WO2014153812A1 - 显示方法及显示装置 - Google Patents

显示方法及显示装置 Download PDF

Info

Publication number
WO2014153812A1
WO2014153812A1 PCT/CN2013/075487 CN2013075487W WO2014153812A1 WO 2014153812 A1 WO2014153812 A1 WO 2014153812A1 CN 2013075487 W CN2013075487 W CN 2013075487W WO 2014153812 A1 WO2014153812 A1 WO 2014153812A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
display panel
convex lens
concave lens
display
Prior art date
Application number
PCT/CN2013/075487
Other languages
English (en)
French (fr)
Inventor
石博
李凡
冯远明
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2014153812A1 publication Critical patent/WO2014153812A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13336Combining plural substrates to produce large-area displays, e.g. tiled displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133562Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the viewer side

Definitions

  • Embodiments of the present invention relate to a display method and a display device. Background technique
  • the embodiment of the invention provides a display method and a display device, which can change the size of the displayed image in the display panel, thereby enabling the width and narrowness of the frame of the display panel to be controlled.
  • An aspect of the invention provides a display device comprising: a display panel and a concave lens and a convex lens disposed on the display panel; the concave lens is disposed above the display panel, and the convex lens is disposed above the concave lens.
  • the concave lens and the convex lens have the same radius of curvature.
  • the refractive index of the concave lens is the same as the refractive index of the convex lens.
  • the display device may further include: a mechanical telescopic device disposed on the display panel, the mechanical telescopic device being coupled to at least one of the concave lens and the convex lens for adjusting the bonding and separation of the concave lens and the convex lens.
  • a mechanical telescopic device disposed on the display panel, the mechanical telescopic device being coupled to at least one of the concave lens and the convex lens for adjusting the bonding and separation of the concave lens and the convex lens.
  • the display device may further include: a liquid crystal filled in a gap between the concave lens and the convex lens, a surface of the concave lens contacting the liquid crystal, and a surface of the convex lens contacting the liquid crystal are respectively provided with electrodes, and are controlled by an electric field between the electrodes Deflection of liquid crystal molecules.
  • the display panel is a spliced display panel, including a plurality of spells
  • the display panel unit is connected to each other, and each of the display panel units is respectively provided with a concave lens and a convex lens, and the convex lens is disposed above the concave lens.
  • Another aspect of the present invention provides a display method of a display device, comprising: a concave lens and a convex lens disposed on a display panel, the convex lens being disposed above the concave lens, the method comprising: emitting light emitted by the display panel After the concave lens disposed on the display panel is diverged, the convex lens disposed above the concave lens is concentrated.
  • a mechanical stretching device is disposed on the display panel, and the mechanical stretching device is coupled to at least one of the concave lens and the convex lens, and the fitting and separating of the concave lens and the convex lens are adjusted by the mechanical stretching device, The propagation path of the light passing through the concave lens and the convex lens is changed.
  • a liquid crystal is filled in a space between the concave lens and the convex lens, and electrodes are respectively disposed on surfaces of the concave lens and the convex lens in contact with the liquid crystal, and the deflection of the liquid crystal molecules is controlled by an electric field between the electrodes, and the change is made.
  • FIG. 1 is a schematic structural view 1 of a spliced display panel
  • FIG. 2 is a schematic view showing a state in which a concave lens is attached to a convex lens in a display device according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic view showing a structure in which a concave lens and a convex lens are separated in a display device according to Embodiment 1 of the present invention;
  • FIG. 5 is a schematic view showing a state in which a concave lens is attached to a convex lens in a display device according to Embodiment 2 of the present invention
  • FIG. 6 is a schematic view showing a concave lens and a convex lens in a display device according to Embodiment 2 of the present invention
  • Schematic diagram of the propagation path
  • an embodiment of the present invention provides a display device, including: a concave lens and a convex lens disposed on the display panel; the concave lens is disposed above the display panel, and the convex lens is disposed at the Above the concave lens.
  • the concave lens and the convex lens have the same radius of curvature; for example, the refractive index of the concave lens is the same as the refractive index of the convex lens.
  • the display device may further include: a mechanical telescopic device disposed on the display panel, the mechanical telescopic device being coupled to at least one of the concave lens and the convex lens for adjusting the bonding and separation of the concave lens and the convex lens
  • the display device may further include: a liquid crystal filled in a gap between the concave lens and the convex lens, wherein the concave lens and the surface of the convex lens that are in contact with the liquid crystal are respectively provided with electrodes, and the deflection of the liquid crystal molecules is controlled by an electric field between the electrodes .
  • the display device of this embodiment includes: a display panel, a concave lens and a convex lens provided on the display panel having the same radius of curvature and refractive index, and a mechanical expansion device.
  • the concave lens is disposed above the display panel
  • the convex lens is disposed above the concave lens
  • the mechanical telescopic device is disposed And being disposed on the display panel and connected to the convex lens to adjust the bonding and separation of the concave lens and the convex lens.
  • the display panel 1 is a 4-inch display panel.
  • Figure 1 is a top plan view of the 4-panel display panel 1.
  • the display panel 1 is composed of four display panel units 2 of the same size, and the overall shape is a rectangle.
  • a mechanical stretching device 4 is provided at each of the four corners of each of the display panel units 2 for changing the distance between the concave lens 5 and the convex lens 6.
  • a lens 5 and a convex lens 6 having the same radius of curvature and refractive index are disposed above each display panel unit 2.
  • the mechanical expansion device 4 can be obtained using a pneumatic expansion element or a spiral expansion element.
