increase the amount of transfer of charges when sliding each other, thereby increasing the triboelectric charge density and the output power of the generator.
  • Strong electron donating groups include: an amino group, a hydroxyl group, an alkoxy group and the like; strong electron withdrawing groups include: an acyl group, a carboxyl group, a nitro group, a sulfonic acid group and the like.
  • the introduction of the functional group can be carried out by a conventional method such as plasma surface modification. For example, a mixture of oxygen and nitrogen can be used to generate a plasma at a certain power to introduce an amino group on the surface of the substrate material.
  • Another method is to introduce a positive charge on the surface of the substrate material having a positive polarity and a negative charge on the surface of the substrate material having a negative polarity.
  • it can be achieved by chemical bonding.
  • TEOS ethyl orthosilicate
  • sol-gel hydrolyzing-condensation
  • CTAB hexadecanyltrimethylammonium bromide
  • a key to the normal operation of the triboelectric nanosensor of the present invention is that the output electrical signal is changed before and after the action of the target substance to be detected.
  • the present invention This is ensured by selecting a suitable material of the second friction layer 22 to enable electron transfer between the target substance to be detected.
  • the detection sensitivity and signal output intensity of the sensor of the present invention can be further optimized.
  • first friction layer 12 and the second friction layer 22 must be hard materials, and the flexible material may also be selected, because the hardness of the material does not affect the friction effect between the two, and those skilled in the art may choose the actual situation.
  • the thicknesses of the first friction layer 12 and the second friction layer 22 have no significant effect on the implementation of the present invention, but factors such as the strength of the friction layer and the efficiency of power generation need to be comprehensively considered in the preparation process.
  • the preferred friction layer of the present invention is a thin layer having a thickness of from 50 nm to 2 cm, preferably from 100 nm to 1 cm, more preferably from 500 nm to 5 mm, still more preferably from m to 2 mm, and these thicknesses are applicable to all of the technical solutions in the present invention.
  • the shape of the first friction layer 12 and the second friction layer 22 is not particularly limited as long as it is ensured that at least a part of the lower surface of the first friction layer 12 is in contact with the upper surface of the second friction layer 22 by an external force.
  • the upper surface of the first friction layer 12 and the upper surface of the second friction layer 22 are preferably identical in shape such that when an external force is applied, the lower surface of the first friction layer 12 is The upper surface of the second friction layer 40 is in full contact to produce the maximum contact charge density.
  • the pitch is preferably the first.
  • the thickness of the friction layer 12 is large, and it is preferably one order of magnitude larger.
  • the first conductive element 11 and the second conductive element 21 serve as two electrodes of the generator, and are required to have characteristics capable of being electrically conductive, and may be selected from metals, conductive oxides or conductive polymers, and commonly used metals include gold, silver, platinum, aluminum, Nickel, copper, titanium, chromium or selenium, and alloys formed from the above metals; commonly used conductive oxides include indium tin oxide ITO and ion doped semiconductors.
  • the first conductive element 11 is preferably in intimate contact with the surface of the first friction layer 12 to ensure charge transfer efficiency; it may be prepared on the surface of the first friction layer 12 by deposition, such as an electron beam.
  • the second conductive element 21 is required to be an in-situ growth substrate of the second friction layer 22.
  • the second friction layer 22 can be epitaxially grown on the surface of the second conductive element 21 to form a whole.
  • the second conductive member 21 is titanium, and the desired titanium dioxide nano-array can be formed on the surface thereof by hydrothermal method, so that the second conductive member 21 and the second friction layer 22 become a tightly coupled integrated structure.
  • the conductive member may be a film or a thin layer, and the thickness may be selected from the range of 10 nm to 2 cm, preferably 50 nm to 5 mm, more preferably 100 nm to 1 mm, still more preferably 500 nm to 500 m, still more preferably 1 ⁇ to 100 ⁇ .
  • the conductive element need not necessarily be rigid or flexible, as the flexible conductive element can also serve to support and conduct electricity to the friction layer.
  • the first conductive element 11 and the second conductive element 21 may be connected to the external circuit in a manner of being connected to the external circuit through a wire or a thin layer of metal.
  • the space holder 30 is configured to maintain the first friction layer 12 and the second friction layer 22 in contact with each other under an external force, and to form a gap without an external force.
  • the space holder 30 may be made of an elastic material having an insulating property such as an elastic organic material, such as an elastic rubber and a spring, and according to the shapes of the first conductive member 11, the first friction layer 12, the second conductive member 21, and the second friction layer 22.
  • the size and relative position determine the shape and position of the insulating space holder 30.
  • a ring of the insulating space holder may be attached around the second friction layer 22 around the second friction layer 22, or the insulating space holder may be directly bonded to the surface of the friction layer, and the space holder may be connected.
  • the space holder 30 On the outer side of the conductive member, as shown in Fig. 5(b), wherein the space holder 30 is a U-shaped elastic piece, it may be provided only on one side of the sensor or on both sides. When the space holder 30 is attached to the insulating support, it can also be made of a conductive material such as a metal dome or a spring.
  • the substance to be detected in the present embodiment is a substance containing an ortho-dihydroxy group, that is, a molecule having two hydroxyl groups in an adjacent position, and preferably an acid bond between adjacent carbon atoms respectively connected to two hydroxyl groups is an unsaturated bond.
  • two hydroxyl groups are respectively attached to two adjacent carbon atoms of the unsaturated ring, and between the two carbon atoms are unsaturated bonds, such as catechol, epicatechin, epigallocatechin, 3 , 4-dihydroxyphenylacetic acid, alizarin, ascorbic acid or dopamine.
  • an ortho-dihydroxy group that is, a molecule having two hydroxyl groups in an adjacent position, and preferably an acid bond between adjacent carbon atoms respectively connected to two hydroxyl groups is an unsaturated bond.
  • two hydroxyl groups are respectively attached to two adjacent carbon atoms of the unsaturated ring, and between the two carbon atoms are unsaturated bonds, such as catechol, epicatechin, epigallocate
  • the sensor includes a first insulating support layer 10, a first conductive element 11 placed in contact with a lower surface of the first insulating support layer 10, and a first friction layer 12 placed in contact with a lower surface of the first conductive element 11;
  • the second conductive element 21 is placed on the upper surface of the second insulating support layer 20; the second friction layer 22 is formed on the upper surface of the second conductive element 21; and the space holder 30 is provided.
  • the space holder 30 is configured to connect the first insulating support layer 10 and the second insulating support layer 20 such that the lower surface of the first friction layer 12 faces the upper surface of the second friction layer 22 and is kept constant when no external force is applied. Clearance. When an external force is applied, the lower surface of the first friction layer 12 is in contact with the second friction layer 22 and has a slight tangential sliding, and the first friction layer 12 and the second friction layer are present due to the frictional electrification effect. A table 'charge transfer occurs between 22'.
  • the main difference between this embodiment and the embodiment shown in FIG. 1 is that an insulating support layer is used, and the bonding position of the space holder 30 is changed from the conductive member to the insulating support layer.
  • This design increases the mechanical strength of the sensor as a whole.
  • the space holder 30 can be made of a conductive material due to the insulating properties of the support layer.
  • the first insulating support layer 10 and the second insulating support layer 20 may be a hard material or a flexible material. It is preferable to use a non-deformable hard material such as a plexiglass sheet, a polyethylene sheet, a polyvinyl chloride sheet or the like. The thickness thereof is not particularly limited and can be freely selected according to the strength.
  • FIG. 6 is a schematic view showing another typical structure of the triboelectric nanosensor of the present invention.
  • This embodiment is basically the same as the embodiment shown in Fig. 5(a) except that the first conductive member 11 is simultaneously present as the first friction layer.
  • This design greatly simplifies the structure and preparation process of the triboelectric nanosensor, which is more conducive to the promotion and application of the industrial calf production.
  • the electron-conducting ability of the conductive material is relatively strong, which is more conducive to improving the output performance of the electric signal.
