WO2014153631A1 - Method for manufacturing self-lubricating elements with nanometric lubricants - Google Patents

Method for manufacturing self-lubricating elements with nanometric lubricants Download PDF

Info

Publication number
WO2014153631A1
WO2014153631A1 PCT/BR2014/000080 BR2014000080W WO2014153631A1 WO 2014153631 A1 WO2014153631 A1 WO 2014153631A1 BR 2014000080 W BR2014000080 W BR 2014000080W WO 2014153631 A1 WO2014153631 A1 WO 2014153631A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricants
self
lubricating elements
lubricating
fabric
Prior art date
Application number
PCT/BR2014/000080
Other languages
French (fr)
Portuguese (pt)
Inventor
Etienne Henrique JENSEN
Original Assignee
Jensen Etienne Henrique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jensen Etienne Henrique filed Critical Jensen Etienne Henrique
Publication of WO2014153631A1 publication Critical patent/WO2014153631A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/30Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/02Carbon; Graphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/22Compounds containing sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/26Compounds containing silicon or boron, e.g. silica, sand
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M147/00Lubricating compositions characterised by the additive being a macromolecular compound containing halogen
    • C10M147/02Monomer containing carbon, hydrogen and halogen only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D33/00Producing bushes for bearings

Definitions

  • This invention relates to an unprecedented "PROCESS OF MANUFACTURE OF AUTOLUBRICANT ELEMENTS WITH NANOMETRIC LUBRICANTS", developed with the intention of meeting the tribological needs of systems with solid lubrication whose prominence is the incorporation of lubricants at nanoscale in accordance with with the specificities of the use of the product and / or self-lubricating element.
  • Self-lubricating polymer systems composed of thermoset resins reinforced by synthetic fabrics and solid lubricants, such as but not limited to the naval industry, automobile, agricultural implements, earthworks, machine tools, among others.
  • Self-lubricating elements include turbine bearings from hydroelectric plants, for agricultural equipment, for presses, for playground / playground toys, as well as sliding plates for forklift masts, guide rings for hydraulic cylinders, bushings directional vanes, bushes of various types of sluice gates, etc.
  • Self-lubricating composite is a matrix of thermosetting polymer, added with solid lubricants and reinforced by synthetic fabrics, being composed of bicomponent resins of the epoxy, estervinil or polyester types.
  • one of the first composites known to be used as mancai was composed of liquid phenolic resins reinforced with cotton cloth. Although these resins are resistant to moisture, the same does not happen with the cotton that when absorbing water deteriorates.
  • the composites had the addition of graphite, at first, without any tribological research.
  • Other advances have come with the introduction of synthetic resins and the replacement of cotton with high-performance synthetic fabrics such as polyester, Noomex®, aramids and Kevlar®, which give the products differentiated characteristics when compared with their individual properties.
  • self-lubricating composites most commonly used are graffiti, molybdenum bisulphides, polytetrafluoroethylene (PTFE), boron nitride and other metal oxides.
  • Solid lubricants include graphite, polytetrafluoroethylene (PTFE), molybdenum disulphide (MoS 2 ), boron nitride, WS 2 , talc, all known for a long time.
  • Natural graphite is only found in large lamellae, and milling processes can not reduce their dimensions below the micrometric scale, as do other solid lubricants, which, despite more recent processing than graphite, do not exceed the said scale .
  • the invention also contemplates hybrid systems, wherein part of the micrometric solid lubricants is replaced by their nanometric equivalents. From the technical problem
  • nanometric solid lubricants The limiting factor for the use of nanometric solid lubricants is that for their dispersion and homogenization to the mixture, as well as their stability to the over time, high-energy equipment is needed, which makes the process technically and commercially unfeasible.
  • the solution found is the use of ultrasonic blenders for thermoset resins of low viscosity and Vortex mixers for the higher viscosity resins.
  • thermoset resins reinforced by synthetic fabrics and solid lubricants in addition to resistance to chemicals, weak acids and bases:
  • the present invention has the most preponderant advantages:
  • Figure 1 Flowchart of the manufacturing process of self-lubricating elements with nanometric lubricants
  • Figure 2 Schematic view of the manufacturing process of self-lubricating elements with nanometric lubricants.
  • the invention relates to the manufacture of self-lubricating elements such as bearings, plates, bushings and the like with composites obtained from the impregnation of special synthetic fabrics with resins thermosets, catalyst and nano graphite and / or nanosulphide molybdenum and / or nano PTFE and / or boron nano nitride, each of these, or other nano-sized lubricants, added according to the applications and tribological needs of the product.
  • the composites used in the process of manufacturing the self-lubricating elements are obtained by impregnating the polyester fabrics with thermoset resins of polyester (65% to 83%) or thermoset resins in epoxy (70% to 91%) and solid lubricants such as nano graphite (15% to 19%) and / or boron nano nitride (up to 4.5%) and / or PTFE (up to 0%) and / or MoS 2 (5% to 7%) wherein the limits are adjusted according to tribological needs for that self-lubricating system.
  • the above components and respective percentages may be included wholly, partially or uniformly for impregnation of the fabric.
  • nano PTFE is indicated for use in environments where there is galvanic and submerged corrosion.
  • Nano graphite and nano M0S2 are indicated for general use, provided that the maximum temperature does not exceed 200 ° C.
  • the combination of PTFE and MoS 2 is ideal for the food and pharmaceutical industry.
  • ultrasonic blenders are used for thermoset resins of low viscosity and Vortex mixers for the higher viscosity resins.
  • impregnation takes place by bathing the polyester fabric in an immersion tank with the thermoset resin blend and the nano lubricant (s) to be used.
  • the fabric can be rolled up with reinforcing material, such as aramid fiber or carbon fiber, in order to increase the shock and / or pressure resistance of the self-lubricating composite nanometer in filament winding equipment .
  • This process involves filament winding under different stress conditions along a mandrel or mold core.
  • the mandrel rotates as a carriage moves horizontally establishing the desired pattern of the nano-lubricating composite, resin and fabric.
  • the mandrel is conducted into the furnace in order to cure the fabric, resin and nano solid lubricant assembly, which occurs between 110 ° to 250 ° C.
  • the mandrel can be removed.
  • different dimensions can be defined for the initial internal and external diameters and for the length, this defined by the measurement of the mandrel length and the maximum length of the filament winding equipment.
  • a manufacturing variation is intended to obtain the self-lubricating element in the form of a plate whose process is similar to that of the bearing and bush in which the fabric is wound.
  • the polyester fabric is impregnated with the orthophthalic resin and the relevant nanometric lubricants, likewise being possible to add carbon fiber and aramid fiber for reinforcement.
  • the fabric is vacuum-pressed for perfect penetration of the resin and nano-lubricants, and removal of the surplus thereof.
  • the material is brought into the set oven to reach the curing temperature of the resin between 110 ° C and 250 ° C.
  • the composition for the impregnation and respective amounts are the same as those for the manufacture of the composite tube.
  • the resin (E1) and the nanometer lubricants (E2), suitably dosed, are directed to a mixer (E3) where they are homogenized.
  • the mixer varies depending on the resin.
  • high viscosity thermosets is of the Vortex type and for thermoset resins of low viscosity of the ultrasonic type.
  • the blended and homogenized resin and lubricant (E4) are ready to impregnate (A) the polyester fabric (E5). Such impregnation occurs with the passage of the fabric (1) by an immersion tank (2) containing the mixture (3) in the pasty form.
  • the process enters a decision-making stage (E6) that defines which type of raw material or final self-lubricating element is desired.
  • the impregnated fabric emerging from the tank is directed to a press (E7), whereas for the production of billets (C) - bushes and bearings - the fabric is wound on equipment (E8) of filament winding.
  • the products are brought to the oven / stove (E9) between 110 ° C to 250 ° C so that the raw material (E10) in plate or billet reaches the cure temperature.
  • the process goes to the machining (E11) to obtain the finished product (E12).
  • the dimensions such as internal diameter, outer diameter, length, speed, temperature, friction coefficient and load factor on the bearing are analyzed for the production of a bushing for use in grain harvesting equipment. other data necessary for the proper functioning of the self-lubricating element.
  • the manufacturing process of said bushing uses polyester fabric with the appropriate measures to achieve the end product gauging.
  • the impregnation of the fabric is with polyester resin of high viscosity (75%), nano PTFE (10%), nano oS 2 (4%) for complementation of the solid lubrication and catalyst for the resin (11%), these homogenates in Vortex mixer .
  • the resin + nano-lubricant + fabric assembly is rolled up in filament winding equipment, with diameters already defined for the final product.
  • the inner diameter of the is given by the outside diameter of the mandrel.
  • the raw material is brought to the stove to reach the curing temperature, in this case 150 ° C. After curing and cooling, the bushing is machined to achieve final design measurements.