  • the pneumatic telescopic element facilitates automatic control. When inflated, the telescopic element elongates, and when deflated, the telescopic element retracts, and controlling the amount of inflation can also control the amount of expansion of the telescopic element.
  • the four display panel units 2 can be displayed on the same screen as a whole by the driver control of the display device, that is, each display panel unit displays a part of the screen; or, the four display panel units 2 can be controlled to display different screens respectively.
  • the present invention is not limited to the case where the display device and the four display panel units are constructed, and may include more or less than four display panel units.
  • 2 and 3 are schematic views respectively showing a state in which the concave lens 5 and the convex lens 6 are attached and separated in the display device according to the first embodiment of the present invention.
  • the lower surface of the concave lens 5 and the upper surface of the convex lens 6 are both planar, and the upper surface of the lower concave lens 5 is concave, and the lower surface of the upper convex lens 6 is Convex.
  • the concave surface of the concave lens 5 and the convex surface of the convex lens 6 are opposite to each other and have the same outer shape, and the curvature radii are the same, so that the two can be closely attached to each other.
  • the refractive indices of the concave lens 5 and the convex lens 6 may be the same, for example, they are formed of the same transparent material such as glass, quartz, or resin.
  • the present invention is not limited thereto, and the lower surface of the concave lens 5 and the upper surface of the convex lens 6 may not be completely flat, for example, as long as the display effect is not significantly affected.
  • the concave lens 5 and the convex lens 6 after bonding are equivalent to one piece as a whole. Ordinary flat glass.
  • the light emitted from the panel 1 display panel unit 2
  • the concave lens 5 and the convex lens 6 the propagation path of the light does not substantially change.
  • the size of the bezel 3 in the display panel 1 seen by the observer is the same as the actual size of the bezel 3 of the display panel 1.
  • the lens 5 when the lens 5 is separated from the convex lens 6, the lens 5 and the convex There is an air gap between the lenses 6 (the refractive index of air is 1).
  • the light 7 emitted from the display panel 1 enters the air between the concave lens 5 and the convex lens 6 via the concave lens 5, that is, the light 7 emitted from the display panel 1 (the display panel unit 2) enters the light-diffusing medium from the optically dense medium, the light is diverged, that is, ⁇ is greater than, and has the following relationship:
  • dl represents the length of the line segment AD, that is, the distance between the concave lens 5 and the convex lens 6
  • d2 represents the length of the line segment BC, wherein BC is perpendicular to AC, and the broken line AC is an extension of the light 7 emitted by the display panel, so d2 indicates display
  • nl is the refractive index of the concave lens 5 and the convex lens 6 (the refractive indices of the concave lens 5 and the convex lens 6 are the same); here, the length of the line segment AD and the line segment AC are assumed. The lengths are equal, and the following equation holds:
  • the light diverging from the concave lens 5 continues to pass through the convex lens 6.
  • the light 7 emitted from the display panel enters the optically dense medium by the light-dissipating medium, the light converges, that is, less than ⁇ , and the concentrated light enters the observer's eye.
  • the concave lens 5 and the convex lens 6 have the same radius of curvature, so that the light condensed by the convex lens 6, that is, the refracted light 8 is approximately parallel to the light 7 emitted from the display panel.
  • the image in the display panel observed by the viewer is an enlarged virtual image, and since the convex lens 6 having the same radius of curvature and refractive index is provided on the concave lens 5, the observer observes the display panel. The image will not be distorted.
  • the frame 3 in the display panel 1 is opaque, so that the left and right ends of the bezel 3 of the display panel 1 and the light emitted by the display panel 1 pass through the air gap between the lens 5, the lens 5 and the convex lens 6, and finally through the convex lens 6.
  • the four display panel units 2 employ four pairs of concave lenses 5 and convex lenses 6, and the four pairs of concave lenses 5 and convex lenses 6 have a common mechanical expansion device 4 at the joint of the display panel.
  • the mechanical telescopic device 4 thus employed is less, and can be applied to the concave lens 5 on the four display panel units 2, The case where the convex lens 6 is simultaneously attached or separated. Therefore, the display device of the present embodiment is suitable for the case where the frame of the display panel unit is widened or narrowed at the same time.
  • the concave surface of the concave lens 5 and the convex surface of the convex lens 6 above each of the display panel units 2 uniformly extend above the panel display unit 2, and the apexes of the two overlap with the center of the display panel.
  • the concave lens 5 and the convex lens 6 may form a curved portion for the concave lens and the convex lens only for the edge portion of the display panel unit 2, and correspond to the central portion of the display panel unit 2 It remains flat, as long as such settings do not significantly affect the display.
  • the display device of Embodiment 2 includes: a concave lens and a convex lens provided on the display panel having the same radius of curvature and refractive index, and a mechanical stretching device; the concave lens is disposed above the display panel, and the convex lens is disposed on the concave lens Upper, the mechanical telescopic device is disposed on the display panel and coupled to the convex lens to adjust the bonding and separation of the concave lens and the convex lens.
  • the display panel is a spliced display panel.
  • the display panel 1 is composed of a plurality of display panel units 2 of the same size.
  • the four display panel units in the middle of the entire display panel are taken as an example.
  • the four corners of each display panel unit 2 are respectively disposed.
  • Each of the display panel units 2 is provided with a concave lens 5 and a convex lens 6 having the same radius of curvature and refractive index.
  • each display panel unit 2 can be substantially the same as those of the embodiment 1.
  • FIG. 5 and FIG. 6 are schematic views showing a state in which a concave lens and a convex lens are bonded and separated in a display device according to Embodiment 2 of the present invention.
  • the concave lens 5 and the convex lens 6 when the concave lens 5 and the convex lens 6 are attached, since the radius of curvature and the refractive index of the concave lens 5 and the convex lens 6 are the same, the concave lens 5 and the convex lens 6 after bonding are equivalent to one piece as a whole. Ordinary flat glass.
  • the light 7 emitted from the panel 1 the display panel unit 2
  • the concave lens 5 and the convex lens 6 the light does not change.