  • the invention also provides a preparation method of the above friction nano sensor, comprising the following steps: (1) cleaning the second conductive element, which can be washed with an organic solvent and/or water, such as a common cleaning agent such as acetone, diethyl ether or ethanol;
  • the in-situ growth method may be specifically selected according to the type of the second conductive element and the nanostructure.
  • the in-situ growth method may employ a hydrothermal reaction method, an epitaxial growth method, and an electrochemical method.
  • hydrothermal reaction temperature is 0 ° C - 250 ° C, more preferably 50 ° C - 250 °C, more preferably 100 °C-200 °C ; wherein, 100 °C is suitable for nanosheet growth, 150 °C is suitable for smaller size nanosheet growth, 15CTC is suitable for nanowire growth; reaction time is 10-30 hours , preferably 15-25 hours, preferably 24 hours;
  • the deposition method may be a conventional method in the field of semiconductors, such as electron beam evaporation, vacuum sputtering, evaporation, magnetron ion sputtering, or the like;
  • a plurality of insulating space holders are mounted on the first conductive member and the second conductive member such that the first friction layer and the second friction layer face each other and maintain a certain gap.
  • Step (5-1) may also be included, that is, between the steps (5) and (6), a first insulating support layer is added to the outer side of the first conductive element and/or a second side is attached to the outer side of the second conductive element. Insulate the support layer to increase the overall strength of the sensor.
  • a metal gold thin film layer having a thickness of 50 nm and a size of 1.8 cm ⁇ 0.6 cm is used as the first conductive layer, and a polytetrafluoroethylene (PTFE) thin film layer having a thickness of 25 ⁇ m is used as the first friction layer 12, and has a thickness of 125 ⁇ m.
  • PTFE polytetrafluoroethylene
  • a titanium metal thin film layer having a size of 1.8 cm X 0.6 cm is used as the second conductive layer, and a titanium oxide nanowire array 40 having a length of 4.2 ⁇ is grown in situ on the titanium thin film by hydrothermal method as the second friction layer 21, the titanium dioxide nanowire Array is not only available As a friction layer, it is more likely to cause selective adsorption of catechins, which in turn becomes a catechin sensor, as shown in FIG.
  • the first insulating support layer 10 and the second insulating support layer 20 are both plexiglass sheets, and the two are connected by a spring. See FIG. 7 for the connection manner.
  • the second friction layer and the PTFE film layer are separated, leaving a gap of 3 cm between each other. Since the polytetrafluoroethylene has a very negative polarity in the friction electrode sequence, and the polarity of the titanium dioxide phase is comparatively positive in the friction electrode sequence, the material combination of the present embodiment is advantageous for improving the output of the triboelectric nanosensor.
  • the lead wire After the lead wire is led out by the first conductive element and the second conductive element of the triboelectric nanosensor, it is connected to the full bridge rectifier to convert the alternating current output generated by the triboelectric nanosensor into a direct current output.
  • Applying a fixed external force to the triboelectric nanosensor provides an output voltage of about 4.3 V and an output current density of ⁇ . ⁇ /cm 2 (Figs. 8(a) and 8(b)).
  • catechin 0.5 mM
  • its output voltage increased to 21.3 V and the current was 3.2 ⁇ / ⁇ 2 (Fig. 8 (c) and 8 (d)).
  • Further detection of catechins with different concentrations ( ⁇ -lmM) revealed that the linear range was 10 ⁇ -0.5 ⁇ (Fig. 9), and the detection limit was up to 5 ⁇ , which clearly demonstrated its application potential.
  • a metal aluminum sheet having a thickness of 5 mm and a size of 2 cm X 2 cm is used as the first conductive member, and the thickness is 40 ⁇ , and a pyramidal polydimethylsiloxane (PDMS) film layer is used as the first friction layer.
  • PDMS pyramidal polydimethylsiloxane
  • a layer of photoresist is spin-coated on the silicon wafer, and a square window array having a side length of micrometer or submicron is formed on the photoresist by photolithography; the first friction layer after the photolithography is completed
  • the chemical etching of the hot potassium hydroxide forms an array of pyramid-shaped recessed structures at the window.
  • a metal copper thin plate having a thickness of 5 mm and a size of 2 cm X 2 cm was used as the first conductive member, and a ferroferric oxide nanowire array having a length of 5 ⁇ ! in situ was used as the second friction layer.
  • the elastic metal rubber is used as the insulating space holder to connect the metal copper sheet and the metal aluminum sheet, so that the polydimethylsiloxane layer and the ferric oxide layer face each other, and the distance between the two is kept at a distance of 1 cm when no external force is applied, thereby forming Dopamine sensor.
  • the polydimethylsiloxane array having a micron structure on the surface when the polydimethylsiloxane array having a micron structure on the surface is in contact with the ferric oxide particles under external force and is squeezed, since the PDMS is elastic, it can enter and fill.
  • the concave structure on the surface of the ferric oxide particles increases the contact area compared with the horizontal plane, and thus has good electrical signal output performance.
  • the polyethylene sheet is used as the two insulating supports, and the elastic rubber is used as the insulating space holder.
  • the assembled gold nano-particle film is used as the first conductive element and the first friction layer, and the gold is firstly evaporated by 50 nm and the size is lcm X lcm.
  • Thin film, 1,3-dimercaptopropane is used to assemble gold nanoparticles with h size of 56 nm, metal aluminum with thickness of 100 nm is used as the second conductive element, and 50 nm thick zirconia nanorods
  • the film formed by the array serves as a second friction layer to achieve highly selective adsorption of ascorbic acid.
  • a gold film having gold nanoparticles on the surface is used as the first friction layer, so that the contact area with the second friction layer is significantly increased, and the electric power of the sensor is improved. Signal output performance.
  • This embodiment details the preparation method of the nanosensor used in Example 1.
  • the metal titanium flakes with a size of 1.8cm X 0.6cm were ultrasonically cleaned in acetone, ethanol and water for 10 minutes, placed in a Teflon-lined stainless steel reaction vessel, and 20 mL of a 1 M aqueous sodium hydroxide solution was added. The reaction was carried out at a predetermined temperature for 24 hours and then cooled under air.
  • the surface of the Ti flakes was covered with a Na 2 Ti 2 0 4 (OH) 2 nano-array, washed with water and immersed in 20 mL of 1 M HCI aqueous solution for 10 min to achieve H+ versus Na + The substitution was carried out to form an H 2 Ti 2 0 4 (OH) 2 nano-array, which was washed again with water, dried at room temperature, and calcined at 50 CTC for 3 hours to form a desired titanium dioxide nano-array.
  • the inventors compared different hydrothermal reaction temperatures and found that the cell morphology of the nano-array can be controlled by controlling the reaction temperature, as specifically shown in Figure 10, where (a), (b), (c), and (d) The results are 25 ° C, 100 ° C, 150 ° C and 20 (TC results. It can be seen that by changing the temperature of the hydrothermal reaction, nano-rods, nanosheets and nanowires can be prepared in situ. The array can meet different usage needs.
  • the wood inventor has added a special processing step, that is, adding ultrasonic for 30 s in the water washing process after the replacement reaction, It is sufficient to remove some unstable structures formed during the growth of the nano-array.
  • the effect of this step can be clearly seen from Figure 11, where (a) is the electron micrograph before the sonication and (b) is the processed electron micrograph.
  • this step is simple, it can effectively solve the problem of unstable output of the nano-generator signal, which was first proposed by the present invention.
  • An upper-layer 50 nm thick metal Cu film was deposited by electron beam evaporation on a commercially available polytetrafluoroethylene (PTFE) film having a thickness of 25 ⁇ m, and then the Cu/PTFE composite material was bonded to polyethylene terephthalate.
  • the diester (abbreviated as PET) is the inner surface of the flexible substrate and has the PTFE film at the top of the body.
  • the 0 2 nano Array/Ti film prepared in the first step is placed opposite to the Cu/PTFE/PET so that the Ti0 2 nano Array is face-to-face opposite to the PTFE film, and the Ti and Cu films are connected to the measuring device by wires, that is, the completion is completed. Assembly of the nanosensor of the invention.
  • the second friction layer is not a titanium dioxide nanowire array grown in situ on the titanium thin layer, but the titanium dioxide nanoparticles are directly tilted on the thin titanium layer, and adsorbed.
  • the circuit voltage diagram after catechin is shown in Figure 12. It can be seen that due to the small contact surface area, the open circuit voltage of the output is much lower than that of the titanium dioxide nano-array, and the signal is less stable, which may be related to the falling off of particles during the working process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Immunology (AREA)
  • Electrochemistry (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种基于电子转移机制的摩擦纳米传感器,传感器包括:第一导电元件(11),第一导电元件(11)下表面接触放置的第一摩擦层(12),第二导电元件(21),第二导电元件(21)上表面直接生长或化学键连的纳米结构物,即第二摩擦层(22),以及空间保持件(30);其中空间保持件(30)用于使第一摩擦层(12)下表面与第二摩擦层(22)上表面面对面并保持一定间距;第一摩擦层(12)与第二摩擦层(22)能够在外力的作用下至少部分接触、并在外力撤销时通过空间保持件(30)的作用而恢复原有间距,同时通过第一导电元件(11)和第二导电元件(21)向外输出电信号;并且电信号能够在第二摩擦层(22)与待探测目标物质结合后发生改变。该传感器具有自驱动、高灵敏度、便携等优势。