Abstract

A method for manufacturing self-lubricating elements with nanometric lubricants relates to the manufacture of self-lubricating elements such as bearings, plates, bushes and the like, with composites obtained by impregnating special synthetic fabrics with thermoset resins, a catalyst and nanographite and/or nanomolybdenum disulfide and/or nano-PTFE and/or nanoboron nitride, which of these compounds, or other nanometric lubricants, being added according to the uses and tribological requirements of the product in question.

Description

"PROCESSO DE FABRICAÇÃO DE ELEMENTOS AUTOLUBRIFICANTES COM LUBRIFICANTES NANOMÉTRICOS"  METHOD OF MANUFACTURING AUTOLUBRICANT ELEMENTS WITH NANOMETRIC LUBRICANTS
Breve apresentação Short presentation
Trata a presente solicitação de Patente de Invenção de um inédito "PROCESSO DE FABRICAÇÃO DE ELEMENTOS AUTOLUBRIFICANTES COM LUBRIFICANTES NANOMÉTRICOS", desenvolvido com a intenção de atender as necessidades tribológicas de sistemas com lubrificação sólida cujo destaque é a incorporação de lubrificantes em escala nanométrica, em conformidade com as especificidades da utilização do produto e/ ou elemento autolubrificante.  This invention relates to an unprecedented "PROCESS OF MANUFACTURE OF AUTOLUBRICANT ELEMENTS WITH NANOMETRIC LUBRICANTS", developed with the intention of meeting the tribological needs of systems with solid lubrication whose prominence is the incorporation of lubricants at nanoscale in accordance with with the specificities of the use of the product and / or self-lubricating element.
Campo de aplicação Application field
Em sistemas poliméricos autolubrificantes compostos de resinas termofixas reforçadas por tecidos sintéticos e lubrificantes sólidos, como, por exemplo, mas não limitada à indústria naval, automobilística, implementos agrícolas, terraplanagem, máquinas operatrizes entre outras. Como elementos autolubrificantes entendem-se os mancais para turbinas de usinas hidrelétricas, para equipamentos agrícolas, para prensas, para brinquedos de parques aquáticos / diversão, bem como em placas de deslize dos mastros de empilhadeiras, em anéis de guia para cilindros hidráulicos, em bucha das palhetas diretrizes, em buchas dos vários tipos de comportas, etc.  In self-lubricating polymer systems composed of thermoset resins reinforced by synthetic fabrics and solid lubricants, such as but not limited to the naval industry, automobile, agricultural implements, earthworks, machine tools, among others. Self-lubricating elements include turbine bearings from hydroelectric plants, for agricultural equipment, for presses, for playground / playground toys, as well as sliding plates for forklift masts, guide rings for hydraulic cylinders, bushings directional vanes, bushes of various types of sluice gates, etc.
Fundamentos da invenção Fundamentals of the invention
Ultimamente, a preocupação ambiental passou a ser prioridade para a sociedade em geral, não sendo diferente no segmento industrial.  Lately, environmental concern has become a priority for society in general, not being different in the industrial segment.
Na indústria automobilística, elementos de máquinas submetidos a desgastes, que originariamente fabricados em aço lubrificados a graxa, passaram a utilizar o bronze como matéria-prima, assim eliminando não somente a sujeira proveniente de vazamentos de lubrificantes, mas também a contaminação ambiental. In the automobile industry, elements of machines subjected to wear, which originally were made from grease-lubricated steel, started to use bronze as a raw material, thus eliminating not only dirt from lubricant leaks, but also environmental contamination.
A siderurgia, pelas cargas demandadas associadas a choques e altas temperaturas também foram campo preferencial da utilização de bronze com insertos de lubrificantes sólidos, não sendo diferente na geração de energia elétrica mais limpa com a utilização de sistemas autolubrificantes baseados em ligas de bronze.  The steel industry, due to the loads demanded by shocks and high temperatures, was also a preferred field for the use of brass with solid lubricant inserts. It was not different in the generation of cleaner electric energy with the use of self-lubricating systems based on bronze alloys.
A indústria petrolífera, com necessidades afins às supracitadas também passou a utilizar elementos autolubrificantes baseados em ligas de cobre.  The petroleum industry, with needs similar to those mentioned above, also started to use self-lubricating elements based on copper alloys.
No entanto, o cobre, o bronze e suas ligas são metais nobres e finitos, e com a demanda crescente gerou a necessidade de buscar soluções alternativas tal como os compósitos autolubrificantes de alto desempenho.  However, copper, bronze and its alloys are noble and finite metals, and with increasing demand has generated the need to seek alternative solutions such as high performance self-lubricating composites.
Compósito autolubrificante é uma matriz de polímero termofixo, aditivada com lubrificantes sólidos e reforçados por tecidos sintéticos, sendo composta por resinas bicomponentes dos tipos epóxi, estervinílica ou poliésteres.  Self-lubricating composite is a matrix of thermosetting polymer, added with solid lubricants and reinforced by synthetic fabrics, being composed of bicomponent resins of the epoxy, estervinil or polyester types.