  • the size of the bezel 3 in the display panel 1 observed by the observer is the same as the actual size of the bezel 3 in the display panel 1.
  • dl represents the length of the line segment AD, that is, the distance between the concave lens 5 and the convex lens 6
  • d2 represents the length of the line segment BC, wherein BC is perpendicular to AC, and the broken line AC is an extension of the light 7 emitted by the display panel, so d2 indicates display
  • n1 is the refractive index of the concave lens 5 and the convex lens 6 (the refractive indices of the concave lens 5 and the convex lens 6 are the same);
  • the length and line segment of the line segment AD are assumed If the lengths of the ACs are equal, the following equation holds:
  • the light diverging from the concave lens 5 continues through the convex lens 6, and when the light emitted by the display panel 1 enters the optically dense medium by the light-diffusing medium, the light converges, that is, ⁇ is less than ⁇ .
  • the concentrated light enters the observer's eye. Since the concave lens 5 and the convex lens 6 have the same radius of curvature, the light condensed by the convex lens 6, that is, the refracted ray 8 is approximately parallel to the light 7 emitted from the display panel 1.
  • the image in the display panel 1 observed by the viewer is an enlarged virtual image, and since the convex lens 6 having the same radius of curvature and refractive index is provided on the concave lens 5, the display panel observed by the observer is provided.
  • the image in 1 is not distorted.
  • the frame 3 of the display panel 1 is opaque. Therefore, the left and right ends of the bezel 3 of the display panel 1 and the light 7 emitted by the display panel are sequentially formed by the concave lens 5, the air between the concave lens 5 and the convex lens 6, and finally formed by the convex lens 6.
  • the size of the bezel 3 of the display panel 1 observed by the observer is smaller than the size of the bezel 3 of the actual display panel 1. Therefore, the expansion of the display image of the effective display area in the display panel is achieved, and the effect of narrowing the frame of the display panel observed by the observer is achieved.
  • four display panel units adopt four pairs of concave lenses 5 and convex lenses 6, and the four pairs of concave lenses 5 and convex lenses 6 adopt independent mechanical stretching devices 4 at the joint of the display panels.
  • the mechanical telescopic device 4 is used in many cases, and can be applied to the case where the concave lens 5 on the four display panel units and the convex lens 6 are individually attached or separated. Therefore, the display device of this embodiment is suitable for the case where the frame of the display panel unit is independently controlled to be widened or narrowed.
  • the concave lens 5 and the convex lens 6 may be The curved portion for the concave lens and the convex lens is formed only for the edge portion of the display panel unit 2, while the central portion corresponding to the display panel unit 2 remains flat as long as such an arrangement does not significantly affect the display effect.
  • Embodiments 1 and 2 only show the structure in which the mechanical expansion device is coupled to the convex lens to control the expansion and contraction of the convex lens.
  • This structure is merely an alternative to the present invention and is not intended to limit the present invention.
  • the structure of the display device is not intended to limit the present invention.
  • the mechanical telescopic device can also be connected to the concave lens and the convex lens at the same time, and the concave lens and the convex lens can be controlled to be attached and separated by the elongation and shortening of the mechanical expansion device; or the mechanical expansion device is only connected to the concave lens.
  • the convex lens is fixed above the concave lens, and the fitting and separation of the concave lens and the convex lens are controlled by adjusting the mechanical stretching device.
  • the display devices of the first embodiment and the second embodiment are provided with concave lens and convex lens devices having the same radius of curvature and refractive index on the ordinary display panel, and the concave and convex lenses are separated and fitted by the mechanical expansion device to enable the observer to The observed change in the size of the displayed image in the display panel may be expanded or reduced, and the width and narrowness of the border of the display panel are controlled visually.
  • the display device of Embodiment 3 includes: a concave lens and a convex lens, a liquid crystal, and an electrode, which are disposed on the display panel and have the same radius of curvature and refractive index; the concave lens is disposed above the display panel, and the convex lens is disposed on the concave lens Upper, the liquid crystal is filled in the gap between the concave lens and the convex lens, and electrodes are respectively disposed on the surfaces of the concave lens and the convex lens that are in contact with the liquid crystal, and the deflection of the liquid crystal molecules is controlled by the electric field between the electrodes to change the light emitted by the display panel.
  • the propagation path realizes the expansion of the display image of the effective display area in the display panel, thereby visually realizing the width and narrowness of the border of the display panel.
  • an embodiment of the present invention further provides a display method, wherein a concave lens and a convex lens are disposed on the display panel, and the convex lens is disposed above the concave lens; The light path of the concave lens and the convex lens diverges the light emitted from the display panel through the concave lens disposed on the display panel, and then converges through the convex lens disposed above the concave lens.
  • the concave lens and the convex lens have the same radius of curvature; the refractive index of the concave lens is the same as the refractive index of the convex lens.
  • the propagation path of the light passing through the concave lens and the convex lens may be: providing a mechanical stretching device on the display panel, and the mechanical stretching device is connected to at least one of the concave lens and the convex lens, and the concave lens is adjusted by the mechanical stretching device and The bonding and separation of the convex lenses change the propagation path of the light passing through the lens and the convex lens.
  • the propagation path of the light passing through the concave lens and the convex lens may be: filling a liquid crystal in a gap between the concave lens and the convex lens, and respectively providing an electrode on a surface of the concave lens and the convex lens in contact with the liquid crystal, and passing an electric field between the electrodes
  • the deflection of the liquid crystal molecules is controlled to change the propagation path of the light passing through the concave lens and the convex lens.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示装置及其显示方法,所述显示装置包括显示面板(1)和设置于显示面板(1)上的凹透镜(5)和凸透镜(6);其中,所述凹透镜(5)设置于所述显示面板(1)的上方,所述凸透镜(6)设置于所述凹透镜(5)的上方。