Description

—种摩擦电纳米传感器
技术领域 本发明涉及一种传感器, 特别是利用摩擦纳米发电机的原理而制作 的摩擦电纳米传感器。 背景技术 在微电子和材料技术高速发展的今日, 大量新型具有多种功能和高 度集成化的微型电子器件不断被开发出来, 并在人们日常生活的各个领 域展现出前所未有的应用前景。 传感网络将是未来驱动经济发展的根本 动力。 传感包括机械传感, 化学传感, 生物传感和气体传感。 纳米传感 器是指利用传感器件将环境屮值得注意的分子讯息(如重金属含量或人 体中特定生物分子的改变量) 转换成电讯号以便纪录分析的一种装置。 随着科技不断的进步,其应用也越来越广,包括在化学分析、医疗诊断、 食品工业或环境监测等领域上, 皆可见到各种纳米传感器的运用。 然而 一般纳米传感器皆须外接电源来驱动其工作, 不仅耗费能源, 而且目前 常用的电源以可充电或一次性电池为主, 这些电源的体积较大, 使纳米 传感器的应用范围受到了严重的制约, 同时电池废弃后对环境产生的恶 劣影响也促使人们努力的寻找更为环保的动力来源。
自然界和人类生命存续过程中会不断产生各种动能和势能, 如何将 这些微小的能量转变为我们所需的驱动力来源, 是人们在不断探寻的方 向。 但是, 目前在分子传感领域, 相关的报导极少, 值得大力推广。 发明内容 为解决上述问题, 本发明提供一种基于摩擦电的纳米传感器, 能够 将运动、 振动等自然存在的机械能转化为电能, 同时结合电子的转移机 制, 实现了无需外接电源的纳米传感器技术。
为实现上述目的, 本发明提供的摩擦电纳米传感器包括: 第一导电元件,
第一导电元件下表面接触放置的第一摩擦层,
第二导电元件,
第二导电元件上表面直接生长或化学键连的纳米结构物, 为第二摩 擦层,
以及, 空间保持件;
其中, 所述空间保持件用于使所述第 ·摩擦层下表面与所述第二摩 擦层上表面面对面并保持一定间距;
所述第一摩擦层与所述第二摩擦层能够在外力的作用下至少部分 接触、 并在外力撤销时通过所述空间保持件的作用而恢复原有间距, 同 时通过所述第一导电元件和所述第二导电元件向外输出电信号;
并且, 所述电信号能够在所述第二摩擦层与待探测目标物质结合后 发生改变;
优选地, 所述纳米结构物与待探测目标物质结合后二者之间能够形 成电子转移;
优选地,所述电信号的变化量与待探测目标物质的种类和 /或浓度有 关;
优选地, 所述纳米结构物能够与待探测目标物质发生高选择性的相 互作用;
优选地, 所述纳米结构物为纳米线、 纳米片、 纳米棒、 纳米管和 / 或纳米锥构成的纳米阵列;
优选地, 所述纳米结构物为金属氧化物;
优选地, 所述纳米结构物选自二氧化钛、 三氧化二铁、 四氧化三铁 和氧化锆;
优选地, 所述待探测物质含有邻位二羟基;
优选地, 所述待探测物质选自邻苯二酚、 表儿茶素、 表没食子儿茶 素、 3,4-二羟基苯乙酸、 茜素、 抗坏血酸或多巴胺。
优选地, 所述第一摩擦层下表面和第二摩擦层的材料之间存在摩擦 电极序差异; 优选地, 所述第一摩擦层的下表面材料为绝缘材料或金属材料; 优选地, 所述绝缘材料选自苯胺甲醛树脂、 聚甲醛、 乙基纤维素、 聚酰胺尼龙 11、 聚酰胺尼龙 66、 羊毛及其织物、 蚕丝及其织物、 纸、 聚乙二醇丁二酸酯、 纤维素、 纤维素醋酸酯、 聚乙二醇己二酸酯、 聚邻 苯二甲酸二烯丙酯、 再生纤维素海绵、 棉及其织物、 聚氨酯弹性体、 苯 乙烯-丙烯腈共聚物、 苯乙烯-丁二烯共聚物、 木头、 硬橡胶、 醋酸酯、 人造纤维、 聚甲基丙烯酸甲酯、 聚乙烯醇、 聚酯、 聚异丁烯、 聚氨酯弹 性海绵、聚对苯二甲酸乙二醇酯、 聚乙烯醇缩丁醛、丁二烯 -丙烯腈共聚 物、 氯丁橡胶、 天然橡胶、 聚丙烯腈、 聚 (偏氯乙烯 -co-丙烯腈)、 聚双酚 A碳酸酯、 聚氯醚、 聚偏二氯乙烯、 聚 (2,6-二甲基聚亚苯基氧化物)、 聚苯乙烯、 聚乙烯、 聚丙烯、 聚二苯基丙垸碳酸酯、 聚对苯二甲酸乙二 醇酯、 聚酰亚胺、 聚氯乙烯、 聚二甲基硅氧垸、 聚三氟氯乙烯、 聚四氟 乙烯和派瑞林; 所述金属材料选自金、 银、 铂、 铝、 镍、 铜、 钛、 铬或 上述金属形成的合金薄膜;
优选地, 所述绝缘材料为聚四氟乙烯或聚二甲基硅氧垸;
优选地, 所述第一摩擦层下表面分布有微米或次微米量级的微结构; 优选地, 所述微结构选自纳米线、 纳米棒、 纳米管、 纳米锥、 纳米 颗粒、 纳米沟槽、 微米线、 微米棒、 微米管、 微米锥、 微米颗粒、 微米 沟槽;
优选地, 所述第一摩擦层下表面有纳米材料的点缀或涂层; 优选地, 所述纳米材料的点缀或涂层选自纳米颗粒、 纳米管、 纳米 线和纳米棒;
优选地, 所述第 -摩擦层为在第一导电元件下表面直接生长或化学 键连的纳米阵列;
优选地, 无外力施加时, 所述第一摩擦层下表面与所述第二摩擦层 上表面之间的距离比第一摩擦层的厚度大一个数量级以上;
优选地, 所述第二摩擦层上表面与第一摩擦层下表面形状相同, 使 得在有外力施加时, 所述第一摩擦层下表面与所述第二摩擦层上表面完 全接触; 优选地, 还包括与第一导电元件上表面接触放置的第一绝缘支撑层 和 /或与第二导电元件下表面接触放置的第二绝缘支撑层;
优选地,所述第一绝缘支撑层和 /或第二绝缘支撑层为有机玻璃板材、 聚乙烯板材或聚氯乙烯板材;
优选地, 所述第一导电元件和第二导电元件选自金属、 导电氧化物 或导电高分子;
优选地, 所述第 ·导电元件和第二导电元件选自金、 银、 铂、 铝、 镍、 铜、 钛、 铬或硒, 以及由上述金属形成的合金;
本发明提供一种上述摩擦电纳米传感器的制备方法, 其特征在于包 括以下步骤:
( 1) 清洗第二导电元件;
(2) 在第二导电元件上表面原位生长纳米结构物, 以形成第二摩 擦层;
(3) 提供第一摩擦层;
(4) 在第一摩擦层上表面沉积第一导电元件;
(5) 将第一导电兀件和第二导电元件与外电路进行电连接;
(6) 安装空间保持件, 以使第一摩擦层和第二摩擦层面对面并保 持一定间隙;
优选地, 所述原位生长方法选自水热反应法、 外延生长法和电化学 刻蚀法;
优选地, 所述原位生长方法为水热反应法, 并且对原位生长形成的 纳米阵列进行超声清洗;
优选地, 水热反应温度为 0°C-250O, 更优选 50°C-250°C, 更优选 100°C-200°C ;
优选地, 反应时间为 10-30小时, 优选 15-25小时, 优选 24小时; 优选地, 在步骤(5)和 (6)之间还包括为第一导电元件的外侧加 装第一绝缘支撑层和 /或在第二导电元件的外侧加装第二绝缘支撑层的 歩骤。
与现有技术相比, 本发明的摩擦电纳米传感器具有下列优点: 首先, 首次利用摩擦电纳米发电机的原理结合电子转移机制实现了 自驱动分子传感技术, 并探明了摩擦电纳米传感器的工作机制, 使本领 域的技术人员能够在本发明公开内容的指引下制备出所需的摩擦电纳 米传感器。
其次, 本发明首次发现将纳米结构物直接长在导电元件上, 能够显 著提高电信号的输出性能, 打破了以往需要先制备摩擦层再在摩擦层表 面形成纳米结构的限制, 大大简化了制备方法、 降低了成本, 同时还为 电信号的优化输出提供了一条新的途径。
第三, 本发明的摩擦电纳米传感器具有体积小、 自驱动的特性, 能 够广泛用于各种领域, 而且节约能源, 是一种绿色的传感器件。
第四, 本发明的摩擦电纳米传感器可以通过调控纳米结构物, 来适 应待探测目标物质的变化, 具有方便的可调控性。
第四, 本发明的摩擦电纳米传感器不仅能够高选择性的与待探测目 标物质发生相互作用, 而且仅需要待探测目标物质与传感器之间发生产 生电子转移现象,即可使电信号产生变化,因而具有极高的探测灵敏度。
第五, 本发明的摩擦电纳米传感器制作方便, 成本低, 易于产业推 广和应用。 附图说明 通过附图所示,本发明的上述及其它目的、特征和优势将更加清晰。 在全部附图中相同的附图标记指示相同的部分。 并未刻意按实际尺寸等 比例缩放绘制附图, 重点在于示出本发明的主旨。
图 1为本发明摩擦电纳米传感器的一种典型结构示意图;
图 2为本发明摩擦电纳米传感器受到外力作用时的典型结构示意图, 其中 (a ) 为第二摩擦层为纳米结构物, (b ) 为第一摩擦层和第二摩擦 层均为纳米结构物;
图 3为本发明摩擦电纳米传感器的工作原理示意图; 图 4为本发明摩擦电纳米传感器的纳米结构物与待探测目标物质儿 茶素之间发生电子转移的实验数据, 其中 (a) 为紫外可见吸收光谱图, ( b) 为循环伏安曲线;
图 5 为本发明摩擦电纳米传感器的另一种典型结构示意图,其中(a) 为空间保持件位于两个绝缘支撑体之间的情形, (b)为空间保持件位于 绝缘支撑体外侧的情形;
图 6为本发明摩擦 ¾纳米传感器的另一种典型结构示意图; 图 7为本发明摩擦 ¾纳米传感器一种典型结构的横截面剖视图; 图 8为本发明实施例的摩擦电纳米传感器用来侦测儿茶素所得到的 开路电压与短路电流输出图;
图 9为本发明实施例的摩擦电纳米传感器用来侦测儿茶素的浓度范 围;
图 10 为不同温度下进行水热反应得到的二氧化钛纳米阵列的电镜 照片;
图 11为超声波处理前后二氧化钛纳米阵列的电镜照片;
图 12为对比例的开路电压输出图。 具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案 进行清楚、 完整地描述。 显然, 所描述的实施例仅是本发明一部分实施 例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人 员在没有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发 明保护的范围。
其次, 本发明结合示意图进行详细描述, 在详述本发明实施例时, 为便于说明,所述示意阁只是示例,其在此不应限制本发明保护的范围。