Nesse sentido, um dos primeiros compósitos que se tem notícia para ser utilizado como mancai era constituído por resinas fenólicas líquidas reforçadas com tecido de algodão. Apesar das referidas resinas serem resistentes a umidade, o mesmo não acontece com o algodão que ao absorver água se deteriora. Em uma evolução tecnológica, os compósitos tiveram a adição de grafite, em um primeiro momento, sem nenhuma pesquisa tribológica. Outros avanços vieram com introdução das resinas sintéticas e a substituição do algodão por tecidos sintéticos de alto desempenho como o poliéster, Noomex®, aramidas e Kevlar®, que conferem aos produtos características diferenciadas quando da comparação com suas propriedades individuais. Quanto aos aditivos, os compósitos autolubrificantes os mais utilizados são grafites, bissulfetos de molibdênio, Politetrafluoretileno (PTFE), nitreto de boro entre outros óxidos metálicos. In this sense, one of the first composites known to be used as mancai was composed of liquid phenolic resins reinforced with cotton cloth. Although these resins are resistant to moisture, the same does not happen with the cotton that when absorbing water deteriorates. In a technological evolution, the composites had the addition of graphite, at first, without any tribological research. Other advances have come with the introduction of synthetic resins and the replacement of cotton with high-performance synthetic fabrics such as polyester, Noomex®, aramids and Kevlar®, which give the products differentiated characteristics when compared with their individual properties. As regards additives, self-lubricating composites most commonly used are graffiti, molybdenum bisulphides, polytetrafluoroethylene (PTFE), boron nitride and other metal oxides.
Estado da técnica State of the art
O atual estado da técnica antecipa alguns documentos de patentes que versam sobre compósitos autolubrificantes como US 5,180,761 que descreve um processo de fabricação de material autolubrificante preparado a partir de polímeros com lubrificantes sólidos, originando um compósito com reduzido coeficiente de atrito, para tanto utilizando de termoplástico como matriz do processo.  The current state of the art anticipates some patent documents relating to self-lubricating composites as US 5,180,761 which describes a process of manufacturing self-lubricating material prepared from polymers with solid lubricants, resulting in a composite with reduced coefficient of friction, for both using thermoplastic as the process matrix.
A solução acima, apesar de reduzir o coeficiente de atrito, ainda utiliza os lubrificantes em escala micrométrica, o que ocasiona alguns limitantes físico- químicos e mecânicos. Entre os lubrificantes sólidos destacam-se o grafite, Politetrafluoretileno (PTFE), Dissulfeto de Molibdênio (MoS2), Nitreto de Boro, WS2, talco todos conhecidos de longa data. The above solution, despite reducing the coefficient of friction, still uses the lubricants in micrometric scale, which causes some physical-chemical and mechanical limitations. Solid lubricants include graphite, polytetrafluoroethylene (PTFE), molybdenum disulphide (MoS 2 ), boron nitride, WS 2 , talc, all known for a long time.
O grafite natural só é encontrado em lamelas grandes, e os processos de moagem não conseguem reduzir suas dimensões aquém da escala micrométrica, o mesmo acontecendo com os outros lubrificantes sólidos, que apesar de beneficiamento mais recente que o grafite, também não ultrapassam a referida escala.  Natural graphite is only found in large lamellae, and milling processes can not reduce their dimensions below the micrometric scale, as do other solid lubricants, which, despite more recent processing than graphite, do not exceed the said scale .
Sendo assim, os produtos atuais, em sua maioria, utilizam basicamente grafite natural ao artificial e PTFE em pó e sinterizado. Esse último apresenta uma anomalia térmica entre 20 - 30°C em que o coeficiente de dilatação sofre significativo aumento de volume, limitando a sua utilização em projetos de mancais com este tipo de lubrificante. Da mesma forma, há limitações quando da utilização imergidas em água salgada devido à corrosão galvânica na presença do grafite micrométrica. No que tange a transmissão de calor e energia elétrica, um grande problema dos mancais atuais está no baixo coeficiente de transmissão térmica, o que limita drasticamente as pressões específicas x velocidades periféricas. Como esses sistemas não têm um fluido para conduzir o calor, toda a energia gerada pelo atrito é absorvida ao invés de ser trocada com o meio ambiente, de modo que mantendo-se as mesmas condições por períodos prolongados haverá destruição do sistema por calor e danos a contra-face do mesmo. Therefore, the current products, for the most part, use mainly natural and artificial graphite and powdered and sintered PTFE. The latter presents a thermal anomaly between 20 - 30 ° C in which the coefficient of expansion undergoes significant increase of volume, limiting its use in projects of bearings with this type of lubricant. Likewise, there are limitations when used immersed in salt water due to galvanic corrosion in the presence of micrometric graphite. With regard to the transmission of heat and electric power, a The major problem with the current bearings is the low coefficient of thermal transmission, which drastically limits the specific pressures x peripheral speeds. Since these systems do not have a fluid to conduct heat, all the energy generated by the friction is absorbed instead of being exchanged with the environment, so that maintaining the same conditions for prolonged periods will destroy the system by heat and damages the counter-face of it.
Objetivo da invenção Purpose of the invention
Oferecer elementos autolubrificantes cuja resistência mecânica, resistência à temperatura e coeficiente de atrito atendam as demandas dos equipamentos mais contemporâneos.  Offer self-lubricating elements whose mechanical resistance, temperature resistance and coefficient of friction meet the demands of the most contemporary equipment.
Da invenção Of invention
Trata de um processo de fabricação de compósitos autolubrificantes em que os lubrificantes sólidos - preferentemente grafite, PTFE e AI2O3 - em escala nanométrica são dispersos em uma resina termofixa passível de ser reforçada em tecido sintético de alto desempenho, como, por exemplo, o poliéster, fibra de aramida ou fibra de carbono.  This is a process for the manufacture of self-lubricating composites in which solid lubricants - preferably graphite, PTFE and AI2O3 - on a nanometric scale are dispersed in a thermosetting resin which can be reinforced in high performance synthetic fabric such as polyester, aramid fiber or carbon fiber.