Description

显示方法及显示装置 技术领域
本发明的实施例涉及一种显示方法及显示装置。 背景技术
随着对显示装置的需求日益增加, 对显示质量的要求也越来越高。 当大 型拼接显示墙整体显示一幅画面时, 需要窄边框显示效果, 即每个显示面板 单元的显示区域周边的非显示区域的尺寸越小显示效果越好; 而当大型拼接 显示墙不同部分显示不同画面时, 各显示面板单元的边框的存在又显得十分 必要。 因此, 亟需一种显示面板的显示边框宽窄可控的显示技术, 以解决上 述问题。 发明内容
本发明的实施例提供了一种显示方法及显示装置, 能使显示面板中显示 图像的大小改变, 进而能实现显示面板的边框的宽窄可控。
本发明的方面提供了一种显示装置, 包括: 显示面板和设置于显示面板 上的凹透镜和凸透镜; 所述凹透镜设置于所述显示面板的上方, 所述凸透镜 设置于所述凹透镜的上方。
在该显示装置中,例如,所述凹透镜和所述凸透镜具有相同的曲率半径。 在该显示装置中, 例如, 所述凹透镜的折射率与所述凸透镜的折射率相 同。
例如, 所述显示装置还可以包括: 设置于显示面板上的机械伸缩装置, 所述机械伸缩装置与所述凹透镜和凸透镜中至少一个连接, 用于调节所述凹 透镜和凸透镜的贴合与分离。
例如, 所述显示装置还可以包括: 填充于所述凹透镜和凸透镜间的空隙 中的液晶, 所述凹透镜与液晶接触的表面、 凸透镜与液晶接触的表面分别设 置有电极, 通过电极间的电场控制液晶分子的偏转。
在该显示装置中, 例如, 所述显示面板为拼接式显示面板, 包括多个拼 接在一起的显示面板单元,每个显示面板单元上分别设置有凹透镜和凸透镜, 所述凸透镜设置于凹透镜上方。
本发明的另一个方面还提供了一种显示装置的显示方法, 该显示装置包 括在显示面板上设置的凹透镜和凸透镜, 所述凸透镜设置于凹透镜上方, 所 述方法包括: 将显示面板发出的光经设置于所述显示面板上的所述凹透镜发 散后, 再经设置于所述凹透镜上方的所述凸透镜会聚。
在该显示方法中, 例如, 在显示面板上设置机械伸缩装置, 且所述机械 伸缩装置与所述凹透镜和凸透镜中至少一个连接, 通过所述机械伸缩装置调 节凹透镜和凸透镜的贴合与分离, 改变经过所述凹透镜、 凸透镜的光线的传 播路径。
在该显示方法中, 例如, 在所述凹透镜和凸透镜间的空隙中填充液晶, 且分别在所述凹透镜、 凸透镜与液晶接触的表面设置电极, 通过电极间的电 场控制液晶分子的偏转, 改变经过所述凹透镜、 凸透镜的光线的传播路径。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 筒单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为拼接的显示面板的结构示意图一;
图 2为本发明实施例 1显示装置中凹透镜与凸透镜贴合时的示意图; 图 3为本发明实施例 1显示装置中凹透镜与凸透镜分离时的示意图; 图 4为拼接的显示面板的结构示意图二;
图 5为本发明实施例 2显示装置中凹透镜与凸透镜贴合时的示意图; 图 6为本发明实施例 2显示装置中凹透镜与凸透镜分离时的示意图; 图 7为采用本发明显示装置的光线的传播路径示意图。
附图标记:
1、 显示面板, 2、 显示面板单元, 3、 显示面板的边框, 4、 机械伸缩装 置, 5、 凹透镜, 6、 凸透镜, 7、 显示面板发出的光, 8、 折射光线。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
除非另作定义, 此处使用的技术术语或者科学术语应当为本发明所属领 域内具有一般技能的人士所理解的通常意义。 本发明专利申请说明书以及权 利要求书中使用的"第一"、 "第二 "以及类似的词语并不表示任何顺序、 数量 或者重要性, 而只是用来区分不同的组成部分。 同样, "一个"、 "一"或者"该" 等类似词语也不表示数量限制, 而是表示存在至少一个。 "包括"或者"包含" 等类似的词语意指出现在"包括"或者"包含"前面的元件或者物件涵盖出现在 "包括 "或者 "包含 "后面列举的元件或者物件及其等同, 并不排除其他元件或 者物件。 "连接 "或者 "相连 "等类似的词语并非限定于物理的或者机械的连接, 而是可以包括电性的连接,不管是直接的还是间接的。 "上"、 "下"、 "左"、 "右" 等仅用于表示相对位置关系, 当被描述对象的绝对位置改变后, 则该相对位 置关系也可能相应地改变。
基于凹透镜和凸透镜的光学原理,本发明的实施例提出了一种显示装置, 包括: 设置于显示面板上的凹透镜和凸透镜; 所述凹透镜设置于所述显示面 板的上方, 所述凸透镜设置于所述凹透镜的上方。
例如, 所述凹透镜和凸透镜具有相同的曲率半径; 又例如, 所述凹透镜 的折射率与所述凸透镜的折射率相同。
进一步的, 所述显示装置还可以包括: 设置于显示面板上的机械伸缩装 置, 所述机械伸缩装置与所述凹透镜和凸透镜中至少一个连接, 用于调节所 述凹透镜和凸透镜的贴合与分离; 或者, 所述显示装置还可以包括: 填充于 所述凹透镜和凸透镜间的空隙中的液晶, 所述凹透镜、 凸透镜与液晶接触的 表面分别设置有电极, 通过电极间的电场控制液晶分子的偏转。
实施例 1