本发明的摩擦电纳米传感器利用了纳米结构物与待探测物质之间 的电子转移能够影响摩擦纳米发电机信号输出的特点, 选择能够与待探 测物质形成高选择性相互作用的物质作为摩擦层, 使其在含有待探测物 质的环境中能够提供与原来不同的输出讯号, 进而达到侦测的目的。 图 1为本发明的摩擦电纳米传感器的一种典型结构, 包括: 第一导 电元件 11、 第一导电元件 11下表面接触放置的第一摩擦层 12; 第二导 电元件 21、第二导电元件 21上表面直接生长的、 由纳米结构物 40构成 的阵列, 从而形成第二摩擦层 22; 绝缘空间保持件 30。 其中, 绝缘空 间保持件 30用于连接第一导电元件 11和第二导电元件 21,使第一摩擦 层 12与第二摩擦层 22面对面, 并且在没有外力施加时二者保持一定的 间隙。 对摩擦电纳米传感器施加外力时 (参见图 2 ( a) 和图 2 ( b)), 所述第 摩擦层 12与第二摩擦层 22接触并有微小切向滑动, 由于摩擦 起电效应, 在所述第一摩擦层 12与所述第二摩擦层 22之间发生表面电 荷转移。
具体的, 第一摩擦层 12与所述第二摩擦层 22之间发生表面电荷转 移, 是指, 由第一摩擦层 12与所述第二摩擦层 22的材料之间存在摩擦 电极序差异而引起的摩擦起电现象。这里的 "摩擦电极序", 是指根据材 料对电荷的吸引程度将其进行的排序, 两种材料在相互接触的瞬间, 在 接触面上正电荷从摩擦电极序中极性较负的材料表面转移至摩擦电极 序中极性较正的材料表面。 迄今为止, 还没有一种统一的理论能够完整 的解释电荷转移的机制, 一般认为, 这种电荷转移和材料的表面功函数 相关, 通过电子或者离子在接触面上的转移而实现电荷转移。 需要进一 步说明是, 电荷的转移并不需要两种材料之间的相对摩擦, 只要存在相 互接触即可。
本发明中所述的"接触电荷", 是指在两种摩擦电极序极性存在差异 的材料在接触摩擦并分离后其表面所带有的电荷, 一般认为, 该电荷只 分布在材料的表面, 分布最大深度不过约为 10纳米。 需要说明的是, 接触电荷的符号是净电荷的符号, 即在带有正接触电荷的材料表面的局 部地区可能存在负电荷的聚集区域, 但整个表面净电荷的符号为正。
本发明的摩擦电纳米传感器的电信号输出原理, 参见图 3。 未施加 外力时, 第一摩擦层 12与第二摩擦层 22分离, 见图 3中 a图; 在外力 (箭头所示) 的作用下, 第一摩擦层 12与第二摩擦层 22相互接触, 在 接触的瞬间发生表面电荷转移,形成一层表面接触电荷,见图 3中 b图。 由于第一摩擦层 12与第二摩擦层 22之间的材料在摩擦电极序中的位置 不同, 第一摩擦层 12表面产生负电荷, 而第一.摩擦层 22表面产生正电 荷, 两种电荷的电量大小相同。 当外力消失时, 由于空间保持件 30 的 恢复作用, 第一摩擦层 12与第二摩擦层 22之间发生分离, 产生间隙。 由于间隙的存在, 第一摩擦层 12表面的负电荷对第一导电元件 11上电 子的排斥作用力大于第二摩擦层 22表面的正电荷对第一导电元件 11上 电子的吸引作用, 第二摩擦层 22表面的正电荷对第二导电元件 21上电 子的吸引力大于第 摩擦层 12表面的负电荷的排斥作用。 因此, 电子 将从第一导电元件 11经过外电路流向第二导电元件 21, 并在第一导电 元件 11上产生正电荷, 在第二导电元件 21上产生负电荷, 参见图 3中 c图。 该过程即产生了通过外电路 /负载的瞬时脉冲电流。 当外力再度施 加时, 在第一摩擦层 12表面的负电荷的排斥力作用下, 第二导电元件 21上的电子又再度流回第一导电元件 12, 形成方向相反的瞬时电流, 参见图 3中 d图的箭头所示。 如此往复, 形成交流脉冲电流, 这是摩擦 纳米传感器输出电信号的基本原理。 可见本发明的纳米传感器向外输出 电信号, 必须有两个摩擦层的接触和分离过程, 对于接触面积的大小并 没有特殊要求,但是很显然接触摩擦的面积越大,产生的表面电荷越多, 从而向外输出的电信号强度也越大。
将该摩擦电纳米传感器放入需要探测的环境中, 由于形成第二摩擦 层 22的纳米结构物 40能够与待探测目标物质发生高选择性的相互作用, 会选择性地使环境中的待探测目标物质附着在第二摩擦层 22上, 这种 作用直接导致了纳米结构物 40和第一摩擦层 12接触摩擦过程中产生的 电信号发生变化,而这种变化与待探测目标物质的种类和 /或浓度有关系, 因为不同种类的目标物质在电子转移特性上会有差别, 而待探测目标物 质的浓度越大, 能与传感器结合的物质就越多, 对第二摩擦层的影响也 越大, 这就使我们能够通过电信号的变化来感知待探测目标物质的信息, 以上是本发明摩擦电纳米传感器的基本工作原理。
其中, "高选择性的相互作用"是指相同浓度的物质与纳米结构物 发生相互作用时, 待探测目标物质的作用效果具有统计学意义的显著性, 具体为: 待探测目标物质作用前后传感器输出电流密度与电压的变化值 至少是其他环境物质作用前后变化值的 3倍。 这种高选择性主要得益于 纳米结构物 40对待探测目标物质的选择性吸附。
待探测目标物质对摩擦电纳米传感器输出电信号的影响来源于 2个 方面: 一是待探测目标物质与纳米结构物之间的电子转移作用, 该作用 会使纳米结构物在与待探测目标物质作用后, 能够发生转移的电子数目 发生变化, 从而使其在接下来与第 ·摩擦层 12接触后, 所形成的接触 电荷发生变化, 对外输出的电信号也相应的增强或减弱。 这种电子转移 作用最为常见的是通过化学键的形成而被促成, 因此一般选择能够与待 探测目标物质作用并形成化学键的纳米结构物来构成本发明的传感器, 例如当待探测目标物为含有邻位二羟基的物质时, 传感器中使用的纳米 结构物为金属氧化物, 优选三氧化二铁, 四氧化三铁, 二氧化钛和二氧 化锆。 因为邻位二羟基会与金属氧化物中的金属产生配体向金属的电子 转移 (Ligand-to-metal charge transfer) 作用, 此作用会导致待探测目标物 质转移电子给纳米金属氧化物, 使得其所能提供的电子数目比正常情况 多上许多, 接下来与第一摩擦层 12相接触后的转移电子数目增加, 若 此时第一摩擦层 12 的组成为绝缘体, 则传感器输出的电信号会上升; 若此时第一摩擦层 12 的组成为金属, 则传感器输出的电信号会减弱。 图 4给出了纳米结构物为纳米二氧化钛阵列、待探测物质为邻苯二酚(即 儿茶素) 的情况下, 待探测物质与纳米结构物结合前后的紫外吸收光谱 图 (图 4 (a ) ) 和循环伏安曲线 (图 4 ( b)), 其中 (i ) 为结合前, (ii ) 为结合后, 图 4 (a) 内部的小图为结合前后的颜色变化。 可以看出, 二 氧化钛纳米阵列与邻苯二酚结合后的光响应范围拓宽, 而且导带边缘由 -0.54V 降到 -0.62V, 说明有电子从邻苯二酚向二氧化钛的缺陷能阶上转 移。 这个实验结果不仅是电子转移的直接证据, 也为本领域的人员提供 了一个筛选纳米结构物种类的合适方法, 使得人们在探测其他物质时也 能够根据本发明所提供的原则和方法来选择合适的纳米结构物。
待探测目标物质对摩擦电纳米传感器输出电信号影响的另一方面 是待探测目标物质与第二摩擦层 22 的摩擦电特性不同, 当待探测目标 物质被吸附之后, 待探测目标物质覆盖了部分第二摩擦层 22 的表面, 使得与第一摩擦层 12相接触的整个摩擦面的得失电子能力发生变化, 从而导致传感器输出的电信号受到影响。 可以看出, 这两方面的作用都 是与待探测目标物的种类和浓度有关的, 当待探测目标物与第二摩擦层 22 之间的电子转移相对容易和 /或摩擦电特性相差较大, 那么当其与第 二摩擦层 22发生作用后, 对输出电信号的影响就较为明显, 反之信号 的变化就相对微弱。 而且在达到饱和吸附量之前, 待探测目标物的浓度 应该与输出 ¾信号的变化量呈正相关。 因此, 在实际应用中如果要检测 其他的目标物, 只要根据其化学和物理性质, 按照本发明所公开的上述 原理, 来选择相应的纳米结构物来作为本发明传感器的第二摩擦层 22 即可。
利用直接生长在导电元件上的纳米结构物, 特别是通过金属氧化物 构成的纳米结构物与待探测目标物质之间的高选择性相互作用和摩擦 电特性差异来调控摩擦电纳米传感器的响应特性, 从而实现对待探测目 标物质的高灵敏度侦测是本发明首次提出并将其器件化的。 以下将结合 图 1所示的实施例, 对本发明摩擦电纳米传感器的各组成部件进行详细 的说明,但是很显然这种撰写方式只是为了使申请文件更加简洁、明了, 因此以下内容并不仅局限于图 1所示的实施例, 而是对本发明所公开的 所有技术方案都适用。
第一摩擦层 12和第二摩擦层 22的主要作用是通过摩擦产生电信号 输出, 因此二者分别由具有不同摩擦电特性的材料组成, 所述的不同摩 擦电特性意味着二者在摩擦电极序中处于不同的位置, 从而使得二者在 发生摩擦的过程中能够在表面产生接触电荷。 常规的绝缘材料都具有摩 擦电特性, 均可以作为制备本发明第一摩擦层 12和第二摩擦层 22的材 料, 此处列举一些常用的绝缘材料并按照摩擦电极序由正极性到负极性 排序: 苯胺甲醛树脂、 聚甲醛、 乙基纤维素、 聚酰胺 11、 聚酰胺 6-6、 羊毛及其编织物、 蚕丝及其织物、 纸、 聚乙二醇丁二酸酯、 纤维素、 纤 维素醋酸酯、 聚乙二醇己二酸酯、 聚邻苯二甲酸二烯丙酯、 再生纤维素 海绵、 棉及其织物、 聚氨酯弹性体、 苯乙烯-丙烯腈共聚物、 苯乙烯-丁 二烯共聚物、 木头、 硬橡胶、 醋酸酯、 人造纤维、 聚甲基丙烯酸甲酯、 聚乙烯醇、 聚酯 (涤纶)、 聚异丁烯、 聚氨酯弹性海绵、 聚对苯二甲酸 乙二醇酯、 聚乙烯醇缩丁醛、 丁二烯-丙烯腈共聚物、 氯丁橡胶、 天然橡 胶、 聚丙烯腈、 聚 (偏氯乙烯 -co-丙烯腈)、 聚双酚 A碳酸酯、 聚氯醚、 聚 偏二氯乙烯、 聚 (2,6 - 二甲基聚亚苯基氧化物)、 聚苯乙烯、 聚乙烯、 聚丙烯、 聚二苯基丙烷碳酸酯、 聚对苯二甲酸乙二醇酯、 聚酰亚胺、 聚 氯乙烯、 聚一甲基硅氧垸、 聚三氟氯乙烯、 聚四氟乙烯、 派瑞林, 包括 派瑞林 C、 派瑞林 N、 派瑞林 D、 派瑞林 HT、 和派瑞林 AF4。 限于篇幅 的原因, 并不能对所有可能的材料进行穷举, 此处仅列出几种具体的材 料供人们参考, 但是显然这些具体的材料并不能成为本发明保护范围的 限制性因素, 因为在发明的启示下, 本领域的技术人员根据这些材料所 具有的摩擦电特性很容易选择其他类似的材料。
相对于绝缘体, 导体均具有容易失去电子的摩擦电特性, 在摩擦电 极序的列表中常位于末尾处。 因此, 导体也可以作为制备第一摩擦层 12 或第二摩擦层 22 的原料。 常用的导体包括金属、 导电氧化物或导电高 分子, 其中金属包括金、 银、 铂、 铝、 镍、 铜、 钛、 铬或硒, 以及由上 述金属形成的合金; 导电氧化物常用的如铟锡氧化物 ITO等。 由于导电 材料本身就可以作为导电元件使用, 因此当摩擦层使用导电材料时, 可 以将导电元件和相应的摩擦层合二为一。