A eleição do conjunto resina + reforço + lubrificantes sólidos em escala nanométrica, assim como o processo de fabricação do elemento autolubrificante permite inúmeras combinações, de forma a gerar soluções ideais para diferentes condições e necessidades tribológicas.  The selection of the resin + reinforcement + solid lubricants on a nanometric scale, as well as the process of manufacturing the self-lubricating element allows numerous combinations, in order to generate ideal solutions for different tribological conditions and needs.
A invenção também contempla sistemas híbridos, em que parte dos lubrificantes sólidos micrométricos é substituída por seus equivalentes nanométricos. Do problema técnico  The invention also contemplates hybrid systems, wherein part of the micrometric solid lubricants is replaced by their nanometric equivalents. From the technical problem
O fator limitante para utilização de lubrificantes sólidos nanométricos é que para sua dispersão e homogeneização à mistura, bem como sua estabilidade ao longo do tempo são necessários equipamentos de alta energia, o que acaba por inviabilizar o processo técnica e comercialmente. The limiting factor for the use of nanometric solid lubricants is that for their dispersion and homogenization to the mixture, as well as their stability to the over time, high-energy equipment is needed, which makes the process technically and commercially unfeasible.
A solução encontrada é a utilização de misturadores ultrassônicos para resinas termofixas de baixa viscosidade e misturadores tipo Vortex para as resinas de viscosidade mais altas.  The solution found is the use of ultrasonic blenders for thermoset resins of low viscosity and Vortex mixers for the higher viscosity resins.
Vantagens da invenção Advantages of the invention
O mercado convencionou como características mínimas exigidas dos sistemas poliméricos autolubrificantes compostos de resinas termofixas reforçadas por tecidos sintéticos e lubrificantes sólidos, além da resistência a produtos químicos, ácidos e bases fracas:  The market has agreed as minimum characteristics required of self-lubricating polymer systems composed of thermoset resins reinforced by synthetic fabrics and solid lubricants, in addition to resistance to chemicals, weak acids and bases:
a) Resistência mecânica≥ 100MPa;  a) Mechanical resistance≥100MPa;
b) Resistência a água (inchamento)≤ 1 %;  b) Water resistance (swelling) ≤ 1%;
c) Resistência a temperatura≥ 100°C;  c) Temperature resistance≥ 100 ° C;
d) Coeficiente de atrito≤ 0,1 ;  d) Coefficient of friction ≤ 0,1;
e) Densidade volumétrica≤ 1 ,3g/cm3. (e) Volumetric density: 1, 3 g / cm 3 .
Segundo testes, com a adição de lubrificantes sólidos em escala nanométrica conseguiu-se:  According to tests, with the addition of solid lubricants in nanoscale was achieved:
Aumento da resistência mecânica - 30%;  Increased mechanical strength - 30%;
Redução do coeficiente de atrito - 40%;  Reduction of coefficient of friction - 40%;
Incremento da temperatura máxima de operação - até 20°C; Incremento da resistência a tração - 30 - 300%.  Increased maximum operating temperature - up to 20 ° C; Increased tensile strength - 30 - 300%.
Em suma, a presente invenção apresenta como vantagens mais preponderantes:  In summary, the present invention has the most preponderant advantages:
Versatilidade - com o mesmo processo obtêm-se diferentes produtos adaptáveis a diversas necessidades tribológicas; ✓ Ambientalmente amigável; Versatility - with the same process are obtained different products adaptable to various tribological needs; ✓ Environmentally friendly;
✓ Excelente estabilidade dimensional quando da submissão do produto à água doce e/ ou salgada;  ✓ Excellent dimensional stability when the product is submitted to fresh and / or salty water;
✓ Alta capacidade de carga e resistência a choques; V Alta resistência a tração;  ✓ High load capacity and shock resistance; V High tensile strength;
Alta resistência ao desgaste;  High wear resistance;
Larga vida útil.  Long service life.
Descrição dos desenhos Description of the drawings
A seguir, a invenção será descrita em seus detalhes, a partir das ilustrações contidas na figuras anexas:  In the following the invention will be described in detail, from the illustrations contained in the attached figures:
Figura 1 : Fluxograma do processo de fabricação de elementos autolubrificantes com lubrificantes nanométricos;  Figure 1: Flowchart of the manufacturing process of self-lubricating elements with nanometric lubricants;
Figura 2: Vista esquemática do processo de fabricação de elementos autolubrificantes com lubrificantes nanométricos.  Figure 2: Schematic view of the manufacturing process of self-lubricating elements with nanometric lubricants.
Descrição detalhada da invenção Detailed description of the invention