该实施例的显示装置包括: 显示面板、 设置于显示面板上的曲率半径和 折射率都相同的凹透镜和凸透镜、 以及机械伸缩装置。 所述凹透镜设置于所 述显示面板上方, 所述凸透镜设置于所述凹透镜上方, 所述机械伸缩装置设 置于所述显示面板上, 且与所述凸透镜连接, 以调节所述凹透镜和凸透镜的 贴合与分离。
这里, 所述显示面板 1为4丼接显示面板。 图 1为该 4丼接显示面板 1的俯 视图。如图 1所示,所述显示面板 1由四个大小相同的显示面板单元 2组成, 整体形状为矩形。 每个显示面板单元 2的四个角上分别设置有一个机械伸缩 装置 4, 用于改变凹透镜 5和凸透镜 6之间的距离。 每个显示面板单元 2上 方设置有曲率半径和折射率都相同的 透镜 5和凸透镜 6。
例如, 机械伸缩装置 4可以使用气动伸缩元件或者螺旋伸缩元件得到。 气动伸缩元件便于实现自动控制, 当充气时, 该伸缩元件伸长, 而当放气时, 该伸缩元件回缩, 而且控制充气量的大小还可以控制伸缩元件伸长的量。
根据需要, 四个显示面板单元 2可以被该显示装置的驱动器控制整体上 显示同一画面, 即每个显示面板单元显示一部分画面; 或者, 四个显示面板 单元 2可以被控制以分别显示不同的画面。 当然本发明不限于显示装置又四 个显示面板单元构成的情形, 也可以包括多于或少于四个显示面板单元。 图 2、 图 3分别为本发明实施例 1显示装置中凹透镜 5与凸透镜 6贴合、分离时 的示意图。
在该实施例中, 如图 2、 图 3所示, 凹透镜 5的下表面和凸透镜 6的上 表面均为平面, 而在下的凹透镜 5的上表面为凹面, 在上的凸透镜 6的下表 面为凸面。 凹透镜 5的凹面和凸透镜 6的凸面彼此相对且外形相同, 则曲率 半径相同, 从而二者可以彼此紧密贴合在一起。 凹透镜 5和凸透镜 6的折射 率可以相同, 例如二者采用相同的玻璃、石英、树脂等透明材料形成。 但是, 本发明不行限于此, 例如只要不显著影响显示效果, 则凹透镜 5的下表面和 凸透镜 6的上表面也可以非完全平坦的。
如图 2所示, 当所述 透镜 5与凸透镜 6贴合时, 如果所述 透镜 5和 凸透镜 6的曲率半径和折射率都相同, 则贴合后的凹透镜 5和凸透镜 6整体 上相当于一块普通的平板玻璃。 当显示面板 1 (显示面板单元 2 )发出的光经 贴合后的凹透镜 5和凸透镜 6时,光线的传播路径基本上不发生变化。此时, 观察者所看到的显示面板 1中的边框 3的大小与显示面板 1的边框 3的实际 大小相同。
如图 3、 图 7所示, 当所述 透镜 5与凸透镜 6分离时, 透镜 5和凸 透镜 6间为空气间隙 (空气的折射率为 1 ) 。 当显示面板 1发出的光 7经凹 透镜 5进入凹透镜 5和凸透镜 6间的空气, 即显示面板 1 (显示面板单元 2 ) 发出的光 7由光密介质进入光疏介质时, 光线被发散, 即 ^大于 , 且有如 下关系:
d2 » dl x tg(02 - 01) = dl x tg [arcsin (nl x sin Θ1) - θί
其中, dl表示线段 AD的长度, 即凹透镜 5与凸透镜 6间的距离; d2 表示线段 BC的长度,其中 BC与 AC垂直,且虚线 AC为显示面板发出的光 7的延长线, 因此 d2表示显示面板发出的光 7经凹透镜 5发散后其外扩的距 离; nl为凹透镜 5和凸透镜 6的折射率(所述凹透镜 5和凸透镜 6的折射率 相同) ; 这里, 假设线段 AD的长度与线段 AC的长度相等, 则有如下等式 成立:
d2 » dl x tg(02 - 01) = dl x tg [arcsin (nl x sin θ\) - θί
从该等式可以看出, 通过调节凹透镜 5和凸透镜 6之间的距离, 即调节 dl的长度, 可以控制显示面板发出的光 7向外扩的距离, 即控制 d2的长度。
所述凹透镜 5发散的光线继续经所述凸透镜 6, 则显示面板发出的光 7 由光疏介质进入光密介质时, 光线汇聚, 即 ^小于 ^, 汇聚后的光线进入观 察者眼中, 由于所述凹透镜 5和凸透镜 6的曲率半径相同, 所以经凸透镜 6 会聚的光线即折射光线 8与显示面板发出的光 7近似于平行。 此时, 观者观 察到的显示面板中的图像为放大的虚像, 且又由于在所述凹透镜 5上设置有 曲率半径和折射率都相同的凸透镜 6, 所以观察者观察到的显示面板中的图 像不会失真。
显示面板 1中的边框 3处不透光, 因此显示面板 1的边框 3的左右端、 由显示面板 1发出的光依次经 透镜 5、 透镜 5和凸透镜 6间的空气间隙、 最后经凸透镜 6后形成如图 3黑色边框处所示的情况, 即观察者观察到的显 示面板 1的边框 3的大小小于显示面板的边框 3实际的大小, 因此实现了显 示面板中有效显示区域的显示图像的外扩, 进而达到观察者观察到的显示面 板的边框变窄的效果。
本实施例中, 四个显示面板单元 2采用四对凹透镜 5、 凸透镜 6, 且上述 四对凹透镜 5、凸透镜 6在显示面板的拼接处有共用的机械伸缩装置 4。这样 采用的机械伸缩装置 4较少, 能适用于四个显示面板单元 2上的凹透镜 5、 凸透镜 6同时贴合或分离的情况。 因此, 本实施例显示装置适用于显示面板 单元的边框同时变宽或同时变窄的情况。