通过实验发现, 当第一摩擦层 12和第二摩擦层 22材料的得电子能 力相差越大(即在摩擦电极序中的位置相差越远) 时, 发电机输出的电 信号越强。 所以, 可以根据实际需要, 选择合适的材料来制备第一摩擦 层 12和第二摩擦层 22, 以获得更好的输出效果。优选第一摩擦层 12为 聚四氟乙烯或聚二甲基硅氧垸和 /或第二摩擦层 22为二氧化钛, 三氧化 二铁, 四氧化三铁或二氧化锆。
现有的纳米发电机都是采用薄膜状的摩擦层, 或者是在该薄膜状的 摩擦层表面通过刻蚀等技术形成纳米结构以增大摩擦面积。 但是本发明 人首次发现, 当采用直接在导电元件上生长或化学键连纳米结构物 40 作为一个摩擦层时, 电信号的输出性能大幅增加 (具体可参见实施例 1 和对比例 1 的数据对比)。 所谓的直接生长是指纳米结构物在导电元件 表面原位形成; 而化学键连是指纳米结构物与导电元件表面通过化学键 相连, 这种连接可以是纳米结构物在导电元件表面原位生长的过程中形 成, 也可以是在后续加工的过程中形成的, 例如将纳米结构物附着在导 电元件表面后, 通过加热等方式, 使纳米结构物与导电元件之间形成化 学键连。 电信号输出性能增加的原因可能是在增大了摩擦面积的同时, 原位生长的纳米结构物与导电元件之间的联系更为紧密, 从而电子在二 者之间的转移更为容易, 因此使得摩擦产生的表面接触电荷更容易转移 到导电元件上, 从而使输出的电信号强度增加。 所以, 虽然本实施例仅 有一个摩擦层采用了直接生长的纳米结构物 40形式, 但是本领域的技 术人员完全可以预测得到, 当两个摩擦层均采用类似的结构, 摩擦面积 和表面电荷的转移性能会进一步提升, 从而获得更好的输出效果 (如图 2 ( b) 所示, 其中第一摩擦层 12也 纳米阵列构成, 在施加外力后第 一摩擦层 12和第二摩擦层 22的纳米阵列相互交错, 摩擦面积进一步提 升)。 因此, 在实际应用过程中, 可以综合成本和输出性能的要求来选 择使用 1个或 2个直接生长在导电元件表面的纳米结构物摩擦层。 纳米 结构物原位生长的方法可以采用水热法、 外延生长法、 电化学刻蚀法等 等。
对于纳米结构物的形态, 本发明人对此作了大量的对比实验, 发现 直接生长在导电元件表面的纳米结构物中, 由长径比较大的纳米单元所 形成的纳米阵列效果最好, 例如, 由纳米线、 纳米片、 纳米棒、 纳米管 和 /或纳米锥等形成的纳米阵列都具有很好的输出性能。
为了进一步增加第- ·摩擦层 12与第二摩擦层 22之间的接触面积, 从而增大接触电荷量, 还可以对第一摩擦层 12下表面进行物理改性, 使其表面分布有微米或次微米量级的微结构阵列。 具体的改性方法包括 光刻蚀、 化学刻蚀和离子体刻蚀等。 也可以通过纳米材料的点缀或涂层 的方式来实现该目的, 所述的纳米材料可以选自纳米颗粒, 纳米管, 纳 米线和纳米棒, 根据实际需要可以具体选择金纳米颗粒, 金纳米线, 金 纳米棒, 金纳米管, 银纳米颗粒, 银纳米线, 银纳米棒, 银纳米管, 铜 纳米颗粒, 铜纳米线, 铜纳米棒, 铜纳米管, 二氧化硅纳米颗粒, 二氧 化硅纳米线, 一.氧化硅纳米棒, 二氧化硅纳米管, 三氧化二铁或四氧化 三铁纳米颗粒, 二氧化二铁或四氧化三铁纳米线, 三氧化二铁或四氧化 二铁纳米棒, 三氧化二铁或四氧化三铁纳米管, 二氧化钛纳米颗粒, 二 氧化钛纳米线,二氧化钛纳米棒,二氧化钛纳米管,二氧化锆纳米颗粒, 二氧化锆纳米线, 二氧化锆纳米棒, 二氧化锆纳米管。
也可以对相互接触的第一摩擦层 12下表面行化学改性, 能够进一 步提高电荷在接触瞬间的转移量, 从而提高接触电荷密度和发电机的输 出功率。 化学改性又分为如下两种类型:
一种方法是对第一摩擦层 12,在极性为正的材料表面引入更易失电 子的官能团 (即强给电子基团), 或者在极性为负的材料表面引入更易 得电子的官能团 (强吸电子基团), 都能够进一步提高电荷在相互滑动 时的转移量, 从而提高摩擦电荷密度和发电机的输出功率。 强给电子基 团包括: 氨基、 羟基、 烷氧基等; 强吸电子基团包括: 酰基、 羧基、 硝 基、 磺酸基等。 官能团的引入可以采用等离子体表面改性等常规方法。 例如可以使氧气和氮气的混合气在一定功率下产生等离子体, 从而在基 板材料表面引入氨基。
另外一种方法是在极性为正的基板材料表面引入正电荷, 而在极性 为负的基板材料表面引入负电荷。 具体可以通过化学键合的方式实现。 例如, 可以在聚二甲基硅氧垸(英文简写为 PDMS)基板表面利用水解- 缩合(英文简写为 sol- gel )的方法修饰上正硅酸乙酯(英文简写为 TE0S), 而使其带负电。也可以在金属金薄膜层上利用金-硫的键结修饰上表面含 十六垸基三甲基溴化铵(CTAB)的金纳米粒子,由于十六烷基三甲基溴化 铵为阳离子, 故会使整个基板变成带正电性。 本领域的技术人员可以根 据基板材料的得失电子性质和表面化学键的种类, 选择合适的修饰材料 与其键合, 以达到本发明的目的, 因此这样的变形都在本发明的保护范 围之内。
另外, 本发明的摩擦电纳米传感器能够正常工作的一个关键还在于 与待探测目标物质作用前后, 输出电信号要有变化。 如前所述, 本发明 通过选择合适的第二摩擦层 22 的材料, 使其能够与待探测目标物质之 间发生电子转移来保证这一点。 同时如果能够兼顾其摩擦特性与待探测 目标物质的摩擦特性有差别, 就能进一步优化本发明传感器的探测灵敏 度和信号输出强度。
本发明并不限定第一摩擦层 12和第二摩擦层 22必须是硬质材料, 也可以选择柔性材料, 因为材料的硬度并不影响二者之间的摩擦效果, 本领域的技术人员可以根据实际情况进行选择。 第一摩擦层 12和第二 摩擦层 22 的厚度对本发明的实施没有显著影响, 只是在制备的过程中 需要综合考虑摩擦层强度与发电效率等因素。 本发明优选摩擦层为薄层, 厚度为 50nm-2cm, 优选 100nm-lcm, 更优选 500nm- 5mm, 更优选 ^m-2mm , 这些厚度对本发明中所有的技术方案都适用。 第一摩擦层 12的厚度越薄越好,但由于现有技术局限, 最优选为 ΙμΓΠ-ΙΟΟμΓΠ ; 第二 摩擦层 22厚度无局限, 但从经济方面考量, 最优选为 50nm-200nm。
对第一摩擦层 12和第二摩擦层 22的形状没有特殊限制, 只要保证 在外力的作用下第一摩擦层 12下表面与第二摩擦层 22的上表面至少有 部分接触即可。但是, 为了获得更好的电信号输出性能, 第一摩擦层 12 下表面和第二摩擦层 22 上表面形状最好相同, 使得在有外力施加时, 所述第一摩擦层 12下表面与所述第二摩擦层 40的上表面完全接触,以 产生最大的接触电荷密度。
虽然对第一摩擦层 12的下表面与第二摩擦层 22上表面的间距没有 特殊要求, 但是为了使在摩擦过程中产生的接触电荷尽量完全地转移到 导电元件上, 优选该间距比第一摩擦层 12 的厚度大, 最好能大一个数 量级以卜.。
第 导电元件 11和第二导电元件 21作为发电机的两个电极, 需要 具备能够导电的特性, 可选自金属、 导电氧化物或导电高分子, 常用的 金属包括金、 银、 铂、 铝、 镍、 铜、 钛、 铬或硒, 以及由上述金属形成 的合金;常用的导电氧化物包括铟锡氧化物 IT0和离子掺杂型的半导体。 第一导电元件 11最好与第一摩擦层 12表面紧密接触, 以保证电荷的传 输效率; 可以采用沉积的方法在第一摩擦层 12表面制备, 例如电子束 蒸发、 等离子体溅射、 磁控溅射或蒸镀等方法; 还可以直接利用金属板 作为导电元件, 用导电胶将其与第一摩擦层 12 电连接。 而第二导电元 件 21需要作为第二摩擦层 22的原位生长基底, 为提高电荷传输效率, 优选第二摩擦层 22能够在第二导电元件 21表面进行外延生长, 以使二 者形成一个整体, 例如第二导电元件 21为钛, 可以在其表面通过水热 法形成所需的二氧化钛纳米阵列, 从而使第二导电元件 21和第二摩擦 层 22成为紧密结合的一体结构。
导电元件可以是薄膜或薄层, 厚度的可选范围为 10nm-2cm, 优选 为 50nm-5mm, 更优选为 100nm-lmm, 更优选为 500nm-500 m, 更优 选为 1μηι-100μΓΤΐ。 导电元件并不必须限定是硬质的, 也可以是柔性的, 因为柔性导电元件同样可以起到对摩擦层的支撑和导电作用。
第一导电元件 11和第二导电元件 21与外电路连接的方式可以是通 过导线或金属薄层与外电路连接。
空间保持件 30,用于保持第一摩擦层 12和第二摩擦层 22之间在有 外力的作用下能够相互接触, 而在没有外力的作用下形成空隙。 空间保 持件 30可以采用弹性有机物等具有绝缘特性的弹性材料, 例如弹性橡 胶和弹簧,并根据第一导电元件 11、第一摩擦层 12、第二导电元件 21、 第二摩擦层 22的形状、 尺寸及相对位置, 决定绝缘空间保持件 30的形 状和位置。 例如可以在第二导电层 21上围绕第二摩擦层 22周围粘贴一 圈所述的绝缘空间保持件, 也可以直接将绝缘空间保持件粘结在摩擦层 的表面, 还可以将空间保持件连在导电元件的外侧, 如图 5 ( b) 所示, 其中空间保持件 30为 U形弹性片, 可以仅在传感器的一侧设置, 也可 以两侧都设置。 当空间保持件 30连接在绝缘支撑体上时, 还可以使用 导电材料制备, 例如金属弹片或弹簧等。
本实施例屮的待探测物质为含有邻位二羟基的物质, 即分子中含有 2个处于相邻位置的羟基, 优选分别与 2个羟基相连的邻位碳原子之间 是不饱和键, 更优选 2个羟基分别连在不饱和环的 2个相邻碳原子上, 并且这 2个碳原子之间是不饱和键, 例如邻苯二酚、 表儿茶素、 表没食 子儿茶素、 3,4-二羟基苯乙酸、 茜素、 抗坏血酸或多巴胺。 当然, 根据 实际需要还可以对其他物质进行探测, 只需如前所述调整纳米结构物的 种类和 /或形态即可。