O "PROCESSO DE FABRICAÇÃO DE ELEMENTOS AUTOLUBRIFICANTES COM LUBRIFICANTES NANOMÉTRICOS", objeto desta solicitação de patente de invenção, refere-se à fabricação de elementos autolubrificantes como mancais, placas, buchas e afins com compósitos obtidos a partir da impregnação de tecidos sintéticos especiais com resinas termofixas, catalisador e nano grafite e/ ou nano bissulfeto de molibdênio e/ ou nano PTFE e/ ou nano nitreto de boro, cada qual destes, ou outros lubrificantes nanométricos, acrescidos conforme as aplicações e necessidades tribológicas do produto. Mais particularmente, os compósitos utilizados no processo de fabricação dos elementos autolubrificantes são obtidos impregnando os tecidos em poliéster com resinas termofixas de poliéster (65% a 83%) ou resinas termofixas em epóxi (70% a 91%) e lubrificantes sólidos como nano grafite (15% a 19%) e/ ou nano nitreto de boro (até 4,5%) e/ ou PTFE (até 0%) e/ ou MoS2 (5% a 7%) em que os limites são ajustados conforme as necessidades tribológicas para aquele sistema autolubrificante. Os componentes acima e respectivas porcentagens podem ser incluídos total, parcialmente ou unitariamente para a impregnação do tecido. The invention relates to the manufacture of self-lubricating elements such as bearings, plates, bushings and the like with composites obtained from the impregnation of special synthetic fabrics with resins thermosets, catalyst and nano graphite and / or nanosulphide molybdenum and / or nano PTFE and / or boron nano nitride, each of these, or other nano-sized lubricants, added according to the applications and tribological needs of the product. More particularly, the composites used in the process of manufacturing the self-lubricating elements are obtained by impregnating the polyester fabrics with thermoset resins of polyester (65% to 83%) or thermoset resins in epoxy (70% to 91%) and solid lubricants such as nano graphite (15% to 19%) and / or boron nano nitride (up to 4.5%) and / or PTFE (up to 0%) and / or MoS 2 (5% to 7%) wherein the limits are adjusted according to tribological needs for that self-lubricating system. The above components and respective percentages may be included wholly, partially or uniformly for impregnation of the fabric.
A definição de qual componente deve ser utilizado está diretamente relacionado às necessidades requeridas para o produto final, como, por exemplo, as condições do ambiente. Neste contexto, o nano PTFE é indicado para utilização em ambientes onde haja corrosões galvânicas e submersas. O Nano grafite e o nano M0S2 são indicados para uso geral, desde que a temperatura máxima não ultrapasse 200°C. Já a combinação do PTFE e do MoS2 é ideal para a indústria alimentícia e farmacêutica. The definition of which component to use is directly related to the needs required for the final product, such as environmental conditions. In this context, nano PTFE is indicated for use in environments where there is galvanic and submerged corrosion. Nano graphite and nano M0S2 are indicated for general use, provided that the maximum temperature does not exceed 200 ° C. The combination of PTFE and MoS 2 is ideal for the food and pharmaceutical industry.
Na etapa inicial do processo, para a obtenção dos lubrificantes sólidos nanoparticulados são utilizados misturadores ultrassônicos para resinas termofixas de baixa viscosidade e misturadores tipo Vortex para as resinas de viscosidade mais altas. Assim, a impregnação ocorre com o banho do tecido de poliéster em um tanque de imersão com a mistura da resina termofixa e o (s) lubrificante (s) nano a ser (em) utilizado (s). Nessa etapa, se necessário o tecido pode ser enrolado com material de reforço, como, por exemplo, fibra de aramida ou fibra de carbono, com o objetivo de aumentar a resistência a choque e/ ou pressão do compósito autolubrificante nanométrico em equipamento de filament winding. Esse processo envolve o enrolamento de filamento sob diferentes condições de tensão ao longo de um mandril ou macho de molde. Desse modo, o mandril gira enquanto um carro movimenta-se horizontalmente estabelecendo o padrão de desejado do compósito nano lubrificante, resina e tecido. Uma vez que o mandril é completamente coberto com a espessura de material desejada, o mesmo é conduzido para o forno a fim de curar o conjunto tecido, resina e lubrificante sólido nano, o que ocorre entre 1 10° a 250°C. Em seguida o mandril pode ser removido. Neste processo, podem-se definir dimensões diferentes para os diâmetros iniciais interno e externo e para o comprimento, este definido pela medida do comprimento do mandril e do comprimento máximo do equipamento de filament winding. Após, as etapas acima o produto originário é cortado no comprimento desejado e usinado conforme a exigência de diâmetros interno e externo para aquele produto final representado por uma bucha ou mancai. In the initial stage of the process, to obtain nanoparticulate solid lubricants, ultrasonic blenders are used for thermoset resins of low viscosity and Vortex mixers for the higher viscosity resins. Thus impregnation takes place by bathing the polyester fabric in an immersion tank with the thermoset resin blend and the nano lubricant (s) to be used. In this step, if necessary the fabric can be rolled up with reinforcing material, such as aramid fiber or carbon fiber, in order to increase the shock and / or pressure resistance of the self-lubricating composite nanometer in filament winding equipment . This process involves filament winding under different stress conditions along a mandrel or mold core. Thereby, the mandrel rotates as a carriage moves horizontally establishing the desired pattern of the nano-lubricating composite, resin and fabric. Once the mandrel is completely covered with the desired material thickness, it is conducted into the furnace in order to cure the fabric, resin and nano solid lubricant assembly, which occurs between 110 ° to 250 ° C. Then the mandrel can be removed. In this process, different dimensions can be defined for the initial internal and external diameters and for the length, this defined by the measurement of the mandrel length and the maximum length of the filament winding equipment. After the above steps the originating product is cut to the desired length and machined according to the requirement of internal and external diameters for that final product represented by a bushing or bearing.