如图 2、 图 3所示, 在每个显示面板单元 2上方的凹透镜 5的凹面和凸 透镜 6的凸面均匀地延伸在面板显示单元 2的上方, 且二者的顶点与显示面 板的中心重叠。 然而, 如果显示面板单元 2的面积比较大时, 则凹透镜 5和 凸透镜 6可以仅针对显示面板单元 2的边缘部分形成用于凹透镜和凸透镜的 曲面部分, 而对应于显示面板单元 2的中央部分则仍然保持为平面, 只要这 样的设置不显著影响显示效果。
实施例 2
实施例 2的显示装置包括: 设置于显示面板上的曲率半径和折射率都相 同的凹透镜和凸透镜、 以及机械伸缩装置; 所述凹透镜设置于所述显示面板 上方, 所述凸透镜设置于所述凹透镜上方, 所述机械伸缩装置设置于所述显 示面板上,且与所述凸透镜连接,以调节所述凹透镜和凸透镜的贴合与分离。
这里, 所述显示面板为拼接的显示面板。 所述显示面板 1由若干个大小 相同的显示面板单元 2组成,以整个显示面板中间的四个显示面板单元为例, 如图 4所示, 每个显示面板单元 2的四个角上分别设置有四个机械伸缩装置 4。每个显示面板单元 2上设置有曲率半径和折射率都相同的凹透镜 5和凸透 镜 6。
本实施例中显示面板单元 2、 每个显示面板单元 2上方设置的凹透镜 5 和凸透镜 6以及机械伸缩装置 4可以与实施例 1的基本相同。
图 5、 图 6分别为本发明实施例 2的显示装置中凹透镜与凸透镜贴合、 分离时的示意图。
如图 5所示, 当所述凹透镜 5与凸透镜 6贴合时, 由于所述凹透镜 5和 凸透镜 6的曲率半径和折射率都相同, 因此贴合后的凹透镜 5和凸透镜 6整 体上相当于一块普通的平板玻璃。 当显示面板 1 (显示面板单元 2 )发出的光 7经贴合后的凹透镜 5和凸透镜 6时, 光线不发生变化。 此时, 观察者观察 到的显示面板 1中的边框 3的大小与显示面板 1中的边框 3的实际大小相同。
如图 6、 图 7所示, 当所述 透镜 5与凸透镜 6分离时, 透镜 5和凸 透镜 6间为空气间隙 (空气的折射率为 1 ) 。 当显示面板 1发出的光 7经凹 透镜 5进入凹透镜 5和凸透镜 6间的空气, 则显示面板 1发出的光由光密介 质进入光疏介质时, 光线发散, 即 ^大于 , 且满足如下关系: d2 ~ d\ x tg{ei- e\) = d\ x tg [arcsin (ηί x sin θ\) - θί
其中, dl表示线段 AD的长度, 即凹透镜 5与凸透镜 6间的距离; d2 表示线段 BC的长度,其中 BC与 AC垂直,且虚线 AC为显示面板发出的光 7的延长线, 因此 d2表示显示面板 1发出的光 7经凹透镜 5发散后其外扩的 距离; nl为凹透镜 5和凸透镜 6的折射率(所述凹透镜 5和凸透镜 6的折射 率相同) ; 这里, 假设线段 AD的长度与线段 AC的长度相等, 则有如下等 式成立:
d2 ~ d\ x tg{ei- e\) = d\ x tg [arcsin (ηί x sin θ\) - θί
从该等式可以看出, 通过调节凹透镜 5和凸透镜 6之间的距离, 即调节 dl的长度, 可以控制显示面板 1发出的光 7外扩的距离, 即控制 d2的长度。
所述凹透镜 5发散的光线继续经所述凸透镜 6,则显示面板 1发出的光 7 由光疏介质进入光密介质时, 光线汇聚, 即 ^小于 ^。 汇聚后的光线进入观 察者眼中, 由于所述凹透镜 5和凸透镜 6的曲率半径相同, 所以经凸透镜 6 会聚的光线即折射光线 8与显示面板 1发出的光 7近似于平行。 此时, 观者 观察到的显示面板 1中的图像为放大的虚像, 且又由于在所述凹透镜 5上设 置有曲率半径和折射率都相同的凸透镜 6,所以,观察者观察到的显示面板 1 中的图像不会失真。
显示面板 1的边框 3处不透光, 因此, 显示面板 1的边框 3的左右端、 由显示面板发出的光 7依次经凹透镜 5、 凹透镜 5和凸透镜 6间的空气、 最 后经凸透镜 6后形成如图 6黑色边框处所示的情况, 即观察者观察到的显示 面板 1的边框 3的大小小于实际的显示面板 1的边框 3的大小。 因此, 实现 了显示面板中有效显示区域的显示图像的外扩, 进而达到观察者观察到的显 示面板的边框变窄的效果。
本实施例中, 四个显示面板单元采用四对凹透镜 5、 凸透镜 6,且上述四 对凹透镜 5、凸透镜 6在显示面板的拼接处采用独立的机械伸缩装置 4。这样, 采用的机械伸缩装置 4较多, 能适用于四个显示面板单元上的凹透镜 5、 凸 透镜 6单独贴合或分离的情况。 因此, 本实施例显示装置适用于独立控制显 示面板单元的边框变宽或变窄的情况。
同样, 如果显示面板单元 2的面积比较大时, 则凹透镜 5和凸透镜 6可 以仅针对显示面板单元 2的边缘部分形成用于凹透镜和凸透镜的曲面部分, 而对应于显示面板单元 2的中央部分则仍然保持为平面, 只要这样的设置不 显著影响显示效果。
值得注意的是, 实施例 1和实施例 2仅给出了机械伸缩装置与凸透镜连 接, 以控制凸透镜的伸缩的结构, 此结构仅为本发明的一种可选方案, 并非 用于限制本发明显示装置的结构。
在实际应用中, 机械伸缩装置还可以同时与凹透镜、 凸透镜连接, 通过 机械伸缩装置的伸长与缩短来控制凹透镜、 凸透镜的贴合与分离; 或者, 机 械伸缩装置仅与凹透镜连接, 此时, 将凸透镜固定于凹透镜上方, 通过调节 机械伸缩装置来控制凹透镜、 凸透镜的贴合与分离。