图 5为本发明摩擦电纳米传感器的另一种典型结构示意图,其中(a) 为空间保持件位于两个绝缘支撑体之间的情形, (b ) 为空间保持件位于 绝缘支撑体外侧的情形。所述传感器包括第一绝缘支撑层 10、与第一绝 缘支撑层 10下表面接触放置的第一导电元件 11、与第一导电元件 11下 表面接触放置的第 ·摩擦层 12; 第二绝缘支撑层 20、 第二绝缘支撑层 20上表面接触放置的第二导电元件 21; 第二导电元件 21上表面原位生 K的第二摩擦层 22; 空间保持件 30。 其中, 空间保持件 30用于连接第 一绝缘支撑层 10和第二绝缘支撑层 20,使第一摩擦层 12下表面与第二 摩擦层 22 上表面面对面并且在没有外力施加时二者保持一定的间隙。 在有外力施加时, 所述第一摩擦层 12下表面与第二摩擦层 22接触并有 微小切向滑动, 由于摩擦起电效应, 在所述第一摩擦层 12 与所述第二 摩擦层 22之间发生表 '电荷转移。
该实施例与图 1所示的实施例主要区别在于使用了绝缘支撑层, 并 将空间保持件 30 的粘贴位置由导电元件改在绝缘支撑层上, 这样的设 计使得传感器整体的机械强度增加, 并且由于支撑层的绝缘特性使得空 间保持件 30可以由导电材料制备。
第一绝缘支撑层 10和第二绝缘支撑层 20可以为硬性材料, 也可以 为柔性材料。 优选采用不可变形的硬性材料, 例如有机玻璃板材、 聚乙 烯板材、 聚氯乙烯板材等。 其厚度没有特别限制, 可以根据强度需要自 由选择。
图 6为本发明摩擦电纳米传感器的另一种典型结构示意图。 该实施 例与图 5 ( a ) 所示的实施例结构基本相同, 区别仅在于第一导电元件 11同时作为第一摩擦层而存在。这种设计大大简化了摩擦电纳米传感器 的结构和制备过程, 更利于在工业牛产屮的推广和应用, 而目.导电材料 的失电子能力相对较强, 更利于改善电信号的输出性能。
本发明还提供一种上述摩擦纳米传感器的制备方法, 包括如下步骤: ( 1)清洗第二导电元件,可以用有机溶剂和 /或水清洗,例如丙酮、 ***、 乙醇等常用清洗剂;
( 2 ) 在第二导电元件上表面原位生长纳米结构物, 以形成第二摩 擦层; 其中原位生长方法可以根据第二导电元件和纳米结构物的种类不 同而有针对性的选择。 为了提高导电元件和摩擦层之间的电荷转移效率, 优选使用金属导电元件, 并使用与其相应的金属氧化物作为纳米结构物, 原位生长方法可以采用水热反应法、 外延生长法和电化学刻蚀法等等; 优选采用水热反应法和外延生长法, 并且对原位生长的纳米阵列进行超 声清洗, 优选水热反应温度为 0°C-250°C, 更优选 50°C-250°C, 更优选 100°C-200°C ; 其中, 100°C适合于纳米片生长, 150°C适合于较小尺寸纳 米片生长, 15CTC适合于纳米线生长;反应时间为 10-30小时,优选 15-25 小时, 优选 24小时;
( 3 ) 提供第一摩擦层;
(4) 在第一摩擦层上表面沉积第一导电元件; 沉积方法可以采用 半导体领域的常规方法, 例如电子束蒸发、 真空溅射、 蒸镀、 磁控离子 溅射等;
( 5 ) 将第一导电元件和第二导电元件与外电路测量器件进行电连 接; 具体的连接方式可以采用导线或导电薄膜直接连接;
( 6)在第一导电元件和第二导电元件上安装若干绝缘空间保持件, 以使第一摩擦层和第二摩擦层面对面并保持一定间隙。
还可以包含步骤 (5-1), 即在步骤 (5 ) 和 (6) 之间为第一导电元 件的外侧加装第一绝缘支撑层和 /或在第二导电元件的外侧加装第二绝 缘支撑层, 以提高传感器的整体强度。
实施例 1 儿茶素 (即邻苯二酚) 传感器
采用厚度为 50nm、尺寸为 1.8cm X 0.6cm的金属金薄膜层作为第一 导电层, 厚度为 25μΓΤΐ的聚四氟乙烯 (英文简称 PTFE) 薄膜层作为第一 摩擦层 12, 采用厚度为 125μΓΠ、 尺寸为 1.8cm X 0.6cm的金属钛薄膜层 作为第二导电层, 通过水热法在钛薄膜上原位生长长度为 4.2μΓΠ的二氧 化钛纳米线阵列 40作为第二摩擦层 21, 此二氧化钛纳米线阵列不只可 作为摩擦层, 更可对儿茶素造成选择性吸附的结果, 进而变成儿茶素感 测器, 如图 7所示。 第一绝缘支撑层 10和第二绝缘支撑层 20均为有机 玻璃板材, 二者之间通过弹簧连接, 连接方式参见图 7。 未在第一绝缘 支撑层或第二绝缘支撑层上施加外力时,第二摩擦层和 PTFE薄膜层分离, 互相之间留有 3cm的间隙。由于聚四氟乙烯在摩擦电极序中具有极负的 极性, 而二氧化钛相比较之下在摩擦电极序中的极性较正, 本实施例的 材料组合有利于提高摩擦电纳米传感器的输出。
通过上述摩擦电纳米传感器的第一导电元件和第二导电元件引出 导线后, 与全桥整流器相连, 使摩擦电纳米传感器产生的交流电流输出 转化为直流电流输出。 以固定外力施加在此摩擦电纳米传感器上, 可得 到约 4.3V的输出电压及 Ι.ΙμΑ/cm2的输出电流密度(图 8(a)及 8(b))。 当此感测器与儿茶素 (0.5mM ) 作用后, 其输出电压升高至 21.3V, 电 流则为 3.2μΑ/ η2 (图 8 (c)及 8 (d) )。进一步对不同浓度(ΙμΜ-lmM ) 的儿茶素进行侦测, 发现其线性范围落在 10μΜ-0.5ηιΜ (图 9), 侦测极 限可达 5μΜ, 明显展示出了其应用潜力。
实施例 2 多巴胺传感器
采用厚度为 5mm、尺寸为 2cm X 2cm的金属铝薄板作为第一导电元 件, 厚度为 40μΓΠ, 且具金字塔形的聚二甲基硅氧垸(英文简称 PDMS) 薄膜层作为第一摩擦层, 首先在硅片上旋转涂覆上一层光刻胶, 利用光 刻的方法在光刻胶上形成边长在微米或次微米量级的正方形窗口阵列; 将光刻完成后的第一摩擦层经过热氢氧化钾的化学刻蚀, 在窗口处形成 金字塔形的凹陷结构阵列。采用厚度为 5mm、尺寸为 2cm X 2cm的金属 铜薄板作为第—导电元件,在其卜.原位生长长度为 5μπ!的三氧化二铁纳 米线阵列作为第二摩擦层。 用弹性橡胶作为绝缘空间保持件将金属铜薄 板和金属铝薄板连接, 使得聚二甲基硅氧垸层与三氧化二铁层面对面, 并且无外力施加时保持二者的间距为 lcm, 从而形成多巴胺传感器。 该 实施例中, 当表面有微米结构的聚二甲基硅氧垸阵列与三氧化二铁颗粒 在外力作用下接触并发生挤压时, 由于 PDMS具弹性, 其能够进入并填 充三氧化二铁颗粒表面的凹陷结构, 较水平面接触增大了接触面积, 因 而具有很好的电信号输出性能。
实施例 3 抗坏血酸传感器
以聚乙烯板材作为 2个绝缘支撑, 弹性胶作为绝缘空间保持件, 采 用组装金纳米颗粒薄膜做为第一导电元件及第一摩擦层, 作法为先蒸镀 50nm、 尺寸为 lcm X lcm 的金薄膜, 再利用 1,3-二巯基丙垸 ( 1,3-dimercaptopropane) 组装 h尺寸为 56nm 的金纳米颗粒, 采用厚 度为 lOOnm的金属铝作为第二导电元件, 50nm厚的二氧化锆纳米棒阵 列形成的薄膜作为第二摩擦层, 以实现对抗坏血酸的高选择性吸附。 本 实施例中, 在使用二氧化锆纳米阵列的基础上, 又采用表面具有金纳米 颗粒的金薄膜作为第一摩擦层, 使其与第二摩擦层的接触面积明显增加, 改善了传感器的电信号输出性能。
实施例 4 纳米传感器的制备方法
本实施例详述实施例 1中使用的纳米传感器的制备方法。
( 1) 第一步: 二氧化钛纳米阵列的原位生长。
尺寸为 1.8cm X 0.6cm 的金属钛薄片分别在丙酮、 乙醇和水中用超 声清洗 10分钟, 放入有特氟龙衬里的不锈钢反应釜中, 加入 20mL浓度 为 1M的氢氧化钠水溶液, 在设定的温度下反应 24h, 然后在空气下冷 却。 经过第一阶段的水热反应, Ti薄片表面被 Na2Ti204(OH)2纳米阵列所 覆盖,用水清洗后将其浸入 20mL浓度为 1M的 HCI水溶液 10min, 以实 现 H+对 Na+的置换, 从而形成 H2Ti204(OH)2纳米阵列, 置换反应后再次 用水清洗、室温干燥, 50CTC下被烧 3h后形成所需的二氧化钛纳米阵列。
在该步骤中, 发明人对比了不同的水热反应温度, 发现通过控制反 应温度可以控制纳米阵列的单元形态, 具体参见图 10, 其中 (a)、 (b)、 ( c)和 (d ) 分别为 25°C、 100 °C , 150°C和 20(TC的反应结果。 可以看 出, 通过改变水热反应的温度, 可以原位制备纳米棒、 纳米片和纳米线 等不同形态的纳米阵列, 能够满足不同的使用需要。
在该步骤中, 为了提高传感器电信号输出的稳定性, 木发明人还增 加了一个特殊处理步骤, 即在置换反应后的水洗过程加入超声 30s, 能 够除去在纳米阵列生长过程中形成的一些不稳定结构。 从图 11 中可以 很明显的看到该步骤的作用, 其中 (a ) 是超声处理之前的电镜照片, 而 (b) 是处理后的电镜照片。 该歩骤虽然简单, 但是可以很有效的解 决纳米发电机信号输出不稳定的问题, 这是本发明首次提出的。
(2) 第二步: 纳米传感器的组装。
在厚度为 25μΓΠ的商品聚四氟乙烯(简称 PTFE)薄膜上用电子束蒸 发的方法沉积上 -层 50nm厚的金属 Cu薄膜,然后将该 Cu/PTFE组合材 料粘合在聚对苯二甲酸乙二酯 (简称 PET) 柔性基底的内表面, 并且使 PTFE薄膜处于整体的顶端。 将第一步中制备的 02纳米阵列 /Ti薄膜与 Cu/PTFE/PET相对放置, 使得 Ti02纳米阵列与 PTFE薄膜面对面相对, 将 Ti薄片和 Cu薄膜用导线引出与测量装置相连, 即完成本发明纳米传感 器的组装。
对比例 1
与实施例 1的材料和歩骤基本相同, 区别仅在于第二摩擦层不是在 钛薄层上原位生长的二氧化钛纳米线阵列, 而是二氧化钛纳米颗粒直接 平铺粘在钛薄层上, 吸附儿茶素后的幵路电压图见图 12。可以看出, 由 于其接触表面积较小, 输出的开路电压远低于二氧化钛纳米阵列, 而且 信号的稳定程度较差, 可能与工作过程中粒子的脱落有关。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形 式上的限制。 任何熟悉本领域的技术人员, 在不脱离本发明技术方案范 围情况下, 都可利用上述揭示的方法和技术内容对本发明技术方案做出 许多可能的变动和修饰, 或修改为等同变化的等效实施例。 因此, 凡是 未脱离本发明技术方案的内容, 依据本发明的技术实质对以上实施例所 做的任何简单修改、 等同变化及修饰, 均仍属于本发明技术方案保护的 范围内。