Uma variação de fabricação se destina a obtenção do elemento autolubrificante na forma de placa cujo processo é semelhante ao do mancai e bucha no qual o tecido é enrolado. No entanto, nessa variação o tecido de poliéster é impregnado com a resina ortoftálica e os lubrificantes nanométricos pertinentes, de igual forma sendo possível agregar fibra de carbono e fibra de aramida para reforço. Após a impregnação, o tecido é prensado com vácuo para a perfeita penetração da resina e nano lubrificantes, e retirada do excedente da mesma. Após a prensagem, o material é levado para o forno regulado para atingir a temperatura de cura da resina entre 1 10°C a 250°C. A composição para a impregnação e respectivas quantidades são as mesmas das apresentadas para a fabricação do compósito em tubo.  A manufacturing variation is intended to obtain the self-lubricating element in the form of a plate whose process is similar to that of the bearing and bush in which the fabric is wound. However, in this variation the polyester fabric is impregnated with the orthophthalic resin and the relevant nanometric lubricants, likewise being possible to add carbon fiber and aramid fiber for reinforcement. After impregnation, the fabric is vacuum-pressed for perfect penetration of the resin and nano-lubricants, and removal of the surplus thereof. After pressing, the material is brought into the set oven to reach the curing temperature of the resin between 110 ° C and 250 ° C. The composition for the impregnation and respective amounts are the same as those for the manufacture of the composite tube.
Conforme a Figura 1 , a resina (E1 ) e os lubrificantes nanométricos (E2), devidamente dosados, são direcionados para um misturador (E3) onde são homogeneizados. O misturador varia conforme a resina. No caso de resinas termofixas de alta viscosidade é do tipo Vortex e para resinas termofixas de baixa viscosidade do tipo ultrassônico. A resina e o lubrificante misturados e homogeneizados (E4) estão prontos para impregnar (A) o tecido de poliéster (E5). Tal impregnação acontece com a passagem do tecido (1) por um tanque de imersão (2) contendo a mistura (3) na forma pastosa. Nessa altura, o processo entra em uma etapa de tomada de decisão (E6) que define qual tipo de matéria-prima ou elemento autolubrificante final se deseja. Para a produção de placas (B), o tecido impregnado ao sair do tanque é direcionado para uma prensa (E7), ao passo que para a produção de tarugos (C) - buchas e mancais - o tecido é enrolado em equipamento (E8) de filament winding. Em ambas as situações, os produtos são levados para o forno / estufa (E9) entre 110°C a 250°C para que a matéria-prima (E10) em placa ou tarugo atinja a temperatura de cura. Daí o processo segue para a usinagem (E11) para obtenção do produto finalizado (E12). According to Figure 1, the resin (E1) and the nanometer lubricants (E2), suitably dosed, are directed to a mixer (E3) where they are homogenized. The mixer varies depending on the resin. In the case of resins high viscosity thermosets is of the Vortex type and for thermoset resins of low viscosity of the ultrasonic type. The blended and homogenized resin and lubricant (E4) are ready to impregnate (A) the polyester fabric (E5). Such impregnation occurs with the passage of the fabric (1) by an immersion tank (2) containing the mixture (3) in the pasty form. At that time, the process enters a decision-making stage (E6) that defines which type of raw material or final self-lubricating element is desired. For the production of plates (B), the impregnated fabric emerging from the tank is directed to a press (E7), whereas for the production of billets (C) - bushes and bearings - the fabric is wound on equipment (E8) of filament winding. In both cases, the products are brought to the oven / stove (E9) between 110 ° C to 250 ° C so that the raw material (E10) in plate or billet reaches the cure temperature. Hence the process goes to the machining (E11) to obtain the finished product (E12).
Em um exemplo de aplicação do processo, para a produção de uma bucha para utilização em equipamento de colheita de grãos são analisadas as dimensões como diâmetro interno, diâmetro externo, comprimento, velocidade, temperatura, coeficiente de atrito e fator de carga sobre o mancai e demais dados para necessários ao bom funcionamento do elemento autolubrificante. Assim, o processo de fabricação da referida bucha utiliza tecido de poliéster com as medidas adequadas para atingir a aferição do produto final. A impregnação do tecido é com resina poliéster de alta viscosidade (75%), nano PTFE (10%), nano oS2 (4%) para complementação da lubrificação sólida e catalisador para a resina (11%), esses homogeneizados em misturador Vortex. Após a impregnação do tecido, o conjunto resina + lubrificante nanométrico + tecido é enrolado em equipamento filament winding, com diâmetros já definidos para o produto final. O diâmetro interno da bucha é dado pelo diâmetro externo do mandril. Após o enrolamento, a matéria- prima é levada até a estufa para atingir a temperatura de cura, nesse caso 150°C. Após a cura e o resfriamento é realizada a usinagem da bucha para atingir as medidas finais de projeto. In an example of the process application, the dimensions such as internal diameter, outer diameter, length, speed, temperature, friction coefficient and load factor on the bearing are analyzed for the production of a bushing for use in grain harvesting equipment. other data necessary for the proper functioning of the self-lubricating element. Thus, the manufacturing process of said bushing uses polyester fabric with the appropriate measures to achieve the end product gauging. The impregnation of the fabric is with polyester resin of high viscosity (75%), nano PTFE (10%), nano oS 2 (4%) for complementation of the solid lubrication and catalyst for the resin (11%), these homogenates in Vortex mixer . After impregnation of the fabric, the resin + nano-lubricant + fabric assembly is rolled up in filament winding equipment, with diameters already defined for the final product. The inner diameter of the is given by the outside diameter of the mandrel. After rolling, the raw material is brought to the stove to reach the curing temperature, in this case 150 ° C. After curing and cooling, the bushing is machined to achieve final design measurements.