实施例 1和实施例 2的显示装置, 均是在普通显示面板上设置具有曲率 半径和折射率都相同的凹透镜、凸透镜装置,通过机械伸缩装置控制凹透镜、 凸透镜的分离与贴合, 使观察者观察到的显示面板中显示图像大小的改变, 具体可以是扩大或缩小, 在视觉效果上实现了显示面板的边框的宽窄可控。
实施例 3
实施例 3的显示装置包括: 设置于显示面板上的曲率半径和折射率都相 同的凹透镜和凸透镜、 液晶、 以及电极; 所述凹透镜设置于所述显示面板上 方, 所述凸透镜设置于所述凹透镜上方, 所述液晶填充于所述凹透镜和凸透 镜的空隙中, 且在所述凹透镜、 凸透镜与液晶接触的表面分别设置电极, 通 过电极间的电场控制液晶分子的偏转,以改变显示面板发出的光的传播路径, 实现显示面板中有效显示区的显示图像的外扩, 进而在视觉上实现显示面板 的边框的宽窄可控。
这里, 值得注意的是, 对于采用机械伸缩装置调节凹透镜、 凸透镜的贴 合与分离的显示装置, 通过调节凹透镜与凸透镜之间的距离, 可以实现在视 觉上完全无显示面板的边框的情况; 而对应采用填充液晶、 设置电极的显示 装置, 通过调节电极形成的电场的大小来调节液晶分子的偏转, 进而调节显 示面板发出的光的传播路径, 也可以实现视觉上的完全无显示面板的边框的 情况。
基于上述显示装置, 本发明的实施例还提出了一种显示方法, 在显示面 板上设置凹透镜和凸透镜, 且所述凸透镜设置于凹透镜上方; 通过改变经过 凹透镜与凸透镜的光线的传播路径, 将显示面板发出的光经设置于所述显示 面板上的所述凹透镜发散后,再经设置于所述凹透镜上方的所述凸透镜会聚。
这里, 例如, 所述凹透镜和凸透镜具有相同的曲率半径; 所述凹透镜的 折射率与所述凸透镜的折射率相同。
所述改变经过凹透镜与凸透镜的光线的传播路径可以是: 在显示面板上 设置机械伸缩装置, 且所述机械伸缩装置与所述凹透镜和凸透镜中至少一个 连接, 通过所述机械伸缩装置调节凹透镜和凸透镜的贴合与分离, 改变经过 所述 透镜、 凸透镜的光线的传播路径。
所述改变经过凹透镜与凸透镜的光线的传播路径也可以是: 在所述凹透 镜和凸透镜间的空隙中填充液晶, 且分别在所述凹透镜、 凸透镜与液晶接触 的表面设置电极, 通过电极间的电场控制液晶分子的偏转, 改变经过所述凹 透镜、 凸透镜的光线的传播路径。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1、一种显示装置, 包括: 显示面板和设置于显示面板上的凹透镜和凸透 镜;
其中, 所述凹透镜设置于所述显示面板的上方, 所述凸透镜设置于所述 凹透镜的上方。
2、根据权利要求 1所述的显示装置, 其中, 所述凹透镜和所述凸透镜具 有相同的曲率半径。
3、根据权利要求 1或 2所述的显示装置, 其中, 所述凹透镜的折射率与 所述凸透镜的折射率相同。
4、根据权利要求 1-3任一所述的显示装置,其中,所述显示装置还包括: 设置于显示面板上的机械伸缩装置, 所述机械伸缩装置与所述凹透镜和凸透 镜中至少之一连接, 用于调节所述凹透镜和凸透镜的贴合与分离。
5、根据权利要求 1-3任一所述的显示装置,其中,所述显示装置还包括: 填充于所述凹透镜和凸透镜间的空隙中的液晶, 所述凹透镜、 凸透镜与液晶 接触的表面分别设置有电极, 通过电极间的电场控制液晶分子的偏转。
6、 根据权利要求 1-5任一所述的显示装置, 其中, 所述显示面板为拼接 式显示面板, 包括多个拼接在一起的显示面板单元, 每个显示面板单元上分 别设置有凹透镜和凸透镜, 所述凸透镜设置于凹透镜上方。
7、一种显示面板的显示方法,所述显示面板上方设置有凹透镜和凸透镜, 所述凸透镜设置于凹透镜上方; 所述方法包括:
将显示面板发出的光经设置于所述显示面板上的所述凹透镜发散后, 再 经设置于所述凹透镜上方的所述凸透镜会聚。
8、根据权利要求 7所述的显示方法, 其中, 所述凹透镜和凸透镜具有相 同的曲率半径。
9、根据权利要求 7或 8所述的显示方法, 其中, 所述凹透镜的折射率与 所述凸透镜的折射率相同。
10、 根据权利要求 7-9任一所述的显示方法, 其中, 在所述显示面板上 设置机械伸缩装置, 且所述机械伸缩装置与所述凹透镜和凸透镜中至少一个 连接, 通过所述机械伸缩装置调节凹透镜和凸透镜的贴合与分离, 改变经过 所述 EJ透镜、 凸透镜的光线的传播路径。
11、 根据权利要求 7-9任一所述的显示方法, 其中, 在所述凹透镜和凸 透镜间的空隙中填充液晶, 且分别在所述凹透镜与液晶接触的表面、 凸透镜 与液晶接触的表面设置电极, 通过电极间的电场控制液晶分子的偏转, 改变 经过所述凹透镜、 凸透镜的光线的传播路径。
PCT/CN2013/075487 2013-03-28 2013-05-10 显示方法及显示装置 WO2014153812A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310105347.8A CN104076506B (zh) 2013-03-28 2013-03-28 一种显示方法及其显示装置
CN201310105347.8 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014153812A1 true WO2014153812A1 (zh) 2014-10-02