Claims

1、 一种摩擦电纳米传感器, 其特征在于, 包括: 第一导电元件,
第一导电元件下表面接触放置的第一摩擦层,
第二导电元件,
第二导电元件上表面直接生长或化学键连的纳米结构物, 为第二摩 擦层,
以及, 空间保持件;
其中, 所述空间保持件用于使所述第一摩擦层下表面与所述第二摩 擦层上表面面对面并保持一定间距;
所述第一摩擦层与所述第二摩擦层能够在外力的作用下至少部分 接触、 并在外力撤销时通过所述空间保持件的作用而恢复原有间距, 同 时通过所述第一导电元件和所述第二导电元件向外输出电信号;
并且, 所述电信号能够在所述第二摩擦层与待探测目标物质结合后 发生改变。
2、 如权利要求 1所述的传感器, 其特征在于, 所述纳米结构物与 待探测目标物质结合后二者之间能够形成电子转移。
3、 如权利要求 1或 2所述的传感器, 其特征在于, 所述电信号的 变化量与待探测目标物质的种类和 /或浓度有关。
4、如权利要求 1-3任一项所述的传感器, 其特征在于, 所述纳米结 构物能够与待探测目标物质发生高选择性的相互作用。
5、如权利要求 1-4任一项所述的传感器, 其特征在于, 所述纳米结 构物为纳米线、 纳米片、 纳米棒、 纳米管和 /或纳米锥构成的纳米阵列。
6、如权利要求 1-5任一项所述的传感器, 其特征在于, 所述纳米结 构物为金属氧化物。
7、 如权利要求 6所述的传感器, 其特征在于, 所述纳米结构物选 自二氧化钛、 三氧化二铁、 四氧化三铁和二氧化锆。
8、如权利要求 1-7任一项所述的传感器, 其特征在于, 所述待探测 物质含有邻位二羟基。
9、 如权利要求 8所述的传感器, 其特征在于, 所述待探测物质选 自邻苯二酚、 表儿茶素、 表没食子儿茶素、 3,4-二羟基苯乙酸、 茜素、 抗坏血酸或多巴胺。
10、 如权利要求 1-9任一项所述的传感器, 其特征在于, 所述第一 摩擦层下表面和第二摩擦层的材料之间存在摩擦电极序差异。
11、 如权利要求 1-10任 项所述的传感器, 其特征在于, 所述第一 摩擦层的下表面材料为绝缘材料或金属材料。
12、 如权利要求 11所述的传感器, 其特征在于, 所述绝缘材料选 自苯胺甲醛树脂、 聚甲醛、 乙基纤维素、 聚酰胺尼龙 11、 聚酰胺尼龙 66、 羊毛及其织物、 蚕丝及其织物、 纸、 聚乙二醇丁二酸酯、 纤维素、 纤维素醋酸酯、 聚乙二醇己二酸酯、 聚邻苯二甲酸二烯丙酯、 再生纤维 素海绵、 棉及其织物、 聚氨酯弹性体、 苯乙烯-丙烯腈共聚物、 苯乙烯- 丁二烯共聚物、木头、硬橡胶、醋酸酯、人造纤维、聚甲基丙烯酸甲酯、 聚乙烯醇、聚酯、聚异丁烯、聚氨酯弹性海绵、聚对苯二甲酸乙二醇酯、 聚乙烯醇縮丁醛、 丁二烯-丙烯腈共聚物、 氯丁橡胶、 天然橡胶、 聚丙烯 腈、聚 (偏氯乙烯 -co-丙烯腈)、聚双酚 A碳酸酯、聚氯醚、聚偏二氯乙烯、 聚 (2,6-二甲基聚亚苯基氧化物)、 聚苯乙烯、 聚乙烯、 聚丙烯、 聚二苯 基丙垸碳酸酯、 聚对苯二甲酸乙二醇酯、 聚酰亚胺、 聚氯乙烯、 聚二甲 基硅氧垸、聚三氟氯乙烯、聚四氟乙烯和派瑞林;所述金属材料选自金、 银、 铂、 铝、 镍、 铜、 钛、 铬或上述金属形成的合金薄膜。
13、 如权利要求 12所述的传感器, 其特征在于, 所述绝缘材料为 聚四氟乙烯或聚二甲基硅氧垸。
14、 如权利要求 1-13任一项所述的传感器, 其特征在于, 所述第一 摩擦层下表面分布有微米或次微米量级的微结构。
15、 如权利要求 14所述的传感器, 其特征在于, 所述微结构选自 纳米线、 纳米棒、 纳米管、 纳米锥、 纳米颗粒、 纳米沟槽、 微米线、 微 米棒、 微米管、 微米锥、 微米颗粒、 微米沟槽。
16、 如权利要求 1-15任一项所述的传感器, 其特征在于, 所述第一 摩擦层下表面有纳米材料的点缀或涂层。
17、 如权利要求 16所述的传感器, 其特征在于, 所述纳米材料的 点缀或涂层选自纳米颗粒、 纳米管、 纳米线和纳米棒。
18、如权利要求 1-17任一项所述的传感器, 其特征在于, 所述第一 摩擦层为在第一导电元件下表面直接生长或化学键连的纳米阵列。
19、如权利要求 1-18任一项所述的传感器, 其特征在于, 无外力施 加时, 所述第一摩擦层下表面与所述第二摩擦层上表面之间的距离比第 一摩擦层的厚度大一个数量级以上。
20、如权利要求 1-19任一项所述的传感器, 其特征在于, 所述第二 摩擦层上表面与第一摩擦层下表面形状相同, 使得在有外力施加时, 所 述第一摩擦层下表面与所述第二摩擦层上表面完全接触。
21、 如权利要求 1-20任一项所述的传感器, 其特征在于, 还包括与 第一导电元件上表面接触放置的第一绝缘支撑层和 /或与第二导电元件 下表面接触放置的第二绝缘支撑层。
22、 如权利要求 21所述的传感器, 其特征在于, 所述第一绝缘支 撑层和 /或第二绝缘支撑层为有机玻璃板材、聚乙烯板材或聚氯乙烯板材。
23、如权利要求 1-22任一项所述的传感器, 其特征在于, 所述第一 导电元件和第二导电元件选自金属、 导电氧化物或导电高分子。
24、 如权利要求 23所述的传感器, 其特征在于, 所述第一导电元 件和第二导电元件选自金、 银、 铂、 铝、 镍、 铜、 钛、 铬或硒, 以及由 上述金属形成的合金。
25、 - ^种如权利要求 1-24任一项所述摩擦电纳米传感器的制备方法, 其特征在于, 包括以下步骤:
( 1) 清洗第二导电元件;
( 2 ) 在第二导电元件上表面原位生长纳米结构物, 以形成第二摩 擦层;
(3) 提供第一摩擦层;
(4) 在第一摩擦层上表面沉积第一导电元件; (5) 将第一导电元件和第二导电元件与外电路进行电连接;
(6) 安装空间保持件, 以使第一摩擦层和第二摩擦层面对面并保 持一定间隙。
26、 如权利要求 25所述的制备方法, 其特征在于, 所述原位生长 的方法选 ft水热反应法、 外延生长法和电化学刻蚀法。
27、 如权利耍求 26所述的制备方法, 其特征在于, 所述原位生长 方法为水热反应法, 并且对原位生长形成的纳米阵列进行超声清洗。
28、 如权利要求 26或 27所述的制备方法, 其特征在于, 所述水热 反应温度为 0°C-250°C。
29、 如权利要求 28所述的制备方法, 其特征在于, 所述水热反应 温度为 50°C-250°C。
30、 如权利要求 29所述的制备方法, 其特征在于, 所述水热反应 温度为 100°C-200°C。
31、 如权利要求 26-30任一项所述的制备方法, 其特征在于, 所述 水热反应时间为 10-30小时。
32、 如权利要求 31所述的制备方法, 其特征在于, 所述水热反应 时间为 15-25小时。
33、 如权利要求 25-31任一项所述的制备方法, 其特征在于, 在步 骤(5)和 (6)之间还包括为第一导电元件的外侧加装第一绝缘支撑层 和 /或在第二导电元件的外侧加装第二绝缘支撑层的步骤。
PCT/CN2014/000254 2013-03-28 2014-03-12 一种摩擦电纳米传感器 WO2014154017A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310105087.4 2013-03-28
CN201310105087.4A CN104076084B (zh) 2013-03-28 2013-03-28 一种摩擦电纳米传感器