Claims

REIVINDICAÇÕES
1) "PROCESSO DE FABRICAÇÃO DE ELEMENTOS AUTOLUBRIFICANTES COM LUBRIFICANTES NANOMETRICOS" caracterizado por utilizar um conjunto de tecido de poliéster impregnado com umas resinas termofixas, agregadas com uns lubrificantes nanométricos homogeneizados em misturadores, sendo os quantitativos e qualitativos ajustados conforme as necessidades tribológicas.  (1) A method of manufacturing self-lubricating elements with nanomanetric lubricants characterized by using a set of polyester fabric impregnated with thermosetting resins, which are added with homogeneous nanometric lubricants in mixers, the quantitative and qualitative being adjusted according to the tribological needs.
2) "PROCESSO DE FABRICAÇÃO DE ELEMENTOS AUTOLUBRIFICANTES COM LUBRIFICANTES NANOMETRICOS" de acordo com a reivindicação 1 caracterizado por em termos qualitativos e quantitativos: tecidos em poliéster com resinas termofixas de poliéster (65% a 83%) ou resinas termofixas em epóxi (70% a 91%) e lubrificantes sólidos como nano grafite (15% a 19%) e/ ou nano nitreto de boro (até 4,5%) e/ ou PTFE (até 10%) e/ ou MoS2 (5% a 7%). (2) A process for the manufacture of self-lubricating elements with nanomanetric lubricants as claimed in claim 1, characterized in that in qualitative and quantitative terms polyester fabrics with thermoset resins of polyester (65% to 83%) or thermoset resins in epoxy (70% 91%) and solid lubricants such as graphite nano (15% to 19%) and / or nano boron nitride (to 4.5%) and / or PTFE (up 10%) and / or MoS 2 (5 to 7% %).
3) "PROCESSO DE FABRICAÇÃO DE ELEMENTOS AUTOLUBRIFICANTES COM LUBRIFICANTES NANOMÉTRICOS" de acordo com as reivindicações 1 e 2 caracterizado pelos componentes e respectivas porcentagens poderem ser incluídos total, parcialmente ou unitariamente para a impregnação do tecido.  (3) A method of manufacturing self-lubricating elements with nanomanic lubricants according to claims 1 and 2 characterized in that the components and respective percentages can be included totally, partially or unitarily for the impregnation of the fabric.
4) "PROCESSO DE FABRICAÇÃO DE ELEMENTOS AUTOLUBRIFICANTES COM LUBRIFICANTES NANOMETRICOS" de acordo com a reivindicação 1 caracterizado por utilizar misturadores tipo Vortex para as resinas de viscosidade mais altas e misturadores ultrassônícos para resinas de viscosidade mais baixa. 4) "METHOD OF MANUFACTURING AUTOLUBRICANT ELEMENTS WITH NANOMETRIC LUBRICANTS" according to claim 1 characterized by using Vortex type mixers for the higher viscosity resins and ultrasonic mixers for lower viscosity resins.
5) "PROCESSO DE FABRICAÇÃO DE ELEMENTOS AUTOLUBRIFICANTES COM LUBRIFICANTES NANOMETRICOS" de acordo com a reivindicação 1 caracterizado pela impregnação do tecido ser dar em um tanque contendo a mistura resina + lubrificantes nano. 6) "PROCESSO DE FABRICAÇÃO DE ELEMENTOS AUTOLUBRIFICANTES COM LUBRIFICANTES NANOMÉTRICOS" de acordo com a reivindicações 1 e 5 caracterizado por nessa etapa o tecido poder ser enrolado com material de reforço como fibra de aramida ou fibra de carbono. (5) A process for the manufacture of self-lubricating elements with nanomanetric lubricants as claimed in claim 1, characterized in that the impregnation of the fabric is to be given in a tank containing the resin mixture plus nano lubricants. (6) A method of manufacturing self-lubricating elements with nanomanic lubricants according to claims 1 and 5 characterized in that at this stage the fabric can be rolled up with reinforcing material as aramid fiber or carbon fiber.
7) "PROCESSO DE FABRICAÇÃO DE ELEMENTOS AUTOLUBRIFICANTES COM LUBRIFICANTES NANOMÉTRICOS" de acordo com a reivindicações 1 e 5 caracterizado pelo material seguir para a prensa para a produção de placas ou para equipamento de filament winding para a produção de tarugos. (7) A method of manufacturing self-lubricating elements with nanomanic lubricants as claimed in claims 1 and 5, characterized in that the material moves to the press for the production of slabs or for winding filament equipment for the production of billets.
7) "PROCESSO DE FABRICAÇÃO DE ELEMENTOS AUTOLUBRIFICANTES COM LUBRIFICANTES NANOMÉTRICOS" de acordo com a reivindicações 1 e 5 caracterizado pelo material seguir para a estufa com temperatura entre 110°C - 250°C.  (7) A method of manufacturing self-lubricating elements with nanomanic lubricants according to claims 1 and 5, characterized in that the material moves to the oven with a temperature between 110 ° C and 250 ° C.
8) "PROCESSO DE FABRICAÇÃO DE ELEMENTOS AUTOLUBRIFICANTES COM LUBRIFICANTES NANOMÉTRICOS" de acordo com a reivindicações 1 e 5 caracterizado pelo material, em placa ou tarugo, ser submetido a usinagem para então originar o produto final.  (8) A method of manufacturing self-lubricating elements with nanomanic lubricants according to claims 1 and 5 characterized in that the sheet or billet material is machined to give the final product.
PCT/BR2014/000080 2013-03-27 2014-03-17 Method for manufacturing self-lubricating elements with nanometric lubricants WO2014153631A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR1020130071781 2013-03-27
BR102013007178-1A BR102013007178B1 (en) 2013-03-27 2013-03-27 manufacturing process of self-lubricating elements with nanometric lubricants