Family

ID=51597875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075487 WO2014153812A1 (zh) 2013-03-28 2013-05-10 显示方法及显示装置

Country Status (2)

Country Link
CN (1) CN104076506B (zh)
WO (1) WO2014153812A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104950504B (zh) * 2015-07-28 2018-01-09 深圳市华星光电技术有限公司 显示装置及电子设备
TWI600938B (zh) * 2015-09-18 2017-10-01 友達光電股份有限公司 顯示裝置
CN105700227B (zh) * 2016-04-25 2020-05-19 京东方科技集团股份有限公司 显示面板
CN108333827A (zh) * 2018-01-10 2018-07-27 惠州市华星光电技术有限公司 一种实现拼接中黑边现象消除的显示装置
CN109584731B (zh) * 2018-12-18 2021-07-06 惠州市华星光电技术有限公司 拼接显示屏
CN109817088A (zh) * 2018-12-26 2019-05-28 合肥通用机械研究院有限公司 一种可变视角影像放大播放演示装置
CN111063265B (zh) * 2019-12-26 2021-02-02 深圳市华星光电半导体显示技术有限公司 拼接显示面板及拼接显示装置
CN111192526B (zh) * 2020-03-18 2022-02-22 深圳市华星光电半导体显示技术有限公司 显示装置及拼接显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1854843A (zh) * 2005-04-27 2006-11-01 株式会社日立显示器 显示装置
US20100118413A1 (en) * 2008-11-10 2010-05-13 Samsung Electronics Co., Ltd. Micro-shutter device and method of manufacturing the same
CN101165809B (zh) * 2006-10-18 2010-10-06 群康科技(深圳)有限公司 显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003167535A (ja) * 2001-12-04 2003-06-13 Matsushita Electric Ind Co Ltd 表示装置およびそれを備えた電子掲示装置
WO2012035988A1 (ja) * 2010-09-14 2012-03-22 シャープ株式会社 マルチディスプレイ装置
CN102346326B (zh) * 2011-09-20 2013-10-30 广东威创视讯科技股份有限公司 一种lcd无缝拼接***
CN202549182U (zh) * 2012-04-27 2012-11-21 合肥京东方光电科技有限公司 一种拼接墙及显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1854843A (zh) * 2005-04-27 2006-11-01 株式会社日立显示器 显示装置
CN101165809B (zh) * 2006-10-18 2010-10-06 群康科技(深圳)有限公司 显示装置
US20100118413A1 (en) * 2008-11-10 2010-05-13 Samsung Electronics Co., Ltd. Micro-shutter device and method of manufacturing the same

Also Published As

Publication number Publication date
CN104076506A (zh) 2014-10-01
CN104076506B (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
WO2014153812A1 (zh) 显示方法及显示装置
WO2018023987A1 (zh) 近眼显示装置和方法
US10782554B2 (en) Display apparatus, display system having the same, and image display method thereof
CN104409020B (zh) 一种显示面板和显示装置
TWI536050B (zh) 光學膜片及具有此光學膜片之顯示裝置
TWI472802B (zh) 顯示裝置
TWI515490B (zh) 顯示裝置
US9529124B2 (en) Optical film structure having a light absorbing layer that improves the contrast of the display apparatus
WO2017161717A1 (zh) 显示模组及显示***
TW201506869A (zh) 可平鋪顯示設備中之光學組態
WO2017202201A1 (zh) 显示面板和显示装置
US8520153B2 (en) Zoom lens array and switchable two and three dimensional display
KR20170013352A (ko) 디스플레이 시스템을 위한 스크린 구성
WO2013029280A1 (zh) 液晶透镜及液晶显示装置
CN102279500A (zh) 液晶透镜及3d显示装置
JP2014130218A (ja) 表示装置
US20160353097A1 (en) Display switchable between 2d and 3d modes and control method thereof
CN204375351U (zh) 一种无缝拼接显示装置
JP2016145956A (ja) 光学装置並びにそれを備えた頭部装着型画像表示装置及び撮像装置
CN104713031A (zh) 一种复合棱镜单元、背光模组、显示装置
CN106094386B (zh) 液晶透镜、显示装置和曲面显示方法
KR102148823B1 (ko) 멀티 패널 표시 장치
CN108333827A (zh) 一种实现拼接中黑边现象消除的显示装置
TW201200909A (en) Optical film and stereoscopic display using the same
CN203732842U (zh) 一种拼接显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22-01-2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13880375

Country of ref document: EP

Kind code of ref document: A1