Publications (1)

Publication Number Publication Date
WO2014154017A1 true WO2014154017A1 (zh) 2014-10-02

Family

ID=51597491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000254 WO2014154017A1 (zh) 2013-03-28 2014-03-12 一种摩擦电纳米传感器

Country Status (2)

Country Link
CN (1) CN104076084B (zh)
WO (1) WO2014154017A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124868A1 (ko) * 2017-12-18 2019-06-27 한양대학교 산학협력단 촉각 센서, 그 제조 방법 및 그 동작 방법
US20200132618A1 (en) * 2018-10-26 2020-04-30 National Chiao Tung University Gas sensor

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104811087B (zh) * 2014-10-15 2017-01-25 纳米新能源(唐山)有限责任公司 磁控溅射氧化物层的摩擦发电机及摩擦发电机组
KR101743674B1 (ko) * 2014-11-11 2017-06-08 삼성전자주식회사 전하펌프 기반의 인공 번개 발전기 및 그 제조방법
CN105871249B (zh) * 2015-01-19 2019-12-31 北京纳米能源与***研究所 声电转换部件及应用其的充电装置和声音信号采集器
CN104660095B (zh) * 2015-02-13 2018-09-28 京东方科技集团股份有限公司 一种摩擦发电装置及其制备方法
CN104914134B (zh) * 2015-03-09 2017-12-19 北京微能高芯科技有限公司 基于摩擦电的聚合物辨识传感器及其制作方法
CN104682768B (zh) 2015-03-19 2016-11-30 京东方科技集团股份有限公司 一种摩擦发电结构及显示装置
CN104827490B (zh) * 2015-05-21 2016-07-06 大连理工大学 基于摩擦或静电感应控制的机器人触觉***及方法
CN106289330B (zh) * 2015-06-26 2019-02-19 北京纳米能源与***研究所 运动矢量监测单元、监测方法及监测装置
CN105515443A (zh) * 2015-12-03 2016-04-20 北京北纬通信科技股份有限公司 应用于环境声音能量的能量转化***及方法
WO2019020172A1 (en) * 2017-07-25 2019-01-31 Cambridge Enterprise Limited TRIBOELECTRIC GENERATOR, METHOD FOR MANUFACTURING SAME, AND ELEMENTS THEREOF
CN109420246B (zh) * 2017-08-31 2021-10-15 北京纳米能源与***研究所 可控药物释放的集成微针贴片和方法
CN109239130A (zh) * 2017-11-21 2019-01-18 北京纳米能源与***研究所 一种材料识别装置及识别方法
CN109187730B (zh) * 2018-08-27 2020-10-20 河南大学 一种基于摩擦纳米发电机气体放电的自驱动co2传感器
CN109655492A (zh) * 2018-11-12 2019-04-19 浙江大学 一种基于摩擦纳米发电机的湿度传感器及其方法
CN111208170B (zh) * 2018-11-21 2021-12-21 中国科学院大连化学物理研究所 一种基于吸电子聚合物膜的无源氨气传感器
CN109567808B (zh) * 2018-11-29 2021-07-09 电子科技大学 自供能呼吸气传感器阵列及其制备方法
CN110425006A (zh) * 2019-07-12 2019-11-08 中国地质大学(武汉) 一种基于摩擦纳米发电原理的两相流流型传感器
CN110373938B (zh) * 2019-07-19 2021-12-10 天津科技大学 一种抗水纸塑复合材料及其制备方法
CN111562847B (zh) * 2020-04-22 2023-04-07 西安工程大学 一种阵列式自供电织物键盘的制造方法
CN111564986A (zh) * 2020-06-05 2020-08-21 西南大学 基于青霉素药片的摩擦纳米发电机及其制作方法和应用
CN113188591B (zh) * 2021-04-09 2023-08-11 苏州大学 面向空间在轨装配机器人的自供电多模态感知装置及方法
TWI809378B (zh) * 2021-04-19 2023-07-21 國立清華大學 固液接觸摩擦起電的自驅動化學感測器、感測方法及其製造方法
CN113815707B (zh) * 2021-09-27 2023-04-07 同济大学 一种驾驶员方向盘握持姿态监测方法及***
CN114551970B (zh) * 2021-11-17 2023-08-15 万向一二三股份公司 一种自充电式全固体电池
CN114354696B (zh) * 2021-11-25 2023-05-16 中国科学院海洋研究所 一种摩擦纳米发电机驱动的dna生物传感器及其应用
CN114872416B (zh) * 2022-05-23 2024-05-24 长三角(嘉兴)纳米应用技术研究院 一种梯度弹性聚氨酯及其制备方法和用途

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101604930A (zh) * 2008-06-13 2009-12-16 鸿富锦精密工业(深圳)有限公司 发电机
CN102299252A (zh) * 2011-08-31 2011-12-28 中国人民解放军国防科学技术大学 异质结压电式纳米发电机及其制造方法
KR101172278B1 (ko) * 2011-08-19 2012-08-09 인하대학교 산학협력단 나노와이어의 전체가 코팅되고 발전량이 향상된 나노발전기 및 그 제조방법
CN102683573A (zh) * 2012-05-09 2012-09-19 纳米新能源(唐山)有限责任公司 纳米发电机、纳米发电机组及其自供电***
CN102749158A (zh) * 2012-04-13 2012-10-24 纳米新能源(唐山)有限责任公司 一种自供电压力传感器
CN102889925A (zh) * 2011-07-22 2013-01-23 国家纳米科学中心 基于ZnO纳米线的自供电振动传感器及其制造方法
CN103364460A (zh) * 2013-02-05 2013-10-23 国家纳米科学中心 一种基于摩擦纳米发电机的分子传感器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101604930A (zh) * 2008-06-13 2009-12-16 鸿富锦精密工业(深圳)有限公司 发电机
CN102889925A (zh) * 2011-07-22 2013-01-23 国家纳米科学中心 基于ZnO纳米线的自供电振动传感器及其制造方法
KR101172278B1 (ko) * 2011-08-19 2012-08-09 인하대학교 산학협력단 나노와이어의 전체가 코팅되고 발전량이 향상된 나노발전기 및 그 제조방법
CN102299252A (zh) * 2011-08-31 2011-12-28 中国人民解放军国防科学技术大学 异质结压电式纳米发电机及其制造方法
CN102749158A (zh) * 2012-04-13 2012-10-24 纳米新能源(唐山)有限责任公司 一种自供电压力传感器
CN102683573A (zh) * 2012-05-09 2012-09-19 纳米新能源(唐山)有限责任公司 纳米发电机、纳米发电机组及其自供电***
CN103364460A (zh) * 2013-02-05 2013-10-23 国家纳米科学中心 一种基于摩擦纳米发电机的分子传感器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHENG, XU ET AL.: "Self -powered nanowire devices", NATURE NANOTECHNOLOGY, vol. 5, no. 5, May 2010 (2010-05-01), pages 366 - 373 *
WANG, Z.: "Nanopiezotronics", ADVANCED METERIALS, vol. 19, no. 6, March 2007 (2007-03-01), pages 889 - 892 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124868A1 (ko) * 2017-12-18 2019-06-27 한양대학교 산학협력단 촉각 센서, 그 제조 방법 및 그 동작 방법
US20200132618A1 (en) * 2018-10-26 2020-04-30 National Chiao Tung University Gas sensor
US11499937B2 (en) * 2018-10-26 2022-11-15 National Chiao Tung University Gas sensor

Also Published As

Publication number Publication date
CN104076084B (zh) 2017-08-25
CN104076084A (zh) 2014-10-01

Similar Documents

Publication Publication Date Title
WO2014154017A1 (zh) 一种摩擦电纳米传感器
Li et al. Moisture-driven power generation for multifunctional flexible sensing systems
Qin et al. Wearable and stretchable triboelectric nanogenerator based on crumpled nanofibrous membranes
Wen et al. Nanogenerators for self-powered gas sensing
KR101982691B1 (ko) 슬라이드 마찰식 나노발전기 및 발전 방법
Deng et al. Ternary electrification layered architecture for high-performance triboelectric nanogenerators
WO2015035788A1 (zh) 基于液体的摩擦发电机及发电方法、传感器及传感方法
Zhong et al. A self-powered flexibly-arranged gas monitoring system with evaporating rainwater as fuel for building atmosphere big data
WO2014169665A1 (zh) 一种摩擦纳米发电机
JP6510429B2 (ja) スライド摩擦式ナノ発電機および発電方法
WO2015154693A1 (zh) 采集液体机械能的摩擦电纳米发电机以及发电方法
Liao et al. Flexible piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy harvesting
WO2014169673A1 (zh) 一种转动式静电发电装置
WO2015003497A1 (zh) 一种滑动摩擦发电机、发电方法以及矢量位移传感器
WO2015024392A1 (zh) 发电效果改善的摩擦发电机及其制备方法
CN103780134B (zh) 自驱动光电传感器及其制备方法
WO2014198155A1 (zh) 单电极摩擦纳米发电机、发电方法和自驱动追踪装置
WO2014206077A1 (zh) 一种滑动摩擦发电机、发电方法以及矢量位移传感器
Fatma et al. Maghemite/polyvinylidene fluoride nanocomposite for transparent, flexible triboelectric nanogenerator and noncontact magneto-triboelectric nanogenerator
JP6581181B2 (ja) 静電誘起によるセンサ、発電機、センシング方法及び発電方法
Choi et al. Highly surface-embossed polydimethylsiloxane-based triboelectric nanogenerators with hierarchically nanostructured conductive Ni–Cu fabrics
WO2014169724A1 (zh) 一种风力摩擦纳米发电机
KR101742173B1 (ko) 마찰전기 기반 수소센서 및 그의 제조 방법
WO2014173161A1 (zh) 风力发电机
CN109361325B (zh) 一种高性能波型驻极纳米摩擦发电机及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14776392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14776392

Country of ref document: EP

Kind code of ref document: A1