Publications (1)

Publication Number Publication Date
WO2014153631A1 true WO2014153631A1 (en) 2014-10-02

Family

ID=51622297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2014/000080 WO2014153631A1 (en) 2013-03-27 2014-03-17 Method for manufacturing self-lubricating elements with nanometric lubricants

Country Status (2)

Country Link
BR (1) BR102013007178B1 (en)
WO (1) WO2014153631A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200166077A1 (en) * 2018-11-26 2020-05-28 Etienne Henrique Jensen Process of manufacturing self-lubricating elements with nanometric lubricants

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030236588A1 (en) * 2002-03-14 2003-12-25 Jang Bor Z. Nanotube fiber reinforced composite materials and method of producing fiber reinforced composites
US20050025967A1 (en) * 1998-03-03 2005-02-03 Lawton Ernest L. Fiber product coated with particles to adjust the friction of the coating and the interfilament bonding
US20070213450A1 (en) * 2003-03-20 2007-09-13 Winey Karen I Polymer-nanotube composites, fibers, and processes
US20090152042A1 (en) * 2007-08-29 2009-06-18 David Pierick Nano-metal bicycle frame and related components

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050025967A1 (en) * 1998-03-03 2005-02-03 Lawton Ernest L. Fiber product coated with particles to adjust the friction of the coating and the interfilament bonding
US20030236588A1 (en) * 2002-03-14 2003-12-25 Jang Bor Z. Nanotube fiber reinforced composite materials and method of producing fiber reinforced composites
US20070213450A1 (en) * 2003-03-20 2007-09-13 Winey Karen I Polymer-nanotube composites, fibers, and processes
US20090152042A1 (en) * 2007-08-29 2009-06-18 David Pierick Nano-metal bicycle frame and related components

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200166077A1 (en) * 2018-11-26 2020-05-28 Etienne Henrique Jensen Process of manufacturing self-lubricating elements with nanometric lubricants

Also Published As

Publication number Publication date
BR102013007178A2 (en) 2014-11-11
BR102013007178B1 (en) 2020-11-17

Similar Documents

Publication Publication Date Title
Wang et al. Tribological properties of PTFE/Kevlar fabric composites under heavy loading
CN105524405A (en) Antistatic peek composite material and preparation method thereof
EP3246583B1 (en) Water-lubricated bearing material
Chang et al. Investigating the effects of operational factors on wear properties of heat-treated pultruded kenaf fiber-reinforced polyester composites using taguchi method
CN101724222A (en) High wear-resistence self-lubricating polyformaldehyde compound and preparation method thereof
Shi et al. Friction and wear behavior of CF/PTFE composites lubricated by choline chloride ionic liquids
Kumar et al. Nanohybrid Cu@ C: synthesis, characterization and application in enhancement of lubricity
Vijayan P et al. TiO2/Halloysite hybrid filler reinforced epoxy nanocomposites
Shi et al. In situ micro-fibrillization and post annealing to significantly improve the tribological properties of polyphenylene sulfide/polyamide 66/polytetrafluoroethylene composites
WO2014153631A1 (en) Method for manufacturing self-lubricating elements with nanometric lubricants
CN105385151A (en) High performance polyamide 6 based friction material and preparation method thereof
Kumar et al. An experimental investigation of surface roughness in the drilling of MWCNT doped carbon/epoxy polymeric composite material
Zahabi et al. Study on microstructure and tribological properties of hierarchical 3D braid applicable in heavy operating tribology conditions
CN107177145B (en) Filling-modified polytetrafluoroethylene material and its application and preparation method
Senthilnathan et al. Experimental investigation of polymer matrix composites gears with different fiber proportions
CN115322566B (en) PA 66-based composite material for motor bearing retainer and preparation method thereof
Kumar et al. Tribological characteristics of glass/carbon fibre-reinforced thermosetting polymer composites: a critical review
Qian-qian et al. On the friction and wear behavior of PTFE composite filled with rare earths treated carbon fibers under oil-lubricated condition
Yazdanfar et al. Experimental investigation of multi-wall carbon nanotube added epoxy resin on the EDM performance of epoxy/carbon fiber/MWCNT hybrid composites
US20200166077A1 (en) Process of manufacturing self-lubricating elements with nanometric lubricants
CN1831351A (en) High speed wear-resistance oil-containing bearing
Chen et al. Synergism of poly (p-phenylene benzobisoxazole) microfibers and carbon nanofibers on improving the wear resistance of polyimide–matrix composites in sea water
CA3025993A1 (en) Process of manufacturing self-lubricating elements with nanoscale lubricants
Tawiah et al. Tribology of hybrid nanofiller/polymer nanocomposites
Dharmalingam et al. Optimization of Drilling parameters for reduced Delamination Factor in non-functionalized and amine-functionalized Luffa/Epoxy Composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14773452

Country of ref document: EP

Kind code of ref document: A1